Science.gov

Sample records for 48h tank 48h

  1. Benzene Generation Testing for Tank 48H Waste Disposition

    SciTech Connect

    Peters, T

    2005-05-13

    In support for the Aggregation option1, researchers performed a series of tests using actual Tank 48H slurries. The tests were designed to examine potential benzene generation issues if the Tank 48H slurry is disposed to Saltstone. Personnel used the archived Tank 48H sample (HTF-E-03-127, collected September 17, 2003) for the experiments. The tests included a series of three experiments (Tests A, B, and F) performed in duplicate, giving a total of six experiments. Test A used Tank 48H slurry mixed with {approx}20:1 with Defense Waste Processing Facility (DWPF) Recycle from Tanks 21H and 22H. Test B used Tank 48H slurry mixed with {approx}2.7:1 with DWPF Recycle from Tanks 21H and 22H, while Test F used Tank 48H slurry as-is. Tests A and B occurred at 45 C, while Test F occurred at 55 C. Over a period of 8 weeks, personnel collected samples for analysis, once per week. Each sample was tested with the in-cell gamma counter. The researchers noted a decline in the cesium activity in solution which is attributed to temperature dependence of the complex slurry equilibrium. Selected samples were sent to ADS for potassium, boron, and cesium analysis. The benzene generation rate was inferred from the TPB destruction which is indirectly measured by the in-growth of cesium, potassium or boron. The results of all the analyses reveal no discernible in-growth of radiocesium, potassium or boron, indicating no significant tetraphenylborate (TPB) decomposition in any of the experiments. From boron measurements, the inferred rate of TPB destruction remained less than 0.332 mg/(L-h) implying a maximum benzene generation rate of <0.325 mg/(L-h).

  2. Treatment of SRS Tank 48H Simulants Using Fenton's Reagent

    SciTech Connect

    Taylor, PA

    2003-11-18

    High-level-waste Tank 48H at the Savannah River Site (SRS) contains about 50,000 lb of tetraphenylborate (TPB), which must be destroyed to return the tank to active service. Laboratory-scale tests were conducted to evaluate the use of Fenton's Reagent (hydrogen peroxide and a metal catalyst) to treat simulants of the Tank 48H waste. Samples of the treated slurry and the off-gas were analyzed to determine the reaction products. Process parameters developed earlier by AEA Technology were used for these tests; namely (for 500 mL of waste simulant), reduce pH to 7.5 with nitric acid, heat to boiling, add hydrogen peroxide at 1 mL/min for 1 h, reduce pH to 3.5, and add the remaining peroxide at 2 mL/min. These parameters were developed to minimize the formation of tarry materials during the early part of the reaction and to minimize the concentration of total organic carbon in the final treated slurry. The treated samples contained low concentrations of total organic carbon (TOC) and no detectable TPB. Tests using a mixture of iron and copper salts as the Fenton's catalyst had a lower TOC concentration in the final treated slurry than did tests that used a copper-only catalyst. TPB is known to hydrolyze to benzene, particularly at high temperature and low pH, and copper is known to increase the rate of hydrolysis. Significant amounts of benzene were present in the off-gas from the tests, especially during the early portion of the treatment, indicating that the hydrolysis reaction was occurring in parallel with the oxidation of the TPB by Fenton's reagent. For the reaction conditions used in these tests, approximately equal fractions of the TPB were converted to benzene and carbon dioxide. Minimizing the formation of benzene is important to SRS personnel; however, this consideration was not addressed in the AEA-recommended parameters, since they did not analyze for benzene in the off-gas. Smaller amounts of carbon monoxide and other organics were also produced. One test

  3. Tank 48H Waste Composition and Results of Investigation of Analytical Methods

    SciTech Connect

    Walker , D.D.

    1997-04-02

    This report serves two purposes. First, it documents the analytical results of Tank 48H samples taken between April and August 1996. Second, it describes investigations of the precision of the sampling and analytical methods used on the Tank 48H samples.

  4. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    SciTech Connect

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The

  5. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    SciTech Connect

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a

  6. CRUCIBLE TESTING OF TANK 48H RADIOACTIVEWASTE SAMPLE USING FLUIDIZED BED STEAMREFORMING TECHNOLOGY FOR ORGANICDESTRUCTION

    SciTech Connect

    Crawford, C

    2008-07-31

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble

  7. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-10-25

    ABSTRACT One of U.S. Department of Energy’s (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents – approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes – are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC’s ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates – WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in

  8. Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment

    SciTech Connect

    Harmon, H.D.; Young, J.K.; Berkowitz, J.B.; DeVine, Jr.J.C.; Sutter, H.G.

    2008-07-01

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F and H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department

  9. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-03-18

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of

  10. Characterization of Tank 48H Samples for Alpha Activity and Actinide Isotopics

    SciTech Connect

    Hobbs, D.T.; Coleman, C.J.; Hay, M.S.

    1995-12-04

    This document reports the total alpha activity and actinide isotopic results for samples taken from Tank 48H prior to the addition of sodium tetraphenylborate and MST in Batch {number_sign}1 of the ITP process. This information used to determine the quantity of MST for Batch {number_sign}1 of the ITP process and the total actinide content in the tank for dose calculations.

  11. Development of Chemical Treatment Alternatives for Tetraphenylborate Destruction in Tank 48H

    SciTech Connect

    LAMBERT, DANIELP.

    2004-05-04

    This study assessed chemical treatment options for decomposing the tetraphenylborate in High Level Waste (HLW) Tank 48H. Tank 48H, located at the Savannah River Site in Aiken, SC, contains approximately one million liters of HLW. The tetraphenylborate slurry represents legacy material from commissioning of an In Tank Precipitation process to separate radioactive cesium and actinides from the non radioactive chemicals. During early operations, the process encountered an unplanned chemical reaction that catalytically decomposed the excess tetraphenylborate producing benzene. Subsequent research indicated that personnel could not control the operations within the existing equipment to both meet the desired treatment rate for the waste and maintain the benzene concentration within allowable concentrations. Since then, the Department of Energy selected an alternate treatment process for handling high-level waste at the site. However, the site must destroy the tetraphenylborate before returning the tank to HLW service. The research focuses on identifying treatments to decompose tetraphenylborate to the maximum extent feasible, with a preference for decomposition methods that produce carbon dioxide rather than benzene. A number of experiments examined whether the use of oxidants, catalysts or acids proved effective in decomposing the tetraphenylborate. Additional experiments developed an understanding of the solid, liquid and gas decomposition products. The testing identified several successful treatment options including: an iron catalyst combined with hydrogen peroxide (Fenton's reagent) with added acid; sodium permanganate with added acid; and copper catalyst with added acid. A mistake occurred in the selection and make-up of the Tank 48H simulant recipe which led to an under representation of the amount of monosodium titanate and insoluble sludge solids compared to the simulant target. The amount of added MST and sludge proved about a factor of 40 low relative to the

  12. Sample Results From Tank 48H Samples HTF-48-14-158, -159, -169, and -170

    SciTech Connect

    Peters, T.; Hang, T.

    2015-04-28

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 48H in support of determining the cause for the unusually high dose rates at the sampling points for this tank. A set of two samples was taken from the quiescent tank, and two additional samples were taken after the contents of the tank were mixed. The results of the analyses of all the samples show that the contents of the tank have changed very little since the analysis of the previous sample in 2012. The solids are almost exclusively composed of tetraphenylborate (TPB) salts, and there is no indication of acceleration in the TPB decomposition. The filtrate composition shows a moderate increase in salt concentration and density, which is attributable to the addition of NaOH for the purposes of corrosion control. An older modeling simulation of the TPB degradation was updated, and the supernate results from a 2012 sample were run in the model. This result was compared to the results from the 2014 recent sample results reported in this document. The model indicates there is no change in the TPB degradation from 2012 to 2014. SRNL measured the buoyancy of the TPB solids in Tank 48H simulant solutions. It was determined that a solution of density 1.279 g/mL (~6.5M sodium) was capable of indefinitely suspending the TPB solids evenly throughout the solution. A solution of density 1.296 g/mL (~7M sodium) caused a significant fraction of the solids to float on the solution surface. As the experiments could not include the effect of additional buoyancy elements such as benzene or hydrogen generation, the buoyancy measurements provide an upper bound estimate of the density in Tank 48H required to float the solids.

  13. Development of Chemical Treatment Alternatives for Tetraphenylborate Destruction in Tank 48H

    SciTech Connect

    Lambert, D.P.

    2003-03-11

    This study assessed chemical treatment options for decomposing the tetraphenylborate in High Level Waste (HLW) Tank 48H. Tank 48H, located at the Savannah River Site in Aiken, SC, contains approximately one million liters of HLW. The tetraphenylborate slurry represents legacy material from commissioning of an In Tank Precipitation process to separate radioactive cesium and actinides from the nonradioactive chemicals. During early operations, the process encountered an unplanned chemical reaction that catalytically decomposed the excess tetraphenylborate producing benzene. Subsequent research indicated that personnel could not control the operations within the existing equipment to both meet the desired treatment rate for the waste and maintain the benzene concentration within allowable concentrations. Since then, the Department of Energy selected an alternate treatment process for handling high-level waste at the site. However, the site must destroy the tetraphenylborate before returning the tank to HLW service. The research focuses on identifying treatments to decompose tetraphenylborate to the maximum extent feasible, with a preference for decomposition methods that produce carbon dioxide rather than benzene. A number of experiments examined whether the use of oxidants, catalysts or acids proved effective in decomposing the tetraphenylborate. Additional experiments developed an understanding of the solid, liquid and gas decomposition products.

  14. Measurements of Flammable Gas Generation from Saltstone Containing Actual Tank 48H Waste (Interim Report)

    SciTech Connect

    Cozzi, A. D.; Crowley, D. A.; Duffey, J. M.; Eibling, R. E.; Jones, T. M.; Marinik, A. R.; Marra, J. C.; Zamecnik, J. R

    2005-06-01

    The Savannah River National Laboratory was tasked with determining the benzene release rates in saltstone prepared with tetraphenylborate (TPB) concentrations ranging from 30 mg/L to 3000 mg/L in the salt fraction and with test temperatures ranging from ambient to 95 C. Defense Waste Processing Facility Engineering (DWPF-E) provided a rate of benzene evolution from saltstone of 2.5 {micro}g/L/h saltstone (0.9 {micro}g/kg saltstone/h [1.5 {micro}g/kg saltstone/h x 60%]) to use as a Target Rate of Concern (TRC). The evolution of benzene, toluene, and xylenes from saltstone containing actual Tank 48H salt solution has been measured as a function of time at several temperatures and concentrations of TPB. The Tank 48H salt solution was aggregated with a DWPF recycle simulant to obtain the desired TPB concentrations in the saltstone slurry. The purpose of this interim report is to provide DWPF-E with an indication of the trends of benzene evolution. The data presented are preliminary; more data are being collected and may alter the preliminary results. A more complete description of the methods and materials will be included in the final report. The benzene evolution rates approximately follow an increasing trend with both increasing temperature and TPB concentration. The benzene release rates from 1000 mg/L TPB at 95 C and 3000 mg/L TPB at 75 C and 95 C exceeded the recovery-adjusted 0.9 mg/kg saltstone/h TRC (2.5 {micro}g/L saltstone/h), while all other conditions resulted in benzene release rates below this TRC. The toluene evolution rates for several samples exceeded the TRC initially, but all dropped below the TRC within 2-5 days. The toluene emissions appear to be mainly dependent on the fly ash and are independent of the TPB level, indicating that toluene is not generated from TPB.

  15. RESULTS OF COPPER CATALYZED PEROXIDE OXIDATION (CCPO) OF TANK 48H SIMULANTS

    SciTech Connect

    Peters, T.; Pareizs, J.; Newell, J.; Fondeur, F.; Nash, C.; White, T.; Fink, S.

    2012-08-14

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. The following observations were made with respect to the major processing variables investigated. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. Testing with simulated slurries continues. Current testing is examining lower copper concentrations, refined peroxide addition rates, and alternate acidification methods. A revision of this report will provide updated findings with emphasis on defining recommended conditions for similar tests with actual waste samples.

  16. Results Of Copper Catalyzed Peroxide Oxidation (CCPO) Of Tank 48H Simulants

    SciTech Connect

    Peters, T. B.; Pareizs, J. M.; Newell, J. D.; Fondeur, F. F.; Nash, C. A.; White, T. L.; Fink, S. D.

    2012-12-13

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. A processing temperature of 50°C as part of an overall set of conditions appears to provide a viable TPB destruction time on the order of 4 days. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. The data in this report suggests 100-250 mg/L as a minimum. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. An addition rate of 0.4 mL/hour, scaled to the full vessel, is suggested for the process. SRNL recommends that for pH adjustment, an acid addition rate 42 mL/hour, scaled to the full vessel, is used. This is the same addition rate used in the testing. Even though the TPB and phenylborates can be destroyed in a relative short time period, the residual organics will take longer to degrade to <10 mg/L. Low level leaching on titanium occurred, however, the typical concentrations of released titanium are very low (~40 mg/L or less). A small amount of leaching under these conditions is not

  17. FATE OF FISSILE MATERIAL BOUND TO MONOSODIUM TITANATE DURING COOPER CATALYZED PEROXIDE OXIDATION OF TANK 48H WASTE

    SciTech Connect

    Taylor-Pashow, K.

    2012-08-09

    At the Savannah River Site (SRS), Tank 48H currently holds approximately 240,000 gallons of slurry which contains potassium and cesium tetraphenylborate (TPB). A copper catalyzed peroxide oxidation (CCPO) reaction is currently being examined as a method for destroying the TPB present in Tank 48H. Part of the development of that process includes an examination of the fate of the Tank 48H fissile material which is adsorbed onto monosodium titanate (MST) particles. This report details results from experiments designed to examine the potential degradation of MST during CCPO processing and the subsequent fate of the adsorbed fissile material. Experiments were conducted to simulate the CCPO process on MST solids loaded with sorbates in a simplified Tank 48H simulant. Loaded MST solids were placed into the Tank 48H simplified simulant without TPB, and the experiments were then carried through acid addition (pH adjustment to 11), peroxide addition, holding at temperature (50 C) for one week, and finally NaOH addition to bring the free hydroxide concentration to a target concentration of 1 M. Testing was conducted without TPB to show the maximum possible impact on MST since the competing oxidation of TPB with peroxide was absent. In addition, the Cu catalyst was also omitted, which will maximize the interaction of H{sub 2}O{sub 2} with the MST; however, the results may be non-conservative assuming the Cu-peroxide active intermediate is more reactive than the peroxide radical itself. The study found that both U and Pu desorb from the MST when the peroxide addition begins, although to different extents. Virtually all of the U goes into solution at the beginning of the peroxide addition, whereas Pu reaches a maximum of {approx}34% leached during the peroxide addition. Ti from the MST was also found to come into solution during the peroxide addition. Therefore, Ti is present with the fissile in solution. After the peroxide addition is complete, the Pu and Ti are found to

  18. TASK TECHNICAL AND QUALITY ASSURANCE PLAN FOR THE CHARACTERIZATION AND LEACHING OF A THERMOWELL AND CONDUCTIVITY PROBE PIPE SAMPLE FROM TANK 48H

    SciTech Connect

    Fondeur, F

    2005-11-02

    A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. The material on the Tank 48H internal tank surfaces is estimated to have a total volume of approximately 115 gallons consisting of mostly water soluble solids with approximately 20 wt% insoluble solids (33 Kg TPB). This film is assumed to be readily removable. The material on the internal equipment/surfaces of Tank 48H is presumed to be easily removed by slurry pump operation. For Tank 49H, the slurry pumps were operated almost continuously for approximately 6 months after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids--Na{sub 3}H(CO){sub 2}, Al(OH){sub 3}, NaTPB, NaNO{sub 3} and NaNO{sub 2}. Although the Tank 48H film is expected to be primarily soluble solids, it may not behave the same as the Tank 49H film. Depending on when the Recycle material or inhibited water can be added to Tank 48H, the tank may not be allowed to agitate for this same amount of time. The tank will be filled above 150 inches and agitated at least once during the Aggregation process. If the material cannot be removed after completion of these batches, the material may be removed with additional fill and agitation operations. There is a risk that this will not remove the material from the internal surfaces. As a risk mitigation activity, properties of the film and the ease of removing the film from the tank will be evaluated prior to initiating Aggregation. This task will investigate the dissolution of Tank 48H solid deposits in inhibited water and DWPF recycle. To this end, tank personnel plan to cut and remove a thermowell pipe from Tank 48H and submit the cut pieces to SRNL for both characterization and leaching behavior. A plan for the removal, packaging and transport of the thermowell pipe

  19. STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138

    SciTech Connect

    Burket, P

    2009-02-24

    This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

  20. 2009 PILOT SCALE FLUIDIZED BED STEAM REFORMING TESTING USING THE THOR (THERMAL ORGANIC REDUCTION) PROCESS: ANALYTICAL RESULTS FOR TANK 48H ORGANIC DESTRUCTION - 10408

    SciTech Connect

    Williams, M.; Jantzen, C.; Burket, P.; Crawford, C.; Daniel, G.; Aponte, C.; Johnson, C.

    2009-12-28

    The Savannah River Site (SRS) must empty the contents of Tank 48H, a 1.3 million gallon Type IIIA HLW storage tank, to return this tank to service. The tank contains organic compounds, mainly potassium tetraphenylborate that cannot be processed downstream until the organic components are destroyed. The THOR{reg_sign} Treatment Technologies (TTT) Fluidized Bed Steam Reforming (FBSR) technology, herein after referred to as steam reforming, has been demonstrated to be a viable process to remove greater than 99.9% of the organics from Tank 48H during various bench scale and pilot scale tests. These demonstrations were supported by Savannah River Remediation (SRR) and the Department of Energy (DOE) has concurred with the SRR recommendation to proceed with the deployment of the FBSR technology to treat the contents of Tank 48H. The Savannah River National Laboratory (SRNL) developed and proved the concept with non-radioactive simulants for SRR beginning in 2003. By 2008, several pilot scale campaigns had been completed and extensive crucible testing and bench scale testing were performed in the SRNL Shielded Cells using Tank 48H radioactive sample. SRNL developed a Tank 48H non-radioactive simulant complete with organic compounds, salt, and metals characteristic of those measured in a sample of the radioactive contents of Tank 48H. FBSR Pilot Scaled Testing with the Tank 48H simulant has demonstrated the ability to remove greater than 98% of the nitrites and greater than 99.5% of the nitrates from the Tank 48H simulant, and to form a solid product that is primarily alkali carbonate. The alkali carbonate is soluble and, thus, amenable to pumping as a liquid to downstream facilities for processing. The FBSR technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration (ESTD) pilot scale steam reformer at the Hazen Research Inc. (HRI) facility in Golden, CO. Additional ESTD tests were completed in 2008 and in 2009 that further demonstrated the

  1. Thermal Screening Of Residues From Acidification And Copper-Catalyzed Peroxide Oxidation Of Tank 48H Simulant

    SciTech Connect

    Fondeur, F. F.; Newell, J. D.; Peters, T. B.; Fink, S. D.

    2012-10-04

    This study evaluated the residues generated from copper-catalyzed peroxide oxidation (CCPO) of Tank 48H simulant. The first step of the CCPO calls for pH adjustment of the simulant, and early testing used either 15wt% or 50wt % nitric acid to reach a slurry pH of between 12 and 5. Residues obtained by ambient temperature pH adjustment with 50wt % nitric acid followed by oxidation with 50 wt % hydrogen peroxide at 35, 50, and 65°C (from a recently conducted Copper Catalyzed Peroxide Oxidation or CCPO) were also analyzed. Slurry samples at pH 7 or lower especially made from adding nitric acid at the process equivalent of one gallon per minute had the largest enthalpy of decomposition. The thermogravimetric characteristics of some samples from the CCPO test generated at pH 9 or lower exhibited rapid weight loss. Taken together, residues generated at pH 9 or lower may be classified as energetic upon decomposition in confined spaces or under adiabatic conditions. Therefore, additional testing is recommended with larger (up to 50mL) samples in an adiabatic calorimeter. To minimize risk of formation of energetic byproducts, an intermediate slurry pH of 9 or greater is recommended following the acidification step in the CCPO and prior to start of peroxide addition. In practice, process temperature needs to reach 150°C or greater to decompose residues obtained a pH 9 or lower which is unlikely. Oxidation temperature had no significant effect on the thermal characteristics of the final residues generated.

  2. ANALYSES OF HTF-48-12-20/24 (FEBRUARY, 2012) AND ARCHIVED HTF-E-05-021 TANK 48H SLURRY SAMPLES

    SciTech Connect

    Nash, C.; Peters, T.

    2012-08-02

    Personnel characterized a Savannah River National Laboratory (SRNL) archived sample of Tank 48H slurry (HTF-E-05-021) in addition to the composite of samples HTF-48-12-20 and HTF-48-12-24, which were both retrieved in February 2012. The combined February 2012 sample is referred to as HTF-48-12-20/24 in this report. The results from these analyses are compared with Tank 48H samples analyzed in 2003, 2004, and 2005. This work supports the effort to demonstrate copper-catalyzed peroxide oxidation (CCPO) of organic content in this material. The principal findings with respect to the chemical and physical characteristics of the most recent sample are: (1) The measured potassium tetraphenylborate (KTPB) solid concentration is 1.76 wt %; (2) Titanium was in line with 2004 and 2005 slurry measurements at 897 mg/L, it represents 0.1535 {+-} 0.0012 wt % monosodium titanate (MST); (3) The measured insoluble solids content was 1.467 wt %; (4) The free hydroxide concentration in the Tank 48H filtrate sample (1.02 {+-} 0.02 M) is close to the Tank 48H limit (1.0 M); (5) Carbonate reported by total inorganic carbon (TIC, 1.39 {+-} 0.03 M) is more than double the concentrations measured in past (2003-2005) samples; (6) The soluble potassium content (measured at 286 {+-} 23 mg/L) in the filtrate is in line with all past measurements; and (7) The measured {sup 137}Cs concentration is 7.81E + 08 {+-} 3.9E + 07 dpm/mL of slurry (1.33 {+-} 5% Ci/gallon or 3.18E + 05 {+-} 5% curies of {sup 137}Cs in the tank) in the slurry which is in agreement with the 2005 report of 3.14E + 05 {+-} 1.5% curies of {sup 137}Cs in the tank. The filtrate {sup 137}Cs concentration is 2.57E + 07 {+-} 2.6E + 05 dpm/mL. This result is consistent with previous results. Significant analytical data are summarized in Table 1.

  3. Thyroid function 48h after delivery as a marker for subsequent postpartum depression.

    PubMed

    Albacar, Glòria; Sans, Teresa; Martín-Santos, Rocío; García-Esteve, Lluïsa; Guillamat, Roser; Sanjuan, Julio; Cañellas, Francesca; Carot, José Miguel; Gratacòs, Mònica; Bosch, Joan; Gaviria, Ana; Labad, Antonio; Zotes, Alfonso Gutiérrez; Vilella, Elisabet

    2010-06-01

    Physiological changes during gestation and after delivery are associated with postpartum thyroid dysfunction, which is due to thyroid autoimmunity in some cases. Postpartum thyroid dysfunction, in turn, has been associated with postpartum depression (PPD). The aim of the present study was to evaluate whether thyroid function immediately after delivery can predict postpartum depression at 8 weeks and 32 weeks after delivery. This study examined 1053 postpartum Spanish women without a previous history of depression. We evaluated depressive symptoms at 48h, 8 weeks and 32 weeks postpartum and used a diagnostic interview to confirm major depression for all probable cases. Free thyroxin (fT4), thyroid-stimulating hormone (TSH), thyroid peroxidase antibodies (TPOAb) and C-reactive protein (CRP) were assayed at 48h postpartum. Binary and multivariate logistic regression analyses were performed to determine independent risk factors for PPD. Although 152 women (14.4%) had high TPOAb (>27IU/mL) and slightly elevated TSH concentrations with normal fT4, we did not find any association between thyroid function and PPD. This thyroid dysfunction was not associated with CRP concentrations that were outside of the normal range (>3mg/L). We conclude that thyroid function at 48h after delivery does not predict PPD susceptibility. PMID:19939574

  4. The relationship of total copper 48-h LC50s to Daphnia magna dry weight

    SciTech Connect

    Lazorchak, J.M. ); Waller, W.T. )

    1993-05-01

    A study was conducted with Daphnia magna to determine the effect of neonate weight loss or lack of weight gain on experimentally derived copper 48-h LC50s. Standard unfed tests as well as algal-fed (Selenastrum capricornutum) tests were used to look at weight loss and gain. No significant relationship was found between amount of weight loss and copper LC50s. However, dry weight of unfed and algal-fed control organisms could be used to predict total copper LC50s.

  5. Probabilistic neural networks modeling of the 48-h LC50 acute toxicity endpoint to Daphnia magna.

    PubMed

    Niculescu, S P; Lewis, M A; Tigner, J

    2008-01-01

    Two modeling experiments based on the maximum likelihood estimation paradigm and targeting prediction of the Daphnia magna 48-h LC50 acute toxicity endpoint for both organic and inorganic compounds are reported. The resulting models computational algorithms are implemented as basic probabilistic neural networks with Gaussian kernel (statistical corrections included). The first experiment uses strictly D. magna information for 971 structures as training/learning data and the resulting model targets practical applications. The second experiment uses the same training/learning information plus additional data on another 29 compounds whose endpoint information is originating from D. pulex and Ceriodaphnia dubia. It only targets investigation of the effect of mixing strictly D. magna 48-h LC50 modeling information with small amounts of similar information estimated from related species, and this is done as part of the validation process. A complementary 81 compounds dataset (involving only strictly D. magna information) is used to perform external testing. On this external test set, the Gaussian character of the distribution of the residuals is confirmed for both models. This allows the use of traditional statistical methodology to implement computation of confidence intervals for the unknown measured values based on the models predictions. Examples are provided for the model targeting practical applications. For the same model, a comparison with other existing models targeting the same endpoint is performed.

  6. Periodic 48 h feed withdrawal improves glucose tolerance in growing pigs by enhancing adipogenesis and lipogenesis

    PubMed Central

    2012-01-01

    Background Adipocyte numbers and peroxisome proliferators activated receptorγ (PPARγ) expression of retroperitoneal tissue increased while area under the curve (AUC) during the glucose tolerance test (GTT) was reduced in rats subjected to certain feed withdrawal (FW) regimens. Thus, using pigs as the experimental model, the hypothesis that FW regimens influence glucose tolerance by influencing fat cell function was evaluated with the objective of determining the effect of a single (FWx1; at age of 19 wk for 48 h) or periodic, multiple (FWx4; 24 h FW at 7 and 11 wk of age and 48 h FW at 15 and 19 wk of age) FW on AUC of glucose and insulin during the GTT relative to pigs that did not experience FW (Control). Methods Growth, body composition, adipocyte numbers, PPARγ expression, lipogenic potential as glucose uptake into fat of adipocytes of varying diameter in omental (OM) and subcutaneous (SQ) fat as affected by FW regimens were determined in pigs initiated into the study at 5 wk of age and fed the same diet, ad libitum. Results Blood glucose concentrations for prior to and 120 min post glucose meal tended to be lower (p = 0.105 and 0.097, respectively) in pigs in FW treatments. In OM fat; cell numbers, glucose Universal14C [U14C] incorporation into fat and rate of incorporation per 104 cells was greatest for cells with diameters of 90-119 μm. Pigs undergoing FWx4 tended to have greater (p = 0.0685; by 191%) number of adipocytes, increased (p = 0.0234) glucose U14C incorporation into adipocytes and greater (p = 0.0872) rate of glucose uptake into cells of 119-150 μm diameter than of cells from control or FWx1 pigs. Subcutaneous adipocyte numbers in 22-60 and 61-90 μm diameter ranges from pigs in FWx1 tended to be greater (p = 0.08 and 0.06, respectively) than for those in FWx4 treatment, yet PPARγ expression and total cell number were not affected by treatment. Conclusions Results suggest that FW regimens influence fat cell function or lipogenesis rather

  7. Enhanced thermogenic response to epinephrine after 48-h starvation in humans.

    PubMed

    Mansell, P I; Fellows, I W; Macdonald, I A

    1990-01-01

    The effects of 48-h starvation on the physiological responses to a 30-min infusion of epinephrine at 25 ng.min-1.kg body wt-1 were studied in 11 normal-weight healthy young subjects. Starvation led to considerable alterations in basal metabolism including a significant (mean 3.6%) increase in resting metabolic rate. During the infusions, plasma epinephrine concentration rose less in the starved state (+1.47 nmol/l) than in the normally fed state (+1.73 nmol/l) (SE 0.06 nmol/l; P less than 0.05). The maximum increments (mean +/- SE) in heart rate induced by epinephrine were 11.9 +/- 1.3 beats/min in the normally fed state and 20.1 +/- 2.0 beats/min in the starved state (P less than 0.001); the corresponding mean increments in blood glycerol concentration were 0.07 and 0.14 mmol/l (SE 0.01 mmol/l; P less than 0.01). The increase in the metabolic rate above base line during the final 10 min of the epinephrine infusion was 0.58 +/- 0.18 kJ/min in the normally fed state and 0.78 +/- 0.14 kJ/min in the starved state (P less than 0.01). The chronotropic, lipolytic, and thermogenic effects of infused epinephrine were therefore enhanced by prior starvation, despite the lower plasma epinephrine levels.

  8. Microbial burdens in disposable and nondisposable ventilator circuits used for 24 and 48 h in intensive care units.

    PubMed Central

    Malecka-Griggs, B; Kennedy, C; Ross, B

    1989-01-01

    One hospital sought to study the differences in using resterilizable permanent versus disposable ventilator circuits and changing the circuits on a 24-h versus a 48-h basis. Over a period of 13 months 656 condensate samples from 92 permanent and 72 disposable circuits were collected and plated by a loop dilution technique. Two samples were collected from the inspiratory limb (humidifier; tubing or nebulizer), and two were collected from the expiratory limb (tubing and trap) of each circuit. Contamination rates were higher for disposable circuits than for permanent circuits and for 48-h changes than for 24-h changes. Results of chi 2 testing by site indicated there was more contamination on the inspiratory and expiratory limbs each with use of disposable circuits than with the use of permanent circuits. The total results (chi 2 analysis) showed significantly greater microbial growth with the use of disposable circuits (permanent versus disposable, P less than 0.001) and extension of time to 48-h changes (24 h versus 48 h, P less than 0.05). In the experience of this hospital permanent circuits proved more advantageous from the standpoint of contamination risk and cost. PMID:2715321

  9. 24 and 48 h allergen exposure in patch testing. Comparative study with 11 common contact allergens and NiCl2.

    PubMed

    Kalimo, K; Lammintausta, K

    1984-01-01

    Patch test reactions to 11 common contact allergens were studied after 24 h and 48 h occlusion with Finn Chambers in 390 patients. Concordant allergic results were found in 96 cases (74%). In 22 patients (17%), the reaction was positive only after 48 h and in 11 cases (8.5%) only after 24 h exposure. Most of the discordant reactions were to nickel, cobalt, neomycin, formaldehyde and perfume mix. Irritant reactions were found in 55 cases, the majority occurring after 48 h occlusion. Nickel chloride tested in parallel with 48 h exposure lead to more positive allergic and toxic reactions than nickel sulphate.

  10. Measurement of urinary copper excretion after 48-h d-penicillamine cessation as a compliance assessment in Wilson's disease.

    PubMed

    Dzieżyc, Karolina; Litwin, Tomasz; Chabik, Grzegorz; Członkowska, Anna

    2015-01-01

    Treatment of Wilson's disease (WD) with anti-copper agents is effective in most compliant patients. During long-term treatment with chelating agents, a two-day interruption of the treatment should result in normal urinary copper concentrations (<50 μg/dl). The aim of this study was to establish the usefulness of this method as a compliance assessment in these patients. We examined consecutive patients treated with d-penicillamine (DPA) undergoing routine follow-up studies at our center. We performed 24-h urinary copper excretion analysis 48 h after interruption of chelating therapy. Thirty-two patients were enrolled. After DPA cessation, normalization of copper excretion was observed in 91% of reportedly compliant patients. The specificity and sensitivity values of this test were 87% and 77%, respectively. Measurement of 24-h urinary copper excretion after a 48-h interruption of DPA therapy in patients with WD is a reliable method for confirming patients' compliance. PMID:26727705

  11. Antiserum from mice vaccinated with modified vaccinia Ankara virus expressing African horse sickness virus (AHSV) VP2 provides protection when it is administered 48h before, or 48h after challenge.

    PubMed

    Calvo-Pinilla, Eva; de la Poza, Francisco; Gubbins, Simon; Mertens, Peter Paul Clement; Ortego, Javier; Castillo-Olivares, Javier

    2015-04-01

    Previous studies show that a recombinant modified vaccinia Ankara (MVA) virus expressing VP2 of AHSV serotype 4 (MVA-VP2) induced virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR -/-) against challenge. Follow up experiments indicated that passive transfer of antiserum, from MVA-VP2 immune donors to recipient mice 1h before challenge, conferred complete clinical protection and significantly reduced viraemia. These studies have been extended to determine the protective effect of MVA-VP2 vaccine-induced antiserum, when administered 48h before, or 48h after challenge. In addition, passive transfer of splenocytes was undertaken to assess if they confer any degree of immunity to immunologically naïve recipient mice. Thus, antisera and splenocytes were collected from groups of mice that had been vaccinated with MVA-VP2, or wild type MVA (MVA-wt), for passive immunisation of recipient mice. The latter were subsequently challenged with AHSV-4 (together with appropriate vaccinated or unvaccinated control animals) and protection was assessed by comparing clinical signs, lethality and viraemia between treated and control groups. All antiserum recipients showed high protection against disease (100% survival rates even in mice that were immunised 48h after challenge) and statistically significant reduction or viraemia in comparison with the control groups. The mouse group receiving splenocytes from MVA-VP2 vaccinates, showed only a 40% survival rate, with a small reduction in viraemia, compared to those mice that had received splenocytes from MVA-wt vaccinates. These results confirm the primarily humoral nature of protective immunity conferred by MVA-VP2 vaccination and show the potential of administering MVA-VP2 specific antiserum as an emergency treatment for AHSV.

  12. The impact of a 48-h fast on SIRT1 and GCN5 in human skeletal muscle.

    PubMed

    Edgett, Brittany A; Scribbans, Trisha D; Raleigh, James P; Matusiak, Jennifer B L; Boonstra, Kristen; Simpson, Craig A; Perry, Christopher G R; Quadrilatero, Joe; Gurd, Brendon J

    2016-09-01

    The present study examined the impact of a 48 h fast on the expression and activation status of SIRT1 and GCN5, the relationship between SIRT1/GCN5 and the gene expression of PGC-1α, and the PGC-1α target PDK4 in the skeletal muscle of 10 lean healthy men (age, 22.0 ± 1.5 years; peak oxygen uptake, 47.2 ± 6.7 mL/(min·kg)). Muscle biopsies and blood samples were collected 1 h postprandial (Fed) and following 48 h of fasting (Fasted). Plasma insulin (Fed, 80.8 ± 47.9 pmol/L; Fasted, not detected) and glucose (Fed, 4.36 ± 0.86; Fasted, 3.74 ± 0.25 mmol/L, p = 0.08) decreased, confirming participant adherence to fasting. Gene expression of PGC-1α decreased (p < 0.05, -24%), while SIRT1 and PDK4 increased (p < 0.05, +11% and +1023%, respectively), and GCN5 remained unchanged. No changes were observed for whole-muscle protein expression of SIRT1, GCN5, PGC-1α, or COX IV. Phosphorylation of SIRT1, AMPKα, ACC, p38 MAPK, and PKA substrates as well as nuclear acetylation status was also unaltered. Additionally, nuclear SIRT1 activity, GCN5, and PGC-1α content remained unchanged. Preliminary findings derived from regression analysis demonstrate that changes in nuclear GCN5 and SIRT1 activity/phosphorylation may contribute to the control of PGC-1α, but not PDK4, messenger RNA expression following fasting. Collectively, and in contrast with previous animal studies, our data are inconsistent with the altered activation status of SIRT1 and GCN5 in response to 48 h of fasting in human skeletal muscle. PMID:27525514

  13. Ischemic preconditioning elevates cardiac stress protein but does not limit infarct size 24 or 48 h later in rabbits.

    PubMed

    Tanaka, M; Fujiwara, H; Yamasaki, K; Miyamae, M; Yokota, R; Hasegawa, K; Fujiwara, T; Sasayama, S

    1994-10-01

    We investigated whether ischemic preconditioning (PC) produced a second window of protection by delayed synthesis of cardioprotective proteins. Anesthetized open-chest rabbits were subjected to 30 min of coronary occlusion and 3 h of reperfusion. PC was elicited by 5 min of ischemia and was separated from sustained ischemia by 5 min, 2 h, or 24 h of reperfusion. Infarct size (% area at risk) was markedly limited by PC with 5 min of reperfusion when compared with controls (13.3 +/- 2.5 vs. 46.8 +/- 7.0%; P < 0.05). This protective effect was lost when the interval between PC and sustained ischemia was extended to 2 h (47.8 +/- 4.8%; P = NS vs. control) and did not reoccur even when it was extended to 24 h (44.2 +/- 6.5%; P = NS vs. sham-operated control). To potentiate induction of heat shock proteins (HSPs), a PC protocol involving four 5-min episodes of ischemia and reperfusion was also used and was separated from sustained ischemia by 24 or 48 h of reperfusion. However, neither of these protocols was protective, and limitation of infarct size was not observed (55.5 +/- 5.9 and 53.4 +/- 6.5% in 24 and 48 h of reperfusion, respectively; P = NS vs. corresponding sham-operated control). Myocardial expression of HSPs was examined using a monoclonal antibody against 72- to 73-kDa HSP in additional rabbits. Immunoreactivity was observed in the myocardium at 24 and 48 h after PC, but not immediately after PC.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. The identification of the folate conjugates found in rat liver 48 h after the administration of radioactively labelled folate tracers.

    PubMed Central

    Connor, M J; Blair, J A

    1980-01-01

    About 70% of the radioactivity retained in the livers of rats dosed 48 h earlier with radioactively labelled folate was incorporated into two folate conjugates. The major derivative was purified and isolated by Sephadex G-15, DEAE-cellulose and DEAE-Sephadex ion-exchange column chromatography and paper chromatography. It was identified as 10-formylpteroylpentaglutamate by a combination of spectral, microbiological, chemical and chromatographic techniques. The minor conjugate, though less well characterized, exhibited similar properties and was assigned the structure 10-formylpteroyltetraglutamate. 10-Formylpteroylpentaglutamate (2.0nmol/g) and 10-formylpteroyltetraglutamate (0.25nmol/g) comprised about 20% of the total endogenous hepatic folate as determined by microbiological assay (Lactobacillus casei after conjugase treatment. PMID:6892769

  15. Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus.

    PubMed

    Sahu, Surajit; Kauser, Hina; Ray, Koushik; Kishore, Krishna; Kumar, Sanjeev; Panjwani, Usha

    2013-10-01

    It has been established that sleep deprivation (SD) reduces the proliferation of neuronal precursors in the adult hippocampus. It has also been reported that psychostimulant drugs modulate adult neurogenesis. We examined the modulatory role of two psychostimulant drugs modafinil and caffeine on adult neuronal cell proliferation (NCP) during 48 h of total SD. A novel automated cage shaking stimulus was used to induce SD based on animal activity. 5-Bromo-2″-deoxyuridine (BrdU; 50mg/kg/day i.p.) was injected at the onset of the light phase for two days. Rats were successfully sleep deprived for 85-94% of total time. Stereological analysis showed that both caffeine and modafinil treatments during SD improved the number of BrdU positive cells as compared to the SD group. Caffeine treatment during SD, significantly increased early proliferative and post-mitotic stages of doublecortin (DCX) positive cells while modafinil treatment during SD, increased intermediate and post-mitotic stages of DCX positive cells compared to SD+Vehicle group. Brain-Derived Neurotrophic Factor (BDNF) expression on BrdU positive cells as well as in the dentate gyrus (DG) region was decreased significantly after sleep deprivation. Both caffeine and modafinil significantly improved BDNF expression in the DG region. Modafinil, but not caffeine, significantly decreased hippocampal adenosine level during SD in comparison to the SD+Vehicle group. It may be concluded that caffeine or modafinil treatment during 48 h of SD prevents the SD induced decline in neuronal proliferation and differentiation. Caffeine and modafinil induced alterations of NCP during SD may involve modulation of BDNF and adenosine levels.

  16. Surgical management for the first 48 h following blunt chest trauma: state of the art (excluding vascular injuries).

    PubMed

    de Lesquen, Henri; Avaro, Jean-Philippe; Gust, Lucile; Ford, Robert Michael; Beranger, Fabien; Natale, Claudia; Bonnet, Pierre-Mathieu; D'Journo, Xavier-Benoît

    2015-03-01

    This review aims to answer the most common questions in routine surgical practice during the first 48 h of blunt chest trauma (BCT) management. Two authors identified relevant manuscripts published since January 1994 to January 2014. Using preferred reporting items for systematic reviews and meta-analyses statement, they focused on the surgical management of BCT, excluded both child and vascular injuries and selected 80 studies. Tension pneumothorax should be promptly diagnosed and treated by needle decompression closely followed with chest tube insertion (Grade D). All traumatic pneumothoraces are considered for chest tube insertion. However, observation is possible for selected patients with small unilateral pneumothoraces without respiratory disease or need for positive pressure ventilation (Grade C). Symptomatic traumatic haemothoraces or haemothoraces >500 ml should be treated by chest tube insertion (Grade D). Occult pneumothoraces and occult haemothoraces are managed by observation with daily chest X-rays (Grades B and C). Periprocedural antibiotics are used to prevent chest-tube-related infectious complications (Grade B). No sign of life at the initial assessment and cardiopulmonary resuscitation duration >10 min are considered as contraindications of Emergency Department Thoracotomy (Grade C). Damage Control Thoracotomy is performed for either massive air leakage or refractive shock or ongoing bleeding enhanced by chest tube output >1500 ml initially or >200 ml/h for 3 h (Grade D). In the case of haemodynamically stable patients, early video-assisted thoracic surgery is performed for retained haemothoraces (Grade B). Fixation of flail chest can be considered if mechanical ventilation for 48 h is probably required (Grade B). Fixation of sternal fractures is performed for displaced fractures with overlap or comminution, intractable pain or respiratory insufficiency (Grade D). Lung herniation, traumatic diaphragmatic rupture and pericardial rupture are life

  17. Low-power laser irradiation fails to improve liver regeneration in elderly rats at 48 h after 70 % resection.

    PubMed

    Araújo, Tiago G; Oliveira, Alexandre G; Tobar, Natália; Moreira, Luciana R; Reis, Edmyr R; Nicola, Ester M D; de L Jorge, Gracinda; dos R Tártaro, Rodolfo; Boin, Ilka F S F; Saad, Mário J Abdalla; Teixeira, Antonio R Franchi

    2015-09-01

    The liver regeneration is an important clinical issue after major hepatectomies. Unfortunately, many organs (including the liver) exhibit age-related impairments regarding their regenerative capacity. Recent studies found that low-power laser irradiation (LPLI) has a stimulatory effect on the liver regeneration process. However, its effects in elderly remain unknown. Thus, this study aimed to investigate the main molecular mechanisms involved in liver regeneration of partially hepatectomized elderly rats exposed to LPLI. The effects of 15 min of LPLI (wavelength of 632.8 nm; fluence of 0.97 J/cm(2); total energy delivered of 3.6 J) were evaluated in hepatectomized elderly Wistar male rats. Afterwards, through immunoblotting approaches, the protein expression and phosphorylation levels of hepatocyte growth factor (HGF), Met, Akt and Erk 1/2 signaling pathways as well as the proliferating cell nuclear antigen (PCNA) were investigated. It was observed that LPLI was not able to improve liver regeneration in elderly rats as evidenced by the lack of improvement of HGF and PCNA protein expression or phosphorylation levels of Met, Akt and Erk 1/2 in the remnant livers. In sum, this study demonstrated that the main molecular pathway, i.e. HGF/Met → Akt and Erk 1/2 → PCNA, involved in the hepatic regeneration process was not improved by LPLI in elderly hepatectomized rats, which in turn rules out LPLI as an adjuvant therapy, as observed in this protocol of liver regeneration evaluation (i.e. at 48 h after 70 % resection), in elderly.

  18. Behavioural interactions between West African dwarf nanny goats and their twin-born kids during the first 48 h post-partum.

    PubMed

    Awotwi; Oppong-Anane; Addae; Oddoye

    2000-07-01

    West African dwarf nanny goats and their twin-born kids were tested to determine their behavioural response to separation and their mutual recognition during the first 48 h post-partum. Does and their kids were given scores ranging from 1 to 5, depending on how they performed in the tests. Animals that showed maximum response and recognition ability were given a score of 5, while those with minimum response and recognition ability scored 1. The kids were prevented from sucking 2 h prior to the tests, which were carried out at 18, 24, 36 and 48 h post-partum. Chi-square procedure was used to determine whether age, sex and birthweight of kids as well as hours post-partum and parity of dams had any effect on these post-partum behaviours. Out of 48 twin-born kids tested, 32 (67%) responded actively to separation from dams (i.e. had scores of 3 or more). The age, sex and birthweight of kids did not significantly affect (P>0.05) their response to separation from their dams. The hours post-partum and the parity of does also did not affect their response to separation from their kids. The dam recognition ability of twin-born kids was very poor. Out of a total of 48 kids tested, only 17 (35%) were able to recognize their dams (i.e. had scores of 3 or more). Even at 36 h, only four out of 14 (26%) could recognize their dams. It was only at 48 h that the majority of kids tested (i.e. 75%) successfully identified their dams. At 48 h, the dam recognition ability of kids was significantly better (P<0.05) than that of 18-h-old kids. Sex and birthweight of 24-48-h-old twin-born kids did not significantly affect (P>0.05) their ability to recognize their dams. The majority of does tested (i.e. 20 out of 24) were able to recognize their twin-born kids. The hour post-partum and parity of does did not significantly affect (P>0.05) their kid recognition ability.

  19. Sperm fertility and viability following 48h of refrigeration: evaluation of different extenders for the preservation of bull semen in liquid state.

    PubMed

    Crespilho, A M; Nichi, M; Guasti, P N; Freitas-Dell'Aqua, C P; Sá Filho, M F; Maziero, R R; Dell'aqua, J A; Papa, F O

    2014-05-01

    Two experiments were conducted to compare the effectiveness of different extenders conventionally used for semen cryopreservation to maintain the viability and fertility of cooled bull semen. In Experiment 1, sperm samples obtained from 20 Nellore bulls were preserved at 5°C for 48h using two extenders containing 20% of egg yolk [Tris (TRIS-R) and Botu-Bov(®) (BB)] and another composed of 1% soy lecithin [Botu-Bov(®)-Lecithin (BB-L)] as substitutes for animal origin products. The samples were evaluated at 6, 24 and 48h for plasma and acrosomal membrane integrity, quantification of thiobarbituric acid reactive substances (ng of TBARS/10(8) cells) and sperm motility parameters by computer-assisted semen analysis (CASA). In Experiment 2, pregnancy rate (P/AI) of 973 fixed-time artificially inseminated Nellore cows were compared when cows were inseminated with conventionally cryopreserved semen in TRIS-egg yolk glycerol (TRIS-C Control, n=253) or semen cooled for 48h in TRIS-R (n=233), BB (n=247) or BB-L (n=240). Although none of the extenders used was effective on maintaining total progressive motility and cellular integrity throughout the 48-h of the refrigeration period (P<0.01), BB-L conferred greater protection against oxidative stress (P<0.05) than egg yolk-based medias. The P/AI for semen samples preserved in TRIS-C, TRIS-R, BB and BB-L were 39.92(a), 25.32(b), 26.32(b) and 33.33(ab), respectively. These results demonstrate that the three conventional extenders used for semen cryopreservation do not provide the protection required to maintain bull semen fertility under refrigeration for a 48-h period, resulting in reduced pregnancy rates. However, the use of lecithin-based medium instead of egg yolk results in greater protection against lipid peroxidation, producing P/AI results comparable to those obtained using frozen semen. PMID:24685263

  20. Automated Statistical Forecast Method to 36-48H ahead of Storm Wind and Dangerous Precipitation at the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Perekhodtseva, E. V.

    2009-09-01

    Development of successful method of forecast of storm winds, including squalls and tornadoes and heavy rainfalls, that often result in human and material losses, could allow one to take proper measures against destruction of buildings and to protect people. Well-in-advance successful forecast (from 12 hours to 48 hour) makes possible to reduce the losses. Prediction of the phenomena involved is a very difficult problem for synoptic till recently. The existing graphic and calculation methods still depend on subjective decision of an operator. Nowadays in Russia there is no hydrodynamic model for forecast of the maximal precipitation and wind velocity V> 25m/c, hence the main tools of objective forecast are statistical methods using the dependence of the phenomena involved on a number of atmospheric parameters (predictors). Statistical decisive rule of the alternative and probability forecast of these events was obtained in accordance with the concept of "perfect prognosis" using the data of objective analysis. For this purpose the different teaching samples of present and absent of this storm wind and rainfalls were automatically arranged that include the values of forty physically substantiated potential predictors. Then the empirical statistical method was used that involved diagonalization of the mean correlation matrix R of the predictors and extraction of diagonal blocks of strongly correlated predictors. Thus for these phenomena the most informative predictors were selected without loosing information. The statistical decisive rules for diagnosis and prognosis of the phenomena involved U(X) were calculated for choosing informative vector-predictor. We used the criterion of distance of Mahalanobis and criterion of minimum of entropy by Vapnik-Chervonenkis for the selection predictors. Successful development of hydrodynamic models for short-term forecast and improvement of 36-48h forecasts of pressure, temperature and others parameters allowed us to use the

  1. Normalization of elevated cardiac, kidney, and hemolysis plasma markers within 48 h in Mexican Tarahumara runners following a 78 km race at moderate altitude

    PubMed Central

    Christensen, Dirk L; Espino, Diana; Infante-Ramírez, Rocío; Brage, Soren; Terzic, Dijana; Goetze, Jens P; Kjaergaard, Jesper

    2014-01-01

    Objectives The aim of this study was to examine to what extent extreme endurance exercise results in changes of plasma markers associated with cardiac and renal damage, as well as hemolysis in male, Mexican Tarahumara runners. Methods Ten Tarahumara runners (mean (sd) age of 38 (12) years) participated in a 78 km race in Chihuahua, Mexico at 2,400 m above sea level. Cardiac, kidney, and hematology plasma markers were measured pre-race and <5 min, 1 h, 3 h, 6 h, 24 h, and 48 h post-race. Anthropometry, blood pressure, pulse rate, electrocardiography, HbA1c, hemoglobin and VO2max (estimated from heart rate following step test) were assessed pre-race, while physical activity energy expenditure and intensity were estimated during the race, and oxygen partial pressure saturation (SpO2) <30 min post-race. Results Estimated mean VO2max was 48 (9) mLO2 min−1 kg−1 and relative intensity during the race was 68 (11)%VO2max. Mean SpO2 was 92 (3)% <30 min post-race. Plasma concentrations of especially total creatine kinase, creatine kinase-MB isoform, and haptoglobin changed significantly from pre-race values (P < 0.001) up to 24 h post-race, but had returned to pre-race values after 48 h. The plasma concentrations of mid-regional proatrial natiuretic peptide and copeptin returned to pre-race concentrations after 1 and 6 h, respectively. Conclusions Altered cardiac, renal, and hemolysis plasma markers were normalized after 48 h following 78 km of running, suggesting that the impact of exercise-induced cardiac and kidney damage as well as hemolysis in the Mexican Tarahumara is low. Am. J. Hum. Biol. 26:836–843, 2014. © 2014 The Authors American Journal of Human Biology Published by Wiley Periodicals, Inc. PMID:25145663

  2. Caffeine and modafinil given during 48 h sleep deprivation modulate object recognition memory and synaptic proteins in the hippocampus of the rat.

    PubMed

    Wadhwa, M; Sahu, S; Kumari, P; Kauser, H; Ray, K; Panjwani, U

    2015-11-01

    We aimed to evaluate the effect of caffeine/modafinil on sleep deprivation (SD) induced alterations in recognition memory and synaptic proteins. The data revealed a beneficial effect of caffeine/modafinil against deficit in the familiar object retrieval performance and object exploration ratio after 48 h SD. Caffeine treatment prevented the SD induced down-regulation of synaptophysin and synapsin I proteins with no change in PSD-95 protein in hippocampus. However, modafinil administration improved the down-regulation of synaptophysin, synapsin I and PSD-95 proteins in hippocampus. Hence, caffeine/modafinil can serve as counter measures in amelioration of SD induced consequences at behavioural and protein levels.

  3. Measurement of urinary copper excretion after 48-h d-penicillamine cessation as a compliance assessment in Wilson’s disease

    PubMed Central

    Dzieżyc, Karolina; Litwin, Tomasz; Chabik, Grzegorz; Członkowska, Anna

    2015-01-01

    Summary Treatment of Wilson’s disease (WD) with anti-copper agents is effective in most compliant patients. During long-term treatment with chelating agents, a two-day interruption of the treatment should result in normal urinary copper concentrations (<50 μg/dl). The aim of this study was to establish the usefulness of this method as a compliance assessment in these patients. We examined consecutive patients treated with d-penicillamine (DPA) undergoing routine follow-up studies at our center. We performed 24-h urinary copper excretion analysis 48 h after interruption of chelating therapy. Thirty-two patients were enrolled. After DPA cessation, normalization of copper excretion was observed in 91% of reportedly compliant patients. The specificity and sensitivity values of this test were 87% and 77%, respectively. Measurement of 24-h urinary copper excretion after a 48-h interruption of DPA therapy in patients with WD is a reliable method for confirming patients’ compliance. PMID:26727705

  4. Redistribution of Ionotropic Glutamate Receptors Detected by Laser Microdissection of the Rat Dentate Gyrus 48 h following LTP Induction In Vivo

    PubMed Central

    Kennard, Jeremy T. T.; Guévremont, Diane; Mason-Parker, Sara E.; Abraham, Wickliffe C.; Williams, Joanna M.

    2014-01-01

    The persistence and input specificity of long-term potentiation (LTP) make it attractive as a mechanism of information storage. In its initial phase, both in vivo and in vitro studies have shown that LTP is associated with increased membrane localization of AMPA receptor subunits, but the molecular basis of LTP maintenance over the long-term is still unclear. We have previously shown that expression of AMPA and NMDA receptor subunits is elevated in whole homogenates prepared from dentate gyrus 48 h after LTP induction in vivo. In the present study, we utilized laser microdissection (LMD) techniques to determine whether AMPA and NMDA receptor upregulation occurs specifically in the stimulated regions of the dentate gyrus dendritic arbor. Receptor proteins GluN1, GluA1 and GluA2, as well as postsynaptic density protein of 95 kDa and tubulin were detected by Western blot analysis in microdissected samples. Gradients of expression were observed for GluN1 and GluA2, decreasing from the inner to the outer zones of the molecular layer, and were independent of LTP. When induced at medial perforant path synapses, LTP was associated with an apparent specific redistribution of GluA1 and GluN1 to the middle molecular layer that contains these synapses. These data indicate that glutamate receptor proteins are delivered specifically to dendritic regions possessing LTP-expressing synapses, and that these changes are preserved for at least 48 h. PMID:24667777

  5. Hydrodaynamic - Statistical Forecast Method To 36-48h Ahead Of Storm Wind And Tornadoes Over The Territory Of Europe And Siberia

    NASA Astrophysics Data System (ADS)

    Perekhodtseva, Elvira V.

    2010-05-01

    Development of successful method of forecast of storm winds, including squalls and tornadoes, that often result in human and material losses, could allow one to take proper measures against destruction of buildings and to protect people. Well-in-advance successful forecast (from 12 hours to 48 hour) makes possible to reduce the losses. Prediction of the phenomena involved is a very difficult problem for synoptic till recently. The existing graphic and calculation methods still depend on subjective decision of an operator. Nowadays in Russia there is no hydrodynamic model for forecast of the maximal wind velocity V> 25m/c, hence the main tools of objective forecast are statistical methods using the dependence of the phenomena involved on a number of atmospheric parameters (predictors). . Statistical decisive rule of the alternative and probability forecast of these events was obtained in accordance with the concept of "perfect prognosis" using the data of objective analysis. For this purpose the different teaching samples of present and absent of this storm wind and rainfalls were automatically arranged that include the values of forty physically substantiated potential predictors. Then the empirical statistical method was used that involved diagonalization of the mean correlation matrix R of the predictors and extraction of diagonal blocks of strongly correlated predictors. Thus for these phenomena the most informative predictors were selected without loosing information. The statistical decisive rules for diagnosis and prognosis of the phenomena involved U(X) were calculated for choosing informative vector-predictor. We used the criterion of distance of Mahalanobis and criterion of minimum of entropy by Vapnik-Chervonenkis for the selection predictors. Successful development of hydrodynamic models for short-term forecast and improvement of 36-48h forecasts of pressure, temperature and others parameters allowed us to use the prognostic fields of those models for

  6. ANALYSIS OF THE LEACHING EFFICIENCY OF INHIBITED WATER AND TANK SIMULANT IN REMOVING RESIDUES ON THERMOWELL PIPES

    SciTech Connect

    Fondeur, F.; White, T.; Oji, L.; Martino, C.; Wilmarth, B.

    2011-10-20

    A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. Video inspection of the tank showed that a film of solid material adhered to the tank internal walls and structures between 69 inch and 150 inch levels. From the video inspection, the solid film thickness was estimated to be 1mm, which corresponds to {approx}33 kg of TPB salts (as 20 wt% insoluble solids) (1). This film material is expected to be easily removed by single-rinse, slurry pump operation during Tank 48H TPB disposition via aggregation processing. A similar success was achieved for Tank 49H TPB dispositioning, with slurry pumps operating almost continuously for approximately 6 months, after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids - Na{sub 3}H(CO{sub 3}){sub 2} (Hydrated Sodium Carbonate, aka: Trona), Al(OH){sub 3} (Aluminum Hydroxide, aka: Gibbsite), NaTPB (Sodium Tetraphenylborate), NaNO{sub 3} (Sodium Nitrate) and NaNO{sub 2} (Sodium Nitrite) (2). Although the Tank 48H film is expected to be primarily soluble solids, it may not behave the same as the Tank 49H film. There is a risk that material on the internal surfaces of Tank 48H could not be easily removed. As a risk mitigation activity, the chemical composition and leachability of the Tank 48H film are being evaluated prior to initiating tank aggregation. This task investigated the dissolution characteristics of Tank 48H solid film deposits in inhibited water and DWPF recycle. To this end, SRNL received four separate 23-inch long thermowell-conductivity pipe samples which were removed from the tank 48H D2 risers in order to determine: (1) the thickness of the solid film deposit, (2) the chemical composition of the film deposits, and (3) the leaching behavior of the solid film deposit in

  7. CRUCIBLE TESTING OF TANK 48 RADIOACTIVE WASTE SAMPLE USING FBSR TECHNOLOGY FOR ORGANIC DESTRUCTION

    SciTech Connect

    Hammond, C; William Pepper, W

    2008-09-19

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble

  8. Tank 48 - Chemical Destruction

    SciTech Connect

    Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

    2013-01-09

    Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

  9. Tank 48 Chemical Destruction - 13237

    SciTech Connect

    Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

    2013-07-01

    Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents. (authors)

  10. Dynamic Grammar in Adults: Incidental Learning of Natural Syntactic Structures Extends over 48 h

    ERIC Educational Resources Information Center

    Luka, Barbara J.; Choi, Heidi

    2012-01-01

    Three experiments examine whether a naturalistic reading task can induce long-lasting changes of syntactic patterns in memory. Judgment of grammatical acceptability is used as an indirect test of memory for sentences that are identical or only syntactically similar to those read earlier. In previous research (Luka & Barsalou, 2005) both sorts of…

  11. The effect of high intensity interval exercise on postprandial triacylglycerol and leukocyte activation--monitored for 48 h post exercise.

    PubMed

    Gabriel, Brendan Morris; Pugh, Jamie; Pruneta-Deloche, Valerie; Moulin, Philippe; Ratkevicius, Aivaras; Gray, Stuart Robert

    2013-01-01

    Postprandial phenomenon are thought to contribute to atherogenesis alongside activation of the immune system. A single bout of high intensity interval exercise attenuates postprandial triacylglycerol (TG), although the longevity and mechanisms underlying this observation are unknown. The aims of this study were to determine whether this attenuation in postprandial TG remained 2 days after high intensity interval exercise, to monitor markers of leukocyte activation and investigate the underlying mechanisms. Eight young men each completed two three day trials. On day 1: subjects rested (Control) or performed 5 x 30 s maximal sprints (high intensity interval exercise). On day 2 and 3 subjects consumed high fat meals for breakfast and 3 h later for lunch. Blood samples were taken at various times and analysed for TG, glucose and TG-rich lipoprotein (TRL)-bound LPL-dependent TRL-TG hydrolysis (LTTH). Flow cytometry was used to evaluate granulocyte, monocyte and lymphocyte CD11b and CD36 expression. On day 2 after high intensity interval exercise TG area under the curve was lower (P<0.05) (7.46 ± 1.53 mmol/l/7h) compared to the control trial (9.47 ± 3 .04 mmol/l/7h) with no differences during day 3 of the trial. LTTH activity was higher (P<0.05) after high intensity interval exercise, at 2 hours of day 2, compared to control. Granulocyte, monocyte and lymphocyte CD11b expression increased with time over day 2 and 3 of the study (P<0.0001). Lymphocyte and monocyte CD36 expression decreased with time over day 2 and 3 (P<0.05). There were no differences between trials in CD11b and CD36 expression on any leukocytes. A single session of high intensity interval exercise attenuated postprandial TG on day 2 of the study, with this effect abolished by day 3.The reduction in postprandial TG was associated with an increase in LTTH. High intensity interval exercise had no effect on postprandial responses of CD11b or CD36.

  12. A humanised murine monoclonal antibody protects mice from Venezuelan equine encephalitis virus, Everglades virus and Mucambo virus when administered up to 48 h after airborne challenge

    SciTech Connect

    O'Brien, Lyn M. Goodchild, Sarah A.; Phillpotts, Robert J.; Perkins, Stuart D.

    2012-05-10

    Currently there are no licensed antiviral treatments for the Alphaviruses Venezuelan equine encephalitis virus (VEEV), Everglades virus and Mucambo virus. We previously developed a humanised version of the mouse monoclonal antibody 1A3B-7 (Hu1A3B-7) which exhibited a wide range of reactivity in vitro and was able to protect mice from infection with VEEV. Continued work with the humanised antibody has now demonstrated that it has the potential to be a new human therapeutic. Hu1A3B-7 successfully protected mice from infection with multiple Alphaviruses. The effectiveness of the humanisation process was determined by assessing proliferation responses in human T-cells to peptides derived from the murine and humanised versions of the V{sub H} and V{sub L} domains. This analysis showed that the number of human T-cell epitopes within the humanised antibody had been substantially reduced, indicating that Hu1A3B-7 may have reduced immunogenicity in vivo.

  13. Effect of inoculation process on lycopene production by Blakeslea trispora in a stirred-tank reactor.

    PubMed

    Wang, Qiang; Feng, Ling-Ran; Luo, Wei; Li, Han-Guang; Zhou, Ya; Yu, Xiao-Bin

    2015-01-01

    Lycopene biosynthesis by Blakeslea trispora was greatly enhanced in a stirred-tank reactor when a nonsynchronous inoculation process, in which the (+) mating type was inoculated after the (-) mating type has been grown for a certain period of time, was applied. The lycopene concentration with nonsynchronous inoculation in a 24-h inoculation interval was 33 % higher than that with synchronous inoculation. The optimum inoculation ratio was 1:2 (+/-) at the 36 and 48 h inoculum age of mating types (+) and (-), respectively. Fermentation time for the individual strains and mated conditions showed that the (+) mating type grows faster than the (-) mating type. Morphological observation showed that the mycelium ratio of B. trispora (-) in mating culture with nonsynchronous inoculation was higher than that with synchronous inoculation. The results indicated that nonsynchronous inoculation process increased the dominance of B. trispora (-) in joint cultivation and hence stimulated lycopene biosynthesis.

  14. Comparative reaction engineering studies for succinic acid production from sucrose by metabolically engineered Escherichia coli in fed-batch-operated stirred tank bioreactors.

    PubMed

    Hoefel, Torben; Faust, Georg; Reinecke, Liv; Rudinger, Nicolas; Weuster-Botz, Dirk

    2012-10-01

    This study presents a comparative reaction engineering analysis of metabolically engineered sucrose-utilizing Escherichia coli derived from E. coli K12 MG1655 for the anaerobic production of succinic acid. Production capacities of 16 different recombinant strains were evaluated in 48 parallel fed-batch-operated milliliter-scale stirred tank bioreactors (10 mL) with continuous CO₂ sparging. The effects of recombinant sucrose-utilization systems (csc-operon or scr-operon), enhancements of anaplerotic reactions (pck, ppc, maeA, maeB or heterologous pyc) and gene deletions (ldhA, adhE, ack-pta and ptsG) were studied with respect to the overall process performances of the respective recombinant strains. Both sucrose-utilization systems enabled the production of succinic acid from sucrose in E. coli K12 MG1655. Maximum succinate production was observed by overexpressing the pyruvate carboxylase from Corynebacterium glutamicum resulting in a succinate concentration of 26.8 g L⁻¹ after 48 h and a cell-specific productivity of 0.14 g g⁻¹ h⁻¹. Further experiments in a fed-batch-operated laboratory-scale stirred tank bioreactor (2 L) showed that micro-aerobic conditions preceding the anaerobic phase enhance succinic acid production of E. coli K12 MG1655-derived strains. The work demonstrates the importance of parallel approaches within the scope of applied metabolic engineering studies.

  15. Natural product-inspired rational design, synthesis and biological evaluation of 2,3-dihydropyrano[2,3-f]chromen-4(8H)-one based hybrids as potential mitochondrial apoptosis inducers.

    PubMed

    Sakthivel, Palaniappan; Ilangovan, Andivelu; Kaushik, Mahabir Prasad

    2016-10-21

    Synthesis of novel pyranochromanone amide hybrids, by combining pyranochromanone pharmacophore and privileged scaffolds such as 2-amino-1,3,4-thiadiaole/2-aminothiazole/aminopyridine/aminonaphthalene and anti-cancer evaluation of a series led us to discover a series of new chemical entities (NCEs) showing broad spectrum of anti-cancer activity against three different human cancer cell lines (MCF-7, A549 and HeLa), at IC50 values ranging from 14.3 to 97.8 μM. Among them, some compounds such as 15b, 15d, 20a and 20b displayed excellent activity against breast cancer cell line MCF-7. Detailed biological studies such as AO/EB dual staining, Hoechst 33342 staining, FACS analysis of mitochondrial membrane potential (Δψm) using JC-1 dye and DNA fragmentation confirmed the apoptosis induced by the hybrids. Gene expression studies by Real time RT-PCR has shown that these compounds are efficient regulator of anti-apoptotic gene Bcl-2. Western blot analysis also revealed that these compounds persuade apoptosis through intrinsic pathway by up-regulating the pro-apoptotic protein Bax and down-regulating the anti-apoptotic protein Bcl-2. Molecular docking studies reveal that compounds 15b and 20b binds efficiently with Bcl-2 promoter G-quadruplex.

  16. Nuclear criticality safety bounding analysis for the in-tank-precipitation (ITP) process, impacted by fissile isotopic weight fractions

    SciTech Connect

    Bess, C.E.

    1994-04-22

    The In-Tank Precipitation process (ITP) receives High Level Waste (HLW) supernatant liquid containing radionuclides in waste processing tank 48H. Sodium tetraphenylborate, NaTPB, and monosodium titanate (MST), NaTi{sub 2}O{sub 5}H, are added for removal of radioactive Cs and Sr, respectively. In addition to removal of radio-strontium, MST will also remove plutonium and uranium. The majority of the feed solutions to ITP will come from the dissolution of supernate that had been concentrated by evaporation to a crystallized salt form, commonly referred to as saltcake. The concern for criticality safety arises from the adsorption of U and Pt onto MST. If sufficient mass and optimum conditions are achieved then criticality is credible. The concentration of u and Pt from solution into the smaller volume of precipitate represents a concern for criticality. This report supplements WSRC-TR-93-171, Nuclear Criticality Safety Bounding Analysis For The In-Tank-Precipitation (ITP) Process. Criticality safety in ITP can be analyzed by two bounding conditions: (1) the minimum safe ratio of MST to fissionable material and (2) the maximum fissionable material adsorption capacity of the MST. Calculations have provided the first bounding condition and experimental analysis has established the second. This report combines these conditions with canyon facility data to evaluate the potential for criticality in the ITP process due to the adsorption of the fissionable material from solution. In addition, this report analyzes the potential impact of increased U loading onto MST. Results of this analysis demonstrate a greater safety margin for ITP operations than the previous analysis. This report further demonstrates that the potential for criticality in the ITP process due to adsorption of fissionable material by MST is not credible.

  17. Effect of UV light on the inactivation of recombinant human adenovirus and murine norovirus seeded in seawater in shellfish depuration tanks.

    PubMed

    Garcia, Lucas A T; Nascimento, Mariana A; Barardi, Célia R M

    2015-03-01

    Shellfish depuration is a process that aims to eliminate pathogens from mollusk tissues. Seawater disinfection during the depuration process is important and ultraviolet (UV) light treatment is the most used method worldwide. Viral models are usually employed as surrogates of fastidious viruses in viability studies. The aim of this study was to employ methods based on green fluorescent protein (GFP) fluorescence and plaque forming units to detect, respectively, recombinant adenovirus (rAdV-GFP) and murine norovirus (MNV) artificially seeded in environmental matrices. These assays were applied to assess the inactivation of rAdV-GFP and MNV in seawater in recirculation shellfish depuration tanks with and without UV light treatment. Kinetics of rAdV GFP-expression was previously measured by UV-spectrophotometer. Flow cytometry (FC), fluorescence microscopy (FM), and plaque assay were used to determine virus titer and detection limits. The influence of the environmental matrix on the performance of the methods was prior determined using either drinking water or filtered seawater seeded with rAdV-GFP. Disinfection of seeded seawater was evaluated with and without UV treatment. The time of 24-h post-infection was established as ideal for fluorescence detection on rAdV-GFP infected cells. FC showed lower sensitivity, when compared to FM, which was similar to plaque assay. Seawater disinfection on depuration tanks was promising and rAdV-GFP declined 99.99 % after 24 and 48 h with and without UV treatment, respectively. MNV was completely inactivated after 24 h in both treatments. As conclusion, the depuration tanks were effective to inactivate rAdV-GFP and MNV and the UV disinfection treatment accelerated the process.

  18. Think Tanks

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A new inspection robot from Solex Robotics Systems was designed to eliminate hazardous inspections of petroleum and chemical storage tanks. The submersible robot, named Maverick, is used to inspect the bottoms of tanks, keeping the tanks operational during inspection. Maverick is able to provide services that will make manual tank inspections obsolete. While the inspection is conducted, Maverick's remote human operators remain safe outside of the tank. The risk to human health and life is now virtually eliminated. The risk to the environment is also minimal because there is a reduced chance of spillage from emptying and cleaning the tanks, where previously, tons of pollutants were released through the process of draining and refilling.

  19. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  20. Think Tank.

    ERIC Educational Resources Information Center

    Governick, Heather; Wellington, Thom

    1998-01-01

    Examines the options for upgrading, replacing, and removal or closure of underground storage tanks (UST). Reveals the diverse regulatory control involving USTs, the Environmental Protection Agency's interest in pursuing violators, and stresses the need for administrators to be knowledgeable about state and local agency definitions of regulated…

  1. Tank 241-S-111: Tank characterization plan

    SciTech Connect

    Homi, C.S.

    1995-03-07

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, ORNL, and PNL tank vapor program. Scope of this plan is to provide guidance for sampling and analysis of vapor samples from tank 241-S-111 (this tank is on the organic and flammable gas watch list). This tank received Redox plant waste, among other wastes.

  2. Feed tank transfer requirements

    SciTech Connect

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  3. Tank Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  4. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each...

  5. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each...

  6. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each...

  7. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each...

  8. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each...

  9. KCo(H2O)2BP2O8·0.48H2O and K0.17Ca0.42Co(H2O)2BP2O8·H2O: two cobalt borophosphates with helical ribbons and disordered (K,Ca)/H2O schemes.

    PubMed

    Guesmi, Abderrahmen; Driss, Ahmed

    2012-08-01

    The two title compounds, potassium diaquacobalt(II) borodiphosphate 0.48-hydrate and potassium-calcium(0.172/0.418) diaquacobalt(II) borodiphosphate monohydrate, were synthesized hydrothermally. They are new members of the borophosphate family characterized by (∞)[BP(2)O(8)](3-) helices running along [001] and constructed of boron (Wyckoff position 6b, twofold axis) and phosphorus tetrahedra. The [CoBP(2)O(8)](-) anionic frameworks in the two materials are structurally similar and result from a connection in the ab plane between the CoO(4)(H(2)O)(2) coordination octahedra (6b position) and the helical ribbons. Nevertheless, the two structures differ in the disorder schemes of the K,Ca and H(2)O species. The alkali cations in the structure of the pure potassium compound are disordered over three independent positions, one of them located on a 6b site. Its framework is characterized by double occupation of the tunnels by water molecules located on twofold rotation axes (6b) and a fraction of alkali cations; its cell parameters, compared with those for the mixed K,Ca compound, show abnormal changes, presumably due to the disorder. For the K,Ca compound, the K and Ca cations are on twofold axes (6b) and the channels are occupied only by disordered solvent water molecules. This shows that it is possible, due to the flexibility of the helices, to replace the alkali and alkaline earth cations while retaining the crystal framework.

  10. AX Tank Farm tank removal study

    SciTech Connect

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  11. Tank 241-U-203: Tank Characterization Plan

    SciTech Connect

    Sathyanarayana, P.

    1995-03-27

    The revised Federal Facility Agreement and Consent Order states that a tank characterization plan will be developed for each double-shell tank and single-shell tank using the data quality objective process. The plans are intended to allow users and regulators to ensure their needs will be met and resources are devoted to gaining only necessary information. This document satisfies that requirement for Tank 241-U-203 sampling activities.

  12. Tank 241-BX-106: Tank characterization plan

    SciTech Connect

    Schreiber, R.D.

    1995-03-06

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. Scope of this plan is to provide guidance for sampling and analysis of samples for tank 241-BX-106. (Waste from this tank shall be transferred to a double-shell tank.)

  13. AX Tank Farm tank removal study

    SciTech Connect

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  14. HANFORD TANK CLEANUP UPDATE

    SciTech Connect

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  15. Tank characterization report: Tank 241-C-109

    SciTech Connect

    Simpson, B.C.; Borshiem, G.L.; Jensen, L.

    1993-09-01

    Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and to support Hanford Federal Facility Agreement and consent Order (Tri- Party Agreement) Milestone M-10-00. This report describes this analysis.

  16. Assemblies of Conformal Tanks

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2009-01-01

    Assemblies of tanks having shapes that conform to each other and/or conform to other proximate objects have been investigated for use in storing fuels and oxidizers in small available spaces in upper stages of spacecraft. Such assemblies might also prove useful in aircraft, automobiles, boats, and other terrestrial vehicles in which space available for tanks is limited. The basic concept of using conformal tanks to maximize the utilization of limited space is not new in itself: for example, conformal tanks are used in some automobiles to store windshield -washer liquid and coolant that overflows from radiators. The novelty of the present development lies in the concept of an assembly of smaller conformal tanks, as distinguished from a single larger conformal tank. In an assembly of smaller tanks, it would be possible to store different liquids in different tanks. Even if the same liquid were stored in all the tanks, the assembly would offer an advantage by reducing the mechanical disturbance caused by sloshing of fuel in a single larger tank: indeed, the requirement to reduce sloshing is critical in some applications. The figure shows a prototype assembly of conformal tanks. Each tank was fabricated by (1) copper plating a wax tank mandrel to form a liner and (2) wrapping and curing layers of graphite/epoxy composite to form a shell supporting the liner. In this case, the conformal tank surfaces are flat ones where they come in contact with the adjacent tanks. A band of fibers around the outside binds the tanks together tightly in the assembly, which has a quasi-toroidal shape. For proper functioning, it would be necessary to maintain equal pressure in all the tanks.

  17. Tank 241-BX-104 tank characterization plan

    SciTech Connect

    Carpenter, B.C.

    1994-12-14

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-BX-104.

  18. Liquid rocket metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    Wagner, W. A.; Keller, R. B. (Editor)

    1974-01-01

    Significant guidelines are presented for the successful design of aerospace tanks and tank components, such as expulsion devices, standpipes, and baffles. The state of the art is reviewed, and the design criteria are presented along with recommended practices. Design monographs are listed.

  19. Tank 241-U-103 tank characterization plan

    SciTech Connect

    Carpenter, B.C.

    1995-01-24

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-103.

  20. Feed tank transfer requirements

    SciTech Connect

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  1. Ammonia tank failure

    SciTech Connect

    Sweat, M.E.

    1983-04-01

    An ammonia tank failure at Hawkeye Chemical of Clinton, Iowa is discussed. The tank was a double-wall, 27,000 metric-ton tank built in 1968 and commissioned in December 1969. The paper presented covers the cause of the failure, repair, and procedural changes made to prevent recurrence of the failure. (JMT)

  2. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car..., Large Packaging, cargo tank, or multi-unit tank car tank) containing a hazardous material in...

  3. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car..., Large Packaging, cargo tank, or multi-unit tank car tank) containing a hazardous material in...

  4. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car..., Large Packaging, cargo tank, or multi-unit tank car tank) containing a hazardous material in...

  5. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car..., Large Packaging, cargo tank, or multi-unit tank car tank) containing a hazardous material in...

  6. Tank 241-B-103 tank characterization plan

    SciTech Connect

    Carpenter, B.C.

    1995-01-23

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.`` This document satisfies that requirement for Tank 241-B-103 (B-103) sampling activities. Tank B-103 was placed on the Organic Watch List in January 1991 due to review of TRAC data that predicts a TOC content of 3.3 dry weight percent. The tank was classified as an assumed leaker of approximately 30,280 liters (8,000 gallons) in 1978 and declared inactive. Tank B-103 is passively ventilated with interim stabilization and intrusion prevention measures completed in 1985.

  7. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks....

  8. Tank 241-BX-110 tank characterization report

    SciTech Connect

    Schreiber, R.D., Westinghouse Hanford

    1996-05-22

    This document summarizes the information on the historical uses, present status and the sampling and analysis results of waste stored in Tank 241-BX-110. This reports supports the requirements of Tri-Party Agreement Milestone M-44-09.

  9. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank...

  10. Hanford tanks initiative plan

    SciTech Connect

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  11. Underground petroleum tanks

    SciTech Connect

    Not Available

    1990-07-01

    This book presents the results of a survey of 46 state underground storage tank program officials. The survey covers: Whether petroleum tank insurance (mandated by the EPA) is available in each state and whether category 3 and 4 owners can obtain it; state programs that help owners meet the financial responsibility and/or technical requirements of such insurance; and lending institutions' attitudes towards providing loans to storage tank owners. A survey of the number and terms of insurance policies offered to tank owners is also presented.

  12. Underground Tank Management.

    ERIC Educational Resources Information Center

    Bednar, Barbara A.

    1990-01-01

    The harm to human health and our environment caused by leaking underground storage tanks can be devastating. Schools can meet new federal waste management standards by instituting daily inventory monitoring, selecting a reliable volumetric testing company, locating and repairing leaks promptly, and removing and installing tanks appropriately. (MLH)

  13. Rainwater tank drowning.

    PubMed

    Byard, Roger W

    2008-11-01

    Drowning remains a significant cause of accidental death in young children. The site of drowning varies among communities and is influenced by cultural and geographic factors, including the availability of particular water sources. The drowning deaths of a twin two-year-old brother and sister in a rainwater tank are reported to demonstrate specific issues that may arise. Ladders, vegetation and trellises may provide access to tanks and should be removed. Secure child-proof access points should also be installed, particularly on in-ground tanks (given the ready accessibility of the latter). As there has been a recent trend in Australia to install more domestic rainwater tanks, the number of childhood rainwater tank drownings and near-drownings will need to be monitored by forensic pathologists and child death review committees to ensure that this has not led to the introduction of a new hazard into the home environment.

  14. Tank characterization reference guide

    SciTech Connect

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J.; Simpson, B.C.

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

  15. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes... car tanks....

  16. Tank 241-AX-104 tank characterization plan

    SciTech Connect

    Sathyanarayana, P.

    1994-08-26

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of auger samples from tank 241-AX-104.

  17. Tank 241-U-202 tank characterization plan

    SciTech Connect

    Schreiber, R.D.

    1995-02-21

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-U-202.

  18. Tank 241-U-201 tank characterization plan

    SciTech Connect

    Schreiber, R.D.

    1995-02-21

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 22-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-U-201.

  19. ADM. Tanks: from left to right: fuel oil tank, fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  20. Pressurizer tank upper support

    DOEpatents

    Baker, Tod H.; Ott, Howard L.

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  1. Pressurizer tank upper support

    DOEpatents

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  2. Cryogenic-storage-tank support

    NASA Technical Reports Server (NTRS)

    Wisdom, G. H.

    1980-01-01

    Support isolates tank from thermal and mechanical loading by environment. Design uses combination of well-known common mechanisms to isolate tank and allow for tank expansion and contraction due to temperature and pressure changes. Similar support method is used on nitrogen tanks.

  3. Tank waste characterization basis

    SciTech Connect

    Brown, T.M.

    1996-08-09

    This document describes the issues requiring characterization information, the process of determining high priority tanks to obtain information, and the outcome of the prioritization process. In addition, this document provides the reasoning for establishing and revising priorities and plans.

  4. LOX Tank Rupture

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The bright luminous glow at the top is attributed to the rupture of the liquid oxygen tank just above the SRB/ET attachment. At this point, Challenger is completely engulfed in a firey flow of escaping liquid propellant.

  5. TANK 5 SAMPLING

    SciTech Connect

    Vrettos, N; William Cheng, W; Thomas Nance, T

    2007-11-26

    Tank 5 at the Savannah River Site has been used to store high level waste and is currently undergoing waste removal processes in preparation for tank closure. Samples were taken from two locations to determine the contents in support of Documented Safety Analysis (DSA) development for chemical cleaning. These samples were obtained through the use of the Drop Core Sampler and the Snowbank Sampler developed by the Engineered Equipment & Systems (EES) group of the Savannah River National Laboratory (SRNL).

  6. Liquid Oxygen Tank of the External Tank

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This photograph shows a liquid oxygen tank for the Shuttle External Tank (ET) during a hydroelastic modal survey test at the Marshall Space Flight Center. The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and is the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  7. Optical Cryogenic Tank Level Sensor

    NASA Technical Reports Server (NTRS)

    Duffell, Amanda

    2005-01-01

    Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

  8. Material selection for Multi-Function Waste Tank Facility tanks

    SciTech Connect

    Larrick, A.P.; Blackburn, L.D.; Brehm, W.F.; Carlos, W.C.; Hauptmann, J.P.; Danielson, M.J.; Westerman, R.E.; Divine, J.R.; Foster, G.M.

    1995-03-01

    This paper briefly summarizes the history of the materials selection for the US Department of Energy`s high-level waste carbon steel storage tanks. It also provides an evaluation of the materials for the construction of new tanks at the evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements: assessed. each requirement: and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of ASME SA 515, Grade 70, carbon steel.

  9. 131. NORTH PLANT TANK CHEMICAL STORAGE TANKS FROM GB MANUFACTURING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    131. NORTH PLANT TANK CHEMICAL STORAGE TANKS FROM GB MANUFACTURING PLANT. VIEW TO SOUTHEAST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  10. External Tank Assembly

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This photograph shows the liquid hydrogen tank and liquid oxygen tank for the Space Shuttle external tank (ET) being assembled in the weld assembly area of the Michoud Assembly Facility (MAF). The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first eight 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  11. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... affecting § 157.15, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS...

  12. TANK SPACE OPTIONS REPORT

    SciTech Connect

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  13. Tank depletion flow controller

    DOEpatents

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  14. Enhanced Waste Tank Level Model

    SciTech Connect

    Duignan, M.R.

    1999-06-24

    'With the increased sensitivity of waste-level measurements in the H-Area Tanks and with periods of isolation, when no mass transfer occurred for certain tanks, waste-level changes have been recorded with are unexplained.'

  15. Tank 50H Flammability Calculations

    SciTech Connect

    Lambert, D.P.

    2003-05-26

    This report presents the results form the Phase 1 testing. Phase 1 was designed to determine the tetraphenylborate decomposition rate of the 4PB present in Tank 50H if Tank 23H or Inhibited Water is added to the tank.

  16. Accelerated Tank Closure Demonstration Project

    SciTech Connect

    SAMS, T.L.

    2003-02-01

    Among the highest priorities for action under the ''Hanford Federal Facility and Agreement and Consent Order'', hereafter referred to as the Tri-Party Agreement, is the retrieval, treatment and disposal of Hanford Site tank waste. Tank waste is recognized as one of the primary threats to the Columbia River and one of the most complex technical challenges. Progress has been made in resolving safety issues, characterizing tank waste and past tank leaks, enhancing double-shell tank waste transfer and operations systems, retrieving single-shell tank waste, deploying waste treatment facilities, and planning for the disposal of immobilized waste product. However, limited progress has been made in developing technologies and providing a sound technical basis for tank system closure. To address this limitation the Accelerated Tank Closure Demonstration Project was created to develop information through technology demonstrations in support of waste retrieval and closure decisions. To complete its mission the Accelerated Tank Closure Demonstration Project has adopted performance objectives that include: protecting human health and the environment; minimizing/eliminating potential waste releases to the soil and groundwater; preventing water infiltration into the tank; maintaining accessibility of surrounding tanks for future closure; maintaining tank structural integrity; complying with applicable waste retrieval, disposal, and closure regulations; and maintaining flexibility for final closure options in the future.

  17. Plating Tank Control Software

    1998-03-01

    The Plating Tank Control Software is a graphical user interface that controls and records plating process conditions for plating in high aspect ratio channels that require use of low current and long times. The software is written for a Pentium II PC with an 8 channel data acquisition card, and the necessary shunt resistors for measuring currents in the millampere range.

  18. Hybrid Tank Technology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have accomplished great advances in pressure vessel technology by applying high-performance composite materials as an over-wrap to metal-lined pressure vessels. These composite over-wrapped pressure vessels (COPVs) are used in many areas, from air tanks for firefighters and compressed natural gas tanks for automobiles, to pressurant tanks for aerospace launch vehicles and propellant tanks for satellites and deep-space exploration vehicles. NASA and commercial industry are continually striving to find new ways to make high-performance pressure vessels safer and more reliable. While COPVs are much lighter than all-metal pressure vessels, the composite material, typically graphite fibers with an epoxy matrix resin, is vulnerable to impact damage. Carbon fiber is most frequently used for the high-performance COPV applications because of its high strength-to-weight characteristics. Other fibers have been used, but with limitations. For example, fiberglass is inexpensive but much heavier than carbon. Aramid fibers are impact resistant but have less strength than carbon and their performance tends to deteriorate.

  19. Tank bump consequence analysis

    SciTech Connect

    Board, B.D.

    1996-09-01

    The purpose of this document is to derive radiological and toxicological consequences for a tank bump event based on analysis performed using the GOTH computer model, to estimate the mitigative effect of pump and sluice pit cover blocks, and to discuss preventative measures.

  20. Tank bump consequence analysis

    SciTech Connect

    Board, B.D.

    1996-08-07

    The purpose of this document is to derive radiological and toxicological consequences for a tank bump event based on analysis performed using the GOTH computer model, to estimate the mitigative effect of pump and sluice pit cover blocks, and to discuss preventative measures.

  1. Underground storage tank program

    SciTech Connect

    Lewis, M.W.

    1994-12-31

    Underground storage tanks, UST`S, have become a major component of the Louisville District`s Environmental Support Program. The District`s Geotechnical and Environmental Engineering Branch has spear-headed an innovative effort to streamline the time, effort and expense for removal, replacement, upgrade and associated cleanup of USTs at military and civil work installations. This program, called Yank-A-Tank, creates generic state-wide contracts for removal, remediation, installation and upgrade of storage tanks for which individual delivery orders are written under the basic contract. The idea is to create a ``JOC type`` contract containing all the components of work necessary to remove, reinstall or upgrade an underground or above ground tank. The contract documents contain a set of generic specifications and unit price books in addition to the standard ``boiler plate`` information. Each contract requires conformance to the specific regulations for the state in which it is issued. The contractor`s bid consists of a bid factor which in the multiplier used with the prices in the unit price book. The solicitation is issued as a Request for Proposal (RPP) which allows the government to select a contractor based on technical qualification an well as bid factor. Once the basic contract is awarded individual delivery orders addressing specific areas of work are scoped, negotiated and awarded an modifications to the original contract. The delivery orders utilize the prepriced components and the contractor`s factor to determine the value of the work.

  2. Tanks focus area. Annual report

    SciTech Connect

    Frey, J.

    1997-12-31

    The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

  3. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition...

  4. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition...

  5. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks....

  6. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank...

  7. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank...

  8. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks....

  9. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a...

  10. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a)...

  11. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks....

  12. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification DOT-107A * * * * seamless steel tank...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks....

  13. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification DOT-107A * * * * seamless steel tank...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks....

  14. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification DOT-107A * * * * seamless steel tank...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks....

  15. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks....

  16. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks....

  17. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition...

  18. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank...

  19. Hanford Waste Tank Grouping Study

    SciTech Connect

    Remund, K.M.; Simpson, B.C.

    1996-09-30

    This letter report discusses the progress and accomplishments of the Tank Grouping Study in FY96. Forty-one single-shell tanks (SSTs) were included in the FY95. In FY96, technical enhancements were also made to data transformations and tank grouping methods. The first focus of the FY96 effort was a general tank grouping study in which the 41 SSTs were grouped into classes with similar waste properties. The second FY96 focus was a demonstration of how multivariate statistical methods can be used to help resolve tank safety issues.

  20. Storage tanks under earthquake loading

    SciTech Connect

    Rammerstorfer, F.G.; Scharf, K. ); Fisher, F.D. )

    1990-11-01

    This is a state-of-the-art review of various treatments of earthquake loaded liquid filled shells by the methods of earthquake engineering, fluid dynamics, structural and soil dynamics, as well as the theory of stability and computational mechanics. Different types of tanks and different possibilities of tank failure will be discussed. The authors will emphasize cylindrical above-ground liquid storage tanks with vertical axis. But many of the treatments are also valid for other tank configurations. For the calculation of the dynamically activated pressure due to an earthquake a fluid-structure-soil interaction problem must be solved. The review will describe the methods, proposed by different authors, to solve this interaction problem. To study the dynamic behavior of liquid storage tanks, one must distinguish between anchored and unanchored tanks. In the case of an anchored tank, the tank bottom edge is fixed to the foundation. If the tank is unanchored, partial lifting of the tank's bottom may occur, and a strongly nonlinear problem has to be solved. They will compare the various analytical and numerical models applicable to this problem, in combination with experimental data. An essential aim of this review is to give a summary of methods applicable as tools for an earthquake resistant design, which can be used by an engineer engaged in the construction of liquid storage tanks.

  1. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  2. Tank 241-AP-106 tank characterization plan: Revision 1

    SciTech Connect

    Valenzuela, B.D.

    1994-11-17

    Tank 241-AP-106 (AP-106) is a candidate feed tank which is expected to be processed at the 242-A Evaporator. Three issues related to the overall concern of the evaporator must be evaluated: compatibility of the candidate waste with respect to feed tank, slurry tank, and evaporator requirements; safety parameters of the candidate waste tank to avoid a facility condition which is outside the safety boundaries; and compliance of the waste as dictated by regulations from various government and environmental agencies. The characterization efforts of this Tank Characterization Plan are focused on the resolution of the issues above. To evaluate the potential for waste incompatibility with the feed tank, slurry tank, and evaporator, as well as relevant safety issues, analyses will be performed on the grab samples obtained from tank AP-106. These analyses are discussed in Section 4.0. Once the characterization of tank AP-106 has been performed, the waste compatibility and safety assessment shall be conducted. This effort is discussed elsewhere.

  3. PROCESSING ALTERNATIVES FOR DESTRUCTION OF TETRAPHENYLBORATE

    SciTech Connect

    Lambert, D; Thomas Peters, T; Samuel Fink, S

    2007-02-27

    Two processes were chosen in the 1980's at the Savannah River Site (SRS) to decontaminate the soluble High Level Waste (HLW). The In Tank Precipitation (ITP) process (1,2) was developed at SRS for the removal of radioactive cesium and actinides from the soluble HLW. Sodium tetraphenylborate was added to the waste to precipitate cesium and monosodium titanate (MST) was added to adsorb actinides, primarily uranium and plutonium. Two products of this process were a low activity waste stream and a concentrated organic stream containing cesium tetraphenylborate and actinides adsorbed on monosodium titanate (MST). A copper catalyzed acid hydrolysis process was built to process (3, 4) the Tank 48H cesium tetraphenylborate waste in the SRS's Defense Waste Processing Facility (DWPF). Operation of the DWPF would have resulted in the production of benzene for incineration in SRS's Consolidated Incineration Facility. This process was abandoned together with the ITP process in 1998 due to high benzene in ITP caused by decomposition of excess sodium tetraphenylborate. Processing in ITP resulted in the production of approximately 1.0 million liters of HLW. SRS has chosen a solvent extraction process combined with adsorption of the actinides to decontaminate the soluble HLW stream (5). However, the waste in Tank 48H is incompatible with existing waste processing facilities. As a result, a processing facility is needed to disposition the HLW in Tank 48H. This paper will describe the process for searching for processing options by SRS task teams for the disposition of the waste in Tank 48H. In addition, attempts to develop a caustic hydrolysis process for in tank destruction of tetraphenylborate will be presented. Lastly, the development of both a caustic and acidic copper catalyzed peroxide oxidation process will be discussed.

  4. Tank characterization report for Single-Shell Tank B-111

    SciTech Connect

    Remund, K.M.; Tingey, J.M.; Heasler, P.G.; Toth, J.J.; Ryan, F.M.; Hartley, S.A.; Simpson, D.B.; Simpson, B.C.

    1994-09-01

    Tank 241-B-111 (hereafter referred to as B-111) is a 2,006,300 liter (530,000 gallon) single-shell waste tank located in the 200 East B tank farm at Hanford. Two cores were taken from this tank in 1991 and analysis of the cores was conducted by Battelle`s 325-A Laboratory in 1993. Characterization of the waste in this tank is being done to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05. Tank B-111 was constructed in 1943 and put into service in 1945; it is the second tank in a cascade system with Tanks B-110 and B-112. During its process history, B-111 received mostly second-decontamination-cycle waste and fission products waste via the cascade from Tank B-110. This tank was retired from service in 1976, and in 1978 the tank was assumed to have leaked 30,300 liters (8,000 gallons). The tank was interim stabilized and interim isolated in 1985. The tank presently contains approximately 893,400 liters (236,000 gallons) of sludge-like waste and approximately 3,800 liters (1,000 gallons) of supernate. Historically, there are no unreviewed safety issues associated with this tank and none were revealed after reviewing the data from the latest core sampling event in 1991. An extensive set of analytical measurements was performed on the core composites. The major constituents (> 0.5 wt%) measured in the waste are water, sodium, nitrate, phosphate, nitrite, bismuth, iron, sulfate and silicon, ordered from largest concentration to the smallest. The concentrations and inventories of these and other constituents are given. Since Tanks B-110 and B-111 have similar process histories, their sampling results were compared. The results of the chemical analyses have been compared to the dangerous waste codes in the Washington Dangerous Waste Regulations (WAC 173-303). This assessment was conducted by comparing tank analyses against dangerous waste characteristics `D` waste codes; and against state waste codes.

  5. Tank characterization data report: Tank 241-C-112

    SciTech Connect

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

  6. Tank Characterization Report for Double Shell Tank (DST) 241-AN-107

    SciTech Connect

    ADAMS, M.R.

    2000-03-23

    This report interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank.

  7. 27 CFR 19.183 - Scale tanks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Tank Requirements § 19.183 Scale tanks. (a) Except as otherwise provided in paragraph (b) of this... quickly and accurately determined. (b) The requirement to mount tanks on scales does not apply to tanks... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Scale tanks....

  8. 27 CFR 19.183 - Scale tanks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Tank Requirements § 19.183 Scale tanks. (a) Except as otherwise provided in paragraph (b) of this... quickly and accurately determined. (b) The requirement to mount tanks on scales does not apply to tanks... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Scale tanks....

  9. 27 CFR 19.183 - Scale tanks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Tank Requirements § 19.183 Scale tanks. (a) Except as otherwise provided in paragraph (b) of this... quickly and accurately determined. (b) The requirement to mount tanks on scales does not apply to tanks... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Scale tanks....

  10. 27 CFR 19.183 - Scale tanks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Tank Requirements § 19.183 Scale tanks. (a) Except as otherwise provided in paragraph (b) of this... quickly and accurately determined. (b) The requirement to mount tanks on scales does not apply to tanks... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Scale tanks....

  11. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the American Bureau of Shipping published in “Rules for Building and Classing Steel Vessels”, 1981, and...

  12. 46 CFR 154.420 - Tank design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Tank design. 154.420 Section 154.420 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.420 Tank design. (a) The structure of an integral tank must meet the deep tank scantling...

  13. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the American Bureau of Shipping published in “Rules for Building and Classing Steel Vessels”, 1981, and...

  14. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the American Bureau of Shipping published in “Rules for Building and Classing Steel Vessels”, 1981, and...

  15. 46 CFR 154.420 - Tank design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank design. 154.420 Section 154.420 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.420 Tank design. (a) The structure of an integral tank must meet the deep tank scantling...

  16. 46 CFR 154.420 - Tank design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Tank design. 154.420 Section 154.420 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.420 Tank design. (a) The structure of an integral tank must meet the deep tank scantling...

  17. 46 CFR 154.420 - Tank design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank design. 154.420 Section 154.420 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.420 Tank design. (a) The structure of an integral tank must meet the deep tank scantling...

  18. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of...

  19. 46 CFR 154.420 - Tank design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.420 Section 154.420 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.420 Tank design. (a) The structure of an integral tank must meet the deep tank scantling...

  20. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of...

  1. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at...

  2. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at...

  3. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at...

  4. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at...

  5. 14 CFR 23.1013 - Oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 23.1013 Section 23.1013... tanks. (a) Installation. Each oil tank must be installed to— (1) Meet the requirements of § 23.967 (a...) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with...

  6. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 25.35 Section 25.35... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device....

  7. 49 CFR 230.116 - Oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free... adjacent to the fuel supply tank or in another safe location; (b) Closes automatically when tripped...

  8. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at...

  9. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied...

  10. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks....

  11. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to...

  12. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100...

  13. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks....

  14. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100...

  15. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the...

  16. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank...

  17. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to...

  18. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the...

  19. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank...

  20. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank...

  1. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks....

  2. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  3. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  4. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  5. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  6. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special requirements for class 114A * * * tank car... SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the...

  7. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition...

  8. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks....

  9. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  10. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to...

  11. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the...

  12. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks....

  13. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank...

  14. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100...

  15. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as...

  16. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as...

  17. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as...

  18. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as...

  19. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as...

  20. [High Pressure Gas Tanks

    NASA Technical Reports Server (NTRS)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  1. Tank closure reducing grout

    SciTech Connect

    Caldwell, T.B.

    1997-04-18

    A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.

  2. 39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE LOCATED AT ROOF LEVEL AT THE NORTHEAST REAR CORNER OF DIABLO POWERHOUSE, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  3. Health effects of tank cleaners.

    PubMed

    Lillienberg, L; Högstedt, B; Järvholm, B; Nilson, L

    1992-06-01

    A total of 29 tank cleaners and 31 referent controls participated in the study. In most cases, the tank cleaners were employed in small companies, usually specialized subcontractors such as firms only working in refineries cleaning oil tanks and handling oil spills. The air concentrations of hydrocarbons (HCs) in tanks containing residuals from heavy fuel oil were generally low, unless the oil was still warm. Addition of light fuel oil to facilitate the cleaning of tanks containing viscous, heavy fuel oils resulted in total airborne HC levels of 1000-1500 mg/m3. High levels of HC were measured in tanks with low-boiling petroleum fractions (naphtha and light fuel oils) of 1000-2600 mg/m3 (maximum). Today, most cleaners use air-supplied respirators or air-purifying respirator cartridges inside tanks with petroleum products or other chemicals. The exception is small firms handling fuel oils for heating purposes where only 50% of the workers use protective equipment regularly; the other workers only occasionally use protective equipment even if the air concentrations of HC are high. Protective equipment is rarely used in small, domestic tanks. Measurements of heart rate showed that tank cleaning is, at times, a highly strenuous job. No differences between tank cleaners and controls were found with respect to spirometry, liver enzymes, or frequency of micronuclei. Acute intoxications were not frequently reported in this group. However, this investigation may underestimate the true risk, as it is a cross-sectional study that found that exposures were highly variable, both quantitatively and qualitatively. In many cases, the tank cleaners knew very little about the potential hazards or the proper use of protective equipment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1605110

  4. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  5. Filling an Unvented Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Beck, Phillip; Willen, Gary S.

    1987-01-01

    Slow-cooling technique enables tank lacking top vent to be filled with cryogenic liquid. New technique: pressure buildup prevented through condensation of accumulating gas resulting in condensate being added to bulk liquid. Filling method developed for vibration test on vacuum-insulated spherical tank containing liquid hydrogen.

  6. 1990 waste tank inspection program

    SciTech Connect

    McNatt, F.G.

    1990-12-31

    Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Tank conditions are evaluated by inspection using periscopes, still photography, and video systems for visual imagery. Inspections made in 1990 are the subject of this report.

  7. 1990 waste tank inspection program

    SciTech Connect

    McNatt, F.G.

    1990-01-01

    Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Tank conditions are evaluated by inspection using periscopes, still photography, and video systems for visual imagery. Inspections made in 1990 are the subject of this report.

  8. Main tank injection pressurization program

    NASA Technical Reports Server (NTRS)

    Cady, E. C.; Kendle, D. W.

    1972-01-01

    Computer program predicts performance of fluorine-hydrogen main tank injection pressurization system for full range of liquid-hydrogen-fueled space vehicles. Analytical model includes provisions for heat transfer, injectant jet penetration, and ullage gas mixing. Analysis predicts GF2 usage, ullage gas and tank wall temperatures, and LH2 evaporation.

  9. Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Consort, S.D.

    1995-12-31

    Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report.

  10. Insulated solar storage tanks

    SciTech Connect

    Eldighidy, S.M. )

    1991-01-01

    This paper presents the theoretical and experimental investigation of an insulated parallelepiped, outdoor solar, water-filled storage tank of size 1 m {times} 0.5 m {times} 0.3 m, that is made from galvanized iron. The absorption coefficient of the insulating material has been determined. The effects of plastic covers and insulation thickness on the water temperature and the energy gained or lost by water are investigated. Moreover, the effects of insulation thickness on the temperature profiles of the insulating material are discussed. The results show that the absorption coefficient decreases as the insulation thickness increases. Also, it is found that the glass wool insulation of 2.5 cm thickness has the best results compared with the other thicknesses (5 cm, 7.5 cm, and 10 cm) as far as the water temperature and the energy gained by water are concerned.

  11. Tank farms hazards assessment

    SciTech Connect

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  12. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Periodic retest and inspection of tank cars other... § 180.519 Periodic retest and inspection of tank cars other than single-unit tank car tanks. (a) General... periodically as specified in Retest Table 1 of paragraph (b)(5) of this section. Retests may be made at...

  13. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Periodic retest and inspection of tank cars other... of Tank Cars § 180.519 Periodic retest and inspection of tank cars other than single-unit tank car... devices must be retested periodically as specified in Retest Table 1 of paragraph (b)(5) of this...

  14. Tank characterization report for single shell tank 241-S-107

    SciTech Connect

    Simpson, B.C.

    1996-09-19

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-S-107. This report supports the requirements of Tri- Party Agreement Milestone M-44-09.

  15. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... affecting § 157.15, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... washing water. (c) Design. A slop tank required in this section: (1) Must minimize turbulence,...

  16. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... affecting § 157.15, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... washing water. (c) Design. A slop tank required in this section: (1) Must minimize turbulence,...

  17. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... affecting § 157.15, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... washing water. (c) Design. A slop tank required in this section: (1) Must minimize turbulence,...

  18. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... affecting § 157.15, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... washing water. (c) Design. A slop tank required in this section: (1) Must minimize turbulence,...

  19. Tank vapor mitigation requirements for Hanford Tank Farms

    SciTech Connect

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  20. Tank characterization report for single shell tank 241-SX-108

    SciTech Connect

    Eggers, R.F., Westinghouse Hanford

    1996-07-11

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-SX-108. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  1. Tank characterization report for single shell tank 241-A-102

    SciTech Connect

    Jo, J., Westinghouse Hanford

    1996-07-29

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-A-102. This report supports the requirements of Tri-party Agreement Milestone M-44-09.

  2. Tank characterization report for double shell tank 241-AP-104

    SciTech Connect

    Winkelman, W.D., Westinghouse Hanford

    1996-08-07

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AP-104. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  3. Tank 241-AP-107 tank characterization plan. Revision 1

    SciTech Connect

    Schreiber, R.D.

    1995-01-20

    Defense Nuclear Facilities Safety Board has directed the DOE to concentrate ear-term sampling and analysis activities on identification and resolution of issues (Conway 1993). The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44-00 has been made, which states that ``A Tank Characterization Plan (TCP) will be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process; Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.`` This document satisfies that requirement for the tank 241-AP-107 (AP-107).

  4. Tank 241-BY-110 tank characterization plan. Revision 1

    SciTech Connect

    Homi, C.S.

    1995-10-04

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-BY-110.

  5. [Death in a relaxation tank].

    PubMed

    Rupp, Wolf; Simon, Karl-Heinz; Bohnert, Michael

    2009-01-01

    Complete relaxation can be achieved by floating in a darkened, sound-proof relaxation tank filled with salinated water kept at body temperature. Under these conditions, meditation exercises up to self-hypnosis may lead to deep relaxation with physical and mental revitalization. A user manipulated his tank, presumably to completely cut off all optical and acoustic stimuli and accidentally also covered the ventilation hole. The man was found dead in his relaxation tank. The findings suggested lack of oxygen as the cause of death.

  6. Ecodesign of Liquid Fuel Tanks

    NASA Astrophysics Data System (ADS)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  7. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    SciTech Connect

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

  8. 27 CFR 24.167 - Tanks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tanks. 24.167 Section 24... TREASURY ALCOHOL WINE Construction and Equipment § 24.167 Tanks. (a) General. All tanks on wine premises... the intended purpose. Each tank used for wine operations will be located, constructed, and equipped...

  9. 27 CFR 24.167 - Tanks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tanks. 24.167 Section 24... TREASURY LIQUORS WINE Construction and Equipment § 24.167 Tanks. (a) General. All tanks on wine premises... the intended purpose. Each tank used for wine operations will be located, constructed, and equipped...

  10. 27 CFR 24.167 - Tanks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tanks. 24.167 Section 24... TREASURY LIQUORS WINE Construction and Equipment § 24.167 Tanks. (a) General. All tanks on wine premises... the intended purpose. Each tank used for wine operations will be located, constructed, and equipped...

  11. 14 CFR 25.1013 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... oil tank installation must meet the requirements of § 25.967. (b) Expansion space. Oil tank expansion... expansion space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and each oil tank used with a turbine engine must have an expansion space of not less than 10 percent of the...

  12. 14 CFR 23.1013 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with a reciprocating engine has an expansion space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and each oil tank used with a turbine engine has an expansion space of not less than...

  13. 14 CFR 29.1013 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... oil tank installation must meet the requirements of § 29.967. (b) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with a reciprocating engine has an expansion... used with a turbine engine has an expansion space of not less than 10 percent of the tank capacity;...

  14. Double-shell tank emergency pumping guide

    SciTech Connect

    BROWN, M.H.

    1999-02-24

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTS. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified.

  15. Double-shell tank emergency pumping guide

    SciTech Connect

    BROWN, M.H.

    1999-05-18

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanfords 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified.

  16. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under §...

  17. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under §...

  18. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a...

  19. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a...

  20. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a...

  1. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a...

  2. 14 CFR 29.1013 - Oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... oil tank installation must meet the requirements of § 29.967. (b) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with a reciprocating engine has an expansion... used with a turbine engine has an expansion space of not less than 10 percent of the tank capacity;...

  3. 14 CFR 23.1013 - Oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with a reciprocating engine has an expansion space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and each oil tank used with a turbine engine has an expansion space of not less than...

  4. 14 CFR 29.1013 - Oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... oil tank installation must meet the requirements of § 29.967. (b) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with a reciprocating engine has an expansion... used with a turbine engine has an expansion space of not less than 10 percent of the tank capacity;...

  5. 14 CFR 25.1013 - Oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... oil tank installation must meet the requirements of § 25.967. (b) Expansion space. Oil tank expansion... expansion space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and each oil tank used with a turbine engine must have an expansion space of not less than 10 percent of the...

  6. 14 CFR 25.1013 - Oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... oil tank installation must meet the requirements of § 25.967. (b) Expansion space. Oil tank expansion... expansion space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and each oil tank used with a turbine engine must have an expansion space of not less than 10 percent of the...

  7. 49 CFR 230.116 - Oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is...

  8. 49 CFR 230.116 - Oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is...

  9. 49 CFR 230.116 - Oil tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is...

  10. 14 CFR 25.1013 - Oil tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil tanks. 25.1013 Section 25.1013... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1013 Oil tanks. (a) Installation. Each oil tank installation must meet the requirements of § 25.967. (b) Expansion space. Oil tank...

  11. 7 CFR 58.218 - Surge tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Surge tanks. 58.218 Section 58.218 Agriculture....218 Surge tanks. If surge tanks are used for hot milk, and temperatures of product including foam being held in the surge tank during processing, is not maintained at a minimum of 150 °F, then two...

  12. 14 CFR 27.1013 - Oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and where used...

  13. 7 CFR 58.320 - Brine tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet....

  14. 7 CFR 58.422 - Brine tank.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Brine tank. 58.422 Section 58.422 Agriculture....422 Brine tank. The brine tank shall be constructed of suitable non-toxic material and should be resistant to corrosion, pitting or flaking. The brine tank shall be operated so as to assure the brine...

  15. 14 CFR 29.1013 - Oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 29.1013 Section 29.1013... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1013 Oil tanks. (a) Installation. Each oil tank installation must meet the requirements of § 29.967. (b) Expansion space. Oil tank...

  16. 27 CFR 24.167 - Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 24.167 Section 24... TREASURY LIQUORS WINE Construction and Equipment § 24.167 Tanks. (a) General. All tanks on wine premises... the intended purpose. Each tank used for wine operations will be located, constructed, and equipped...

  17. 14 CFR 25.1013 - Oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 25.1013 Section 25.1013... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1013 Oil tanks. (a) Installation. Each oil tank installation must meet the requirements of § 25.967. (b) Expansion space. Oil tank...

  18. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a...

  19. 49 CFR 179.10 - Tank mounting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank mounting. 179.10 Section 179.10... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS General Design Requirements § 179.10 Tank mounting. (a) The manner in which tanks are attached to the...

  20. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...(a) and 1 CFR part 51. You may obtain a copy of the incorporated standard from the Association of... 49 Transportation 4 2010-10-01 2010-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a...

  1. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor...

  2. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor...

  3. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor...

  4. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor...

  5. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor...

  6. Integral Radiator and Storage Tank

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Miller, John R.; Jakupca, Ian; Sargi,Scott

    2007-01-01

    A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0

  7. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank heads. 179.400-7 Section 179.400-7... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a) Tank heads of the inner tank and outer jacket must be flanged and dished, or ellipsoidal. (b)...

  8. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank heads. 179.400-7 Section 179.400-7... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a) Tank heads of the inner tank and outer jacket must be flanged and dished, or ellipsoidal. (b)...

  9. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank heads. 179.400-7 Section 179.400-7... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a) Tank heads of the inner tank and outer jacket must be flanged and dished, or ellipsoidal. (b)...

  10. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tank heads. 179.400-7 Section 179.400-7... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a) Tank heads of the inner tank and outer jacket must be flanged and dished, or ellipsoidal. (b)...

  11. 49 CFR 179.400-14 - Cleaning of inner tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cleaning of inner tank. 179.400-14 Section 179.400... TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-14 Cleaning of inner tank. The interior of the inner tank and all connecting...

  12. 49 CFR 179.400-16 - Access to inner tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Access to inner tank. 179.400-16 Section 179.400... TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-16 Access to inner tank. (a) The inner tank must be provided with a means...

  13. Tank 241-C-109 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank C-109. The drivers and objectives of the waste tank headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports.

  14. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    SciTech Connect

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  15. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm

    SciTech Connect

    Becker, D.L.

    1997-11-03

    This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding.

  16. ROBOTIC TANK INSPECTION END EFFECTOR

    SciTech Connect

    Rachel Landry

    1999-10-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original intent of

  17. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    SciTech Connect

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as a

  18. Evaluation of tank waste transfers at 241-AW tank farm

    SciTech Connect

    Willis, W.L.

    1998-05-27

    A number of waste transfers are needed to process and feed waste to the private contractors in support of Phase 1 Privatization. Other waste transfers are needed to support the 242-A Evaporator, saltwell pumping, and other ongoing Tank Waste Remediation System (TWRS) operations. The purpose of this evaluation is to determine if existing or planned equipment and systems are capable of supporting the Privatization Mission of the Tank Farms and continuing operations through the end of Phase 1B Privatization Mission. Projects W-211 and W-314 have been established and will support the privatization effort. Equipment and system upgrades provided by these projects (W-211 and W-314) will also support other ongoing operations in the tank farms. It is recognized that these projects do not support the entire transfer schedule represented in the Tank Waste Remediation system Operation and Utilization Plan. Additionally, transfers surrounding the 241-AW farm must be considered. This evaluation is provided as information, which will help to define transfer paths required to complete the Waste Feed Delivery (WFD) mission. This document is not focused on changing a particular project, but it is realized that new project work in the 241-AW Tank Farm is required.

  19. Identification of single-shell tank in-tank hardware obstructions to retrieval at Hanford Site Tank Farms

    SciTech Connect

    Ballou, R.A.

    1994-10-01

    Two retrieval technologies, one of which uses robot-deployed end effectors, will be demonstrated on the first single-shell tank (SST) waste to be retrieved at the Hanford Site. A significant impediment to the success of this technology in completing the Hanford retrieval mission is the presence of unique tank contents called in-tank hardware (ITH). In-tank hardware includes installed and discarded equipment and various other materials introduced into the tank. This paper identifies those items of ITH that will most influence retrieval operations in the arm-based demonstration project and in follow-on tank operations within the SST farms.

  20. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  1. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  2. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  3. Septic tank additive impacts on microbial populations.

    PubMed

    Pradhan, S; Hoover, M T; Clark, G H; Gumpertz, M; Wollum, A G; Cobb, C; Strock, J

    2008-01-01

    Environmental health specialists, other onsite wastewater professionals, scientists, and homeowners have questioned the effectiveness of septic tank additives. This paper describes an independent, third-party, field scale, research study of the effects of three liquid bacterial septic tank additives and a control (no additive) on septic tank microbial populations. Microbial populations were measured quarterly in a field study for 12 months in 48 full-size, functioning septic tanks. Bacterial populations in the 48 septic tanks were statistically analyzed with a mixed linear model. Additive effects were assessed for three septic tank maintenance levels (low, intermediate, and high). Dunnett's t-test for tank bacteria (alpha = .05) indicated that none of the treatments were significantly different, overall, from the control at the statistical level tested. In addition, the additives had no significant effects on septic tank bacterial populations at any of the septic tank maintenance levels. Additional controlled, field-based research iswarranted, however, to address additional additives and experimental conditions.

  4. CHARACTERIZATION OF TANK 17 RESIDUAL WASTE

    SciTech Connect

    D'Entremont, P; Thomas Caldwell, T

    1997-09-22

    Plans are to close Tank 17, a type IV waste tank in the F-area Tank Farm, by filling it with pumpable backfills. Most of the waste was removed from the tank in the late 1980s, and the remainder of the waste was removed in a short spray washing campaign that began on 11 April 1997. More details on the planned closure can be found in the Closure Plan for the High-Level Waste (HLW) Tanks and the specific closure module for Tank 17. To show that closure of the tank is environmentally sound, a performance evaluation has been performed for Tank 17. The performance evaluation projected the concentration of contaminants at various locations and times after closure. This report documents the basis for the inventories of contaminants that were used in the Tank 17 performance evaluation.

  5. Auxiliary resonant DC tank converter

    DOEpatents

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  6. TANK48 CFD MODELING ANALYSIS

    SciTech Connect

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single

  7. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V.; Dwyer, Brian P.; Krumhansl, James L.; Chwirka, Joseph D.

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  8. Lightweight Tanks for Storing Liquefied Natural Gas

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2008-01-01

    Single-walled, jacketed aluminum tanks have been conceived for storing liquefied natural gas (LNG) in LNG-fueled motor vehicles. Heretofore, doublewall steel tanks with vacuum between the inner and outer walls have been used for storing LNG. In comparison with the vacuum- insulated steel tanks, the jacketed aluminum tanks weigh less and can be manufactured at lower cost. Costs of using the jacketed aluminum tanks are further reduced in that there is no need for the vacuum pumps heretofore needed to maintain vacuum in the vacuum-insulated tanks.

  9. Tank Waste Disposal Program redefinition

    SciTech Connect

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H.; Holton, L.K.; Hunter, V.L.; Triplett, M.B.

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  10. Small Tank Tetraphenylborate Catalyst Studies

    SciTech Connect

    Barnes, M.J.

    2001-06-04

    The Salt Disposition Systems Engineering Team identified Small Tank Tetraphenylborate Precipitation (STTP) as an alternative to replace the In-Tank Precipitation Facility at the Savannah River Site. The Department of Energy discontinued operation of the In-Tank Precipitation facility due to the potential for catalytic decomposition of sodium tetraphenylborate. The STTP applies the same process chemistry for removal of cesium from the radioactive wastes but at a controlled lower temperature and in a smaller facility that offers engineering features to mitigate potential for a catalytic reaction. However, additional understanding of the catalytic reaction, through further experimental investigation, is needed to better define the potential for a reaction to occur in the proposed facility.

  11. Code System for the Radioactive Liquid Tank Failure Study.

    2000-01-03

    Version 01 RATAF calculates the consequences of radioactive liquid tank failures. In each of the processing systems considered, RATAF can calculate the tank isotopic concentrations in either the collector tank or the evaporator bottoms tank.

  12. Tank waste concentration mechanism study

    SciTech Connect

    Pan, L.C.; Johnson, L.J.

    1994-09-01

    This study determines whether the existing 242-A Evaporator should continue to be used to concentrate the Hanford Site radioactive liquid tank wastes or be replaced by an alternative waste concentration process. Using the same philosophy, the study also determines what the waste concentration mechanism should be for the future TWRS program. Excess water from liquid DST waste should be removed to reduce the volume of waste feed for pretreatment, immobilization, and to free up storage capacity in existing tanks to support interim stabilization of SSTS, terminal cleanout of excess facilities, and other site remediation activities.

  13. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    SciTech Connect

    TURNER DA; KIRCH NW; WASHENFELDER DJ; SCHAUS PS; WODRICH DD; WIEGMAN SA

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  14. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS...

  15. Tank 241-BY-103 Tank Characterization Plan. Revision 1

    SciTech Connect

    Schreiber, R.D.

    1995-02-27

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-103.

  16. Tank Characterization Report for Single Shell Tank 241-U-103

    SciTech Connect

    ADAMS, M.R.

    2000-02-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-U-103. This report supports the requirements of the Tri-Party Agreement Milestone M-44-15B.

  17. Out-of-tank evaporator demonstration: Tanks focus area

    SciTech Connect

    1998-11-01

    Approximately 100 million gal of liquid waste is stored in underground storage tanks (UST)s at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Oak Ridge Reservation (ORR). This waste is radioactive with a high salt content. The US Department of Energy (DOE) wants to minimize the volume of radioactive liquid waste in USTs by removing the excess water. This procedure conserves tank space; lowers the cost of storage; and reduces the volume of wastes subsequently requiring separation, immobilization, and disposal. The Out-of-Tank Evaporator Demonstration (OTED) was initiated to test a modular, skid-mounted evaporator. A mobile evaporator system manufactured by Delta Thermal Inc. was selected. The evaporator design was routinely used in commercial applications such as concentrating metal-plating wastes for recycle and concentrating ethylene glycol solutions. In FY 1995, the skid-mounted evaporator system was procured and installed in an existing ORNL facility (Building 7877) with temporary shielding and remote controls. The evaporator system was operational in January 1996. The system operated 24 h/day and processed 22,000 gal of Melton Valley Storage Tank (MVST) supernatant. The distillate contained essentially no salts or radionuclides. Upon completion of the demonstration, the evaporator underwent decontamination testing to illustrate the feasibility of hands-on maintenance and potential transport to another DOE facility. This report describes the process and the evaporator, its performance at ORNL, future plans, applications of this technology, cost estimates, regulatory and policy considerations, and lessons learned.

  18. 27 CFR 19.352 - Bottling tanks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., Packaging, and Removal of Products § 19.352 Bottling tanks. Generally, a proprietor must bottle all spirits... is not practical to use a bottling tank. In addition, a proprietor may bottle liqueurs directly...

  19. 14 CFR 23.1013 - Oil tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight condition. (2) Oil tank vents must be arranged so that condensed water vapor that might freeze and... of oil through the system. There must be a shutoff valve at the outlet of each oil tank used with...

  20. 14 CFR 23.1013 - Oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight condition. (2) Oil tank vents must be arranged so that condensed water vapor that might freeze and... of oil through the system. There must be a shutoff valve at the outlet of each oil tank used with...

  1. Comparative safety analysis of LNG storage tanks

    SciTech Connect

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  2. Technical requirements specification for tank waste retrieval

    SciTech Connect

    Lamberd, D.L.

    1996-09-26

    This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

  3. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Compressed gases in tank cars and multi-unit tank... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases... any material that meets the criteria of Division 2.1 or 2.3 must have gaskets for manway cover...

  4. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., marked, filled, labeled, and inspected in the manner required by regulations in 27 CFR part 19. (Sec. 201... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck...

  5. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., marked, filled, labeled, and inspected in the manner required by regulations in 27 CFR part 19. (Sec. 201... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck...

  6. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., marked, filled, labeled, and inspected in the manner required by regulations in 27 CFR part 19. (Sec. 201... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck...

  7. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., marked, filled, labeled, and inspected in the manner required by regulations in 27 CFR part 19. (Sec. 201... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck...

  8. Tank 241-U-106 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-U-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  9. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., marked, filled, labeled, and inspected in the manner required by regulations in 27 CFR part 19. (Sec. 201... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck...

  10. 46 CFR 153.219 - Access to double bottom tanks serving as dedicated ballast tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Access to double bottom tanks serving as dedicated... MATERIALS Design and Equipment General Vessel Requirements § 153.219 Access to double bottom tanks serving... openings to double bottom tanks serving as dedicated ballast tanks must not be located within a...

  11. 46 CFR 153.219 - Access to double bottom tanks serving as dedicated ballast tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Access to double bottom tanks serving as dedicated... MATERIALS Design and Equipment General Vessel Requirements § 153.219 Access to double bottom tanks serving... openings to double bottom tanks serving as dedicated ballast tanks must not be located within a...

  12. 46 CFR 153.219 - Access to double bottom tanks serving as dedicated ballast tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Access to double bottom tanks serving as dedicated... MATERIALS Design and Equipment General Vessel Requirements § 153.219 Access to double bottom tanks serving... openings to double bottom tanks serving as dedicated ballast tanks must not be located within a...

  13. 46 CFR 153.219 - Access to double bottom tanks serving as dedicated ballast tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Access to double bottom tanks serving as dedicated... MATERIALS Design and Equipment General Vessel Requirements § 153.219 Access to double bottom tanks serving... openings to double bottom tanks serving as dedicated ballast tanks must not be located within a...

  14. 46 CFR 153.219 - Access to double bottom tanks serving as dedicated ballast tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Access to double bottom tanks serving as dedicated... MATERIALS Design and Equipment General Vessel Requirements § 153.219 Access to double bottom tanks serving... openings to double bottom tanks serving as dedicated ballast tanks must not be located within a...

  15. Tank 241-SX-108 leak assessment

    SciTech Connect

    Not Available

    1992-05-01

    This report has been prepared by Ebasco Services Incorporated (Ebasco) under WHC Task Order MLW-SVV-037106. The work has performed under Task E-91-10. Environmental/Safety Evaluation of Waste Tank Historical Data, Subtask Tank 241-SX-108 (Tank SX-108) Leak Assessment. The intent of the work was to evaluate previous leak estimates for Tank SX-108 and to determine whether these are accurate based on all available information.

  16. Filament-wound, fiberglass cryogenic tank supports

    NASA Technical Reports Server (NTRS)

    Carter, J. S.; Timberlake, T. E.

    1971-01-01

    The design, fabrication, and testing of filament-wound, fiberglass cryogenic tank supports for a LH2 tank, a LF2/FLOX tank and a CH4 tank. These supports consist of filament-wound fiberglass tubes with titanium end fittings. These units were satisfactorily tested at cryogenic temperatures, thereby offering a design that can be reliably and economically produced in large or small quantities. The basic design concept is applicable to any situation where strong, lightweight axial load members are desired.

  17. Tank 241-BY-112 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-BY-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-112 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  18. Tank 241-BY-106 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-106 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  19. Tank 241-TX-118 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-TX-118 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-TX-118 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  20. Tank 241-C-104 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-C-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-C-104 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  1. Tank 241-U-111 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-U-111 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-U-111 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  2. Tank 241-U-107 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-U-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-U-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  3. Tank 241-TX-105 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-TX-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-TX-105 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  4. Tank 241-S-102 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-S-102 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-S-102 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution. {close_quotes}

  5. Tank 241-BY-104 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-BY-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-104 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  6. Tank 241-C-112 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-C-112 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  7. Tank 241-BY-107 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  8. Tank 241-C-108 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-C-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-C-108 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  9. Tank 241-BY-108 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in ``Program Plan for the Resolution of Tank Vapor Issues`` (Osborne and Huckaby 1994). Tank 241-BY-108 was vapor sampled in accordance with ``Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994).

  10. Tank 241-BY-105 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-105 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  11. RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM

    SciTech Connect

    Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape sample was

  12. 33 CFR 157.218 - Dedicated clean ballast tanks: Alterations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.218 Dedicated clean ballast tanks: Alterations. The dedicated clean ballast tanks or equipment on a tank vessel that has...

  13. 33 CFR 157.218 - Dedicated clean ballast tanks: Alterations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.218 Dedicated clean ballast tanks: Alterations. The dedicated clean ballast tanks or equipment on a tank vessel that has...

  14. 33 CFR 157.218 - Dedicated clean ballast tanks: Alterations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.218 Dedicated clean ballast tanks: Alterations. The dedicated clean ballast tanks or equipment on a tank vessel that has...

  15. 33 CFR 157.218 - Dedicated clean ballast tanks: Alterations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.218 Dedicated clean ballast tanks: Alterations. The dedicated clean ballast tanks or equipment on a tank vessel that has...

  16. 33 CFR 157.140 - Tank vessel inspections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Inspections § 157.140 Tank vessel inspections. (a) Before... port, the cargo tanks that carry crude oil meet the following: (1) After each tank is crude oil washed... the tanks that are to be used as ballast tanks when leaving the port are crude oil washed and...

  17. 33 CFR 157.218 - Dedicated clean ballast tanks: Alterations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.218 Dedicated clean ballast tanks: Alterations. The dedicated clean ballast tanks or equipment on a tank vessel that has...

  18. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore...

  19. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore...

  20. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore...

  1. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore...

  2. Stabilization of In-Tank Residual Wastes and External-Tank Soil Contamination for the Hanford Tank Closure Program: Applications to the AX Tank Farm

    SciTech Connect

    Anderson, H.L.; Dwyer, B.P.; Ho, C.; Krumhansl, J.L.; McKeen, G.; Molecke, M.A.; Westrich, H.R.; Zhang, P.

    1998-11-01

    Technical support for the Hanford Tank Closure Program focused on evaluation of concepts for immobilization of residual contaminants in the Hanford AX tanks and underlying soils, and identification of cost-effective approaches to improve long-term performance of AX tank farm cIosure systems. Project objectives are to develop materials or engineered systems that would significantly reduce the radionuclide transport to the groundwater from AX tanks containing residual waste. We pursued several studies that, if implemented, would help achieve these goals. They include: (1) tank fill design to reduce water inilltration and potential interaction with residual waste; (2) development of in-tank getter materials that would specifically sorb or sequester radionuclides; (3) evaluation of grout emplacement under and around the tanks to prevent waste leakage during waste retrieval or to minimize water infiltration beneath the tanks; (4) development of getters that will chemically fix specific radionuclides in soils under tanks; and (5) geochemical and hydrologic modeling of waste-water-soil-grout interactions. These studies differ in scope from the reducing grout tank fill employed at the Savannah River Site in that our strategy improves upon tank fill design by providing redundancy in the barriers to radionuclide migration and by modification the hydrogeochemistry external to the tanks.

  3. SRS tank closure. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-08-01

    High-level waste (HLW) tank closure technology is designed to stabilize any remaining radionuclides and hazardous constituents left in a tank after bulk waste removal. Two Savannah River Site (SRS) HLW tanks were closed after cleansing and then filling each tank with three layers of grout. The first layer consists of a chemically reducing grout. The fill material has chemical properties that retard the movement of some radionuclides and chemical constituents. A layer of controlled low-strength material (CLSM), a self-leveling fill material, is placed on top of the reducing grout. CLSM provides sufficient strength to support the overbearing weight. The final layer is a free-flowing, strong grout similar to normal concrete. After the main tank cavity is filled, risers are filled with grout, and all waste transfer piping connected to the tank is isolated. The tank ventilation system is dismantled, and the remaining systems are isolated. Equipment that remains with the tank is filled with grout. The tank and ancillary systems are left in a state requiring only limited surveillance. Administrative procedures are in place to control land use and access. DOE eventually plans to remove all of its HLW storage tanks from service. These tanks are located at SRS, Hanford, and Idaho National Engineering and Environmental Laboratory. Low-activity waste storage tanks at Oak Ridge Reservation are also scheduled for closure.

  4. Think Tanks, Education and Elite Policy Actors

    ERIC Educational Resources Information Center

    Savage, Glenn C.

    2016-01-01

    The past decade has seen think tanks operate in sophisticated ways to influence the development of education policies. In this paper, I reflect upon the influence of think tanks in the formation of national reform, using the Common Core State Standards initiative in the USA as an illustrative case. In doing so, I explore how certain think tanks,…

  5. 40 CFR 63.685 - Standards: Tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-site material to be managed in the tank using Tank Level 1 controls before the first time the off-site... provisions specified in subpart 00 of 40 CFR part 63—National Emission Standards for Tanks—Level 1. (ii) As... transferred from the tank to a macroencapsulation unit by a backhoe. (A) During those periods of time when...

  6. 7 CFR 58.427 - Paraffin tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Paraffin tanks. 58.427 Section 58.427 Agriculture....427 Paraffin tanks. The metal tank should be adequate in size, have wood rather than metal racks to support the cheese, have heat controls and an indicating thermometer. The cheese wax shall be kept clean....

  7. 7 CFR 58.427 - Paraffin tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Paraffin tanks. 58.427 Section 58.427 Agriculture....427 Paraffin tanks. The metal tank should be adequate in size, have wood rather than metal racks to support the cheese, have heat controls and an indicating thermometer. The cheese wax shall be kept clean....

  8. 7 CFR 58.427 - Paraffin tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Paraffin tanks. 58.427 Section 58.427 Agriculture....427 Paraffin tanks. The metal tank should be adequate in size, have wood rather than metal racks to support the cheese, have heat controls and an indicating thermometer. The cheese wax shall be kept clean....

  9. 7 CFR 58.427 - Paraffin tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Paraffin tanks. 58.427 Section 58.427 Agriculture....427 Paraffin tanks. The metal tank should be adequate in size, have wood rather than metal racks to support the cheese, have heat controls and an indicating thermometer. The cheese wax shall be kept clean....

  10. 7 CFR 58.427 - Paraffin tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Paraffin tanks. 58.427 Section 58.427 Agriculture....427 Paraffin tanks. The metal tank should be adequate in size, have wood rather than metal racks to support the cheese, have heat controls and an indicating thermometer. The cheese wax shall be kept clean....

  11. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is...

  12. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is...

  13. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is...

  14. 49 CFR 230.116 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Steam Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free... inside the cab and one accessible from the ground on each exterior side of the steam locomotive....

  15. Tank 12H residuals sample analysis report

    SciTech Connect

    Oji, L. N.; Shine, E. P.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  16. 14 CFR 27.1013 - Oil tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... attitude; (e) Adequate venting is provided; and (f) There are means in the filler opening to prevent...

  17. 14 CFR 27.1013 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... attitude; (e) Adequate venting is provided; and (f) There are means in the filler opening to prevent...

  18. DOUBLE SHELL TANK (DST) EMERGENCY PUMPING GUIDE

    SciTech Connect

    REBERGER, D.W.

    2006-03-17

    This document provides preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified.

  19. Double Shell Tank (DST) Emergency Pumping Guide

    SciTech Connect

    DOMNOSKE-RAUCH, L.A.

    2000-05-17

    This document provides preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified.

  20. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak...

  1. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak...

  2. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak...

  3. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak...

  4. 49 CFR 172.328 - Cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cargo tanks. 172.328 Section 172.328... SECURITY PLANS Marking § 172.328 Cargo tanks. (a) Providing and affixing identification numbers. Unless a cargo tank is already marked with the identification numbers required by this subpart,...

  5. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is...

  6. 49 CFR 172.326 - Portable tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks. 172.326 Section 172.326... SECURITY PLANS Marking § 172.326 Portable tanks. (a) Shipping name. No person may offer for transportation or transport a portable tank containing a hazardous material unless it is legibly marked on...

  7. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore...

  8. 27 CFR 19.586 - Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 19.586 Section 19.586 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Containers and Marks Containers § 19.586 Tanks. Tanks...

  9. 27 CFR 19.382 - Bottling tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bottling tanks. 19.382... Manufacture of Articles Bottling, Packaging, and Removal of Products § 19.382 Bottling tanks. All spirits shall be bottled from tanks listed and certified as accurately calibrated in the notice of...

  10. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak...

  11. Foreign Language "Think Tank" Symposium.

    ERIC Educational Resources Information Center

    Thomas, Kathleen H.

    At the Foreign Language"Think Tank" Symposium of April 1975, the following major problems of community college foreign language teachers were identified: (1) low enrollment; (2) attrition; (3) low achievers; (4) articulation with universities; and (5) lack of interest. Suggested solutions included: (Problem 1) advertisement, a foreign language…

  12. Tank Pressure Control Experiment (TPCE)

    NASA Technical Reports Server (NTRS)

    Bentz, Mike

    1992-01-01

    The Tank Pressure Control Experiment (TPCE) is a small self-contained STS payload designed to test a jet mixer for cryogenic fluid pressure control. Viewgraphs are presented that describe project organization, experiment objectives and approach, risk management, payload concept and mission plan, and initial test data.

  13. Farming in a fish tank.

    PubMed

    Youth, H

    1992-01-01

    Water, fish, and vegetables are all things that most developing countries do not have enough of. There is a method of food production called aquaculture that integrates fish and vegetable growing and conserves and purifies water at the same time. A working system that grows vegetables and fish for regional supermarkets in Massachusetts is a gravity fed system. At the top of the system is a 3,000 gallon fish rearing tank that measures 12 feet in diameter. Water trickles out of the tank and fish wastes are captured which can be composted and used in farm fields. The water goes into a bio filter that contains bacteria which convert harmful ammonia generated from fish waste into beneficial nitrate. Then the water flows into 100 foot long hydroponic tanks where lettuce grows. A 1/6 horsepower pump return the purified water to the fish tank and completes the cycle. The key to success is maintaining a balance between the fish nutrients and waste and the plants nutrients and waste. The system is estimated to produce 35,000 heads of lettuce and 2 tons of fish annually which translates into $23,500. The system could be adapted to developing countries with several modifications to reduce the start up cost.

  14. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are

  15. Tank characterization report for double-shell tank 241-AP-102

    SciTech Connect

    LAMBERT, S.L.

    1999-02-23

    In April 1993, Double-Shell Tank 241-AP-102 was sampled to determine waste feed characteristics for the Hanford Grout Disposal Program. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics, expected bulk inventory, and concentration data for the waste contents based on this latest sampling data and information on the history of the tank. Finally, this report makes recommendations and conclusions regarding tank operational safety issues.

  16. External Tank - The Structure Backbone

    NASA Technical Reports Server (NTRS)

    Welzyn, Kenneth; Pilet, Jeffrey C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle

    2011-01-01

    The External Tank forms the structural backbone of the Space Shuttle in the launch configuration. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. Choice of lightweight materials both for structure and thermal conditioning was necessary. The tank is large, and unique manufacturing facilities, tooling, handling, and transportation operations were required. Weld processes and tooling evolved with the design as it matured through several block changes, to reduce weight. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the 40 year program. The final configuration and tank weight enabled international space station assembly in a high inclination orbit allowing international cooperation with the Russian Federal Space Agency. Numerous process controls were implemented to assure product quality, and innovative proof testing was accomplished prior to delivery. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to

  17. 33 CFR 157.206 - Dedicated Clean Ballast Tanks Operations Manual for U.S. tank vessels: Submission.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.206 Dedicated Clean Ballast Tanks Operations Manual for U.S. tank...

  18. 33 CFR 157.206 - Dedicated Clean Ballast Tanks Operations Manual for U.S. tank vessels: Submission.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.206 Dedicated Clean Ballast Tanks Operations Manual for U.S. tank...

  19. 33 CFR 157.10b - Segregated ballast tanks, dedicated clean ballast tanks, and special ballast arrangements for...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., dedicated clean ballast tanks, and special ballast arrangements for tank vessels transporting Outer..., dedicated clean ballast tanks, and special ballast arrangements for tank vessels transporting Outer..., 1980 must, if segregated ballast tanks or dedicated clean ballast tanks are not required under §...

  20. 33 CFR 157.206 - Dedicated Clean Ballast Tanks Operations Manual for U.S. tank vessels: Submission.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.206 Dedicated Clean Ballast Tanks Operations Manual for U.S. tank...

  1. 33 CFR 157.206 - Dedicated Clean Ballast Tanks Operations Manual for U.S. tank vessels: Submission.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.206 Dedicated Clean Ballast Tanks Operations Manual for U.S. tank...

  2. 33 CFR 157.10b - Segregated ballast tanks, dedicated clean ballast tanks, and special ballast arrangements for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., dedicated clean ballast tanks, and special ballast arrangements for tank vessels transporting Outer..., dedicated clean ballast tanks, and special ballast arrangements for tank vessels transporting Outer..., 1980 must, if segregated ballast tanks or dedicated clean ballast tanks are not required under §...

  3. 33 CFR 157.206 - Dedicated Clean Ballast Tanks Operations Manual for U.S. tank vessels: Submission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.206 Dedicated Clean Ballast Tanks Operations Manual for U.S. tank...

  4. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an...

  5. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an...

  6. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an...

  7. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an...

  8. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an...

  9. HANFORD TANK WASTE TREATMENT SYSTEM

    SciTech Connect

    HONEYMAN, J.O.

    2004-12-07

    The US Department of Energy (DOE) is constructing the Hanford Waste Treatment Plant which is the largest waste pretreatment and vitrification facility in the world. This massive facility will begin commissioning operations in 2009, with full scale production beginning in 2011. While this facility will provide a much needed waste treatment capability to meet the department accelerated cleanup goals for closure of the Hanford waste tank systems, it alone will not provide enough capacity to complete the waste treatment mission by the 2028 regulatory milestone. The 53 million gallons of radioactive waste remaining in Hanford's 177 single-shell tanks (SST) and double-shell tanks (DST) present a broad range of radiochemical and chemical contents. The US Department of Energy, Office of River Protection (ORP) has established a strategy for waste retrieval and waste treatment that recognizes that all tank waste is not identical, and that other processes can be utilized to safely and economically treat tank waste for ultimate disposal. The ORP is pursuing a 3-tiered strategy to define, develop, and deploy treatment capability that will meet the 2028 waste treatment milestone. Ultimately, by tailoring the treatment process to the actual waste being processed, economies and efficiencies can be exploited to improve the overall treatment approach. In the end, DOE expects that each of the three elements will process waste as follows: (1) Transuranic (TRU) waste packaging and disposal will treat about 2 percent of the total waste sodium; (2) Supplemental treatment will account for about 47 percent of the low-activity waste (LAW) waste sodium; and (3) The Waste Treatment Plant will process about 53 percent of the LAW waste sodium and 100 percent of the high-level waste (HLW).

  10. Inexpensive site-assembled thermal storage tank

    SciTech Connect

    Forbes, R.E.

    1981-01-01

    An inexpensive ($0.20 per gallon) thermal storage tank was constructed using polystyrene foam, welded steel (hog) wire, and polyethylene film. The tank was formed as a right circular cylinder using the welded wire as a hoop. Polystyrene foam was cut to shape using a hot wire and used to line the wire hoop. Polyethylene film was placed in the interior of the tank to complete a leakproof liquid thermal storage tank. The design incorporates features making the tank both inexpensive and relatively easy to construct in a confined space. Thermal performance can be adjusted by choosing thickness of the polystrene foam as it is cut.

  11. Tank 241-C-103 headspace flammability

    SciTech Connect

    Huckaby, J.L.

    1994-01-01

    Information regarding flammable vapors, gases, and aerosols is presented for the purpose of resolving the tank 241-C-103 headspace flammability issue. Analyses of recent vapor and liquid samples, as well as visual inspections of the tank headspace, are discussed in the context of tank dynamics. This document is restricted to issues regarding the flammability of gases, vapors, and an aerosol that may exist in the headspace of tank 241-C-103. While discussing certain information about the organic liquid present in tank 241-C-103, this document addresses neither the potential for, nor consequences of, a pool fire involving this organic liquid; they will be discussed in a separate report.

  12. ICPP Tank Farm planning through 2012

    SciTech Connect

    Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

    1998-04-01

    Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed.

  13. Hanford single-shell tank grouping study

    SciTech Connect

    Remund, K.M.; Anderson, C.M.; Simpson, B.C.

    1995-10-01

    A tank grouping study has been conducted to find Hanford single-shell tanks with similar waste properties. The limited sampling resources of the characterization program could be allocated more effectively by having a better understanding of the groups of tanks that have similar waste types. If meaningful groups of tanks can be identified, tank sampling requirements may be reduced, and the uncertainty of the characterization estimates may be narrowed. This tank grouping study considers the analytical sampling information and the historical information that is available for all single-shell tanks. The two primary sources of historical characterization estimates and information come from the Historical Tank Content Estimate (HTCE) Model and the Sort on Radioactive Waste Tanks (SORWT) Model. The sampling and historical information are used together to come up with meaningful groups of similar tanks. Based on the results of analyses presented in this report, credible tank grouping looks very promising. Some groups defined using historical information (HTCE and SORWT) correspond well with those based on analytical data alone.

  14. Pad B Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  15. Aircraft fuel tank slosh and vibration test

    NASA Astrophysics Data System (ADS)

    Zimmermann, H.

    1981-12-01

    A dynamic qualification test for a subsonic and a supersonic external drop tank for a European fighter is presented. The test rig and the specimens are described and the measuring results are discussed. It is shown that for the supersonic tank as well as for the subsonic tank a certain slosh angle an eigenfrequency of the rig increases the amplitudes at the excitation position and the accelerations on the tank. For the subsonic tank it seems that an eigenfrequency is excited for the nose down position of the tank. The qualification requirements are examined. It is proposed that instead of using an arbitrary vibration amplitude and frequency for excitation, frequency ranges and amplitudes which are averaged out of flight measurements at the tank attachment points on the aircraft be used and that the demand for a certain input amplitude at the top of the attachment bulkheads and an output amplitude at the bottom of the attachment bulkheads be deleted.

  16. Jet mixing long horizontal storage tanks

    SciTech Connect

    Perona, J.J.; Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-12-01

    Large storage tanks may require mixing to achieve homogeneity of contents for several reasons: prior to sampling for mass balance purposes, for blending in reagents, for suspending settled solids for removal, or for use as a feed tank to a process. At ORNL, mixed waste evaporator concentrates are stored in 50,000-gal tanks, about 12 ft in diameter and 60 ft long. This tank configuration has the advantage of permitting transport by truck and therefore fabrication in the shop rather than in the field. Jet mixing experiments were carried out on two model tanks: a 230-gal (1/6-linear-scale) Plexiglas tank and a 25,000-gal tank (about 2/3 linear scale). Mixing times were measured using sodium chloride tracer and several conductivity probes distributed through the tanks. Several jet sizes and configurations were tested. One-directional and two-directional jets were tested in both tanks. Mixing times for each tank were correlated with the jet Reynolds number. Mixing times were correlated for the two tank sizes using the recirculation time for the developed jet. When the recirculation times were calculated using the distance from the nozzle to the end of the tank as the length of the developed jet, the correlation was only marginally successful. Data for the two tank sizes were correlated empirically using a modified effective jet length expressed as a function of the Reynolds number raised to the 1/3 power. Mixing experiments were simulated using the TEMTEST computer program. The simulations predicted trends correctly and were within the scatter of the experimental data with the lower jet Reynolds numbers. Agreement was not as good at high Reynolds numbers except for single nozzles in the 25,000-gal tank, where agreement was excellent over the entire range.

  17. Legislation pertaining to underground storage tanks

    SciTech Connect

    Goth, W. )

    1994-04-01

    Statutory authority in California for cleanup of contaminated soil and groundwater to protect water quality is the Porter Cologne Water Quality Control Act (Water Code 1967). Two state laws regulating underground hazardous material storage tanks, passed in late 1983 and effective on January 1, 1984, were AB-2013 (Cortese) and AB-1362 (Sher). Both require specific actions by the tank owners. AB-2013 requires all tank owners to register them with the state Water Resources Control Board (SWCB) and to pay a registration fee. AB-1362, Health and Safety Code Section 25280 et seq., requires tank owners to obtain a Permit to Operate, pay a fee to the local agency, and to install a leak detection system on all existing tanks. New tanks installation requires a Permit to install and provide provide secondary containment for the tank and piping. For tank closures, a permit must be obtained from the local agency to clean out the tank, remove it from the ground, and collect samples from beneath the tank for evidence of contamination. In 1988, state law AB-853 appropriated state funds to be combined with federal EPA money to allow SWRCB to initiate rapid cleanups of leaks from underground tank sites by contracting with local agencies to oversee assessment and cleanup of underground tank releases. Locally, in Ventura County, there are more than 400 leaking underground tank sites in which petroleum products have entered the groundwater. To date, no public water supplies have been contaminated; however, action in necessary to prevent any future contamination to our water supply. Over 250 leaking tank sites have completed cleanup.

  18. Tank 50H Tetraphenylborate Destruction Results

    SciTech Connect

    Peters, T.B.

    2003-10-03

    We conducted several scoping tests with both Tank 50H surrogate materials (KTPB and phenol) as well as with actual Tank 50H solids. These tests examined whether we could destroy the tetraphenylborate in the surrogates or actual Tank 50H material either by use of Fenton's Reagent or by hydrolysis (in Tank 50H conditions at a maximum temperature of 50 degrees C) under a range of conditions. The results of these tests showed that destruction of the solids occurred only under a minority of conditions. (1)Using Fenton's Reagent and KTPB as the Tank 50H surrogate, no reaction occurred at pH ranges greater than 9. (2)Using Fenton's Reagent and phenol as the Tank 50H surrogate, no reaction occurred at a pH of 14. (3)Using Fenton's Reagent and actual Tank 50H slurry, a reaction occurred at a pH of 9.5 in the presence of ECC additives. (4)Using Fenton's Reagent and actual Tank 50H slurry, after a thirty three day period, all attempts at hydrolysis (at pH 14) were too slow to be viable. This happened even in the case of higher temperature (50 degrees C) and added (100 ppm) copper. Tank 50H is scheduled to return to HLW Tank Farm service with capabilities of transferring and receiving salt supernate solutions to and from the Tank Farms and staging feed for the Saltstone Facility. Before returning Tank 50H to Tank Farm service as a non-organic tank, less than 5 kg of TPB must remain in Tank 50H. Recently, camera inspections in Tank 50H revealed two large mounds of solid material, one in the vicinity of the B5 Riser Transfer Pump and the other on the opposite side of the tank. Personnel sampled and analyzed this material to determine its composition. The sample analysis indicated presence of a significant quantity of organics in the solid material. This quantity of organic material exceeds the 5 kg limit for declaring only trace amounts of organic material remain in Tank 50H. Additionally, these large volumes of solids, calculated as approximately 61K gallons, present other

  19. Evaluation of 241 AN tank farm flammable gas behavior

    SciTech Connect

    Reynolds, D.A.

    1994-01-01

    The 241 AN Tank Farm tanks 241-AN-103, -104, and 105 are Flammable Gas Watch List tanks. Characteristics exhibited by these tanks (i.e., surface level drops, pressure increases, and temperature profiles) are similar to those exhibited by tank 241-SY-101, which is also a Watch List tank. Although the characteristics exhibited by tank 241-SY-101 are also present in tanks 241-AN-103, -104, and 105, they are exhibited to a lesser degree in the AN Tank Farm tanks. The 241 AN Tank Farm tanks have only small surface level drops, and the pressure changes that occur are not sufficient to release an amount of gas that would cause the dome space to exceed the lower flammability limit (LFL) for hydrogen. Therefore, additional restrictions are probably unnecessary for working within the 241 AN Tank Farm, either within the dome space of the tanks or in the waste.

  20. Life Extension of Aging High Level Waste (HLW) Tanks

    SciTech Connect

    BRYSON, D.

    2002-02-04

    The Double Shell Tanks (DSTs) play a critical role in the Hanford High-Level Waste Treatment Complex, and therefore activities are underway to protect and better understand these tanks. The DST Life Extension Program is focused on both tank life extension and on evaluation of tank integrity. Tank life extension activities focus on understanding tank failure modes and have produced key chemistry and operations controls to minimize tank corrosion and extend useful tank life. Tank integrity program activities have developed and applied key technologies to evaluate the condition of the tank structure and predict useful tank life. Program results to date indicate that DST useful life can be extended well beyond the original design life and allow the existing tanks to fill a critical function within the Hanford High-Level Waste Treatment Complex. In addition the tank life may now be more reliably predicted, facilitating improved planning for the use and possible future replacement of these tanks.

  1. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    SciTech Connect

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  2. Submerged tank aids platform stability

    SciTech Connect

    Compagnon, J.P.

    1985-05-01

    A new floating platform concept, proposed for the installation of a new lighthouse, 64 km off Ouessant Island, northwest France, in water 130 meters deep, is described. A series of model tests carried out in test tanks in 1983 demonstrated that this new concept is viable in the offshore business as an alternative for deep and rough seas. The key to the success of this design is primarily the location and shape of a large, submerged buoyancy tank - a floater sandwiched between a conventional rig topside and a rigid, vertically suspended counter-weight. The floater balanced by a counter-weight acts as a damper and minimizes the effect of most wave action. This configuration permits a considerable gain in structure weight, improves stability and allows the structure to support a very high deck load with or without storage facilities when used as a production platform.

  3. Tank Focus Area pretreatment activities

    SciTech Connect

    McGinnis, C.P.; Welch, T.D.; Manke, K.L.

    1997-03-01

    Plans call for the high-level wastes to be retrieved from the tanks and immobilized in a stable waste form suitable for long-term isolation. Chemistry and chemical engineering operations are required to retrieve the wastes, to condition the wastes for subsequent steps, and to reduce the costs of the waste management enterprise. Pretreatment includes those processes between retrieval and immobilization, and includes preparation of suitable feed material for immobilization and separations to partition the waste into streams that yield lower life-cycle costs. Some of the technologies being developed by the Tank Focus Area (TFA) to process these wastes are described. These technologies fall roughly into three areas: (1) solid/liquid separation (SLS), (2) sludge pretreatment, and (3) supernate pretreatment.

  4. Advanced cryogenic tank development status

    NASA Astrophysics Data System (ADS)

    Braun, G. F.; Tack, W. T.; Scholz, E. F.

    1993-06-01

    Significant advances have been made in the development of materials, structures, and manufacturing technologies for the next generation of cryogenic propellant tanks under the auspices of a joint U.S. Air Force/NASA sponsored advanced development program. This paper summarizes the achievements of this three-year program, particularly in the evolution and properties of Weldalite 049, net shape component technology, Al-Li welding technology, and efficient manufacturing concepts. Results of a recent mechanical property characterization of a full-scale integrally stiffened barrel panel extrusion are presented, as well as plans for an additional weld process optimization program using response surface design of experiment techniques. A further discussion is given to the status of hardware completed for the Advanced Manufacturing Development Center and Martin Marietta's commitment to the integration of these technologies into the production of low-cost, light-weight cryogenic propellant tanks.

  5. Discovery External Tank Connection Check

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Vehicle Assembly Building, Ken Strite, NASA Quality Control, inspects the connection between Space Shuttle Discovery and the external tank that will be used to launch mission STS-103 in early December. This 10 day mission is designed to replace aging parts on the nine year old Hubble Space Telescope and to upgrade some of its functioning systems. During the flight, the astronaut crew will replace all six of the observatory's gyroscopes, a fine guidance sensor, its main computer, and other equipment.

  6. Energy storage-boiler tank

    NASA Technical Reports Server (NTRS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-01-01

    Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.

  7. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    SciTech Connect

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  8. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  9. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  10. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    SciTech Connect

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  11. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    SciTech Connect

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  12. High-heat tank safety issues evaluation

    SciTech Connect

    Conner, J.C.

    1993-05-10

    Subsection (b) of Public Law 101-510, Section 3137, {open_quotes}Safety Measures for Waste Tanks at Hanford Nuclear Reservation{close_quotes} (PL 101-510), requires the Secretary of Energy to {open_quotes}identify those tanks that may have a serious potential for release of high-level waste due to uncontrolled increase in temperature or pressure{close_quotes}. One of the tanks that has been identified to meet this criteria is single-shell tank (SST) 241-C-106 (Wilson and Reep 1991). This report presents the results of an evaluation of the safety issue associated with tank 241-C-106: the continued cooling required for high heat generation in tank 241-C-106. If tank 241-C-106 should start leaking, continued addition of water for cooling could possibly increase the amount of leakage to the soil column. In turn, if the current methods of cooling tank 241-C-106 are stopped, the sludge temperatures may exceed established temperature limits, the long term structural integrity of the tank liner and concrete would be jeopardized, leading to an unacceptable release to the environment. Among other conclusions, this evaluation has determined that tank 241-C-106 contains enough heat generating wastes to justify retaining this tank on the list {open_quotes}Single-Shell Tanks With High Heat Loads (>40,000 Btu/H){close_quotes} and that to confirm the structural integrity needed for the retrieval of the contents of tank 241-C-106, an updated structural analysis and thermal analysis need to be conducted. Other findings of this evaluation are also reported.

  13. Liquid storage tanks under vertical excitation

    SciTech Connect

    Philippacopoulos, A.J.

    1985-01-01

    Until recently, the hydrodynamic effects on liquid storage tanks induced by an earthquake excitation were basically treated for the horizontal component of the earthquake. Recent studies, however, showed that the hydrodynamic effects due to the vertical component of an earthquake may be significant. In these studies the tank is assumed to be fixed at the bottom. This paper is concerned with the hydrodynamic behavior of liquid storage tanks induced by vertical earthquake input excitation. First, the fluid-tank system is treated as a fixed-base system and a simple formula is obtained for the coupled fluid-structure natural frequency. Second, additional interaction effects due to the foundation flexibility on the fluid-tank system are investigated. It is concluded that the foundation flexibility may have a significant effect on the hydrodynamic behavior of the liquid storage tanks under a vertical ground shaking.

  14. VIEW OF PDP TANK TOP, LEVEL 0’, WITH LTR TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PDP TANK TOP, LEVEL 0’, WITH LTR TANK TOP ON LEFT, LOOKING NORTHEAST. CRANE AND VERTICAL HOISTING ELEMENTS AT TOP - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  15. Single Shell Tank (SST) Retrieval Sequence & Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    HOHL, T.M.

    2001-09-20

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  16. Single Shell Tank (SST) Retrieval Sequence and Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    KIRCH, N.W.

    2003-09-23

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  17. Single Shell Tank (SST) Retrieval Sequence & Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    STRODE, J.N.

    2002-09-23

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  18. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tanks similar in dimensions and internal structure, the owner or operator may submit a written request... tanks similar in dimensions and internal structure is inspected under § 157.140(a)(1), if the...

  19. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tanks similar in dimensions and internal structure, the owner or operator may submit a written request... tanks similar in dimensions and internal structure is inspected under § 157.140(a)(1), if the...

  20. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity...

  1. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity...

  2. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity...

  3. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity...

  4. 49 CFR 180.507 - Qualification of tank cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Qualification of tank cars. 180.507 Section 180... MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars § 180.507 Qualification of tank cars. (a) Each tank car marked as meeting a “DOT” specification or any other tank car used for the...

  5. 49 CFR 173.10 - Tank car shipments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank car shipments. 173.10 Section 173.10... SHIPMENTS AND PACKAGINGS General § 173.10 Tank car shipments. (a) Tank cars containing any 2.1 material... facilities which have been equipped for piping the liquid from tank cars to permanent storage tanks...

  6. 49 CFR 180.507 - Qualification of tank cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Qualification of tank cars. 180.507 Section 180... MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars § 180.507 Qualification of tank cars. (a) Each tank car marked as meeting a “DOT” specification or any other tank car used for the...

  7. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C...

  8. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C...

  9. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C...

  10. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C...

  11. 33 CFR 157.220 - Dedicated clean ballast tanks: Standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.220 Dedicated clean ballast tanks: Standards. (a) Cargo tanks that are designated as dedicated clean ballast...

  12. 33 CFR 157.220 - Dedicated clean ballast tanks: Standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.220 Dedicated clean ballast tanks: Standards. (a) Cargo tanks that are designated as dedicated clean ballast...

  13. 33 CFR 157.220 - Dedicated clean ballast tanks: Standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.220 Dedicated clean ballast tanks: Standards. (a) Cargo tanks that are designated as dedicated clean ballast...

  14. 33 CFR 157.220 - Dedicated clean ballast tanks: Standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.220 Dedicated clean ballast tanks: Standards. (a) Cargo tanks that are designated as dedicated clean ballast...

  15. 92. VIEW OF PRECIPITATION AREA FROM SOUTHWEST. VACUUM CLARIFIER TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. VIEW OF PRECIPITATION AREA FROM SOUTHWEST. VACUUM CLARIFIER TANK No. 1 AT LOWER LEFT, UNDER LAUNDER FEED TO GOLD TANK No. 2, AND VACUUM CLARIFIER TANK No. 2, AT MIDRIGHT. VACUUM RECEIVER TANK ON UPPER LEFT. PIPE TO TOP CENTER OF TANK TAKES OUTFLOW FROM CLARIFIER LEAVES. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  16. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank heads. 179.220-8 Section 179.220-8...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner... dished or ellipsoidal for pressure on concave side. (b) Flanged and dished heads must have main...

  17. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank heads. 179.220-8 Section 179.220-8...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner... dished or ellipsoidal for pressure on concave side. (b) Flanged and dished heads must have main...

  18. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank heads. 179.220-8 Section 179.220-8...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner... dished or ellipsoidal for pressure on concave side. (b) Flanged and dished heads must have main...

  19. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tank heads. 179.220-8 Section 179.220-8...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner... dished or ellipsoidal for pressure on concave side. (b) Flanged and dished heads must have main...

  20. 33 CFR 157.220 - Dedicated clean ballast tanks: Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.220 Dedicated clean ballast tanks: Standards. (a) Cargo tanks that are designated as dedicated clean ballast...

  1. 49 CFR 180.507 - Qualification of tank cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Qualification of tank cars. 180.507 Section 180... MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars § 180.507 Qualification of tank cars. (a) Each tank car marked as meeting a “DOT” specification or any other tank car used for the...

  2. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity...

  3. 14 CFR 125.127 - Location of fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Location of fuel tanks. 125.127 Section 125... Requirements § 125.127 Location of fuel tanks. (a) Fuel tanks must be located in accordance with § 125.153. (b... compartment may be used as the wall of an integral tank. (c) Fuel tanks must be isolated from...

  4. 14 CFR 121.229 - Location of fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Location of fuel tanks. 121.229 Section 121... of fuel tanks. (a) Fuel tanks must be located in accordance with § 121.255. (b) No part of the engine... the wall of an integral tank. (c) Fuel tanks must be isolated from personnel compartments by means...

  5. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the...

  6. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 25.971 Section 25.971... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank... fuel tank must allow drainage of any hazardous quantity of water from any part of the tank to its...

  7. 14 CFR 121.229 - Location of fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Location of fuel tanks. 121.229 Section 121... of fuel tanks. (a) Fuel tanks must be located in accordance with § 121.255. (b) No part of the engine... the wall of an integral tank. (c) Fuel tanks must be isolated from personnel compartments by means...

  8. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) §...

  9. 33 CFR 183.512 - Fuel tanks: Prohibited materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Prohibited materials... tanks: Prohibited materials. (a) A fuel tank must not be constructed from terneplate. (b) Unless it has an inorganic sacrificial galvanic coating on the inside and outside of the tank, a fuel tank must...

  10. 49 CFR 179.220-9 - Compartment tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Compartment tanks. 179.220-9 Section 179.220-9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-9 Compartment tanks....

  11. 49 CFR 179.220-14 - Openings in the tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Openings in the tanks. 179.220-14 Section 179.220... TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-14 Openings in the tanks. Openings in the inner container and the outer shell must be reinforced in...

  12. 49 CFR 179.100-8 - Tank heads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank heads. 179.100-8 Section 179.100-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-8 Tank heads....

  13. 49 CFR 179.200-22 - Test of tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Test of tanks. 179.200-22 Section 179.200-22... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-22 Test of tanks. (a)...

  14. 46 CFR 153.281 - Piping to independent tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping to independent tanks. 153.281 Section 153.281... Systems and Cargo Handling Equipment § 153.281 Piping to independent tanks. Piping for an independent cargo tank must penetrate the tank only through that part of the tank or dome extending above...

  15. 49 CFR 179.500-8 - Openings in tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Openings in tanks. 179.500-8 Section 179.500-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) §...

  16. 49 CFR 179.200-8 - Tank heads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank heads. 179.200-8 Section 179.200-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-8 Tank heads. (a)...

  17. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank heads. 179.220-8 Section 179.220-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a)...

  18. 49 CFR 179.200-9 - Compartment tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Compartment tanks. 179.200-9 Section 179.200-9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-9 Compartment tanks....

  19. 49 CFR 179.220-23 - Test of tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Test of tanks. 179.220-23 Section 179.220-23... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-23 Test of tanks. (a)...

  20. Tank 241-SX-115 Leak Assessment

    SciTech Connect

    Not Available

    1992-11-01

    Tank 241-SX-115 (SX-115) is one of 149 underground single-shell tanks (SST) used for the storage of radioactive wastes at the Hanford Site near Richland, Washington. The status of Tank SX-115 today is Interim Stabilized/Interim Isolated. It contains approximately 12,000 gal of dry sludge (no interstitial liquid). Tank SX-115 was built in 1953-1954 and was put into service on August 31, 1958. In March 1965 Tank SX-115 was found to have leaked about 50,000 gal of nitrate solution into the sediments beneath the tank. The remaining solution was pumped to another tank, a small air purge was introduced, and the nearly empty tank was allowed to dry through self-heating. In August 1965 10 test wells were drilled around the tank. Data from these wells and from the already existing drywells and materials were used in earlier studies to define and characterize the contaminated area under the tank. About 60% the leaked material was accounted for. It appears possible that part of the 40% not accounted for may have penetrated deeper into the sediments below the tank. Evidence to support this inference is the relatively high level of radioactivity in Lateral 3 that persisted from 1969 through 1987. If it is necessary to confirm this and to fully define the extent of contamination before final plans for remediation are made, core drilling at an angle under the tank will be required. Radionuclides remaining in the leakage plume as of January 1, 1992, are approximately 21,000 Ci, almost all of it {sup 137}Cs.

  1. ICPP tank farm closure study. Volume 1

    SciTech Connect

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  2. FY 1996 Tank waste analysis plan

    SciTech Connect

    Homi, C.S.

    1996-09-18

    This Tank Waste Analysis Plan (TWAP) describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project to plan, schedule, obtain, and document characterization information on Hanford waste tanks. This information is required to meet several commitments of Programmatic End-Users and the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement. This TWAP applies to the activities scheduled to be completed in fiscal year 1996.

  3. Fuel Tank Assembly of the Saturn V

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The fuel tank assembly for the Saturn V S-IC (first) stage arrived at the Marshall Space Flight Center, building 4707, for mating to the liquid oxygen tank. The fuel tank carried kerosene as its fuel. The S-IC stage used five F-1 engines, that used kerosene and liquid oxygen as propellant and each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  4. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    SciTech Connect

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  5. Tank 241-C-109 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-10

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-109. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  6. Tank 241-SX-106 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-SX-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  7. Tank characterization report for single-shell tank 241-U-110. Revision 1

    SciTech Connect

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  8. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  9. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect

    Lockie, K.A.; Suttora, L.C.; Quigley, K.D.; Stanisich, N.

    2007-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  10. Tank characterization report for double-shell tank 241-AN-102

    SciTech Connect

    Jo, J., Westinghouse Hanford

    1996-08-29

    This characterization report summarizes the available information on the historical uses, current status, and sampling and analysis results of waste stored in double-shell underground storage tank 241- AN-102. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-AN-102 is one of seven double-shell tanks located in the AN Tank Farm in the Hanford Site 200 East Area. The tank was hydrotested in 1981, and when the water was removed, a 6-inch heel was left. Tank 241-AN-102 began receiving waste from tank 241-SY-102 beginning in 1982. The tank was nearly emptied in the third quarter of 1983, leaving only 125 kL (33 kgal) of waste. Between the fourth quarter of 1983 and the first quarter of 1984, tank 241-AN-102 received waste from tanks 241-AY-102, 241-SY-102, 241-AW-105, and 241- AN-101. The tank was nearly emptied in the second quarter of 1984, leaving a heel of 129 kL (34 kgal). During the second and third quarters of 1984, the tank was filled with concentrated complexant waste from tank 241-AW-101. Since that time, only minor amounts of Plutonium-Uranium Extraction (PUREX) Plant miscellaneous waste and water have been received; there have been no waste transfer to or from the tank since 1992. Therefore, the waste currently in the tank is considered to be concentrated complexant waste. Tank 241-AN-102 is sound and is not included on any of the Watch Lists.

  11. Tank characterization report for single-shell tank 241-U-110

    SciTech Connect

    Brown, T.M.; Jensen, L.

    1993-04-01

    This report investigates the nature of the waste in tank U-110 using historical and current information. When characterizing tank waste, several important properties are considered. First, the physical characteristics of the waste are presented, including waste appearance, density, and size of waste particles. The existence of any exotherms in the tank that may present a safety concern is investigated. Finally, the radiological and chemical composition of the tank are presented.

  12. Tank 241-C-107 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  13. Tank 241-TY-101 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-TY-101. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  14. Tank 241-C-110 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  15. Tank 241-T-107 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-T-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  16. Tank 241-B-103 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-B-103. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  17. Tank 241-TY-103 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-TY-103. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  18. Tank 241-C-105 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-105. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  19. Tank 241-BX-104 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-BX-104. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  20. Tank 241-C-106 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  1. Tank 241-BY-110 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-BY-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to the tank farm workers due to fugitive emissions from the tank.

  2. Developing NDE Techniques for Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan; Arens, Ellen

    2011-01-01

    The Shuttle Program requires very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing Pads A and B Launch Complex-39 tanks, which will be passed onto future launch programs, are 45 years old and have received minimal refurbishment and only external inspections over the years. The majority of the structure is inaccessible without a full system drain of cryogenic liquid and granular insulation in the annular region. It was previously thought that there was a limit to the number of temperature cycles that the tanks could handle due to possible insulation compaction before undergoing a costly and time consuming complete overhaul; therefore the tanks were not drained and performance issues with these tanks, specifically the Pad B liquid hydrogen tank, were accepted. There is a needind an opportunity, as the Shuttle program ends and work to upgrade the launch pads progresses, to develop innovative non-destructive evaluation (NDE) techniques to analyze the current tanks. Techniques are desired that can aid in determining the extent of refurbishment required to keep the tanks in service for another 20+ years. A nondestructive technique would also be a significant aid in acceptance testing of new and refurbished tanks, saving significant time and money, if corrective actions can be taken before cryogen is introduced to the systems.

  3. Dynamics of solid-containing tanks

    SciTech Connect

    Veletsos, A.S.; Younan, A.H.; Bandyopadhyay, K.

    1997-01-01

    Making use of a relatively simple, approximate but reliable method of analysis, a study is made of the responses to horizontal base shaking of vertical, circular cylindrical tanks that are filled with a uniform viscoelastic material. The method of analysis is described, and comprehensive numerical data are presented that elucidate the underlying response mechanisms and the effects and relative importance of the various parameters involved. In addition to the characteristics of the ground motion and a dimensionless measure of the tank wall flexibility relative to the contained medium, the parameters examined include the ratio of tank-height to tank-radius and the physical properties of the contained material. Both harmonic and earthquake-induced ground motions are considered. The response quantities investigated are the dynamic wall pressures, the critical forces in the tank wall, and the forces exerted on the foundation. Part A of the report deals with rigid tanks while the effects of tank wall flexibility are examined in Part B. A brief account is also given in the latter part of the interrelationship of the critical responses of solid-containing tanks and those induced in tanks storing a liquid of the same mass density.

  4. Radiotracer investigation in gold leaching tanks.

    PubMed

    Dagadu, C P K; Akaho, E H K; Danso, K A; Stegowski, Z; Furman, L

    2012-01-01

    Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process.

  5. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect

    Rieck, R.H.

    1996-10-03

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  6. Hanford Technology Development (Tank Farms) - 12509

    SciTech Connect

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of tank waste are a byproduct of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. One key part of the ongoing work at Hanford is retrieving waste from the single-shell tanks, some of which have leaked in the past, and transferring that waste to the double-shell tanks - none of which have ever leaked. The 56 million gallons of radioactive tank waste is stored in 177 underground tanks, 149 of which are single-shell tanks built between 1943 and 1964. The tanks sit approximately 250 feet above the water table. Hanford's single-shell tanks are decades past their 20-year design life. In the past, up to 67 of the single-shell tanks are known or suspected to have leaked as much as one million gallons of waste to the surrounding soil. Starting in the late 1950's, waste leaks from dozens of the single-shell tanks were detected or suspected. Most of the waste is in the soil around the tanks, but some of this waste is thought to have reached groundwater. The Vadose Zone Project was established to understand the radioactive and chemical contamination in the soil beneath the tanks as the result of leaks and discharges from past plutonium-production operations. The vadose zone is the area of

  7. Supporting document for the historical tank content estimate for BY Tank Farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the BY Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices contain data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  8. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and...

  9. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and...

  10. Supporting document for the historical tank content estimate for A Tank Farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  11. Supporting document for the SW Quadrant Historical Tank Content Estimate for U-Tank Farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This Supporting Document provides historical characterization information gathered on U-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate of the SW Quadrant at the Hanford 200 West Area.

  12. Supporting document for the historical tank content estimate for AY-tank farm

    SciTech Connect

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  13. Supporting document for the historical tank content estimate for B-Tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on B-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  14. Supporting document for the historical tank content estimate for AW-tank farm

    SciTech Connect

    Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  15. Supporting document for the historical tank content estimate for AX-tank farm

    SciTech Connect

    Brevick, C.H., Westinghouse Hanford

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  16. Supporting document for the historical tank content estimate for BX-tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  17. Supporting document for the historical tank content estimate for AN-tank farm

    SciTech Connect

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  18. Supporting document for the historical tank content estimate for C-tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on C-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  19. Supporting document for the historical tank content estimate for the S-tank farm

    SciTech Connect

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  20. Supporting document for the historical tank content estimate for A-Tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on A-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.