Science.gov

Sample records for 4b core protein

  1. Cellular immunogenicity of a multi-epitope peptide vaccine candidate based on hepatitis C virus NS5A, NS4B and core proteins in HHD-2 mice.

    PubMed

    Huang, Xiao-Jun; Lü, Xin; Lei, Ying-Feng; Yang, Jing; Yao, Min; Lan, Hai-Yun; Zhang, Jian-Min; Jia, Zhan-Sheng; Yin, Wen; Xu, Zhi-Kai

    2013-04-01

    To develop a vaccine against hepatitis C virus (HCV), a multi-epitope peptide was synthesized from nonstructural proteins containing HLA-A2 epitopes inducing mainly responses in natural infection. The engineered vaccine candidate, VAL-44, consists of multiple epitopes from the HCV NS5A, NS4B and core proteins. Immunization with the VAL-44 peptide induced higher CTL responses than those by the smaller VL-20 peptide. VAL-44 induced antigen-specific IFN-γ-producing CD4+ T cells and CD8+ T cells. VAL-44 elicited a Th1-biased immune response with secretion of high amounts of IFN-γ and IL-2, compared with VL-20. These results suggest that VAL-44 can elicit strong cellular immune responses. The VAL-44 peptide stimulated IFN-γ production from viral-specific peripheral blood mononuclear cells (PBMCs) of patients infected with HCV. These results suggest that VAL-44 could be developed as a potential HCV multi-epitope peptide vaccine.

  2. Mutations in the classical swine fever virus NS4B protein affects virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NS4B is one of the non-structural proteins of Classical Swine Fever Virus (CSFV), the etiological agent of a severe, highly lethal disease of swine. Protein domain analysis of the predicted amino acid sequence of the NS4B protein of highly pathogenic CSFV strain Brescia (BICv) identified a Toll/Inte...

  3. Determinants of the tumor suppressor INPP4B protein and lipid phosphatase activities.

    PubMed

    Lopez, Sandra M; Hodgson, Myles C; Packianathan, Charles; Bingol-Ozakpinar, Ozlem; Uras, Fikriye; Rosen, Barry P; Agoulnik, Irina U

    2013-10-18

    The tumor suppressor INPP4B is an important regulator of phosphatidyl-inositol signaling in the cell. Reduced INPP4B expression is associated with poor outcomes for breast, prostate, and ovarian cancer patients. INPP4B contains a CX5R catalytic motif characteristic of dual-specificity phosphatases, such as PTEN. Lipid phosphatase activity of INPP4B has previously been described. In this report we show that INPP4B can dephosphorylate para-nitrophenyl phosphate (pNPP) and 6,8-difluoro-4-methylumbelliferyl (DiFMUP), synthetic phosphotyrosine analogs, suggesting that INPP4B has protein tyrosine phosphatase (PTP) activity. Using mutagenesis, we examined the functional role of specific amino acids within the INPP4B C842KSAKDR catalytic site. The K843M mutant displayed increased pNPP hydrolysis, the K846M mutant lost lipid phosphatase activity with no effect on PTP activity, and the D847E substitution ablated PTP activity and significantly reduced lipid phosphatase activity. Further, we show that INPP4B but not PTEN is able to reduce tyrosine phosphorylation of Akt1 and both the lipid and PTP activity of INPP4B likely contribute to the reduction of Akt1 phosphorylation. Taken together our data identified key residues in the INPP4B catalytic domain associated with lipid and protein phosphatase activities and found a robust downstream target regulated by INPP4B but not PTEN.

  4. Characterization of Dengue Virus NS4A and NS4B Protein Interaction

    PubMed Central

    Zou, Jing; Xie, Xuping; Wang, Qing-Yin; Dong, Hongping; Lee, Michelle Yueqi; Kang, Congbao

    2015-01-01

    ABSTRACT Flavivirus replication is mediated by a membrane-associated replication complex where viral membrane proteins NS2A, NS2B, NS4A, and NS4B serve as the scaffold for the replication complex formation. Here, we used dengue virus serotype 2 (DENV-2) as a model to characterize viral NS4A-NS4B interaction. NS4A interacts with NS4B in virus-infected cells and in cells transiently expressing NS4A and NS4B in the absence of other viral proteins. Recombinant NS4A and NS4B proteins directly bind to each other with an estimated Kd (dissociation constant) of 50 nM. Amino acids 40 to 76 (spanning the first transmembrane domain, consisting of amino acids 50 to 73) of NS4A and amino acids 84 to 146 (also spanning the first transmembrane domain, consisting of amino acids 101 to 129) of NS4B are the determinants for NS4A-NS4B interaction. Nuclear magnetic resonance (NMR) analysis suggests that NS4A residues 17 to 80 form two amphipathic helices (helix α1, comprised of residues 17 to 32, and helix α2, comprised of residues 40 to 47) that associate with the cytosolic side of endoplasmic reticulum (ER) membrane and helix α3 (residues 52 to 75) that transverses the ER membrane. In addition, NMR analysis identified NS4A residues that may participate in the NS4A-NS4B interaction. Amino acid substitution of these NS4A residues exhibited distinct effects on viral replication. Three of the four NS4A mutations (L48A, T54A, and L60A) that affected the NS4A-NS4B interaction abolished or severely reduced viral replication; in contrast, two NS4A mutations (F71A and G75A) that did not affect NS4A-NS4B interaction had marginal effects on viral replication, demonstrating the biological relevance of the NS4A-NS4B interaction to DENV-2 replication. Taken together, the study has provided experimental evidence to argue that blocking the NS4A-NS4B interaction could be a potential antiviral approach. IMPORTANCE Flavivirus NS4A and NS4B proteins are essential components of the ER membrane

  5. Mitotic MELK-eIF4B signaling controls protein synthesis and tumor cell survival

    PubMed Central

    Wang, Yubao; Begley, Michael; Li, Qing; Huang, Hai-Tsang; Lako, Ana; Eck, Michael J.; Gray, Nathanael S.; Mitchison, Timothy J.; Cantley, Lewis C.; Zhao, Jean J.

    2016-01-01

    The protein kinase maternal and embryonic leucine zipper kinase (MELK) is critical for mitotic progression of cancer cells; however, its mechanisms of action remain largely unknown. By combined approaches of immunoprecipitation/mass spectrometry and peptide library profiling, we identified the eukaryotic translation initiation factor 4B (eIF4B) as a MELK-interacting protein during mitosis and a bona fide substrate of MELK. MELK phosphorylates eIF4B at Ser406, a modification found to be most robust in the mitotic phase of the cell cycle. We further show that the MELK–eIF4B signaling axis regulates protein synthesis during mitosis. Specifically, synthesis of myeloid cell leukemia 1 (MCL1), an antiapoptotic protein known to play a role in cancer cell survival during cell division, depends on the function of MELK-elF4B. Inactivation of MELK or eIF4B results in reduced protein synthesis of MCL1, which, in turn, induces apoptotic cell death of cancer cells. Our study thus defines a MELK–eIF4B signaling axis that regulates protein synthesis during mitosis, and consequently influences cancer cell survival. PMID:27528663

  6. Mapping the Interactions between the NS4B and NS3 Proteins of Dengue Virus

    PubMed Central

    Zou, Jing; Lee, Le Tian; Wang, Qing Yin; Xie, Xuping; Lu, Siyan; Yau, Yin Hoe; Yuan, Zhiming; Geifman Shochat, Susana; Kang, Congbao

    2015-01-01

    ABSTRACT Flavivirus RNA synthesis is mediated by a multiprotein complex associated with the endoplasmic reticulum membrane, named the replication complex (RC). Within the flavivirus RC, NS4B, an integral membrane protein with a role in virulence and regulation of the innate immune response, binds to the NS3 protease-helicase. NS4B modulates the RNA helicase activity of NS3, but the molecular details of their interaction remain elusive. Here, we used dengue virus (DENV) to map the determinants for the NS3-NS4B interaction. Coimmunoprecipitation and an in situ proximity ligation assay confirmed that NS3 colocalizes with NS4B in both DENV-infected cells and cells coexpressing both proteins. Surface plasmon resonance demonstrated that subdomains 2 and 3 of the NS3 helicase region and the cytoplasmic loop of NS4B are required for binding. Using nuclear magnetic resonance (NMR), we found that the isolated cytoplasmic loop of NS4B is flexible, with a tendency to form a three-turn α-helix and two short β-strands. Upon binding to the NS3 helicase, 12 amino acids within the cytoplasmic loop of NS4B exhibited line broadening, suggesting a participation in the interaction. Sequence alignment showed that 4 of these 12 residues are strictly conserved across different flaviviruses. Mutagenesis analysis showed that three (Q134, G140, and N144) of the four evolutionarily conserved NS4B residues are essential for DENV replication. The mapping of the NS3/NS4B-interacting regions described here can assist the design of inhibitors that disrupt their interface for antiviral therapy. IMPORTANCE NS3 and NS4B are essential components of the flavivirus RC. Using DENV as a model, we mapped the interaction between the viral NS3 and NS4B proteins. The subdomains 2 and 3 of NS3 helicase as well as the cytoplasmic loop of NS4B are critical for the interaction. Functional analysis delineated residues within the NS4B cytoplasmic loop that are crucial for DENV replication. Our findings reveal

  7. TAF4/4b·TAF12 Displays a Unique Mode of DNA Binding and Is Required for Core Promoter Function of a Subset of Genes*

    PubMed Central

    Gazit, Kfir; Moshonov, Sandra; Elfakess, Rofa; Sharon, Michal; Mengus, Gabrielle; Davidson, Irwin; Dikstein, Rivka

    2009-01-01

    The major core promoter-binding factor in polymerase II transcription machinery is TFIID, a complex consisting of TBP, the TATA box-binding protein, and 13 to 14 TBP-associated factors (TAFs). Previously we found that the histone H2A-like TAF paralogs TAF4 and TAF4b possess DNA-binding activity. Whether TAF4/TAF4b DNA binding directs TFIID to a specific core promoter element or facilitates TFIID binding to established core promoter elements is not known. Here we analyzed the mode of TAF4b·TAF12 DNA binding and show that this complex binds DNA with high affinity. The DNA length required for optimal binding is ∼70 bp. Although the complex displays a weak sequence preference, the nucleotide composition is less important than the length of the DNA for high affinity binding. Comparative expression profiling of wild-type and a DNA-binding mutant of TAF4 revealed common core promoter features in the down-regulated genes that include a TATA-box and an Initiator. Further examination of the PEL98 gene from this group showed diminished Initiator activity and TFIID occupancy in TAF4 DNA-binding mutant cells. These findings suggest that DNA binding by TAF4/4b-TAF12 facilitates the association of TFIID with the core promoter of a subset of genes. PMID:19635797

  8. Identification of an NTPase motif in classical swine fever virus NS4B protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classical swine fever (CSF) is a highly contagious and often fatal disease of swine caused by CSF virus (CSFV), a positive sense single-stranded RNA virus in the genus Pestivirus of the Flaviviridae family. Here, we have identified, within CSFV non-structural (NS) protein NS4B, conserved sequence el...

  9. Possible role for increased C4b-binding-protein level in acquired protein S deficiency in type I diabetes.

    PubMed

    Ceriello, A; Giugliano, D; Quatraro, A; Marchi, E; Barbanti, M; Lefebvre, P

    1990-04-01

    In this study, total protein S (PS) immunological levels, free-PS and C4b-binding-protein (C4bBP) concentrations, and PS functional activity were investigated in insulin-dependent (type I) diabetic patients and compared with nondiabetic subjects. Mean total PS antigen concentration was not different between diabetic patients and nondiabetic subjects, whereas free-PS levels and PS functional activity were significantly reduced in diabetic patients. C4bBP was increased in diabetic patients and correlated with HbA1 levels. This study shows that type I diabetic patients have depressed free PS and PS activity despite the presence of normal total PS concentration and suggests that this phenomenon is probably linked to the increase of circulating C4bBP.

  10. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein.

    PubMed

    Guo, Fang; Wu, Shuo; Julander, Justin; Ma, Julia; Zhang, Xuexiang; Kulp, John; Cuconati, Andrea; Block, Timothy M; Du, Yanming; Guo, Ju-Tao; Chang, Jinhong

    2016-09-21

    Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past two decades, which highlights the pressing need for antiviral therapeutics. In a high throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound, which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV infected cultures with 2 μM of BDAA reduced the virion production by greater than 2 logs, the compound is not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug resistant viruses revealed that substitution of proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine or alanine confers YFV resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, substitution of P219 with glycine confers BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 localizes at the endoplasmic reticulum lumen side of the fifth putative trans-membrane domain of NS4B and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed important role and structural basis for NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs and attenuated viral infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever.

  11. Vacuolar protein sorting 4B regulates apoptosis of intestinal epithelial cells via p38 MAPK in Crohn's disease.

    PubMed

    Zhang, Dongmei; Wang, Liang; Yan, Lijun; Miao, Xianjing; Gong, Chen; Xiao, Min; Ni, Runzhou; Tang, Qiyun

    2015-02-01

    Vacuolar protein sorting 4B (VPS4B), a member of ATPase family proteins, reportedly possesses multiple biological functions, such as regulating the development of breast cancer and non-small-cell lung cancer, participating in Parkinson's disease, and modulating neuronal apoptosis after cerebral ischemia. However, its expression and potential functions in Crohn's disease (CD) has not been understood. In this study, we reported for the first time that VPS4B was over-expressed in intestinal epithelial cell (IECs) of patients with CD. In TNBS-induced mouse colitis models, we observed the up-regulation of VPS4B was accompanied with the elevated levels of IEC apoptotic markers (active caspase-3 and cleaved PARP) and phosphorylated p38 in colitis IECs. Co-localization of VPS4B and active caspase-3 in IECs of the TNBS group further indicated the possible involvement of VPS4B in IEC apoptosis. Employing the TNF-α-treated HT29 cells as an in vitro IEC apoptosis model, we confirmed the positive correlation of VPS4B with caspase-dependent cellular apoptosis. Knocking VPS4B down by siRNA significantly alleviated TNF-α-induced p38 phosphorylation and cellular apoptosis in HT29 cells. Taken together, our findings suggested that VPS4B may facilitate the IEC apoptosis in CD via p38 MAPK signaling pathway.

  12. Prolactin Regulatory Element Binding Protein Is Involved in Hepatitis C Virus Replication by Interaction with NS4B

    PubMed Central

    Kong, Lingbao; Fujimoto, Akira; Nakamura, Mariko; Aoyagi, Haruyo; Matsuda, Mami; Watashi, Koichi; Suzuki, Ryosuke; Arita, Minetaro; Yamagoe, Satoshi; Dohmae, Naoshi; Suzuki, Takehiro; Sakamaki, Yuriko; Ichinose, Shizuko; Suzuki, Tetsuro; Wakita, Takaji

    2016-01-01

    ABSTRACT It has been proposed that the hepatitis C virus (HCV) NS4B protein triggers the membranous HCV replication compartment, but the underlying molecular mechanism is not fully understood. Here, we screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis and identified 202 host proteins. Subsequent screening of replicon cells with small interfering RNA identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. The interaction between PREB and NS4B was confirmed by immunoprecipitation, immunofluorescence, and proximity ligation assays. PREB colocalized with double-stranded RNA and the newly synthesized HCV RNA labeled with bromouridine triphosphate in HCV replicon cells. Furthermore, PREB shifted to detergent-resistant membranes (DRMs), where HCV replication complexes reside, in the presence of NS4B expression in Huh7 cells. However, a PREB mutant lacking the NS4B-binding region (PREBd3) could not colocalize with double-stranded RNA and did not shift to the DRM in the presence of NS4B. These results indicate that PREB locates at the HCV replication complex by interacting with NS4B. PREB silencing inhibited the formation of the membranous HCV replication compartment and increased the protease and nuclease sensitivity of HCV replicase proteins and RNA in DRMs, respectively. Collectively, these data indicate that PREB promotes HCV RNA replication by participating in the formation of the membranous replication compartment and by maintaining its proper structure by interacting with NS4B. Furthermore, PREB was induced by HCV infection in vitro and in vivo. Our findings provide new insights into HCV host cofactors. IMPORTANCE The hepatitis C virus (HCV) protein NS4B can induce alteration of the endoplasmic reticulum and the formation of a membranous web structure, which provides a platform for the HCV replication complex. The molecular mechanism by which NS4B induces the membranous HCV replication

  13. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein

    SciTech Connect

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Hirakis, Sophia P.; Biswas, Tapan; Amaro, Rommie E.; Nizet, Victor; Ghosh, Partho

    2016-09-05

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ~90%). Such broad recognition is rare, and we discovered a unique mechanism for this through the structure determination of four sequence-diverse M proteins in complexes with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies that target the M–C4BP interaction, and also inform a path towards vaccine design.

  14. Purification of human C4b-binding protein and formation of its complex with vitamin K-dependent protein S.

    PubMed Central

    Dahlbäck, B

    1983-01-01

    C4b-binding protein was purified from human plasma in high yield by a simple procedure involving barium citrate adsorption and two subsequent chromatographic steps. Approx. 80% of plasma C4b-binding protein was adsorbed on the barium citrate, presumably because of its complex-formation with vitamin K-dependent protein S. The purified C4b-binding protein had a molecular weight of 570 000, as determined by ultracentrifugation, and was composed of about eight subunits (Mr approx. 70 000). Uncomplexed plasma C4b-binding protein was purified from the supernatant after barium citrate adsorption. On sodium dodecyl sulphate/polyacrylamide-gel electrophoresis in non-reducing conditions and on agarose-gel electrophoresis it appeared as a doublet, indicating two forms differing slightly from each other in molecular weight and net charge. The protein band with the higher molecular weight in the doublet corresponded to the C4b-binding protein purified from the barium citrate eluate. Complex-formation between protein S and C4b-binding protein was studied in plasma, and in a system with purified components, by an agarose-gel electrophoresis technique. Protein S was found to form a 1:1 complex with the higher-molecular-weight form of C4b-binding protein, whereas the lower-molecular-weight form of C4b-binding protein did not bind protein S. The KD for the C4b-binding protein-protein S interaction in a system with purified components was approx. 0.9 X 10(-7) M. Rates of association and dissociation at 37 degrees C were low, namely about 1 X 10(3) M-1 . S-1 and 1.8 X 10(-4)-4.5 X 10(-4) S-1 respectively. In human plasma free protein S and free higher-molecular-weight C4b-binding protein were in equilibrium with the C4b-binding protein-protein S complex. Approx. 40% of both proteins existed as free proteins. From equilibrium data in plasma a KD of about 0.7 X 10(-7) M was calculated for the C4b-binding protein-protein S interaction. Images Fig. 2. Fig. 3. PMID:6223625

  15. The interaction between the hepatitis C proteins NS4B and NS5A is involved in viral replication.

    PubMed

    David, Naama; Yaffe, Yakey; Hagoel, Lior; Elazar, Menashe; Glenn, Jeffrey S; Hirschberg, Koret; Sklan, Ella H

    2015-01-15

    Hepatitis C virus (HCV) replicates in membrane associated, highly ordered replication complexes (RCs). These complexes include viral and host proteins necessary for viral RNA genome replication. The interaction network among viral and host proteins underlying the formation of these RCs is yet to be thoroughly characterized. Here, we investigated the association between NS4B and NS5A, two critical RC components. We characterized the interaction between these proteins using fluorescence resonance energy transfer and a mammalian two-hybrid system. Specific tryptophan residues within the C-terminal domain (CTD) of NS4B were shown to mediate this interaction. Domain I of NS5A, was sufficient to mediate its interaction with NS4B. Mutations in the NS4B CTD tryptophan residues abolished viral replication. Moreover, one of these mutations also affected NS5A hyperphosphorylation. These findings provide new insights into the importance of the NS4B-NS5A interaction and serve as a starting point for studying the complex interactions between the replicase subunits.

  16. UBE4B protein couples ubiquitination and sorting machineries to enable epidermal growth factor receptor (EGFR) degradation.

    PubMed

    Sirisaengtaksin, Natalie; Gireud, Monica; Yan, Qing; Kubota, Yoshihisa; Meza, Denisse; Waymire, Jack C; Zage, Peter E; Bean, Andrew J

    2014-01-31

    The signaling of plasma membrane proteins is tuned by internalization and sorting in the endocytic pathway prior to recycling or degradation in lysosomes. Ubiquitin modification allows recognition and association of cargo with endosomally associated protein complexes, enabling sorting of proteins to be degraded from those to be recycled. The mechanism that provides coordination between the cellular machineries that mediate ubiquitination and endosomal sorting is unknown. We report that the ubiquitin ligase UBE4B is recruited to endosomes in response to epidermal growth factor receptor (EGFR) activation by binding to Hrs, a key component of endosomal sorting complex required for transport (ESCRT) 0. We identify the EGFR as a substrate for UBE4B, establish UBE4B as a regulator of EGFR degradation, and describe a mechanism by which UBE4B regulates endosomal sorting, affecting cellular levels of the EGFR and its downstream signaling. We propose a model in which the coordinated action of UBE4B, ESCRT-0, and the deubiquitinating enzyme USP8 enable the endosomal sorting and lysosomal degradation of the EGFR.

  17. The interaction between the Hepatitis C proteins NS4B and NS5A is involved in viral replication

    PubMed Central

    David, Naama; Yaffe, Yakey; Hagoel, Lior; Elazar, Menashe; Glenn, Jeffrey S.; Hirschberg, Koret; Sklan, Ella H.

    2015-01-01

    Hepatitis C virus (HCV) replicates in membrane associated, highly ordered replication complexes (RCs). These complexes include viral and host proteins necessary for viral RNA genome replication. The interaction network among viral and host proteins underlying the formation of these RCs is yet to be thoroughly characterized. Here, we investigated the association between NS4B and NS5A, two critical RC components. We characterized the interaction between these proteins using fluorescence resonance energy transfer and a mammalian two-hybrid system. Specific tryptophan residues within the C-terminal domain (CTD) of NS4B were shown to mediate this interaction. Domain I of NS5A, was sufficient to mediate its interaction with NS4B. Mutations in the NS4B CTD tryptophan residues abolished viral replication. Moreover, one of these mutations also affected NS5A hyperphosphorylation. These findings provide new insights into the importance of the NS4B–NS5A interaction and serve as a starting point for studying the complex interactions between the replicase subunits. PMID:25462354

  18. FBXO44-Mediated Degradation of RGS2 Protein Uniquely Depends on a Cullin 4B/DDB1 Complex

    PubMed Central

    Sjögren, Benita; Swaney, Steven; Neubig, Richard R.

    2015-01-01

    The ubiquitin-proteasome system for protein degradation plays a major role in regulating cell function and many signaling proteins are tightly controlled by this mechanism. Among these, Regulator of G Protein Signaling 2 (RGS2) is a target for rapid proteasomal degradation, however, the specific enzymes involved are not known. Using a genomic siRNA screening approach, we identified a novel E3 ligase complex containing cullin 4B (CUL4B), DNA damage binding protein 1 (DDB1) and F-box protein 44 (FBXO44) that mediates RGS2 protein degradation. While the more typical F-box partners CUL1 and Skp1 can bind FBXO44, that E3 ligase complex does not bind RGS2 and is not involved in RGS2 degradation. These observations define an unexpected DDB1/CUL4B-containing FBXO44 E3 ligase complex. Pharmacological targeting of this mechanism provides a novel therapeutic approach to hypertension, anxiety, and other diseases associated with RGS2 dysregulation. PMID:25970626

  19. Sintered powder cores of high Bs and low coreloss Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Sharma, Parmanand; Makino, Akihiro

    2013-06-01

    Nano-crystalline Fe-rich Fe84.3Si4B8P3Cu0.7 alloy ribbon with saturation magnetic flux density (Bs) close to Si-steel exhibits much lower core loss (Wt) than Si-Steels. Low glass forming ability of this alloy limits fabrication of magnetic cores only to stack/wound types. Here, we report on fabrication, structural, thermal and magnetic properties of bulk Fe84.3Si4B8P3Cu0.7 cores. Partially crystallized ribbons (obtained after salt-bath annealing treatment) were crushed into powdered form (by ball milling), and were compacted to high-density (˜88%) bulk cores by spark plasma sintering (SPS). Nano-crystalline structure (consisting of α-Fe grain in remaining amorphous matrix) similar to wound ribbon cores is preserved in the compacted cores. At 50 Hz, cores sintered at Ts = 680 K show Wt < 10 W/kg (f = 50 Hz, Bm ˜1 T). Coating/mixing of powders with an insulating agent like SiO2 is shown to be effective in further reduction of Wt at f > 1 kHz. A trade-off between porosity and electrical resistivity is necessary to get low Wt at higher f. In the f range of ˜1 to 100 kHz, we have shown that the cores mixed with SiO2 exhibit much lower Wt than Fe-powder cores, non-oriented Si-steel sheets and commercially available sintered cores. We believe our core material is very promising to make power electronics/electrical devices much more energy-efficient.

  20. KDM4B histone demethylase and G9a regulate expression of vascular adhesion proteins in cerebral microvessels

    PubMed Central

    Choi, Ji-Young; Yoon, Sang-Sun; Kim, Sang-Eun; Ahn Jo, Sangmee

    2017-01-01

    Intercellular adhesion molecule 1 (ICAM1) mediates the adhesion and transmigration of leukocytes across the endothelium, promoting inflammation. We investigated the epigenetic mechanism regulating ICAM1 expression. The pro-inflammatory cytokine TNF-α dramatically increased ICAM1 mRNA and protein levels in human brain microvascular endothelial cells and mouse brain microvessels. Chromatin immunoprecipitation revealed that TNF-α reduced methylation of histone H3 at lysines 9 and 27 (H3K9 and H3K27), well-known residues involved in gene suppression. Inhibition of G9a and EZH2, histone methyltransferases responsible for methylation at H3K9 and H3K27, respectively as well as G9a overexpression demonstrated the involvement of G9a in TNF-α-induced ICAM1 expression and leukocyte adhesion and transmigration. A specific role for KDM4B, a histone demethylase targeting H3K9me2, in TNF-α-induced ICAM1 upregulation was validated with siRNA. Moreover, treating mice with a KDM4 inhibitor ML324 blocked TNF-α-mediated neutrophil adhesion. Similarly, TNF-α-induced VCAM1 expression was suppressed by G9a overexpression and KDM4B knockdown. Collectively, we demonstrated that modification of H3K9me2 by G9a and KDM4B regulates expression of vascular adhesion molecules, and that depletion of these proteins or KDM4B reduces inflammation-induced leukocyte extravasation. Thus, blocking ICAM1 or KDM4B could offer a novel therapeutic opportunity treating brain diseases. PMID:28327608

  1. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions

    PubMed Central

    Gillette, William K.; Esposito, Dominic; Abreu Blanco, Maria; Alexander, Patrick; Bindu, Lakshman; Bittner, Cammi; Chertov, Oleg; Frank, Peter H.; Grose, Carissa; Jones, Jane E.; Meng, Zhaojing; Perkins, Shelley; Van, Que; Ghirlando, Rodolfo; Fivash, Matthew; Nissley, Dwight V.; McCormick, Frank; Holderfield, Matthew; Stephen, Andrew G.

    2015-01-01

    Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer’s disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5–10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ. PMID:26522388

  2. Developing VUV spectroscopy for protein folding and material luminescence on beamline 4B8 at the Beijing Synchrotron Radiation Facility.

    PubMed

    Tao, Ye; Huang, Yan; Gao, Zhenghua; Zhuang, Hao; Zhou, Aiyu; Tan, Yinglei; Li, Daowu; Sun, Shuaishuai

    2009-11-01

    The new 4B8 beamline provides UV-VUV light in the wavelength range from 360 to 120 nm. It uniquely enables two kinds of spectroscopy measurements: synchrotron radiation circular dichroism spectroscopy and VUV excited fluorescence spectroscopy. The former is mainly used in protein secondary structure studies, and the latter in VUV excited luminescent materials research. Remote access to fluorescence measurement has been realised and users can collect data online. Besides steady-state measurements, fluorescence lifetime measurements have been established using the time domain method, while a laser-induced temperature jump is under development for protein folding dynamics using circular dichroism as a probe.

  3. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B

    PubMed Central

    Hannah, Jeffrey

    2016-01-01

    The cullin 4 subfamily of genes includes CUL4A and CUL4B, which share a mostly identical amino acid sequence aside from the elongated N-terminal region in CUL4B. Both act as scaffolding proteins for modular cullin RING ligase 4 (CRL4) complexes which promote the ubiquitination of a variety of substrates. CRL4 function is vital to cells as loss of both genes or their shared substrate adaptor protein DDB1 halts proliferation and eventually leads to cell death. Due to their high structural similarity, CUL4A and CUL4B share a substantial overlap in function. However, in some cases, differences in subcellular localization, spatiotemporal expression patterns and stress-inducibility preclude functional compensation. In this review, we highlight the most essential functions of the CUL4 genes in: DNA repair and replication, chromatin-remodeling, cell cycle regulation, embryogenesis, hematopoiesis and spermatogenesis. CUL4 genes are also clinically relevant as dysregulation can contribute to the onset of cancer and CRL4 complexes are often hijacked by certain viruses to promote viral replication and survival. Also, mutations in CUL4B have been implicated in a subset of patients suffering from syndromic X-linked intellectual disability (AKA mental retardation). Interestingly, the antitumor effects of immunomodulatory drugs are caused by their binding to the CRL4CRBN complex and re-directing the E3 ligase towards the Ikaros transcription factors IKZF1 and IKZF3. Because of their influence over key cellular functions and relevance to human disease, CRL4s are considered promising targets for therapeutic intervention. PMID:26344709

  4. Modulation of C4b-binding protein isoforms during the acute phase response caused by orthopedic surgery.

    PubMed

    Criado-García, O; González-Rubio, C; López-Trascasa, M; Pascual-Salcedo, D; Munuera, L; Rodríguez de Córdoba, S

    1997-01-01

    Orthopedic surgery is described as an event with a high risk of thromboembolic diseases. This is probably a consequence of a synergistic combination of different risk factors in the patients subjected to this type of surgery, including age, immobilization, anesthesia and different hypercoagulable states. After surgery patients develop an acute-phase response that leads to changes in several plasma proteins. One of these proteins is the complement regulator C4b-binding protein (C4BP). We have recently shown that in some acute-phase patients C4BP is incorrectly controlled (with elevation of the C4BP beta-containing isoforms), leading to a potential hypercoagulable state by decreasing the plasma levels of free (active) protein S. Here we have studied whether patients subjected to orthopedic surgery have an appropriate modulation of the C4BP isoforms during their postoperative acute-phase responses. We have analyzed the evolution of the C4BP isoforms in serial samples from 11 patients who have undergone knee (or hip) prosthesis surgery (mean age 70 years), or scoliosis surgery (mean age 18 years). Our data suggest a similar evolution of C4BP isoforms in all these patients, with an almost exclusive increase of C4BP isoforms lacking C4BP beta polypeptides and steady levels of free protein S.

  5. A Novel Interaction between Complement Inhibitor C4b-binding Protein and Plasminogen That Enhances Plasminogen Activation*

    PubMed Central

    Agarwal, Vaibhav; Talens, Simone; Grandits, Alexander M.; Blom, Anna M.

    2015-01-01

    The complement, coagulation, and fibrinolytic systems are crucial for the maintenance of tissue homeostasis. To date numerous interactions and cross-talks have been identified between these cascades. In line with this, here we propose a novel, hitherto unknown interaction between the complement inhibitor C4b-binding protein (C4BP) and plasminogen of the fibrinolytic pathway. Binding of C4BP to Streptococcus pneumoniae is a known virulence mechanism of this pathogen and it was increased in the presence of plasminogen. Interestingly, the acute phase variant of C4BP lacking the β-chain and protein S binds plasminogen much stronger than the main isoform containing the β-chain and protein S. Indeed, the complement control protein (CCP) 8 domain of C4BP, which would otherwise be sterically hindered by the β-chain, primarily mediates this interaction. Moreover, the lysine-binding sites in plasminogen kringle domains facilitate the C4BP-plasminogen interaction. Furthermore, C4BP readily forms complexes with plasminogen in fluid phase and such complexes are present in human serum and plasma. Importantly, whereas the presence of plasminogen did not affect the factor I cofactor activity of C4BP, the activation of plasminogen by urokinase-type plasminogen activator to active plasmin was significantly augmented in the presence of C4BP. Taken together, our data demonstrate a novel interaction between two proteins of the complement and fibrinolytic system. Most complexes might be formed during the acute phase of inflammation and have an effect on the homeostasis at the site of injury or acute inflammation. PMID:26067271

  6. Conserved patterns hidden within group A Streptococcus M protein hypervariability are responsible for recognition of human C4b-binding protein

    PubMed Central

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Hirakis, Sophia P.; Biswas, Tapan; Amaro, Rommie E.; Nizet, Victor; Ghosh, Partho

    2016-01-01

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ~90%). Such broad recognition is rare, and we discovered a unique mechanism for this through structure determination of four sequence-diverse M proteins in complex with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies targeting the M-C4BP interaction, and also inform a path towards vaccine design. PMID:27595425

  7. Hepatitis C virus and its protein NS4B activate the cancer-related STAT3 pathway via the endoplasmic reticulum overload response.

    PubMed

    Kong, Lingbao; Li, Shanshan; Yu, Xilan; Fang, Xiaonan; Xu, Ahui; Huang, Mingjie; Wu, Xiaoyu; Guo, Yunli; Guo, Fenglin; Xu, Jin

    2016-08-01

    Oxidative stress induces the activation of signal transducer and activator of transcription 3 (STAT3), which plays an important role in hepatocellular carcinoma (HCC). We have previously reported that hepatitis C virus (HCV) and its protein NS4B induce the production of reactive oxygen species (ROS) via the endoplasmic reticulum overload response (EOR) in human hepatocytes. Here, we found that NS4B and HCV induce STAT3 activation and stimulate the expression of cancer-related STAT3 target genes, including VEGF, c-myc, MMP-9 and Mcl-1, by EOR in human hepatocytes. Moreover, the cancer-related STAT3 pathway activated by NS4B and HCV via EOR were found to promote human hepatocyte viability. Taken together, these findings revealed that HCV NS4B might contribute to HCC by activating the EOR-mediated cancer-related STAT3 pathway, and this could provide novel insights into HCV-induced HCC.

  8. Targeting a novel cancer-driving protein (LAPTM4B-35) by a small molecule (ETS) to inhibit cancer growth and metastasis

    PubMed Central

    Li, Maojin; Zhou, Rouli; Shan, Yi; Li, Li; Wang, Lin; Liu, Gang

    2016-01-01

    Our previous studies demonstrated that LAPTM4B-35 is overexpressed in a variety of solid cancers including hepatocellular carcinoma (HCC), and is an independent factor for prognosis. LAPTM4B-35 overexpression causes carcinogenesis and enhances cancer growth, metastasis and multidrug resistance, and thus may be a candidate for therapeutic targeting. The present study shows ethylglyoxal bisthiosemicarbazon (ETS) has effective anticancer activity through LAPTM4B-35 targeting. Bel-7402 and HepG2 cell lines from human HCC were used as cell models in which LAPTM4B-35 is highly expressed, and a human fetal liver cell line was used as a control. The results showed ETS has a specific and pronounced lethal effect on HCC cells, but not on fetal liver cells in culture. ETS also attenuated growth and metastasis of human HCC xenograft in nude mice, and extended the life span of mice with HCC. ETS induced HCC cell apoptosis, and upregulated a large number of proapoptotic genes and downregulated antiapoptotic genes. When endogenous overexpression of LAPTM4B-35 was knocked down with RNAi, the killing effect of ETS on HepG2 cells was significantly attenuated. ETS also inhibited phosphorylation of LAPTM4B-35 Tyr285, which involves in activation of the PI3K/Akt signaling pathway induced by LAPTM4B-35 overexpression. In addition, the induction of alterations in quantity of c-Myc, Bcl-2, Bax, cyclinD1 and Akt-p molecules in HepG2 cells by LAPTM4B-35 overexpression could be reversed by ETS. Conclusion: ETS is a promising candidate for treatment of HCC through LAPTM4B-35 protein targeting. PMID:27542271

  9. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.

    PubMed

    Dennis, Michael D; Jefferson, Leonard S; Kimball, Scot R

    2012-12-14

    Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.

  10. Synthesis and biological evaluation of 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives as protein kinase inhibitors.

    PubMed

    Chioua, Mourad; Samadi, Abdelouahid; Soriano, Elena; Lozach, Olivier; Meijer, Laurent; Marco-Contelles, José

    2009-08-15

    The synthesis and biological evaluation of a number of differently substituted 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives are reported. From the inhibition results on a selection of disease-relevant protein kinases [IC(50) (microM) DYRK1A=11; CDK5=0.41; GSK-3=1.5] we have observed that 3,6-diamino-4-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (4) constitutes a potential new and simple lead compound in the search of drugs for the treatment of Alzheimer's disease.

  11. The Xenopus laevis Atg4B Protease: Insights into Substrate Recognition and Application for Tag Removal from Proteins Expressed in Pro- and Eukaryotic Hosts.

    PubMed

    Frey, Steffen; Görlich, Dirk

    2015-01-01

    During autophagy, members of the ubiquitin-like Atg8 protein family get conjugated to phosphatidylethanolamine and act as protein-recruiting scaffolds on the autophagosomal membrane. The Atg4 protease produces mature Atg8 from C-terminally extended precursors and deconjugates lipid-bound Atg8. We now found that Xenopus laevis Atg4B (xAtg4B) is ideally suited for proteolytic removal of N-terminal tags from recombinant proteins. To implement this strategy, an Atg8 cleavage module is inserted in between tag and target protein. An optimized xAtg4B protease fragment includes the so far uncharacterized C-terminus, which crucially contributes to recognition of the Xenopus Atg8 homologs xLC3B and xGATE16. xAtg4B-mediated tag cleavage is very robust in solution or on-column, efficient at 4°C and orthogonal to TEV protease and the recently introduced proteases bdSENP1, bdNEDP1 and xUsp2. Importantly, xLC3B fusions are stable in wheat germ extract or when expressed in Saccharomyces cerevisiae, but cleavable by xAtg4B during or following purification. We also found that fusions to the bdNEDP1 substrate bdNEDD8 are stable in S. cerevisiae. In combination, or findings now provide a system, where proteins and complexes fused to xLC3B or bdNEDD8 can be expressed in a eukaryotic host and purified by successive affinity capture and proteolytic release steps.

  12. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    PubMed

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  13. Random close packing in protein cores

    NASA Astrophysics Data System (ADS)

    Gaines, Jennifer C.; Smith, W. Wendell; Regan, Lynne; O'Hern, Corey S.

    2016-03-01

    Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ≈0.75 , a value that is similar to close packing of equal-sized spheres. A limitation of these analyses was the use of extended atom models, rather than the more physically accurate explicit hydrogen model. The validity of the explicit hydrogen model was proved in our previous studies by its ability to predict the side chain dihedral angle distributions observed in proteins. In contrast, the extended atom model is not able to recapitulate the side chain dihedral angle distributions, and gives rise to large atomic clashes at side chain dihedral angle combinations that are highly probable in protein crystal structures. Here, we employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high-resolution protein structures. We find that these protein cores have ϕ ≈0.56 , which is similar to results obtained from simulations of random packings of individual amino acids. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations to protein cores and interfaces of known structure.

  14. PARAQUAT TOLERANCE3 Is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b

    PubMed Central

    Du, Jin; Zhao, Tao-Lan; Wang, Peng-Fei; Zhao, Ping-Xia; Xie, Qi; Cao, Xiao-Feng; Xiang, Cheng-Bin

    2016-01-01

    Oxidative stress is unavoidable for aerobic organisms. When abiotic and biotic stresses are encountered, oxidative damage could occur in cells. To avoid this damage, defense mechanisms must be timely and efficiently modulated. While the response to oxidative stress has been extensively studied in plants, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3) as a major negative regulator of oxidative stress tolerance. PQT3, encoding an E3 ubiquitin ligase, is rapidly down-regulated by oxidative stress. PQT3 has E3 ubiquitin ligase activity in ubiquitination assay. Subsequently, we identified PRMT4b as a PQT3-interacting protein. By histone methylation, PRMT4b upregulates the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. On the other hand, PRMT4b is recognized by PQT3 for targeted degradation via 26S proteasome. Therefore, we have identified PQT3 as an E3 ligase that acts as a negative regulator of activated response to oxidative stress and found that histone modification by PRMT4b at APX1 and GPX1 loci plays an important role in oxidative stress tolerance. PMID:27676073

  15. Random close packing in protein cores

    NASA Astrophysics Data System (ADS)

    Ohern, Corey

    Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ~ 0 . 75 , a value that is similar to close packing equal-sized spheres. A limitation of these analyses was the use of `extended atom' models, rather than the more physically accurate `explicit hydrogen' model. The validity of using the explicit hydrogen model is proved by its ability to predict the side chain dihedral angle distributions observed in proteins. We employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high resolution protein structures. We find that these protein cores have ϕ ~ 0 . 55 , which is comparable to random close-packing of non-spherical particles. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations and design of new functional proteins. We gratefully acknowledge the support of the Raymond and Beverly Sackler Institute for Biological, Physical, and Engineering Sciences, National Library of Medicine training grant T15LM00705628 (J.C.G.), and National Science Foundation DMR-1307712 (L.R.).

  16. Serum amyloid A, protein Z, and C4b-binding protein β chain as new potential biomarkers for pulmonary tuberculosis

    PubMed Central

    Jiang, Ting-Ting; Shi, Li-Ying; Wei, Li-Liang; Li, Xiang; Yang, Su; Wang, Chong; Liu, Chang-Ming; Chen, Zhong-Liang; Tu, Hui-Hui; Li, Zhong-Jie; Li, Ji-Cheng

    2017-01-01

    The aim of this study was to discover novel biomarkers for pulmonary tuberculosis (TB). Differentially expressed proteins in the serum of patients with TB were screened and identified by iTRAQ-two dimensional liquid chromatography tandem mass spectrometry analysis. A total of 79 abnormal proteins were discovered in patients with TB compared with healthy controls. Of these, significant differences were observed in 47 abnormally expressed proteins between patients with TB or pneumonia and chronic obstructive pulmonary disease (COPD). Patients with TB (n = 136) exhibited significantly higher levels of serum amyloid A (SAA), vitamin K-dependent protein Z (PROZ), and C4b-binding protein β chain (C4BPB) than those in healthy controls (n = 66) (P<0.0001 for each) albeit significantly lower levels compared with those in patients with pneumonia (n = 72) (P<0.0001 for each) or COPD (n = 72) (P<0.0001, P<0.0001, P = 0.0016, respectively). After 6 months of treatment, the levels of SAA and PROZ were significantly increased (P = 0.022, P<0.0001, respectively), whereas the level of C4BPB was significantly decreased (P = 0.0038) in treated TB cases (n = 72). Clinical analysis showed that there were significant differences in blood clotting and lipid indices in patients with TB compared with healthy controls, patients with pneumonia or COPD, and treated TB cases (P<0.05). Correlation analysis revealed significant correlations between PROZ and INR (rs = 0.414, P = 0.044), and between C4BPB and FIB (rs = 0.617, P = 0.0002) in patients with TB. Receiver operating characteristic curve analysis revealed that the area under the curve value of the diagnostic model combining SAA, PROZ, and C4BPB to discriminate the TB group from the healthy control, pneumonia, COPD, and cured TB groups was 0.972, 0.928, 0.957, and 0.969, respectively. Together, these results suggested that SAA, PROZ, and C4BPB may serve as new potential biomarkers for TB. Our study may thus provide experimental data for

  17. The hydrogen exchange core and protein folding.

    PubMed Central

    Li, R.; Woodward, C.

    1999-01-01

    A database of hydrogen-deuterium exchange results has been compiled for proteins for which there are published rates of out-exchange in the native state, protection against exchange during folding, and out-exchange in partially folded forms. The question of whether the slow exchange core is the folding core (Woodward C, 1993, Trends Biochem Sci 18:359-360) is reexamined in a detailed comparison of the specific amide protons (NHs) and the elements of secondary structure on which they are located. For each pulsed exchange or competition experiment, probe NHs are shown explicitly; the large number and broad distribution of probe NHs support the validity of comparing out-exchange with pulsed-exchange/competition experiments. There is a strong tendency for the same elements of secondary structure to carry NHs most protected in the native state, NHs first protected during folding, and NHs most protected in partially folded species. There is not a one-to-one correspondence of individual NHs. Proteins for which there are published data for native state out-exchange and theta values are also reviewed. The elements of secondary structure containing the slowest exchanging NHs in native proteins tend to contain side chains with high theta values or be connected to a turn/loop with high theta values. A definition for a protein core is proposed, and the implications for protein folding are discussed. Apparently, during folding and in the native state, nonlocal interactions between core sequences are favored more than other possible nonlocal interactions. Other studies of partially folded bovine pancreatic trypsin inhibitor (Barbar E, Barany G, Woodward C, 1995, Biochemistry 34:11423-11434; Barber E, Hare M, Daragan V, Barany G, Woodward C, 1998, Biochemistry 37:7822-7833), suggest that developing cores have site-specific energy barriers between microstates, one disordered, and the other(s) more ordered. PMID:10452602

  18. Differential Stoichiometry among Core Ribosomal Proteins

    PubMed Central

    Slavov, Nikolai; Semrau, Stefan; Airoldi, Edoardo; Budnik, Bogdan; van Oudenaarden, Alexander

    2015-01-01

    Summary Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its dysregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs), some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC) and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function. PMID:26565899

  19. The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling.

    PubMed

    Matthews, Krystal L; Coleman, Christopher M; van der Meer, Yvonne; Snijder, Eric J; Frieman, Matthew B

    2014-04-01

    The recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV), a betacoronavirus, is associated with severe pneumonia and renal failure. The environmental origin of MERS-CoV is as yet unknown; however, its genome sequence is closely related to those of two bat coronaviruses, named BtCoV-HKU4 and BtCoV-HKU5, which were derived from Chinese bat samples. A hallmark of highly pathogenic respiratory viruses is their ability to evade the innate immune response of the host. CoV accessory proteins, for example those from severe acute respiratory syndrome CoV (SARS-CoV), have been shown to block innate antiviral signalling pathways. MERS-CoV, similar to SARS-CoV, has been shown to inhibit type I IFN induction in a variety of cell types in vitro. We therefore hypothesized that MERS-CoV and the phylogenetically related BtCoV-HKU4 and BtCoV-HKU5 may encode proteins with similar capabilities. In this study, we have demonstrated that the ORF4b-encoded accessory protein (p4b) of MERS-CoV, BtCoV-HKU4 and BtCoV-HKU5 may indeed facilitate innate immune evasion by inhibiting the type I IFN and NF-κB signalling pathways. We also analysed the subcellular localization of p4b from MERS-CoV, BtCoV-HKU4 and BtCoV-HKU5 and demonstrated that all are localized to the nucleus.

  20. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.

    PubMed

    Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S

    2016-12-21

    Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation.

  1. Hetero-oligomeric Complex between the G Protein-coupled Estrogen Receptor 1 and the Plasma Membrane Ca2+-ATPase 4b*

    PubMed Central

    Tran, Quang-Kim; VerMeer, Mark; Burgard, Michelle A.; Hassan, Ali B.; Giles, Jennifer

    2015-01-01

    The new G protein-coupled estrogen receptor 1 (GPER/GPR30) plays important roles in many organ systems. The plasma membrane Ca2+-ATPase (PMCA) is essential for removal of cytoplasmic Ca2+ and for shaping the time courses of Ca2+-dependent activities. Here, we show that PMCA and GPER/GPR30 physically interact and functionally influence each other. In primary endothelial cells, GPER/GPR30 agonist G-1 decreases PMCA-mediated Ca2+ extrusion by promoting PMCA tyrosine phosphorylation. GPER/GPR30 overexpression decreases PMCA activity, and G-1 further potentiates this effect. GPER/GPR30 knockdown increases PMCA activity, whereas PMCA knockdown substantially reduces GPER/GPR30-mediated phosphorylation of the extracellular signal-related kinase (ERK1/2). GPER/GPR30 co-immunoprecipitates with PMCA with or without treatment with 17β-estradiol, thapsigargin, or G-1. Heterologously expressed GPER/GPR30 in HEK 293 cells co-localizes with PMCA4b, the main endothelial PMCA isoform. Endothelial cells robustly express the PDZ post-synaptic density protein (PSD)-95, whose knockdown reduces the association between GPER/GPR30 and PMCA. Additionally, the association between PMCA4b and GPER/GPR30 is substantially reduced by truncation of either or both of their C-terminal PDZ-binding motifs. Functionally, inhibition of PMCA activity is significantly reduced by truncation of GPER/GPR30's C-terminal PDZ-binding motif. These data strongly indicate that GPER/GPR30 and PMCA4b form a hetero-oligomeric complex in part via the anchoring action of PSD-95, in which they constitutively affect each other's function. Activation of GPER/GPR30 further inhibits PMCA activity through tyrosine phosphorylation of the pump. These interactions represent cross-talk between Ca2+ signaling and GPER/GPR30-mediated activities. PMID:25847233

  2. Hetero-oligomeric Complex between the G Protein-coupled Estrogen Receptor 1 and the Plasma Membrane Ca2+-ATPase 4b.

    PubMed

    Tran, Quang-Kim; VerMeer, Mark; Burgard, Michelle A; Hassan, Ali B; Giles, Jennifer

    2015-05-22

    The new G protein-coupled estrogen receptor 1 (GPER/GPR30) plays important roles in many organ systems. The plasma membrane Ca(2+)-ATPase (PMCA) is essential for removal of cytoplasmic Ca(2+) and for shaping the time courses of Ca(2+)-dependent activities. Here, we show that PMCA and GPER/GPR30 physically interact and functionally influence each other. In primary endothelial cells, GPER/GPR30 agonist G-1 decreases PMCA-mediated Ca(2+) extrusion by promoting PMCA tyrosine phosphorylation. GPER/GPR30 overexpression decreases PMCA activity, and G-1 further potentiates this effect. GPER/GPR30 knockdown increases PMCA activity, whereas PMCA knockdown substantially reduces GPER/GPR30-mediated phosphorylation of the extracellular signal-related kinase (ERK1/2). GPER/GPR30 co-immunoprecipitates with PMCA with or without treatment with 17β-estradiol, thapsigargin, or G-1. Heterologously expressed GPER/GPR30 in HEK 293 cells co-localizes with PMCA4b, the main endothelial PMCA isoform. Endothelial cells robustly express the PDZ post-synaptic density protein (PSD)-95, whose knockdown reduces the association between GPER/GPR30 and PMCA. Additionally, the association between PMCA4b and GPER/GPR30 is substantially reduced by truncation of either or both of their C-terminal PDZ-binding motifs. Functionally, inhibition of PMCA activity is significantly reduced by truncation of GPER/GPR30's C-terminal PDZ-binding motif. These data strongly indicate that GPER/GPR30 and PMCA4b form a hetero-oligomeric complex in part via the anchoring action of PSD-95, in which they constitutively affect each other's function. Activation of GPER/GPR30 further inhibits PMCA activity through tyrosine phosphorylation of the pump. These interactions represent cross-talk between Ca(2+) signaling and GPER/GPR30-mediated activities.

  3. Selective Phosphodiesterase 4B Inhibitors: A Review

    PubMed Central

    Azam, Mohammed Afzal; Tripuraneni, Naga Srinivas

    2014-01-01

    Abstract Phosphodiesterase 4B (PDE4B) is a member of the phosphodiesterase family of proteins that plays a critical role in regulating intracellular levels of cyclic adenosine monophosphate (cAMP) by controlling its rate of degradation. It has been demonstrated that this isoform is involved in the orchestra of events which includes inflammation, schizophrenia, cancers, chronic obstructive pulmonary disease, contractility of the myocardium, and psoriatic arthritis. Phosphodiesterase 4B has constituted an interesting target for drug development. In recent years, a number of PDE4B inhibitors have been developed for their use as therapeutic agents. In this review, an up-to-date status of the inhibitors investigated for the inhibition of PDE4B has been given so that this rich source of structural information of presently known PDE4B inhibitors could be helpful in generating a selective and potent inhibitor of PDE4B. PMID:25853062

  4. Interaction between complement regulators and Streptococcus pyogenes: binding of C4b-binding protein and factor H/factor H-like protein 1 to M18 strains involves two different cell surface molecules.

    PubMed

    Pérez-Caballero, David; García-Laorden, Isabel; Cortés, Guadalupe; Wessels, Michael R; de Córdoba, Santiago Rodríguez; Albertí, Sebastián

    2004-12-01

    Streptococcus pyogenes, or group A Streptococcus, is one of the most frequent causes of pharyngitis and skin infections in humans. Many virulence mechanisms have been suggested to be involved in the infectious process. Among them is the binding to the bacterial cell surface of the complement regulatory proteins factor H, factor H-like protein 1 (FHL-1), and C4b-binding protein. Previous studies indicate that binding of these three regulators to the streptococcal cell involves the M protein encoded by the emm gene. M-type 18 strains are prevalent among clinical isolates and have been shown to interact with all three complement regulators simultaneously. Using isogenic strains lacking expression of the Emm18 or the Enn18 proteins, we demonstrate in this study that, in contradistinction to previously described S. pyogenes strains, M18 strains bind the complement regulators factor H, FHL-1, and C4b-binding protein through two distinct cell surface proteins. Factor H and FHL-1 bind to the Emm18 protein, while C4BP binds to the Enn18 protein. We propose that expression of two distinct surface structures that bind complement regulatory proteins represents a unique adaptation of M18 strains that enhances their resistance to opsonization by human plasma and increases survival of this particular S. pyogenes strain in the human host. These new findings illustrate that S. pyogenes has evolved diverse mechanisms for recruitment of complement regulatory proteins to the bacterial surface to evade immune clearance in the human host.

  5. The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca2+ and Mg2+ dependent-DNase activity and antifungal action on Moniliophthora perniciosa

    PubMed Central

    2014-01-01

    Background The production and accumulation of pathogenesis-related proteins (PR proteins) in plants in response to biotic or abiotic stresses is well known and is considered as a crucial mechanism for plant defense. A pathogenesis-related protein 4 cDNA was identified from a cacao-Moniliophthora perniciosa interaction cDNA library and named TcPR-4b. Results TcPR-4b presents a Barwin domain with six conserved cysteine residues, but lacks the chitin-binding site. Molecular modeling of TcPR-4b confirmed the importance of the cysteine residues to maintain the protein structure, and of several conserved amino acids for the catalytic activity. In the cacao genome, TcPR-4b belonged to a small multigene family organized mainly on chromosome 5. TcPR-4b RT-qPCR analysis in resistant and susceptible cacao plants infected by M. perniciosa showed an increase of expression at 48 hours after infection (hai) in both cacao genotypes. After the initial stage (24-72 hai), the TcPR-4b expression was observed at all times in the resistant genotypes, while in the susceptible one the expression was concentrated at the final stages of infection (45-90 days after infection). The recombinant TcPR-4b protein showed RNase, and bivalent ions dependent-DNase activity, but no chitinase activity. Moreover, TcPR-4b presented antifungal action against M. perniciosa, and the reduction of M. perniciosa survival was related to ROS production in fungal hyphae. Conclusion To our knowledge, this is the first report of a PR-4 showing simultaneously RNase, DNase and antifungal properties, but no chitinase activity. Moreover, we showed that the antifungal activity of TcPR-4b is directly related to RNase function. In cacao, TcPR-4b nuclease activities may be related to the establishment and maintenance of resistance, and to the PCD mechanism, in resistant and susceptible cacao genotypes, respectively. PMID:24920373

  6. Targeting a novel cancer-driving protein (LAPTM4B-35) by a small molecule (ETS) to inhibit cancer growth and metastasis.

    PubMed

    Li, Maojin; Zhou, Rouli; Shan, Yi; Li, Li; Wang, Lin; Liu, Gang

    2016-09-06

    Our previous studies demonstrated that LAPTM4B-35 is overexpressed in a variety of solid cancers including hepatocellular carcinoma (HCC), and is an independent factor for prognosis. LAPTM4B-35 overexpression causes carcinogenesis and enhances cancer growth, metastasis and multidrug resistance, and thus may be a candidate for therapeutic targeting. The present study shows ethylglyoxal bisthiosemicarbazon (ETS) has effective anticancer activity through LAPTM4B-35 targeting. Bel-7402 and HepG2 cell lines from human HCC were used as cell models in which LAPTM4B-35 is highly expressed, and a human fetal liver cell line was used as a control. The results showed ETS has a specific and pronounced lethal effect on HCC cells, but not on fetal liver cells in culture. ETS also attenuated growth and metastasis of human HCC xenograft in nude mice, and extended the life span of mice with HCC. ETS induced HCC cell apoptosis, and upregulated a large number of proapoptotic genes and downregulated antiapoptotic genes. When endogenous overexpression of LAPTM4B-35 was knocked down with RNAi, the killing effect of ETS on HepG2 cells was significantly attenuated. ETS also inhibited phosphorylation of LAPTM4B-35 Tyr285, which involves in activation of the PI3K/Akt signaling pathway induced by LAPTM4B-35 overexpression. In addition, the induction of alterations in quantity of c-Myc, Bcl-2, Bax, cyclinD1 and Akt-p molecules in HepG2 cells by LAPTM4B-35 overexpression could be reversed by ETS.

  7. Properdin is critical for antibody-dependent bactericidal activity against Neisseria gonorrhoeae that recruit C4b-binding protein1

    PubMed Central

    Gulati, Sunita; Agarwal, Sarika; Vasudhev, Shreekant; Rice, Peter A.; Ram, Sanjay

    2012-01-01

    Gonorrhea, a sexually transmitted disease caused by Neisseria gonorrhoeae, is an important cause of morbidity worldwide. A safe and effective vaccine against gonorrhea is needed because of emerging resistance of gonococci to almost every class of antibiotic. A gonococcal lipooligosaccharide (LOS) epitope defined by the monoclonal antibody (mAb), 2C7, is being evaluated as a candidate for development of an antibody-based vaccine. Immune antibodies against N. gonorrhoeae need to overcome several subversive mechanisms whereby gonococcus evades complement, including binding to C4b-binding protein (C4BP; classical pathway inhibitor) and factor H (alternative pathway [AP] inhibitor). The role of AP recruitment and in particular properdin in assisting killing of gonococci by specific antibodies is the subject of this study. We show that only those gonococcal strains that bind C4BP require properdin for killing by 2C7, whereas strains that do not bind C4BP are efficiently killed by 2C7 even when AP function is blocked. C3 deposition on bacteria mirrored killing. Recruitment of the AP by mAb 2C7, as measured by factor B binding, occurred in a properdin-dependent manner. These findings were confirmed using isogenic mutant strains that differed in their ability to bind to C4BP. Immune human serum that contained bactericidal antibodies directed against the 2C7 LOS epitope as well as murine anti-gonococcal antiserum, required functional properdin to kill C4BP binding strains, but not C4BP non-binding strains. Collectively, these data point to an important role for properdin in facilitating immune antibody-mediated complement-dependent killing of gonococcal strains that inhibit the classical pathway by recruiting C4BP. PMID:22368277

  8. Hydrogen exchange, core modules, and new designed proteins.

    PubMed

    Carulla, Natàlia; Barany, George; Woodward, Clare

    2002-12-10

    A strategy for design of new proteins that mimic folding properties of native proteins is based on peptides modeled on the slow exchange cores of natural proteins. We have synthesized peptides, called core modules, that correspond to the elements of secondary structure that carry the very slowest exchanging amides in a protein. The expectation is that, if soluble in water, core modules will form conformational ensembles that favor native-like structure. Core modules modeled on natural bovine pancreatic trypsin inhibitor have been shown by NMR studies to meet this expectation. The next step toward production of a native state mimic is to further shift the conformational bias of a core module toward more ordered structure by promoting module-module interactions that are mutually stabilizing. For this, two core modules were incorporated into a single molecule by means of a long cross-link. From a panel of several two-module peptides, one very promising lead emerged; it is called BetaCore. BetaCore is monomeric in water and forms a new fold composed of a four-stranded, antiparallel beta-sheet. The single, dominant conformation of BetaCore is characterized by various NMR experiments. Here we compare the individual core module to the two-module BetaCore and discuss the progressive stabilization of intramodule structure and the formation of new intermodule interactions.

  9. Gene Copy-Number Variations (CNVs) and Protein Levels of Complement C4A and C4B as Novel Biomarkers for Partial Disease Remissions in New-Onset Type 1 Diabetes Patients

    PubMed Central

    Kingery, Suzanne E.; Wu, Yee Ling; Zhou, Bi; Hoffman, Robert P.; Yu, C. Yung

    2014-01-01

    Objective To determine the roles of complement C4A and C4B gene CNVs and their plasma protein concentrations in residual insulin secretion and loss of pancreatic beta-cell function in new-onset type 1 diabetes patients. Methods We studied 34 patients of European ancestry with new-onset type 1 diabetes, aged between 3 and 17 years (10.7±3.45), at Nationwide Children's Hospital in Columbus, Ohio. Gene copy-number and size variations of complement C4A and C4B were determined by genomic Southern blot analyses. C4A and C4B protein phenotypes were elucidated by immunofixation and radial immunodiffusion. Two-digit HLA-DRB1 genotypes were determined by sequence-specific PCR. At 1 month and 9-month post diagnosis, stimulated C-peptide levels were measured after a standardized mixed-meal tolerance test. Results The diploid gene copy-numbers of C4A varied from 0 to 4, and those of C4B from 0 to 3. Patients with higher copy-number of C4A or higher C4A plasma protein concentrations at diagnosis had higher C-peptide levels at 1 month post diagnosis (p=0.008; p=0.008). When controlled by the Z-score of body-mass index, C4A copy-numbers, C4A protein concentrations, the age of disease-onset, the number of HLA-DR3 but not DR4 alleles were significant parameters in determining C-peptide levels. At 9-month post diagnosis, 42.3% of patients remained in partial remission, and these patients were characterized by lower total C4B copy-numbers or lower C4B protein concentrations (p=0.02, p=0.0004). Conclusions C4A appears to associate with the protection of residual beta-cell function in new-onset type 1 diabetes; C4B is correlated with the end of disease remission at 9-month post diagnosis. PMID:22151770

  10. Chimeric hepatitis B virus core particles with parts or copies of the hepatitis C virus core protein.

    PubMed Central

    Yoshikawa, A; Tanaka, T; Hoshi, Y; Kato, N; Tachibana, K; Iizuka, H; Machida, A; Okamoto, H; Yamasaki, M; Miyakawa, Y

    1993-01-01

    Either parts or multiple copies of the core gene of hepatitis C virus (HCV) were fused to the 3' terminus of the hepatitis B virus (HBV) core gene with 34 codons removed. As many as four copies of HCV core protein (720 amino acids) were fused to the carboxy terminus of truncated HBV core protein (149 amino acids) without preventing the assembly of HBV core particles. Chimeric core particles were sandwiched between monoclonal antibody to HBV core and that to HCV core, thereby indicating that antigenic determinants of both HBV and HCV cores were accessible on them. Proteolytic digestion deprived chimeric core particles of the antigenicity for the HCV core without affecting that of the HBV core, confirming the surface exposure of HCV core determinants. The density of HCV core determinants on chimeric core particles increased as copies of fused HCV core protein were increased. Hybrid core particles with multiple HCV core determinants would be instrumental as an antigen probe for detecting class-specific antibodies to the HCV core in patients with acute and chronic hepatitis C and for simultaneous detection of antibodies to HBV core and those to HCV core in donated blood. Images PMID:8396669

  11. The roles of endoplasmic reticulum overload response induced by HCV and NS4B protein in human hepatocyte viability and virus replication.

    PubMed

    Kong, Lingbao; Li, Shanshan; Huang, Mingjie; Xiong, Ying; Zhang, Qinghua; Ye, Li; Liu, Jing; Zhu, Xiangdong; Sun, Ruina; Guo, Yunli

    2015-01-01

    Hepatitis C virus (HCV) replication is associated with endoplasmic reticulum (ER) and its infection triggers ER stress. In response to ER stress, ER overload response (EOR) can be activated, which involves the release of Ca2+ from ER, production of reactive oxygen species (ROS) and activation of nuclear factor κB (NF-κB). We have previously reported that HCV NS4B expression activates NF-κB via EOR-Ca2+-ROS pathway. Here, we showed that NS4B expression and HCV infection activated cancer-related NF-κB signaling pathway and induced the expression of cancer-related NF-κB target genes via EOR-Ca2+-ROS pathway. Moreover, we found that HCV-activated EOR-Ca2+-ROS pathway had profound effects on host cell viability and HCV replication. HCV infection induced human hepatocyte death by EOR-Ca2+-ROS pathway, whereas activation of EOR-Ca2+-ROS-NF-κB pathway increased the cell viability. Meanwhile, EOR-Ca2+-ROS-NF-κB pathway inhibited acute HCV replication, which could alleviate the detrimental effect of HCV on cell viability and enhance chronic HCV infection. Together, our findings provide new insights into the functions of EOR-Ca2+-ROS-NF-κB pathway in natural HCV replication and pathogenesis.

  12. Determining protein similarity by comparing hydrophobic core structure.

    PubMed

    Gadzała, M; Kalinowska, B; Banach, M; Konieczny, L; Roterman, I

    2017-02-01

    Formal assessment of structural similarity is - next to protein structure prediction - arguably the most important unsolved problem in proteomics. In this paper we propose a similarity criterion based on commonalities between the proteins' hydrophobic cores. The hydrophobic core emerges as a result of conformational changes through which each residue reaches its intended position in the protein body. A quantitative criterion based on this phenomenon has been proposed in the framework of the CASP challenge. The structure of the hydrophobic core - including the placement and scope of any deviations from the idealized model - may indirectly point to areas of importance from the point of view of the protein's biological function. Our analysis focuses on an arbitrarily selected target from the CASP11 challenge. The proposed measure, while compliant with CASP criteria (70-80% correlation), involves certain adjustments which acknowledge the presence of factors other than simple spatial arrangement of solids.

  13. Structural characterization of Mumps virus fusion protein core

    SciTech Connect

    Liu Yueyong; Xu Yanhui; Lou Zhiyong; Zhu Jieqing; Hu Xuebo; Gao, George F.; Qiu Bingsheng . E-mail: Qiubs@sun.im.ac.cn; Rao Zihe . E-mail: raozh@xtal.tsinghua.edu.cn; Tien, Po . E-mail: tienpo@sun.im.ac.cn

    2006-09-29

    The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus, forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins.

  14. Interaction of structural core protein of classical swine fever virus with endoplasmic reticulum-associated degradation pathway protein OS9.

    PubMed

    Gladue, D P; O'Donnell, V; Fernandez-Sainz, I J; Fletcher, P; Baker-Branstetter, R; Holinka, L G; Sanford, B; Carlson, J; Lu, Z; Borca, M V

    2014-07-01

    Classical swine fever virus (CSFV) Core protein is involved in virus RNA protection, transcription regulation and virus virulence. To discover additional Core protein functions a yeast two-hybrid system was used to identify host proteins that interact with Core. Among the identified host proteins, the osteosarcoma amplified 9 protein (OS9) was further studied. Using alanine scanning mutagenesis, the OS9 binding site in the CSFV Core protein was identified, between Core residues (90)IAIM(93), near a putative cleavage site. Truncated versions of Core were used to show that OS9 binds a polypeptide representing the 12 C-terminal Core residues. Cells transfected with a double-fluorescent labeled Core construct demonstrated that co-localization of OS9 and Core occurred only on unprocessed forms of Core protein. A recombinant CSFV containing Core protein where residues (90)IAIM(93) were substituted by alanines showed no altered virulence in swine, but a significant decreased ability to replicate in cell cultures.

  15. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation

    PubMed Central

    Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian

    2015-01-01

    The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation. PMID:26646662

  16. Isolation and Characterization of the DNA and Protein Binding Activities of Adenovirus Core Protein V

    PubMed Central

    Pérez-Vargas, Jimena; Vaughan, Robert C.; Houser, Carolyn; Hastie, Kathryn M.; Kao, C. Cheng

    2014-01-01

    ABSTRACT The structure of adenovirus outer capsid was revealed recently at 3- to 4-Å resolution (V. Reddy, S. Natchiar, P. Stewart, and G. Nemerow, Science 329:1071–1075, 2010, http://dx.doi.org/10.1126/science.1187292); however, precise details on the function and biochemical and structural features for the inner core still are lacking. Protein V is one the most important components of the adenovirus core, as it links the outer capsid via association with protein VI with the inner DNA core. Protein V is a highly basic protein that strongly binds to DNA in a nonspecific manner. We report the expression of a soluble protein V that exists in monomer-dimer equilibrium. Using reversible cross-linking affinity purification in combination with mass spectrometry, we found that protein V contains multiple DNA binding sites. The binding sites from protein V mediate heat-stable nucleic acid associations, with some of the binding sites possibly masked in the virus by other core proteins. We also demonstrate direct interaction between soluble proteins V and VI, thereby revealing the bridging of the inner DNA core with the outer capsid proteins. These findings are consistent with a model of nucleosome-like structures proposed for the adenovirus core and encapsidated DNA. They also suggest an additional role for protein V in linking the inner nucleic acid core with protein VI on the inner capsid shell. IMPORTANCE Scant knowledge exists of how the inner core of adenovirus containing its double-stranded DNA (dsDNA) genome and associated proteins is organized. Here, we report a purification scheme for a recombinant form of protein V that allowed analysis of its interactions with the nucleic acid core region. We demonstrate that protein V exhibits stable associations with dsDNA due to the presence of multiple nucleic acid binding sites identified both in the isolated recombinant protein and in virus particles. As protein V also binds to the membrane lytic protein VI molecules

  17. Immunological Properties of Hepatitis B Core Antigen Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Francis, Michael J.; Hastings, Gillian Z.; Brown, Alan L.; Grace, Ken G.; Rowlands, David J.; Brown, Fred; Clarke, Berwyn E.

    1990-04-01

    The immunogenicity of a 19 amino acid peptide from foot-and-mouth disease virus has previously been shown to approach that of the inactivated virus from which it was derived after multimeric particulate presentation as an N-terminal fusion with hepatitis B core antigen. In this report we demonstrate that rhinovirus peptide-hepatitis B core antigen fusion proteins are 10-fold more immunogenic than peptide coupled to keyhole limpet hemocyanin and 100-fold more immunogenic than uncoupled peptide with an added helper T-cell epitope. The fusion proteins can be readily administered without adjuvant or with adjuvants acceptable for human and veterinary application and can elicit a response after nasal or oral dosing. The fusion proteins can also act as T-cell-independent antigens. These properties provide further support for their suitability as presentation systems for "foreign" epitopes in the development of vaccines.

  18. Interaction of structural core protein of Classical Swine Fever Virus with endoplasmic reticulum-associated degradation pathway protein OS9

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classical Swine Fever Virus (CSFV) Core protein is involved in virus RNA protection, transcription regulation and virus virulence. To discover additional Core protein functions a yeast two-hybrid system was used to identify host proteins that interact with Core. Among the identified host proteins, t...

  19. Glycosyltransferase function in core 2-type protein O glycosylation.

    PubMed

    Stone, Erica L; Ismail, Mohd Nazri; Lee, Seung Ho; Luu, Ying; Ramirez, Kevin; Haslam, Stuart M; Ho, Samuel B; Dell, Anne; Fukuda, Minoru; Marth, Jamey D

    2009-07-01

    Three glycosyltransferases have been identified in mammals that can initiate core 2 protein O glycosylation. Core 2 O-glycans are abundant among glycoproteins but, to date, few functions for these structures have been identified. To investigate the biological roles of core 2 O-glycans, we produced and characterized mice deficient in one or more of the three known glycosyltransferases that generate core 2 O-glycans (C2GnT1, C2GnT2, and C2GnT3). A role for C2GnT1 in selectin ligand formation has been described. We now report that C2GnT2 deficiency impaired the mucosal barrier and increased susceptibility to colitis. C2GnT2 deficiency also reduced immunoglobulin abundance and resulted in the loss of all core 4 O-glycan biosynthetic activity. In contrast, the absence of C2GnT3 altered behavior linked to reduced thyroxine levels in circulation. Remarkably, elimination of all three C2GnTs was permissive of viability and fertility. Core 2 O-glycan structures were reduced among tissues from individual C2GnT deficiencies and completely absent from triply deficient mice. C2GnT deficiency also induced alterations in I-branching, core 1 O-glycan formation, and O mannosylation. Although the absence of C2GnT and C4GnT activities is tolerable in vivo, core 2 O glycosylation exerts a significant influence on O-glycan biosynthesis and is important in multiple physiological processes.

  20. Expression of viral polymerase and phosphorylation of core protein determine core and capsid localization of the human hepatitis B virus.

    PubMed

    Deroubaix, Aurélie; Osseman, Quentin; Cassany, Aurélia; Bégu, Dominique; Ragues, Jessica; Kassab, Somar; Lainé, Sébastien; Kann, Michael

    2015-01-01

    Biopsies from patients show that hepadnaviral core proteins and capsids - collectively called core - are found in the nucleus and cytoplasm of infected hepatocytes. In the majority of studies, cytoplasmic core localization is related to low viraemia while nuclear core localization is associated with high viral loads. In order to better understand the molecular interactions leading to core localization, we analysed transfected hepatoma cells using immune fluorescence microscopy. We observed that expression of core protein in the absence of other viral proteins led to nuclear localization of core protein and capsids, while expression of core in the context of the other viral proteins resulted in a predominantly cytoplasmic localization. Analysis of which viral partner was responsible for cytoplasmic retention indicated that the HBx, surface proteins and HBeAg had no impact but that the viral polymerase was the major determinant. Further analysis revealed that ϵ, an RNA structure to which the viral polymerase binds, was essential for cytoplasmic retention. Furthermore, we showed that core protein phosphorylation at Ser 164 was essential for the cytoplasmic core localization phenotype, which is likely to explain differences observed between individual cells.

  1. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    SciTech Connect

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.; Machius, Mischa; Szyperski, Thomas; Kuhlman, Brian

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helix bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).

  2. Variants in CUL4B are Associated with Cerebral Malformations

    PubMed Central

    Vulto-van Silfhout, Anneke T.; Nakagawa, Tadashi; Bahi-Buisson, Nadia; Haas, Stefan A.; Hu, Hao; Bienek, Melanie; Vissers, Lisenka E.L.M.; Gilissen, Christian; Tzschach, Andreas; Busche, Andreas; Müsebeck, Jörg; Rump, Patrick; Mathijssen, Inge B.; Avela, Kristiina; Somer, Mirja; Doagu, Fatma; Philips, Anju K.; Rauch, Anita; Baumer, Alessandra; Voesenek, Krysta; Poirier, Karine; Vigneron, Jacqueline; Amram, Daniel; Odent, Sylvie; Nawara, Magdalena; Obersztyn, Ewa; Lenart, Jacek; Charzewska, Agnieszka; Lebrun, Nicolas; Fischer, Ute; Nillesen, Willy M.; Yntema, Helger G.; Järvelä, Irma; Ropers, Hans-Hilger; de Vries, Bert B.A.; Brunner, Han G.; van Bokhoven, Hans; Raymond, F. Lucy; Willemsen, Michèl A.A.P.; Chelly, Jamel; Xiong, Yue; Barkovich, A. James; Kalscheuer, Vera M.; Kleefstra, Tjitske; de Brouwer, Arjan P.M.

    2015-01-01

    Variants in cullin 4B (CUL4B) are a known cause of syndromic X-linked intellectual disability. Here, we describe an additional 25 patients from 11 families with variants in CUL4B. We identified nine different novel variants in these families and confirmed the pathogenicity of all nontruncating variants. Neuroimaging data, available for 15 patients, showed the presence of cerebral malformations in ten patients. The cerebral anomalies comprised malformations of cortical development (MCD), ventriculomegaly, and diminished white matter volume. The phenotypic heterogeneity of the cerebral malformations might result from the involvement of CUL-4B in various cellular pathways essential for normal brain development. Accordingly, we show that CUL-4B interacts with WDR62, a protein in which variants were previously identified in patients with microcephaly and a wide range of MCD. This interaction might contribute to the development of cerebral malformations in patients with variants in CUL4B. PMID:25385192

  3. Variants in CUL4B are associated with cerebral malformations.

    PubMed

    Vulto-van Silfhout, Anneke T; Nakagawa, Tadashi; Bahi-Buisson, Nadia; Haas, Stefan A; Hu, Hao; Bienek, Melanie; Vissers, Lisenka E L M; Gilissen, Christian; Tzschach, Andreas; Busche, Andreas; Müsebeck, Jörg; Rump, Patrick; Mathijssen, Inge B; Avela, Kristiina; Somer, Mirja; Doagu, Fatma; Philips, Anju K; Rauch, Anita; Baumer, Alessandra; Voesenek, Krysta; Poirier, Karine; Vigneron, Jacqueline; Amram, Daniel; Odent, Sylvie; Nawara, Magdalena; Obersztyn, Ewa; Lenart, Jacek; Charzewska, Agnieszka; Lebrun, Nicolas; Fischer, Ute; Nillesen, Willy M; Yntema, Helger G; Järvelä, Irma; Ropers, Hans-Hilger; de Vries, Bert B A; Brunner, Han G; van Bokhoven, Hans; Raymond, F Lucy; Willemsen, Michèl A A P; Chelly, Jamel; Xiong, Yue; Barkovich, A James; Kalscheuer, Vera M; Kleefstra, Tjitske; de Brouwer, Arjan P M

    2015-01-01

    Variants in cullin 4B (CUL4B) are a known cause of syndromic X-linked intellectual disability. Here, we describe an additional 25 patients from 11 families with variants in CUL4B. We identified nine different novel variants in these families and confirmed the pathogenicity of all nontruncating variants. Neuroimaging data, available for 15 patients, showed the presence of cerebral malformations in ten patients. The cerebral anomalies comprised malformations of cortical development (MCD), ventriculomegaly, and diminished white matter volume. The phenotypic heterogeneity of the cerebral malformations might result from the involvement of CUL-4B in various cellular pathways essential for normal brain development. Accordingly, we show that CUL-4B interacts with WDR62, a protein in which variants were previously identified in patients with microcephaly and a wide range of MCD. This interaction might contribute to the development of cerebral malformations in patients with variants in CUL4B.

  4. Effects of the interactions of classical swine fever virus core protein with proteins of SUMOylation pathway on virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The classical swine fever virus (CSFV) nucleocapsid or Core protein serves a protective function for the viral RNA, and acts as a transcriptional regulator. However studies involving the CSFV Core protein have been limited. To gain insight into other functions of the Core protein, particularly into ...

  5. Boeing F4B-4

    NASA Technical Reports Server (NTRS)

    1932-01-01

    The Boeing F4B-4 was seen to differ from earlier F4Bs in having a vertical fin with slightly more area. The Boeing model 235 was not fitted with a NACA cowling, but rather the less efficient 'Townend' ring around the Pratt & Whitney Wasp radials cylinders. This aircraft was much used by both the Navy and the Army Air Corps in the late 1920's and early 1930's. The Army variation was known as the P-12E. The engine cowling was a British development known as the 'Townend' ring. It differed from the NACA cowling and was less effective in reducing the drag.

  6. What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties.

    PubMed Central

    Munson, M.; Balasubramanian, S.; Fleming, K. G.; Nagi, A. D.; O'Brien, R.; Sturtevant, J. M.; Regan, L.

    1996-01-01

    Here we describe how the systematic redesign of a protein's hydrophobic core alters its structure and stability. We have repacked the hydrophobic core of the four-helix-bundle protein, Rop, with altered packing patterns and various side chain shapes and sizes. Several designs reproduce the structure and native-like properties of the wild-type, while increasing the thermal stability. Other designs, either with similar sizes but different shapes, or with decreased sizes of the packing residues, destabilize the protein. Finally, overpacking the core with the larger side chains causes a loss of native-like structure. These results allow us to further define the roles of tight residue packing and the burial of hydrophobic surface area in the construction of native-like proteins. PMID:8844848

  7. A high-quality secretome of A549 cells aided the discovery of C4b-binding protein as a novel serum biomarker for non-small cell lung cancer.

    PubMed

    Luo, Xiaoyang; Liu, Yansheng; Wang, Rui; Hu, Haichuan; Zeng, Rong; Chen, Haiquan

    2011-04-01

    Cancer secretomes are a promising source for biomarker discovery. The analysis of cancer secretomes still faces some difficulties mainly related to the intracellular contamination, which hinders the qualification and follow-up validations. This study aimed to establish a high-quality secretome of A549 cells by using the cellular proteome as a reference and to test the merits of this refined secretome for biomarker discovery for non-small cell lung cancer (NSCLC). Using one-dimensional gel electrophoresis followed by liquid-chromatography tandem mass spectrometry, we comprehensively investigated the secretome and the concurrent cellular proteome of A549 cells. A high-quality secretome consisting of 382 proteins was refined from 889 initial secretory proteins. More than 85.3% of proteins were annotated as secreted and 76.8% as extracellular or membrane-bound. The discriminative power of the lung-cancer associated secretome was confirmed by gene expression and serum proteomic data. The elevated level of C4b-binding Protein (C4BP) in NSCLC blood was verified by enzyme-linked immunosorbent assays (ELISA, p = 6.07e-6). Moreover, the serum C4BP level in 89 patients showed a strong association with the clinical staging of NSCLC. Our reference-experiment-driven strategy is simple and widely applicable, and may facilitate the identification of novel promising biomarkers of lung cancer.

  8. HSC90 is required for nascent hepatitis C virus core protein stability in yeast cells.

    PubMed

    Kubota, Naoko; Inayoshi, Yasutaka; Satoh, Naoko; Fukuda, Takashi; Iwai, Kenta; Tomoda, Hiroshi; Kohara, Michinori; Kataoka, Kazuhiro; Shimamoto, Akira; Furuichi, Yasuhiro; Nomoto, Akio; Naganuma, Akira; Kuge, Shusuke

    2012-07-30

    Hepatitis C virus core protein (Core) contributes to HCV pathogenicity. Here, we demonstrate that Core impairs growth in budding yeast. We identify HSP90 inhibitors as compounds that reduce intracellular Core protein level and restore yeast growth. Our results suggest that HSC90 (Hsc82) may function in the protection of the nascent Core polypeptide against degradation in yeast and the C-terminal region of Core corresponding to the organelle-interaction domain was responsible for Hsc82-dependent stability. The yeast system may be utilized to select compounds that can direct the C-terminal region to reduce the stability of Core protein.

  9. Phosphorylation of mammalian initiation factor eIF-4B

    SciTech Connect

    Duncan, R.F.; Milburn, S.C.; Cooper, R.; Gould, K.; Hunter, T.; Hershey, J.W.B.

    1987-05-01

    The phosphorylation of initiation factors appears to be an important mechanism for regulating the rate of translation in mammalian cells. eIF-4B (80 kDa) purified from HeLa cells exhibits a complex array of 8 to 12 spots when analyzed by 2-dimensional isoelectric focusing - SDS polyacrylamide gel electrophoresis. A similar array of eIF-4B spots is seen when total lysate proteins are analyzed by immunoblotting with anti-eIF-4B antiserum or with antibodies affinity-purified from the most basic eIF-4B spot. The multiple forms of eIF-4B are due to phosphorylation, since all but the most basic spot are labeled with (/sup 32/P)phosphate in vivo and the action of alkaline phosphatase in vitro reduces the array to only two spots. Tryptic peptide maps of phosphopeptides from each of the various isoelectric variants of eIF-4B show a similar complexity, suggesting that a number of different sites are phosphorylated in a random order. When serum-deprived HeLa cells are treated with phorbol ester, both the protein synthesis rate and the extent of eIF-4B phosphorylation increase, suggesting that C kinase may be a regulator of translation. Purified C kinase phosphorylates a number of pure initiation factors in vitro, but eIF-4B is the strongest target protein. When pure eIF-4B is treated, the entire mass of eIF-4B is shifted to the most acidic spots, indicating very strong phosphorylation. Attempts are being made to detect differences in the in vitro activities of the non-phosphorylated and highly phosphorylated forms.

  10. The Native Form and Maturation Process of Hepatitis C Virus Core Protein

    PubMed Central

    Yasui, Kohichiroh; Wakita, Takaji; Tsukiyama-Kohara, Kyoko; Funahashi, Shin-Ichi; Ichikawa, Masumi; Kajita, Tadahiro; Moradpour, Darius; Wands, Jack R.; Kohara, Michinori

    1998-01-01

    The maturation and subcellular localization of hepatitis C virus (HCV) core protein were investigated with both a vaccinia virus expression system and CHO cell lines stably transformed with HCV cDNA. Two HCV core proteins, with molecular sizes of 21 kDa (p21) and 23 kDa (p23), were identified. The C-terminal end of p23 is amino acid 191 of the HCV polyprotein, and p21 is produced as a result of processing between amino acids 174 and 191. The subcellular localization of the HCV core protein was examined by confocal laser scanning microscopy. Although HCV core protein resided predominantly in the cytoplasm, it was also found in the nucleus and had the same molecular size as p21 in both locations, as determined by subcellular fractionation. The HCV core proteins had different immunoreactivities to a panel of monoclonal antibodies. Antibody 5E3 stained core protein in both the cytoplasm and the nucleus, C7-50 stained core protein only in the cytoplasm, and 499S stained core protein only in the nucleus. These results clearly indicate that the p23 form of HCV core protein is processed to p21 in the cytoplasm and that the core protein in the nucleus has a higher-order structure different from that of p21 in the cytoplasm. HCV core protein in sera of patients with HCV infection was analyzed in order to determine the molecular size of genuinely processed HCV core protein. HCV core protein in sera was found to have exactly the same molecular weight as the p21 protein. These results suggest that p21 core protein is a component of native viral particles. PMID:9621068

  11. The expanded FindCore method for identification of a core atom set for assessment of protein structure prediction.

    PubMed

    Snyder, David A; Grullon, Jennifer; Huang, Yuanpeng J; Tejero, Roberto; Montelione, Gaetano T

    2014-02-01

    Maximizing the scientific impact of NMR-based structure determination requires robust and statistically sound methods for assessing the precision of NMR-derived structures. In particular, a method to define a core atom set for calculating superimpositions and validating structure predictions is critical to the use of NMR-derived structures as targets in the CASP competition. FindCore (Snyder and Montelione, Proteins 2005;59:673-686) is a superimposition independent method for identifying a core atom set and partitioning that set into domains. However, as FindCore optimizes superimposition by sensitively excluding not-well-defined atoms, the FindCore core may not comprise all atoms suitable for use in certain applications of NMR structures, including the CASP assessment process. Adapting the FindCore approach to assess predicted models against experimental NMR structures in CASP10 required modification of the FindCore method. This paper describes conventions and a standard protocol to calculate an "Expanded FindCore" atom set suitable for validation and application in biological and biophysical contexts. A key application of the Expanded FindCore method is to identify a core set of atoms in the experimental NMR structure for which it makes sense to validate predicted protein structure models. We demonstrate the application of this Expanded FindCore method in characterizing well-defined regions of 18 NMR-derived CASP10 target structures. The Expanded FindCore protocol defines "expanded core atom sets" that match an expert's intuition of which parts of the structure are sufficiently well defined to use in assessing CASP model predictions. We also illustrate the impact of this analysis on the CASP GDT assessment scores.

  12. Nanog regulates primordial germ cell migration through Cxcr4b.

    PubMed

    Sánchez-Sánchez, Ana Virginia; Camp, Esther; Leal-Tassias, Aránzazu; Atkinson, Stuart P; Armstrong, Lyle; Díaz-Llopis, Manuel; Mullor, José L

    2010-09-01

    Gonadal development in vertebrates depends on the early determination of primordial germ cells (PGCs) and their correct migration to the sites where the gonads develop. Several genes have been implicated in PGC specification and migration in vertebrates. Additionally, some of the genes associated with pluripotency, such as Oct4 and Nanog, are expressed in PGCs and gonads, suggesting a role for these genes in maintaining pluripotency of the germ lineage, which may be considered the only cell type that perpetually maintains stemness properties. Here, we report that medaka Nanog (Ol-Nanog) is expressed in the developing PGCs. Depletion of Ol-Nanog protein causes aberrant migration of PGCs and inhibits expression of Cxcr4b in PGCs, where it normally serves as the receptor of Sdf1a to guide PGC migration. Moreover, chromatin immunoprecipitation analysis demonstrates that Ol-Nanog protein binds to the promoter region of Cxcr4b, suggesting a direct regulation of Cxcr4b by Ol-Nanog. Simultaneous overexpression of Cxcr4b mRNA and depletion of Ol-Nanog protein in PGCs rescues the migration defective phenotype induced by a loss of Ol-Nanog, whereas overexpression of Sdf1a, the ligand for Cxcr4b, does not restore proper PGC migration. These results indicate that Ol-Nanog mediates PGC migration by regulating Cxcr4b expression.

  13. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    SciTech Connect

    Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling; Lo, Shih-Yen

    2013-05-24

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.

  14. Importin β Can Bind Hepatitis B Virus Core Protein and Empty Core-Like Particles and Induce Structural Changes

    PubMed Central

    Pierson, Elizabeth E.; Keifer, David Z.; Delaleau, Mildred; Gallucci, Lara; Cazenave, Christian; Kann, Michael; Jarrold, Martin F.; Zlotnick, Adam

    2016-01-01

    Hepatitis B virus (HBV) capsids are found in many forms: immature single-stranded RNA-filled cores, single-stranded DNA-filled replication intermediates, mature cores with relaxed circular double-stranded DNA, and empty capsids. A capsid, the protein shell of the core, is a complex of 240 copies of core protein. Mature cores are transported to the nucleus by a complex that includes both importin α and importin β (Impα and Impβ), which bind to the core protein’s C-terminal domains (CTDs). Here we have investigated the interactions of HBV core protein with importins in vitro. Strikingly, empty capsids and free core protein can bind Impβ without Impα. Cryo-EM image reconstructions show that the CTDs, which are located inside the capsid, can extrude through the capsid to be bound by Impβ. Impβ density localized on the capsid exterior near the quasi-sixfold vertices, suggested a maximum of 30 Impβ per capsid. However, examination of complexes using single molecule charge-detection mass spectrometry indicate that some complexes include over 90 Impβ molecules. Cryo-EM of capsids incubated with excess Impβ shows a population of damaged particles and a population of “dark” particles with internal density, suggesting that Impβ is effectively swallowed by the capsids, which implies that the capsids transiently open and close and can be destabilized by Impβ. Though the in vitro complexes with great excess of Impβ are not biological, these results have implications for trafficking of empty capsids and free core protein; activities that affect the basis of chronic HBV infection. PMID:27518410

  15. Sumoylation of the Core Protein in Classical Swine Fever Virus is Essential for Virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The classical swine fever virus core protein makes up the nucleocapsid of the virus, and is serves both as a protective function for the viral RNA and a transcriptional regulator in the host cell. To identify host proteins that interact with the viral Core protein we utilized the yeast two-hybrid to...

  16. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPAR{gamma}

    SciTech Connect

    Kim, Kook Hwan; Hong, Sung Pyo; Kim, KyeongJin; Park, Min Jung; Kim, Kwang Jin; Cheong, JaeHun . E-mail: molecule85@pusan.ac.kr

    2007-04-20

    Hepatic steatosis is a common feature in patients with chronic hepatitis C virus (HCV) infection. HCV core protein plays an important role in the development of hepatic steatosis in HCV infection. Because SREBP1 (sterol regulatory element binding protein 1) and PPAR{gamma} (peroxisome proliferators-activated receptor {gamma}) are involved in the regulation of lipid metabolism of hepatocyte, we sought to determine whether HCV core protein may impair the expression and activity of SREBP1 and PPAR{gamma}. In this study, it was demonstrated that HCV core protein increases the gene expression of SREBP1 not only in Chang liver, Huh7, and HepG2 cells transiently transfected with HCV core protein expression plasmid, but also in Chang liver-core stable cells. Furthermore, HCV core protein enhanced the transcriptional activity of SREBP1. In addition, HCV core protein elevated PPAR{gamma} transcriptional activity. However, HCV core protein had no effect on PPAR{gamma} gene expression. Finally, we showed that HCV core protein stimulates the genes expression of lipogenic enzyme and fatty acid uptake associated protein. Therefore, our finding provides a new insight into the mechanism of hepatic steatosis by HCV infection.

  17. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein.

    PubMed

    Cerutti, Andrea; Maillard, Patrick; Minisini, Rosalba; Vidalain, Pierre-Olivier; Roohvand, Farzin; Pecheur, Eve-Isabelle; Pirisi, Mario; Budkowska, Agata

    2011-01-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified.We show here that the aa(109-133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1-173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.

  18. Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers.

    PubMed Central

    Wang, S W; Speck, N A

    1992-01-01

    The Moloney murine leukemia virus causes thymic leukemias when injected into newborn mice. A major genetic determinant of the thymic disease specificity of the Moloney virus genetically maps to two protein binding sites in the Moloney virus enhancer, the leukemia virus factor b site and the adjacent core site. Point mutations introduced into either of these sites significantly shifts the disease specificity of the Moloney virus from thymic leukemia to erythroleukemia (N. A. Speck, B. Renjifo, E. Golemis, T. Frederickson, J. Hartley, and N. Hopkins, Genes Dev. 4:233-242, 1990). We have purified several polypeptides that bind to the core site in the Moloney virus enhancer. These proteins were purified from calf thymus nuclear extracts by selective pH denaturation, followed by chromatography on heparin-Sepharose, nonspecific double-stranded DNA-cellulose, and core oligonucleotide-coupled affinity columns. We have achieved greater than 13,000-fold purification of the core-binding factors (CBFs), with an overall yield of approximately 19%. Analysis of purified protein fractions by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis reveals more than 10 polypeptides. Each of the polypeptides was recovered from an SDS-polyacrylamide gel, and those in the molecular size range of 19 to 35 kDa were demonstrated to have core-binding activity. The purified CBFs were shown by DNase I footprint analyses to bind the core site in the Moloney virus enhancer specifically, and also to core motifs in the enhancers from a simian immunodeficiency virus, the immunoglobulin mu chain, and T-cell receptor gamma-chain genes. Images PMID:1309596

  19. Generation and characterization of a Cyp4b1 null mouse and the role of CYP4B1 in the activation and toxicity of Ipomeanol.

    PubMed

    Parkinson, Oliver T; Liggitt, H Denny; Rettie, Allan E; Kelly, Edward J

    2013-08-01

    4-Ipomeanol (IPO) is a prototypical pulmonary toxin that requires P450-mediated metabolic activation to reactive intermediates in order to elicit its toxic effects. CYP4B1 is a pulmonary enzyme that has been shown, in vitro, to have a high capacity for bioactivating IPO. In order to determine, unambiguously, the role of CYP4B1 in IPO bioactivation in vivo, we generated Cyp4b1 null mice following targeted disruption of the gene downstream of exon 1. Cyp4b1 (-/-) mice are viable and healthy, with no overt phenotype, and no evidence of compensatory upregulation of other P450 isoforms in any of the tissues examined. Pulmonary and renal microsomes prepared from male Cyp4b1 (-/-) mice exhibited no detectable expression of the protein and catalyzed the in vitro bioactivation of IPO at < 10% of the rates observed in tissue microsomes from Cyp4b1 (+/+) animals. Administration of IPO (20mg/kg) to Cyp4b1 (+/+) mice resulted in characteristic lesions in the lung, and to a lesser extent in the kidney, which were completely absent in Cyp4b1 (-/-) mice. We conclude that CYP4B1 is a critical enzyme for the bioactivation of IPO in vivo and that the Cyp4b1 (-/-) mouse is a useful model for studying CYP4B1-dependent metabolism and toxicity.

  20. The major form of hepatitis C virus alternate reading frame protein is suppressed by core protein expression

    PubMed Central

    Wolf, Marie; Dimitrova, Maria; Baumert, Thomas F.; Schuster, Catherine

    2008-01-01

    Hepatitis C virus (HCV) is a human RNA virus encoding 10 proteins in a single open reading frame. In the +1 frame, an ‘alternate reading frame’ (ARF) overlaps with the core protein-encoding sequence and encodes the ARF protein (ARFP). Here, we investigated the molecular regulatory mechanisms of ARFP expression in HCV target cells. Chimeric HCV-luciferase reporter constructs derived from the infectious HCV prototype isolate H77 were transfected into hepatocyte-derived cell lines. Translation initiation was most efficient at the internal AUG codon at position 86/88, resulting in the synthesis of a truncated ARFP named 86/88ARFP. Interestingly, 86/88ARFP synthesis was markedly enhanced in constructs containing an inactivated core protein reading frame. This enhancement was reversed by co-expression of core protein in trans, demonstrating suppression of ARFP synthesis by HCV core protein. In conclusion, our results indicate that translation of ARFP occurs mainly by alternative internal initiation at position 86/88 and is regulated by HCV core protein expression. The suppression of ARFP translation by HCV core protein suggests that ARFP expression is inversely linked to the level of viral replication. These findings define key mechanisms regulating ARFP expression and set the stage for further studies addressing the function of ARFP within the viral life cycle. PMID:18400784

  1. Bidirectional Lipid Droplet Velocities Are Controlled by Differential Binding Strengths of HCV Core DII Protein

    PubMed Central

    Lyn, Rodney K.; Hope, Graham; Sherratt, Allison R.; McLauchlan, John; Pezacki, John Paul

    2013-01-01

    Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV. PMID:24223760

  2. Neuroblastoma patient outcomes, tumor differentiation, and ERK activation are correlated with expression levels of the ubiquitin ligase UBE4B

    PubMed Central

    Woodfield, Sarah E.; Guo, Rong Jun; Liu, Yin; Major, Angela M.; Hollingsworth, Emporia Faith; Indiviglio, Sandra; Whittle, Sarah B.; Mo, Qianxing; Bean, Andrew J.; Ittmann, Michael; Lopez-Terrada, Dolores; Zage, Peter E.

    2016-01-01

    Background UBE4B is an E3/E4 ubiquitin ligase whose gene is located in chromosome 1p36.22. We analyzed the associations of UBE4B gene and protein expression with neuroblastoma patient outcomes and with tumor prognostic features and histology. Methods We evaluated the association of UBE4B gene expression with neuroblastoma patient outcomes using the R2 Platform. We screened neuroblastoma tumor samples for UBE4B protein expression using immunohistochemistry. FISH for UBE4B and 1p36 deletion was performed on tumor samples. We then evaluated UBE4B expression for associations with prognostic factors and with levels of phosphorylated ERK in neuroblastoma tumors and cell lines. Results Low UBE4B gene expression is associated with poor outcomes in patients with neuroblastoma and with worse outcomes in all patient subgroups. UBE4B protein expression was associated with neuroblastoma tumor differentiation, and decreased UBE4B protein levels were associated with high-risk features. UBE4B protein levels were also associated with levels of phosphorylated ERK. Conclusions We have demonstrated associations between UBE4B gene expression and neuroblastoma patient outcomes and prognostic features. Reduced UBE4B protein expression in neuroblastoma tumors was associated with high-risk features, a lack of differentiation, and with ERK activation. These results suggest UBE4B may contribute to the poor prognosis of neuroblastoma tumors with 1p36 deletions and that UBE4B expression may mediate neuroblastoma differentiation. PMID:27014418

  3. New class of cargo protein in Tetrahymena thermophila dense core secretory granules.

    PubMed

    Haddad, Alex; Bowman, Grant R; Turkewitz, Aaron P

    2002-08-01

    Regulated exocytosis of dense core secretory granules releases biologically active proteins in a stimulus-dependent fashion. The packaging of the cargo within newly forming granules involves a transition: soluble polypeptides condense to form water-insoluble aggregates that constitute the granule cores. Following exocytosis, the cores generally disassemble to diffuse in the cell environment. The ciliates Tetrahymena thermophila and Paramecium tetraurelia have been advanced as genetically manipulatable systems for studying exocytosis via dense core granules. However, all of the known granule proteins in these organisms condense to form the architectural units of lattices that are insoluble both before and after exocytosis. Using an approach designed to detect new granule proteins, we have now identified Igr1p (induced during granule regeneration). By structural criteria, it is unrelated to the previously characterized lattice-forming proteins. It is distinct in that it is capable of dissociating from the insoluble lattice following secretion and therefore represents the first diffusible protein identified in ciliate granules.

  4. Dynamics of lipid droplets induced by the hepatitis C virus core protein

    SciTech Connect

    Lyn, Rodney K.; Kennedy, David C.; Stolow, Albert; Ridsdale, Andrew; Pezacki, John Paul

    2010-09-03

    Research highlights: {yields} Hepatitis C virus uses lipid droplets (LD) onto which HCV core proteins bind. {yields} HCV core proteins on LDs facilitate viral particle assembly. {yields} We used a novel combination of CARS, two-photon fluorescence, and DIC microscopies. {yields} Particle tracking experiments show that core slowly affects LD localization. {yields} Particle tracking measured the change in speed and directionality of LD movement. -- Abstract: The hepatitis C virus (HCV) is a global health problem, with limited treatment options and no vaccine available. HCV uses components of the host cell to proliferate, including lipid droplets (LD) onto which HCV core proteins bind and facilitate viral particle assembly. We have measured the dynamics of HCV core protein-mediated changes in LDs and rates of LD movement on microtubules using a combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), and differential interference contrast (DIC) microscopies. Results show that the HCV core protein induces rapid increases in LD size. Particle tracking experiments show that HCV core protein slowly affects LD localization by controlling the directionality of LD movement on microtubules. These dynamic processes ultimately aid HCV in propagating and the molecules and interactions involved represent novel targets for potential therapeutic intervention.

  5. Mutations in classical swine fever virus NS4B affect virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NS4B is one of the non-structural proteins of Classical Swine Fever Virus (CSFV), a virus causing a severe disease in swine. Protein domain analysis of the predicted amino acid sequence of NS4B in highly pathogenic CSFV strain Brescia (BICv) identified a Toll/Interleukin-1 receptor like domain (TIR...

  6. Fcgamma receptor-like activity of hepatitis C virus core protein.

    PubMed

    Maillard, Patrick; Lavergne, Jean-Pierre; Sibéril, Sophie; Faure, Grazyna; Roohvand, Farzin; Petres, Stephane; Teillaud, Jean Luc; Budkowska, Agata

    2004-01-23

    We have previously demonstrated that viral particles with the properties of nonenveloped hepatitis C virus (HCV) nucleocapsids occur in the serum of HCV-infected individuals (1). We show here that nucleocapsids purified directly from serum or isolated from HCV virions have FcgammaR-like activity and bind "nonimmune" IgG via its Fcgamma domain. HCV core proteins produced in Escherichia coli and in the baculovirus expression system also bound "nonimmune" IgG and their Fcgamma fragments. Folded conformation was required for IgG binding because the FcgammaR-like site of the core protein was inactive in denaturing conditions. Studies with synthetic core peptides showed that the region spanning amino acids 3-75 was essential for formation of the IgG-binding site. The interaction between the HCV core and human IgG is more efficient in acidic (pH 6.0) than in neutral conditions. The core protein-binding site on the IgG molecule differs from those for C1q, FcgammaRII (CD32), and FcgammaRIII (CD16) but overlaps with that for soluble protein A from Staphylococcus aureus (SpA), which is located in the CH2-CH3 interface of IgG. These characteristics of the core-IgG interaction are very similar to those of the neonatal FcRn. Surface plasmon resonance studies suggested that the binding of an anti-core antibody to HCV core protein might be "bipolar" through its paratope to the corresponding epitope and by its Fcgamma region to the FcgammaR-like motif on this protein. These features of HCV nucleocapsids and HCV core protein may confer an advantage for HCV in terms of survival by interfering with host defense mechanisms mediated by the Fcgamma part of IgG.

  7. The Core Protein of Classical Swine Fever Virus Is Dispensable for Virus Propagation In Vitro

    PubMed Central

    Riedel, Christiane; Lamp, Benjamin; Heimann, Manuela; König, Matthias; Blome, Sandra; Moennig, Volker; Schüttler, Christian; Thiel, Heinz-Jürgen; Rümenapf, Tillmann

    2012-01-01

    Core protein of Flaviviridae is regarded as essential factor for nucleocapsid formation. Yet, core protein is not encoded by all isolates (GBV- A and GBV- C). Pestiviruses are a genus within the family Flaviviridae that affect cloven-hoofed animals, causing economically important diseases like classical swine fever (CSF) and bovine viral diarrhea (BVD). Recent findings describe the ability of NS3 of classical swine fever virus (CSFV) to compensate for disabling size increase of core protein (Riedel et al., 2010). NS3 is a nonstructural protein possessing protease, helicase and NTPase activity and a key player in virus replication. A role of NS3 in particle morphogenesis has also been described for other members of the Flaviviridae (Patkar et al., 2008; Ma et al., 2008). These findings raise questions about the necessity and function of core protein and the role of NS3 in particle assembly. A reverse genetic system for CSFV was employed to generate poorly growing CSFVs by modification of the core gene. After passaging, rescued viruses had acquired single amino acid substitutions (SAAS) within NS3 helicase subdomain 3. Upon introduction of these SAAS in a nonviable CSFV with deletion of almost the entire core gene (Vp447Δc), virus could be rescued. Further characterization of this virus with regard to its physical properties, morphology and behavior in cell culture did not reveal major differences between wildtype (Vp447) and Vp447Δc. Upon infection of the natural host, Vp447Δc was attenuated. Hence we conclude that core protein is not essential for particle assembly of a core-encoding member of the Flaviviridae, but important for its virulence. This raises questions about capsid structure and necessity, the role of NS3 in particle assembly and the function of core protein in general. PMID:22457622

  8. Activity-dependent Protein Dynamics Define Interconnected Cores of Co-regulated Postsynaptic Proteins*

    PubMed Central

    Trinidad, Jonathan C.; Thalhammer, Agnes; Burlingame, Alma L.; Schoepfer, Ralf

    2013-01-01

    Synapses are highly dynamic structures that mediate cell–cell communication in the central nervous system. Their molecular composition is altered in an activity-dependent fashion, which modulates the efficacy of subsequent synaptic transmission events. Whereas activity-dependent trafficking of individual key synaptic proteins into and out of the synapse has been characterized previously, global activity-dependent changes in the synaptic proteome have not been studied. To test the feasibility of carrying out an unbiased large-scale approach, we investigated alterations in the molecular composition of synaptic spines following mass stimulation of the central nervous system induced by pilocarpine. We observed widespread changes in relative synaptic abundances encompassing essentially all proteins, supporting the view that the molecular composition of the postsynaptic density is tightly regulated. In most cases, we observed that members of gene families displayed coordinate regulation even when they were not known to physically interact. Analysis of correlated synaptic localization revealed a tightly co-regulated cluster of proteins, consisting of mainly glutamate receptors and their adaptors. This cluster constitutes a functional core of the postsynaptic machinery, and changes in its size affect synaptic strength and synaptic size. Our data show that the unbiased investigation of activity-dependent signaling of the postsynaptic density proteome can offer valuable new information on synaptic plasticity. PMID:23035237

  9. LAPTM4B: an oncogene in various solid tumors and its functions

    PubMed Central

    Meng, Y; Wang, L; Chen, D; Chang, Y; Zhang, M; XU, J-J; Zhou, R; Zhang, Q-Y

    2016-01-01

    The oncogene Lysosome-associated protein transmembrane-4β (LAPTM4B) gene was identified, and the polymorphism region in the 5′-UTR of this gene was certified to be associated with tumor susceptibility. LAPTM4B-35 protein was found to be highly expressed in various solid tumors and could be a poor prognosis marker. The functions of LAPTM4B in solid tumors were also explored. It is suggested that LAPTM4B could promote the proliferation of tumor cells, boost invasion and metastasis, resist apoptosis, initiate autophagy and assist drug resistance. PMID:27212036

  10. Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein.

    PubMed

    Kunkel, M; Lorinczi, M; Rijnbrand, R; Lemon, S M; Watowich, S J

    2001-03-01

    Little is known about the assembly pathway and structure of hepatitis C virus (HCV) since insufficient quantities of purified virus are available for detailed biophysical and structural studies. Here, we show that bacterially expressed HCV core proteins can efficiently self-assemble in vitro into nucleocapsid-like particles. These particles have a regular, spherical morphology with a modal distribution of diameters of approximately 60 nm. Self-assembly of nucleocapsid-like particles requires structured RNA molecules. The 124 N-terminal residues of the core protein are sufficient for self-assembly into nucleocapsid-like particles. Inclusion of the carboxy-terminal domain of the core protein modifies the core assembly pathway such that the resultant particles have an irregular outline. However, these particles are similar in size and shape to those assembled from the 124 N-terminal residues of the core protein. These results provide novel opportunities to delineate protein-protein and protein-RNA interactions critical for HCV assembly, to study the molecular details of HCV assembly, and for performing high-throughput screening of assembly inhibitors.

  11. Discovery of protein complexes with core-attachment structures from Tandem Affinity Purification (TAP) data.

    PubMed

    Wu, Min; Li, Xiao-Li; Kwoh, Chee-Keong; Ng, See-Kiong; Wong, Limsoon

    2012-09-01

    Many cellular functions involve protein complexes that are formed by multiple interacting proteins. Tandem Affinity Purification (TAP) is a popular experimental method for detecting such multi-protein interactions. However, current computational methods that predict protein complexes from TAP data require converting the co-complex relationships in TAP data into binary interactions. The resulting pairwise protein-protein interaction (PPI) network is then mined for densely connected regions that are identified as putative protein complexes. Converting the TAP data into PPI data not only introduces errors but also loses useful information about the underlying multi-protein relationships that can be exploited to detect the internal organization (i.e., core-attachment structures) of protein complexes. In this article, we propose a method called CACHET that detects protein complexes with Core-AttaCHment structures directly from bipartitETAP data. CACHET models the TAP data as a bipartite graph in which the two vertex sets are the baits and the preys, respectively. The edges between the two vertex sets represent bait-prey relationships. CACHET first focuses on detecting high-quality protein-complex cores from the bipartite graph. To minimize the effects of false positive interactions, the bait-prey relationships are indexed with reliability scores. Only non-redundant, reliable bicliques computed from the TAP bipartite graph are regarded as protein-complex cores. CACHET constructs protein complexes by including attachment proteins into the cores. We applied CACHET on large-scale TAP datasets and found that CACHET outperformed existing methods in terms of prediction accuracy (i.e., F-measure and functional homogeneity of predicted complexes). In addition, the protein complexes predicted by CACHET are equipped with core-attachment structures that provide useful biological insights into the inherent functional organization of protein complexes. Our supplementary material can

  12. Structural proteins of ribonucleic acid tumor viruses. Purification of envelope, core, and internal components.

    PubMed

    Strand, M; August, J T

    1976-01-25

    Murine type C virus structural proteins, the envelope glycopeptides, 30,000 dalton major core protein, and 15,000 dalton internal protein have each been purified to near homogeneity and in high yield from the smae batch of virus by use of phosphocellulose column chromatography and gel filtration procedures. Evidence that these proteins are specified by the viral genome was obtained by competition radioimmunoassay analysis, comparing these polypeptides from Rauscher virus cultivated in a variety of mammalian cell lines; all of the reactive antigenic determinants of these proteins appeared to be virus-specific.

  13. PCNA-binding proteins in the archaea: novel functionality beyond the conserved core.

    PubMed

    MacNeill, Stuart A

    2016-08-01

    Sliding clamps play an essential role in coordinating protein activity in DNA metabolism in all three domains of life. In eukaryotes and archaea, the sliding clamp is PCNA (proliferating cell nuclear antigen). Across the diversity of the archaea PCNA interacts with a highly conserved set of proteins with key roles in DNA replication and repair, including DNA polymerases B and D, replication factor C, the Fen1 nuclease and RNAseH2, but this core set of factors is likely to represent a fraction of the PCNA interactome only. Here, I review three recently characterised non-core archaeal PCNA-binding proteins NusS, NreA/NreB and TIP, highlighting what is known of their interactions with PCNA and their functions in vivo and in vitro. Gaining a detailed understanding of the non-core PCNA interactome will provide significant insights into key aspects of chromosome biology in divergent archaeal lineages.

  14. Sequence and structural implications of a bovine corneal keratan sulfate proteoglycan core protein. Protein 37B represents bovine lumican and proteins 37A and 25 are unique

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Funderburgh, M. L.; Brown, S. J.; Vergnes, J. P.; Hassell, J. R.; Mann, M. M.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Amino acid sequence from tryptic peptides of three different bovine corneal keratan sulfate proteoglycan (KSPG) core proteins (designated 37A, 37B, and 25) showed similarities to the sequence of a chicken KSPG core protein lumican. Bovine lumican cDNA was isolated from a bovine corneal expression library by screening with chicken lumican cDNA. The bovine cDNA codes for a 342-amino acid protein, M(r) 38,712, containing amino acid sequences identified in the 37B KSPG core protein. The bovine lumican is 68% identical to chicken lumican, with an 83% identity excluding the N-terminal 40 amino acids. Location of 6 cysteine and 4 consensus N-glycosylation sites in the bovine sequence were identical to those in chicken lumican. Bovine lumican had about 50% identity to bovine fibromodulin and 20% identity to bovine decorin and biglycan. About two-thirds of the lumican protein consists of a series of 10 amino acid leucine-rich repeats that occur in regions of calculated high beta-hydrophobic moment, suggesting that the leucine-rich repeats contribute to beta-sheet formation in these proteins. Sequences obtained from 37A and 25 core proteins were absent in bovine lumican, thus predicting a unique primary structure and separate mRNA for each of the three bovine KSPG core proteins.

  15. The transcription activity of heat shock factor 4b is regulated by FGF2.

    PubMed

    Hu, Yan-Zhong; Zhang, Jun; Li, Shulian; Wang, Chuan; Chu, Liujie; Zhang, Zhi; Ma, Zengyi; Wang, Mingli; Jiang, Qiying; Liu, Guangchao; Qi, Yijun; Ma, Yuanfang

    2013-02-01

    Heat shock factor 4b has been found to be closely associated with postnatal lens development. It expresses in postnatal lens epithelial and secondary fiber cells and controls the expression of small heat shock proteins which are important for lens homeostasis. However, the signal pathways underlying Hsf4b are still not completely understood. Here we present that Hsf4b transcription activity is regulated by FGF2 a key growth factor that is involved in regulating lens development at multiple stages. FGF2 can promote Hsf4b nuclear-translocation and the expression of Hsp25 and αB-crystallin, the key downstream targets of Hsf4b in the Hsf4b-reconstituted mouse hsf4-/- lens epithelial cells. Further study indicates that FGF2 can induce Hsf4b protein stabilization through ERK1/2-mediated posttranslational phosphorylation or sumoylation. Hsf4b can promote FGF2-induced morphology transition from lens epithelial cell to the fiber cell, and this morphology transition can be inhibited by ERK1/2 inhibitor U0126. Taken together, our data demonstrate that Hsf4b is a novel downstream transcription factor of FGF2, and its transcription activity is associated with FGF2-modulated lens epithelial cell-fiber cell transition.

  16. Redesigning the hydrophobic core of a four-helix-bundle protein.

    PubMed Central

    Munson, M.; O'Brien, R.; Sturtevant, J. M.; Regan, L.

    1994-01-01

    Rationally redesigned variants of the 4-helix-bundle protein Rop are described. The novel proteins have simplified, repacked, hydrophobic cores and yet reproduce the structure and native-like physical properties of the wild-type protein. The repacked proteins have been characterized thermodynamically and their equilibrium and kinetic thermal and chemical unfolding properties are compared with those of wild-type Rop. The equilibrium stability of the repacked proteins to thermal denaturation is enhanced relative to that of the wild-type protein. The rate of chemically induced folding and unfolding of wild-type Rop is extremely slow when compared with other small proteins. Interestingly, although the repacked proteins are more thermally stable than the wild type, their rates of chemically induced folding and unfolding are greatly increased in comparison to wild type. Perhaps as a consequence of this, their equilibrium stabilities to chemical denaturants are slightly reduced in comparison to the wild type. PMID:7535612

  17. Mitochondrial iron accumulation exacerbates hepatic toxicity caused by hepatitis C virus core protein

    SciTech Connect

    Sekine, Shuichi; Ito, Konomi; Watanabe, Haruna; Nakano, Takafumi; Moriya, Kyoji; Shintani, Yoshizumi; Fujie, Hajime; Tsutsumi, Takeya; Miyoshi, Hideyuki; Fujinaga, Hidetake; Shinzawa, Seiko; Koike, Kazuhiko; Horie, Toshiharu

    2015-02-01

    Patients with long-lasting hepatitis C virus (HCV) infection are at major risk of hepatocellular carcinoma (HCC). Iron accumulation in the livers of these patients is thought to exacerbate conditions of oxidative stress. Transgenic mice that express the HCV core protein develop HCC after the steatosis stage and produce an excess of hepatic reactive oxygen species (ROS). The overproduction of ROS in the liver is the net result of HCV core protein-induced dysfunction of the mitochondrial respiratory chain. This study examined the impact of ferric nitrilacetic acid (Fe-NTA)-mediated iron overload on mitochondrial damage and ROS production in HCV core protein-expressing HepG2 (human HCC) cells (Hep39b cells). A decrease in mitochondrial membrane potential and ROS production were observed following Fe-NTA treatment. After continuous exposure to Fe-NTA for six days, cell toxicity was observed in Hep39b cells, but not in mock (vector-transfected) HepG2 cells. Moreover, mitochondrial iron ({sup 59}Fe) uptake was increased in the livers of HCV core protein-expressing transgenic mice. This increase in mitochondrial iron uptake was inhibited by Ru360, a mitochondrial Ca{sup 2+} uniporter inhibitor. Furthermore, the Fe-NTA-induced augmentation of mitochondrial dysfunction, ROS production, and cell toxicity were also inhibited by Ru360 in Hep39b cells. Taken together, these results indicate that Ca{sup 2+} uniporter-mediated mitochondrial accumulation of iron exacerbates hepatocyte toxicity caused by the HCV core protein. - Highlights: • Iron accumulation in the livers of patients with hepatitis C virus (HCV) infection is thought to exacerbate oxidative stress. • The impact of iron overload on mitochondrial damage and ROS production in HCV core protein-expressing cells were examined. • Mitochondrial iron uptake was increased in the livers of HCV core protein-expressing transgenic mice. • Ca{sup 2+} uniporter-mediated mitochondrial accumulation of iron exacerbates

  18. Cell Autonomous and Nonautonomous Function of CUL4B in Mouse Spermatogenesis*

    PubMed Central

    Yin, Yan; Liu, Liren; Yang, Chenyi; Lin, Congxing; Veith, George Michael; Wang, Caihong; Sutovsky, Peter; Zhou, Pengbo; Ma, Liang

    2016-01-01

    CUL4B ubiquitin ligase belongs to the cullin-RING ubiquitin ligase family. Although sharing many sequence and structural similarities, CUL4B plays distinct roles in spermatogenesis from its homologous protein CUL4A. We previously reported that genetic ablation of Cul4a in mice led to male infertility because of aberrant meiotic progression. In the present study, we generated Cul4b germ cell-specific conditional knock-out (Cul4bVasa),as well as Cul4b global knock-out (Cul4bSox2) mouse, to investigate its roles in spermatogenesis. Germ cell-specific deletion of Cul4b led to male infertility, despite normal testicular morphology and comparable numbers of spermatozoa. Notably, significantly impaired sperm mobility caused by reduced mitochondrial activity and glycolysis level were observed in the majority of the mutant spermatozoa, manifested by low, if any, sperm ATP production. Furthermore, Cul4bVasa spermatozoa exhibited defective arrangement of axonemal microtubules and flagella outer dense fibers. Our mass spectrometry analysis identified INSL6 as a novel CUL4B substrate in male germ cells, evidenced by its direct polyubiquination and degradation by CUL4B E3 ligase. Nevertheless, Cul4b global knock-out males lost their germ cells in an age-dependent manner, implying failure of maintaining the spermatogonial stem cell niche in somatic cells. Taken together, our results show that CUL4B is indispensable to spermatogenesis, and it functions cell autonomously in male germ cells to ensure spermatozoa motility, whereas it functions non-cell-autonomously in somatic cells to maintain spermatogonial stemness. Thus, CUL4B links two distinct spermatogenetic processes to a single E3 ligase, highlighting the significance of ubiquitin modification during spermatogenesis. PMID:26846852

  19. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression

    PubMed Central

    2012-01-01

    Background Clostridium thermocellum produces H2 and ethanol, as well as CO2, acetate, formate, and lactate, directly from cellulosic biomass. It is therefore an attractive model for biofuel production via consolidated bioprocessing. Optimization of end-product yields and titres is crucial for making biofuel production economically feasible. Relative protein expression profiles may provide targets for metabolic engineering, while understanding changes in protein expression and metabolism in response to carbon limitation, pH, and growth phase may aid in reactor optimization. We performed shotgun 2D-HPLC-MS/MS on closed-batch cellobiose-grown exponential phase C. thermocellum cell-free extracts to determine relative protein expression profiles of core metabolic proteins involved carbohydrate utilization, energy conservation, and end-product synthesis. iTRAQ (isobaric tag for relative and absolute quantitation) based protein quantitation was used to determine changes in core metabolic proteins in response to growth phase. Results Relative abundance profiles revealed differential levels of putative enzymes capable of catalyzing parallel pathways. The majority of proteins involved in pyruvate catabolism and end-product synthesis were detected with high abundance, with the exception of aldehyde dehydrogenase, ferredoxin-dependent Ech-type [NiFe]-hydrogenase, and RNF-type NADH:ferredoxin oxidoreductase. Using 4-plex 2D-HPLC-MS/MS, 24% of the 144 core metabolism proteins detected demonstrated moderate changes in expression during transition from exponential to stationary phase. Notably, proteins involved in pyruvate synthesis decreased in stationary phase, whereas proteins involved in glycogen metabolism, pyruvate catabolism, and end-product synthesis increased in stationary phase. Several proteins that may directly dictate end-product synthesis patterns, including pyruvate:ferredoxin oxidoreductases, alcohol dehydrogenases, and a putative bifurcating hydrogenase

  20. Distribution of DNA-condensing protein complexes in the adenovirus core

    PubMed Central

    Pérez-Berná, Ana J.; Marion, Sanjin; Chichón, F. Javier; Fernández, José J.; Winkler, Dennis C.; Carrascosa, José L.; Steven, Alasdair C.; Šiber, Antonio; San Martín, Carmen

    2015-01-01

    Genome packing in adenovirus has long evaded precise description, since the viral dsDNA molecule condensed by proteins (core) lacks icosahedral order characteristic of the virus protein coating (capsid). We show that useful insights regarding the organization of the core can be inferred from the analysis of spatial distributions of the DNA and condensing protein units (adenosomes). These were obtained from the inspection of cryo-electron tomography reconstructions of individual human adenovirus particles. Our analysis shows that the core lacks symmetry and strict order, yet the adenosome distribution is not entirely random. The features of the distribution can be explained by modeling the condensing proteins and the part of the genome in each adenosome as very soft spheres, interacting repulsively with each other and with the capsid, producing a minimum outward pressure of ∼0.06 atm. Although the condensing proteins are connected by DNA in disrupted virion cores, in our models a backbone of DNA linking the adenosomes is not required to explain the experimental results in the confined state. In conclusion, the interior of an adenovirus infectious particle is a strongly confined and dense phase of soft particles (adenosomes) without a strictly defined DNA backbone. PMID:25820430

  1. A bacterial ice-binding protein from the Vostok ice core.

    PubMed

    Raymond, James A; Christner, Brent C; Schuster, Stephan C

    2008-09-01

    Bacterial and yeast isolates recovered from a deep Antarctic ice core were screened for proteins with ice-binding activity, an indicator of adaptation to icy environments. A bacterial strain recovered from glacial ice at a depth of 3,519 m, just above the accreted ice from Subglacial Lake Vostok, was found to produce a 54 kDa ice-binding protein (GenBank EU694412) that is similar to ice-binding proteins previously found in sea ice diatoms, a snow mold, and a sea ice bacterium. The protein has the ability to inhibit the recrystallization of ice, a phenotype that has clear advantages for survival in ice.

  2. [Research Progress in the Core Proteins of the Classical Swine Fever Virus].

    PubMed

    Hou, Yuzhen; Zhao, Dantong; Liu, Guoying; He, Fan; Liu, Bin; Fu, Shaoyin; Hao, Yongqing; Zhang, Wenguang

    2015-09-01

    The core protein (CP) of the classical swine fever virus (CSFV) is one of its structural proteins. Apart from forming the nucleocapsid to protect internal viral genomic RNA, this protein is involved in transcriptional regulation. Also, during viral infection, the CP is involved in interactions with many host proteins. In this review, we combine study of this protein with its disorders, structural/functional characteristics, as well as its interactions with the non-structural proteins NS3, NS5B and host proteins such as SUMO-1, UBC9, OS9 and IQGAP1. We also summarize the important part played by the CP in CSFV pathogenicity, virulence and replication of genomic RNA. We also provide guidelines for further studies in the CP of the CSFV.

  3. Discovery of Dengue Virus NS4B Inhibitors

    PubMed Central

    Wang, Qing-Yin; Dong, Hongping; Zou, Bin; Karuna, Ratna; Wan, Kah Fei; Zou, Jing; Susila, Agatha; Yip, Andy; Shan, Chao; Yeo, Kim Long; Xu, Haoying; Ding, Mei; Chan, Wai Ling; Gu, Feng; Seah, Peck Gee; Liu, Wei; Lakshminarayana, Suresh B.; Kang, CongBao; Lescar, Julien; Blasco, Francesca; Smith, Paul W.

    2015-01-01

    ABSTRACT The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50, >20 μM). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. IMPORTANCE Dengue virus (DENV) threatens up to 2.5 billion people and is now spreading in many regions in the world where it was not previously endemic. While there are several promising vaccine candidates in clinical trials, approved vaccines or antivirals are not yet available. Here we describe the identification and characterization of a spiropyrazolopyridone as a novel inhibitor of DENV by targeting the viral NS4B protein. The compound potently inhibits two of the four serotypes of DENV (DENV-2 and -3) both in vitro and in vivo. Our

  4. A procedure for the automatic determination of hydrophobic cores in protein structures.

    PubMed Central

    Swindells, M. B.

    1995-01-01

    An algorithm is described for automatically detecting hydrophobic cores in proteins of known structure. Three pieces of information are considered in order to achieve this goal. These are: secondary structure, side-chain accessibility, and side-chain-side-chain contacts. Residues are considered to contribute to a core when they occur in regular secondary structure and have buried side chains that form predominantly nonpolar contacts with one another. This paper describes the algorithm's application to families of proteins with conserved topologies but low sequence similarities. The aim of this investigation is to determine the efficacy of the algorithm as well as to study the extent to which similar cores are identified within a common topology. PMID:7773181

  5. Domain dislocation: a change of core structure in periplasmic binding proteins in their evolutionary history.

    PubMed

    Fukami-Kobayashi, K; Tateno, Y; Nishikawa, K

    1999-02-12

    Periplasmic binding proteins (PBPs) serve as receptors for various water-soluble ligands in ATP-binding cassette (ABC) transport systems, and form one of the largest protein families in eubacterial and archaebacterial genomes. They are considered to be derived from a common ancestor, judging from their similarities of three-dimensional structure, their mechanism of ligand binding and the operon structure of their genes. Nevertheless, there are two types of topological arrangements of the central beta-sheets in their core structures. It follows that there must have been differentiation in the core structure, which we call "domain dislocation", in the course of evolution of the PBP family. To find a clue as to when the domain dislocation occurred, we constructed phylogenetic trees for PBPs based on their amino acid sequences and three-dimensional structures, respectively. The trees show that the proteins of each type clearly cluster together, strongly indicating that the change in the core structure occurred only once in the evolution of PBPs. We also constructed a phylogenetic tree for the ABC proteins that are encoded by the same operon of their partner PBP, and obtained the same result. Based on the phylogenetic relationship and comparison of the topological arrangements of PBPs, we obtained a reasonable genealogical chart of structural changes in the PBP family. The present analysis shows that the unidirectional change of protein evolution is clearly deduced at the level of protein three-dimensional structure rather than the level of amino acid sequence.

  6. Effects of maternal separation and methamphetamine exposure on protein expression in the nucleus accumbens shell and core.

    PubMed

    Dimatelis, J J; Russell, V A; Stein, D J; Daniels, W M

    2012-09-01

    Early life adversity has been suggested to predispose an individual to later drug abuse. The core and shell sub-regions of the nucleus accumbens are differentially affected by both stressors and methamphetamine. This study aimed to characterize and quantify methamphetamine-induced protein expression in the shell and core of the nucleus accumbens in animals exposed to maternal separation during early development. Isobaric tagging (iTRAQ) which enables simultaneous identification and quantification of peptides with tandem mass spectrometry (MS/MS) was used. We found that maternal separation altered more proteins involved in structure and redox regulation in the shell than in the core of the nucleus accumbens, and that maternal separation and methamphetamine had differential effects on signaling proteins in the shell and core. Compared to maternal separation or methamphetamine alone, the maternal separation/methamphetamine combination altered more proteins involved in energy metabolism, redox regulatory processes and neurotrophic proteins. Methamphetamine treatment of rats subjected to maternal separation caused a reduction of cytoskeletal proteins in the shell and altered cytoskeletal, signaling, energy metabolism and redox proteins in the core. Comparison of maternal separation/methamphetamine to methamphetamine alone resulted in decreased cytoskeletal proteins in both the shell and core and increased neurotrophic proteins in the core. This study confirms that both early life stress and methamphetamine differentially affect the shell and core of the nucleus accumbens and demonstrates that the combination of early life adversity and later methamphetamine use results in more proteins being affected in the nucleus accumbens than either treatment alone.

  7. The core protein of a pestivirus protects the incoming virus against IFN-induced effectors

    PubMed Central

    Riedel, Christiane; Lamp, Benjamin; Hagen, Benedikt; Indik, Stanislav; Rümenapf, Till

    2017-01-01

    A multitude of viral factors - either inhibiting the induction of the IFN-system or its effectors – have been described to date. However, little is known about the role of structural components of the incoming virus particle in protecting against IFN-induced antiviral factors during or immediately after entry. In this study, we take advantage of the previously reported property of Classical swine fever virus (family Flaviviridae, genus Pestivirus) to tolerate a deletion of the core protein if a compensatory mutation is present in the NS3-helicase-domain (Vp447∆c). In contrast to the parental virus (Vp447), which causes a hemorrhagic-fever-like disease in pigs, Vp447∆c is avirulent in vivo. In comparison to Vp447, growth of Vp447∆c in primary porcine cells and IFN-treated porcine cell lines was reduced >20-fold. Also, primary porcine endothelial cells and IFN-pretreated porcine cell lines were 8–24 times less susceptible to Vp447∆c. This reduction of susceptibility could be partially reversed by loading Vp447∆c particles with different levels of core protein. In contrast, expression of core protein in the recipient cell did not have any beneficial effect. Therefore, a protective effect of core protein in the incoming virus particle against the products of IFN-stimulated genes could be demonstrated. PMID:28290554

  8. Independent transport and sorting of functionally distinct protein families in Tetrahymena thermophila dense core secretory granules.

    PubMed

    Rahaman, Abdur; Miao, Wei; Turkewitz, Aaron P

    2009-10-01

    Dense core granules (DCGs) in Tetrahymena thermophila contain two protein classes. Proteins in the first class, called granule lattice (Grl), coassemble to form a crystalline lattice within the granule lumen. Lattice expansion acts as a propulsive mechanism during DCG release, and Grl proteins are essential for efficient exocytosis. The second protein class, defined by a C-terminal beta/gamma-crystallin domain, is poorly understood. Here, we have analyzed the function and sorting of Grt1p (granule tip), which was previously identified as an abundant protein in this family. Cells lacking all copies of GRT1, together with the closely related GRT2, accumulate wild-type levels of docked DCGs. Unlike cells disrupted in any of the major GRL genes, DeltaGRT1 DeltaGRT2 cells show no defect in secretion, indicating that neither exocytic fusion nor core expansion depends on GRT1. These results suggest that Grl protein sorting to DCGs is independent of Grt proteins. Consistent with this, the granule core lattice in DeltaGRT1 DeltaGRT2 cells appears identical to that in wild-type cells by electron microscopy, and the only biochemical component visibly absent is Grt1p itself. Moreover, gel filtration showed that Grl and Grt proteins in cell homogenates exist in nonoverlapping complexes, and affinity-isolated Grt1p complexes do not contain Grl proteins. These data demonstrate that two major classes of proteins in Tetrahymena DCGs are likely to be independently transported during DCG biosynthesis and play distinct roles in granule function. The role of Grt1p may primarily be postexocytic; consistent with this idea, DCG contents from DeltaGRT1 DeltaGRT2 cells appear less adhesive than those from the wild type.

  9. A core viral protein binds host nucleosomes to sequester immune danger signals.

    PubMed

    Avgousti, Daphne C; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C; Blumenthal, Daniel; Paris, Andrew J; Reyes, Emigdio D; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H; Worthen, G Scott; Black, Ben E; Garcia, Benjamin A; Weitzman, Matthew D

    2016-07-07

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling.

  10. A core viral protein binds host nucleosomes to sequester immune danger signals

    PubMed Central

    Avgousti, Daphne C.; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J.; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C.; Blumenthal, Daniel; Paris, Andrew J.; Reyes, Emigdio D.; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H.; Worthen, G. Scott; Black, Ben E.; Garcia, Benjamin A.; Weitzman, Matthew D.

    2016-01-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses1. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important role in innate immune responses2. Viral encoded core basic proteins compact viral genomes but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones3. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles4,5, it is unknown whether protein VII impacts cellular chromatin. Our observation that protein VII alters cellular chromatin led us to hypothesize that this impacts antiviral responses during adenovirus infection. We found that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in chromatin of members of the high-mobility group protein B family (HMGB1, HMGB2, and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses6,7. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling. PMID:27362237

  11. Characterization of the fusion core in zebrafish endogenous retroviral envelope protein

    SciTech Connect

    Shi, Jian; Zhang, Huaidong; Gong, Rui; Xiao, Gengfu

    2015-05-08

    Zebrafish endogenous retrovirus (ZFERV) is the unique endogenous retrovirus in zebrafish, as yet, containing intact open reading frames of its envelope protein gene in zebrafish genome. Similarly, several envelope proteins of endogenous retroviruses in human and other mammalian animal genomes (such as syncytin-1 and 2 in human, syncytin-A and B in mouse) were identified and shown to be functional in induction of cell–cell fusion involved in placental development. ZFERV envelope protein (Env) gene appears to be also functional in vivo because it is expressible. After sequence alignment, we found ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR) which were crucial for membrane fusion. We expressed the regions of N + C protein in the ZFERV Env (residues 459–567, including predicted NHR and CHR) to characterize the fusion core structure. We found N + C protein could form a stable coiled-coil trimer that consists of three helical NHR regions forming a central trimeric core, and three helical CHR regions packing into the grooves on the surface of the central core. The structural characterization of the fusion core revealed the possible mechanism of fusion mediated by ZFERV Env. These results gave comprehensive explanation of how the ancient virus infects the zebrafish and integrates into the genome million years ago, and showed a rational clue for discovery of physiological significance (e.g., medicate cell–cell fusion). - Highlights: • ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes. • The fusion core of ZFERV Env forms stable coiled-coil trimer including three NHRs and three CHRs. • The structural mechanism of viral entry mediated by ZFERV Env is disclosed. • The results are helpful for further discovery of physiological function of ZFERV Env in zebrafish.

  12. Identification of breast cancer cell subtypes sensitive to ATG4B inhibition

    PubMed Central

    Bortnik, Svetlana; Choutka, Courtney; Horlings, Hugo M.; Leung, Samuel; Baker, Jennifer H.; Lebovitz, Chandra; Dragowska, Wieslawa H.; Go, Nancy E.; Bally, Marcel B.; Minchinton, Andrew I.; Gelmon, Karen A.; Gorski, Sharon M.

    2016-01-01

    Autophagy, a lysosome-mediated degradation and recycling process, functions in advanced malignancies to promote cancer cell survival and contribute to cancer progression and drug resistance. While various autophagy inhibition strategies are under investigation for cancer treatment, corresponding patient selection criteria for these autophagy inhibitors need to be developed. Due to its central roles in the autophagy process, the cysteine protease ATG4B is one of the autophagy proteins being pursued as a potential therapeutic target. In this study, we investigated the expression of ATG4B in breast cancer, a heterogeneous disease comprised of several molecular subtypes. We examined a panel of breast cancer cell lines, xenograft tumors, and breast cancer patient specimens for the protein expression of ATG4B, and found a positive association between HER2 and ATG4B protein expression. We showed that HER2-positive cells, but not HER2-negative breast cancer cells, require ATG4B to survive under stress. In HER2-positive cells, cytoprotective autophagy was dependent on ATG4B under both starvation and HER2 inhibition conditions. Combined knockdown of ATG4B and HER2 by siRNA resulted in a significant decrease in cell viability, and the combination of ATG4B knockdown with trastuzumab resulted in a greater reduction in cell viability compared to trastuzumab treatment alone, in both trastuzumab-sensitive and -resistant HER2 overexpressing breast cancer cells. Together these results demonstrate a novel association of ATG4B positive expression with HER2 positive breast cancers and indicate that this subtype is suitable for emerging ATG4B inhibition strategies. PMID:27556700

  13. Toll-like receptor 2 senses hepatitis C virus core protein but not infectious viral particles

    PubMed Central

    Hoffmann, Marco; Zeisel, Mirjam B.; Jilg, Nikolaus; Paranhos-Baccalà, Glaucia; Stoll-Keller, Françoise; Wakita, Takaji; Hafkemeyer, Peter; Blum, Hubert E.; Barth, Heidi; Henneke, Philipp; Baumert, Thomas F.

    2009-01-01

    Toll-like receptors (TLRs) are pathogen recognition molecules activating the innate immune system. Cell surface expressed TLRs, such as TLR2 and TLR4 have been shown to play an important role in human host defenses against viruses through sensing of viral structural proteins. In this study, we aimed to elucidate whether TLR2 and TLR4 participate in inducing antiviral immunity against hepatitis C virus by sensing viral structural proteins. We studied TLR2 and TLR4 activation by cell-culture derived infectious virions (HCVcc) and serum-derived virions in comparison to purified recombinant HCV structural proteins and enveloped virus-like particles. Incubation of TLR2 or TLR4 transfected cell lines with recombinant core protein resulted in activation of TLR2-dependent signaling. In contrast, neither infectious virions nor enveloped HCV-like particles triggered TLR2 and TLR4 signaling. These findings suggest that monomeric HCV core protein but not intact infectious particles are sensed by TLR2. Impairment of core-TLR interaction in infectious viral particles may contribute to escape from innate antiviral immune responses. PMID:20375602

  14. Sending proteins to dense core secretory granules: still a lot to sort out.

    PubMed

    Dikeakos, Jimmy D; Reudelhuber, Timothy L

    2007-04-23

    The intracellular sorting of peptide hormone precursors to the dense core secretory granules (DCSGs) is essential for their bioactivation. Despite the fundamental importance of this cellular process, the nature of the sorting signals for entry of proteins into DCSGs remains a source of vigorous debate. This review highlights recent discoveries that are consistent with a model in which several protein domains, acting in a cell-specific fashion and at different steps in the sorting process, act in concert to regulate the entry of proteins into DCSGs.

  15. Anxiogenic-Like Behavioral Phenotype of Mice Deficient in Phosphodiesterase 4B (PDE4B)

    PubMed Central

    Zhang, Han-Ting; Huang, Ying; Masood, Anbrin; Stolinski, Lisa R; Li, Yunfeng; Zhang, Lei; Dlaboga, Daniel; Jin, S-L Catherine; Conti, Marco; O’Donnell, James M

    2009-01-01

    Phosphodiesterase-4 (PDE4), an enzyme that catalyzes the hydrolysis of cyclic AMP and plays a critical role in controlling its intracellular concentration, has been implicated in depression- and anxiety-like behaviors. However, the functions of the four PDE4 subfamilies (PDE4A, PDE4B, PDE4C, and PDE4D) remain largely unknown. In animal tests sensitive to anxiolytics, antidepressants, memory enhancers, or analgesics, we examined the behavioral phenotype of mice deficient in PDE4B (PDE4B−/−). Immunoblot analysis revealed loss of PDE4B expression in the cerebral cortex and amygdala of PDE4B−/− mice. The reduction of PDE4B expression was accompanied by decreases in PDE4 activity in the brain regions of PDE4B−/− mice. Compared to PDE4B + / + littermates, PDE4B−/− mice displayed anxiogenic-like behavior, as evidenced by decreased head-dips and time spent in head-dipping in the holeboard test, reduced transitions and time on the light side in the light–dark transition test, and decreased initial exploration and rears in the open-field test. Consistent with anxiogenic-like behavior, PDE4B−/− mice displayed increased levels of plasma corticosterone. In addition, these mice also showed a modest increase in the proliferation of neuronal cells in the hippocampal dentate gyrus. In the forced-swim test, PDE4B−/− mice exhibited decreased immobility; however, this was not supported by the results from the tail-suspension test. PDE4B−/− mice did not display changes in memory, locomotor activity, or nociceptive responses. Taken together, these results suggest that the PDE4B subfamily is involved in signaling pathways that contribute to anxiogenic-like effects on behavior PMID:17700644

  16. Control of vertebrate core planar cell polarity protein localization and dynamics by Prickle 2

    PubMed Central

    Butler, Mitchell T.; Wallingford, John B.

    2015-01-01

    Planar cell polarity (PCP) is a ubiquitous property of animal tissues and is essential for morphogenesis and homeostasis. In most cases, this fundamental property is governed by a deeply conserved set of ‘core PCP’ proteins, which includes the transmembrane proteins Van Gogh-like (Vangl) and Frizzled (Fzd), as well as the cytoplasmic effectors Prickle (Pk) and Dishevelled (Dvl). Asymmetric localization of these proteins is thought to be central to their function, and understanding the dynamics of these proteins is an important challenge in developmental biology. Among the processes that are organized by the core PCP proteins is the directional beating of cilia, such as those in the vertebrate node, airway and brain. Here, we exploit the live imaging capabilities of Xenopus to chart the progressive asymmetric localization of fluorescent reporters of Dvl1, Pk2 and Vangl1 in a planar polarized ciliated epithelium. Using this system, we also characterize the influence of Pk2 on the asymmetric dynamics of Vangl1 at the cell cortex, and we define regions of Pk2 that control its own localization and those impacting Vangl1. Finally, our data reveal a striking uncoupling of Vangl1 and Dvl1 asymmetry. This study advances our understanding of conserved PCP protein functions and also establishes a rapid, tractable platform to facilitate future in vivo studies of vertebrate PCP protein dynamics. PMID:26293301

  17. ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis

    PubMed Central

    Cabrera, Sandra; Fernández, Álvaro F.; Mariño, Guillermo; Aguirre, Alina; Suárez, María F.; Español, Yaiza; Vega, José A.; Laurà, Rosaria; Fueyo, Antonio; Fernández-García, M. Soledad; Freije, José M.P.; Kroemer, Guido; López-Otín, Carlos

    2013-01-01

    The identification of inflammatory bowel disease (IBD) susceptibility genes by genome-wide association has linked this pathology to autophagy, a lysosomal degradation pathway that is crucial for cell and tissue homeostasis. Here, we describe autophagy-related 4B, cysteine peptidase/autophagin-1 (ATG4B) as an essential protein in the control of inflammatory response during experimental colitis. In this pathological condition, ATG4B protein levels increase in parallel with the induction of autophagy. Moreover, ATG4B expression is significantly reduced in affected areas of the colon from IBD patients. Consistently, atg4b−/− mice present Paneth cell abnormalities, as well as an increased susceptibility to DSS-induced colitis. atg4b-deficient mice exhibit significant alterations in proinflammatory cytokines and mediators of the immune response to bacterial infections, which are reminiscent of those found in patients with Crohn disease or ulcerative colitis. Additionally, antibiotic treatments and bone marrow transplantation from wild-type mice reduced colitis in atg4b−/− mice. Taken together, these results provided additional evidence for the importance of autophagy in intestinal pathologies and describe ATG4B as a novel protective protein in inflammatory colitis. Finally, we propose that atg4b-null mice are a suitable model for in vivo studies aimed at testing new therapeutic strategies for intestinal diseases associated with autophagy deficiency. PMID:23782979

  18. Interaction between core protein of classical swine fever virus with cellular IQGAP1 proetin appears essential for virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we show that IQGAP1, a cellular protein that plays a pivotal role as a regulator of the cytoskeleton affecting cell adhesion, polarization and migration, interacts with Classical Swine Fever Virus (CSFV) Core protein. Sequence analyses identified a defined set of residues within CSFV Core prote...

  19. Alternative splicing in the human gene for the core protein A1 generates another hnRNP protein.

    PubMed Central

    Buvoli, M; Cobianchi, F; Bestagno, M G; Mangiarotti, A; Bassi, M T; Biamonti, G; Riva, S

    1990-01-01

    The human hnRNP core protein A1 (34 kd) is encoded by a 4.6 kb gene split into 10 exons. Here we show that the A1 gene can be differentially spliced by the addition of an extra exon. The new transcript encodes a minor protein of the hnRNP complex, here defined A1B protein, with a calculated mol. wt of 38 kd, that coincides with a protein previously designated as B2 by some authors. In vitro translation of the mRNAs selected by hybridization with A1 cDNA produced two proteins of 34 and 38 kd; Northern blot analysis of poly(A)+ RNA from HeLa cells revealed that the abundance of the A1B mRNA was approximately 5% that of A1. The A1B protein was detected by Western blotting with an anti-A1 monoclonal antibody both in enriched preparations of basic hnRNP proteins and in 40S hnRNP particles. The A1B protein exhibits a significantly higher affinity than A1 for ssDNA. The recombinant A1B protein, expressed in Escherichia coli, shows the same electrophoretic mobility and charge as the cellular one. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:1691095

  20. Expression, Purification and Immunogenic Description of a Hepatitis C Virus Recombinant CoreE1E2 Protein Expressed by Yeast Pichia pastoris

    PubMed Central

    Fazlalipour, Mehdi; Keyvani, Hossein; Monavari, Seyed Hamid Reza; Mollaie, Hamid Reza

    2015-01-01

    Background: Gradual development of a useful vaccine can be the main point in the control and eradication of Hepatitis C virus (HCV) infection. Hepatitis C Virus envelope glycoproteins are considered as the main HCV vaccine candidate. Objectives: In this study, the Pichia pastoris expression system was used to express a recombinant HCV CoreE1E2 protein, which consists of Core (269 nt-841nt) E1 (842 nt-1417nt) and E2 (1418 nt-2506nt). Materials and Methods: By a codon optimization technique based on the P. pastoris expression system, we could increase the rate of recombinant proteins. Moreover, the purified protein can efficiently induce anti-CoreE1E2 antibodies in rabbits, and also by developing a homemade Enzyme-Linked ELISA kit we can detect antibody of HCV Iranian patients with genotype 1a. Results: In our study, the virus-like particle of rCoreE1E2 with 70 nm size, was shown by Electron microscopy and proved the self-assembly in vitro in a yeast expression system. Conclusions: These findings of the present study indicate that the recombinant CoreE1E2 glycoprotein is effective in inducing neutralizing antibodies, and is an influential HCV vaccine candidate. PMID:26034544

  1. On the mineral core of ferritin-like proteins: structural and magnetic characterization.

    PubMed

    García-Prieto, A; Alonso, J; Muñoz, D; Marcano, L; Abad Díaz de Cerio, A; Fernández de Luis, R; Orue, I; Mathon, O; Muela, A; Fdez-Gubieda, M L

    2016-01-14

    It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM) and Fe K-edge X-ray Absorption Spectroscopy (XAS)) and a magnetic study of the mineral core biomineralized by horse spleen ferritin (HoSF) and three prokaryotic ferritin-like proteins: bacterial ferritin (FtnA) and bacterioferritin (Bfr) from Escherichia coli and archaeal ferritin (PfFtn) from Pyrococcus furiosus. The prokaryotic ferritin-like proteins have been studied under native conditions and inside the cells for the sake of preserving their natural attributes. They share with HoSF a nanocrystalline structure rather than an amorphous one as has been frequently reported. However, the presence of phosphorus changes drastically the short-range order and magnetic response of the prokaryotic cores with respect to HoSF. The superparamagnetism observed in HoSF is absent in the prokaryotic proteins, which show a pure atomic-like paramagnetic behaviour attributed to phosphorus breaking the Fe-Fe exchange interaction.

  2. The hepatitis B virus core protein intradimer interface modulates capsid assembly and stability.

    PubMed

    Selzer, Lisa; Katen, Sarah P; Zlotnick, Adam

    2014-09-02

    During the hepatitis B virus (HBV) life cycle, capsid assembly and disassembly must ensure correct packaging and release of the viral genome. Here we show that changes in the dynamics of the core protein play an important role in regulating these processes. The HBV capsid assembles from 120 copies of the core protein homodimer. Each monomer contains a conserved cysteine at position 61 that can form an intradimer disulfide that we use as a marker for dimer conformational states. We show that dimers in the context of capsids form intradimer disulfides relatively rapidly. Surprisingly, compared to reduced dimers, fully oxidized dimers assembled slower and into capsids that were morphologically similar but less stable. We hypothesize that oxidized protein adopts a geometry (or constellation of geometries) that is unfavorable for capsid assembly, resulting in weaker dimer-dimer interactions as well as slower assembly kinetics. Our results suggest that structural flexibility at the core protein intradimer interface is essential for regulating capsid assembly and stability. We further suggest that capsid destabilization by the C61-C61 disulfide has a regulatory function to support capsid disassembly and release of the viral genome.

  3. The Hepatitis B Virus Core Protein Intradimer Interface Modulates Capsid Assembly and Stability

    PubMed Central

    2015-01-01

    During the hepatitis B virus (HBV) life cycle, capsid assembly and disassembly must ensure correct packaging and release of the viral genome. Here we show that changes in the dynamics of the core protein play an important role in regulating these processes. The HBV capsid assembles from 120 copies of the core protein homodimer. Each monomer contains a conserved cysteine at position 61 that can form an intradimer disulfide that we use as a marker for dimer conformational states. We show that dimers in the context of capsids form intradimer disulfides relatively rapidly. Surprisingly, compared to reduced dimers, fully oxidized dimers assembled slower and into capsids that were morphologically similar but less stable. We hypothesize that oxidized protein adopts a geometry (or constellation of geometries) that is unfavorable for capsid assembly, resulting in weaker dimer–dimer interactions as well as slower assembly kinetics. Our results suggest that structural flexibility at the core protein intradimer interface is essential for regulating capsid assembly and stability. We further suggest that capsid destabilization by the C61–C61 disulfide has a regulatory function to support capsid disassembly and release of the viral genome. PMID:25102363

  4. Structural insights into yeast histone chaperone Hif1: a scaffold protein recruiting protein complexes to core histones.

    PubMed

    Liu, Hejun; Zhang, Mengying; He, Wei; Zhu, Zhongliang; Teng, Maikun; Gao, Yongxiang; Niu, Liwen

    2014-09-15

    Yeast Hif1 [Hat1 (histone acetyltransferase 1)-interacting factor], a homologue of human NASP (nuclear autoantigenic sperm protein), is a histone chaperone that is involved in various protein complexes which modify histones during telomeric silencing and chromatin reassembly. For elucidating the structural basis of Hif1, in the present paper we demonstrate the crystal structure of Hif1 consisting of a superhelixed TPR (tetratricopeptide repeat) domain and an extended acid loop covering the rear of TPR domain, which represent typical characteristics of SHNi-TPR [Sim3 (start independent of mitosis 3)-Hif1-NASP interrupted TPR] proteins. Our binding assay indicates that Hif1 could bind to the histone octamer via histones H3 and H4. The acid loop is shown to be crucial for the binding of histones and may also change the conformation of the TPR groove. By binding to the core histone complex Hif1 may recruit functional protein complexes to modify histones during chromatin reassembly.

  5. Heterologous Expression of Hepatitis C Virus Core Protein in Oil Seeds of Brassica napus L.

    PubMed Central

    Mohammadzadeh, Sara; Roohvand, Farzin; Ajdary, Soheila; Ehsani, Parastoo; Hatef Salmanian, Ali

    2015-01-01

    Background: Hepatitis c virus (HCV), prevalent among 3% of the world population, is a major worldwide public health concern and an effective vaccination could help to overcome this problem. Plant seeds as low-cost vaccine expression platforms are highly desirable to produce antigens. Objectives: The present study was aimed at investigating the possible expression of recombinant HCV core protein, as a leading HCV vaccine candidate, in canola (Brassica napus) plant seeds in order to be used as an effective immunogen for vaccine researches. Materials and Methods: A codon-optimized gene harboring the Kozak sequence, 6 × His-tag, HCVcp (1 - 122 residues) and KDEL (Lys-Asp-Glu-Leu) peptide in tandem was designed and expressed under the control of the seed specific promoter, fatty acid elongase 1 (FAE1), to accumulate the recombinant protein in canola (B. napus L.) seeds. Transgenic lines were screened and the presence of the transgene was confirmed in the T0 plants by polymerase chain reaction (PCR). The quantity and quality of the HCV core protein (HCVcp) in transgenic seeds were evaluated by enzyme-linked immunosorbent assay (ELISA) and western blot, respectively. Results: Western blot analysis using anti-His antibody confirmed the presence of a 15 kDa protein in the seeds of T1 transgenic lines. The amount of antigenic protein accumulated in the seeds of these transgenic lines was up to 0.05% of the total soluble protein (TSP). Conclusions: The canola oilseeds could provide a useful expression system to produce HCV core protein as a vaccine candidate. PMID:26855744

  6. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM.

    PubMed

    Ciccia, Alberto; Ling, Chen; Coulthard, Rachel; Yan, Zhijiang; Xue, Yutong; Meetei, Amom Ruhikanta; Laghmani, El Houari; Joenje, Hans; McDonald, Neil; de Winter, Johan P; Wang, Weidong; West, Stephen C

    2007-02-09

    The Fanconi anemia (FA) core complex plays a crucial role in a DNA damage response network with BRCA1 and BRCA2. How this complex interacts with damaged DNA is unknown, as only the FA core protein FANCM (the homolog of an archaeal helicase/nuclease known as HEF) exhibits DNA binding activity. Here, we describe the identification of FAAP24, a protein that targets FANCM to structures that mimic intermediates formed during the replication/repair of damaged DNA. FAAP24 shares homology with the XPF family of flap/fork endonucleases, associates with the C-terminal region of FANCM, and is a component of the FA core complex. FAAP24 is required for normal levels of FANCD2 monoubiquitylation following DNA damage. Depletion of FAAP24 by siRNA results in cellular hypersensitivity to DNA crosslinking agents and chromosomal instability. Our data indicate that the FANCM/FAAP24 complex may play a key role in recruitment of the FA core complex to damaged DNA.

  7. Adenovirus Core Protein pVII Is Translocated into the Nucleus by Multiple Import Receptor Pathways†

    PubMed Central

    Wodrich, Harald; Cassany, Aurelia; D'Angelo, Maximiliano A.; Guan, Tinglu; Nemerow, Glen; Gerace, Larry

    2006-01-01

    Adenoviruses are nonenveloped viruses with an ∼36-kb double-stranded DNA genome that replicate in the nucleus. Protein VII, an abundant structural component of the adenovirus core that is strongly associated with adenovirus DNA, is imported into the nucleus contemporaneously with the adenovirus genome shortly after virus infection and may promote DNA import. In this study, we evaluated whether protein VII uses specific receptor-mediated mechanisms for import into the nucleus. We found that it contains potent nuclear localization signal (NLS) activity by transfection of cultured cells with protein VII fusion constructs and by microinjection of cells with recombinant protein VII fusions. We identified three NLS-containing regions in protein VII by deletion mapping and determined important NLS residues by site-specific mutagenesis. We found that recombinant protein VII and its NLS-containing domains strongly and specifically bind to importin α, importin β, importin 7, and transportin, which are among the most abundant cellular nuclear import receptors. Moreover, these receptors can mediate the nuclear import of protein VII fusions in vitro in permeabilized cells. Considered together, these data support the hypothesis that protein VII is a major NLS-containing adaptor for receptor-mediated import of adenovirus DNA and that multiple import pathways are utilized to promote efficient nuclear entry of the viral genome. PMID:16973564

  8. Adenovirus core protein pVII is translocated into the nucleus by multiple import receptor pathways.

    PubMed

    Wodrich, Harald; Cassany, Aurelia; D'Angelo, Maximiliano A; Guan, Tinglu; Nemerow, Glen; Gerace, Larry

    2006-10-01

    Adenoviruses are nonenveloped viruses with an approximately 36-kb double-stranded DNA genome that replicate in the nucleus. Protein VII, an abundant structural component of the adenovirus core that is strongly associated with adenovirus DNA, is imported into the nucleus contemporaneously with the adenovirus genome shortly after virus infection and may promote DNA import. In this study, we evaluated whether protein VII uses specific receptor-mediated mechanisms for import into the nucleus. We found that it contains potent nuclear localization signal (NLS) activity by transfection of cultured cells with protein VII fusion constructs and by microinjection of cells with recombinant protein VII fusions. We identified three NLS-containing regions in protein VII by deletion mapping and determined important NLS residues by site-specific mutagenesis. We found that recombinant protein VII and its NLS-containing domains strongly and specifically bind to importin alpha, importin beta, importin 7, and transportin, which are among the most abundant cellular nuclear import receptors. Moreover, these receptors can mediate the nuclear import of protein VII fusions in vitro in permeabilized cells. Considered together, these data support the hypothesis that protein VII is a major NLS-containing adaptor for receptor-mediated import of adenovirus DNA and that multiple import pathways are utilized to promote efficient nuclear entry of the viral genome.

  9. High-resolution crystal structure of a hepatitis B virus replication inhibitor bound to the viral core protein.

    PubMed

    Klumpp, Klaus; Lam, Angela M; Lukacs, Christine; Vogel, Robert; Ren, Suping; Espiritu, Christine; Baydo, Ruth; Atkins, Kateri; Abendroth, Jan; Liao, Guochun; Efimov, Andrey; Hartman, George; Flores, Osvaldo A

    2015-12-08

    The hepatitis B virus (HBV) core protein is essential for HBV replication and an important target for antiviral drug discovery. We report the first, to our knowledge, high-resolution crystal structure of an antiviral compound bound to the HBV core protein. The compound NVR-010-001-E2 can induce assembly of the HBV core wild-type and Y132A mutant proteins and thermostabilize the proteins with a Tm increase of more than 10 °C. NVR-010-001-E2 binds at the dimer-dimer interface of the core proteins, forms a new interaction surface promoting protein-protein interaction, induces protein assembly, and increases stability. The impact of naturally occurring core protein mutations on antiviral activity correlates with NVR-010-001-E2 binding interactions determined by crystallography. The crystal structure provides understanding of a drug efficacy mechanism related to the induction and stabilization of protein-protein interactions and enables structure-guided design to improve antiviral potency and drug-like properties.

  10. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein.

    PubMed

    Tych, Katarzyna M; Batchelor, Matthew; Hoffmann, Toni; Wilson, Michael C; Hughes, Megan L; Paci, Emanuele; Brockwell, David J; Dougan, Lorna

    2016-07-26

    Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.

  11. A core catalytic domain of the TyrA protein family: arogenate dehydrogenase from Synechocystis

    PubMed Central

    2004-01-01

    The TyrA protein family includes prephenate dehydrogenases, cyclohexadienyl dehydrogenases and TyrAas (arogenate dehydrogenases). tyrAa from Synechocystis sp. PCC 6803, encoding a 30 kDa TyrAa protein, was cloned into an overexpression vector in Escherichia coli. TyrAa was then purified to apparent homogeneity and characterized. This protein is a model structure for a catalytic core domain in the TyrA superfamily, uncomplicated by allosteric or fused domains. Competitive inhibitors acting at the catalytic core of TyrA proteins are analogues of any accepted cyclohexadienyl substrate. The homodimeric enzyme was specific for L-arogenate (Km=331 μM) and NADP+ (Km=38 μM), being unable to substitute prephenate or NAD+ respectively. L-Tyrosine was a potent inhibitor of the enzyme (Ki=70 μM). NADPH had no detectable ability to inhibit the reaction. Although the mechanism is probably steady-state random order, properties of 2′,5′-ADP as an inhibitor suggest a high preference for L-arogenate binding first. Comparative enzymology established that both of the arogenate-pathway enzymes, prephenate aminotransferase and TyrAa, were present in many diverse cyanobacteria and in a variety of eukaryotic red and green algae. PMID:15171683

  12. Inhibition of protein aggregation by zwitterionic polymer-based core-shell nanogels

    PubMed Central

    Rajan, Robin; Matsumura, Kazuaki

    2017-01-01

    Protein aggregation is a process by which misfolded proteins polymerizes into aggregates and forms fibrous structures with a β-sheet conformation, known as amyloids. It is an undesired outcome, as it not only causes numerous neurodegenerative diseases, but is also a major deterrent in the development of protein biopharmaceuticals. Here, we report a rational design for the synthesis of novel zwitterionic polymer-based core-shell nanogels via controlled radical polymerization. Nanogels with different sizes and functionalities in the core and shell were prepared. The nanogels exhibit remarkable efficiency in the protection of lysozyme against aggregation. Addition of nanogels suppresses the formation of toxic fibrils and also enables lysozyme to retain its enzymatic activity. Increasing the molecular weight and degree of hydrophobicity markedly increases its overall efficiency. Investigation of higher order structures revealed that lysozyme when heated without any additive loses its secondary structure and transforms into a random coil conformation. In contrast, presence of nanogels facilitates the retention of higher order structures by acting as molecular chaperones, thereby reducing molecular collisions. The present study is the first to show that it is possible to design zwitterionic nanogels using appropriate polymerization techniques that will protect proteins under conditions of extreme stress and inhibit aggregation. PMID:28374820

  13. On the mineral core of ferritin-like proteins: structural and magnetic characterization

    NASA Astrophysics Data System (ADS)

    García-Prieto, A.; Alonso, J.; Muñoz, D.; Marcano, L.; Abad Díaz de Cerio, A.; Fernández de Luis, R.; Orue, I.; Mathon, O.; Muela, A.; Fdez-Gubieda, M. L.

    2015-12-01

    It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM) and Fe K-edge X-ray Absorption Spectroscopy (XAS)) and a magnetic study of the mineral core biomineralized by horse spleen ferritin (HoSF) and three prokaryotic ferritin-like proteins: bacterial ferritin (FtnA) and bacterioferritin (Bfr) from Escherichia coli and archaeal ferritin (PfFtn) from Pyrococcus furiosus. The prokaryotic ferritin-like proteins have been studied under native conditions and inside the cells for the sake of preserving their natural attributes. They share with HoSF a nanocrystalline structure rather than an amorphous one as has been frequently reported. However, the presence of phosphorus changes drastically the short-range order and magnetic response of the prokaryotic cores with respect to HoSF. The superparamagnetism observed in HoSF is absent in the prokaryotic proteins, which show a pure atomic-like paramagnetic behaviour attributed to phosphorus breaking the Fe-Fe exchange interaction.It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM

  14. An α-helical core encodes the dual functions of the chlamydial protein IncA.

    PubMed

    Ronzone, Erik; Wesolowski, Jordan; Bauler, Laura D; Bhardwaj, Anshul; Hackstadt, Ted; Paumet, Fabienne

    2014-11-28

    Chlamydia is an intracellular bacterium that establishes residence within parasitophorous compartments (inclusions) inside host cells. Chlamydial inclusions are uncoupled from the endolysosomal pathway and undergo fusion with cellular organelles and with each other. To do so, Chlamydia expresses proteins on the surface of the inclusion using a Type III secretion system. These proteins, termed Incs, are located at the interface between host and pathogen and carry out the functions necessary for Chlamydia survival. Among these Incs, IncA plays a critical role in both protecting the inclusion from lysosomal fusion and inducing the homotypic fusion of inclusions. Within IncA are two regions homologous to eukaryotic SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) domains referred to as SNARE-like domain 1 (SLD1) and SNARE-like domain 2 (SLD2). Using a multidisciplinary approach, we have discovered the functional core of IncA that retains the ability to both inhibit SNARE-mediated fusion and promote the homotypic fusion of Chlamydia inclusions. Circular dichroism and analytical ultracentrifugation experiments show that this core region is composed almost entirely of α-helices and assembles into stable homodimers in solution. Altogether, we propose that both IncA functions are encoded in a structured core domain that encompasses SLD1 and part of SLD2.

  15. A single aromatic core mutation converts a designed "primitive" protein from halophile to mesophile folding.

    PubMed

    Longo, Liam M; Tenorio, Connie A; Kumru, Ozan S; Middaugh, C Russell; Blaber, Michael

    2015-01-01

    The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate "cradle" for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original "prebiotic" set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile-to-mesophile transition by hydrophobic core-packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a "primitive" designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)-having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a "primitive" polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile-to-mesophile protein folding adaptation-identifying a selective advantage for the incorporation of aromatic amino acids into the codon table.

  16. INPP4B is an oncogenic regulator in human colon cancer

    PubMed Central

    Guo, S T; Chi, M N; Yang, R H; Guo, X Y; Zan, L K; Wang, C Y; Xi, Y F; Jin, L; Croft, A; Tseng, H-Y; Yan, X G; Farrelly, M; Wang, F H; Lai, F; Wang, J F; Li, Y P; Ackland, S; Scott, R; Agoulnik, I U; Hondermarck, H; Thorne, R F; Liu, T; Zhang, X D; Jiang, C C

    2016-01-01

    Inositol polyphosphate 4-phosphatase type II (INPP4B) negatively regulates phosphatidylinositol 3-kinase signaling and is a tumor suppressor in some types of cancers. However, we have found that it is frequently upregulated in human colon cancer cells. Here we show that silencing of INPP4B blocks activation of Akt and serum- and glucocorticoid-regulated kinase 3 (SGK3), inhibits colon cancer cell proliferation and retards colon cancer xenograft growth. Conversely, overexpression of INPP4B increases proliferation and triggers anchorage-independent growth of normal colon epithelial cells. Moreover, we demonstrate that the effect of INPP4B on Akt and SGK3 is associated with inactivation of phosphate and tensin homolog through its protein phosphatase activity and that the increase in INPP4B is due to Ets-1-mediated transcriptional upregulation in colon cancer cells. Collectively, these results suggest that INPP4B may function as an oncogenic driver in colon cancer, with potential implications for targeting INPP4B as a novel approach to treat this disease. PMID:26411369

  17. In Vitro Dynamic Visualization Analysis of Fluorescently Labeled Minor Capsid Protein IX and Core Protein V by Simultaneous Detection

    PubMed Central

    Ugai, Hideyo; Wang, Minghui; Le, Long P.; Matthews, David A.; Yamamoto, Masato; Curiel, David T.

    2009-01-01

    Oncolytic adenoviruses represent a promising therapeutic medicine for human cancer therapy, but successful translation to human clinical trials requires careful evaluation of these viral characteristics. While the function of the adenovirus proteins have been analyzed in detail, the dynamics of adenovirus infection remain largely unknown due to technological constraints which prevent adequate tracking of the adenovirus particles after infection. Fluorescent labeling of the adenoviral particles is one new strategy designed to directly analyze dynamic processes of viral infection in virus-host cell interactions. We hypothesized that the double labeling technique of adenovirus with fluorescent proteins would allow us to properly analyze intracellular viruses and the fate of viral proteins in live analysis of adenovirus as compared to a single labeling. Thus, we generated a fluorescently labeled adenovirus with both a red fluorescent minor capsid protein IX (pIX-mRFP1) and a green fluorescent minor core protein V (pV-EGFP), resulting in Ad5-IX-mRFP1-E3-V-EGFP. The fluorescent signals for pIX-mRFP1 and pV-EGFP were detected within 10 min in living cells. However, the growth curve analysis of Ad5-IX-mRFP1-E3-V-EGFP showed approximately 150-fold reduced production of the viral progeny at 48 hours post-infection (h.p.i.) as compared to Ad5. Interestingly, pIX-mRFP1 and pV-EGFP were initially localized in the cytoplasm and the nucleolus, respectively, at 18 h.p.i. These proteins were observed in the nucleus during the late stage of infection and the relocalization of the proteins was observed in an adenoviral replication-dependent manner. These results indicate that the simultaneous detection of adenovirus using dual-fluorescent proteins is suitable for real-time analysis, including identification of infected cells, and monitoring viral spread, which will be required for complete evaluation of oncolytic adenoviruses. PMID:19853616

  18. TRF2 Protein Interacts with Core Histones to Stabilize Chromosome Ends*

    PubMed Central

    Izumi, Takashi; Shimizu, Shigeomi

    2016-01-01

    Mammalian chromosome ends are protected by a specialized nucleoprotein complex called telomeres. Both shelterin, a telomere-specific multi-protein complex, and higher order telomeric chromatin structures combine to stabilize the chromosome ends. Here, we showed that TRF2, a component of shelterin, binds to core histones to protect chromosome ends from inappropriate DNA damage response and loss of telomeric DNA. The N-terminal Gly/Arg-rich domain (GAR domain) of TRF2 directly binds to the globular domain of core histones. The conserved arginine residues in the GAR domain of TRF2 are required for this interaction. A TRF2 mutant with these arginine residues substituted by alanine lost the ability to protect telomeres and induced rapid telomere shortening caused by the cleavage of a loop structure of the telomeric chromatin. These findings showed a previously unnoticed interaction between the shelterin complex and nucleosomal histones to stabilize the chromosome ends. PMID:27514743

  19. A novel approach to preparing magnetic protein microspheres with core-shell structure

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Sun, Zhendong; Li, Fengsheng; Chen, Kai; Liu, Tianyu; Liu, Jialing; Zhou, Tianle; Guo, Rui

    2011-03-01

    Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe 3O 4 cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe 3O 4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail.

  20. Core Amino Acid Residues in the Morphology-Regulating Protein, Mms6, for Intracellular Magnetite Biomineralization

    PubMed Central

    Yamagishi, Ayana; Narumiya, Kaori; Tanaka, Masayoshi; Matsunaga, Tadashi; Arakaki, Atsushi

    2016-01-01

    Living organisms produce finely tuned biomineral architectures with the aid of biomineral-associated proteins. The functional amino acid residues in these proteins have been previously identified using in vitro and in silico experimentation in different biomineralization systems. However, the investigation in living organisms is limited owing to the difficulty in establishing appropriate genetic techniques. Mms6 protein, isolated from the surface of magnetite crystals synthesized in magnetotactic bacteria, was shown to play a key role in the regulation of crystal morphology. In this study, we have demonstrated a defect in the specific region or substituted acidic amino acid residues in the Mms6 protein for observing their effect on magnetite biomineralization in vivo. Analysis of the gene deletion mutants and transformants of Magnetospirillum magneticum AMB-1 expressing partially truncated Mms6 protein revealed that deletions in the N-terminal or C-terminal regions disrupted proper protein localization to the magnetite surface, resulting in a change in the crystal morphology. Moreover, single amino acid substitutions at Asp123, Glu124, or Glu125 in the C-terminal region of Mms6 clearly indicated that these amino acid residues had a direct impact on magnetite crystal morphology. Thus, these consecutive acidic amino acid residues were found to be core residues regulating magnetite crystal morphology. PMID:27759096

  1. Current Drug Discovery for Anti-hepatitis C Virus Targeting NS4B.

    PubMed

    Wang, Zhenya; Chen, Xinli; Wu, Chunli; Xu, Haiwei; Liu, Hongmin

    2016-01-01

    Hepatitis C virus (HCV) infection is a major worldwide epidemic disease. It is estimated that more than 170 million individuals are infected with HCV and with three to four million new cases each year. Many new direct-acting antiviral (DAA) agents that specifically target HCV NS3 protease or NS5B polymerase inhibitors are therefore in development, with a significant effect for the patient and for the market recently. The non-structural 4B (NS4B) protein, is among the least characterized of the HCV proteins. A variety of functions have been recognized for NS4B, such as the ability to induce the membranous web replication platform, RNA binding and NTPase activity. In order to maximize antiviral efficacy and prevent the emergence of resistance, novel NS4B inhibitors have been subjected to pharmacological studies. In this review, we discussed current understanding of the structure and function of NS4B, and novel drug discoveries targeting NS4B as anti-hepatitis C virus such as sulfonamide, piperidine, carboxamide, piperazinone and quinoline derivatives within the last three years.

  2. Cloning and characterization of cDNA for syndecan core protein in sea urchin embryos.

    PubMed

    Tomita, K; Yamasu, K; Suyemitsu, T

    2000-10-01

    The cDNA for the core protein of the heparan sulfate proteoglycan, syndecan, of embryos of the sea urchin Anthocidaris crassispina was cloned and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) was used with total ribonucleic acid (RNA) from late gastrula stage embryos and degenerate primers for conserved regions of the core protein, to obtain a 0.1 kb PCR product. A late gastrula stage cDNA library was then screened using the PCR product as a probe. The clones obtained contained an open reading frame of 219 amino acid residues. The predicted product was 41.6% identical to mouse syndecan-1 in the region spanning the cytoplasmic and transmembrane domains. Northern analysis showed that the transcripts were present in unfertilized eggs and maximum expression was detected at the early gastrula stage. Syndecan mRNA was localized around the nuclei at the early cleavage stage, but was then found in the ectodermal cells of the gastrula embryos. Western blotting analysis using the antibody against the recombinant syndecan showed that the proteoglycan was present at a constant level from the unfertilized egg stage through to the pluteus larval stage. Immunostaining revealed that the protein was expressed on apical and basal surfaces of the epithelial wall in blastulae and gastrulae.

  3. A C-terminal di-leucine motif controls plasma membrane expression of PMCA4b.

    PubMed

    Antalffy, Géza; Pászty, Katalin; Varga, Karolina; Hegedűs, Luca; Enyedi, Agnes; Padányi, Rita

    2013-12-01

    Recent evidences show that the localization of different plasma membrane Ca(2+) ATPases (PMCAs) is regulated in various complex, cell type-specific ways. Here we show that in low-density epithelial and endothelial cells PMCA4b localized mostly in intracellular compartments and its plasma membrane localization was enhanced upon increasing density of cells. In good correlation with the enhanced plasma membrane localization a significantly more efficient Ca(2+) clearance was observed in confluent versus non-confluent HeLa cell cultures expressing mCherry-PMCA4b. We analyzed the subcellular localization and function of various C-terminally truncated PMCA4b variants and found that a truncated mutant PMCA4b-ct24 was mostly intracellular while another mutant, PMCA4b-ct48, localized more to the plasma membrane, indicating that a protein sequence corresponding to amino acid residues 1158-1181 contained a signal responsible for the intracellular retention of PMCA4b in non-confluent cultures. Alteration of three leucines to alanines at positions 1167-1169 resulted in enhanced cell surface expression and an appropriate Ca(2+) transport activity of both wild type and truncated pumps, suggesting that the di-leucine-like motif (1167)LLL was crucial in targeting PMCA4b. Furthermore, upon loss of cell-cell contact by extracellular Ca(2+) removal, the wild-type pump was translocated to the early endosomal compartment. Targeting PMCA4b to early endosomes was diminished by the L(1167-69)A mutation, and the mutant pump accumulated in long tubular cytosolic structures. In summary, we report a di-leucine-like internalization signal at the C-tail of PMCA4b and suggest an internalization-mediated loss of function of the pump upon low degree of cell-cell contact.

  4. Cell Autonomous and Nonautonomous Function of CUL4B in Mouse Spermatogenesis.

    PubMed

    Yin, Yan; Liu, Liren; Yang, Chenyi; Lin, Congxing; Veith, George Michael; Wang, Caihong; Sutovsky, Peter; Zhou, Pengbo; Ma, Liang

    2016-03-25

    CUL4B ubiquitin ligase belongs to the cullin-RING ubiquitin ligase family. Although sharing many sequence and structural similarities, CUL4B plays distinct roles in spermatogenesis from its homologous protein CUL4A. We previously reported that genetic ablation ofCul4ain mice led to male infertility because of aberrant meiotic progression. In the present study, we generated Cul4bgerm cell-specific conditional knock-out (Cul4b(Vasa)),as well asCul4bglobal knock-out (Cul4b(Sox2)) mouse, to investigate its roles in spermatogenesis. Germ cell-specific deletion of Cul4bled to male infertility, despite normal testicular morphology and comparable numbers of spermatozoa. Notably, significantly impaired sperm mobility caused by reduced mitochondrial activity and glycolysis level were observed in the majority of the mutant spermatozoa, manifested by low, if any, sperm ATP production. Furthermore,Cul4b(Vasa)spermatozoa exhibited defective arrangement of axonemal microtubules and flagella outer dense fibers. Our mass spectrometry analysis identified INSL6 as a novel CUL4B substrate in male germ cells, evidenced by its direct polyubiquination and degradation by CUL4B E3 ligase. Nevertheless,Cul4bglobal knock-out males lost their germ cells in an age-dependent manner, implying failure of maintaining the spermatogonial stem cell niche in somatic cells. Taken together, our results show that CUL4B is indispensable to spermatogenesis, and it functions cell autonomously in male germ cells to ensure spermatozoa motility, whereas it functions non-cell-autonomously in somatic cells to maintain spermatogonial stemness. Thus, CUL4B links two distinct spermatogenetic processes to a single E3 ligase, highlighting the significance of ubiquitin modification during spermatogenesis.

  5. Accelerated hepatocellular carcinoma development in CUL4B transgenic mice.

    PubMed

    Yuan, Jupeng; Jiang, Baichun; Zhang, Aizhen; Qian, Yanyan; Tan, Haining; Gao, Jiangang; Shao, Changshun; Gong, Yaoqin

    2015-06-20

    Cullin 4B (CUL4B) is a component of the Cullin 4B-Ring E3 ligase (CRL4B) complex that functions in proteolysis and in epigenetic regulation. CUL4B possesses tumor-promoting properties and is markedly upregulated in many types of human cancers. To determine the role of CUL4B in liver tumorigenesis, we generated transgenic mice that expressed human CUL4B in livers and other tissues and evaluated the development of spontaneous and chemically-induced hepatocellular carcinomas. We observed that CUL4B transgenic mice spontaneously developed liver tumors at a high incidence at old ages and exhibited enhanced DEN-induced hepatocarcinogenesis. There was a high proliferation rate in the livers of CUL4B transgenic mice that was accompanied by increased levels of Cdk1, Cdk4 and cyclin D1 and decreased level of p16. The transgenic mice also exhibited increased compensatory proliferation after DEN-induced liver injury, which was accompanied by activation of Akt, Erk, p38 and NF-κB. We also found that Prdx3 was downregulated and that DEN induced a higher level of reactive oxygen species in the livers of transgenic mice. Together, our results demonstrate a critical role of CUL4B in hepatocarcinogenesis in mice.

  6. Hepatitis C Virus Core Protein Promotes miR-122 Destabilization by Inhibiting GLD-2

    PubMed Central

    Kim, Geon-Woo; Lee, Seung-Hoon; Cho, Hee; Kim, Minwoo; Shin, Eui-Cheol; Oh, Jong-Won

    2016-01-01

    The liver-specific microRNA miR-122, which has essential roles in liver development and metabolism, is a key proviral factor for hepatitis C virus (HCV). Despite its crucial role in the liver and HCV life cycle, little is known about the molecular mechanism of miR-122 expression regulation by HCV infection. Here, we show that the HCV core protein downregulates the abundance of miR-122 by promoting its destabilization via the inhibition of GLD-2, a non-canonical cytoplasmic poly(A) polymerase. The decrease in miR-122 expression resulted in the dysregulation of the known functions of miR-122, including its proviral activity for HCV. By high-throughput sequencing of small RNAs from human liver biopsies, we found that the 22-nucleotide (nt) prototype miR-122 is modified at its 3′ end by 3′-terminal non-templated and templated nucleotide additions. Remarkably, the proportion of miR-122 isomers bearing a single nucleotide tail of any ribonucleotide decreased in liver specimens from patients with HCV. We found that these single-nucleotide-tailed miR-122 isomers display increased miRNA activity and stability over the 22-nt prototype miR-122 and that the 3′-terminal extension is catalyzed by the unique terminal nucleotidyl transferase activity of GLD-2, which is capable of adding any single ribonucleotide without preference of adenylate to the miR-122 3′ end. The HCV core protein specifically inhibited GLD-2, and its interaction with GLD-2 in the cytoplasm was found to be responsible for miR-122 downregulation. Collectively, our results provide new insights into the regulatory role of the HCV core protein in controlling viral RNA abundance and miR-122 functions through miR-122 stability modulation. PMID:27366906

  7. Heterogeneous Expression of the Core Circadian Clock Proteins among Neuronal Cell Types in Mouse Retina

    PubMed Central

    Liu, Xiaoqin; Zhang, Zhijing; Ribelayga, Christophe P.

    2012-01-01

    Circadian rhythms in metabolism, physiology, and behavior originate from cell-autonomous circadian clocks located in many organs and structures throughout the body and that share a common molecular mechanism based on the clock genes and their protein products. In the mammalian neural retina, despite evidence supporting the presence of several circadian clocks regulating many facets of retinal physiology and function, the exact cellular location and genetic signature of the retinal clock cells remain largely unknown. Here we examined the expression of the core circadian clock proteins CLOCK, BMAL1, NPAS2, PERIOD 1(PER1), PERIOD 2 (PER2), and CRYPTOCHROME2 (CRY2) in identified neurons of the mouse retina during daily and circadian cycles. We found concurrent clock protein expression in most retinal neurons, including cone photoreceptors, dopaminergic amacrine cells, and melanopsin-expressing intrinsically photosensitive ganglion cells. Remarkably, diurnal and circadian rhythms of expression of all clock proteins were observed in the cones whereas only CRY2 expression was found to be rhythmic in the dopaminergic amacrine cells. Only a low level of expression of the clock proteins was detected in the rods at any time of the daily or circadian cycle. Our observations provide evidence that cones and not rods are cell-autonomous circadian clocks and reveal an important disparity in the expression of the core clock components among neuronal cell types. We propose that the overall temporal architecture of the mammalian retina does not result from the synchronous activity of pervasive identical clocks but rather reflects the cellular and regional heterogeneity in clock function within retinal tissue. PMID:23189207

  8. Hepatitis C virus core protein impairs metabolic disorder of liver cell via HOTAIR-Sirt1 signalling

    PubMed Central

    Li, Zhi-qin; Gu, Xin-yu; Hu, Jin-xing; Ping, Yu; Li, Hua; Yan, Jing-ya; Li, Juan; Sun, Ran; Yu, Zu-jing; Zhang, Yi

    2016-01-01

    It has been suggested that Hepatitis C virus (HCV) core protein is associated with metabolic disorders of liver cell. However, the precise mechanism is still unclear. The aim of the present study was to explore the impact of HCV core protein on hepatocyte metabolism by HepG2 and the possible involvement of long non-coding (lnc) RNAs in this process. The effect of HCV core protein on lncRNAs expression was examined with quantitative RT-PCR (qRT-PCR). Manipulation of HVC core protein and lncRNA HOTAIR was to evaluate the role of interaction between them on cell metabolism-related gene expression and cellular metabolism. The potential downstream Sirt1 signal was examined by western blotting and qRT-PCR. Our data suggested that suppression of HOTAIR abrogates HCV core protein-induced reduction in Sirt1 and differential expression of glucose- and lipid-metabolism-related genes. Also it benefits for metabolic homoeostasis of hepatocyte indicated by restoration of cellular reactive oxygen species (ROS) level and NAD/NADH ratio. By manipulation of HOTAIR, we concluded that HOTAIR negatively regulates Sirt1 expression through affecting its promotor methylation. Moreover, overexpression of Sirt1 reverses pcDNA-HOTAIR-induced glucose- and lipid-metabolism-related gene expression. Our study suggests that HCV core protein causes dysfunction of glucose and lipid metabolism in liver cells through HOTAIR-Sirt1 signalling pathway. PMID:27129296

  9. Rab18 is required for viral assembly of hepatitis C virus through trafficking of the core protein to lipid droplets.

    PubMed

    Dansako, Hiromichi; Hiramoto, Hiroki; Ikeda, Masanori; Wakita, Takaji; Kato, Nobuyuki

    2014-08-01

    During persistent infection of HCV, the HCV core protein (HCV-JFH-1 strain of genotype 2a) is recruited to lipid droplets (LDs) for viral assembly, but the mechanism of recruitment of the HCV core protein is uncertain. Here, we demonstrated that one of the Ras-related small GTPases, Rab18, was required for trafficking of the core protein around LDs. The knockdown of Rab18 reduced intracellular and extracellular viral infectivity, but not intracellular viral replication in HCV-JFH-1-infected RSc cells (an HuH-7-derived cell line). Exogenous expression of Rab18 increased extracellular viral infectivity almost two-fold. Furthermore, Rab18 was co-localized with the core protein in HCV-JFH-1-infected RSc cells, and the knockdown of Rab18 blocked recruitment of the HCV-JFH-1 core protein to LDs. These results suggest that Rab18 has an important role in viral assembly through the trafficking of the core protein to LDs.

  10. Core-sigma interaction: probing the interaction of the bacteriophage T4 gene 55 promoter recognition protein with E.coli RNA polymerase core.

    PubMed Central

    Léonetti, J P; Wong, K; Geiduschek, E P

    1998-01-01

    The bacterial RNA polymerase sigma subunits are key participants in the early steps of RNA synthesis, conferring specificity of promoter recognition, facilitating promoter opening and promoter clearance, and responding to diverse transcriptional regulators. The T4 gene 55 protein (gp55), the sigma protein of the bacteriophage T4 late genes, is one of the smallest and most divergent members of this family. Protein footprinting was used to identify segments of gp55 that become buried upon binding to RNA polymerase core, and are therefore likely to constitute its interface with the core enzyme. Site-directed mutagenesis in two parts of this contact surface generated gene 55 proteins that are defective in polymerase-binding to different degrees. Alignment with the sequences of the sigma proteins and with a recently determined structure of a large segment of sigma70 suggests that the gp55 counterpart of sigma70 regions 2.1 and 2.2 is involved in RNA polymerase core binding, and that sigma70 and gp55 may be structurally similar in this region. The diverse phenotypes of the mutants implicate this region of gp55 in multiple aspects of sigma function. PMID:9482743

  11. Chronic Cognitive Dysfunction after Traumatic Brain Injury Is Improved with a Phosphodiesterase 4B Inhibitor

    PubMed Central

    Titus, David J.; Wilson, Nicole M.; Freund, Julie E.; Carballosa, Melissa M.; Sikah, Kevin E.; Furones, Concepcion; Dietrich, W. Dalton; Gurney, Mark E.

    2016-01-01

    Learning and memory impairments are common in traumatic brain injury (TBI) survivors. However, there are no effective treatments to improve TBI-induced learning and memory impairments. TBI results in decreased cAMP signaling and reduced cAMP-response-element binding protein (CREB) activation, a critical pathway involved in learning and memory. TBI also acutely upregulates phosphodiesterase 4B2 (PDE4B2), which terminates cAMP signaling by hydrolyzing cAMP. We hypothesized that a subtype-selective PDE4B inhibitor could reverse the learning deficits induced by TBI. To test this hypothesis, adult male Sprague-Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. At 3 months postsurgery, animals were administered a selective PDE4B inhibitor or vehicle before cue and contextual fear conditioning, water maze training and a spatial working memory task. Treatment with the PDE4B inhibitor significantly reversed the TBI-induced deficits in cue and contextual fear conditioning and water maze retention. To further understand the underlying mechanisms of these memory impairments, we examined hippocampal long-term potentiation (LTP). TBI resulted in a significant reduction in basal synaptic transmission and impaired expression of LTP. Treatment with the PDE4B inhibitor significantly reduced the deficits in basal synaptic transmission and rescued LTP expression. The PDE4B inhibitor reduced tumor necrosis factor-α levels and increased phosphorylated CREB levels after TBI, suggesting that this drug inhibited molecular pathways in the brain known to be regulated by PDE4B. These results suggest that a subtype-selective PDE4B inhibitor is a potential therapeutic to reverse chronic learning and memory dysfunction and deficits in hippocampal synaptic plasticity following TBI. SIGNIFICANCE STATEMENT Currently, there are an estimated 3.2–5.3 million individuals living with disabilities from traumatic brain injury (TBI) in the United States, and 8 of

  12. Structure of Protein Phosphatase 2A Core Enzyme Bound to Tumor-Inducing Toxins

    SciTech Connect

    Xing,Y.; Xu, Y.; Chen, Y.; Jeffrey, P.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.; Shi, Y.

    2006-01-01

    The serine/threonine phosphatase protein phosphatase 2A (PP2A) plays an essential role in many aspects of cellular functions and has been shown to be an important tumor suppressor. The core enzyme of PP2A comprises a 65 kDa scaffolding subunit and a 36 kDa catalytic subunit. Here we report the crystal structures of the PP2A core enzyme bound to two of its inhibitors, the tumor-inducing agents okadaic acid and microcystin-LR, at 2.6 and 2.8 {angstrom} resolution, respectively. The catalytic subunit recognizes one end of the elongated scaffolding subunit by interacting with the conserved ridges of HEAT repeats 11-15. Formation of the core enzyme forces the scaffolding subunit to undergo pronounced structural rearrangement. The scaffolding subunit exhibits considerable conformational flexibility, which is proposed to play an essential role in PP2A function. These structures, together with biochemical analyses, reveal significant insights into PP2A function and serve as a framework for deciphering the diverse roles of PP2A in cellular physiology.

  13. Expression of human inducible nitric oxide synthase in a tetrahydrobiopterin (H4B)-deficient cell line: H4B promotes assembly of enzyme subunits into an active dimer.

    PubMed Central

    Tzeng, E; Billiar, T R; Robbins, P D; Loftus, M; Stuehr, D J

    1995-01-01

    Murine inducible nitric oxide (NO) synthase (iNOS) is catalytically active only in dimeric form. Assembly of its purified subunits into a dimer requires H4B. To understand the structure-activity relationships of human iNOS, we constitutively expressed recombinant human iNOS in NIH 3T3 cells by using a retroviral vector. These cells are deficient in de novo H4B biosynthesis and the role of H4B in the expression and assembly of active iNOS in an intact cell system could be studied. In the absence of added H4B, NO synthesis by the cells was minimal, whereas cells grown with supplemental H4B or the H4B precursor sepiapterin generated NO (74.1 and 63.3 nmol of nitrite per 10(6) cells per 24 h, respectively). NO synthesis correlated with an increase in intracellular H4B but no increase in iNOS protein. Instead, an increased percentage of dimeric iNOS was observed, rising from 20% in cytosols from unsupplemented cells to 66% in H4B-supplemented cell cytosols. In all cases, only dimeric iNOS displayed catalytic activity. Cytosols prepared from H4B-deficient cells exhibited little iNOS activity but acquired activity during a 60- to 120-min incubation with H4B, reaching final activities of 60-72 pmol of citrulline per mg of protein per min. Reconstitution of cytosolic NO synthesis activity was associated with conversion of monomers into dimeric iNOS during the incubation. Thus, human iNOS subunits dimerize to form an active enzyme, and H4B plays a critical role in promoting dimerization in intact cells. This reveals a post-translational mechanism by which intracellular H4B can regulate iNOS expression. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:8524846

  14. Hydrophilic core-shell microspheres: a suitable support for controlled attachment of proteins and biomedical diagnostics.

    PubMed

    Basinska, Teresa

    2005-12-15

    Functional hydrophilic microspheres (latex particles) have found various applications in life sciences and in medicine - particularly in latex diagnostic tests. This paper presents a comprehensive review of studies on latex particles with a hydrophilic interfacial layer composed of various hydrophilic polymers with reactive groups at the ends of macromolecules or at each monomeric unit along the chain. Typical examples of these hydrophilic polymers are poly(2-hydroxyethyl methyl methacrylate), poly(acrylic acid), poly(N,N-dimethylacrylamide), polysaccharides, poly(ethylene oxide) and polyglycidol. Hydrophilic microspheres with different morphologies (uniform or core-shell, see Figure) have been synthesized by emulsion and dispersion polymerizations. The chemical structure of polymers which constitute the interfacial layer of microspheres has been investigated using a variety of instrumental techniques (such as XPS, SSIMS and NMR) and analytical methods based on specific chemical reactions suitable for the determination of particular functional groups. Microspheres are exposed to contact with proteins in the majority of medical applications. This paper presents examples of studies on the attachment of these biomacromolecules to microspheres. The relation between the structure of the interfacial layer of microspheres and the ability of these particles for the covalent binding of proteins is discussed. Several examples of diagnostic tests, in which hydrophilic microspheres with adsorbed or covalently immobilized proteins were used as reagents, are presented. The paper also contains a short review of the application of magnetic hydrophilic particles for protein separation. Examples of hydrophilic latex particles used for hemoperfusion or heavy metal ion separation are presented. Hydrophilic microspheres with uniform or core-shell morphologies.

  15. Structure of the protein core of the glypican Dally-like and localization of a region important for hedgehog signaling

    SciTech Connect

    Kim, Min-Sung; Saunders, Adam M.; Hamaoka, Brent Y.; Beachy, Philip A.; Leahy, Daniel J.

    2011-09-20

    Glypicans are heparan sulfate proteoglycans that modulate the signaling of multiple growth factors active during animal development, and loss of glypican function is associated with widespread developmental abnormalities. Glypicans consist of a conserved, approximately 45-kDa N-terminal protein core region followed by a stalk region that is tethered to the cell membrane by a glycosyl-phosphatidylinositol anchor. The stalk regions are predicted to be random coil but contain a variable number of attachment sites for heparan sulfate chains. Both the N-terminal protein core and the heparan sulfate attachments are important for glypican function. We report here the 2.4-{angstrom} crystal structure of the N-terminal protein core region of the Drosophila glypican Dally-like (Dlp). This structure reveals an elongated, {alpha}-helical fold for glypican core regions that does not appear homologous to any known structure. The Dlp core protein is required for normal responsiveness to Hedgehog (Hh) signals, and we identify a localized region on the Dlp surface important for mediating its function in Hh signaling. Purified Dlp protein core does not, however, interact appreciably with either Hh or an Hh:Ihog complex.

  16. The glycosylation-dependent interaction of perlecan core protein with LDL: implications for atherosclerosis[S

    PubMed Central

    Xu, Yu-Xin; Ashline, David; Liu, Li; Tassa, Carlos; Shaw, Stanley Y.; Ravid, Katya; Layne, Matthew D.; Reinhold, Vernon; Robbins, Phillips W.

    2015-01-01

    Perlecan is a major heparan sulfate (HS) proteoglycan in the arterial wall. Previous studies have linked it to atherosclerosis. Perlecan contains a core protein and three HS side chains. Its core protein has five domains (DI–DV) with disparate structures and DII is highly homologous to the ligand-binding portion of LDL receptor (LDLR). The functional significance of this domain has been unknown. Here, we show that perlecan DII interacts with LDL. Importantly, the interaction largely relies on O-linked glycans that are only present in the secreted DII. Among the five repeat units of DII, most of the glycosylation sites are from the second unit, which is highly divergent and rich in serine and threonine, but has no cysteine residues. Interestingly, most of the glycans are capped by the negatively charged sialic acids, which are critical for LDL binding. We further demonstrate an additive effect of HS and DII on LDL binding. Unlike LDLR, which directs LDL uptake through endocytosis, this study uncovers a novel feature of the perlecan LDLR-like DII in receptor-mediated lipoprotein retention, which depends on its glycosylation. Thus, perlecan glycosylation may play a role in the early LDL retention during the development of atherosclerosis. PMID:25528754

  17. UBE4B targets phosphorylated p53 at serines 15 and 392 for degradation

    PubMed Central

    Du, Cheng; Wu, Hong; Leng, Roger P.

    2016-01-01

    Phosphorylation of p53 is a key mechanism responsible for the activation of its tumor suppressor functions in response to various stresses. In unstressed cells, p53 is rapidly turned over and is maintained at a low basal level. After DNA damage or other forms of cellular stress, the p53 level increases, and the protein becomes metabolically stable. However, the mechanism of phosphorylated p53 regulation is unclear. In this study, we studied the kinetics of UBE4B, Hdm2, Pirh2, Cop1 and CHIP induction in response to p53 activation. We show that UBE4B coimmunoprecipitates with phosphorylated p53 at serines 15 and 392. Notably, the affinity between UBE4B and Hdm2 is greatly decreased after DNA damage. Furthermore, we observe that UBE4B promotes endogenous phospho-p53(S15) and phospho-p53(S392) degradation in response to IR. We demonstrate that UBE4B and Hdm2 repress p53S15A, p53S392A, and p53-2A(S15A, S392A) functions, including p53-dependent transactivation and growth inhibition. Overall, our results reveal that UBE4B plays an important role in regulating phosphorylated p53 following DNA damage. PMID:26673821

  18. KDM4B is a master regulator of the estrogen receptor signalling cascade.

    PubMed

    Gaughan, Luke; Stockley, Jacqueline; Coffey, Kelly; O'Neill, Daniel; Jones, Dominic L; Wade, Mark; Wright, Jamie; Moore, Madeleine; Tse, Sandy; Rogerson, Lynsey; Robson, Craig N

    2013-08-01

    The importance of the estrogen receptor (ER) in breast cancer (BCa) development makes it a prominent target for therapy. Current treatments, however, have limited effectiveness, and hence the definition of new therapeutic targets is vital. The ER is a member of the nuclear hormone receptor superfamily of transcription factors that requires co-regulator proteins for complete regulation. Emerging evidence has implicated a small number of histone methyltransferase (HMT) and histone demethylase (HDM) enzymes as regulators of ER signalling, including the histone H3 lysine 9 tri-/di-methyl HDM enzyme KDM4B. Two recent independent reports have demonstrated that KDM4B is required for ER-mediated transcription and depletion of the enzyme attenuates BCa growth in vitro and in vivo. Here we show that KDM4B has an overarching regulatory role in the ER signalling cascade by controlling expression of the ER and FOXA1 genes, two critical components for maintenance of the estrogen-dependent phenotype. KDM4B interacts with the transcription factor GATA-3 in BCa cell lines and directly co-activates GATA-3 activity in reporter-based experiments. Moreover, we reveal that KDM4B recruitment and demethylation of repressive H3K9me3 marks within upstream regulatory regions of the ER gene permits binding of GATA-3 to drive receptor expression. Ultimately, our findings confirm the importance of KDM4B within the ER signalling cascade and as a potential therapeutic target for BCa treatment.

  19. Immunochemical method for detection of antibody against HTLV-III core protein based upon recombinant HTLV-III gag gene encoded protein

    SciTech Connect

    Chang, N.T.; Ghrayeb, J.

    1989-02-28

    A method is described of detecting antibody against HTLV-III core protein in a biological fluid, comprising the steps of: a. providing an antigen immunoadsorbent comprising a solid phase to which is attached a HTLV-III core antigen which is a chimeric antigen comprising an amino acid sequence beginning at amino acid number 1 through 99, and extending to amino acid number 228, the chimeric antigen being immunoreactive with antibody against HTLV-III core protein; b. incubating the immunoadsorbent with a sample of the biological fluid to be tested under conditions which allow antibody in the sample to complex with the antigen immunoadsorbent; c. separating the immmunoadsorbent from the sample; and d. determining antibody bound to the iuumoadsorbent as an indication of antibody against HTLV-III core protein in the sample.

  20. Identification of Amino Acid Determinants in CYP4B1 for Optimal Catalytic Processing of 4-Ipomeanol

    PubMed Central

    Wiek, Constanze; Schmidt, Eva M; Roellecke, Katharina; Freund, Marcel; Nakano, Mariko; Kelly, Edward J; Kaisers, Wolfgang; Yarov-Yarovoy, Vladimir; Kramm, Christof M; Rettie, Allan E; Hanenberg, Helmut

    2014-01-01

    Mammalian CYP4B1 enzymes are cytochrome P450 monooxygenases that are responsible for the bioactivation of several exogenous pro-toxins including 4-ipomeanol (4-IPO). In contrast to the orthologous rabbit enzyme, we show here that native human CYP4B1 with a serine at position 427 is unable to bio-activate 4-IPO and does not cause cytotoxicity in HepG2 cells and primary human T-cells that overexpress these enzymes. We also demonstrate that a proline residue in the meander region at position 427 in human CYB4B1 and 422 in rabbit CYP4B1 is important for protein stability and rescues the 4-IPO bioactivation of the human enzyme, but is not essential for the catalytic activity of the rabbit CYP4B1 protein. Systematic substitution of native and p.S427P human CYP4B1 with peptide regions from the highly active rabbit enzyme reveals that 18 amino acids in the wild-type rabbit CYP4B1 protein are key for conferring high 4-IPO metabolizing activity. Introduction of 12 of the 18 amino acids that are also present at corresponding positions in other human CYP4 family members into the p.S427P human CYP4B1 protein results in a mutant human enzyme (P+12) that is as stable and as active as the rabbit wild-type CYP4B1 protein. These 12 mutations cluster in the predicted B–C loop through F-helix regions and reveal new amino acid regions important to P450 enzyme stability. Finally, by minimally re-engineering the human CYP4B1 enzyme for efficient activation of 4-IPO, we have developed a novel human suicide gene system that is a candidate for adoptive cellular therapies in humans. PMID:25247810

  1. Phylogeny of whey acidic protein (WAP) four-disulfide core proteins and their role in lower vertebrates and invertebrates.

    PubMed

    Smith, Valerie J

    2011-10-01

    Proteins containing WAP (whey acidic protein) domains with a characteristic WFDC (WAP four-disulfide core) occur not only in mammals (including marsupials and monotremes) but also in birds, reptiles, amphibians and fish. In addition, they are present in numerous invertebrates, from cnidarians to urochordates. Many of those from non-mammalian groups are poorly understood with respect to function or phylogeny. Those well characterized so far are waprins from snakes, perlwapins from bivalves and crustins from decapod crustaceans. Waprins are venom proteins with a single WAP domain at the C-terminus. They display antimicrobial, rather than proteinase inhibitory, activities. Perlwapins, in contrast, possess three WAP domains at the C-terminus and are expressed in the shell nacre of abalones. They participate in shell formation by inhibiting the growth of calcium crystals in the shell. The crustin group is the largest of all WFDC-containing proteins in invertebrates with the vast majority being highly expressed in the haemocytes. Most have a single WAP domain at the C-terminus. The presence and type of the domains between the signal sequence and the C-terminus WAP domain separate the different crustin types. Most of the Type I and II crustins are antimicrobial towards Gram-positive bacteria, whereas the Type III crustins tend to display protease inhibition. Expression studies show that at least some crustins have other important biological effects, as levels change with physiological stress, wound repair, tissue regeneration or ecdysis. Thus WAP domains are widely distributed and highly conserved, serving in diverse physiological processes (proteinase inhibition, bacterial killing or inhibition of calcium transport).

  2. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors.

    PubMed

    Akin, Debra; Wang, S Keisin; Habibzadegah-Tari, Pouran; Law, Brian; Ostrov, David; Li, Min; Yin, Xiao-Ming; Kim, Jae-Sung; Horenstein, Nicole; Dunn, William A

    2014-01-01

    Autophagy has been implicated in the progression and chemoresistance of various cancers. In this study, we have shown that osteosarcoma Saos-2 cells lacking ATG4B, a cysteine proteinase that activates LC3B, are defective in autophagy and fail to form tumors in mouse models. By combining in silico docking with in vitro and cell-based assays, we identified small compounds that suppressed starvation-induced protein degradation, LC3B lipidation, and formation of autophagic vacuoles. NSC185058 effectively inhibited ATG4B activity in vitro and in cells while having no effect on MTOR and PtdIns3K activities. In addition, this ATG4B antagonist had a negative impact on the development of Saos-2 osteosarcoma tumors in vivo. We concluded that tumor suppression was due to a reduction in ATG4B activity, since we found autophagy suppressed within treated tumors and the compound had no effects on oncogenic protein kinases. Our findings demonstrate that ATG4B is a suitable anti-autophagy target and a promising therapeutic target to treat osteosarcoma.

  3. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors

    PubMed Central

    Akin, Debra; Wang, S Keisin; Habibzadegah-Tari, Pouran; Law, Brian; Ostrov, David; Li, Min; Yin, Xiao-Ming; Kim, Jae-Sung; Horenstein, Nicole; Dunn, William A

    2014-01-01

    Autophagy has been implicated in the progression and chemoresistance of various cancers. In this study, we have shown that osteosarcoma Saos-2 cells lacking ATG4B, a cysteine proteinase that activates LC3B, are defective in autophagy and fail to form tumors in mouse models. By combining in silico docking with in vitro and cell-based assays, we identified small compounds that suppressed starvation-induced protein degradation, LC3B lipidation, and formation of autophagic vacuoles. NSC185058 effectively inhibited ATG4B activity in vitro and in cells while having no effect on MTOR and PtdIns3K activities. In addition, this ATG4B antagonist had a negative impact on the development of Saos-2 osteosarcoma tumors in vivo. We concluded that tumor suppression was due to a reduction in ATG4B activity, since we found autophagy suppressed within treated tumors and the compound had no effects on oncogenic protein kinases. Our findings demonstrate that ATG4B is a suitable anti-autophagy target and a promising therapeutic target to treat osteosarcoma. PMID:25483883

  4. Protein film voltammetry and co-factor electron transfer dynamics in spinach photosystem II core complex.

    PubMed

    Zhang, Yun; Magdaong, Nikki; Frank, Harry A; Rusling, James F

    2014-05-01

    Direct protein film voltammetry (PFV) was used to investigate the redox properties of the photosystem II (PSII) core complex from spinach. The complex was isolated using an improved protocol not used previously for PFV. The PSII core complex had high oxygen-evolving capacity and was incorporated into thin lipid and polyion films. Three well-defined reversible pairs of reduction and oxidation voltammetry peaks were observed at 4 °C in the dark. Results were similar in both types of films, indicating that the environment of the PSII-bound cofactors was not influenced by film type. Based on comparison with various control samples including Mn-depleted PSII, peaks were assigned to chlorophyll a (Chl a) (Em = -0.47 V, all vs. NHE, at pH 6), quinones (-0.12 V), and the manganese (Mn) cluster (Em = 0.18 V). PFV of purified iron heme protein cytochrome b-559 (Cyt b-559), a component of PSII, gave a partly reversible peak pair at 0.004 V that did not have a potential similar to any peaks observed from the intact PSII core complex. The closest peak in PSII to 0.004 V is the 0.18 V peak that was found to be associated with a two-electron process, and thus is inconsistent with iron heme protein voltammetry. The -0.47 V peak had a peak potential and peak potential-pH dependence similar to that found for purified Chl a incorporated into DMPC films. The midpoint potentials reported here may differ to various extents from previously reported redox titration data due to the influence of electrode double-layer effects. Heterogeneous electron transfer (hET) rate constants were estimated by theoretical fitting and digital simulations for the -0.47 and 0.18 V peaks. Data for the Chl a peaks were best fit to a one-electron model, while the peak assigned to the Mn cluster was best fit by a two-electron/one-proton model.

  5. A disulfide-bonded dimer of the core protein of hepatitis C virus is important for virus-like particle production.

    PubMed

    Kushima, Yukihiro; Wakita, Takaji; Hijikata, Makoto

    2010-09-01

    Hepatitis C virus (HCV) core protein forms the nucleocapsid of the HCV particle. Although many functions of core protein have been reported, how the HCV particle is assembled is not well understood. Here we show that the nucleocapsid-like particle of HCV is composed of a disulfide-bonded core protein complex (dbc-complex). We also found that the disulfide-bonded dimer of the core protein (dbd-core) is formed at the endoplasmic reticulum (ER), where the core protein is initially produced and processed. Mutational analysis revealed that the cysteine residue at amino acid position 128 (Cys128) of the core protein, a highly conserved residue among almost all reported isolates, is responsible for dbd-core formation and virus-like particle production but has no effect on the replication of the HCV RNA genome or the several known functions of the core protein, including RNA binding ability and localization to the lipid droplet. The Cys128 mutant core protein showed a dominant negative effect in terms of HCV-like particle production. These results suggest that this disulfide bond is critical for the HCV virion. We also obtained the results that the dbc-complex in the nucleocapsid-like structure was sensitive to proteinase K but not trypsin digestion, suggesting that the capsid is built up of a tightly packed structure of the core protein, with its amino (N)-terminal arginine-rich region being concealed inside.

  6. Silver-protein (core-shell) nanoparticle production using spent mushroom substrate.

    PubMed

    Vigneshwaran, Nadanathangam; Kathe, Arati A; Varadarajan, Perianambi V; Nachane, Rajan P; Balasubramanya, Rudrapatna H

    2007-06-19

    A simple route for the synthesis of silver-protein (core-shell) nanoparticles using spent mushroom substrate (SMS) has been demonstrated in this work. SMS exhibits an organic surface that reduces silver ions and stabilizes the silver nanoparticles by a secreted protein. The silver nitrate solution incubated with SMS changed to a yellow color from 24 h onward, indicating the formation of silver nanoparticles. The purified solution yielded the maximum absorbance at 436 nm due to surface plasmon resonance of the silver nanoparticles. X-ray analysis of the freeze-dried powder of silver nanoparticles confirmed the formation of metallic silver. Transmission electron microscopic analysis of the samples showed a uniform distribution of nanoparticles, having an average size of 30.5 +/- 4.0 nm, and its corresponding electron diffraction pattern confirmed the face-centered cubic (fcc) crystalline structure of metallic silver. The characteristic fluorescence of the protein shell at 435 nm was observed for the silver nanoparticles in solution, when excited at 280 nm, while Fourier transform infrared (FTIR) spectroscopy confirmed the presence of a protein shell. The silver nanoparticles were found to be stable in solution for more than 6 months. It is observed that the reducing agents from the safflower stalks caused the reduction of silver ions while protein secreted by the fungus stabilized the silver nanoparticles. These silver nanoparticles showed excellent antibacterial activity against two representative bacteria, Staphylococcus aureus (Gram positive) and Klebsiella pneumoniae (Gram negative), in spite of the presence of an organic layer as a shell. Apart from ecofriendliness and easy availability, "SMS" as a biomanufacturing unit will give us an added advantage in ease of handling when compared to other classes of microorganisms.

  7. A Genetic Interaction between Hepatitis C Virus NS4B and NS3 Is Important for RNA Replication▿

    PubMed Central

    Paredes, Anne M.; Blight, Keril J.

    2008-01-01

    Hepatitis C virus (HCV) nonstructural protein 4B (NS4B), a poorly characterized integral membrane protein, is thought to function as a scaffold for replication complex assembly; however, functional interactions with the other HCV nonstructural proteins within this complex have not been defined. We report that a Con1 chimeric subgenomic replicon containing the NS4B gene from the closely related H77 isolate is defective for RNA replication in a transient assay, suggesting that H77 NS4B is unable to productively interact with the Con1 replication machinery. The H77 NS4B sequences that proved detrimental for Con1 RNA replication resided in the predicted N- and C-terminal cytoplasmic domains as well as the central transmembrane region. Selection for Con1 derivatives that could utilize the entire H77 NS4B or hybrid Con1-H77 NS4B proteins yielded mutants containing single amino acid substitutions in NS3 and NS4A. The second-site mutations in NS3 partially restored the replication of Con1 chimeras containing the N-terminal or transmembrane domains of H77 NS4B. In contrast, the deleterious H77-specific sequences in the C terminus of NS4B, which mapped to a cluster of four amino acids, were completely suppressed by second-site substitutions in NS3. Collectively, these results provide the first evidence for a genetic interaction between NS4B and NS3 important for productive HCV RNA replication. PMID:18715921

  8. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle

    PubMed Central

    Hergeth, Sonja P; Schneider, Robert

    2015-01-01

    The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications. PMID:26474902

  9. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle.

    PubMed

    Hergeth, Sonja P; Schneider, Robert

    2015-11-01

    The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications.

  10. Identification of New ATG4B Inhibitors Based on a Novel High-Throughput Screening Platform.

    PubMed

    Xu, Danqing; Xu, Zhiheng; Han, Li; Liu, Cheng; Zhou, Zheng; Qiu, Zongxing; Lin, Xianfeng; Tang, Guozhi; Shen, Hong; Aebi, Johannes; Riemer, Claus; Kuhn, Bernd; Stahl, Martin; Mark, David; Qin, Ning; Ding, Haiyuan

    2017-04-01

    Autophagy is an evolutionarily conserved homeostasis process through which aggregated proteins or damaged organelles are enveloped in a double-membrane structure called an autophagosome and then digested in a lysosome-dependent manner. Growing evidence suggests that malfunction of autophagy contributes to the pathogenesis of a variety of diseases, including cancer, viral infection, and neurodegeneration. However, autophagy is a complicated process, and understanding of the relevance of autophagy to disease is limited by lack of specific and potent autophagy modulators. ATG4B, a Cys-protease that cleaves ATG8 family proteins, such as LC3B, is a key protein in autophagosome formation and maturation process. A novel time-resolved fluorescence resonance energy transfer (TR-FRET) assay measuring protease activity of ATG4B was developed, validated, and adapted into a high-throughput screening (HTS) format. HTS was then conducted with a Roche focus library of 57,000 compounds. After hit confirmation and a counterscreen to filter out fluorescence interference compounds, 267 hits were confirmed, constituting a hit rate of 0.49%. Furthermore, among 65 hits with an IC50 < 50 µM, one compound mimics the LC3 peptide substrate (-TFG-). Chemistry modification based on this particular hit gave preliminary structure activity relationship (SAR) resulting in a compound with a 10-fold increase in potency. This compound forms a stable covalent bond with Cys74 of ATG4B in a 1:1 ratio as demonstrated by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Furthermore, this compound displayed cellular ATG4B inhibition activity. Overall, the novel TR-FRET ATG4B protease assay plus counterscreen assay provides a robust platform to identify ATG4B inhibitors, which would help to elucidate the mechanism of the autophagy pathway and offer opportunities for drug discovery.

  11. Inhibitory effect of presenilin inhibitor LY411575 on maturation of hepatitis C virus core protein, production of the viral particle and expression of host proteins involved in pathogenicity.

    PubMed

    Otoguro, Teruhime; Tanaka, Tomohisa; Kasai, Hirotake; Yamashita, Atsuya; Moriishi, Kohji

    2016-11-01

    Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C-terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin-like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti-HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti-HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP-dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV-infected cells was significantly impaired by LY411575 in a dose-dependent manner (half maximum inhibitory concentration = 0.27 μM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 μM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir-dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV-related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity.

  12. p15RS/RPRD1A (p15INK4b-related Sequence/Regulation of Nuclear Pre-mRNA Domain-containing Protein 1A) Interacts with HDAC2 in Inhibition of the Wnt/β-Catenin Signaling Pathway*

    PubMed Central

    Liu, Chunxiao; Zhang, Yanquan; Li, Jun; Wang, Yinyin; Ren, Fangli; Zhou, Yifan; Wu, Yinyuan; Feng, Yarui; Zhou, Yu; Su, Fuqin; Jia, Baoqing; Wang, Dong; Chang, Zhijie

    2015-01-01

    We previously reported that p15RS (p15INK4b-related sequence), a regulation of nuclear pre-mRNA domain containing protein, inhibited Wnt signaling by interrupting the formation of the β-catenin·TCF4 complex. However, how p15RS functions as an intrinsic repressor to repress transcription remains unclear. In this study, we show that p15RS, through a specific interaction with HDAC2 (histone deacetylase 2), a deacetylase that regulates gene transcription, maintains histone H3 in a deacetylated state in the promoter region of Wnt-targeted genes where β-catenin·TCF4 is bound. We observed that histone deacetylase inhibitors impair the ability of p15RS in inhibiting Wnt/β-catenin signaling. Depletion of HDAC2 markedly disabled p15RS inhibition of Wnt/β-catenin-mediated transcription. Interestingly, overexpression of p15RS decreases the level of acetylated histone H3 in the c-MYC promoter. Finally, we demonstrate that p15RS significantly enhances the association of HDAC2 and TCF4 and enhances the occupancy of HDAC2 to DNA, resulting in the deacetylation of histone H3 and the failure of β-catenin interaction. We propose that p15RS acts as an intrinsic transcriptional repressor for Wnt/β-catenin-mediated gene transcription at least partially through recruiting HDAC2 to occupy the promoter and maintaining deacetylated histone H3. PMID:25697359

  13. Identity of the core proteins of the large chondroitin sulphate proteoglycans synthesized by skeletal muscle and prechondrogenic mesenchyme.

    PubMed Central

    Carrino, D A; Dennis, J E; Drushel, R F; Haynesworth, S E; Caplan, A I

    1994-01-01

    Large, chondroitin sulphate-containing proteoglycans are synthesized by three prominent tissue in the embryonic chick limb. One of these proteoglycans is aggrecan, the phenotype-specific proteoglycan of cartilage. Another, PG-M, is produced by prechondrogenic mesenchymal cells. The third, M-CSPG, is made by developing skeletal muscle cells. While the carbohydrate components of PG-M and M-CSPG share some similarities, both of these proteoglycans clearly have different carbohydrate moieties from those of aggrecan. To compare these three proteoglycans at another level, their core protein structures were analysed in three ways: by the presence or absence of monoclonal antibody epitopes, by one-dimensional peptide display of the cyanogen bromide-cleaved core proteins and by electron microscopic imaging of the molecules. Monoclonal antibodies whose epitopes are present in aggrecan core protein were tested with core protein preparations from M-CSPG and PG-M. One of these, 7D1, recognizes both PG-M and M-CSPG, while another, 1C6, shows no reactivity for the non-cartilage proteoglycans. The absence of 1C6 reactivity is of interest, as its epitope is in a region of the aggrecan core protein known to have a functional homologue in the core proteins of PG-M and M-CSPG. The cyanogen bromide-fragmented peptide pattern of M-CSPG is the same as that of PG-M, and both are different from that of aggrecan. The aggrecan pattern has one prominent large band (molecular mass 130 kDa), some less prominent large bands (molecular mass 70-100 kDa) and several smaller bands. In contrast, the PG-M and M-CSPG patterns show no bands with molecular masses > 73 kDa, and the smaller bands (molecular mass < 40 kDa) have a different pattern to that of the smaller bands from aggrecan. The electron microscopic images of aggrecan show a core protein with one end having two globular regions separated by a short linear segment; adjacent to this is a long linear segment, which sometimes contains a third

  14. Primary, secondary, and tertiary structure of the core of a histone H1-like protein from the sperm of Mytilus.

    PubMed

    Jutglar, L; Borrell, J I; Ausió, J

    1991-05-05

    We have analyzed the structure of the trypsin-resistant core of the protein PL-II* of the sperm from Mytilus californianus. The peptide has a molecular mass of 8436 Da and its primary sequence is ATGGAKKP STLSMIVAAIQAMKNRKGSSVQAIRKYILANNKG INTSRLGSAMKLAFAKGLKSGVLVRPKTSAGA SGATGSFRVG. This sequence bears an enormous homology and fulfills the constraints of the consensus sequence of the trypsin-resistant peptides of the proteins of the histone H1 family. Secondary structure analysis using Fourier-transform infared spectroscopy as well as predictive methods indicate the presence of 20-30% beta-structure and approximately 25% alpha-helix for this peptide. As in the case of histone H1 proteins, the protein PL-II* core exhibits a compact globular structure as deduced from hydrodynamic measurements. The presence of a histone H1 protein with protamine-like features, seems to be thus, a common general feature of the chromatin composition in the sperm of the bivalve molluscs.

  15. Proteins from the organic matrix of core-top and fossil planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Robbins, L. L.; Brew, K.

    1990-08-01

    Organic constituents isolated from the tests (shells) of six species of core-top planktonic foraminifera, ranging in age between 2 and 4 Ka BP, consist of a heterogeneous mixture of proteins and polypeptides. At least seven discrete polypeptides are present as indicated by reverse phase HPLC and by gel electrophoresis. High percentages of aspartic acid and glutamic acid characterize one class of protein, while glycine, serine, and alanine-rich proteins dominate in a second class. Similar HPLC Chromatographie elution profiles are observed for all species analyzed, varying only in intensity of the peaks and in amino acid composition from species to species. The approximate molecular weights of two major fossil proteins ranged between 50,000 and 70,000 daltons. A comparison of 2-4 and 300 Ka Bp samples shows that while most of the polypeptides are present in both samples, some acidic polypeptides are not present in the older sample. These data suggest that some of the acidic polypeptides may be more soluble than other fractions and are lost more quickly from the test. The remaining hydrophobic, possibly more insoluble, polypeptides may be preserved in much older specimens and may be useful in tracing phylogeny of the planktonic foraminifera. Amino acid analyses of total test extracts before and after dialysis demonstrate that some acidic amino acids, particularly aspartic acid, and possibly peptides less than 6000-8000 daltons are lost during dialysis. Although a large percentage of these components are undoubtedly from the original organic matrix, at this point adsorbed components cannot be ruled out. These data caution against the use of total amino acid compositions in biogeochemical studies.

  16. Dietary protein modulates circadian changes in core body temperature and metabolic rate in rats.

    PubMed

    Yamaoka, Ippei; Nakayama, Mitsuo; Miki, Takanori; Yokoyama, Toshifumi; Takeuchi, Yoshiki

    2008-02-01

    We assessed the contribution of dietary protein to circadian changes in core body temperature (Tb) and metabolic rate in freely moving rats. Daily changes in rat intraperitoneal temperature, locomotor activity (LMA), whole-body oxygen consumption (VO2), and carbon dioxide production (VCO2) were measured before and during 4 days of consuming a 20% protein diet (20% P), a protein-free diet (0% P), or a pair-fed 20% P diet (20% P-R). Changes in Tb did not significantly differ between the 20% P and 20% P-R groups throughout the study. The Tb in the 0% P group remained elevated during the dark (D) phase throughout the study, but VO2, VCO2, and LMA increased late in the study when compared with the 20% P-R group almost in accordance with elevated Tb. By contrast, during the light (L) phase in the 0% P group, Tb became elevated early in the study and thereafter declined with a tendency to accompany significantly lower VO2 and VCO2 when compared with the 20% P group, but not the 20% P-R group. The respiratory quotient (RQ) in the 0% P group declined throughout the D phase and during the early L phase. By contrast, RQ in the 20% P-R group consistently decreased from the late D phase to the end of the L phase. Our findings suggest that dietary protein contributes to the maintenance of daily oscillations in Tb with modulating metabolic rates during the D phase. However, the underlying mechanisms of Tb control during the L phase remain obscure.

  17. LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation.

    PubMed

    Küspert, Maritta; Murakawa, Yasuhiro; Schäffler, Katrin; Vanselow, Jens T; Wolf, Elmar; Juranek, Stefan; Schlosser, Andreas; Landthaler, Markus; Fischer, Utz

    2015-07-01

    mRNAs are key molecules in gene expression and subject to diverse regulatory events. Regulation is accomplished by distinct sets of trans-acting factors that interact with mRNAs and form defined mRNA-protein complexes (mRNPs). The resulting "mRNP code" determines the fate of any given mRNA and thus controlling gene expression at the post-transcriptional level. The La-related protein 4B (LARP4B) belongs to an evolutionarily conserved family of RNA-binding proteins characterized by the presence of a La-module implicated in direct RNA binding. Biochemical experiments have shown previously direct interactions of LARP4B with factors of the translation machinery. This finding along with the observation of an association with actively translating ribosomes suggested that LARP4B is a factor contributing to the mRNP code. To gain insight into the function of LARP4B in vivo we tested its mRNA association at the transcriptome level and its impact on the proteome. PAR-CLIP analyses allowed us to identify the in vivo RNA targets of LARP4B. We show that LARP4B binds to a distinct set of cellular mRNAs by contacting their 3' UTRs. Biocomputational analysis combined with in vitro binding assays identified the LARP4B-binding motif on mRNA targets. The reduction of cellular LARP4B levels leads to a marked destabilization of its mRNA targets and consequently their reduced translation. Our data identify LARP4B as a component of the mRNP code that influences the expression of its mRNA targets by affecting their stability.

  18. Protein encapsulated core-shell structured particles prepared by coaxial electrospraying: investigation on material and processing variables.

    PubMed

    Zamani, Maedeh; Prabhakaran, Molamma P; Thian, Eng San; Ramakrishna, Seeram

    2014-10-01

    Biodegradable polymeric particles have been extensively investigated for controlled drug delivery of various therapeutic agents. 'Coaxial' electrospraying was successfully employed in this study, to fabricate core-shell PLGA particles containing bovine serum albumin (BSA) as the model protein, and the results were also compared to particles prepared by 'emulsion' electrospraying. Two different molecular weights of PLGA were employed to encapsulate the protein. Solution properties and processing parameters were found to influence the morphology of the core-shell particles. Depending on the type of solvent used to dissolve the polymer as well as the polymer concentration and molecular weight, the mean diameter of the particles varied between 3.0 to 5.5 μm. Fluorescence microscopic analysis of the electrosprayed particles using FITC-conjugated BSA demonstrated the core-shell structure of the developed particles. The encapsulation efficiency and release behavior of BSA was influenced by shell:core feeding ratio, protein concentration, and the electrospraying method. The encapsulation efficiency of BSA within the core-shell particles of high and low molecular weight PLGA was found 15.7% and 25.1% higher than the emulsion electrosprayed particles, respectively. Moreover, the total amount of BSA released from low molecular weight PLGA particles was significantly higher than high molecular weight PLGA particles within 43 days of release studies, with negligible effect on encapsulation efficiency. The technique of coaxial electrospraying has high potential for encapsulation of susceptible protein-based therapeutic agents such as growth factors for multiple drug delivery applications.

  19. High resolution crystal structure of human Dim2/TXNL4B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TXNL4A (thioredoxin like 4A) is an essential protein conserved from yeast to human and is a component of the pre-mRNA splicing machinery. TXNL4B was identified as a TXNL4 family protein that also interacts with prp6, an integral component of the U4/U6•U5 tri-snRNP complex, and was shown to function...

  20. DISC1, PDE4B, and NDE1 at the centrosome and synapse

    SciTech Connect

    Bradshaw, Nicholas J.; Ogawa, Fumiaki; Antolin-Fontes, Beatriz; Chubb, Jennifer E.; Carlyle, Becky C.; Christie, Sheila; Claessens, Antoine; Porteous, David J.; Millar, J. Kirsty

    2008-12-26

    Disrupted-In-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and other major mental illnesses. Its protein binding partners include the Nuclear Distribution Factor E Homologs (NDE1 and NDEL1), LIS1, and phosphodiesterases 4B and 4D (PDE4B and PDE4D). We demonstrate that NDE1, NDEL1 and LIS1, together with their binding partner dynein, associate with DISC1, PDE4B and PDE4D within the cell, and provide evidence that this complex is present at the centrosome. LIS1 and NDEL1 have been previously suggested to be synaptic, and we now demonstrate localisation of DISC1, NDE1, and PDE4B at synapses in cultured neurons. NDE1 is phosphorylated by cAMP-dependant Protein Kinase A (PKA), whose activity is, in turn, regulated by the cAMP hydrolysis activity of phosphodiesterases, including PDE4. We propose that DISC1 acts as an assembly scaffold for all of these proteins and that the NDE1/NDEL1/LIS1/dynein complex is modulated by cAMP levels via PKA and PDE4.

  1. UBE4B Levels Are Correlated with Clinical Outcomes in Neuroblastoma Patients and with Altered Neuroblastoma Cell Proliferation and Sensitivity to EGFR Inhibitors

    PubMed Central

    Zage, Peter E.; Sirisaengtaksin, Natalie; Liu, Yin; Gireud, Monica; Brown, Brandon S.; Palla, Shana; Richards, Kristen N.; Hughes, Dennis P.M.; Bean, Andrew J.

    2012-01-01

    Background The UBE4B gene, located on chromosome 1p36, encodes a ubiquitin ligase that interacts with Hrs, a protein involved in EGFR trafficking, suggesting a link between EGFR trafficking and neuroblastoma pathogenesis. We have analyzed the roles of UBE4B in the outcomes of neuroblastoma patients and in neuroblastoma tumor cell proliferation, EGFR trafficking, and response to EGFR inhibition. Methods We examined the association of UBE4B expression with neuroblastoma patient survival using available microarray datasets. We measured UBE4B and EGFR protein levels in patient tumor samples and EGFR degradation rates in neuroblastoma cell lines and analyzed the effects of UBE4B on neuroblastoma tumor cell growth. The effects of the EGFR inhibitor cetuximab were examined in neuroblastoma cells expressing wild-type and mutant UBE4B. Results Low UBE4B gene expression is associated with poor outcomes in patients with neuroblastoma. UBE4B overexpression reduced neuroblastoma tumor cell proliferation, and UBE4B expression was inversely related to EGFR expression in patient tumor samples. EGFR degradation rates correlated with cellular UBE4B levels. Enhanced expression of catalytically active UBE4B resulted in reduced sensitivity to EGFR inhibition. Conclusions We have demonstrated associations between UBE4B expression and neuroblastoma patient outcomes and between UBE4B and EGFR expression in neuroblastoma tumor samples. Moreover, levels of UBE4B influenced neuroblastoma tumor cell proliferation, EGFR degradation, and response to EGFR inhibition. These results suggest UBE4B-mediated GFR trafficking may contribute to the poor prognosis of neuroblastoma tumors with 1p36 deletions, and that UBE4B expression may be a marker that can predict responses of neuroblastoma tumors to treatment. PMID:22990745

  2. Bioengineered Vaults: Self-Assembling Protein Shell–Lipophilic Core Nanoparticles for Drug Delivery

    PubMed Central

    2015-01-01

    We report a novel approach to a new class of bioengineered, monodispersed, self-assembling vault nanoparticles consisting of a protein shell exterior with a lipophilic core interior designed for drug and probe delivery. Recombinant vaults were engineered to contain a small amphipathic α-helix derived from the nonstructural protein 5A of hepatitis C virus, thereby creating within the vault lumen a lipophilic microenvironment into which lipophilic compounds could be reversibly encapsulated. Multiple types of electron microscopy showed that attachment of this peptide resulted in larger than expected additional mass internalized within the vault lumen attributable to incorporation of host lipid membrane constituents spanning the vault waist (>35 nm). These bioengineered lipophilic vaults reversibly associate with a sample set of therapeutic compounds, including all-trans retinoic acid, amphotericin B, and bryostatin 1, incorporating hundreds to thousands of drug molecules per vault nanoparticle. Bryostatin 1 is of particular therapeutic interest because of its ability to potently induce expression of latent HIV, thus representing a preclinical lead in efforts to eradicate HIV/AIDS. Vaults loaded with bryostatin 1 released free drug, resulting in activation of HIV from provirus latency in vitro and induction of CD69 biomarker expression following intravenous injection into mice. The ability to preferentially and reversibly encapsulate lipophilic compounds into these novel bioengineered vault nanoparticles greatly advances their potential use as drug delivery systems. PMID:25061969

  3. Nonhistone nuclear high mobility group proteins 14 and 17 stabilize nucleosome core particles

    SciTech Connect

    Paton, A.E.; Wilkinson-Singley, E.; Olins, D.W.

    1983-11-10

    Nucleosome core particles form well defined complexes with the nuclear nonhistone proteins HMG 14 or 17. The binding of HMG 14 or 17 to nucleosomes results in greater stability of the nucleosomal DNA as shown by circular dichroism and thermal denaturation. Under appropriate conditions the binding is cooperative, and cooperativity is ionic strength dependent. The specificity and cooperative transitions of high mobility group (HMG) binding are preserved in 1 M urea. Specificity is lost in 4 M urea. Thermal denaturation and circular dichroism show a dramatic reversal of the effects of urea on nucleosomes when HMG 14 or 17 is bound, indicating stabilization of the nucleosome by HMG proteins. Complexes formed between reconstructed nucleosomes containing purified inner histones plus poly (dA-dT) and HMG 14 or 17 demonstrate that the HMG binding site requires only DNA and histones. Electron microscopy reveals no major structural alterations in the nucleosome upon binding of HMG 14 or 17. Cross-linking the nucleosome extensively with formaldehyde under cooperative HMG binding conditions does not prevent the ionic strength-dependent shift to noncooperative binding. This suggests mechanisms other than internal nucleosome conformational changes may be involved in cooperative HMG binding.

  4. Left-right asymmetry in the chick embryo requires core planar cell polarity protein Vangl2

    PubMed Central

    Zhang, Ying; Levin, Michael

    2009-01-01

    Consistent left-right patterning is a fascinating and biomedically important problem. In the chick embryo, it is not known how cells determine their position (left or right) relative to the primitive streak, which is required for subsequent asymmetric gene expression cascades. We show that the subcellular localization of Vangl2, a core planar cell polarity (PCP) protein, is consistently polarized, giving cells in the blastoderm a vector pointing toward the primitive streak. Moreover, morpholino-mediated loss-of-function of Vangl2 by electroporation into chicks at very early stages randomizes the normally left-sided expression of Sonic hedgehog. Strikingly, Vangl2 morpholinos also induce a de-synchronization of asymmetric gene expression within the left and right domains of Hensen’s node. These data reveal the existence of polarized planar cell polarity protein localization in gastrulating chick and demonstrate that the PCP pathway is functionally required for normal asymmetry in the chick upstream of Sonic hedgehog. These data suggest a new and widely-applicable class of models for the spread and coordination of left-right patterning information in the embryonic blastoderm. PMID:19621439

  5. Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis

    PubMed Central

    Cabrera, Sandra; Maciel, Mariana; Herrera, Iliana; Nava, Teresa; Vergara, Fabián; Gaxiola, Miguel; López-Otín, Carlos; Selman, Moisés; Pardo, Annie

    2015-01-01

    Autophagy is a critical cellular homeostatic process that controls the turnover of damaged organelles and proteins. Impaired autophagic activity is involved in a number of diseases, including idiopathic pulmonary fibrosis suggesting that altered autophagy may contribute to fibrogenesis. However, the specific role of autophagy in lung fibrosis is still undefined. In this study, we show for the first time, how autophagy disruption contributes to bleomycin-induced lung fibrosis in vivo using an Atg4b-deficient mouse as a model. Atg4b-deficient mice displayed a significantly higher inflammatory response at 7 d after bleomycin treatment associated with increased neutrophilic infiltration and significant alterations in proinflammatory cytokines. Likewise, we found that Atg4b disruption resulted in augmented apoptosis affecting predominantly alveolar and bronchiolar epithelial cells. At 28 d post-bleomycin instillation Atg4b-deficient mice exhibited more extensive and severe fibrosis with increased collagen accumulation and deregulated extracellular matrix-related gene expression. Together, our findings indicate that the ATG4B protease and autophagy play a crucial role protecting epithelial cells against bleomycin-induced stress and apoptosis, and in the regulation of the inflammatory and fibrotic responses. PMID:25906080

  6. Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis.

    PubMed

    Cabrera, Sandra; Maciel, Mariana; Herrera, Iliana; Nava, Teresa; Vergara, Fabián; Gaxiola, Miguel; López-Otín, Carlos; Selman, Moisés; Pardo, Annie

    2015-04-03

    Autophagy is a critical cellular homeostatic process that controls the turnover of damaged organelles and proteins. Impaired autophagic activity is involved in a number of diseases, including idiopathic pulmonary fibrosis suggesting that altered autophagy may contribute to fibrogenesis. However, the specific role of autophagy in lung fibrosis is still undefined. In this study, we show for the first time, how autophagy disruption contributes to bleomycin-induced lung fibrosis in vivo using an Atg4b-deficient mouse as a model. Atg4b-deficient mice displayed a significantly higher inflammatory response at 7 d after bleomycin treatment associated with increased neutrophilic infiltration and significant alterations in proinflammatory cytokines. Likewise, we found that Atg4b disruption resulted in augmented apoptosis affecting predominantly alveolar and bronchiolar epithelial cells. At 28 d post-bleomycin instillation Atg4b-deficient mice exhibited more extensive and severe fibrosis with increased collagen accumulation and deregulated extracellular matrix-related gene expression. Together, our findings indicate that the ATG4B protease and autophagy play a crucial role protecting epithelial cells against bleomycin-induced stress and apoptosis, and in the regulation of the inflammatory and fibrotic responses.

  7. Category 4b - A Regulatory Alternative to TMDLs

    EPA Pesticide Factsheets

    The paper describes the extent to which states have successfully employed TMDL alternatives to address impaired waters and assigned these waters to Category 4b, and includes several Washington State examples.

  8. Conformational stability of mammalian prion protein amyloid fibrils is dictated by a packing polymorphism within the core region.

    PubMed

    Cobb, Nathan J; Apostol, Marcin I; Chen, Shugui; Smirnovas, Vytautas; Surewicz, Witold K

    2014-01-31

    Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrP(Sc). One key operational parameter used to define differences between strains has been conformational stability of PrP(Sc) as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in β-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrP(Sc), especially because large strain-specific differences in PrP(Sc) stability are often observed despite a similar size of the PrP(Sc) core region.

  9. A polymer-protein core-shell nanomedicine for inhibiting cancer migration followed by photo-triggered killing.

    PubMed

    Ramachandran, Ranjith; Malarvizhi, Giridharan Loghanathan; Chandran, Parwathy; Gupta, Neha; Menon, Deepthy; Panikar, Dilip; Nair, Shantikumar; Koyakutty, Manzoor

    2014-08-01

    Migratory capacity of cancer plays a critical role in the process of metastasis. Aberrant focal adhesions activated by the phosphorylation of Src kinase enables cancer cells to anchor on its micro-environment and migrate towards biochemically favorable niche, causing metastasis. Effective blocking of the migratory capacity of cancer cells by inhibiting protein kinases and subsequent application of cytotoxic stress may provide better therapeutic outcome. Here, we report a novel core-shell nanomedicine that inhibits cancer migration by nano-shell and impart reactive oxygen stress by laser assisted photosensitization of nano-core. For this, we have optimized a polymer-protein nanoconstruct where a photosensitizer (5,10,15, 20-tetrakis(meso-hydroxyphenyl)porphyrin (mTHPP) is loaded into poly(lactic-co-glycolic acid) (PLGA) nano-core and Src kinase inhibitor (dasatinib) is loaded into albumin nano-shell. The polymer-core was prepared by electrospray technique and albumin-shell was formed by alcohol coacervation. Transmission electron microscopy studies revealed the formation of - 80 nm sized nano-core decorated with - 10 nm size nano-shell. Successful incorporation of monomeric mTHPP in nano-core resulted improved photo-physical properties and singlet oxygen release under physiological conditions compared to free-mTHPP. Core-shell nanomedicine also showed dose and time dependent cellular uptake in U87MG glioma cells. Dasatinib released from nano-shell caused down regulation of phospho-Src leading to significant impairment of cancer migration and subsequent laser assisted photosensitization of nano-core resulted in the release of reactive oxygen stress leading to apoptosis of spatially confined cancer cells. In vivo studies on Wistar rats indicated the absence of any significant toxicity caused by the intravenous administration of nanomedicine. These results clearly show the advantage of core-shell nanomedicine mediated combinatorial approach for inhibiting important

  10. "Hot cores" in proteins: Comparative analysis of the apolar contact area in structures from hyper/thermophilic and mesophilic organisms

    PubMed Central

    Paiardini, Alessandro; Sali, Riccardo; Bossa, Francesco; Pascarella, Stefano

    2008-01-01

    Background A wide variety of stabilizing factors have been invoked so far to elucidate the structural basis of protein thermostability. These include, amongst the others, a higher number of ion-pairs interactions and hydrogen bonds, together with a better packing of hydrophobic residues. It has been frequently observed that packing of hydrophobic side chains is improved in hyperthermophilic proteins, when compared to their mesophilic counterparts. In this work, protein crystal structures from hyper/thermophilic organisms and their mesophilic homologs have been compared, in order to quantify the difference of apolar contact area and to assess the role played by the hydrophobic contacts in the stabilization of the protein core, at high temperatures. Results The construction of two datasets was carried out so as to satisfy several restrictive criteria, such as minimum redundancy, resolution and R-value thresholds and lack of any structural defect in the collected structures. This approach allowed to quantify with relatively high precision the apolar contact area between interacting residues, reducing the uncertainty due to the position of atoms in the crystal structures, the redundancy of data and the size of the dataset. To identify the common core regions of these proteins, the study was focused on segments that conserve a similar main chain conformation in the structures analyzed, excluding the intervening regions whose structure differs markedly. The results indicated that hyperthermophilic proteins underwent a significant increase of the hydrophobic contact area contributed by those residues composing the alpha-helices of the structurally conserved regions. Conclusion This study indicates the decreased flexibility of alpha-helices in proteins core as a major factor contributing to the enhanced termostability of a number of hyperthermophilic proteins. This effect, in turn, may be due to an increased number of buried methyl groups in the protein core and/or a

  11. Effect of subdomain interactions on methyl group dynamics in the hydrophobic core of villin headpiece protein

    PubMed Central

    Vugmeyster, Liliya; Do, Tien; Ostrovsky, Dmitry; Fu, Riqianq

    2014-01-01

    Thermostable villin headpiece protein (HP67) consists of the N-terminal subdomain (residues 10–41) and the autonomously folding C-terminal subdomain (residues 42–76) which pack against each other to form a structure with a unified hydrophobic core. The X-ray structures of the isolated C-terminal subdomain (HP36) and its counterpart in HP67 are very similar for the hydrophobic core residues. However, fine rearrangements of the free energy landscape are expected to occur because of the interactions between the two subdomains. We detect and characterize these changes by comparing the µs-ms time scale dynamics of the methyl-bearing side chains in isolated HP36 and in HP67. Specifically, we probe three hydrophobic side chains at the interface of the two subdomains (L42, V50, and L75) as well as at two residues far from the interface (L61 and L69). Solid-state deuteron NMR techniques are combined with computational modeling for the detailed characterization of motional modes in terms of their kinetic and thermodynamic parameters. The effect of interdomain interactions on side chain dynamics is seen for all residues but L75. Thus, changes in dynamics because of subdomain interactions are not confined to the site of perturbation. One of the main results is a two-to threefold increase in the value of the activation energies for the rotameric mode of motions in HP67 compared with HP36. Detailed analysis of configurational entropies and heat capacities complement the kinetic view of the degree of the disorder in the folded state. PMID:24243806

  12. Hepatitis C virus RNA and core protein in kidney glomerular and tubular structures isolated with laser capture microdissection

    PubMed Central

    Sansonno, D; Lauletta, G; Montrone, M; Grandaliano, G; Schena, F P; Dammacco, F

    2005-01-01

    The role of hepatits C virus (HCV) in the production of renal injury has been extensively investigated, though with conflicting results. Laser capture microdissection (LCM) was performed to isolate and collect glomeruli and tubules from 20 consecutive chronically HCV-infected patients, namely 6 with membranoproliferative glomerulonephritis, 4 with membranous glomerulonephritis, 7 with focal segmental glomerulosclerosis and 3 with IgA-nephropathy. RNA for amplification of specific viral sequences was provided by terminal continuation methodology and compared with the expression profile of HCV core protein. For each case two glomeruli and two tubular structures were microdissected and processed. HCV RNA sequences were demonstrated in 26 (65%) of 40 glomeruli, but in only 4 (10%) of the tubules (P < 0·05). HCV core protein was concomitant with viral sequences in the glomeruli and present in 31 of the 40 tubules. HCV RNA and/or HCV core protein was found in all four disease types. The immunohistochemical picture of HCV core protein was compared with the LCM-based immunoassays of the adjacent tissue sections. Immune deposits were detected in 7 (44%) of 16 biopsy samples shown to be positive by extraction methods. The present study indicates that LCM is a reliable method for measuring both HCV RNA genomic sequences and HCV core protein in kidney functional structures from chronically HCV-infected patients with different glomerulopathies and provides a useful baseline estimate to define the role of HCV in the production of renal injury. The different distribution of HCV RNA and HCV-related proteins may reflect a peculiar ‘affinity’ of kidney microenvironments for HCV and point to distinct pathways of HCV-related damage in glomeruli and tubules. PMID:15932511

  13. Hepatitis C virus RNA and core protein in kidney glomerular and tubular structures isolated with laser capture microdissection.

    PubMed

    Sansonno, D; Lauletta, G; Montrone, M; Grandaliano, G; Schena, F P; Dammacco, F

    2005-06-01

    The role of hepatitis C virus (HCV) in the production of renal injury has been extensively investigated, though with conflicting results. Laser capture microdissection (LCM) was performed to isolate and collect glomeruli and tubules from 20 consecutive chronically HCV-infected patients, namely 6 with membranoproliferative glomerulonephritis, 4 with membranous glomerulonephritis, 7 with focal segmental glomerulosclerosis and 3 with IgA-nephropathy. RNA for amplification of specific viral sequences was provided by terminal continuation methodology and compared with the expression profile of HCV core protein. For each case two glomeruli and two tubular structures were microdissected and processed. HCV RNA sequences were demonstrated in 26 (65%) of 40 glomeruli, but in only 4 (10%) of the tubules (P < 0.05). HCV core protein was concomitant with viral sequences in the glomeruli and present in 31 of the 40 tubules. HCV RNA and/or HCV core protein was found in all four disease types. The immunohistochemical picture of HCV core protein was compared with the LCM-based immunoassays of the adjacent tissue sections. Immune deposits were detected in 7 (44%) of 16 biopsy samples shown to be positive by extraction methods. The present study indicates that LCM is a reliable method for measuring both HCV RNA genomic sequences and HCV core protein in kidney functional structures from chronically HCV-infected patients with different glomerulopathies and provides a useful baseline estimate to define the role of HCV in the production of renal injury. The different distribution of HCV RNA and HCV-related proteins may reflect a peculiar 'affinity' of kidney microenvironments for HCV and point to distinct pathways of HCV-related damage in glomeruli and tubules.

  14. Magnetic core/shell Fe3O4/Au nanoparticles for studies of quinolones binding to protein by fluorescence spectroscopy.

    PubMed

    Jin, Rui; Song, Daqian; Xiong, Huixia; Ai, Lisha; Ma, Pinyi; Sun, Ying

    2016-03-01

    Magnetic core/shell Fe3O4/Au nanoparticles were used in the determination of drug binding to bovine serum albumin (BSA) using a fluorescence spectroscopic method. The binding constants and number of binding sites for protein with drugs were calculated using the Scatchard equation. Because of their superparamagnetic and biocompatible characteristics, magnetic core/shell Fe3O4/Au nanoparticles served as carrier proteins for fixing proteins. After binding of the protein to a drug, the magnetic core/shell Fe3O4/Au nanoparticles-protein-drug complex was separated from the free drug using an applied magnetic field. The free drug concentration was obtained directly by fluorescence spectrometry and the proteins did not influence the drug determination. So, the achieved number of binding sites should be reliable. The binding constant and site number for ciprofloxacin (CPFX) binding to BSA were 2.055 × 10(5) L/mol and 31.7, and the corresponding values for norfloxacin (NOR) binding to BSA were 1.383 × 10(5) L/mol and 38.8. Based on the achieved results, a suitable method was proposed for the determination of binding constants and the site number for molecular interactions. The method was especially suitable for studies on the interactions of serum albumin with the active ingredients of Chinese medicine.

  15. Molecular characterization and polyclonal antibody generation against core component CagX protein of Helicobacter pylori type IV secretion system

    PubMed Central

    Gopal, Gopal Jee; Kumar, Awanish; Pal, Jagannath; Mukhopadhyay, Gauranga

    2014-01-01

    Gram-negative bacteria Helicobacter pylori cause gastric ulcer, duodenal cancer, and found in almost half of the world’s residents. The protein responsible for this disease is secreted through type IV secretion system (TFSS) of H. pylori. TFSS is encoded by 40-kb region of chromosomal DNA known as cag-pathogenicity island (PAI). TFSS comprises of three major components: cytoplasmic/inner membrane ATPase, transmembrane core-complex and outer membranous pilli, and associated subunits. Core complex consists of CagX, CagT, CagM, and Cag3(δ) proteins as per existing knowledge. In this study, we have characterized one of the important component of core-complex forming sub-unit protein, i.e., CagX. Complete ORF of CagX except signal peptide coding region was cloned and expressed in pET28a vector. Purification of CagX protein was performed, and polyclonal anti-sera against full-length recombinant CagX were raised in rabbit model. We obtained a very specific and high titer, CagX anti-sera that were utilized to characterize endogenous CagX. Surface localization of CagX was also seen by immunofluorescence microscopy. In short for the first time a full-length CagX was characterized, and we showed that CagX is the part of high molecular weight core complex, which is important for assembly and function of H. pylori TFSS. PMID:24637488

  16. Scrg1, a novel protein of the CNS is targeted to the large dense-core vesicles in neuronal cells.

    PubMed

    Dandoy-Dron, Françoise; Griffond, Bernadette; Mishal, Zohar; Tovey, Michael G; Dron, Michel

    2003-11-01

    Scrapie responsive gene one (Scrg1) is a novel transcript discovered through identification of the genes associated with or responsible for the neurodegenerative changes observed in transmissible spongiform encephalopathies. Scrg1 mRNA is distributed principally in the central nervous system and the cDNA sequence predicts a small cysteine-rich protein 98 amino acids in length, with a N-terminal signal peptide. In this study, we have generated antibodies against the predicted protein and revealed expression of a predominant immunoreactive protein of 10 kDa in mouse brain by Western blot analysis. We have established CAD neuronal cell lines stably expressing Scrg1 to determine its subcellular localization. Several lines of evidence show that the protein is targeted to dense-core vesicles in these cells. (i) Scrg1 is detected by immunocytochemistry as very punctate signals especially in the Golgi apparatus and tips of neurites, suggesting a vesicular localization for the protein. Moreover, Scrg1 exhibits a high degree of colocalization with secretogranin II, a dense-core vesicle marker and a very limited colocalization with markers for small synaptic vesicles. (ii) Scrg1 immunoreactivity is associated with large secretory granules/dense-core vesicles, as indicated by immuno-electron microscopy. (iii) Scrg1 is enriched in fractions of sucrose density gradient where synaptotagmin V, a dense-core vesicle-associated protein, is also enriched. The characteristic punctate immunostaining of Scrg1 is observed in N2A cells transfected with Scrg1 and for the endogenous protein in cultured primary neurons, attesting to the generality of the observations. Our findings strongly suggest that Scrg1 is associated with the secretory pathway of neuronal cells.

  17. pH/sugar dual responsive core-cross-linked PIC micelles for enhanced intracellular protein delivery.

    PubMed

    Ren, Jie; Zhang, Yanxin; Zhang, Ju; Gao, Hongjun; Liu, Gan; Ma, Rujiang; An, Yingli; Kong, Deling; Shi, Linqi

    2013-10-14

    Herein, a series of biocompatible, robust, pH/sugar-sensitive, core-cross-linked, polyion complex (PIC) micelles based on phenylboronic acid-catechol interaction were developed for protein intracellular delivery. The rationally designed poly(ethylene glycol)-b-poly(glutamic acid-co-glutamicamidophenylboronic acid) (PEG-b-P(Glu-co-GluPBA)) and poly(ethylene glycol)-b-poly(l-lysine-co-ε-3,4-dihydroxyphenylcarboxyl-L-lysine) (PEG-b-P(Lys-co-LysCA)) copolymers were successfully synthesized and self-assembled under neutral aqueous condition to form uniform micelles. These micelles possessed a distinct core-cross-linked core-shell structure comprised of the PEG outer shell and the PGlu/PLys polyion complex core bearing boronate ester cross-linking bonds. The cross-linked micelles displayed superior physiological stabilities compared with their non-cross-linked counterparts while swelling and disassembling in the presence of excess fructose or at endosomal pH. Notably, either negatively or positively charged proteins can be encapsulated into the micelles efficiently under mild conditions. The in vitro release studies showed that the release of protein cargoes under physiological conditions was minimized, while a burst release occurred in response to excess fructose or endosomal pH. The cytotoxicity of micelles was determined by cck-8 assay in HepG2 cells. The cytochrome C loaded micelles could efficiently delivery proteins into HepG2 cells and exhibited enhanced apoptosis ability. Hence, this type of core-cross-linked PIC micelles has opened a new avenue to intracellular protein delivery.

  18. Epidermal and hair follicle progenitor cells express melanoma-associated chondroitin sulfate proteoglycan core protein.

    PubMed

    Ghali, Lucy; Wong, Soon-Tee; Tidman, Nick; Quinn, Anthony; Philpott, Michael P; Leigh, Irene M

    2004-02-01

    Basal keratinocytes in the epidermis and hair follicle are biologically heterogeneous but must include a stable subpopulation of epidermal stem cells. In animal models these can be identified by their retention of radioactive label due to their slow cycle (label-retaining cells) but human studies largely depend on in vitro characterization of colony forming efficiency and clonogenicity. Differential integrin expression has been used to detect cells of increased proliferative potential but further stem cell markers are urgently required for in vivo and in vitro characterization. Using LHM2, a monoclonal antibody reacting with a high molecular weight melanoma-associated proteoglycan core protein, a subset of basal keratinocytes in both the interfollicular epidermis and the hair follicle has been identified. Coexpression of melanoma-associated chondroitin sulfate proteoglycan with keratins 15 and 19 as well as beta 1 and alpha 6 integrins has been examined in adult and fetal human skin from hair bearing, nonhair bearing, and palmoplantar regions. Although melanoma-associated chondroitin sulfate proteoglycan coexpression with a subset of beta 1 integrin bright basal keratinocytes within the epidermis suggests that melanoma-associated chondroitin sulfate proteoglycan colocalizes with epidermal stem cells, melanoma-associated chondroitin sulfate proteoglycan expression within the hair follicle was more complex and multiple subpopulations of basal outer root sheath keratinocytes are described. These data suggest that epithelial compartmentalization of the outer root sheath is more complex than interfollicular epidermis and further supports the hypothesis that more than one hair follicle stem cell compartment may exist.

  19. Effect of protein modification by malondialdehyde on the interaction between the oxygen-evolving complex 33 kDa protein and photosystem II core proteins.

    PubMed

    Yamauchi, Yasuo; Sugimoto, Yukihiro

    2010-04-01

    Previously we observed that the oxygen-evolving complex 33 kDa protein (OEC33) which stabilizes the Mn cluster in photosystem II (PSII), was modified with malondialdehyde (MDA), an end-product of peroxidized polyunsaturated fatty acids, and the modification increased in heat-stressed plants (Yamauchi et al. 2008). In this study, we examined whether the modification of OEC33 with MDA affects its binding to the PSII complex and causes inactivation of the oxygen-evolving complex. Purified OEC33 and PSII membranes that had been removed of extrinsic proteins of the oxygen-evolving complex (PSIIOEE) of spinach (Spinacia oleracea) were separately treated with MDA. The binding was diminished when both OEC33 and PSIIOEE were modified, but when only OEC33 or PSIIOEE was treated, the binding was not impaired. In the experiment using thylakoid membranes, release of OEC33 from PSII and corresponding loss of oxygen-evolving activity were observed when thylakoid membranes were treated with MDA at 40 degrees C but not at 25 degrees C. In spinach leaves treated at 40 degrees C under light, maximal efficiency of PSII photochemistry (F(v)/F(m) ratio of chlorophyll fluorescence) and oxygen-evolving activity decreased. Simultaneously, MDA contents in heat-stressed leaves increased, and OEC33 and PSII core proteins including 47 and 43 kDa chlorophyll-binding proteins were modified with MDA. In contrast, these changes were to a lesser extent at 40 degrees C in the dark. These results suggest that MDA modification of PSII proteins causes release of OEC33 from PSII and it is promoted in heat and oxidative conditions.

  20. Papain digestion of crude Trichoderma reesei cellulase: Purification and properties of cellobiohydrolase I and II core proteins

    SciTech Connect

    Woodward, J.; Brown, J.P.; Evans, B.R.; Affholter, K.A.

    1992-12-01

    Papain digestion of a crude Trichoderma reesei cellulose preparation followed by gel filtration on a Superdex column resulted in the separation of cellobiohydrolase (CBH) I and II core proteins (cp). They were further purified to apparent homogeneity by chromatofocusing. N-terminal protein sequencing of the CBH II cp preparation confirmed its identity. A comparison of the catalytic activity and cellulose-binding ability of these core proteins was made. The major differences between them were the findings that CBH II cp possessed a sixfold higher specific activity toward p-nitrophenylcellobioside than the native CBH II preparation and still bound to microcrystalline cellulose, unlike CBH I cp. Neither CBH I cp nor CBH II cp had activity toward carboxymethylcellulose, but both were able to hydrolyze barley b-glucan. These data suggest that removal of the cellulose-binding domain and hinge region from CBH I and II have different effects on their properties.

  1. Papain digestion of crude Trichoderma reesei cellulase: Purification and properties of cellobiohydrolase I and II core proteins

    SciTech Connect

    Woodward, J.; Brown, J.P.; Evans, B.R.; Affholter, K.A.

    1992-01-01

    Papain digestion of a crude Trichoderma reesei cellulose preparation followed by gel filtration on a Superdex column resulted in the separation of cellobiohydrolase (CBH) I and II core proteins (cp). They were further purified to apparent homogeneity by chromatofocusing. N-terminal protein sequencing of the CBH II cp preparation confirmed its identity. A comparison of the catalytic activity and cellulose-binding ability of these core proteins was made. The major differences between them were the findings that CBH II cp possessed a sixfold higher specific activity toward p-nitrophenylcellobioside than the native CBH II preparation and still bound to microcrystalline cellulose, unlike CBH I cp. Neither CBH I cp nor CBH II cp had activity toward carboxymethylcellulose, but both were able to hydrolyze barley b-glucan. These data suggest that removal of the cellulose-binding domain and hinge region from CBH I and II have different effects on their properties.

  2. Differential regulation of SOCS-1 signalling in B and T lymphocytes by hepatitis C virus core protein

    PubMed Central

    Yao, Zhi Qiang; Prayther, Deborah; Trabue, Christopher; Dong, Zhi Ping; Moorman, Jonathan

    2008-01-01

    Hepatitis C virus (HCV) infection is characterized by a strong propensity toward chronicity, autoimmune phenomena and lymphomagenesis, supporting a role for lymphocyte dysregulation during persistent viral infection. We have shown that HCV core protein inhibits T-cell functions through interaction with a complement receptor, gC1qR. Here, we further report that B cells also express gC1qR that can be bound by HCV core protein. Importantly, using flow cytometry, we demonstrated differential regulation of B and T lymphocytes by the HCV core–gC1qR interaction, with down-regulation of CD69 activation in T cells but up-regulation of CD69 activation and cell proliferation in B cells. HCV core treatment led to decreased interferon-γ production in CD8+ T cells but to increased immunoglobulin M and immunoglobulin G production as well as cell surface expression of costimulatory and chemokine receptors, including CD86 (B7-2), CD154 (CD40L) and CD195 (CCR5), in CD20+ B cells. Finally, we showed down-regulation of suppressor of cytokine signalling-1 (SOCS-1) using real-time reverse transcription–polymerase chain reaction, accompanied by up-regulation of signal transducer and activator of transcription-1 (STAT1) phosphorylation in B cells in response to HCV core protein, with the opposite pattern observed in HCV core-treated T cells. This study demonstrates differential regulation of B and T lymphocytes by HCV core and supports a mechanism by which lymphocyte dysregulation occurs in the course of persistent HCV infection. PMID:18397267

  3. Pyrazolopyridines as potent PDE4B inhibitors: 5-Heterocycle SAR

    SciTech Connect

    Mitchell, Charlotte J.; Ballantine, Stuart P.; Coe, Diane M.; Cook, Caroline M.; Delves, Christopher J.; Dowle, Mike D.; Edlin, Chris D.; Hamblin, J. Nicole; Holman, Stuart; Johnson, Martin R.; Jones, Paul S.; Keeling, Sue E.; Kranz, Michael; Lindvall, Mika; Lucas, Fiona S.; Neu, Margarete; Solanke, Yemisi E.; Somers, Don O.; Trivedi, Naimisha A.; Wiseman, Joanne O.

    2012-05-03

    Following the discovery of 4-(substituted amino)-1-alkyl-pyrazolo[3,4-b]pyridine-5-carboxamides as potent and selective phosphodiesterase 4B inhibitors, [Hamblin, J. N.; Angell, T.; Ballentine, S., et al. Bioorg. Med. Chem. Lett.2008, 18, 4237] the SAR of the 5-position was investigated further. A range of substituted heterocycles showed good potencies against PDE4. Optimisation using X-ray crystallography and computational modelling led to the discovery of 16, with sub-nM inhibition of LPS-induced TNF-{alpha} production from isolated human peripheral blood mononuclear cells.

  4. MCNP4B{sup {trademark}} verification and validation

    SciTech Connect

    Hendricks, J.S.; Court, J.D.

    1996-08-01

    Several new features and bug fixes have been incorporated into the new release of MCNP. As required by the MCNP Software Quality Assurance Plan, these changes to the code and the test set are documented here for user reference. This document summarizes the new MCNP4B features and corrections, separated into major and minor groupings. Also included are a code cleanup section and a section delineating problems identified in LA-12839 which have not been corrected. Finally, we document the MCNP4B test set modifications and explain how test set coverage has been improved.

  5. Hepatitis C Virus NS4B Can Suppress STING Accumulation To Evade Innate Immune Responses

    PubMed Central

    Wen, Yahong; Shu, Chang; Han, Qingxia; Konan, Kouacou V.; Li, Pingwei; Kao, C. Cheng

    2015-01-01

    ABSTRACT The cyclic dinucleotide 2′,3′-cGAMP can bind the adaptor protein STING (stimulator of interferon [IFN] genes) to activate the production of type I IFNs and proinflammatory cytokines. We found that cGAMP added to the culture medium could suppress the replication of the hepatitis C virus (HCV) genotype 1b strain Con1 subgenomic replicon in human hepatoma cells. Knockdown of STING expression diminished the inhibitory effect on replicon replication, while overexpression of STING enhanced the inhibitory effects of cGAMP. The addition of cGAMP into 1b/Con1 replicon cells significantly increased the expression of type I IFNs and antiviral interferon-stimulated genes. Unexpectedly, replication of the genotype 2a JFH1 replicon and infectious JFH1 virus was less sensitive to the inhibitory effect of cGAMP than was that of 1b/Con1 replicon. Using chimeric replicons, 2a NS4B was identified to confer resistance to cGAMP. Transient expression of 2a NS4B resulted in a pronounced inhibitory effect on STING-mediated beta IFN (IFN-β) reporter activation compared to that of 1b NS4B. 2a NS4B was found to suppress STING accumulation in a dose-dependent manner. The predicted transmembrane domain of 2a NS4B was required to inhibit STING accumulation. These results demonstrate a novel genotype-specific inhibition of the STING-mediated host antiviral immune response. IMPORTANCE The cyclic dinucleotide cGAMP was found to potently inhibit the replication of HCV genotype 1b Con1 replicon but was less effective for the 2a/JFH1 replicon and infectious JFH1 virus. The predicted transmembrane domain in 2a NS4B was shown to be responsible for the decreased sensitivity to cGAMP. The N terminus of NS4B has been reported to suppress STING-mediated signaling by disrupting the interaction of STING and TBK1 and/or MAVS. We show that 2a/JFH1 NS4B has an additional mechanism to evade STING signaling through suppressing STING accumulation. PMID:26468527

  6. Identification of immunogenic MAGED4B peptides for vaccine development in oral cancer immunotherapy.

    PubMed

    Lim, Kue Peng; Chun, Nicole Ai Leng; Gan, Chai Phei; Teo, Soo-Hwang; Rahman, Zainal Ariff Abdul; Abraham, Mannil Thomas; Zain, Rosnah Binti; Ponniah, Sathibalan; Cheong, Sok Ching

    2014-01-01

    The ever-increasing number of tumor-associated antigens has provided a major stimulus for the development of therapeutic peptides vaccines. Tumor-associated peptides can induce high immune response rates and have been developed as vaccines for several types of solid tumors, and many are at various stages of clinical testing. MAGED4B, a melanoma antigen, is overexpressed in oral squamous cell carcinoma (OSCC) and this expression promotes proliferation and cell migration. In this study, we have identified 9 short peptides derived from MAGED4B protein that are restricted in binding to the HLA subtypes common in the Asian population (HLA-A2, A11, and A24). The peptides had good binding affinity with the MHC-Class I molecules and stimulated ex-vivo IFN-gamma and Granzyme-B production in blood samples from OSCC patients, suggesting that they are immunogenic. Further, T cells stimulated with peptide-pulsed dendritic cells showed enhanced T-cell cytotoxic activity against MAGED4B-overexpressing OSCC cell lines. In summary, we have identified MAGED4B peptides that induce anti-tumor immune responses advocating that they could be further developed as vaccine candidates for the treatment of OSCC.

  7. PSD-95 mediates membrane clustering of the human plasma membrane Ca2+ pump isoform 4b.

    PubMed

    Padányi, Rita; Pászty, Katalin; Strehler, Emanuel E; Enyedi, Agnes

    2009-06-01

    Besides the control of global calcium changes, specific plasma membrane calcium ATPase (PMCA) isoforms are involved in the regulation of local calcium signals. Although local calcium signaling requires the confinement of signaling molecules into microdomains, little is known about the specific organization of PMCA molecules within the plasma membrane. Here we show that co-expression with the postsynaptic density-95 (PSD-95) scaffolding protein increased the plasma membrane expression of PMCA4b and redistributed the pump into clusters. The clustering of PMCA4b was fully dependent on the presence of its PDZ-binding sequence. Using the fluorescence recovery after photobleaching (FRAP) technique, we show that the lateral membrane mobility of the clustered PMCA4b is significantly lower than that of the non-clustered molecules. Disruption of the actin-based cytoskeleton by cytochalasin D resulted in increased cluster size. Our results suggest that PSD-95 promotes the formation of high-density PMCA4b microdomains in the plasma membrane and that the membrane cytoskeleton plays an important role in the regulation of this process.

  8. Systems Biology Reveals NS4B-Cyclophilin A Interaction: A New Target to Inhibit YFV Replication.

    PubMed

    Vidotto, Alessandra; Morais, Ana T S; Ribeiro, Milene R; Pacca, Carolina C; Terzian, Ana C B; Gil, Laura H V G; Mohana-Borges, Ronaldo; Gallay, Philippe; Nogueira, Mauricio L

    2017-04-07

    Yellow fever virus (YFV) replication is highly dependent on host cell factors. YFV NS4B is reported to be involved in viral replication and immune evasion. Here interactions between NS4B and human proteins were determined using a GST pull-down assay and analyzed using 1-DE and LC-MS/MS. We present a total of 207 proteins confirmed using Scaffold 3 Software. Cyclophilin A (CypA), a protein that has been shown to be necessary for the positive regulation of flavivirus replication, was identified as a possible NS4B partner. 59 proteins were found to be significantly increased when compared with a negative control, and CypA exhibited the greatest difference, with a 22-fold change. Fisher's exact test was significant for 58 proteins, and the p value of CypA was the most significant (0.000000019). The Ingenuity Systems software identified 16 pathways, and this analysis indicated sirolimus, an mTOR pathway inhibitor, as a potential inhibitor of CypA. Immunofluorescence and viral plaque assays showed a significant reduction in YFV replication using sirolimus and cyclosporine A (CsA) as inhibitors. Furthermore, YFV replication was strongly inhibited in cells treated with both inhibitors using reporter BHK-21-rep-YFV17D-LucNeoIres cells. Taken together, these data suggest that CypA-NS4B interaction regulates YFV replication. Finally, we present the first evidence that YFV inhibition may depend on NS4B-CypA interaction.

  9. Identification of Core Alpha 1,3-Fucosyltransferase Gene From Silkworm: An Insect Popularly Used to Express Mammalian Proteins.

    PubMed

    Minagawa, Sachi; Sekiguchi, Satoshi; Nakaso, Yuzuru; Tomita, Masahiro; Takahisa, Manabu; Yasuda, Hideyo

    2015-01-01

    Silkworm has great potential as production system of recombinant mammalian proteins. When the protein products are used for medical purpose, it is required to reduce the risk of an allergy, the content of core alpha 1,3-fucosyl residue attached to the N-glycan of proteins, for example. We isolated the gene of an enzyme responsible for the transfer of core alpha 1,3-fucosyl residue, core alpha 1,3-fucosyltransferase (Fuc-T C3), from silkworm. A candidate cDNA for silkworm Fuc-T C3 was isolated as a homolog of the fruit fly enzyme gene fucTA. The gene was located on chromosome 7 of the silkworm genome and was composed of seven exons, which spanned approximately 10 kb on the genome. The coding region of the gene was 1,350 bp and encoded a 450-amino acid protein with a molecular mass of 52.2 kDa. Deduced amino acid sequence of the coding region showed one transmembrane domain in its N-terminal and typical motifs common to fucosyltransferases including Fuc-T C3s of other organisms in its C-terminal. The extract of CHO cells transfected with the cDNA showed Fuc-T C3 activity using GDP-fucose and DABS-GnGn peptide as substrates. These results showed this cDNA clone actually encodes silkworm Fuc-T C3.

  10. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain.

    PubMed

    Selzer, Lisa; Kant, Ravi; Wang, Joseph C-Y; Bothner, Brian; Zlotnick, Adam

    2015-11-20

    Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle.

  11. Decorin Core Protein (Decoron) Shape Complements Collagen Fibril Surface Structure and Mediates Its Binding

    SciTech Connect

    Orgel, Joseph P.R.O.; Eid, Aya; Antipova, Olga; Bella, Jordi; Scott, John E.

    2010-02-11

    Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM). With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein) and binding sites in the d and e1 bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e{sub 1} bands). This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  12. RAMONA-4B code for BWR systems analysis

    SciTech Connect

    Cheng, H.S.; Rohatgi, U.S.

    1996-12-31

    The RAMONA-4B code is a coupled thermal-hydraulic, 3D kinetics code for plant transient analyses of a complete Boiling Water Reactor (BWR) system including Reactor Pressure Vessel (RPV), Balance of Plant (BOP) and containment. The complete system representation enables an integrated and coupled systems analysis of a BWR without recourse to prescribed boundary conditions.

  13. Familial C4B Deficiency and Immune Complex Glomerulonephritis

    PubMed Central

    Soto, K; Wu, YL; Ortiz, A; Aparício, SR; Yu, CY

    2010-01-01

    Homozygous complement C4B deficiency is described in a Southern European young female patient with Membranoproliferative Glomerulonephritis (MPGN) type III characterized by renal biopsies with strong complement C4 and IgG deposits. Low C4 levels were independent of clinical evolution or type of immunosuppression and were found in three other family members without renal disease or infections. HLA typing revealed that the patient has homozygous A*02, Cw*06, B*50 at the class I region, and DRB1*08 and DQB1*03 at the class II region. Genotypic and phenotypic studies demonstrated that the patient has homozygous monomodular RCCX in the HLA class III region, with single long C4A genes coding for C4A3 and complete C4B deficiency. Her father, mother, son and niece have heterozygous C4B deficiency. The patient’s deceased brother had a history of Henoch-Schönlein Purpura (HSP), an immune complex-mediated proliferative glomerulonephritis. These findings challenge the putative pathophysiological roles of C4A and C4B and underscore the need to perform functional assays, C4 allotyping and genotyping on patients with persistently low serum levels of a classical pathway complement component and glomerulopathy associated with immune deposits. PMID:20580617

  14. Familial C4B deficiency and immune complex glomerulonephritis.

    PubMed

    Soto, K; Wu, Y L; Ortiz, A; Aparício, S R; Yu, C Y

    2010-10-01

    Homozygous complement C4B deficiency is described in a Southern European young female patient with Membranoproliferative Glomerulonephritis (MPGN) type III characterized by renal biopsies with strong complement C4 and IgG deposits. Low C4 levels were independent of clinical evolution or type of immunosuppression and were found in three other family members without renal disease or infections. HLA typing revealed that the patient has homozygous A*02, Cw*06, B*50 at the class I region, and DRB1*08 and DQB1*03 at the class II region. Genotypic and phenotypic studies demonstrated that the patient has homozygous monomodular RCCX in the HLA class III region, with single long C4A genes coding for C4A3 and complete C4B deficiency. Her father, mother, son and niece have heterozygous C4B deficiency. The patient's deceased brother had a history of Henoch-Schönlein Purpura (HSP), an immune complex-mediated proliferative glomerulonephritis. These findings challenge the putative pathophysiological roles of C4A and C4B and underscore the need to perform functional assays, C4 allotyping and genotyping on patients with persistently low serum levels of a classical pathway complement component and glomerulopathy associated with immune deposits.

  15. Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan.

    PubMed

    Scott, Paul G; McEwan, Paul A; Dodd, Carole M; Bergmann, Ernst M; Bishop, Paul N; Bella, Jordi

    2004-11-02

    Decorin is a ubiquitous extracellular matrix proteoglycan with a variety of important biological functions that are mediated by its interactions with extracellular matrix proteins, cytokines, and cell surface receptors. Decorin is the prototype of the family of small leucine-rich repeat proteoglycans and proteins (SLRPs), characterized by a protein core composed of leucine-rich repeats (LRRs), flanked by two cysteine-rich regions. We report here the crystal structure of the dimeric protein core of decorin, the best characterized member of the SLRP family. Each monomer adopts the curved solenoid fold characteristic of LRR domains, with a parallel beta-sheet on the inside interwoven with loops containing short segments of beta-strands, 3(10) helices, and polyproline II helices on the outside. Two main features are unique to this structure. First, decorin dimerizes through the concave surfaces of the LRR domains, which have been implicated previously in protein-ligand interactions. The amount of surface buried in this dimer rivals the buried surfaces of some of the highest-affinity macromolecular complexes reported to date. Second, the C-terminal region adopts an unusual capping motif that involves a laterally extended LRR and a disulfide bond. This motif seems to be unique to SLRPs and has not been observed in any other LRR protein structure to date. Possible implications of these features for decorin ligand binding and SLRP function are discussed.

  16. Conformational Changes in the Hepatitis B Virus Core Protein Are Consistent with a Role for Allostery in Virus Assembly

    SciTech Connect

    Packianathan, Charles; Katen, Sarah P.; Dann, III, Charles E.; Zlotnick, Adam

    2010-01-12

    In infected cells, virus components must be organized at the right place and time to ensure assembly of infectious virions. From a different perspective, assembly must be prevented until all components are available. Hypothetically, this can be achieved by allosterically controlling assembly. Consistent with this hypothesis, here we show that the structure of the hepatitis B virus (HBV) core protein dimer, which can spontaneously self-assemble, is incompatible with capsid assembly. Systematic differences between core protein dimer and capsid conformations demonstrate linkage between the intradimer interface and interdimer contact surface. These structures also provide explanations for the capsid-dimer selectivity of some antibodies and the activities of assembly effectors. Solution studies suggest that the assembly-inactive state is more accurately an ensemble of conformations. Simulations show that allostery supports controlled assembly and results in capsids that are resistant to dissociation. We propose that allostery, as demonstrated in HBV, is common to most self-assembling viruses.

  17. Memory T-Cell-Mediated Immune Responses Specific to an Alternative Core Protein in Hepatitis C Virus Infection

    PubMed Central

    Bain, Christine; Parroche, Peggy; Lavergne, Jean Pierre; Duverger, Blandine; Vieux, Claude; Dubois, Valérie; Komurian-Pradel, Florence; Trépo, Christian; Gebuhrer, Lucette; Paranhos-Baccala, Glaucia; Penin, François; Inchauspé, Geneviève

    2004-01-01

    In vitro studies have described the synthesis of an alternative reading frame form of the hepatitis C virus (HCV) core protein that was named F protein or ARFP (alternative reading frame protein) and includes a domain coded by the +1 open reading frame of the RNA core coding region. The expression of this protein in HCV-infected patients remains controversial. We have analyzed peripheral blood from 47 chronically or previously HCV-infected patients for the presence of T lymphocytes and antibodies specific to the ARFP. Anti-ARFP antibodies were detected in 41.6% of the patients infected with various HCV genotypes. Using a specific ARFP 99-amino-acid polypeptide as well as four ARFP predicted class I-restricted 9-mer peptides, we show that 20% of the patients display specific lymphocytes capable of producing gamma interferon, interleukin-10, or both cytokines. Patients harboring three different viral genotypes (1a, 1b, and 3) carried T lymphocytes reactive to genotype 1b-derived peptides. In longitudinal analysis of patients receiving therapy, both core and ARFP-specific T-cell- and B-cell-mediated responses were documented. The magnitude and kinetics of the HCV antigen-specific responses differed and were not linked with viremia or therapy outcome. These observations provide strong and new arguments in favor of the synthesis, during natural HCV infection, of an ARFP derived from the core sequence. Moreover, the present data provide the first demonstration of the presence of T-cell-mediated immune responses directed to this novel HCV antigen. PMID:15367612

  18. Characterization of an Additional Splice Acceptor Site Introduced into CYP4B1 in Hominoidae during Evolution.

    PubMed

    Schmidt, Eva M; Wiek, Constanze; Parkinson, Oliver T; Roellecke, Katharina; Freund, Marcel; Gombert, Michael; Lottmann, Nadine; Steward, Charles A; Kramm, Christof M; Yarov-Yarovoy, Vladimir; Rettie, Allan E; Hanenberg, Helmut

    2015-01-01

    CYP4B1 belongs to the cytochrome P450 family 4, one of the oldest P450 families whose members have been highly conserved throughout evolution. The CYP4 monooxygenases typically oxidize fatty acids to both inactive and active lipid mediators, although the endogenous ligand(s) is largely unknown. During evolution, at the transition of great apes to humanoids, the CYP4B1 protein acquired a serine instead of a proline at the canonical position 427 in the meander region. Although this alteration impairs P450 function related to the processing of naturally occurring lung toxins, a study in transgenic mice suggested that an additional serine insertion at position 207 in human CYP4B1 can rescue the enzyme stability and activity. Here, we report that the genomic insertion of a CAG triplet at the intron 5-exon 6 boundary in human CYP4B1 introduced an additional splice acceptor site in frame. During evolution, this change occurred presumably at the stage of Hominoidae and leads to two major isoforms of the CYP4B1 enzymes of humans and great apes, either with or without a serine 207 insertion (insSer207). We further demonstrated that the CYP4B1 enzyme with insSer207 is the dominant isoform (76%) in humans. Importantly, this amino acid insertion did not affect the 4-ipomeanol metabolizing activities or stabilities of the native rabbit or human CYP4B1 enzymes, when introduced as transgenes in human primary cells and cell lines. In our 3D modeling, this functional neutrality of insSer207 is compatible with its predicted location on the exterior surface of CYP4B1 in a flexible side chain. Therefore, the Ser207 insertion does not rescue the P450 functional activity of human CYP4B1 that has been lost during evolution.

  19. The catalytic core of an archaeal 2-oxoacid dehydrogenase multienzyme complex is a 42-mer protein assembly.

    PubMed

    Marrott, Nia L; Marshall, Jacqueline J T; Svergun, Dmitri I; Crennell, Susan J; Hough, David W; Danson, Michael J; van den Elsen, Jean M H

    2012-03-01

    The dihydrolipoyl acyl-transferase (E2) enzyme forms the structural and catalytic core of the tripartite 2-oxoacid dehydrogenase multienzyme complexes of the central metabolic pathways. Although this family of multienzyme complexes shares a common architecture, their E2 cores form homo-trimers that, depending on the source, further associate into either octahedral (24-mer) or icosahedral (60-mer) assemblies, as predicted by the principles of quasi-equivalence. In the crystal structure of the E2 core from Thermoplasma acidophilum, a thermophilic archaeon, the homo-trimers assemble into a unique 42-mer oblate spheroid. Analytical equilibrium centrifugation and small-angle X-ray scattering analyses confirm that this catalytically active 1.08 MDa assembly exists as a single species in solution, forming a hollow spheroid with a maximum diameter of 220 Å. In this paper we show that a monodisperse macromolecular assembly, built from identical subunits in non-identical environments, forms an irregular protein shell via non-equivalent interactions. This unusually irregular protein shell, combining cubic and dodecahedral geometrical elements, expands on the concept of quasi-equivalence as a basis for understanding macromolecular assemblies by showing that cubic point group symmetry is not a physical requirement in multienzyme assembly. These results extend our basic knowledge of protein assembly and greatly expand the number of possibilities to manipulate self-assembling biological complexes to be utilized in innovative nanotechnology applications.

  20. Crystallization of the avian reovirus double-stranded RNA-binding and core protein σA

    PubMed Central

    Hermo-Parrado, X. Lois; Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L.; Fox, Gavin C.; Vazquez-Iglesias, Lorena; Martínez-Costas, José; Benavente, Javier; van Raaij, Mark J.

    2007-01-01

    The avian reovirus protein σA plays a dual role: it is a structural protein forming part of the transcriptionally active core, but it has also been implicated in the resistance of the virus to interferon by strongly binding double-stranded RNA and thus inhibiting the double-stranded RNA-dependent protein kinase. The σA protein has been crystallized from solutions containing ammonium sulfate at pH values around 6. Crystals belonging to space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2° were grown and a complete data set has been collected to 2.3 Å resolution. The self-rotation function suggests that σA may form symmetric arrangements in the crystals. PMID:17565188

  1. Yeast Asc1p and Mammalian RACK1 Are Functionally Orthologous Core 40S Ribosomal Proteins That Repress Gene Expression

    PubMed Central

    Gerbasi, Vincent R.; Weaver, Connie M.; Hill, Salisha; Friedman, David B.; Link, Andrew J.

    2004-01-01

    Translation of mRNA into protein is a fundamental step in eukaryotic gene expression requiring the large (60S) and small (40S) ribosome subunits and associated proteins. By modern proteomic approaches, we previously identified a novel 40S-associated protein named Asc1p in budding yeast and RACK1 in mammals. The goals of this study were to establish Asc1p or RACK1 as a core conserved eukaryotic ribosomal protein and to determine the role of Asc1p or RACK1 in translational control. We provide biochemical, evolutionary, genetic, and functional evidence showing that Asc1p or RACK1 is indeed a conserved core component of the eukaryotic ribosome. We also show that purified Asc1p-deficient ribosomes have increased translational activity compared to that of wild-type yeast ribosomes. Further, we demonstrate that asc1Δ null strains have increased levels of specific proteins in vivo and that this molecular phenotype is complemented by either Asc1p or RACK1. Our data suggest that one of Asc1p's or RACK1's functions is to repress gene expression. PMID:15340087

  2. Yeast Asc1p and mammalian RACK1 are functionally orthologous core 40S ribosomal proteins that repress gene expression.

    PubMed

    Gerbasi, Vincent R; Weaver, Connie M; Hill, Salisha; Friedman, David B; Link, Andrew J

    2004-09-01

    Translation of mRNA into protein is a fundamental step in eukaryotic gene expression requiring the large (60S) and small (40S) ribosome subunits and associated proteins. By modern proteomic approaches, we previously identified a novel 40S-associated protein named Asc1p in budding yeast and RACK1 in mammals. The goals of this study were to establish Asc1p or RACK1 as a core conserved eukaryotic ribosomal protein and to determine the role of Asc1p or RACK1 in translational control. We provide biochemical, evolutionary, genetic, and functional evidence showing that Asc1p or RACK1 is indeed a conserved core component of the eukaryotic ribosome. We also show that purified Asc1p-deficient ribosomes have increased translational activity compared to that of wild-type yeast ribosomes. Further, we demonstrate that asc1Delta null strains have increased levels of specific proteins in vivo and that this molecular phenotype is complemented by either Asc1p or RACK1. Our data suggest that one of Asc1p's or RACK1's functions is to repress gene expression.

  3. Crystallization of the avian reovirus double-stranded RNA-binding and core protein σA

    SciTech Connect

    Hermo-Parrado, X. Lois; Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L.; Fox, Gavin C.; Vazquez-Iglesias, Lorena; Martínez-Costas, José; Benavente, Javier; Raaij, Mark J. van

    2007-05-01

    The avian reovirus double-stranded RNA-binding and core protein σA has been crystallized in space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2°. A complete data set has been collected to 2.3 Å resolution and analyzed. The avian reovirus protein σA plays a dual role: it is a structural protein forming part of the transcriptionally active core, but it has also been implicated in the resistance of the virus to interferon by strongly binding double-stranded RNA and thus inhibiting the double-stranded RNA-dependent protein kinase. The σA protein has been crystallized from solutions containing ammonium sulfate at pH values around 6. Crystals belonging to space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2° were grown and a complete data set has been collected to 2.3 Å resolution. The self-rotation function suggests that σA may form symmetric arrangements in the crystals.

  4. Capsid proteins from human immunodeficiency virus type 1 and simian immunodeficiency virus SIVmac can coassemble into mature cores of infectious viruses.

    PubMed

    Chen, Jianbo; Pathak, Vinay K; Peng, Weiqun; Hu, Wei-Shau

    2008-09-01

    We have recently shown that the Gag polyproteins from human immunodeficiency virus type 1 (HIV-1) and HIV-2 can coassemble and functionally complement each other. During virion maturation, the Gag polyproteins undergo proteolytic cleavage to release mature proteins including capsid (CA), which refolds and forms the outer shell of a cone-shaped mature core. Less than one-half of the CA proteins present within the HIV-1 virion are required to form the mature core. Therefore, it is unclear whether the mature core in virions containing both HIV-1 and HIV-2 Gag consists of CA proteins from a single virus or from both viruses. To determine whether CA proteins from two different viruses can coassemble into mature cores of infectious viruses, we exploited the specificity of the tripartite motif 5alpha protein from the rhesus monkey (rhTRIM5alpha) for cores containing HIV-1 CA (hCA) but not the simian immunodeficiency virus SIV(mac) CA protein (sCA). If hCA and sCA cannot coassemble into the same core when equal amounts of sCA and hCA are coexpressed, the infectivities of such virus preparations in cells should be inhibited less than twofold by rhTRIM5alpha. However, if hCA and sCA can coassemble into the same core structure to form a mixed core, rhTRIM5alpha would be able to recognize such cores and significantly restrict virus infectivity. We examined the restriction phenotypes of viruses containing both hCA and sCA. Our results indicate that hCA and sCA can coassemble into the same mature core to produce infectious virus. To our knowledge, this is the first demonstration of functional coassembly of heterologous CA protein into the retroviral core.

  5. Inhibition of HCV replication by humanized-single domain transbodies to NS4B.

    PubMed

    Glab-Ampai, Kittirat; Malik, Aijaz Ahmad; Chulanetra, Monrat; Thanongsaksrikul, Jeeraphong; Thueng-In, Kanyarat; Srimanote, Potjanee; Tongtawe, Pongsri; Chaicumpa, Wanpen

    2016-08-05

    NS4B of hepatitis C virus (HCV) initiates membrane web formation, binds RNA and other HCV proteins for viral replication complex (RC) formation, hydrolyses NTP, and inhibits innate anti-viral immunity. Thus, NS4B is an attractive target of a novel anti-HCV agent. In this study, humanized-nanobodies (VHs/VHHs) that bound to recombinant NS4B were produced by means of phage display technology. The nanobodies were linked molecularly to a cell penetrating peptide, penetratin (PEN), for making them cell penetrable (become transbodies). Human hepatic (Huh7) cells transfected with HCV JFH1-RNA that were treated with transbodies from four Escherichia coli clones (PEN-VHH7, PEN-VHH9, PEN-VH33, and PEN-VH43) had significant reduction of HCV RNA amounts in their culture fluids and intracellularly when compared to the transfected cells treated with control transbody and medium alone. The results were supported by the HCV foci assay. The transbody treated-transfected cells also had upregulation of the studied innate cytokine genes, IRF3, IFNβ and IL-28b. The transbodies have high potential for testing further as a novel anti-HCV agent, either alone, adjunct of existing anti-HCV agents/remedies, or in combination with their cognates specific to other HCV enzymes/proteins.

  6. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3.

    PubMed Central

    Méthot, N; Song, M S; Sonenberg, N

    1996-01-01

    The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF4B copurifies with eIF3 and eIF4F through several purification steps, suggesting the involvement of a multisubunit complex during translation initiation. To understand the mechanism by which eIF4B promotes 40S ribosome binding to the mRNA, we studied its interactions with partner proteins by using a filter overlay (protein-protein [far Western]) assay and the two-hybrid system. In this report, we show that eIF4B self-associates and also interacts directly with the p170 subunit of eIF3. A region rich in aspartic acid, arginine, tyrosine, and glycine, termed the DRYG domain, is sufficient for self-association of eIF4B, both in vitro and in vivo, and for interaction with the p170 subunit of eIF3. These experiments suggest that eIF4B participates in mRNA-ribosome binding by acting as an intermediary between the mRNA and eIF3, via a direct interaction with the p170 subunit of eIF3. PMID:8816444

  7. A Nitrogen-Fixing Subunit Essential for Accumulating 4Fe-4S-Containing Photosystem I Core Proteins1[OPEN

    PubMed Central

    Nath, Krishna; Wessendorf, Ryan L.

    2016-01-01

    Nitrogen-fixation-subunit-U (NFU)-type proteins have been shown to be involved in the biogenesis of iron-sulfur clusters. We investigated the molecular function of a chloroplastic NFU-type iron-sulfur scaffold protein, NFU3, in Arabidopsis (Arabidopsis thaliana) using genetics approaches. Loss-of-function mutations in the NFU3 gene caused yellow pigmentation in leaves, reductions in plant size, leaf size, and growth rate, delay in flowering and seeding, and decreases in seed production. Biochemical and physiological analyses indicated that these defects are due to the substantial reductions in the abundances of 4Fe-4S-containing photosystem I (PSI) core subunits PsaA (where Psa stands for PSI), PsaB, and PsaC and a nearly complete loss of PSI activity. In addition to the substantial decreases in the amounts of PSI core proteins, the content of 3Fe-4S-containing ferredoxin-dependent glutamine oxoglutarate aminotransferases declined significantly in the nfu3 mutants. Furthermore, the absorption spectrum of the recombinant NFU3 protein showed features characteristic of 4Fe-4S and 3Fe-4S clusters, and the in vitro reconstitution experiment indicated an iron-sulfur scaffold function of NFU3. These data demonstrate that NFU3 is involved in the assembly and transfer of 4Fe-4S and 3Fe-4S clusters and that NFU3 is required for the accumulation of 4Fe-4S- and 3Fe-4S-containing proteins, especially 4Fe-4S-containing PSI core subunits, in the Arabidopsis chloroplast. PMID:27784767

  8. Single molecule force spectroscopy reveals critical roles of hydrophobic core packing in determining the mechanical stability of protein GB1.

    PubMed

    Bu, Tianjia; Wang, Hui-Chuan Eileen; Li, Hongbin

    2012-08-21

    Understanding molecular determinants of protein mechanical stability is important not only for elucidating how elastomeric proteins are designed and functioning in biological systems but also for designing protein building blocks with defined nanomechanical properties for constructing novel biomaterials. GB1 is a small α/β protein and exhibits significant mechanical stability. It is thought that the shear topology of GB1 plays an important role in determining its mechanical stability. Here, we combine single molecule atomic force microscopy and protein engineering techniques to investigate the effect of side chain reduction and hydrophobic core packing on the mechanical stability of GB1. We engineered seven point mutants and carried out mechanical φ-value analysis of the mechanical unfolding of GB1. We found that three mutations, which are across the surfaces of two subdomains that are to be sheared by the applied stretching force, in the hydrophobic core (F30L, Y45L, and F52L) result in significant decrease in mechanical unfolding force of GB1. The mechanical unfolding force of these mutants drop by 50-90 pN compared with wild-type GB1, which unfolds at around 180 pN at a pulling speed of 400 nm/s. These results indicate that hydrophobic core packing plays an important role in determining the mechanical stability of GB1 and suggest that optimizing hydrophobic interactions across the surfaces that are to be sheared will likely be an efficient method to enhance the mechanical stability of GB1 and GB1 homologues.

  9. Regulation of HepG2 cell apoptosis by hepatitis C virus (HCV) core protein via the sirt1-p53-bax pathway.

    PubMed

    Feng, Shenghu; Li, Min; Zhang, Jinqian; Liu, Shunai; Wang, Qi; Quan, Min; Zhang, Mengran; Cheng, Jun

    2015-12-01

    Hepatitis C virus (HCV) core protein stimulates many signaling pathways related to apoptosis inhibition resulting in hepatocellular carcinoma (HCC). It has been reported that sirt1 is involved in regulating apoptosis; therefore, we investigated the influence of HCV core protein on sirt1 expression and apoptosis in human HepG2 cells. Our study showed that HCV core protein inhibited apoptosis of HepG2 cells as well as caspase-3 expression and activity (P < 0.05). At the same time, sirt1 expression was increased at both the mRNA (P < 0.05) and protein (P < 0.05) levels. Furthermore, apoptosis inhibition was reversed when sirt1 was knocked down (P < 0.05). Our study provides further evidence that the sirt1-p53-Bax signaling pathway plays an important role in regulating the suppression of cell apoptosis induced by HCV core protein.

  10. CRL4B interacts with and coordinates the SIN3A-HDAC complex to repress CDKN1A and drive cell cycle progression.

    PubMed

    Ji, Qinghong; Hu, Huili; Yang, Fan; Yuan, Jupeng; Yang, Yang; Jiang, Liangqian; Qian, Yanyan; Jiang, Baichun; Zou, Yongxin; Wang, Yan; Shao, Changshun; Gong, Yaoqin

    2014-11-01

    CUL4B, a scaffold protein that assembles the CRL4B ubiquitin ligase complex, participates in the regulation of a broad spectrum of biological processes. Here, we demonstrate a crucial role of CUL4B in driving cell cycle progression. We show that loss of CUL4B results in a significant reduction in cell proliferation and causes G1 cell cycle arrest, accompanied by the upregulation of the cyclin-dependent kinase (CDK) inhibitors (CKIs) p21 and p57 (encoded by CDKN1A and CDKN1C, respectively). Strikingly, CUL4B was found to negatively regulate the function of p21 through transcriptional repression, but not through proteolysis. Furthermore, we demonstrate that CRL4B and SIN3A-HDAC complexes interact with each other and co-occupy the CDKN1A and CDKN1C promoters. Lack of CUL4B led to a decreased retention of SIN3A-HDAC components and increased levels of acetylated H3 and H4. Interestingly, the ubiquitylation function of CRL4B is not required for the stable retention of SIN3A-HDAC on the promoters of target genes. Thus, in addition to directly contributing to epigenetic silencing by catalyzing H2AK119 monoubiquitylation, CRL4B also facilitates the deacetylation function of SIN3A-HDAC. Our findings reveal a coordinated action between CRL4B and SIN3A-HDAC complexes in transcriptional repression.

  11. Perplexing cooperative folding and stability of a low-sequence complexity, polyproline 2 protein lacking a hydrophobic core.

    PubMed

    Gates, Zachary P; Baxa, Michael C; Yu, Wookyung; Riback, Joshua A; Li, Hui; Roux, Benoît; Kent, Stephen B H; Sosnick, Tobin R

    2017-02-13

    The burial of hydrophobic side chains in a protein core generally is thought to be the major ingredient for stable, cooperative folding. Here, we show that, for the snow flea antifreeze protein (sfAFP), stability and cooperativity can occur without a hydrophobic core, and without α-helices or β-sheets. sfAFP has low sequence complexity with 46% glycine and an interior filled only with backbone H-bonds between six polyproline 2 (PP2) helices. However, the protein folds in a kinetically two-state manner and is moderately stable at room temperature. We believe that a major part of the stability arises from the unusual match between residue-level PP2 dihedral angle bias in the unfolded state and PP2 helical structure in the native state. Additional stabilizing factors that compensate for the dearth of hydrophobic burial include shorter and stronger H-bonds, and increased entropy in the folded state. These results extend our understanding of the origins of cooperativity and stability in protein folding, including the balance between solvent and polypeptide chain entropies.

  12. Lasso Peptide Biosynthetic Protein LarB1 Binds Both Leader and Core Peptide Regions of the Precursor Protein LarA

    PubMed Central

    2016-01-01

    Lasso peptides are a member of the superclass of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Like all RiPPs, lasso peptides are derived from a gene-encoded precursor protein. The biosynthesis of lasso peptides requires two enzymatic activities: proteolytic cleavage between the leader peptide and the core peptide in the precursor protein, accomplished by the B enzymes, and ATP-dependent isopeptide bond formation, accomplished by the C enzymes. In a subset of lasso peptide biosynthetic gene clusters from Gram-positive organisms, the B enzyme is split between two proteins. One such gene cluster is found in the organism Rhodococcus jostii, which produces the antimicrobial lasso peptide lariatin. The B enzyme in R. jostii is split between two open reading frames, larB1 and larB2, both of which are required for lariatin biosynthesis. While the cysteine catalytic triad is found within the LarB2 protein, LarB1 is a PqqD homologue expected to bind to the lariatin precursor LarA based on its structural homology to other RiPP leader peptide binding domains. We show that LarB1 binds to the leader peptide of the lariatin precursor protein LarA with a sub-micromolar affinity. We used photocrosslinking with the noncanonical amino acid p-azidophenylalanine and mass spectrometry to map the interaction of LarA and LarB1. This analysis shows that the LarA leader peptide interacts with a conserved motif within LarB1 and, unexpectedly, the core peptide of LarA also binds to LarB1 in several positions. A Rosetta model built from distance restraints from the photocrosslinking experiments shows that the scissile bond between the leader peptide and core peptide in LarA is in a solvent-exposed loop. PMID:27800552

  13. Lasso Peptide Biosynthetic Protein LarB1 Binds Both Leader and Core Peptide Regions of the Precursor Protein LarA.

    PubMed

    Cheung, Wai Ling; Chen, Maria Y; Maksimov, Mikhail O; Link, A James

    2016-10-26

    Lasso peptides are a member of the superclass of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Like all RiPPs, lasso peptides are derived from a gene-encoded precursor protein. The biosynthesis of lasso peptides requires two enzymatic activities: proteolytic cleavage between the leader peptide and the core peptide in the precursor protein, accomplished by the B enzymes, and ATP-dependent isopeptide bond formation, accomplished by the C enzymes. In a subset of lasso peptide biosynthetic gene clusters from Gram-positive organisms, the B enzyme is split between two proteins. One such gene cluster is found in the organism Rhodococcus jostii, which produces the antimicrobial lasso peptide lariatin. The B enzyme in R. jostii is split between two open reading frames, larB1 and larB2, both of which are required for lariatin biosynthesis. While the cysteine catalytic triad is found within the LarB2 protein, LarB1 is a PqqD homologue expected to bind to the lariatin precursor LarA based on its structural homology to other RiPP leader peptide binding domains. We show that LarB1 binds to the leader peptide of the lariatin precursor protein LarA with a sub-micromolar affinity. We used photocrosslinking with the noncanonical amino acid p-azidophenylalanine and mass spectrometry to map the interaction of LarA and LarB1. This analysis shows that the LarA leader peptide interacts with a conserved motif within LarB1 and, unexpectedly, the core peptide of LarA also binds to LarB1 in several positions. A Rosetta model built from distance restraints from the photocrosslinking experiments shows that the scissile bond between the leader peptide and core peptide in LarA is in a solvent-exposed loop.

  14. A single aromatic core mutation converts a designed “primitive” protein from halophile to mesophile folding

    PubMed Central

    Longo, Liam M; Tenorio, Connie A; Kumru, Ozan S; Middaugh, C Russell; Blaber, Michael

    2015-01-01

    The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate “cradle” for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original “prebiotic” set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile-to-mesophile transition by hydrophobic core-packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a “primitive” designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)—having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a “primitive” polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile-to-mesophile protein folding adaptation—identifying a selective advantage for the incorporation of aromatic amino acids into the codon table. PMID:25297559

  15. Proteomic analysis reveals novel proteins associated with the Plasmodium protein exporter PTEX and a loss of complex stability upon truncation of the core PTEX component, PTEX150.

    PubMed

    Elsworth, Brendan; Sanders, Paul R; Nebl, Thomas; Batinovic, Steven; Kalanon, Ming; Nie, Catherine Q; Charnaud, Sarah C; Bullen, Hayley E; de Koning Ward, Tania F; Tilley, Leann; Crabb, Brendan S; Gilson, Paul R

    2016-11-01

    The Plasmodium translocon for exported proteins (PTEX) has been established as the machinery responsible for the translocation of all classes of exported proteins beyond the parasitophorous vacuolar membrane of the intraerythrocytic malaria parasite. Protein export, particularly in the asexual blood stage, is crucial for parasite survival as exported proteins are involved in remodelling the host cell, an essential process for nutrient uptake, waste removal and immune evasion. Here, we have truncated the conserved C-terminus of one of the essential PTEX components, PTEX150, in Plasmodium falciparum in an attempt to create mutants of reduced functionality. Parasites tolerated C-terminal truncations of up to 125 amino acids with no reduction in growth, protein export or the establishment of new permeability pathways. Quantitative proteomic approaches however revealed a decrease in other PTEX subunits associating with PTEX150 in truncation mutants, suggesting a role for the C-terminus of PTEX150 in regulating PTEX stability. Our analyses also reveal three previously unreported PTEX-associated proteins, namely PV1, Pf113 and Hsp70-x (respective PlasmoDB numbers; PF3D7_1129100, PF3D7_1420700 and PF3D7_0831700) and demonstrate that core PTEX proteins exist in various distinct multimeric forms outside the major complex.

  16. Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation

    PubMed Central

    Kittlesen, David J.; Chianese-Bullock, Kimberly A.; Yao, Zhi Qiang; Braciale, Thomas J.; Hahn, Young S.

    2000-01-01

    Hepatitis C virus (HCV) is an important human pathogen that is remarkably efficient at establishing persistent infection. The HCV core protein is the first protein expressed during the early phase of HCV infection. Our previous work demonstrated that the HCV core protein suppresses host immune responses, including anti-viral cytotoxic T-lymphocyte responses in a murine model. To investigate the mechanism of HCV core-mediated immunosuppression, we searched for host proteins capable of associating with the core protein using a yeast two-hybrid system. Using the core protein as bait, we screened a human T cell–enriched expression library and identified a gene encoding the gC1q receptor (gC1qR). C1q is a ligand of gC1qR and is involved in the early host defense against infection. Like C1q, HCV core can inhibit T-cell proliferative responses in vitro. This core-induced anti–T-cell proliferation is reversed by addition of anti-gC1qR Ab in a T-cell proliferation assay. Furthermore, biochemical analysis of the interaction between core and gC1qR indicates that HCV core binds the region spanning amino acids 188 to 259 of gC1qR, a site distinct from the binding region of C1q. The inhibition of T-cell responsiveness by HCV core may have important implications for HCV persistence in humans. PMID:11086025

  17. The Mechanoenzymatic Core of Dynamin-related Protein 1 Comprises the Minimal Machinery Required for Membrane Constriction*

    PubMed Central

    Francy, Christopher A.; Alvarez, Frances J. D.; Zhou, Louie; Ramachandran, Rajesh; Mears, Jason A.

    2015-01-01

    Mitochondria are dynamic organelles that continually undergo cycles of fission and fusion. Dynamin-related protein 1 (Drp1), a large GTPase of the dynamin superfamily, is the main mediator of mitochondrial fission. Like prototypical dynamin, Drp1 is composed of a mechanochemical core consisting of the GTPase, middle, and GTPase effector domain regions. In place of the pleckstrin homology domain in dynamin, however, Drp1 contains an unstructured variable domain, whose function is not yet fully resolved. Here, using time-resolved EM and rigorous statistical analyses, we establish the ability of full-length Drp1 to constrict lipid bilayers through a GTP hydrolysis-dependent mechanism. We also show the variable domain limits premature Drp1 assembly in solution and promotes membrane curvature. Furthermore, the mechanochemical core of Drp1, absent of the variable domain, is sufficient to mediate GTP hydrolysis-dependent membrane constriction. PMID:25770210

  18. A hydrophobic patch in a charged alpha-helix is sufficient to target proteins to dense core secretory granules.

    PubMed

    Dikeakos, Jimmy D; Lacombe, Marie-Josée; Mercure, Chantal; Mireuta, Matei; Reudelhuber, Timothy L

    2007-01-12

    Many endocrine and neuroendocrine cells contain specialized secretory organelles called dense core secretory granules. These organelles are the repository of proteins and peptides that are secreted in a regulated manner when the cell receives a physiological stimulus. The targeting of proteins to these secretory granules is crucial for the generation of certain peptide hormones, including insulin and ACTH. Although previous work has demonstrated that proteins destined to a variety of cellular locations, including secretory granules, contain targeting sequences, no single consensus sequence for secretory granule-sorting signals has emerged. We have shown previously that alpha-helical domains in the C-terminal tail of the prohormone convertase PC1/3 play an important role in the ability of this region of the protein to direct secretory granule targeting (Jutras, I. Seidah, N. G., and Reudelhuber, T. L. (2000) J. Biol. Chem. 275, 40337-40343). In this study, we show that a variety of alpha-helical domains are capable of directing a heterologous secretory protein to granules. By testing a series of synthetic alpha-helices, we also demonstrate that the presence of charged (either positive or negative) amino acids spatially segregated from a hydrophobic patch in the alpha-helices of secretory proteins likely plays a critical role in the ability of these structures to direct secretory granule sorting.

  19. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber.

    PubMed

    U S, Dinish; Fu, Chit Yaw; Soh, Kiat Seng; Ramaswamy, Bhuvaneswari; Kumar, Anil; Olivo, Malini

    2012-03-15

    Enzyme-linked immunosorbent assays (ELISA) are commonly used for detecting cancer proteins at concentration in the range of about ng-μg/mL. Hence it often fails to detect tumor markers at the early stages of cancer and other diseases where the amount of protein is extremely low. Herein, we report a novel photonic crystal fiber (PCF) based surface enhanced Raman scattering (SERS) sensing platform for the ultrasensitive detection of cancer proteins in an extremely low sample volume. As a proof of concept, epidermal growth factor receptors (EGFRs) in a lysate solution from human epithelial carcinoma cells were immobilized into the hollow core PCF. Highly sensitive detection of protein was achieved using anti-EGFR antibody conjugated SERS nanotag. This SERS nanotag probe was realized by anchoring highly active Raman molecules onto the gold nanoparticles followed by bioconjugation. The proposed sensing method can detect low amount of proteins at ∼100 pg in a sample volume of ∼10 nL. Our approach may lead to the highly sensitive protein sensing methodology for the early detection of diseases.

  20. The fibril core of transforming growth factor beta-induced protein (TGFBIp) facilitates aggregation of corneal TGFBIp

    PubMed Central

    Sørensen, Charlotte S.; Runager, Kasper; Scavenius, Carsten; Jensen, Morten M.; Nielsen, Nadia S.; Christiansen, Gunna; Petersen, Steen V.; Karring, Henrik; Sanggaard, Kristian W.; Enghild, Jan J.

    2016-01-01

    Mutations in the transforming growth factor beta-induced (TGFBI) gene result in a group of hereditary diseases of the cornea that are collectively known as TGFBI corneal dystrophies. These mutations translate into amino acid substitutions mainly within the fourth fasciclin 1 domain (FAS1-4) of the transforming growth factor beta-induced protein (TGFBIp) and cause either amyloid or non-amyloid protein aggregates in the anterior and central parts of the cornea, depending on the mutation. The A546T substitution in TGFBIp causes lattice corneal dystrophy (LCD), which manifests as amyloid-type aggregates in the corneal stroma. We previously showed that the A546T substitution renders TGFBIp and the FAS1-4 domain thermodynamically less stable compared with the wild-type (WT) protein, and the mutant FAS1-4 is prone to amyloid formation in vitro. In the present study, we identified the core of A546T FAS1-4 amyloid fibrils. Significantly, we identified the Y571-R588 region of TGFBIp, which we previously found to be enriched in amyloid deposits in LCD patients. We further found that the Y571-R588 peptide seeded fibrillation of A546T FAS1-4 and, more importantly, we demonstrated that native TGFBIp aggregates in the presence of fibrils formed by the core peptide. Collectively, these data suggest an involvement of the Y571-R588 peptide in LCD pathophysiology. PMID:25910219

  1. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B

    PubMed Central

    Johanns, M.; Lai, Y.-C.; Hsu, M.-F.; Jacobs, R.; Vertommen, D.; Van Sande, J.; Dumont, J. E.; Woods, A.; Carling, D.; Hue, L.; Viollet, B.; Foretz, M; Rider, M H

    2016-01-01

    Biguanides such as metformin have previously been shown to antagonize hepatic glucagon-stimulated cyclic AMP (cAMP) signalling independently of AMP-activated protein kinase (AMPK) via direct inhibition of adenylate cyclase by AMP. Here we show that incubation of hepatocytes with the small-molecule AMPK activator 991 decreases glucagon-stimulated cAMP accumulation, cAMP-dependent protein kinase (PKA) activity and downstream PKA target phosphorylation. Moreover, incubation of hepatocytes with 991 increases the Vmax of cyclic nucleotide phosphodiesterase 4B (PDE4B) without affecting intracellular adenine nucleotide concentrations. The effects of 991 to decrease glucagon-stimulated cAMP concentrations and activate PDE4B are lost in hepatocytes deleted for both catalytic subunits of AMPK. PDE4B is phosphorylated by AMPK at three sites, and by site-directed mutagenesis, Ser304 phosphorylation is important for activation. In conclusion, we provide a new mechanism by which AMPK antagonizes hepatic glucagon signalling via phosphorylation-induced PDE4B activation. PMID:26952277

  2. The SufE sulfur-acceptor protein contains a conserved core structure that mediates interdomain interactions in a variety of redox protein complexes.

    PubMed

    Goldsmith-Fischman, Sharon; Kuzin, Alexandre; Edstrom, William C; Benach, Jordi; Shastry, Ritu; Xiao, Rong; Acton, Thomas B; Honig, Barry; Montelione, Gaetano T; Hunt, John F

    2004-11-19

    The isc and suf operons in Escherichia coli represent alternative genetic systems optimized to mediate the essential metabolic process of iron-sulfur cluster (Fe-S) assembly under basal or oxidative-stress conditions, respectively. Some of the proteins in these two operons share strong sequence homology, e.g. the cysteine desulfurases IscS and SufS, and presumably play the same role in the oxygen-sensitive assembly process. However, other proteins in these operons share no significant homology and occur in a mutually exclusive manner in Fe-S assembly operons in other organisms (e.g. IscU and SufE). These latter proteins presumably play distinct roles adapted to the different assembly mechanisms used by the two systems. IscU has three invariant cysteine residues that function as a template for Fe-S assembly while accepting a sulfur atom from IscS. SufE, in contrast, does not function as an Fe-S assembly template but has been suggested to function as a shuttle protein that uses a persulfide linkage to a single invariant cysteine residue to transfer a sulfur atom from SufS to an alternative Fe-S assembly template. Here, we present and analyze the 2.0A crystal structure of E.coli SufE. The structure shows that the persulfide-forming cysteine occurs at the tip of a loop with elevated B-factors, where its side-chain is buried from solvent exposure in a hydrophobic cavity located beneath a highly conserved surface. Despite the lack of sequence homology, the core of SufE shows strong structural similarity to IscU, and the sulfur-acceptor site in SufE coincides with the location of the cysteine residues mediating Fe-S cluster assembly in IscU. Thus, a conserved core structure is implicated in mediating the interactions of both SufE and IscU with the mutually homologous cysteine desulfurase enzymes present in their respective operons. A similar core structure is observed in a domain found in a variety of Fe-S cluster containing flavoenzymes including xanthine dehydrogenase

  3. Autoinhibitory Interdomain Interactions and Subfamily-specific Extensions Redefine the Catalytic Core of the Human DEAD-box Protein DDX3.

    PubMed

    Floor, Stephen N; Condon, Kendall J; Sharma, Deepak; Jankowsky, Eckhard; Doudna, Jennifer A

    2016-01-29

    DEAD-box proteins utilize ATP to bind and remodel RNA and RNA-protein complexes. All DEAD-box proteins share a conserved core that consists of two RecA-like domains. The core is flanked by subfamily-specific extensions of idiosyncratic function. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest as members function during protein translation, are essential for viability, and are frequently altered in human malignancies. Here, we define the function of the subfamily-specific extensions of the human DEAD-box protein DDX3. We describe the crystal structure of the subfamily-specific core of wild-type DDX3 at 2.2 Å resolution, alone and in the presence of AMP or nonhydrolyzable ATP. These structures illustrate a unique interdomain interaction between the two ATPase domains in which the C-terminal domain clashes with the RNA-binding surface. Destabilizing this interaction accelerates RNA duplex unwinding, suggesting that it is present in solution and inhibitory for catalysis. We use this core fragment of DDX3 to test the function of two recurrent medulloblastoma variants of DDX3 and find that both inactivate the protein in vitro and in vivo. Taken together, these results redefine the structural and functional core of the DDX3 subfamily of DEAD-box proteins.

  4. Autoinhibitory Interdomain Interactions and Subfamily-specific Extensions Redefine the Catalytic Core of the Human DEAD-box Protein DDX3*

    PubMed Central

    Floor, Stephen N.; Condon, Kendall J.; Sharma, Deepak; Jankowsky, Eckhard; Doudna, Jennifer A.

    2016-01-01

    DEAD-box proteins utilize ATP to bind and remodel RNA and RNA-protein complexes. All DEAD-box proteins share a conserved core that consists of two RecA-like domains. The core is flanked by subfamily-specific extensions of idiosyncratic function. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest as members function during protein translation, are essential for viability, and are frequently altered in human malignancies. Here, we define the function of the subfamily-specific extensions of the human DEAD-box protein DDX3. We describe the crystal structure of the subfamily-specific core of wild-type DDX3 at 2.2 Å resolution, alone and in the presence of AMP or nonhydrolyzable ATP. These structures illustrate a unique interdomain interaction between the two ATPase domains in which the C-terminal domain clashes with the RNA-binding surface. Destabilizing this interaction accelerates RNA duplex unwinding, suggesting that it is present in solution and inhibitory for catalysis. We use this core fragment of DDX3 to test the function of two recurrent medulloblastoma variants of DDX3 and find that both inactivate the protein in vitro and in vivo. Taken together, these results redefine the structural and functional core of the DDX3 subfamily of DEAD-box proteins. PMID:26598523

  5. Aminoacylase 3 binds to and cleaves the N-terminus of the hepatitis C virus core protein.

    PubMed

    Tsirulnikov, Kirill; Abuladze, Natalia; Vahi, Ritu; Hasnain, Huma; Phillips, Martin; Ryan, Christopher M; Atanasov, Ivo; Faull, Kym F; Kurtz, Ira; Pushkin, Alexander

    2012-11-02

    Aminoacylase 3 (AA3) mediates deacetylation of N-acetyl aromatic amino acids and mercapturic acids. Deacetylation of mercapturic acids of exo- and endobiotics are likely involved in their toxicity. AA3 is predominantly expressed in kidney, and to a lesser extent in liver, brain, and blood. AA3 has been recently reported to interact with the hepatitis C virus core protein (HCVCP) in the yeast two-hybrid system. Here we demonstrate that AA3 directly binds to HCVCP (K(d) ~10 μM) that may by implicated in HCV pathogenesis. AA3 also revealed a weak endopeptidase activity towards the N-terminus of HCVCP.

  6. Aminoacylase 3 binds to and cleaves the N-terminus of the hepatitis C virus core protein

    PubMed Central

    Tsirulnikov, Kirill; Abuladze, Natalia; Vahi, Ritu; Hasnain, Huma; Phillips, Martin; Ryan, Christopher M.; Atanasov, Ivo; Faull, Kym F.; Kurtz, Ira; Pushkin, Alexander

    2012-01-01

    Aminoacylase 3 (AA3) mediates deacetylation of N-acetyl aromatic amino acids and mercapturic acids. Deacetylation of mercapturic acids of exo- and endobiotics are likely involved in their toxicity. AA3 is predominantly expressed in kidney, and to a lesser extent in liver, brain, and blood. AA3 has been recently reported to interact with the hepatitis C virus core protein (HCVCP) in the yeast two-hybrid system. Here we demonstrate that AA3 directly binds to HCVCP (Kd~10 μM) that may by implicated in HCV pathogenesis. AA3 also revealed a weak endopeptidase activity towards the N-terminus of HCVCP. PMID:23010594

  7. Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase.

    PubMed

    Duan, Wenjuan; Zhou, Juefei; Li, Wei; Zhou, Teng; Chen, Qianqian; Yang, Fuyu; Wei, Taotao

    2013-04-01

    The activation and deactivation of Ca(2+)- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved Förster resonance energy transfer (FRET), we determined the occurrence of Ca(2+)-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca(2+) concentrations ([Ca(2+)]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca(2+)]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.

  8. Analysis of hepatitis C virus core/NS5A protein co-localization using novel cell culture systems expressing core-NS2 and NS5A of genotypes 1-7.

    PubMed

    Galli, Andrea; Scheel, Troels K H; Prentoe, Jannick C; Mikkelsen, Lotte S; Gottwein, Judith M; Bukh, Jens

    2013-10-01

    Hepatitis C virus (HCV) is an important human pathogen infecting hepatocytes. With the advent of infectious cell culture systems, the HCV particle assembly and release processes are finally being uncovered. The HCV core and NS5A proteins co-localize on cytoplasmic lipid droplets (cLDs) or on the endoplasmic reticulum (ER) at different stages of particle assembly. Current knowledge on assembly and release is primarily based on studies in genotype 2a cell culture systems; however, given the high genetic heterogeneity of HCV, variations might exist among genotypes. Here, we developed novel HCV strain JFH1-based recombinants expressing core-NS2 and NS5A from genotypes 1-7, and analysed core and NS5A co-localization in infected cells. Huh7.5 cells were transfected with RNA of core-NS2/NS5A recombinants and putative adaptive mutations were analysed by reverse genetics. Adapted core-NS2/NS5A recombinants produced infectivity titres of 10(2.5)-10(4.5) f.f.u. ml(-1). Co-localization analysis demonstrated that the core and NS5A proteins from all genotypes co-localized extensively, and there was no significant difference in protein co-localization among genotypes. In addition, we found that the core and NS5A proteins were highly associated with cLDs at 12 h post-infection but became mostly ER associated at later stages. Finally, we found that different genotypes showed varying levels of core/cLD co-localization, with a possible effect on viral assembly/release. In summary, we developed a panel of HCV genotype 1-7 core-NS2/NS5A recombinants producing infectious virus, and an immunostaining protocol detecting the core and NS5A proteins from seven different genotypes. These systems will allow, for the first time, investigation of core/NS5A interactions during assembly and release of HCV particles of all major genotypes.

  9. Hierarchical organization in the amyloid core of yeast prion protein Ure2.

    PubMed

    Ngo, Sam; Gu, Lei; Guo, Zhefeng

    2011-08-26

    Formation of amyloid fibrils is involved in a range of fatal human disorders including Alzheimer, Parkinson, and prion diseases. Yeast prions, despite differences in sequence from their mammalian counterparts, share similar features with mammalian prions including infectivity, prion strain phenomenon, and species barrier and thus are good model systems for human prion diseases. Yeast prions normally have long prion domains that presumably form multiple β strands in the fibril, and structural knowledge about the yeast prion fibrils has been limited. Here we use site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy to investigate the structures of amyloid fibrils of Ure2 prion domain. We show that 15 spin-labeled Ure2 mutants, with spin labels at every 5th residue from position 5 to position 75, show a single-line or nearly single-line feature in their EPR spectra as a result of strong spin exchange interactions. These results suggest that a parallel in-register β structure exists at these spin-labeled positions. More interestingly, we also show that residues in the segment 30-65 have stronger spin exchange interactions, higher local stability, and lower solvent accessibility than segments 5-25 and 70-75, suggesting different local environment at these segments. We propose a hierarchical organization in the amyloid core of Ure2, with the segment 30-65 forming an inner core and the segments 5-25 and 70-75 forming an outer core. The hierarchical organization in the amyloid core may be a structural origin for polymorphism in fibrils and prion strains.

  10. Design of a bifunctional fusion protein for ovarian cancer drug delivery: single-chain anti-CA125 core-streptavidin fusion protein.

    PubMed

    Wang, Welson Wen-Shang; Das, Dipankar; McQuarrie, Stephen A; Suresh, Mavanur R

    2007-03-01

    We have developed a universal ovarian cancer cell targeting vehicle that can deliver biotinylated therapeutic drugs. A single-chain antibody variable domain (scFv) that recognizes the CA125 antigen of ovarian cancer cells was fused with a core-streptavidin domain (core-streptavidin-VL-VH and VL-VH-core-streptavidin orientations) using recombinant DNA technology and then expressed in Escherichia coli using the T7 expression system. The bifunctional fusion protein (bfFp) was expressed in a shaker flask culture, extracted from the periplasmic soluble protein, and affinity purified using an IMAC column. The two distinct activities (biotin binding and anti-CA125) of the bfFp were demonstrated using ELISA, Western blot and confocal laser-scanning microscopy (CLSM). The ELISA method utilized human NIH OVCAR-3 cells along with biotinylated bovine serum albumin (B-BSA) or biotinylated liposomes, whereas, the Western blot involved probing with B-BSA. The CLSM study has shown specificity in binding to the OVCAR-3 cell-line. ELISA and Western blot studies have confirmed the bifunctional activity and specificity. In the presence of bfFp, there was enhanced binding of biotinylated antigen and liposome to OVCAR-3 cells. In contrast, the control EMT6 cells, which do not express the CA125 antigen, showed minimal binding of the bfFp. Consequently, bfFp based targeting of biotinylated therapeutic drugs, proteins, liposomes, or nanoparticles could be an alternative, convenient method to deliver effective therapy to ovarian cancer patients. Peritoneal infusion of the bfFp-therapeutic complex could also be effective in locally targeting the most common site of metastatic spread.

  11. Hexadecanedionic acid-sepharose 4B: A new tool for preparation of albumin-depleted plasma.

    PubMed

    Soskic, Vukic; Schwall, Gerhard; Nyakatura, Elke; Poznanovic, Slobodan; Stegmann, Werner; Schrattenholz, Andre

    2006-12-01

    Serum and plasma are the major sources of human material for clinical molecular diagnostics and drug discovery. However, due to the high abundance of some proteins, of which serum albumin (SA) is most prominent, lower-abundance proteins often remain undetectable in proteomic analysis of these body fluids. We have used hexadecanedionic acid (HDA) immobilized to Sepharose 4B to develop an affinity resin that is effective in the removal of SA from plasma. Two-dimensional gel analysis of the SA-depleted samples shows a significant enhancement of the low-abundance proteins and highly specific capture of serum albumin. The HDA resin shows better performance in terms of specificity than dye-based resins.

  12. Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles.

    PubMed

    Weidner, A; Gräfe, C; von der Lühe, M; Remmer, H; Clement, J H; Eberbeck, D; Ludwig, F; Müller, R; Schacher, F H; Dutz, S

    2015-12-01

    Nanoparticles experience increasing interest for a variety of medical and pharmaceutical applications. When exposing nanomaterials, e.g., magnetic iron oxide nanoparticles (MNP), to human blood, a protein corona consisting of various components is formed immediately. The composition of the corona as well as its amount bound to the particle surface is dependent on different factors, e.g., particle size and surface charge. The actual composition of the formed protein corona might be of major importance for cellular uptake of magnetic nanoparticles. The aim of the present study was to analyze the formation of the protein corona during in vitro serum incubation in dependency of incubation time and temperature. For this, MNP with different shells were incubated in fetal calf serum (FCS, serving as protein source) within a water bath for a defined time and at a defined temperature. Before and after incubation the particles were characterized by a variety of methods. It was found that immediately (seconds) after contact of MNP and FCS, a protein corona is formed on the surface of MNP. This formation led to an increase of particle size and a slight agglomeration of the particles, which was relatively constant during the first minutes of incubation. A longer incubation (from hours to days) resulted in a stronger agglomeration of the FCS incubated MNP. Quantitative analysis (gel electrophoresis) of serum-incubated particles revealed a relatively constant amount of bound proteins during the first minutes of serum incubation. After a longer incubation (>20 min), a considerably higher amount of surface proteins was determined for incubation temperatures below 40 °C. For incubation temperatures above 50 °C, the influence of time was less significant which might be attributed to denaturation of proteins during incubation. Overall, analysis of the molecular weight distribution of proteins found in the corona revealed a clear influence of incubation time and temperature on

  13. Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Weidner, A.; Gräfe, C.; von der Lühe, M.; Remmer, H.; Clement, J. H.; Eberbeck, D.; Ludwig, F.; Müller, R.; Schacher, F. H.; Dutz, S.

    2015-07-01

    Nanoparticles experience increasing interest for a variety of medical and pharmaceutical applications. When exposing nanomaterials, e.g., magnetic iron oxide nanoparticles (MNP), to human blood, a protein corona consisting of various components is formed immediately. The composition of the corona as well as its amount bound to the particle surface is dependent on different factors, e.g., particle size and surface charge. The actual composition of the formed protein corona might be of major importance for cellular uptake of magnetic nanoparticles. The aim of the present study was to analyze the formation of the protein corona during in vitro serum incubation in dependency of incubation time and temperature. For this, MNP with different shells were incubated in fetal calf serum (FCS, serving as protein source) within a water bath for a defined time and at a defined temperature. Before and after incubation the particles were characterized by a variety of methods. It was found that immediately (seconds) after contact of MNP and FCS, a protein corona is formed on the surface of MNP. This formation led to an increase of particle size and a slight agglomeration of the particles, which was relatively constant during the first minutes of incubation. A longer incubation (from hours to days) resulted in a stronger agglomeration of the FCS incubated MNP. Quantitative analysis (gel electrophoresis) of serum-incubated particles revealed a relatively constant amount of bound proteins during the first minutes of serum incubation. After a longer incubation (>20 min), a considerably higher amount of surface proteins was determined for incubation temperatures below 40 °C. For incubation temperatures above 50 °C, the influence of time was less significant which might be attributed to denaturation of proteins during incubation. Overall, analysis of the molecular weight distribution of proteins found in the corona revealed a clear influence of incubation time and temperature on corona

  14. Multi-omics analyses reveal metabolic alterations regulated by hepatitis B virus core protein in hepatocellular carcinoma cells.

    PubMed

    Xie, Qi; Fan, Fengxu; Wei, Wei; Liu, Yang; Xu, Zhongwei; Zhai, Linhui; Qi, Yingzi; Ye, Bingyu; Zhang, Yao; Basu, Sumit; Zhao, Zhihu; Wu, Junzhu; Xu, Ping

    2017-01-23

    Chronic hepatitis B virus (HBV) infection is partly responsible for hepatitis, fatty liver disease and hepatocellular carcinoma (HCC). HBV core protein (HBc), encoded by the HBV genome, may play a significant role in HBV life cycle. However, the function of HBc in the occurrence and development of liver disease is still unclear. To investigate the underlying mechanisms, HBc-transfected HCC cells were characterized by multi-omics analyses. Combining proteomics and metabolomics analyses, our results showed that HBc promoted the expression of metabolic enzymes and the secretion of metabolites in HCC cells. In addition, glycolysis and amino acid metabolism were significantly up-regulated by HBc. Moreover, Max-like protein X (MLX) might be recruited and enriched by HBc in the nucleus to regulate glycolysis pathways. This study provides further insights into the function of HBc in the molecular pathogenesis of HBV-induced diseases and indicates that metabolic reprogramming appears to be a hallmark of HBc transfection.

  15. Multi-omics analyses reveal metabolic alterations regulated by hepatitis B virus core protein in hepatocellular carcinoma cells

    PubMed Central

    Xie, Qi; Fan, Fengxu; Wei, Wei; Liu, Yang; Xu, Zhongwei; Zhai, Linhui; Qi, Yingzi; Ye, Bingyu; Zhang, Yao; Basu, Sumit; Zhao, Zhihu; Wu, Junzhu; Xu, Ping

    2017-01-01

    Chronic hepatitis B virus (HBV) infection is partly responsible for hepatitis, fatty liver disease and hepatocellular carcinoma (HCC). HBV core protein (HBc), encoded by the HBV genome, may play a significant role in HBV life cycle. However, the function of HBc in the occurrence and development of liver disease is still unclear. To investigate the underlying mechanisms, HBc-transfected HCC cells were characterized by multi-omics analyses. Combining proteomics and metabolomics analyses, our results showed that HBc promoted the expression of metabolic enzymes and the secretion of metabolites in HCC cells. In addition, glycolysis and amino acid metabolism were significantly up-regulated by HBc. Moreover, Max-like protein X (MLX) might be recruited and enriched by HBc in the nucleus to regulate glycolysis pathways. This study provides further insights into the function of HBc in the molecular pathogenesis of HBV-induced diseases and indicates that metabolic reprogramming appears to be a hallmark of HBc transfection. PMID:28112229

  16. A test of the "jigsaw puzzle" model for protein folding by multiple methionine substitutions within the core of T4 lysozyme.

    PubMed Central

    Gassner, N C; Baase, W A; Matthews, B W

    1996-01-01

    To test whether the structure of a protein is determined in a manner akin to the assembly of a jigsaw puzzle, up to 10 adjacent residues within the core of T4 lysozyme were replaced by methionine. Such variants are active and fold cooperatively with progressively reduced stability. The structure of a seven-methionine variant has been shown, crystallographically, to be similar to wild type and to maintain a well ordered core. The interaction between the core residues is, therefore, not strictly comparable with the precise spatial complementarity of the pieces of a jigsaw puzzle. Rather, a certain amount of give and take in forming the core structure is permitted. A simplified hydrophobic core sequence, imposed without genetic selection or computer-based design, is sufficient to retain native properties in a globular protein. Images Fig. 2 Fig. 3 PMID:8901549

  17. Phosphoproteomic Analysis of Protein Kinase C Signaling in Saccharomyces cerevisiae Reveals Slt2 Mitogen-activated Protein Kinase (MAPK)-dependent Phosphorylation of Eisosome Core Components*

    PubMed Central

    Mascaraque, Victoria; Hernáez, María Luisa; Jiménez-Sánchez, María; Hansen, Rasmus; Gil, Concha; Martín, Humberto; Cid, Víctor J.; Molina, María

    2013-01-01

    The cell wall integrity (CWI) pathway of the model organism Saccharomyces cerevisiae has been thoroughly studied as a paradigm of the mitogen-activated protein kinase (MAPK) pathway. It consists of a classic MAPK module comprising the Bck1 MAPK kinase kinase, two redundant MAPK kinases (Mkk1 and Mkk2), and the Slt2 MAPK. This module is activated under a variety of stimuli related to cell wall homeostasis by Pkc1, the only member of the protein kinase C family in budding yeast. Quantitative phosphoproteomics based on stable isotope labeling of amino acids in cell culture is a powerful tool for globally studying protein phosphorylation. Here we report an analysis of the yeast phosphoproteome upon overexpression of a PKC1 hyperactive allele that specifically activates CWI MAPK signaling in the absence of external stimuli. We found 82 phosphopeptides originating from 43 proteins that showed enhanced phosphorylation in these conditions. The MAPK S/T-P target motif was significantly overrepresented in these phosphopeptides. Hyperphosphorylated proteins provide putative novel targets of the Pkc1–cell wall integrity pathway involved in diverse functions such as the control of gene expression, protein synthesis, cytoskeleton maintenance, DNA repair, and metabolism. Remarkably, five components of the plasma-membrane-associated protein complex known as eisosomes were found among the up-regulated proteins. We show here that Pkc1-induced phosphorylation of the eisosome core components Pil1 and Lsp1 was not exerted directly by Pkc1, but involved signaling through the Slt2 MAPK module. PMID:23221999

  18. ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8.

    PubMed

    Skytte Rasmussen, Mads; Mouilleron, Stéphane; Kumar Shrestha, Birendra; Wirth, Martina; Lee, Rebecca; Bowitz Larsen, Kenneth; Abudu Princely, Yakubu; O'Reilly, Nicola; Sjøttem, Eva; Tooze, Sharon A; Lamark, Trond; Johansen, Terje

    2017-02-15

    The cysteine protease ATG4B cleaves off one or more C-terminal residues of the inactive proform of proteins of the ortholog and paralog LC3 and GABARAP subfamilies of yeast Atg8 to expose a C-terminal glycine that is conjugated to phosphatidylethanolamine during autophagosome formation. We show that ATG4B contains a C-terminal LC3-interacting region (LIR) motif important for efficient binding to and cleavage of LC3 and GABARAP proteins. We solved the crystal structures of the GABARAPL1-ATG4B C-terminal LIR complex. Analyses of the structures and in vitro binding assays, using specific point mutants, clearly showed that the ATG4B LIR binds via electrostatic-, aromatic HP1 and hydrophobic HP2 pocket interactions. Both these interactions and the catalytic site-substrate interaction contribute to binding between LC3s or GABARAPs and ATG4B. We also reveal an unexpected role for ATG4B in stabilizing the unlipidated forms of GABARAP and GABARAPL1. In mouse embryonic fibroblast (MEF) atg4b knockout cells, GABARAP and GABARAPL1 were unstable and degraded by the proteasome. Strikingly, the LIR motif of ATG4B was required for stabilization of the unlipidated forms of GABARAP and GABARAPL1 in cells.

  19. Insight into the Unfolding Properties of Chd64, a Small, Single Domain Protein with a Globular Core and Disordered Tails.

    PubMed

    Tarczewska, Aneta; Kozłowska, Małgorzata; Dobryszycki, Piotr; Kaus-Drobek, Magdalena; Dadlez, Michał; Ożyhar, Andrzej

    2015-01-01

    Two major lipophilic hormones, 20-hydroxyecdysone (20E) and juvenile hormone (JH), govern insect development and growth. While the mode of action of 20E is well understood, some understanding of JH-dependent signalling has been attained only in the past few years, and the crosstalk of the two hormonal pathways remains unknown. Two proteins, the calponin-like Chd64 and immunophilin FKBP39 proteins, have recently been found to play pivotal roles in the formation of dynamic, multiprotein complex that cross-links these two signalling pathways. However, the molecular mechanism of the interaction remains unexplored. The aim of this work was to determine structural elements of Chd64 to provide an understanding of molecular basis of multiple interactions. We analysed Chd64 in two unrelated insect species, Drosophila melanogaster (DmChd64) and Tribolium castaneum (TcChd64). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS), we showed that both Chd64 proteins have disordered tails that outflank the globular core. The folds of the globular cores of both Chd64 resemble the calponin homology (CH) domain previously resolved by crystallography. Monitoring the unfolding of DmChd64 and TcChd64 by far-ultraviolet (UV) circular dichroism (CD) spectroscopy, fluorescence spectroscopy and size-exclusion chromatography (SEC) revealed a highly complex process. Chd64 unfolds and forms of a molten globule (MG)-like intermediate state. Furthermore, our data indicate that in some conditions, Chd64 may exists in discrete structural forms, indicating that the protein is pliable and capable of easily acquiring different conformations. The plasticity of Chd64 and the existence of terminal intrinsically disordered regions (IDRs) may be crucial for multiple interactions with many partners.

  20. Antibiotic Resistance, Core-Genome and Protein Expression in IncHI1 Plasmids in Salmonella Typhimurium.

    PubMed

    Kubasova, Tereza; Cejkova, Darina; Matiasovicova, Jitka; Sekelova, Zuzana; Polansky, Ondrej; Medvecky, Matej; Rychlik, Ivan; Juricova, Helena

    2016-06-13

    Conjugative plasmids from the IncHI1 incompatibility group play an important role in transferring antibiotic resistance in Salmonella Typhimurium. However, knowledge of their genome structure or gene expression is limited. In this study, we determined the complete nucleotide sequences of four IncHI1 plasmids transferring resistance to antibiotics by two different next generation sequencing protocols and protein expression by mass spectrometry. Sequence data including additional 11 IncHI1 plasmids from GenBank were used for the definition of the IncHI1 plasmid core-genome and pan-genome. The core-genome consisted of approximately 123 kbp and 122 genes while the total pan-genome represented approximately 600 kbp. When the core-genome sequences were used for multiple alignments, the 15 tested IncHI1 plasmids were separated into two main lineages. GC content in core-genome genes was around 46% and 50% in accessory genome genes. A multidrug resistance region present in all 4 sequenced plasmids extended over 20 kbp and, except for tet(B), the genes responsible for antibiotic resistance were those with the highest GC content. IncHI1 plasmids therefore represent replicons that evolved in low GC content bacteria. From their original host, they spread to Salmonella and during this spread these plasmids acquired multiple accessory genes including those coding for antibiotic resistance. Antibiotic-resistance genes belonged to genes with the highest level of expression and were constitutively expressed even in the absence of antibiotics. This is the likely mechanism that facilitates host cell survival when antibiotics suddenly emerge in the environment.

  1. SECONDARY ECLIPSE PHOTOMETRY OF WASP-4b WITH WARM SPITZER

    SciTech Connect

    Beerer, Ingrid M.; Knutson, Heather A.; Burrows, Adam; Fortney, Jonathan J.; Laughlin, Gregory; Agol, Eric; Cowan, Nicolas B.; Charbonneau, David; Desert, Jean-Michel; Deming, Drake; Langton, Jonathan; Lewis, Nikole K.; Showman, Adam P.

    2011-01-20

    We present photometry of the giant extrasolar planet WASP-4b at 3.6 and 4.5 {mu}m taken with the Infrared Array Camera on board the Spitzer Space Telescope as part of Spitzer's extended warm mission. We find secondary eclipse depths of 0.319% {+-} 0.031% and 0.343% {+-} 0.027% for the 3.6 and 4.5 {mu}m bands, respectively, and show model emission spectra and pressure-temperature profiles for the planetary atmosphere. These eclipse depths are well fit by model emission spectra with water and other molecules in absorption, similar to those used for TrES-3 and HD 189733b. Depending on our choice of model, these results indicate that this planet has either a weak dayside temperature inversion or no inversion at all. The absence of a strong thermal inversion on this highly irradiated planet is contrary to the idea that highly irradiated planets are expected to have inversions, perhaps due the presence of an unknown absorber in the upper atmosphere. This result might be explained by the modestly enhanced activity level of WASP-4b's G7V host star, which could increase the amount of UV flux received by the planet, therefore reducing the abundance of the unknown stratospheric absorber in the planetary atmosphere as suggested in Knutson et al. We also find no evidence for an offset in the timing of the secondary eclipse and place a 2{sigma} upper limit on |ecos {omega}| of 0.0024, which constrains the range of tidal heating models that could explain this planet's inflated radius.

  2. Detection of proteins on silica-silver core-shell substrates by surface-enhanced Raman spectroscopy.

    PubMed

    Chen, Lei; Han, Xiaoxia; Yang, Jingxiu; Zhou, Ji; Song, Wei; Zhao, Bing; Xu, Weiqing; Ozaki, Yukihiro

    2011-08-15

    We have employed the proposed Silica-Silver Core-Shell (SSCS) SERS-active substrates to detect four model proteins: lysozyme (a protein without chromophore), cytochrome c (a protein with chromophore of heme), fluorescein isothiocyanate (FITC)-anti human IgG (labeled with FITC) and atto610-biotin/avidin (recognition with labeled small molecules). SERS spectra of these proteins and Raman labels on the SSCS substrates show both high sensitivity and reproducibility, which are due to electromagnetic SERS enhancement with additional localization field within closely packed Ag nanoparticles decorated on the SiO(2) nanoparticles and the aggregation of SiO(2)@Ag particles. We have found that the SERS intensities of atto610-biotin/avidin adsorbed on the SSCS substrates are about 20 times stronger than those from Ag plating on Au-decorated substrate. Moreover, the broad surface plasmon resonance (SPR) of the proposed substrates will extend SERS applications to more biological molecules with different laser excitations.

  3. Genome sequence and description of the heavy metal tolerant bacterium Lysinibacillus sphaericus strain OT4b.31

    PubMed Central

    Peña-Montenegro, Tito David; Dussán, Jenny

    2013-01-01

    Lysinibacillus sphaericus strain OT4b.31 is a native Colombian strain having no larvicidal activity against Culex quinquefasciatus and is widely applied in the bioremediation of heavy-metal polluted environments. Strain OT4b.31 was placed between DNA homology groups III and IV. By gap-filling and alignment steps, we propose a 4,096,672 bp chromosomal scaffold. The whole genome (consisting of 4,856,302 bp long, 94 contigs and 4,846 predicted protein-coding sequences) revealed differences in comparison to the L. sphaericus C3-41 genome, such as syntenial relationships, prophages and putative mosquitocidal toxins. Sphaericolysin B354, the coleopteran toxin Sip1A and heavy metal resistance clusters from nik, ars, czc, cop, chr, czr and cad operons were identified. Lysinibacillus sphaericus OT4b.31 has applications not only in bioremediation efforts, but also in the biological control of agricultural pests. PMID:24501644

  4. Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B

    PubMed Central

    Rao, Minxi; Smith, Brian C.

    2015-01-01

    ABSTRACT Nitric oxide (NO) plays an important signaling role in all domains of life. Many bacteria contain a heme-nitric oxide/oxygen binding (H-NOX) protein that selectively binds NO. These H-NOX proteins often act as sensors that regulate histidine kinase (HK) activity, forming part of a bacterial two-component signaling system that also involves one or more response regulators. In several organisms, NO binding to the H-NOX protein governs bacterial biofilm formation; however, the source of NO exposure for these bacteria is unknown. In mammals, NO is generated by the enzyme nitric oxide synthase (NOS) and signals through binding the H-NOX domain of soluble guanylate cyclase. Recently, several bacterial NOS proteins have also been reported, but the corresponding bacteria do not also encode an H-NOX protein. Here, we report the first characterization of a bacterium that encodes both a NOS and H-NOX, thus resembling the mammalian system capable of both synthesizing and sensing NO. We characterized the NO signaling pathway of the marine alphaproteobacterium Silicibacter sp. strain TrichCH4B, determining that the NOS is activated by an algal symbiont, Trichodesmium erythraeum. NO signaling through a histidine kinase-response regulator two-component signaling pathway results in increased concentrations of cyclic diguanosine monophosphate, a key bacterial second messenger molecule that controls cellular adhesion and biofilm formation. Silicibacter sp. TrichCH4B biofilm formation, activated by T. erythraeum, may be an important mechanism for symbiosis between the two organisms, revealing that NO plays a previously unknown key role in bacterial communication and symbiosis. PMID:25944856

  5. A Conserved Hydrophobic Core in Gαi1 Regulates G Protein Activation and Release from Activated Receptor.

    PubMed

    Kaya, Ali I; Lokits, Alyssa D; Gilbert, James A; Iverson, T M; Meiler, Jens; Hamm, Heidi E

    2016-09-09

    G protein-coupled receptor-mediated heterotrimeric G protein activation is a major mode of signal transduction in the cell. Previously, we and other groups reported that the α5 helix of Gαi1, especially the hydrophobic interactions in this region, plays a key role during nucleotide release and G protein activation. To further investigate the effect of this hydrophobic core, we disrupted it in Gαi1 by inserting 4 alanine amino acids into the α5 helix between residues Gln(333) and Phe(334) (Ins4A). This extends the length of the α5 helix without disturbing the β6-α5 loop interactions. This mutant has high basal nucleotide exchange activity yet no receptor-mediated activation of nucleotide exchange. By using structural approaches, we show that this mutant loses critical hydrophobic interactions, leading to significant rearrangements of side chain residues His(57), Phe(189), Phe(191), and Phe(336); it also disturbs the rotation of the α5 helix and the π-π interaction between His(57) and Phe(189) In addition, the insertion mutant abolishes G protein release from the activated receptor after nucleotide binding. Our biochemical and computational data indicate that the interactions between α5, α1, and β2-β3 are not only vital for GDP release during G protein activation, but they are also necessary for proper GTP binding (or GDP rebinding). Thus, our studies suggest that this hydrophobic interface is critical for accurate rearrangement of the α5 helix for G protein release from the receptor after GTP binding.

  6. Site-specific glycoproteomics confirms that protein structure dictates formation of N-glycan type, core fucosylation and branching.

    PubMed

    Thaysen-Andersen, Morten; Packer, Nicolle H

    2012-11-01

    Growing evidence indicates that the individualized and highly reproducible N-glycan repertoires on each protein glycosylation site modulate function. Relationships between protein structures and the resulting N-glycoforms have previously been observed, but remain to be quantitatively confirmed and examined in detail to define the responsible mechanisms in the conserved mammalian glycosylation machinery. Here, we investigate this relationship by manually extracting and analyzing quantitative and qualitative site-specific glycoprofiling data from 117 research papers. Specifically, N-glycan structural motifs were correlated with the structure of the protein carriers, focusing on the solvent accessibility of the individual glycosylation sites and the physicochemical properties of the surrounding polypeptide chains. In total, 474 glycosylation sites from 169 mammalian N-glycoproteins originating from different tissues/body fluids were investigated. It was confirmed statistically that the N-glycan type, degree of core fucosylation and branching are strongly influenced by the glycosylation site accessibility. For these three N-glycan features, glycosylation sites carrying highly processed glycans were significantly more solvent-accessible than those carrying less processed counterparts. The glycosylation site accessibilities could be linked to molecular signatures at the primary and secondary protein levels, most notably to the glycoprotein size and the proportion of glycosylation sites located in accessible β-turns. In addition, the subcellular location of the glycoproteins influenced the formation of the N-glycan structures. These data confirm that protein structures dictate site-specific formation of several features of N-glycan structures by affecting the biosynthetic pathway. Mammals have, as such, evolved mechanisms enabling proteins to influence the N-glycans they present to the extracellular environment.

  7. Hepatitis C virus core protein inhibits interferon production by a human plasmacytoid dendritic cell line and dysregulates interferon regulatory factor-7 and signal transducer and activator of transcription (STAT) 1 protein expression.

    PubMed

    Stone, Amy E L; Mitchell, Angela; Brownell, Jessica; Miklin, Daniel J; Golden-Mason, Lucy; Polyak, Stephen J; Gale, Michael J; Rosen, Hugo R

    2014-01-01

    Plasmacytoid Dendritic Cells (pDCs) represent a key immune cell population in the defense against viruses. pDCs detect viral pathogen associated molecular patterns (PAMPs) through pattern recognition receptors (PRR). PRR/PAMP interactions trigger signaling events that induce interferon (IFN) production to initiate local and systemic responses. pDCs produce Type I and Type III (IFNL) IFNs in response to HCV RNA. Extracellular HCV core protein (Core) is found in the circulation in chronic infection. This study defined how Core modulates PRR signaling in pDCs. Type I and III IFN expression and production following exposure to recombinant Core or β-galactosiade was assessed in human GEN2.2 cells, a pDC cell line. Core suppressed type I and III IFN production in response to TLR agonists and the HCV PAMP agonist of RIG-I. Core suppression of IFN induction was linked with decreased IRF-7 protein levels and increased non-phosphorylated STAT1 protein. Circulating Core protein interferes with PRR signaling by pDCs to suppress IFN production. Strategies to define and target Core effects on pDCs may serve to enhance IFN production and antiviral actions against HCV.

  8. Upregulation of LAPTM4B-35 promotes malignant transformation and tumorigenesis in L02 human liver cell line.

    PubMed

    Li, Li; Shan, Yi; Yang, Hua; Zhang, Sha; Lin, Ming; Zhu, Ping; Chen, Xin-Yu; Yi, Jing; McNutt, Michael A; Shao, Gen-Ze; Zhou, Rou-Li

    2011-07-01

    Hepatocellular carcinoma (HCC) is one of the most frequent malignant neoplasms worldwide and is the second leading cause of cancer death in China. We have previously demonstrated that LAPTM4B-35, encoded by lysosomal protein transmembrane 4 beta gene, is overexpressed in over 80% of HCCs and is a novel-independent prognostic factor for metastasis, recurrence, and postoperative survival in HCC. In this study, we investigated the role of LAPTM4B-35 in malignant transformation and tumorigenesis using L02 cells, a cell line originated from human normal liver cells. Our data show that replication-deficient adenovirus vector-mediated upregulation of LAPTM4B-35 promotes anchorage-independent proliferation and resistance to adriamycin-induced apoptosis. Study of the underlying mechanisms demonstrated alterations of molecular events involved in these processes, which included the activation of phosphoinositide 3-kinases (PI3K)/serine/threonine protein kinase B (PKB/AKT)/bcl-xL/bcl-2-associated death promoter homolog (Bad) signaling pathway, inhibition of caspase-3 activation, upregulation of Bcl-2, and downregulation of Bax. In addition, upregulation of LAPTM4B-35 in L02 cells resulted in tumorigenesis in 100% (6/6) of inoculated nude mice and accelerated the death of mice with xenografts in vivo. In conclusion, LAPTM4B-35 promotes malignant transformation and tumorigenesis in human liver L02 cell line through promotion of deregulated proliferation and inhibition of apoptosis. These findings suggest that overexpression of LAPTM4B-35 may play a critical role in hepatocarcinogenesis and therefore, may be a therapeutic target for HCC.

  9. IFT81, encoding an IFT-B core protein, as a very rare cause of a ciliopathy phenotype

    PubMed Central

    Perrault, Isabelle; Halbritter, Jan; Porath, Jonathan D; Gérard, Xavier; Braun, Daniela A; Gee, Heon Yung; Fathy, Hanan M; Saunier, Sophie; Cormier-Daire, Valérie; Thomas, Sophie; Attié-Bitach, Tania; Boddaert, Nathalie; Taschner, Michael; Schueler, Markus; Lorentzen, Esben; Lifton, Richard P; Lawson, Jennifer A; Garfa-Traore, Meriem; Otto, Edgar A; Bastin, Philippe; Caillaud, Catherine; Kaplan, Josseline; Rozet, Jean-Michel; Hildebrandt, Friedhelm

    2015-01-01

    Background Bidirectional intraflagellar transport (IFT) consists of two major protein complexes, IFT-A and IFT-B. In contrast to the IFT-B complex, all components of IFT-A have recently been linked to human ciliopathies when defective. We therefore hypothesised that mutations in additional IFT-B encoding genes can be found in patients with multisystemic ciliopathies. Methods We screened 1628 individuals with reno-ocular ciliopathies by targeted next-generation sequencing of ciliary candidate genes, including all IFT-B encoding genes. Results Consequently, we identified a homozygous mutation in IFT81 affecting an obligatory donor splice site in an individual with nephronophthisis and polydactyly. Further, we detected a loss-of-stop mutation with extension of the deduced protein by 10 amino acids in an individual with neuronal ceroid lipofuscinosis-1. This proband presented with retinal dystrophy and brain lesions including cerebellar atrophy, a phenotype to which the IFT81 variant might contribute. Cultured fibroblasts of this latter affected individual showed a significant decrease in ciliated cell abundance compared with controls and increased expression of the transcription factor GLI2 suggesting deranged sonic hedgehog signalling. Conclusions This work describes identification of mutations of IFT81 in individuals with symptoms consistent with the clinical spectrum of ciliopathies. It might represent the rare case of a core IFT-B complex protein found associated with human disease. Our data further suggest that defects in the IFT-B core are an exceedingly rare finding, probably due to its indispensable role for ciliary assembly in development. PMID:26275418

  10. The Core Apoptotic Executioner Proteins CED-3 and CED-4 Promote Initiation of Neuronal Regeneration in Caenorhabditis elegans

    PubMed Central

    Reina, Christopher P.; Hulme, S. Elizabeth; Shevkoplyas, Sergey S.; Slone, R. Daniel; Xue, Jian; Qiao, Yujie; Weisberg, Sarah; Roodhouse, Kevin; Sun, Lin; Whitesides, George M.; Samuel, Aravinthan; Driscoll, Monica

    2012-01-01

    A critical accomplishment in the rapidly developing field of regenerative medicine will be the ability to foster repair of neurons severed by injury, disease, or microsurgery. In C. elegans, individual visualized axons can be laser-cut in vivo and neuronal responses to damage can be monitored to decipher genetic requirements for regeneration. With an initial interest in how local environments manage cellular debris, we performed femtosecond laser axotomies in genetic backgrounds lacking cell death gene activities. Unexpectedly, we found that the CED-3 caspase, well known as the core apoptotic cell death executioner, acts in early responses to neuronal injury to promote rapid regeneration of dissociated axons. In ced-3 mutants, initial regenerative outgrowth dynamics are impaired and axon repair through reconnection of the two dissociated ends is delayed. The CED-3 activator, CED-4/Apaf-1, similarly promotes regeneration, but the upstream regulators of apoptosis CED-9/Bcl2 and BH3-domain proteins EGL-1 and CED-13 are not essential. Thus, a novel regulatory mechanism must be utilized to activate core apoptotic proteins for neuronal repair. Since calcium plays a conserved modulatory role in regeneration, we hypothesized calcium might play a critical regulatory role in the CED-3/CED-4 repair pathway. We used the calcium reporter cameleon to track in vivo calcium fluxes in the axotomized neuron. We show that when the endoplasmic reticulum calcium-storing chaperone calreticulin, CRT-1, is deleted, both calcium dynamics and initial regenerative outgrowth are impaired. Genetic data suggest that CED-3, CED-4, and CRT-1 act in the same pathway to promote early events in regeneration and that CED-3 might act downstream of CRT-1, but upstream of the conserved DLK-1 kinase implicated in regeneration across species. This study documents reconstructive roles for proteins known to orchestrate apoptotic death and links previously unconnected observations in the vertebrate

  11. Stch encodes the 'ATPase core' of a microsomal stress 70 protein.

    PubMed Central

    Otterson, G A; Flynn, G C; Kratzke, R A; Coxon, A; Johnston, P G; Kaye, F J

    1994-01-01

    The stress70 protein chaperone family plays a central role in the processing of cytosolic and secretory proteins. We have cloned a human cDNA, designated Stch, that is conserved in rat tissues and which encodes a novel microsome-associated member of the stress70 protein chaperone family. Stch mRNA is constitutively expressed in all human cell types and is induced by incubation with the calcium ionophore A23187, but not by exposure to heat shock. Inspection of the predicted amino acid sequence reveals that the STCH product contains a unique hydrophobic leader sequence and shares homology within the amino terminal domains of the stress70 gene family, but has a 50 residue insertion within the ATP-binding domains and truncates the carboxyl terminal peptide-binding region. Immunofluorescent and subcellular analyses show that STCH migrates predominantly as a 60 kDa species and is enriched in a membrane-bound microsome fraction. In contrast to purified BiP and dnaK, however, STCH demonstrates ATPase activity that is independent of peptide stimulation. Stch, therefore, encodes a calcium-inducible, microsome-associated ATPase activity with properties similar to a proteolytically cleaved N-terminal HSC70/BiP fragment. This truncated stress70 molecule may allow increased diversity in cellular responses to protein processing requirements. Images PMID:8131751

  12. Optimisation of Downscaled Tandem Affinity Purifications to Identify Core Protein Complexes

    PubMed Central

    Haura, Eric B.; Sacco, Roberto; Li, Jiannong; Müller, André C.; Grebien, Florian; Superti-Furga, Giulio; Bennett, Keiryn L.

    2013-01-01

    In this study we show that via stable, retroviral-expression of tagged EGFR del (L747-S752 deletion mutant) in the PC9 lung cancer cell line and stable doxycycline-inducible expression of tagged Grb2 using a Flp-mediated recombination HEK293 cell system, the SH-TAP can be downscaled to 5 to 12.5 mg total protein input (equivalent to 0.5 - 1 × 15 cm culture plate or 4 - 8 × 106 cells). The major constituents of the EGFR del complex (USB3B, GRB2, ERRFI, HSP7C, GRP78, HSP71) and the Grb2 complex (ARHG5, SOS1, ARG35, CBL, CBLB, PTPRA, SOS2, DYN2, WIPF2, IRS4) were identified. Adjustment of the quantity of digested protein injected into the mass spectrometer reveals that optimisation is required as high quantities of material led to a decrease in protein sequence coverage and the loss of some interacting proteins. This investigation should aid other researchers in performing tandem affinity purifications in general, and in particular, from low quantities of input material. PMID:24077984

  13. Specificity of the hepatitis C virus NS3 serine protease: effects of substitutions at the 3/4A, 4A/4B, 4B/5A, and 5A/5B cleavage sites on polyprotein processing.

    PubMed Central

    Kolykhalov, A A; Agapov, E V; Rice, C M

    1994-01-01

    Cleavage at four sites (3/4A, 4A/4B, 4B/5A, and 5A/5B) in the hepatitis C virus polyprotein requires a viral serine protease activity residing in the N-terminal one-third of the NS3 protein. Sequence comparison of the residues flanking these cleavage sites reveals conserved features including an acidic residue (Asp or Glu) at the P6 position, a Cys or Thr residue at the P1 position, and a Ser or Ala residue at the P1' position. In this study, we used site-directed mutagenesis to assess the importance of these and other residues for NS3 protease-dependent cleavages. Substitutions at the P7 to P2' positions of the 4A/4B site had varied effects on cleavage efficiency. Only Arg at the P1 position or Pro at P1' substantially blocked processing at this site. Leu was tolerated at the P1 position, whereas five other substitutions allowed various degrees of cleavage. Substitutions with positively charged or other hydrophilic residues at the P7, P3, P2, and P2' positions did not reduce cleavage efficiency. Five substitutions examined at the P6 position allowed complete cleavage, demonstrating that an acidic residue at this position is not essential. Parallel results were obtained with substrates containing an active NS3 protease domain in cis or when the protease domain was supplied in trans. Selected substitutions blocking or inhibiting cleavage at the 4A/4B site were also examined at the 3/4A, 4B/5A, and 5A/5B sites. For a given substitution, a site-dependent gradient in the degree of inhibition was observed, with a 3/4A site being least sensitive to mutagenesis, followed by the 4A/4B, 4B/5A, and 5A/5B sites. In most cases, mutations abolishing cleavage at one site did not affect processing at the other serine protease-dependent sites. However, mutations at the 3/4A site which inhibited cleavage also interfered with processing at the 4B/5A site. Finally, during the course of these studies an additional NS3 protease-dependent cleavage site has been identified in the NS4B

  14. Inhibitory effect of miR-125b on hepatitis C virus core protein-induced TLR2/MyD88 signaling in THP-1 cells

    PubMed Central

    Peng, Cheng; Wang, Hua; Zhang, Wen-Jing; Jie, Sheng-Hua; Tong, Qiao-Xia; Lu, Meng-Ji; Yang, Dong-Liang

    2016-01-01

    AIM: To investigate the role of miR-125b in regulating monocyte immune responses induced by hepatitis C virus (HCV) core protein. METHODS: Monocytic THP-1 cells were treated with various concentrations of recombinant HCV core protein, and cytokines and miR-125b expression in these cells were analyzed. The requirement of Toll-like receptor 2 (TLR2) or MyD88 gene for HCV core protein-induced immune responses was determined by the transfection of THP-1 cells with gene knockdown vectors expressing either TLR2 siRNA or MyD88 siRNA. The effect of miR-125b overexpression on TLR2/MyD88 signaling was examined by transfecting THP-1 cells with miR-125b mimic RNA oligos. RESULTS: In response to HCV core protein stimulation, cytokine production was up-regulated and miR-125b expression was down-regulated in THP-1 cells. The modulatory effect of HCV core protein on cellular events was dose-dependent and required functional TLR2 or MyD88 gene. Forced miR-125b expression abolished the HCV core protein-induced enhancement of tumor necrosis factor-α, interleukin (IL)-6, and IL-10 expression by 66%, 54%, and 66%, respectively (P < 0.001), by inhibiting MyD88-mediated signaling, including phosphorylation of NF-κBp65, ERK, and P38. CONCLUSION: The inverse correlation between miR-125b and cytokine expression after HCV core challenge suggests that miR-125b may negatively regulate HCV-induced immune responses by targeting TLR2/MyD88 signaling in monocytes. PMID:27158204

  15. Differential regulation of hepatitis B virus core protein expression and genome replication by a small upstream open reading frame and naturally occurring mutations in the precore region.

    PubMed

    Zong, Li; Qin, Yanli; Jia, Haodi; Ye, Lei; Wang, Yongxiang; Zhang, Jiming; Wands, Jack R; Tong, Shuping; Li, Jisu

    2017-05-01

    Hepatitis B virus (HBV) transcribes two subsets of 3.5-kb RNAs: precore RNA for hepatitis B e antigen (HBeAg) expression, and pregenomic RNA for core and P protein translation as well as genome replication. HBeAg expression could be prevented by mutations in the precore region, while an upstream open reading frame (uORF) has been proposed as a negative regulator of core protein translation. We employed replication competent HBV DNA constructs and transient transfection experiments in Huh7 cells to verify the uORF effect and to explore the alternative function of precore RNA. Optimized Kozak sequence for the uORF or extra ATG codons as present in some HBV genotypes reduced core protein expression. G1896A nonsense mutation promoted more efficient core protein expression than mutated precore ATG, while a +1 frameshift mutation was ineffective. In conclusion, various HBeAg-negative precore mutations and mutations affecting uORF differentially regulate core protein expression and genome replication.

  16. Tandem Fusion of Hepatitis B Core Antigen Allows Assembly of Virus-Like Particles in Bacteria and Plants with Enhanced Capacity to Accommodate Foreign Proteins

    PubMed Central

    Peyret, Hadrien; Gehin, Annick; Thuenemann, Eva C.; Blond, Donatienne; El Turabi, Aadil; Beales, Lucy; Clarke, Dean; Gilbert, Robert J. C.; Fry, Elizabeth E.; Stuart, David I.; Holmes, Kris; Stonehouse, Nicola J.; Whelan, Mike; Rosenberg, William; Lomonossoff, George P.; Rowlands, David J.

    2015-01-01

    The core protein of the hepatitis B virus, HBcAg, assembles into highly immunogenic virus-like particles (HBc VLPs) when expressed in a variety of heterologous systems. Specifically, the major insertion region (MIR) on the HBcAg protein allows the insertion of foreign sequences, which are then exposed on the tips of surface spike structures on the outside of the assembled particle. Here, we present a novel strategy which aids the display of whole proteins on the surface of HBc particles. This strategy, named tandem core, is based on the production of the HBcAg dimer as a single polypeptide chain by tandem fusion of two HBcAg open reading frames. This allows the insertion of large heterologous sequences in only one of the two MIRs in each spike, without compromising VLP formation. We present the use of tandem core technology in both plant and bacterial expression systems. The results show that tandem core particles can be produced with unmodified MIRs, or with one MIR in each tandem dimer modified to contain the entire sequence of GFP or of a camelid nanobody. Both inserted proteins are correctly folded and the nanobody fused to the surface of the tandem core particle (which we name tandibody) retains the ability to bind to its cognate antigen. This technology paves the way for the display of natively folded proteins on the surface of HBc particles either through direct fusion or through non-covalent attachment via a nanobody. PMID:25830365

  17. 2D-IR spectroscopy of the sulfhydryl band of cysteines in the hydrophobic core of proteins.

    PubMed

    Koziński, M; Garrett-Roe, S; Hamm, P

    2008-06-26

    We investigate the sulfhydryl band of cysteines as a new chromophore for two-dimensional IR (2D-IR) studies of the structure and dynamics of proteins. Cysteines can be put at almost any position in a protein by standard methods of site-directed mutagenesis and, hence, have the potential to be an extremely versatile local probe. Although being a very weak absorber in aqueous environment, the sulfhydryl group gets strongly polarized when situated in an alpha-helix inside the hydrophobic core of a protein because of a strong hydrogen bond to the backbone carbonyl group. The extinction coefficient (epsilon=150 M(-1) cm(-1)) then is sufficiently high to perform detailed 2D-IR studies even at low millimolar concentrations. Using porcine (carbonmonoxy)hemoglobin as an example, which contains two such cysteines in its wild-type form, we demonstrate that spectral diffusion deduced from the 2D-IR line shapes reports on the overall-breathing of the corresponding alpha-helix. The vibrational lifetime of the sulfhydryl group (T1 approximately 6 ps) is considerably longer than that of the much more commonly used amide I mode (approximately 1.0 ps), thereby significantly extending the time window in which spectral diffusion processes can be observed. The experiments are accompanied by molecular dynamics simulations revealing a good overall agreement.

  18. Human X-linked Intellectual Disability Factor CUL4B Is Required for Post-meiotic Sperm Development and Male Fertility

    PubMed Central

    Lin, Chien-Yu; Chen, Chun-Yu; Yu, Chih-Hsiang; Yu, I-Shing; Lin, Shu-Rung; Wu, June-Tai; Lin, Ying-Hung; Kuo, Pao-Lin; Wu, Jui-Ching; Lin, Shu-Wha

    2016-01-01

    In this study, we demonstrate that an E3-ubiquitin ligase associated with human X-linked intellectual disability, CUL4B, plays a crucial role in post-meiotic sperm development. Initially, Cul4bΔ/Y male mice were found to be sterile and exhibited a progressive loss in germ cells, thereby leading to oligoasthenospermia. Adult Cul4b mutant epididymides also contained very low numbers of mature spermatozoa, and these spermatazoa exhibited pronounced morphological abnormalities. In post-meiotic spermatids, CUL4B was dynamically expressed and mitosis of spermatogonia and meiosis of spermatocytes both appeared unaffected. However, the spermatids exhibited significantly higher levels of apoptosis during spermiogenesis, particularly during the acrosome phase through the cap phase. Comparative proteomic analyses identified a large-scale shift between wild-type and Cul4b mutant testes during early post-meiotic sperm development. Ultrastructural pathology studies further detected aberrant acrosomes in spermatids and nuclear morphology. The protein levels of both canonical and non-canonical histones were also affected in an early spermatid stage in the absence of Cul4b. Thus, X-linked CUL4B appears to play a critical role in acrosomal formation, nuclear condensation, and in regulating histone dynamics during haploid male germ cell differentiation in relation to male fertility in mice. Thus, it is possible that CUL4B-selective substrates are required for post-meiotic sperm morphogenesis. PMID:26832838

  19. Human X-linked Intellectual Disability Factor CUL4B Is Required for Post-meiotic Sperm Development and Male Fertility.

    PubMed

    Lin, Chien-Yu; Chen, Chun-Yu; Yu, Chih-Hsiang; Yu, I-Shing; Lin, Shu-Rung; Wu, June-Tai; Lin, Ying-Hung; Kuo, Pao-Lin; Wu, Jui-Ching; Lin, Shu-Wha

    2016-02-02

    In this study, we demonstrate that an E3-ubiquitin ligase associated with human X-linked intellectual disability, CUL4B, plays a crucial role in post-meiotic sperm development. Initially, Cul4b(Δ)/Y male mice were found to be sterile and exhibited a progressive loss in germ cells, thereby leading to oligoasthenospermia. Adult Cul4b mutant epididymides also contained very low numbers of mature spermatozoa, and these spermatazoa exhibited pronounced morphological abnormalities. In post-meiotic spermatids, CUL4B was dynamically expressed and mitosis of spermatogonia and meiosis of spermatocytes both appeared unaffected. However, the spermatids exhibited significantly higher levels of apoptosis during spermiogenesis, particularly during the acrosome phase through the cap phase. Comparative proteomic analyses identified a large-scale shift between wild-type and Cul4b mutant testes during early post-meiotic sperm development. Ultrastructural pathology studies further detected aberrant acrosomes in spermatids and nuclear morphology. The protein levels of both canonical and non-canonical histones were also affected in an early spermatid stage in the absence of Cul4b. Thus, X-linked CUL4B appears to play a critical role in acrosomal formation, nuclear condensation, and in regulating histone dynamics during haploid male germ cell differentiation in relation to male fertility in mice. Thus, it is possible that CUL4B-selective substrates are required for post-meiotic sperm morphogenesis.

  20. Electron photon verification calculations using MCNP4B

    SciTech Connect

    Gierga, D.P.; Adams, K.J.

    1998-07-01

    MCNP4B was released in February 1997 with significant enhancements to electron/photon transport methods. These enhancements have been verified against a wide range of published electron/photon experiments, spanning high energy bremsstrahlung production to electron transmission and reflection. Three sets of bremsstrahlung experiments were simulated. The first verification calculations for bremsstrahlung production used the experimental results in Faddegon for 15 MeV electrons incident on lead, aluminum, and beryllium targets. The calculated integrated bremsstrahlung yields, the bremsstrahlung energy spectra, and the mean energy of the bremsstrahlung beam were compared with experiment. The impact of several MCNP tally options and physics parameters was explored in detail. The second was the experiment of O`Dell which measured the bremsstrahlung spectra from 10 and 20.9 MeV electrons incident on a gold/tungsten target. The final set was a comparison of relative experimental spectra with calculated results for 9.66 MeV electrons incident on tungsten based on the experiment of Starfelt and Koch. The transmission experiments of Ebert were also studied, including comparisons of transmission coefficients for 10.2 MeV electrons incident on carbon, silver, and uranium foils. The agreement between experiment and simulation was usually within two standard deviations of the experimental and calculational errors.

  1. Functional Role of Histidine in the Conserved His-x-Asp Motif in the Catalytic Core of Protein Kinases.

    PubMed

    Zhang, Lun; Wang, Jian-Chuan; Hou, Li; Cao, Peng-Rong; Wu, Li; Zhang, Qian-Sen; Yang, Huai-Yu; Zang, Yi; Ding, Jian-Ping; Li, Jia

    2015-05-11

    The His-x-Asp (HxD) motif is one of the most conserved structural components of the catalytic core of protein kinases; however, the functional role of the conserved histidine is unclear. Here we report that replacement of the HxD-histidine with Arginine or Phenylalanine in Aurora A abolishes both the catalytic activity and auto-phosphorylation, whereas the Histidine-to-tyrosine impairs the catalytic activity without affecting its auto-phosphorylation. Comparisons of the crystal structures of wild-type (WT) and mutant Aurora A demonstrate that the impairment of the kinase activity is accounted for by (1) disruption of the regulatory spine in the His-to-Arg mutant, and (2) change in the geometry of backbones of the Asp-Phe-Gly (DFG) motif and the DFG-1 residue in the His-to-Tyr mutant. In addition, bioinformatics analyses show that the HxD-histidine is a mutational hotspot in tumor tissues. Moreover, the H174R mutation of the HxD-histidine, in the tumor suppressor LKB1 abrogates the inhibition of anchorage-independent growth of A549 cells by WT LKB1. Based on these data, we propose that the HxD-histidine is involved in a conserved inflexible organization of the catalytic core that is required for the kinase activity. Mutation of the HxD-histidine may also be involved in the pathogenesis of some diseases including cancer.

  2. The gene history of zebrafish tlr4a and tlr4b is predictive of their divergent functions.

    PubMed

    Sullivan, Con; Charette, Jeremy; Catchen, Julian; Lage, Christopher R; Giasson, Gregory; Postlethwait, John H; Millard, Paul J; Kim, Carol H

    2009-11-01

    Mammalian immune responses to LPS exposure are typified by the robust induction of NF-kappaB and IFN-beta responses largely mediated by TLR4 signal transduction pathways. In contrast to mammals, Tlr4 signal transduction pathways in nontetrapods are not well understood. Comprehensive syntenic and phylogenetic analyses support our hypothesis that zebrafish tlr4a and tlr4b genes are paralogous rather than orthologous to human TLR4. Furthermore, we provide evidence to support our assertion that the in vivo responsiveness of zebrafish to LPS exposure is not mediated by Tlr4a and Tlr4b paralogs because they fail to respond to LPS stimulation in vitro. Zebrafish Tlr4a and Tlr4b paralogs were also unresponsive to heat-killed Escherichia coli and Legionella pneumophila. Using chimeric molecules in which portions of the zebrafish Tlr4 proteins were fused to portions of the mouse TLR4 protein, we show that the lack of responsiveness to LPS was most likely due to the inability of the extracellular portions of zebrafish Tlr4a and Tlr4b to recognize the molecule, rather than to changes in their capacities to transduce signals through their Toll/IL-1 receptor (TIR) domains. Taken together, these findings strongly support the notion that zebrafish tlr4a and tlr4b paralogs have evolved to provide alternative ligand specificities to the Tlr immune defense system in this species. These data demonstrate that intensive examination of gene histories when describing the Tlr proteins of basally diverging vertebrates is required to obtain fuller appreciation of the evolution of their function. These studies provide the first evidence for the functional evolution of a novel Tlr.

  3. Theoretical consideration of osmotic pressure in aqueous protein/salt systems based on extended hard core Lennard-Jones potential.

    PubMed

    Pai, Sung Jin; Bae, Young Chan

    2010-10-21

    A simple and analytical pair potential function was developed to represent the osmotic pressures in aqueous protein/salt systems under various conditions. Based on a hard core Lennard-Jones (HCLJ) potential model, the new potential function considers various interactions by extending the attractive Lennard-Jones potential. A temperature-dependent coefficient term was introduced to take into account the specific properties of given materials. Comparison of the new potential function with the HCLJ model in hydrocarbon and water systems showed that consideration of the temperature dependence in the potential function was effective, especially for strong polar systems such as water. To predict the osmotic pressures of aqueous lysozyme/(NH(4))(2)SO(4) solutions of various ionic strength and pH, the energy parameters of lysozyme were correlated with the experimental cloud point temperature. The proposed model agreed fairly well with the experimental osmotic pressure data with only previously obtained parameters.

  4. Theoretical consideration of osmotic pressure in aqueous protein/salt systems based on extended hard core Lennard-Jones potential

    NASA Astrophysics Data System (ADS)

    Pai, Sung Jin; Bae, Young Chan

    2010-10-01

    A simple and analytical pair potential function was developed to represent the osmotic pressures in aqueous protein/salt systems under various conditions. Based on a hard core Lennard-Jones (HCLJ) potential model, the new potential function considers various interactions by extending the attractive Lennard-Jones potential. A temperature-dependent coefficient term was introduced to take into account the specific properties of given materials. Comparison of the new potential function with the HCLJ model in hydrocarbon and water systems showed that consideration of the temperature dependence in the potential function was effective, especially for strong polar systems such as water. To predict the osmotic pressures of aqueous lysozyme/(NH4)2SO4 solutions of various ionic strength and pH, the energy parameters of lysozyme were correlated with the experimental cloud point temperature. The proposed model agreed fairly well with the experimental osmotic pressure data with only previously obtained parameters.

  5. A concerted action of hepatitis C virus p7 and nonstructural protein 2 regulates core localization at the endoplasmic reticulum and virus assembly.

    PubMed

    Boson, Bertrand; Granio, Ophélia; Bartenschlager, Ralf; Cosset, François-Loïc

    2011-07-01

    Hepatitis C virus (HCV) assembly remains a poorly understood process. Lipid droplets (LDs) are thought to act as platforms for the assembly of viral components. The JFH1 HCV strain replicates and assembles in association with LD-associated membranes, around which viral core protein is predominantly detected. In contrast, despite its intrinsic capacity to localize to LDs when expressed individually, we found that the core protein of the high-titer Jc1 recombinant virus was hardly detected on LDs of cell culture-grown HCV (HCVcc)-infected cells, but was mainly localized at endoplasmic reticulum (ER) membranes where it colocalized with the HCV envelope glycoproteins. Furthermore, high-titer cell culture-adapted JFH1 virus, obtained after long-term culture in Huh7.5 cells, exhibited an ER-localized core in contrast to non-adapted JFH1 virus, strengthening the hypothesis that ER localization of core is required for efficient HCV assembly. Our results further indicate that p7 and NS2 are HCV strain-specific factors that govern the recruitment of core protein from LDs to ER assembly sites. Indeed, using expression constructs and HCVcc recombinant genomes, we found that p7 is sufficient to induce core localization at the ER, independently of its ion-channel activity. Importantly, the combined expression of JFH1 or Jc1 p7 and NS2 induced the same differential core subcellular localization detected in JFH1- vs. Jc1-infected cells. Finally, results obtained by expressing p7-NS2 chimeras between either virus type indicated that compatibilities between the p7 and the first NS2 trans-membrane domains is required to induce core-ER localization and assembly of extra- and intra-cellular infectious viral particles. In conclusion, we identified p7 and NS2 as key determinants governing the subcellular localization of HCV core to LDs vs. ER and required for initiation of the early steps of virus assembly.

  6. Histone deacetylase inhibitor- and PMA-induced upregulation of PMCA4b enhances Ca2+ clearance from MCF-7 breast cancer cells.

    PubMed

    Varga, Karolina; Pászty, Katalin; Padányi, Rita; Hegedűs, Luca; Brouland, Jean-Philippe; Papp, Béla; Enyedi, Agnes

    2014-02-01

    The expression of the plasma membrane Ca2+ ATPase (PMCA) isoforms is altered in several types of cancer cells suggesting that they are involved in cancer progression. In this study we induced differentiation of MCF-7 breast cancer cells by histone deacetylase inhibitors (HDACis) such as short chain fatty acids (SCFAs) or suberoylanilide hydroxamic acid (SAHA), and by phorbol 12-myristate 13-acetate (PMA) and found strong upregulation of PMCA4b protein expression in response to these treatments. Furthermore, combination of HDACis with PMA augmented cell differentiation and further enhanced PMCA4b expression both at mRNA and protein levels. Immunocytochemical analysis revealed that the upregulated protein was located mostly in the plasma membrane. To examine the functional consequences of elevated PMCA4b expression, the characteristics of intracellular Ca2+ signals were investigated before and after differentiation inducing treatments, and also in cells overexpressing PMCA4b. The increased PMCA4b expression - either by treatment or overexpression - led to enhanced Ca2+ clearance from the stimulated cells. We found pronounced PMCA4 protein expression in normal breast tissue samples highlighting the importance of this pump for the maintenance of mammary epithelial Ca2+ homeostasis. These results suggest that modulation of Ca2+ signaling by enhanced PMCA4b expression may contribute to normal development of breast epithelium and may be lost in cancer.

  7. A novel read-through transcript JMJD7-PLA2G4B regulates head and neck squamous cell carcinoma cell proliferation and survival

    PubMed Central

    Cheng, Yingduan; Wang, Yi; Li, Jiong; Chang, Insoon; Wang, Cun-Yu

    2017-01-01

    Recent findings on the existence of oncogenic fusion genes in a wide array of solid tumors, including head and neck squamous cell carcinoma (HNSCC), suggests that fusion genes have become attractive targets for cancer diagnosis and treatment. In this study, we showed for the first time that a read-through fusion gene JMJD7-PLA2G4B is presented in HNSCC, splicing neighboring jumonji domain containing 7 (JMJD7) and phospholipase A2, group IVB (PLA2G4B) genes together. Ablation of JMJD7-PLA2G4B significantly inhibited proliferation of HNSCC cells by promoting G1 cell cycle arrest and increased starvation-induced cell death compared to JMJD7-only knockdown HNSCC cells. Mechanistically, we found that JMJD7-PLA2G4B modulates phosphorylation of Protein Kinase B (AKT) to promote HNSCC cell survival. Moreover, JMJD7-PLA2G4B also regulated an E3 ligase S-phase kinase-associated protein 2 (SKP2) to control the cell cycle progression from G1 phase to S phase by inhibiting Cyclin-dependent kinase inhibitor 1 (p21) and 1B (p27) expression. Our study provides novel insights into the oncogenic control of JMJD7-PLA2G4B in HNSCC cell proliferation and survival, and suggests that JMJD7-PLA2G4B may serve as an important therapeutic target and prognostic marker for HNSCC development and progression. PMID:28030848

  8. Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst).

    PubMed

    Karlgren, Anna; Gyllenstrand, Niclas; Källman, Thomas; Lagercrantz, Ulf

    2013-01-01

    From studies of the circadian clock in the plant model species Arabidopsis (Arabidopsis thaliana), a number of important properties and components have emerged. These include the genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), GIGANTEA (GI), ZEITLUPE (ZTL) and TIMING OF CAB EXPRESSION 1 (TOC1 also known as PSEUDO-RESPONSE REGULATOR 1 (PRR1)) that via gene expression feedback loops participate in the circadian clock. Here, we present results from ectopic expression of four Norway spruce (Picea abies) putative homologs (PaCCA1, PaGI, PaZTL and PaPRR1) in Arabidopsis, their flowering time, circadian period length, red light response phenotypes and their effect on endogenous clock genes were assessed. For PaCCA1-ox and PaZTL-ox the results were consistent with Arabidopsis lines overexpressing the corresponding Arabidopsis genes. For PaGI consistent results were obtained when expressed in the gi2 mutant, while PaGI and PaPRR1 expressed in wild type did not display the expected phenotypes. These results suggest that protein function of PaCCA1, PaGI and PaZTL are at least partly conserved compared to Arabidopsis homologs, however further studies are needed to reveal the protein function of PaPRR1. Our data suggest that components of the three-loop network typical of the circadian clock in angiosperms were present before the split of gymnosperms and angiosperms.

  9. Role of Decorin Core Protein in Collagen Organisation in Congenital Stromal Corneal Dystrophy (CSCD)

    PubMed Central

    Kamma-Lorger, Christina S.; Pinali, Christian; Martínez, Juan Carlos; Harris, Jon; Young, Robert D.; Bredrup, Cecilie; Crosas, Eva; Malfois, Marc; Rødahl, Eyvind

    2016-01-01

    The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD). In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT) in the decorin (DCN) gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS), to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal. PMID:26828927

  10. The dense core vesicle protein IA-2, but not IA-2β, is required for active avoidance learning.

    PubMed

    Carmona, G N; Nishimura, T; Schindler, C W; Panlilio, L V; Notkins, A L

    2014-06-06

    The islet-antigens IA-2 and IA-2β are major autoantigens in type-1 diabetes and transmembrane proteins in dense core vesicles (DCV). Recently we showed that deletion of both IA-2 and IA-2β alters the secretion of hormones and neurotransmitters and impairs behavior and learning. The present study was designed to evaluate the contribution to learning of each of these genes by using single knockout (SKO) and double knockout (DKO) mice in an active avoidance test. After 5 days of training, wild-type (WT) mice showed 60-70% active avoidance responses, whereas the DKO mice showed only 10-15% active avoidance responses. The degree of active avoidance responses in the IA-2 SKO mice was similar to that of the DKO mice, but in contrast, the IA-2β SKO mice behaved like WT mice showing 60-70% active avoidance responses. Molecular studies revealed a marked decrease in the phosphorylation of the cAMP response element-binding protein (CREB) and Ca(2+)/calmodulin-dependent protein kinase II (CAMKII) in the striatum and hippocampus of the IA-2 SKO and DKO mice, but not in the IA-2β SKO mice. To evaluate the role of CREB and CAMKII in the SKO and DKO mice, GBR-12909, which selectively blocks the dopamine uptake transporter and increases CREB and CAMKII phosphorylation, was administered. GBR-12909 restored the phosphorylation of CREB and CAMKII and increased active avoidance learning in the DKO and IA-2 SKO to near the normal levels found in the WT and IA-2β SKO mice. We conclude that in the absence of the DCV protein IA-2, active avoidance learning is impaired.

  11. Synergistic interactions between PDE4B and GSK-3: DISC1 mutant mice.

    PubMed

    Lipina, Tatiana V; Wang, Min; Liu, Fang; Roder, John C

    2012-03-01

    Disrupted-In-Schizophrenia-1 (DISC1) is a strong genetic risk factor associated with psychiatric disorders. Two distinct mutations in the second exon of the DISC1 gene (Q31L and L100P) lead to either depression- or schizophrenia-like behavior in mice. Both phosphodiesterase-4B (PDE4B) and glycogen synthase kinase-3 (GSK-3) have common binding sites on N-terminal region of DISC1 and are implicated into etiology of schizophrenia and depression. It is not known if PDE4B and GSK-3 could converge signals in the cell via DISC1 at the same time. The purpose of the present study was to assess whether rolipram (PDE4 inhibitor) might synergize with TDZD-8 (GSK-3 blocker) to produce antipsychotic effects at low doses on the DISC1-L100P genetic model. Indeed, combined treatment of DISC1-L100P mice with rolipram (0.1 mg/kg) and TDZD-8 (2.5 mg/kg) in sub-threshold doses corrected their Pre-Pulse Inhibition (PPI) deficit and hyperactivity, without any side effects at these doses. We have suggested that rolipram-induced increase of cAMP level might influence GSK-3 function and, hence the efficacy of TDZD-8. Our second goal was to estimate how DISC1-Q31L with reduced PDE4B activity, and therefore mimicking rolipram-induced conditions, could alter pharmacological response to TDZD-8, GSK-3 activity and its interaction with DISC1. DISC1-Q31L mutants showed increased sensitivity to GSK-3 inhibitor compare to DISC1-L100P mice. TDZD-8 (2.5 mg/kg) was able to correct PPI deficit, reduce immobility in the forced swim test (FST) and increased social motivation/novelty. In parallel, biochemical analysis revealed significantly reduced binding of GSK-3 to the mutated DISC1-Q31L and increased enzymatic activity of GSK-3. Taken together, genetic variations in DISC1 influence formation of biochemical complex with PDE4 and GSK-3 and strength the possibility of synergistic interactions between these proteins.

  12. Intracellular membrane association of the N-terminal domain of classical swine fever virus NS4B determines viral genome replication and virulence.

    PubMed

    Tamura, Tomokazu; Ruggli, Nicolas; Nagashima, Naofumi; Okamatsu, Masatoshi; Igarashi, Manabu; Mine, Junki; Hofmann, Martin A; Liniger, Matthias; Summerfield, Artur; Kida, Hiroshi; Sakoda, Yoshihiro

    2015-09-01

    Classical swine fever virus (CSFV) causes a highly contagious disease in pigs that can range from a severe haemorrhagic fever to a nearly unapparent disease, depending on the virulence of the virus strain. Little is known about the viral molecular determinants of CSFV virulence. The nonstructural protein NS4B is essential for viral replication. However, the roles of CSFV NS4B in viral genome replication and pathogenesis have not yet been elucidated. NS4B of the GPE-  vaccine strain and of the highly virulent Eystrup strain differ by a total of seven amino acid residues, two of which are located in the predicted trans-membrane domains of NS4B and were described previously to relate to virulence, and five residues clustering in the N-terminal part. In the present study, we examined the potential role of these five amino acids in modulating genome replication and determining pathogenicity in pigs. A chimeric low virulent GPE- -derived virus carrying the complete Eystrup NS4B showed enhanced pathogenicity in pigs. The in vitro replication efficiency of the NS4B chimeric GPE-  replicon was significantly higher than that of the replicon carrying only the two Eystrup-specific amino acids in NS4B. In silico and in vitro data suggest that the N-terminal part of NS4B forms an amphipathic α-helix structure. The N-terminal NS4B with these five amino acid residues is associated with the intracellular membranes. Taken together, this is the first gain-of-function study showing that the N-terminal domain of NS4B can determine CSFV genome replication in cell culture and viral pathogenicity in pigs.

  13. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    SciTech Connect

    Vazquez-Iglesias, Lorena; Lostale-Seijo, Irene; Martinez-Costas, Jose; Benavente, Javier

    2012-10-25

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  14. Identifying the lowest electronic states of the chlorophylls in the CP47 core antenna protein of photosystem II.

    PubMed

    De Weerd, Frank L; Palacios, Miguel A; Andrizhiyevskaya, Elena G; Dekker, Jan P; Van Grondelle, Rienk

    2002-12-24

    CP47 is a pigment-protein complex in the core of photosystem II that tranfers excitation energy to the reaction center. Here we report on a spectroscopic investigation of the isolated CP47 complex. By deconvoluting the 77 K absorption and linear dichroism, red-most states at 683 and 690 nm have been identified with oscillator strengths corresponding to approximately 3 and approximately 1 chlorophyll, respectively. Both states contribute to the 4 K emission, and the Stark spectrum shows that they have a large value for the difference polarizability between their ground and excited states. From site-selective polarized triplet-minus-singlet spectra, an excitonic origin for the 683 nm state was found. The red shift of the 690 nm state is most probably due to strong hydrogen bonding to a protein ligand, as follows from the position of the stretch frequency of the chlorophyll 13(1) keto group (1633 cm(-)(1)) in the fluorescence line narrowing spectrum at 4 K upon red-most excitation. We discuss how the 683 and 690 nm states may be linked to specific chlorophylls in the crystal structure [Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. (2001) Nature 409, 739-743].

  15. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  16. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  17. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  18. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  19. Spectroscopic properties of the CP43 core antenna protein of photosystem II.

    PubMed

    Groot, M L; Frese, R N; de Weerd, F L; Bromek, K; Pettersson, A; Peterman, E J; van Stokkum, I H; van Grondelle, R; Dekker, J P

    1999-12-01

    CP43 is a chlorophyll-protein complex that funnels excitation energy from the main light-harvesting system of photosystem II to the photochemical reaction center. We purified CP43 from spinach photosystem II membranes in the presence of the nonionic detergent n-dodecyl-beta,D-maltoside and recorded its spectroscopic properties at various temperatures between 4 and 293 K by a number of polarized absorption and fluorescence techniques, fluorescence line narrowing, and Stark spectroscopy. The results indicate two "red" states in the Q(y) absorption region of the chlorophylls. The first peaks at 682.5 nm at 4 K, has an extremely narrow bandwidth with a full width at half-maximum of approximately 2.7 nm (58 cm(-1)) at 4 K, and has the oscillator strength of a single chlorophyll. The second peaks at approximately 679 nm, has a much broader bandshape, is caused by several excitonically interacting chlorophylls, and is responsible for all 4 K absorption at wavelengths longer than 685 nm. The Stark spectrum of CP43 resembles the first derivative of the absorption spectrum and has an exceptionally small overall size, which we attribute to opposing orientations of the monomer dipole moments of the excitonically coupled pigments.

  20. Core Binding Factor β Protects HIV, Type 1 Accessory Protein Viral Infectivity Factor from MDM2-mediated Degradation.

    PubMed

    Matsui, Yusuke; Shindo, Keisuke; Nagata, Kayoko; Yoshinaga, Noriyoshi; Shirakawa, Kotaro; Kobayashi, Masayuki; Takaori-Kondo, Akifumi

    2016-11-25

    HIV, type 1 overcomes host restriction factor apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins by organizing an E3 ubiquitin ligase complex together with viral infectivity factor (Vif) and a host transcription cofactor core binding factor β (CBFβ). CBFβ is essential for Vif to counteract APOBEC3 by enabling the recruitment of cullin 5 to the complex and increasing the steady-state level of Vif protein; however, the mechanisms by which CBFβ up-regulates Vif protein remains unclear. Because we have reported previously that mouse double minute 2 homolog (MDM2) is an E3 ligase for Vif, we hypothesized that CBFβ might protect Vif from MDM2-mediated degradation. Co-immunoprecipitation analyses showed that Vif mutants that do not bind to CBFβ preferentially interact with MDM2 and that overexpression of CBFβ disrupts the interaction between MDM2 and Vif. Knockdown of CBFβ reduced the steady-state level of Vif in MDM2-proficient cells but not in MDM2-null cells. Cycloheximide chase analyses revealed that Vif E88A/W89A, which does not interact with CBFβ, degraded faster than wild-type Vif in MDM2-proficient cells but not in MDM2-null cells, suggesting that Vif stabilization by CBFβ is mainly caused by impairing MDM2-mediated degradation. We identified Vif R93E as a Vif variant that does not bind to MDM2, and the virus with this substitution mutation was more resistant to APOBEC3G than the parental virus. Combinatory substitution of Vif residues required for CBFβ binding and MDM2 binding showed full recovery of Vif steady-state levels, supporting our hypothesis. Our data provide new insights into the mechanism of Vif augmentation by CBFβ.

  1. Increased expression of plasma membrane Ca(2+)ATPase 4b in platelets from hypertensives: a new sign of abnormal thrombopoiesis?

    PubMed

    Dally, Saoussen; Chaabane, Chiraz; Corvazier, Elisabeth; Bredoux, Raymonde; Bobe, Regis; Ftouhi, Bochra; Slimane, Hedia; Raies, Aly; Enouf, Jocelyne

    2007-11-01

    Platelet Ca(2+) homeostasis is controlled by a multi-Ca(2+)ATPase system including two PMCA (plasma membrane Ca(2+)ATPase) and seven SERCA (sarco/endoplasmic reticulum Ca(2+)ATPase) isoforms. Previous studies have shown similar platelet Ca(2+) abnormalities in diabetic and hypertensive patients, including an increase in intracellular [Ca(2+)](I), a possible modulation of PMCA activity and increased PMCA tyrosine phosphorylation. Very recently, we found that platelets from diabetic patients also exhibited increased PMCA4b expression. In the present study we looked for further similarities between diabetic and hypertensive patients. We first confirmed a decrease in Ca(2+)ATPase activity (mean 55 + 7%) in mixed platelet membranes isolated from 10 patients with hypertension compared with those from 10 healthy controls. In addition, the decreased Ca(2+)ATPase activity correlated with the DBP of the different patients, as expected for PMCA activity. Second, we performed a pilot study of six hypertensives to examine their expressions of PMCA and SERCA mRNA and proteins. Like the diabetic patients, 100% of hypertensives were found to present a major increase in PMCA4b expression (mean value of 218 +/- 21%). We thus determined that platelets from diabetic and hypertensive patients showed similar increased PMCA4b isoform. Since increased PMCA4b expression was recently found to be associated with a perturbation of megakaryocytopoiesis, these findings may also point to an abnormality in platelet maturation in hypertension.

  2. Proteasomes regulate hepatitis B virus replication by degradation of viral core-related proteins in a two-step manner.

    PubMed

    Zheng, Zi-Hua; Yang, Hui-Ying; Gu, Lin; Peng, Xiao-Mou

    2016-10-01

    The cellular proteasomes presumably inhibit the replication of hepatitis B virus (HBV) due to degradation of the viral core protein (HBcAg). Common proteasome inhibitors, however, either enhance or inhibit HBV replication. In this study, the exact degradation process of HBcAg and its influences on HBV replication were further studied using bioinformatic analysis, protease digestion assays of recombinant HBcAg, and proteasome inhibitor treatments of HBV-producing cell line HepG2.2.15. Besides HBcAg and hepatitis B e antigen precursor, common hepatitis B core-related antigens (HBcrAgs), the small and the large degradation intermediates of these HBcrAgs (HBcrDIs), were regularly found in cytosol of HepG2.2.15 cells. Further, the results of investigation reveal that the degradation process of cytosolic HBcrAgs in proteasomes consists of two steps: the limited proteolysis into HBcrDIs by the trypsin-like (TL) activity and the complete degradation of HBcrDIs by the chymotrypsin-like (chTL) activity. Concordantly, HBcrAgs and the large HBcrDI or HBcrDIs (including the small HBcrDI) were accumulated when the TL or chTL activity was inhibited, which generally correlated with enhancement and inhibition of HBV replication, respectively. The small HBcrDI inhibited HBV replication by assembling into the nucleocapsids and preventing the victim particles from being mature enough for envelopment. The two-step degradation manner may highlight some new anti-HBV strategies.

  3. Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Precursor Protein Transgenic Mice

    PubMed Central

    Liu, Peng; Reichl, John H.; Rao, Eshaan R.; McNellis, Brittany M.; Huang, Eric S.; Hemmy, Laura S.; Forster, Colleen L.; Kuskowski, Michael A.; Borchelt, David R.; Vassar, Robert; Ashe, Karen H.; Zahs, Kathleen R.

    2016-01-01

    There exist several dozen lines of transgenic mice that express human amyloid-β precursor protein (AβPP) with Alzheimer’s disease (AD)-linked mutations. AβPP transgenic mouse lines differ in the types and amounts of Aβ that they generate and in their spatiotemporal patterns of expression of Aβ assemblies, providing a toolkit to study Aβ amyloidosis and the influence of Aβ aggregation on brain function. More complete quantitative descriptions of the types of Aβ assemblies present in transgenic mice and in humans during disease progression should add to our understanding of how Aβ toxicity in mice relates to the pathogenesis of AD. Here, we provide a direct quantitative comparison of amyloid plaque burdens and plaque sizes in four lines of AβPP transgenic mice. We measured the fraction of cortex and hippocampus occupied by dense-core plaques, visualized by staining with Thioflavin S, in mice from young adulthood through advanced age. We found that the plaque burdens among the transgenic lines varied by an order of magnitude: at 15 months of age, the oldest age studied, the median cortical plaque burden in 5XFAD mice was already ~4.5 times that of 21-month Tg2576 mice and ~15 times that of 21–24-month rTg9191 mice. Plaque-size distributions changed across the lifespan in a line- and region-dependent manner. We also compared the dense-core plaque burdens in the mice to those measured in a set of pathologically-confirmed AD cases from the Nun Study. Cortical plaque burdens in Tg2576, APPSwePS1ΔE9, and 5XFAD mice eventually far exceeded those measured in the human cohort. PMID:28059792

  4. An improved method for expression and purification of functional human Ca(2+) transporter PMCA4b in Saccharomyces cerevisiae.

    PubMed

    Corbacho, Isaac; García-Prieto, Francisco F; Hinojosa, Ara E; Berrocal, María; Mata, Ana M

    2016-04-01

    Human plasma membrane calcium ATPases (PMCAs) are highly regulated transporters responsible for the extrusion of calcium out of the cell. Since calcium homeostasis is implicated in several diseases and neurodegenerative disorders, understanding PMCAs activity is crucial. One of the major hindrances is the availability of these proteins for functional and structural analysis. Here, using the yeast Saccharomyces cerevisiae system, we show a new and enhanced method for the expression of the full-length human PMCA isoform 4b (hPMCA4b) and a truncated form lacking its auto-inhibitory domain. We have also improved a method for the purification of the native isoform by calmodulin-agarose affinity chromatography, and developed a new method to purify the truncated isoform by glutathione-Sepharose affinity chromatography. One of the most relevant features of this work is that, when compared to PMCAs purification from pig brain, our method provides a pure single isoform instead of a mixture of isoforms, essential for fine-tuning the activity of PMCA4b. Another relevant feature is that the method described in this work has a superior yield of protein than previously established methods to purify PMCA proteins expressed in yeasts.

  5. Accumulation of p21 proteins at DNA damage sites independent of p53 and core NHEJ factors following irradiation

    SciTech Connect

    Koike, Manabu; Yutoku, Yasutomo; Koike, Aki

    2011-08-19

    Highlights: {yields} p21 accumulated rapidly at laser-irradiated sites via its C-terminal region. {yields} p21 colocalized with the DSB marker {gamma}-H2AX and the DSB sensor Ku80. {yields} Accumulation of p21 is dependent on PCNA, but not p53 and the NHEJ core factors. {yields} Accumulation activity of p21 was conserved among human and animal cells. {yields} p21 is a useful tool as a detection marker of DNA damaged sites. -- Abstract: The cyclin-dependent kinase (CDK) inhibitor p21 plays key roles in p53-dependent DNA-damage responses, i.e., cell cycle checkpoints, senescence, or apoptosis. p21 might also play a role in DNA repair. p21 foci arise at heavy-ion-irradiated DNA-double-strand break (DSB) sites, which are mainly repaired by nonhomologous DNA-end-joining (NHEJ). However, no mechanisms of p21 accumulation at double-strand break (DSB) sites have been clarified in detail. Recent works indicate that Ku70 and Ku80 are essential for the accumulation of other NHEJ core factors, e.g., DNA-PKcs, XRCC4 and XLF, and other DNA damage response factors, e.g., BRCA1. Here, we show that p21 foci arise at laser-irradiated sites in cells from various tissues from various species. The accumulation of EGFP-p21 was detected in not only normal cells, but also transformed or cancer cells. Our results also showed that EGFP-p21 accumulated rapidly at irradiated sites, and colocalized with the DSB marker {gamma}-H2AX and with the DSB sensor protein Ku80. On the other hand, the accumulation occurred in Ku70-, Ku80-, or DNA-PKcs-deficient cell lines and in human papillomavirus 18-positive cells, whereas the p21 mutant without the PCNA-binding region (EGFP-p21(1-146)) failed to accumulate at the irradiated sites. These findings suggest that the accumulation of p21, but not functional p53 and the NHEJ core factors, is dependent on PCNA. These findings also suggest that the accumulation activity of p21 at DNA damaged sites is conserved among human and animal cells, and p21 is a useful

  6. Novel insights into the origin and diversification of photosynthesis based on analyses of conserved indels in the core reaction center proteins.

    PubMed

    Khadka, Bijendra; Adeolu, Mobolaji; Blankenship, Robert E; Gupta, Radhey S

    2017-02-01

    The evolution and diversification of different types of photosynthetic reaction centers (RCs) remains an important unresolved problem. We report here novel sequence features of the core proteins from Type I RCs (RC-I) and Type II RCs (RC-II) whose analyses provide important insights into the evolution of the RCs. The sequence alignments of the RC-I core proteins contain two conserved inserts or deletions (indels), a 3 amino acid (aa) indel that is uniquely found in all RC-I homologs from Cyanobacteria (both PsaA and PsaB) and a 1 aa indel that is specifically shared by the Chlorobi and Acidobacteria homologs. Ancestral sequence reconstruction provides evidence that the RC-I core protein from Heliobacteriaceae (PshA), lacking these indels, is most closely related to the ancestral RC-I protein. Thus, the identified 3 aa and 1 aa indels in the RC-I protein sequences must have been deletions, which occurred, respectively, in an ancestor of the modern Cyanobacteria containing a homodimeric form of RC-I and in a common ancestor of the RC-I core protein from Chlorobi and Acidobacteria. We also report a conserved 1 aa indel in the RC-II protein sequences that is commonly shared by all homologs from Cyanobacteria but not found in the homologs from Chloroflexi, Proteobacteria and Gemmatimonadetes. Ancestral sequence reconstruction provides evidence that the RC-II subunits lacking this indel are more similar to the ancestral RC-II protein. The results of flexible structural alignments of the indel-containing region of the RC-II protein with the homologous region in the RC-I core protein, which shares structural similarity with the RC-II homologs, support the view that the 1 aa indel present in the RC-II homologs from Cyanobacteria is a deletion, which was not present in the ancestral form of the RC-II protein. Our analyses of the conserved indels found in the RC-I and RC-II proteins, thus, support the view that the earliest photosynthetic lineages with living descendants

  7. The histone demethylase KDM4B interacts with MyoD to regulate myogenic differentiation in C2C12 myoblast cells.

    PubMed

    Choi, Jang Hyun; Song, Young Joon; Lee, Hansol

    2015-01-24

    Enzymes that mediate posttranslational modifications of histone and nonhistone proteins have been implicated in regulation of skeletal muscle differentiation. However, functions of histone demethylases that could counter the actions of H3-K9 specific histone methyltransferases remain still obscure. Here we present evidences that KDM4B histone demethylase regulates expression of myogenic regulators such as MyoD and thereby controls myogenic differentiation of C2C12 myoblast cells. We demonstrate that expression of KDM4B gradually increases during myogenic differentiation and depletion of KDM4B using shRNA results in inhibition of differentiation in C2C12 myoblast cells, which is correlated with decreased expression of MyoD and myogenin. In addition, we find that KDM4B shRNA represses expression of MyoD promoter-driven luciferase reporter and exogenous expression of MyoD rescues myogenic potential in KDM4B-depleted myoblast cells. We further show that KDM4B interacts with MyoD, binds to MyoD and myogenin promoters in vivo, and finally, is involved in demethylation of tri-methylated H3-K9 on promoters of MyoD and myogenin. Taken together, our data suggest that KDM4B plays key roles in myogenic differentiation of C2C12 cells, presumably by its function as a H3-K9 specific histone demethylase.

  8. LAPTM4B-35, a Cancer-Related Gene, Is Associated with Poor Prognosis in TNM Stages I-III Gastric Cancer Patients

    PubMed Central

    Wu, Xiaojiang; Zhang, Lianhai; Xing, Xiaofang; Wang, Xiaohong; Hu, Ying; Du, Hong; Li, Lin; Li, Shen; Zhou, Rouli; Wen, Xian-Zi; Ji, Jia-Fu

    2015-01-01

    Background Lysosome-associated transmembrane protein 4β-35 (LAPTM4B-35), a member of the mammalian 4-tetratransmembrane spanning protein superfamily, has been reported to be overexpressed in several cancers. However the expression of LAPTM4B-35 and its role in the progression of gastric cancer (GC) remains unknown. The aim of this study was to investigate LAPTM4B-35 expression in GC, its potential relevance to clinicopathologic parameters and role of LAPTM4B-35 during gastric carcinogenesis. Methods In the present study, paraffin-embedded specimens with GC (n = 240, including 180 paired specimens) and 24 paired fresh frozen tissues were analyzed. qRT-PCR and immunohistochemistry (IHC) were used to analyze the expression of LAPTM4B-35 in GC. The effects of LAPTM4B-35 on GC cell proliferation, migration and invasion were determined by overexpression and knockdown assays. Results IHC showed that LAPTM4B-35 was expressed in 68.3% (123/180) of GC tissues, while in 16.1% (29/180) of their paired adjacent noncancerous gastric tissues (P = 0.000). LAPTM4B-35 mRNA levels in GC tissues were also significantly elevated when compared with their paired adjacent noncancerous tissues (P = 0.017). Overexpression of LAPTM4B-35 was significantly associated with degree of differentiation, depth of invasion, lymphovascular invasion and lymph node metastasis (P<0.05). Kaplan-Meier survival curves revealed that patients with LAPTM4B-35 expression had a significant decrease in overall survival (OS) in stages I-III GC patients (P = 0.006). Multivariate analysis showed high expression of LAPTM4B-35 was an independent prognostic factor for OS in stage I-III GC patients (P = 0.025). Conclusion These findings indicate that LAPTM4B-35 overexpression may be related to GC progression and poor prognosis, and thus may serve as a new prediction marker of prognosis in GC patients. PMID:25849595

  9. PACAP38 Differentially Effects Genes and CRMP2 Protein Expression in Ischemic Core and Penumbra Regions of Permanent Middle Cerebral Artery Occlusion Model Mice Brain

    PubMed Central

    Hori, Motohide; Nakamachi, Tomoya; Shibato, Junko; Rakwal, Randeep; Tsuchida, Masachi; Shioda, Seiji; Numazawa, Satoshi

    2014-01-01

    Pituitary adenylate-cyclase activating polypeptide (PACAP) has neuroprotective and axonal guidance functions, but the mechanisms behind such actions remain unclear. Previously we examined effects of PACAP (PACAP38, 1 pmol) injection intracerebroventrically in a mouse model of permanent middle cerebral artery occlusion (PMCAO) along with control saline (0.9% NaCl) injection. Transcriptomic and proteomic approaches using ischemic (ipsilateral) brain hemisphere revealed differentially regulated genes and proteins by PACAP38 at 6 and 24 h post-treatment. However, as the ischemic hemisphere consisted of infarct core, penumbra, and non-ischemic regions, specificity of expression and localization of these identified molecular factors remained incomplete. This led us to devise a new experimental strategy wherein, ischemic core and penumbra were carefully sampled and compared to the corresponding contralateral (healthy) core and penumbra regions at 6 and 24 h post PACAP38 or saline injections. Both reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to examine targeted gene expressions and the collapsin response mediator protein 2 (CRMP2) protein profiles, respectively. Clear differences in expression of genes and CRMP2 protein abundance and degradation product/short isoform was observed between ischemic core and penumbra and also compared to the contralateral healthy tissues after PACAP38 or saline treatment. Results indicate the importance of region-specific analyses to further identify, localize and functionally analyse target molecular factors for clarifying the neuroprotective function of PACAP38. PMID:25257527

  10. Seed protein percentage and mineral concentration variability and correlation with other seed quality traits in the U.S. Peanut mini-core collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein percentage and mineral concentrations were determined for 95 accessions of the U. S. peanut mini-core collection by nitrogen analysis and inductively coupled plasma – optical emission spectrometry, respectively, using material collected over two field seasons. Significant variability in the ...

  11. Dithiazolo[5,4-b:4',5'-d]phosphole: a highly luminescent electron-accepting building block.

    PubMed

    He, Xiaoming; Woo, Alva Y Y; Borau-Garcia, Javier; Baumgartner, Thomas

    2013-06-03

    A family of highly emissive dithiazolo[5,4-b:4',5'-d]phospholes has been designed and synthesized. The structures of two trivalent P species, as well as their corresponding P oxides, have been confirmed by X-ray crystallography. The parent dithiazolo[5,4-b:4',5'-d]phosphole oxide exhibits strong blue photoluminescence at λem = 442 nm, with an excellent quantum yield efficiency of ϕPL = 0.81. The photophysical properties of these compounds can be easily tuned by extension of the conjugation and modification of the phosphorus center. Compared with the established dithieno[3,2-b:2',3'-d]phosphole system, the incorporation of electronegative nitrogen atoms leads to significantly lowered frontier orbital energy levels, as validated by both electrochemistry and theoretical calculations, thus suggesting that the dithiazolo[5,4-b:4',5'-d]phospholes are valuable, air-stable, n-type conjugated materials. These new building blocks have been further applied to the construction of an extended oligomer with fluorene. Extension of the dithiazolophosphole core with triazole units through click reactions also provides a suitable N,N-chelating moiety for metal binding and a representative molecular species was successfully used as a selective colorimetric and fluorescent sensor for Cu(II) ions.

  12. LAPTM4B is a PtdIns(4,5)P2 effector that regulates EGFR signaling, lysosomal sorting, and degradation.

    PubMed

    Tan, Xiaojun; Sun, Yue; Thapa, Narendra; Liao, Yihan; Hedman, Andrew C; Anderson, Richard A

    2015-02-12

    Lysosomal degradation is essential for the termination of EGF-stimulated EGF receptor (EGFR) signaling. This requires EGFR sorting to the intraluminal vesicles (ILVs) of multi-vesicular endosomes (MVEs). Cytosolic proteins including the ESCRT machineries are key regulators of EGFR intraluminal sorting, but roles for endosomal transmembrane proteins in receptor sorting are poorly defined. Here, we show that LAPTM4B, an endosomal transmembrane oncoprotein, inhibits EGF-induced EGFR intraluminal sorting and lysosomal degradation, leading to enhanced and prolonged EGFR signaling. LAPTM4B blocks EGFR sorting by promoting ubiquitination of Hrs (an ESCRT-0 subunit), which inhibits the Hrs association with ubiquitinated EGFR. This is counteracted by the endosomal PIP kinase, PIPKIγi5, which directly binds LAPTM4B and neutralizes the inhibitory function of LAPTM4B in EGFR sorting by generating PtdIns(4,5)P2 and recruiting SNX5. PtdIns(4,5)P2 and SNX5 function together to protect Hrs from ubiquitination, thereby promoting EGFR intraluminal sorting. These results reveal an essential layer of EGFR trafficking regulated by LAPTM4B, PtdIns(4,5)P2 signaling, and the ESCRT complex and define a mechanism by which the oncoprotein LAPTM4B can transform cells and promote tumor progression.

  13. SARA and RNF11 interact with each other and ESCRT-0 core proteins and regulate degradative EGFR trafficking.

    PubMed

    Kostaras, E; Sflomos, G; Pedersen, N M; Stenmark, H; Fotsis, T; Murphy, C

    2013-10-31

    Smad anchor for receptor activation (SARA) is highly enriched on endocytic membranes via binding to phosphatidylinositol 3-phosphates through its FYVE (Fab1p-YOTB-Vps27p-EEA1) domain. SARA was originally identified as a protein that recruits non-phosphorylated SMAD2/3 to the activated TGFβ receptors for phosphorylation, but later reports suggested a regulatory role in endocytic trafficking. Here we demonstrate that the ubiquitin ligase RNF11 is a SARA-interacting protein residing on early and late endosomes, as well as the fast recycling compartment. RNF11 and SARA interact with the ESCRT-0 subunits STAM2 and Eps15b, but only RNF11 associates with the core subunit Hrs. Both gain- and loss-of-function perturbation of RNF11 and SARA levels result in delayed degradation of epidermal growth factor (EGF)-activated EGF receptor (EGFR), while loss-of-function sustained/enhanced EGF-induced ERK1/2 phosphorylation. These findings suggest that RNF11 and SARA are functional components of the ESCRT-0 complexes. Moreover, SARA interacts with clathrin, the ESCRT-I subunit Tsg101 and ubiquitinated cargo exhibiting all the properties of Hrs concerning ESCRT-0 function, indicating that it could substitute Hrs in some ESCRT-0 complexes. These results suggest that RNF11 and SARA participate structurally and functionally in the ESCRT-dependent lysosomal degradation of receptors. As a consequence, the negative influence that perturbation of RNF11 and SARA levels exerts on the lysosomal degradation of EGFRs could underscore the reported overexpression of RNF11 in several cancers. In these cancers, deficient termination of the oncogenic signaling of mutated receptors, such as the EGFRs, through suboptimal lysosomal degradation could contribute to the process of malignant transformation.

  14. Prevalence and persistence of antibody titers to recombinant HIV-1 core and matrix proteins in HIV-1 infection.

    PubMed

    Janvier, B; Mallet, F; Cheynet, V; Dalbon, P; Vernet, G; Besnier, J M; Choutet, P; Goudeau, A; Mandrand, B; Barin, F

    1993-08-01

    Numerous studies have established the correlation between antibodies to the core protein p24 of HIV-1 and the progression of the acquired immunodeficiency syndrome. In this study, we analyzed the immune response to two recombinant gag proteins, p24 and p17, in order to evaluate their diagnostic or prognostic significance. Immune response to the immunodominant domain of the transmembrane glycoprotein gp41 was used as a reference. Sera collected from individuals from France and Burundi (Central Africa) at various CDC stages of HIV-1 infection were tested using three sandwich enzyme-linked immunoassays developed with a synthetic peptide corresponding to the immunodominant domain of gp41, SP gp41, or recombinant p24 and p17 cloned and expressed in Escherichia coli. These assays allowed detection of titer antibodies to the three cited antigens. Antibodies to SP gp41 were detected in every HIV-1-positive patient from France and Burundi, generally at a high and stable level. Results obtained with p24 confirmed the value of antibodies to p24 as a prognostic marker only in European and North American populations, since the African population had very high levels of these antibodies even at an advanced stage of the disease. They also confirmed that initial antibody response to p24 is more predictive of outcome than antibody titer change over time. Although antibodies to p17 decline during progression to AIDS, they are frequently absent in French patients at early, asymptomatic stages and therefore could not be used as a prognostic marker. In contrast, antibodies to p17 are significantly less common in African patients with AIDS when compared with symptomless HIV-1-infected African individuals.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Characterization of Nuclear Localization Signal in the N Terminus of CUL4B and Its Essential Role in Cyclin E Degradation and Cell Cycle Progression*

    PubMed Central

    Zou, Yongxin; Mi, Jun; Cui, Jinpeng; Lu, Defen; Zhang, Xiyu; Guo, Chenhong; Gao, Guimin; Liu, Qiji; Chen, Bingxi; Shao, Changshun; Gong, Yaoqin

    2009-01-01

    CUL4A and CUL4B, which are derived from the same ancestor, CUL4, encode scaffold proteins that organize cullin-RING ubiquitin ligase (E3) complexes. Recent genetic studies have shown that germ line mutation in CUL4B can cause mental retardation, short stature, and other abnormalities in humans. CUL4A was observed to be overexpressed in breast and hepatocellular cancers, although no germ line mutation in human CUL4A has been reported. Although CUL4A has been known to be involved in a number of cellular processes, including DNA repair and cell cycle regulation, little is known about whether CUL4B has similar functions. In this report, we tested the functional importance of CUL4B in cell proliferation and characterized the nuclear localization signal (NLS) that is essential for its function. We found that RNA interference silencing of CUL4B led to an inhibition of cell proliferation and a prolonged S phase, due to the overaccumulation of cyclin E, a substrate targeted by CUL4B for ubiquitination. We showed that, unlike CUL4A and other cullins that carry their NLS in their C termini, NLS in CUL4B is located in its N terminus, between amino acid 37 and 40, KKRK. This NLS could bind to importin α1, α3, and α5. NLS-deleted CUL4B was distributed in cytoplasm and failed to promote cell proliferation. Therefore, the nuclear localization of CUL4B mediated by NLS is critical for its normal function in cell proliferation. PMID:19801544

  16. Rapid Histone-Catalyzed DNA Lesion Excision and Accompanying Protein Modification in Nucleosomes and Nucleosome Core Particles.

    PubMed

    Weng, Liwei; Greenberg, Marc M

    2015-09-02

    C5'-Hydrogen atoms are frequently abstracted during DNA oxidation. The oxidized abasic lesion 5'-(2-phosphoryl-1,4-dioxobutane) (DOB) is an electrophilic product of the C5'-radical. DOB is a potent irreversible inhibitor of DNA polymerase β, and forms interstrand cross-links in free DNA. We examined the reactivity of DOB within nucleosomes and nucleosome core particles (NCPs), the monomeric component of chromatin. Depending upon the position at which DOB is generated within a NCP, it is excised from nucleosomal DNA at a rate 275-1500-fold faster than that in free DNA. The half-life of DOB (7.0-16.8 min) in NCPs is shorter than any other abasic lesion. DOB's lifetime in NCPs is also significantly shorter than the estimated lifetime of an abasic site within a cell, suggesting that the observed chemistry would occur intracellularly. Histones also catalyze DOB excision when the lesion is present in the DNA linker region of a nucleosome. Schiff-base formation between DOB and histone proteins is detected in nucleosomes and NCPs, resulting in pyrrolone formation at the lysine residues. The lysines modified by DOB are often post-translationally modified. Consequently, the histone modifications described herein could affect the regulation of gene expression and may provide a chemical basis for the cytotoxicity of the DNA damaging agents that produce this lesion.

  17. Developmental regulation of an snRNP core protein epitope during pig embryogenesis and after nuclear transfer for cloning.

    PubMed

    Prather, R S; Rickords, L F

    1992-10-01

    The appearance and stabilization of a core protein epitope of the snRNP is developmentally regulated during pig embryogenesis. The epitope recognized by the monoclonal antibody Y12 is present in the germinal vesicle of mature oocytes and interphase nuclei of late 4-cell stage (24 to 30 hours post cleavage to the 4-cell stage) to blastocyst stage embryos. There was no antibody localization within pronuclei, or nuclei of 2-cell or early 4-cell stage embryos. Zygotes or 2-cell stage embryos cultured in the presence of alpha-amanitin to the late 4-cell stage showed no immunoreactivity, whereas control embryos had immunoreactivity. Thus antibody localization was correlated with RNA synthesis and RNA processing that begins by 24 hours post cleavage to the 4-cell stage. A final experiment showed no detectable immunoreactivity in 16-cell stage nuclei that had been transferred to enucleated activated meiotic metaphase II oocytes. Since immunoreactivity is associated with active RNA synthesis and RNA processing, it suggests that the 16-cell stage nucleus, which is RNA synthetically active, does not process RNA after nuclear transfer to an enucleated activated meiotic metaphase II oocyte.

  18. Androgen Receptor Coactivator ARID4B Is Required for the Function of Sertoli Cells in Spermatogenesis.

    PubMed

    Wu, Ray-Chang; Zeng, Yang; Pan, I-Wen; Wu, Mei-Yi

    2015-09-01

    Defects in spermatogenesis, a process that produces spermatozoa inside seminiferous tubules of the testis, result in male infertility. Spermatogenic progression is highly dependent on a microenvironment provided by Sertoli cells, the only somatic cells and epithelium of seminiferous tubules. However, genes that regulate such an important activity of Sertoli cells are poorly understood. Here, we found that AT-rich interactive domain 4B (ARID4B), is essential for the function of Sertoli cells to regulate spermatogenesis. Specifically, we generated Sertoli cell-specific Arid4b knockout (Arid4bSCKO) mice, and showed that the Arid4bSCKO male mice were completely infertile with impaired testis development and significantly reduced testis size. Importantly, severe structural defects accompanied by loss of germ cells and Sertoli cell-only phenotype were found in many seminiferous tubules of the Arid4bSCKO testes. In addition, maturation of Sertoli cells was significantly delayed in the Arid4bSCKO mice, associated with delayed onset of spermatogenesis. Spermatogenic progression was also defective, showing an arrest at the round spermatid stage in the Arid4bSCKO testes. Interestingly, we showed that ARID4B functions as a "coactivator" of androgen receptor and is required for optimal transcriptional activation of reproductive homeobox 5, an androgen receptor target gene specifically expressed in Sertoli cells and critical for spermatogenesis. Together, our study identified ARID4B to be a key regulator of Sertoli cell function important for male germ cell development.

  19. Using iTRAQ® Combined with Tandem Affinity Purification to Enhance Low-abundance Proteins Associated with Somatically-mutated EGFR Core Complexes in Lung Cancer

    PubMed Central

    Haura, Eric B.; Müller, André; Brietwieser, Florian P.; Li, Jiannong; Grebien, Florian; Colinge, Jacques; Bennett, Keiryn L.

    2010-01-01

    In this study we report a novel use for the iTRAQ® reagent combined with a peptide mass inclusion list to enhance the signal of low-abundance proteins during analysis by mass spectrometry. C-tagged-SH-EGFR was retrovirally-transduced into two mutant lung cancer cell lines (HCC827 and PC9) and the core protein complexes enriched by tandem affinity purification. Tryptically-digested peptides were derivatised with iTRAQ® and analysed by higher-energy collision-induced dissociation mass spectrometry. The data revealed that UBS3B is a member of the EGFR core complex in the HCC827 cell line, that was not apparent by standard, unbiased one-dimensional shotgun analysis and collision-induced dissociation. The expression level of UBS3B, however, was 6 to 10 times lower than that observed in the PC9 cell line. Thus, using iTRAQ® in this fashion allows the identification of low-abundance interactors when combined with samples where the same protein has a higher abundance. Ultimately, this approach may uncover proteins that were previously unknown or only suspected as members of core protein complexes. PMID:20945942

  20. SCN4B acts as a metastasis-suppressor gene preventing hyperactivation of cell migration in breast cancer

    PubMed Central

    Bon, Emeline; Driffort, Virginie; Gradek, Frédéric; Martinez-Caceres, Carlos; Anchelin, Monique; Pelegrin, Pablo; Cayuela, Maria-Luisa; Marionneau-Lambot, Séverine; Oullier, Thibauld; Guibon, Roseline; Fromont, Gaëlle; Gutierrez-Pajares, Jorge L.; Domingo, Isabelle; Piver, Eric; Moreau, Alain; Burlaud-Gaillard, Julien; Frank, Philippe G.; Chevalier, Stéphan; Besson, Pierre; Roger, Sébastien

    2016-01-01

    The development of metastases largely relies on the capacity of cancer cells to invade extracellular matrices (ECM) using two invasion modes termed ‘mesenchymal' and ‘amoeboid', with possible transitions between these modes. Here we show that the SCN4B gene, encoding for the β4 protein, initially characterized as an auxiliary subunit of voltage-gated sodium channels (NaV) in excitable tissues, is expressed in normal epithelial cells and that reduced β4 protein levels in breast cancer biopsies correlate with high-grade primary and metastatic tumours. In cancer cells, reducing β4 expression increases RhoA activity, potentiates cell migration and invasiveness, primary tumour growth and metastatic spreading, by promoting the acquisition of an amoeboid–mesenchymal hybrid phenotype. This hyperactivated migration is independent of NaV and is prevented by overexpression of the intracellular C-terminus of β4. Conversely, SCN4B overexpression reduces cancer cell invasiveness and tumour progression, indicating that SCN4B/β4 represents a metastasis-suppressor gene. PMID:27917859

  1. BPO4@B2O3 and (BPO4@B2O3):Eu3+: The novel single-emitting-component phosphors for near UV-white LEDs

    NASA Astrophysics Data System (ADS)

    Cao, Xiyu; Liu, Wei; Jiang, Yu; Cao, Lixin; Su, Ge; Gao, Rongjie

    2016-08-01

    Nowadays much effort has been devoted to exploring novel luminescent materials with low-cost, high stability and excellent luminescent properties. In this paper, a new kind of luminescent material BPO4@B2O3 was prepared by using a facile method. The as-obtained samples contain numerous BPO4 nanoparticles enclosed by amorphous and crystalline B2O3 homogeneously, which exhibits a broad emission band ranging from 380 to 700 nm under near-UV irradiation. More importantly, it is worth noting that the BPO4@B2O3 phosphor exhibits the excellent thermal quenching property, which endows it with a promising prospect as phosphors for high power white LEDs. To further promote its application as white light phosphors, Eu3+ ions were doped into the BPO4@B2O3 samples and prepared the (BPO4@B2O3):Eu3+ phosphors with chromaticity coordinates (0.3022, 0.3122). The corresponding packaging of LEDs indicates that both BPO4@B2O3 and (BPO4@B2O3):Eu3+ can be considered as the promising phosphors for WLEDs.

  2. EWS-Oct-4B, an alternative EWS-Oct-4 fusion gene, is a potent oncogene linked to human epithelial tumours

    PubMed Central

    Kim, S; Lim, B; Kim, J

    2010-01-01

    Background: Characterisation of EWS-Oct-4 translocation fusion product in bone and soft-tissue tumours revealed a chimeric gene resulting from an in-frame fusion between EWS (Ewing's sarcoma gene) exons 1–6 and Oct-4 exons 1–4. Recently, an alternative form of the fusion protein between the EWS and Oct-4 genes, named EWS-Oct-4B, was reported in two types of epithelial tumours, a hidradenoma of the skin and a mucoepidermoid carcinoma of the salivary glands. As the N-terminal and POU domains of the EWS-Oct-4 and EWS-Oct-4B proteins are not structurally identical, we decided to investigate the functional consequences of the EWS-Oct-4B fusion. Methods: In this report, we have characterised the EWS-Oct-4B fusion protein. To investigate how the EWS-Oct-4B protein contributes to tumourigenesis in human cancers, we analysed its DNA-binding activity, subcellular localisation, transcriptional activation behaviour, and oncogenic properties. Results: We found that this new chimeric gene encodes a nuclear protein that binds DNA with the same sequence specificity as the parental Oct-4 protein or the fusion EWS-Oct-4 protein. We show that the nuclear localisation signal of EWS-Oct-4B is dependent on the POU DNA-binding domain, and we identified a cluster of basic amino acids, 269RKRKR273, in the POU domain that specifically mediates the nuclear localisation of EWS-Oct-4B. Comparison of the properties of EWS-Oct-4B and EWS-Oct-4 indicated that EWS-Oct-4B is a less-potent transcriptional activator of a reporter construct carrying the Oct-4-binding sites. Deletion analysis of the functional domains of EWS-Oct-4B revealed that the EWS N-terminal domain (NTD)B, POU, and C-terminal domain (CTD) are necessary for its full transactivation potential. Despite its reduced activity as a transcriptional activator, EWS-Oct-4B regulated the expression of fgf-4 (fibroblast growth factor-4) and nanog, which are potent mitogens, as well as of Oct-4 downstream target genes, the promoters of

  3. Structural Basis for the Design of Selective Phosphodiesterase 4B Inhibitors

    PubMed Central

    Fox, David; Burgin, Alex B.; Gurney, Mark E.

    2014-01-01

    Phosphodiesterase-4B (PDE4B) regulates the pro-inflammatory Toll Receptor –Tumor Necrosis Factor α (TNFα) pathway in monocytes, macrophages and microglial cells. As such, it is an important, although under-exploited molecular target for anti-inflammatory drugs. This is due in part to the difficulty of developing selective PDE4B inhibitors as the amino acid sequence of the PDE4 active site is identical in all PDE4 subtypes (PDE4A-D). We show that highly selective PDE4B inhibitors can be designed by exploiting sequence differences outside the active site. Specifically, PDE4B selectivity can be achieved by capture of a C-terminal regulatory helix, now termed CR3 (Control Region 3), across the active site in a conformation that closes access by cAMP. PDE4B selectivity is driven by a single amino acid polymorphism in CR3 (Leu674 in PDE4B1 versus Gln594 in PDE4D). The reciprocal mutations in PDE4B and PDE4D cause a 70-80 fold shift in selectivity. Our structural studies show that CR3 is flexible and can adopt multiple orientations and multiple registries in the closed conformation. The new co-crystal structure with bound ligand provides a guide map for the design of PDE4B selective anti-inflammatory drugs. PMID:24361374

  4. Crystal Structure of the Core Region of Hantavirus Nucleocapsid Protein Reveals the Mechanism for Ribonucleoprotein Complex Formation

    PubMed Central

    Guo, Yu; Wang, Wenming; Sun, Yuna; Ma, Chao; Wang, Xu; Wang, Xin; Liu, Pi; Shen, Shu; Li, Baobin; Lin, Jianping; Deng, Fei

    2015-01-01

    ABSTRACT Hantaviruses, which belong to the genus Hantavirus in the family Bunyaviridae, infect mammals, including humans, causing either hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS) in humans with high mortality. Hantavirus encodes a nucleocapsid protein (NP) to encapsidate the genome and form a ribonucleoprotein complex (RNP) together with viral polymerase. Here, we report the crystal structure of the core domains of NP (NPcore) encoded by Sin Nombre virus (SNV) and Andes virus (ANDV), which are two representative members that cause HCPS in the New World. The constructs of SNV and ANDV NPcore exclude the N- and C-terminal portions of full polypeptide to obtain stable proteins for crystallographic study. The structure features an N lobe and a C lobe to clamp RNA-binding crevice and exhibits two protruding extensions in both lobes. The positively charged residues located in the RNA-binding crevice play a key role in RNA binding and virus replication. We further demonstrated that the C-terminal helix and the linker region connecting the N-terminal coiled-coil domain and NPcore are essential for hantavirus NP oligomerization through contacts made with two adjacent protomers. Moreover, electron microscopy (EM) visualization of native RNPs extracted from the virions revealed that a monomer-sized NP-RNA complex is the building block of viral RNP. This work provides insight into the formation of hantavirus RNP and provides an understanding of the evolutionary connections that exist among bunyaviruses. IMPORTANCE Hantaviruses are distributed across a wide and increasing range of host reservoirs throughout the world. In particular, hantaviruses can be transmitted via aerosols of rodent excreta to humans or from human to human and cause HFRS and HCPS, with mortalities of 15% and 50%, respectively. Hantavirus is therefore listed as a category C pathogen. Hantavirus encodes an NP that plays essential roles both in RNP formation and

  5. Recent advances in the application of core-shell structured magnetic materials for the separation and enrichment of proteins and peptides.

    PubMed

    Zhao, Man; Xie, Yiqin; Deng, Chunhui; Zhang, Xiangmin

    2014-08-29

    Many endogenous proteins/peptides and proteins/peptides with post-translational modifications (PTMs) are presented at extremely low abundance, and they usually suffer strong interference with highly abundant proteins/peptides as well as other contaminants, resulting in low ionization efficiency in MS analysis. Therefore, the separation and enrichment of proteins/peptides from complex mixtures is of great importance to the successful identification of them. Core-shell structured magnetic microspheres have been widely used in the enrichment and isolation of proteins/peptides, thanks to unique properties such as strong magnetic responsiveness, outstanding binding capacity, excellent biocompatibility, robust mechanical strength and admirable recoverability. The aim of this review is to update the advances in the application of core-shell structured magnetic materials for proteomics analysis, including the separation and enrichment of low-concentration proteins/peptides, the selective enrichment of phosphoproteins and the selective enrichment of glycoproteins, and to compare the enrichment performance of magnetic microspheres with different kinds of functionalization.

  6. Role of hydrophobic core on the thermal stability of proteins - molecular dynamics simulations on a single point mutant of Sso7d abstract.

    PubMed

    Priyakumar, U Deva

    2012-01-01

    The role of salt bridges in chromatin protein Sso7d, from S. solfataricus has previously been shown to be crucial for its unusual high thermal stability. Experimental studies have shown that single site mutation of Sso7d (F31A) leads to a substantial decrease in the thermal stability of this protein due to distortion of the hydrophobic core. In the present study, we have performed a total of 0.2 s long molecular dynamics (MD) simulations on F31A at room temperature, and at 360 K, close to the melting temperature of the wild type (WT) protein to investigate the role of hydrophobic core on protein stability. Sso7d-WT was shown to be stable at both 300 and 360 K; however, F31A undergoes denaturation at 360 K, consistent with experimental results. The structural and energetic properties obtained using the analysis of MD trajectories indicate that the single mutation results in high flexibility of the protein, and loosening of intramolecular interactions. Correlation between the dynamics of the salt bridges with the structural transitions and the unfolding pathway indicate the importance of both salt bridges and hydrophobic in effecting thermal stability of proteins in general.

  7. PTC725, an NS4B-Targeting Compound, Inhibits a Hepatitis C Virus Genotype 3 Replicon, as Predicted by Genome Sequence Analysis and Determined Experimentally

    PubMed Central

    Graci, Jason D.; Jung, Stephen P.; Pichardo, John; Tong, Xiao; Gu, Zhengxian

    2016-01-01

    PTC725 is a small molecule NS4B-targeting inhibitor of hepatitis C virus (HCV) genotype (gt) 1 RNA replication that lacks activity against HCV gt2. We analyzed the Los Alamos HCV sequence database to predict susceptible/resistant HCV gt's according to the prevalence of known resistance-conferring amino acids in the NS4B protein. Our analysis predicted that HCV gt3 would be highly susceptible to the activity of PTC725. Indeed, PTC725 was shown to be active against a gt3 subgenomic replicon with a 50% effective concentration of ∼5 nM. De novo resistance selection identified mutations encoding amino acid substitutions mapping to the first predicted transmembrane region of NS4B, a finding consistent with results for PTC725 and other NS4B-targeting compounds against HCV gt1. This is the first report of the activity of an NS4B targeting compound against HCV gt3. In addition, we have identified previously unreported amino acid substitutions selected by PTC725 treatment which further demonstrate that these compounds target the NS4B first transmembrane region. PMID:27620477

  8. Roles of p15Ink4b and p16Ink4a in myeloid differentiation and RUNX1-ETO-associated acute myeloid leukemia

    PubMed Central

    Ko, Rose M.; Kim, Hyung-Gyoon; Wolff, Linda; Klug, Christopher A.

    2008-01-01

    Inactivation of p15Ink4b expression by promoter hypermethylation occurs in up to 80% of acute myeloid leukemia (AML) cases and is particularly common in the FAB-M2 subtype of AML, which is characterized by the presence of the RUNX1-ETO translocation in 40% of cases. To establish whether the loss of p15Ink4b contributes to AML progression in association with RUNX1-ETO, we have expressed the RUNX1-ETO fusion protein from a retroviral vector in hematopoietic progenitor cells isolated from wild-type, p15Ink4b or p16Ink4a knockout bone marrow. Analysis of lethally irradiated recipient mice reconstituted with RUNX1-ETO-expressing cells showed that neither p15Ink4b or p16Ink4a loss significantly accelerated disease progression over the time period of one year post-transplantation. Loss of p15Ink4b alone resulted in increased myeloid progenitor cell frequencies in bone marrow by 10 months post-transplant and a 19-fold increase in the frequency of Lin-c-Kit+Sca-1+ (LKS) cells that was not associated with expansion of long-term reconstituting HSC. These results strongly suggest that p15Ink4b loss must be accompanied by additional oncogenic changes for RUNX1-ETO-associated AML to develop. PMID:18037485

  9. The effect of a high mobility group protein (HMG 17) on the structure of acetylated and control core HeLa cell chromatin.

    PubMed

    Sasi, R; Fasman, G D

    1984-05-15

    The effect of binding a high mobility group protein (HMG 17) on the stability and conformation of acetylated and control HeLa high molecular weight core chromatin (stripped of H1 and non-histone chromosomal proteins) was studied by circular dichroism and thermal-denaturation measurements. Previously it had been shown that conformational differences exist between native whole chromatin derived from butyrate-treated (acetylated) and control HeLa cells and that these conformational differences disappear by removing H1 and non-histone chromosomal proteins ( Reczek , P.R., Weissman , D., Huvos , P.E. and Fasman, G.D. (1982) Biochemistry 21, 993-1002). The circular dichroism spectra and the thermal denaturation profiles of control and acetylated core chromatin were found to be similar. The circular dichroism properties of HMG 17 reconstituted highly acetylated and control core chromatin indicated the same alteration of chromatin structure at low ionic strength (1 mM sodium phosphate/0.25 mM EDTA, pH 7.0). The magnitudes of the decrease in ellipticity were proportional to the amount of HMG 17 bound and were found to be the same for both the acetylated and control core chromatin. Thermal denaturation profiles confirmed this change in structure induced by HMG 17 on control and highly acetylated core chromatin. The thermal denaturation profiles, which were resolved into three component transitions, exhibited a shifting of hyperchromicity from the lower melting transitions to the higher melting transitions, with a concomitant rise in Tm, on HMG 17 binding to both control and acetylated chromatin. The natures of the interactions of HMG 17 at higher ionic strength (50 mM NaCl/0.25 mM EDTA/1 mM sodium phosphate, pH 7.0) with acetylated and control core chromatin were slightly different, as measured by circular dichroism; however, a decrease in ellipticity was observed for both samples upon binding of HMG 17. These observations suggest that acetylation coupled with HMG 17 binding

  10. Cellulose hydrolysis by the cellulases from Trichoderma reesei: adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis.

    PubMed Central

    Nidetzky, B; Steiner, W; Claeyssens, M

    1994-01-01

    Separate binding of several purified cellulolytic components of Trichoderma reesei on to filter paper was studied and concomitant hydrolysis rates evaluated. Enhancement of mass transfer from the bulk liquid to the solid substrate by agitation has two different effects on adsorption depending on the type of enzyme: (i) the fraction of cellobiohydrolase II (CBH II) and endoglucanase III (EG III) bound at equilibrium is increased, whereas (ii) the rate but not the extent of cellobiohydrolase I (CBH I) and endoglucanase I (EG I) adsorption is affected. The adsorption of CBH I core, a component lacking the cellulose-binding domain (CBD), is, however, not significantly influenced by mass transfer. The CBH I interdomain peptide (present in CBH I core b) does not participate in adsorption but enhances stability. The adsorption of CBH I core proteins is a fully reversible process whereas that of the intact CBH I is not. Thus, the interaction of the CBD with filter paper apparently accounts for the mass-transfer-limited binding rate and also for the irreversible adsorption of intact CBH I. Adsorption isotherms at 50 degrees C indicate very similar relative association constants for the intact cellulases (0.24-0.30 l/g of cellulose), but drastically reduced values for CBH I core proteins (0.03 l/g of cellulose). The specific activities of adsorbed CBH I and of its core proteins are identical and a linear relationship between adsorption and rates of hydrolysis is found only for these enzymes. Thus, non-productive binding on to cellulose seems evident in the case of CBH II and EG III but not CBH I. PMID:7980450

  11. Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties

    PubMed Central

    Höller, Roland P. M.; Dulle, Martin; Thomä, Sabrina; Mayer, Martin; Steiner, Anja Maria; Förster, Stephan; Fery, Andreas

    2016-01-01

    We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies. PMID:26982386

  12. Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties.

    PubMed

    Höller, Roland P M; Dulle, Martin; Thomä, Sabrina; Mayer, Martin; Steiner, Anja Maria; Förster, Stephan; Fery, Andreas; Kuttner, Christian; Chanana, Munish

    2016-06-28

    We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies.

  13. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona.

    PubMed

    Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Coullerez, Geraldine; Hofmann-Amtenbrink, Margarethe; Vries, Marcel; Motazacker, Mahdi; Rezaee, Farhad; Hofmann, Heinrich

    2015-02-01

    As nanoparticles (NPs) are increasingly used in many applications their safety and efficient applications in nanomedicine have become concerns. Protein coronas on nanomaterials' surfaces can influence how the cell "recognizes" nanoparticles, as well as the in vitro and in vivo NPs' behaviors. The SuperParamagnetic Iron Oxide Nanoparticle (SPION) is one of the most prominent agents because of its superparamagnetic properties, which is useful for separation applications. To mimic surface properties of different types of NPs, a core-shell SPION library was prepared by coating with different surfaces: polyvinyl alcohol polymer (PVA) (positive, neutral and negative), SiO2 (positive and negative), titanium dioxide and metal gold. The SPIONs with different surfaces were incubated at a fixed serum : nanoparticle surface ratio, magnetically trapped and washed. The tightly bound proteins were quantified and identified. The surface charge has a great impact on protein adsorption, especially on PVA and silica where proteins preferred binding to the neutral and positively charged surfaces. The importance of surface material on protein adsorption was also revealed by preferential binding on TiO2 and gold coated SPION, even negatively charged. There is no correlation between the protein net charge and the nanoparticle surface charge on protein binding, nor direct correlation between the serum proteins' concentration and the proteins detected in the coronas.

  14. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.

    PubMed

    Chen, Fei-Ping; Ou, Shi-Yi; Tang, Chuan-He

    2016-06-22

    Using soy protein isolate (SPI) and soy-soluble polysaccharides (SSPS) as polymer matrixes, this study reported a novel process to fabricate unique core-shell complex (nano)particles to perform as carriers for curcumin (a typical poorly soluble bioactive). In the process, curcumin-SPI nanocomplexes were first formed at pH 7.0 and then coated by SSPS. At this pH, the core-shell complex was formed in a way the SPI nanoparticles might be incorporated into the interior of SSPS molecules without distinctly affecting the size and morphology of particles. The core-shell structure was distinctly changed by adjusting pH from 7.0 to 4.0. At pH 4.0, SSPS was strongly bound to the surface of highly aggregated SPI nanoparticles, and as a consequence, much larger complexes were formed. The bioaccessibility of curcumin in the SPI-curcumin complexes was unaffected by the SSPS coating. However, the core-shell complex formation greatly improved the thermal stability and controlled release properties of encapsulated curcumin. The improvement was much better at pH 4.0 than that at pH 7.0. All of the freeze-dried core-shell complex preparations exhibited good redispersion behavior. The findings provide a simple approach to fabricate food-grade delivery systems for improved water dispersion, heat stability, and even controlled release of poorly soluble bioactives.

  15. 78 FR 63221 - International Conference on Harmonisation; Guidance on Q4B Evaluation and Recommendation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Evaluation and Recommendation of Pharmacopoeial Texts for Use in the International Conference on... availability of a guidance entitled ``Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the... ICH Q4B evaluation of the Bacterial Endotoxins Test General Chapter harmonized text from each of...

  16. 76 FR 37129 - International Conference on Harmonisation; Guidance on Q4B Evaluation and Recommendation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... Evaluation and Recommendation of Pharmacopoeial Texts for Use in the International Conference on... ] availability of a guidance entitled ``Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the... published ICH guidance, ``Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the...

  17. Atypical Listeria monocytogenes Serotype 4b strains harboring a lineage II-specific gene cassette

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes is the etiological agent of listeriosis, a severe foodborne illness. The population of L. monocytogenes is divided into four lineages (I-IV) and serotype 4b in lineage I has been involved in numerous outbreaks. Several serotype 4b epidemic-associated clonal groups (ECI, II, an...

  18. TAF4b Regulates Oocyte-Specific Genes Essential for Meiosis

    PubMed Central

    Grive, Kathryn J.; Gustafson, Eric A.; Seymour, Kimberly A.; Baddoo, Melody; Schorl, Christoph; Golnoski, Kayla; Rajkovic, Aleksandar; Brodsky, Alexander S.; Freiman, Richard N.

    2016-01-01

    TAF4b is a gonadal-enriched subunit of the general transcription factor TFIID that is implicated in promoting healthy ovarian aging and female fertility in mice and humans. To further explore the potential mechanism of TAF4b in promoting ovarian follicle development, we analyzed global gene expression at multiple time points in the human fetal ovary. This computational analysis revealed coordinate expression of human TAF4B and critical regulators and effectors of meiosis I including SYCP3, YBX2, STAG3, and DAZL. To address the functional relevance of this analysis, we turned to the embryonic Taf4b-deficient mouse ovary where, for the first time, we demonstrate, severe deficits in prophase I progression as well as asynapsis in Taf4b-deficient oocytes. Accordingly, TAF4b occupies the proximal promoters of many essential meiosis and oogenesis regulators, including Stra8, Dazl, Figla, and Nobox, and is required for their proper expression. These data reveal a novel TAF4b function in regulating a meiotic gene expression program in early mouse oogenesis, and support the existence of a highly conserved TAF4b-dependent gene regulatory network promoting early oocyte development in both mice and women. PMID:27341508

  19. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein

    PubMed Central

    Braga, Vanessa L. de Azevedo; Peabody, David S.; Ferreira, Davis Fernandes; Bianconi, M. Lucia; Gomes, Andre Marco de Oliveira

    2016-01-01

    Background Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro. The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. Methods Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. Results The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12), indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. Discussion Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles. PMID:27867765

  20. Ferulic acid prevents LPS-induced up-regulation of PDE4B and stimulates the cAMP/CREB signaling pathway in PC12 cells

    PubMed Central

    Huang, Hao; Hong, Qian; Tan, Hong-ling; Xiao, Cheng-rong; Gao, Yue

    2016-01-01

    Aim: Phosphodiesterase 4 (PDE4) isozymes are involved in different functions, depending on their patterns of distribution in the brain. The PDE4 subtypes are distributed in different inflammatory cells, and appear to be important regulators of inflammatory processes. In this study we examined the effects of ferulic acid (FA), a plant component with strong anti-oxidant and anti-inflammatory activities, on lipopolysaccharide (LPS)-induced up-regulation of phosphodiesterase 4B (PDE4B) in PC12 cells, which in turn regulated cellular cAMP levels and the cAMP/cAMP response element binding protein (CREB) pathway in the cells. Methods: PC12 cells were treated with LPS (1 μg/mL) for 8 h, and the changes of F-actin were detected using laser scanning confocal microscopy. The levels of pro-inflammatory cytokines were measured suing ELISA kits, and PDE4B-specific enzymatic activity was assessed with a PDE4B assay kit. The mRNA levels of PDE4B were analyzed with Q-PCR, and the protein levels of CREB and phosphorylated CREB (pCREB) were determined using immunoblotting. Furthermore, molecular docking was used to identify the interaction between PDE4B2 and FA. Results: Treatment of PC12 cells with LPS induced thick bundles of actin filaments appearing in the F-actin cytoskeleton, which were ameliorated by pretreatment with FA (10–40 μmol/L) or with a PDE4B inhibitor rolipram (30 μmol/L). Pretreatment with FA dose-dependently inhibited the LPS-induced production of TNF-α and IL-1β in PC12 cells. Furthermore, pretreatment with FA dose-dependently attenuated the LPS-induced up-regulation of PDE4 activity in PC12 cells. Moreover, pretreatment with FA decreased LPS-induced up-regulation of the PDE4B mRNA, and reversed LPS-induced down-regulation of CREB and pCREB in PC12 cells. The molecular docking results revealed electrostatic and hydrophobic interactions between FA and PDE4B2. Conclusion: The beneficial effects of FA in PC12 cells might be conferred through inhibition of LPS

  1. [The determination of the genotype of natural reassortant influenza A viruses according to the core protein genes by the methods of competitive dot hybridization and sequencing].

    PubMed

    Grinbaum, E B; Zolotarev, F N; Petrov, N A; Litvinova, O M; Konovalenko, I B; Luzianina, T Ia; Golubev, D B

    1992-01-01

    Simultaneous circulation of different subtypes of influenza A viruses provides conditions for reassortant strains formation. A comparative investigation of genome of 47 influenza A virus strains (H1N1, H2N2, and H3N2) was carried out by competitive dot hybridization technique and sequence analysis of some of cDNA-copies of the virus genes. All the genes of 43 strains encoding nonglycolysed proteins corresponded to the serum subtype of surface glycoproteins. The reassortant pattern of genome for some genes of core proteins was revealed in 4 viruses. All the dot hybridization data were completely confirmed by sequence analysis of the genes.

  2. The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane

    PubMed Central

    2016-01-01

    Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. PMID:27003358

  3. Identification of a novel antimicrobial peptide from human hepatitis B virus core protein arginine-rich domain (ARD).

    PubMed

    Chen, Heng-Li; Su, Pei-Yi; Chang, Ya-Shu; Wu, Szu-Yao; Liao, You-Di; Yu, Hui-Ming; Lauderdale, Tsai-Ling; Chang, Kaichih; Shih, Chiaho

    2013-01-01

    The rise of multidrug-resistant (MDR) pathogens causes an increasing challenge to public health. Antimicrobial peptides are considered a possible solution to this problem. HBV core protein (HBc) contains an arginine-rich domain (ARD) at its C-terminus, which consists of 16 arginine residues separated into four clusters (ARD I to IV). In this study, we demonstrated that the peptide containing the full-length ARD I-IV (HBc147-183) has a broad-spectrum antimicrobial activity at micro-molar concentrations, including some MDR and colistin (polymyxin E)-resistant Acinetobacter baumannii. Furthermore, confocal fluorescence microscopy and SYTOX Green uptake assay indicated that this peptide killed Gram-negative and Gram-positive bacteria by membrane permeabilization or DNA binding. In addition, peptide ARD II-IV (HBc153-176) and ARD I-III (HBc147-167) were found to be necessary and sufficient for the activity against P. aeruginosa and K. peumoniae. The antimicrobial activity of HBc ARD peptides can be attenuated by the addition of LPS. HBc ARD peptide was shown to be capable of direct binding to the Lipid A of lipopolysaccharide (LPS) in several in vitro binding assays. Peptide ARD I-IV (HBc147-183) had no detectable cytotoxicity in various tissue culture systems and a mouse animal model. In the mouse model by intraperitoneal (i.p.) inoculation with Staphylococcus aureus, timely treatment by i.p. injection with ARD peptide resulted in 100-fold reduction of bacteria load in blood, liver and spleen, as well as 100% protection of inoculated animals from death. If peptide was injected when bacterial load in the blood reached its peak, the protection rate dropped to 40%. Similar results were observed in K. peumoniae using an IVIS imaging system. The finding of anti-microbial HBc ARD is discussed in the context of commensal gut microbiota, development of intrahepatic anti-viral immunity and establishment of chronic infection with HBV. Our current results suggested that HBc ARD

  4. Electrogenerated chemiluminescence determination of C-reactive protein with carboxyl CdSe/ZnS core/shell quantum dots.

    PubMed

    Wang, Shijun; Harris, Emma; Shi, Jian; Chen, Alfred; Parajuli, Suman; Jing, Xiaohui; Miao, Wujian

    2010-09-14

    Electrogenerated chemiluminescence (ECL) of water-soluble core/shell CdSe/ZnS quantum dots (QDs) coated with carboxylated polyethylene glycol polymers ("Qdot 625") was investigated in aqueous solutions using 2-(dibutylamino)ethanol (DBAE) and tri-n-propylamine (TPrA) as ECL coreactants. In both cases, ECL emissions at glassy carbon (GC) electrode appeared at the same potential of approximately 0.80 V vs. Ag/AgCl (3.0 M KCl), which was approximately 200 and approximately 150 mV more positive compared with the oxidation potentials for DBAE (approximately +0.60 V vs. Ag/AgCl) and TPrA (approximately +0.65 V vs. Ag/AgCl), respectively. The ECL intensity, however, was significantly affected by the type and the concentration of the ECL coreactant used as well as the nature of the working electrode. Under the present experimental conditions, ECL from DBAE was approximately 17 times stronger than that from TPrA. The maximum ECL was obtained at GC electrode when [DBAE] approximately = 53 mM, where a ratio of 11:3:1 in ECL intensity was evaluated for GC, Au, and Pt electrodes, respectively. The ECL emission of the Qdot 625/DBAE system had an apparent peak value of approximately 625 nm that matched well the fluorescence data. The QD as a label for ECL-based immunoassays of C-reactive protein (CRP) was realized by covalent binding of avidin on its surface, which allowed biotinylated anti-CRP to be attached and interacted with solution-phase CRP and the anti-CRP linked to micro-sized magnetic beads. The newly formed sandwich type aggregates were separated magnetically from the solution matrix, followed by the ECL generation at partially transparent Au nanoparticle-coated ITO electrode or Au/CD electrode in the presence of DBAE. Much stronger ECL responses were observed from the Au/CD electrode, at which a dynamic range of 1.0-10.0 microg mL(-1) CRP and a limit of detection of 1.0 microg mL(-1) CRP were obtained, respectively.

  5. Identification of a Novel Antimicrobial Peptide from Human Hepatitis B Virus Core Protein Arginine-Rich Domain (ARD)

    PubMed Central

    Chen, Heng-Li; Su, Pei-Yi; Chang, Ya-Shu; Wu, Szu-Yao; Liao, You-Di; Yu, Hui-Ming; Lauderdale, Tsai-Ling; Chang, Kaichih; Shih, Chiaho

    2013-01-01

    The rise of multidrug-resistant (MDR) pathogens causes an increasing challenge to public health. Antimicrobial peptides are considered a possible solution to this problem. HBV core protein (HBc) contains an arginine-rich domain (ARD) at its C-terminus, which consists of 16 arginine residues separated into four clusters (ARD I to IV). In this study, we demonstrated that the peptide containing the full-length ARD I–IV (HBc147-183) has a broad-spectrum antimicrobial activity at micro-molar concentrations, including some MDR and colistin (polymyxin E)-resistant Acinetobacter baumannii. Furthermore, confocal fluorescence microscopy and SYTOX Green uptake assay indicated that this peptide killed Gram-negative and Gram-positive bacteria by membrane permeabilization or DNA binding. In addition, peptide ARD II–IV (HBc153-176) and ARD I–III (HBc147-167) were found to be necessary and sufficient for the activity against P. aeruginosa and K. peumoniae. The antimicrobial activity of HBc ARD peptides can be attenuated by the addition of LPS. HBc ARD peptide was shown to be capable of direct binding to the Lipid A of lipopolysaccharide (LPS) in several in vitro binding assays. Peptide ARD I–IV (HBc147-183) had no detectable cytotoxicity in various tissue culture systems and a mouse animal model. In the mouse model by intraperitoneal (i.p.) inoculation with Staphylococcus aureus, timely treatment by i.p. injection with ARD peptide resulted in 100-fold reduction of bacteria load in blood, liver and spleen, as well as 100% protection of inoculated animals from death. If peptide was injected when bacterial load in the blood reached its peak, the protection rate dropped to 40%. Similar results were observed in K. peumoniae using an IVIS imaging system. The finding of anti-microbial HBc ARD is discussed in the context of commensal gut microbiota, development of intrahepatic anti-viral immunity and establishment of chronic infection with HBV. Our current results suggested that

  6. Downregulation of miRNA-30c and miR-203a is associated with hepatitis C virus core protein-induced epithelial–mesenchymal transition in normal hepatocytes and hepatocellular carcinoma cells

    SciTech Connect

    Liu, Dongjing; Wu, Jilin; Liu, Meizhou; Yin, Hui; He, Jiantai; Zhang, Bo

    2015-09-04

    Hepatitis C virus (HCV) Core protein has been demonstrated to induce epithelial–mesenchymal transition (EMT) and is associated with cancer progression of hepatocellular carcinoma (HCC). However, how the Core protein regulates EMT is still unclear. In this study, HCV Core protein was overexpressed by an adenovirus. The protein levels of EMT markers were measured by Western blot. The xenograft animal model was established by inoculation of HepG2 cells. Results showed that ectopic expression of HCV core protein induced EMT in L02 hepatocytes and HepG2 tumor cells by upregulating vimentin, Sanl1, and Snal2 expression and downregulating E-cadherin expression. Moreover, Core protein downregulated miR-30c and miR-203a levels in L02 and HepG2 cells, but artificial expression of miR-30c and miR-203a reversed Core protein-induced EMT. Further analysis showed that ectopic expression of HCV core protein stimulated cell proliferation, inhibited apoptosis, and increased cell migration, whereas artificial expression of miR-30c and miR-203a significantly reversed the role of Core protein in these cell functions in L02 and HepG2 cells. In the HepG2 xenograft tumor models, artificial expression of miR-30c and miR-203a inhibited EMT and tumor growth. Moreover, L02 cells overexpressing Core protein can form tumors in nude mice. In HCC patients, HCV infection significantly shortened patients' survival time, and loss of miR-30c and miR-203 expression correlated with poor survival. In conclusion, HCV core protein downregulates miR-30c and miR-203a expression, which results in activation of EMT in normal hepatocytes and HCC tumor cells. The Core protein-activated-EMT is involved in the carcinogenesis and progression of HCC. Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC. - Highlights: • HCV core protein downregulates miR-30c and miR-203a expression. • Downregulation of miR-30c and miR-203a activates EMT. • Activated-EMT is involved in the

  7. CD4+ primary T cells expressing HCV-core protein upregulate Foxp3 and IL-10, suppressing CD4 and CD8 T cells.

    PubMed

    Fernandez-Ponce, Cecilia; Dominguez-Villar, Margarita; Aguado, Enrique; Garcia-Cozar, Francisco

    2014-01-01

    Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127(low)PD-1(high)TIM-3(high) regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.

  8. Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus.

    PubMed

    Gao, Jing; Lu, Guangwen; Qi, Jianxun; Li, Yan; Wu, Ying; Deng, Yao; Geng, Heyuan; Li, Hongbin; Wang, Qihui; Xiao, Haixia; Tan, Wenjie; Yan, Jinghua; Gao, George F

    2013-12-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) recently emerged as a severe worldwide public health concern. The virus is highly pathogenic, manifesting in infected patients with an approximately 50% fatality rate. It is known that the surface spike (S) proteins of coronaviruses mediate receptor recognition and membrane fusion, thereby playing an indispensable role in initiating infection. In this process, heptad repeats 1 and 2 (HR1 and HR2) of the S protein assemble into a complex called the fusion core, which represents a key membrane fusion architecture. To date, however, the MERS-CoV fusion core remains uncharacterized. In this study, we performed a series of biochemical and biophysical analyses characterizing the HR1/HR2 complexes of this novel virus. The HR sequences were variably truncated and then connected with a flexible amino acid linker. In each case, the recombinant protein automatically assembled into a trimer in solution, displaying a typical α-helical structure. One of these trimers was successfully crystallized, and its structure was solved at a resolution of 1.9 Å. A canonical 6-helix bundle, like those reported for other coronaviruses, was revealed, with three HR1 helices forming the central coiled-coil core and three HR2 chains surrounding the core in the HR1 side grooves. This demonstrates that MERS-CoV utilizes a mechanism similar to those of other class I enveloped viruses for membrane fusion. With this notion, we further identified an HR2-based peptide that could potently inhibit MERS-CoV fusion and entry by using a pseudotyped-virus system. These results lay the groundwork for future inhibitory peptidic drug design.

  9. (4bS,8aS)-1-Isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octa­hydro­phenan­thren-2-yl acetate

    PubMed Central

    Oubabi, Radouane; Auhmani, Aziz; Ait Itto, My Youssef; Auhmani, Abdelwahed; Daran, Jean-Claude

    2014-01-01

    The hemisynthesis of the title compound, C22H32O2, was carried out through direct acetyl­ation reaction of the naturally occurring diterpene totarol [systematic name: (4bS,8aS)-4b,8,8-trimethyl-1-propan-2-yl-5,6,7,8a,9,10-hexa­hydro­phen­an­thren-2-ol]. The mol­ecule is built up from three fused six membered rings, one saturated and two unsaturated. The central unsaturated ring has a half-chair conformation, whereas the other unsaturated ring displays a chair conformation. The absolute configuration is deduced from the chemical pathway. The value of the Hooft parameter [−0.10 (6)] allowed this absolute configuration to be confirmed. PMID:24765017

  10. LAPTM4B Gene Expression and Polymorphism as Diagnostic Markers of Breast Cancer in Egyptian Patients

    PubMed Central

    Shaker, Olfat; Taha, Fatma; Salah, Maha; El-Marzouky, Mohamed

    2015-01-01

    Summary Background The aim of this study was to investigate the association between LAPTM4B gene polymorphism and the risk of breast cancer among Egyptian female patients. Also, measurement was done of its serum level to evaluate its significance as a diagnostic marker for breast cancer. Methods This case control study was done on 88 breast cancer patients, 40 with fibroadenoma and 80 healthy subjects. Genotyping of the LAPTM4B polymorphism was determined by PCR. Serum LAPTM4B level was measured using ELISA. Results There was a significant difference in the (*1/2+ *2/2) genotypes in breast cancer patients (59.1) compared to the control subjects (43.8%) (P=0.047; OR=1.86; 95% CI =1.01–3.43). The frequency of the allele 2* of the LAPTM4B gene was significantly higher in breast cancer patients (36.4%) than in the control (25.6%) (p=0.034; OR=1.66; 95% CI =1.04–2.65). Genotypes (*1/2+*2/2) were significantly associated with the differential classification of TNM. Serum level of LAPTM4B was significantly higher in breast cancer patients than in control and fibroadenoma and in fibroadenoma patients than in control. In breast cancer patients, serum LAPTM4B was significantly higher in stage III and in large tumor size. Serum LAPTM4B was significantly higher in the cancer patients’ genotypes (*1/2+*2/2). Conclusions Genetic polymorphism of LAPTM4B is a potential risk factor for the development of breast cancer. Serum LAPTM4B may be used as a diagnostic and prognostic marker for breast cancer. PMID:28356847

  11. High mobility group protein number17 cross-links primarily to histone H2A in the reconstituted HMG 17 - nucleosome core particle complex

    SciTech Connect

    Cook, G.R.; Yau, P.; Yasuda, H.; Traut, R.R.; Bradbury, E.M.

    1986-05-01

    The neighbor relationship of lamb thymus High Mobility Group (HMG) protein 17 to native HeLa nucleosome core particle histones in the reconstituted complex has been studied. /sup 125/I-labeled HMG 17 was cross-linking to core histones using the protein-protein cross-linking reagent 2-iminothiolane. Specific cross-linked products were separated on a two-dimensional Triton-acid-urea/SDS gel system, located by autoradiography, excised and quantified. Disulfide bonds in the cross links were then cleaved and the protein constituents were identified by SDS gel electrophoresis. HMG 17 cross-linked primarily to histone H2A while lower levels of cross-linking occurred between HMG 17 and the other histones. In contrast, cross-linking between two HMG 17 molecules bound on the same nucleosome was relatively rare. It is concluded that the same nucleosome was relatively rare. It is concluded that H2A comprises part of the HMG 17 binding site but that HMG 17 is sufficiently elongated and mobile to permit cross-linking to the other histones and to a second HMG 17 molecule. These results are in agreement with the current model for the structure of the nucleosome and the proposed binding sites for HMG 17.

  12. A C-terminal Hydrophobic, Solvent-protected Core and a Flexible N-terminus are Potentially Required for Human Papillomavirus 18 E7 Protein Functionality

    SciTech Connect

    Liu, S.; Tian, Y; Greenaway, F; Sun, M

    2010-01-01

    The oncogenic potential of the high-risk human papillomavirus (HPV) relies on the expression of genes specifying the E7 and E6 proteins. To investigate further the variation in oligomeric structure that has been reported for different E7 proteins, an HPV-18 E7 cloned from a Hispanic woman with cervical intraepithelial neoplasia was purified to homogeneity most probably as a stable monomeric protein in aqueous solution. We determined that one zinc ion is present per HPV-18 E7 monomer by amino acid and inductively coupled plasma-atomic emission spectroscopy analysis. Intrinsic fluorescence and circular dichroism spectroscopic results indicate that the zinc ion is important for the correct folding and thermal stability of HPV-18 E7. Hydroxyl radical mediated protein footprinting coupled to mass spectrometry and other biochemical and biophysical data indicate that near the C-terminus, the four cysteines of the two Cys-X{sub 2}-Cys motifs that are coordinated to the zinc ion form a solvent inaccessible core. The N-terminal LXCXE pRb binding motif region is hydroxyl radical accessible and conformationally flexible. Both factors, the relative flexibility of the pRb binding motif at the N-terminus and the C-terminal metal-binding hydrophobic solvent-protected core, combine together and facilitate the biological functions of HPV-18 E7.

  13. Electrostatic Architecture of the Infectious Salmon Anemia Virus (ISAV) Core Fusion Protein Illustrates a Carboxyl-Carboxylate pH Sensor.

    PubMed

    Cook, Jonathan D; Soto-Montoya, Hazel; Korpela, Markus K; Lee, Jeffrey E

    2015-07-24

    Segment 5, ORF 1 of the infectious salmon anemia virus (ISAV) genome, encodes for the ISAV F protein, which is responsible for viral-host endosomal membrane fusion during a productive ISAV infection. The entry machinery of ISAV is composed of a complex of the ISAV F and ISAV hemagglutinin esterase (HE) proteins in an unknown stoichiometry prior to receptor engagement by ISAV HE. Following binding of the receptor to ISAV HE, dissociation of the ISAV F protein from HE, and subsequent endocytosis, the ISAV F protein resolves into a fusion-competent oligomeric state. Here, we present a 2.1 Å crystal structure of the fusion core of the ISAV F protein determined at low pH. This structure has allowed us to unambiguously demonstrate that the ISAV entry machinery exhibits typical class I viral fusion protein architecture. Furthermore, we have determined stabilizing factors that accommodate the pH-dependent mode of ISAV transmission, and our structure has allowed the identification of a central coil that is conserved across numerous and varied post-fusion viral glycoprotein structures. We then discuss a mechanistic model of ISAV fusion that parallels the paramyxoviral class I fusion strategy wherein attachment and fusion are relegated to separate proteins in a similar fashion to ISAV fusion.

  14. Electrostatic Architecture of the Infectious Salmon Anemia Virus (ISAV) Core Fusion Protein Illustrates a Carboxyl-Carboxylate pH Sensor*

    PubMed Central

    Cook, Jonathan D.; Soto-Montoya, Hazel; Korpela, Markus K.; Lee, Jeffrey E.

    2015-01-01

    Segment 5, ORF 1 of the infectious salmon anemia virus (ISAV) genome, encodes for the ISAV F protein, which is responsible for viral-host endosomal membrane fusion during a productive ISAV infection. The entry machinery of ISAV is composed of a complex of the ISAV F and ISAV hemagglutinin esterase (HE) proteins in an unknown stoichiometry prior to receptor engagement by ISAV HE. Following binding of the receptor to ISAV HE, dissociation of the ISAV F protein from HE, and subsequent endocytosis, the ISAV F protein resolves into a fusion-competent oligomeric state. Here, we present a 2.1 Å crystal structure of the fusion core of the ISAV F protein determined at low pH. This structure has allowed us to unambiguously demonstrate that the ISAV entry machinery exhibits typical class I viral fusion protein architecture. Furthermore, we have determined stabilizing factors that accommodate the pH-dependent mode of ISAV transmission, and our structure has allowed the identification of a central coil that is conserved across numerous and varied post-fusion viral glycoprotein structures. We then discuss a mechanistic model of ISAV fusion that parallels the paramyxoviral class I fusion strategy wherein attachment and fusion are relegated to separate proteins in a similar fashion to ISAV fusion. PMID:26082488

  15. HCV core protein binds to gC1qR to induce A20 expression and inhibit cytokine production through MAPKs and NF-κB signaling pathways.

    PubMed

    Song, Xiaotian; Yao, Zhiyan; Yang, Jianling; Zhang, Zhengzheng; Deng, Yuqing; Li, Miao; Ma, Cuiqing; Yang, Lijuan; Gao, Xue; Li, Wenjian; Liu, Jianguo; Wei, Lin

    2016-06-07

    Hepatitis C virus (HCV) infection is characterized by a strong propensity toward chronicity. During chronic HCV infection, HCV core protein is implicated in deregulating cytokine expression that associates with chronic inflammation. A20 is known as a powerful suppressor in cytokine signaling, in this study, we explored the A20 expression in macrophages induced by HCV core protein and the involved signaling pathways. Results demonstrated that HCV core protein induced A20 expression in macrophages. Silencing A20 significantly enhanced the secretion of IL-6, IL-1β and TGF-β1, but not IL-8 and TNF. Additionally, HCV core protein interacted with gC1qR, but not TLR2, TLR3 and TLR4 in pull-down assay. Silencing gC1qR abrogated core-induced A20 expression. Furthermore, HCV core protein activated MAPK, NF-κB and PI3K/AKT pathways in macrophages. Inhibition of P38, JNK and NF-κB but not ERK and AKT activities greatly reduced the A20 expression. In conclusion, the study suggests that HCV core protein ligates gC1qR to induce A20 expression in macrophages via P38, JNK and NF-κB signaling pathways, which leads to a low-grade chronic inflammation during HCV infection. It represents a novel mechanism by which HCV usurps the host for persistence.

  16. Up-regulation of FOXP3 and induction of suppressive function in CD4+ Jurkat T-cells expressing hepatitis C virus core protein.

    PubMed

    Dominguez-Villar, Margarita; Fernandez-Ponce, Cecilia; Munoz-Suano, Alba; Gomez, Esperanza; Rodríguez-Iglesias, Manuel; Garcia-Cozar, Francisco

    2012-07-01

    HCV (hepatitis C virus) infection is a serious health care problem that affects more than 170 million people worldwide. Viral clearance depends on the development of a successful cellular immune response against the virus. Interestingly, such a response is altered in chronically infected patients, leading to chronic hepatitis that can result in liver fibrosis, cirrhosis and hepatocellular carcinoma. Among the mechanisms that have been described as being responsible for the immune suppression caused by the virus, Treg-cells (regulatory T-cells) are emerging as an essential component. In the present work we aim to study the effect of HCV-core protein in the development of T-cells with regulatory-like function. Using a third-generation lentiviral system to express HCV-core in CD4+ Jurkat T-cells, we describe that HCV-core-expressing Jurkat cells show an up-regulation of FOXP3 (forkhead box P3) and CTLA-4 (cytotoxic T-lymphocyte antigen-4). Moreover, we show that HCV-core-transduced Jurkat cells are able to suppress CD4+ and CD8+ T-cell responses to anti-CD3 plus anti-CD28 stimulation.

  17. The role of plastic β-hairpin and weak hydrophobic core in the stability and unfolding of a full sequence design protein

    NASA Astrophysics Data System (ADS)

    Lei, Hongxing; Duan, Yong

    2004-12-01

    In this study, the thermal stability of a designed α/β protein FSD (full sequence design) was studied by explicit solvent simulations at three moderate temperatures, 273 K, 300 K, and 330 K. The average properties of the ten trajectories at each temperature were analyzed. The thermal unfolding, as judged by backbone root-mean-square deviation and percentage of native contacts, was displayed with increased sampling outside of the native basin as the temperature was raised. The positional fluctuation of the hairpin residues was significantly higher than that of the helix residues at all three temperatures. The hairpin segment displayed certain plasticity even at 273 K. Apart from the terminal residues, the highest fluctuation was shown in the turn residues 7-9. Secondary structure analysis manifested the structural heterogeneity of the hairpin segment. It was also revealed by the simulation that the hydrophobic core was vulnerable to thermal denaturation. Consistent with the experiment, the I7Y mutation in the double mutant FSD-EY (FSD with mutations Q1E and I7Y) dramatically increased the protein stability in the simulation, suggesting that the plasticity of the hairpin can be partially compensated by a stronger hydrophobic core. As for the unfolding pathway, the breathing of the hydrophobic core and the separation of the two secondary structure elements (α helix and β hairpin) was the initiation step of the unfolding. The loss of global contacts from the separation further destabilized the hairpin structure and also led to the unwinding of the helix.

  18. Core glycan in the yeast multicopper ferroxidase, Fet3p: A case study of N-linked glycosylation, protein maturation, and stability

    PubMed Central

    Ziegler, Lynn; Terzulli, Alaina; Sedlak, Erik; Kosman, Daniel J

    2010-01-01

    Glycosylation is essential to the maintenance of protein quality in the vesicular protein trafficking pathway in eukaryotic cells. Using the yeast multicopper oxidase, Fet3p, the hypothesis is tested that core glycosylation suppresses Fet3p nascent chain aggregation during synthesis into the endoplasmic reticulum (ER). Fet3p has 11 crystallographically mapped N-linked core glycan units. Assembly of four of these units is specifically required for localization of Fet3p to the plasma membrane (PM). Fet3 protein lacking any one of these glycan units is found in an intracellular high-molecular mass species resolvable by blue native gel electrophoresis. Individually, the remaining glycan moieties are not required for ER exit; however, serial deletion of these by N → A substitution correlates with these desglycan species failure to exit the ER. Desglycan Fet3 proteins that localize to the PM are wild type in function indicating that the missing carbohydrate is not required for native structure and biologic activity. This native function includes the interaction with the iron permease, Ftr1p, and wild type high-affinity iron uptake activity. The four essential sequons are found within relatively nonpolar regions located in surface recesses and are strongly conserved among fungal Fet3 proteins. The remaining N-linked sites are found in more surface exposed, less nonpolar environments, and their conservation is weak or absent. The data indicate that in Fet3p the N-linked glycan has little effect on the enzyme's molecular activity but is critical to its cellular activity by maximizing the protein's exit from the ER and assembly into a functional iron uptake complex. PMID:20662012

  19. Two New Copper Borates with Mesoscale Cubic Supramolecular Cages Assembled from {Cu4 @B20 } Clusters.

    PubMed

    Wang, Jia-Jia; Wei, Qi; Yang, Bai-Feng; Yang, Guo-Yu

    2017-02-24

    Two new copper borates, namely H6 [(μ4 -O)Cu4 @B20 O32 (OH)8 ]⋅25 H2 O (1) and H6 [(μ4 -O)Cu4 @B20 O32 (OH)8 ]⋅34 H2 O⋅8 H3 BO3 (2), with 3D supramolecular framework have been made under solvothermal conditions, which built by novel cubic supramolecular cages with mesoscale cavities via the H-bondings. Interestingly, the cage is assembled by [(μ4 -O)Cu4 @B20 O32 (OH)8 ] ({Cu4 @B20 }) cluster units with different point-group symmetry. Owing to extra H3 BO3 molecules participated in building the supramolecular framework, 2 has a larger cubic cage size and higher non-framework volume, leading to the cage size extended to mesoporous size set as a version of ''1 plus".

  20. Colloidal Gold--Collagen Protein Core--Shell Nanoconjugate: One-Step Biomimetic Synthesis, Layer-by-Layer Assembled Film, and Controlled Cell Growth.

    PubMed

    Xing, Ruirui; Jiao, Tifeng; Yan, Linyin; Ma, Guanghui; Liu, Lei; Dai, Luru; Li, Junbai; Möhwald, Helmuth; Yan, Xuehai

    2015-11-11

    The biogenic synthesis of biomolecule-gold nanoconjugates is of key importance for a broad range of biomedical applications. In this work, a one-step, green, and condition-gentle strategy is presented to synthesize stable colloidal gold-collagen core-shell nanoconjugates in an aqueous solution at room temperature, without use of any reducing agents and stabilizing agents. It is discovered that electrostatic binding between gold ions and collagen proteins and concomitant in situ reduction by hydroxyproline residues are critically responsible for the formation of the core-shell nanoconjugates. The film formed by layer-by-layer assembly of such colloidal gold-collagen nanoconjugates can notably improve the mechanical properties and promote cell adhesion, growth, and differentiation. Thus, the colloidal gold-collagen nanoconjugates synthesized by such a straightforward and clean manner, analogous to a biomineralization pathway, provide new alternatives for developing biologically based hybrid biomaterials toward a range of therapeutic and diagnostic applications.

  1. RDR-4B doppler weather radar with forward looking wind shear detection capability

    NASA Technical Reports Server (NTRS)

    Grasley, Steven S.

    1992-01-01

    The topics are presented in viewgraph form and include the following: Bendix/King atmospheric transport and dispersion (ATAD) position; RDR-4A technical baseline; RTA-4A characteristics; RDR-4 antenna characteristics; modification of RDR-4A to RDR-4B; RDR-4A functional block diagram; RDR-4B characteristics; development/test plan; CV-580 testing capability; CV-580 test results; Continental A300 test configuration; Continental Data Recording Program operational considerations; Continental A300 test results; and display considerations.

  2. VizieR Online Data Catalog: XO-4b 3yr observations with DEMONEX (Villanueva+, 2016)

    NASA Astrophysics Data System (ADS)

    Villanueva, S. Jr; Eastman, J. D.; Gaudi, B. S.

    2016-06-01

    New observations of XO-4b were made using DEdicated MONitor of EXotransits (DEMONEX). DEMONEX monitored bright stars hosting known transiting planets over a 3yr period from 2008 to 2011 in order to provide a homogeneous data set of precise relative photometry for over 40 transiting systems. There are 20 nights of data from 2008 November to 2010 May taken during primary transits of XO-4b. All observations were made in the Sloan z band. (1 data file).

  3. The hepatitis C virus core protein inhibits adipose triglyceride lipase (ATGL)-mediated lipid mobilization and enhances the ATGL interaction with comparative gene identification 58 (CGI-58) and lipid droplets.

    PubMed

    Camus, Gregory; Schweiger, Martina; Herker, Eva; Harris, Charles; Kondratowicz, Andrew S; Tsou, Chia-Lin; Farese, Robert V; Herath, Kithsiri; Previs, Stephen F; Roddy, Thomas P; Pinto, Shirly; Zechner, Rudolf; Ott, Melanie

    2014-12-26

    Liver steatosis is a common health problem associated with hepatitis C virus (HCV) and an important risk factor for the development of liver fibrosis and cancer. Steatosis is caused by triglycerides (TG) accumulating in lipid droplets (LDs), cellular organelles composed of neutral lipids surrounded by a monolayer of phospholipids. The HCV nucleocapsid core localizes to the surface of LDs and induces steatosis in cultured cells and mouse livers by decreasing intracellular TG degradation (lipolysis). Here we report that core at the surface of LDs interferes with the activity of adipose triglyceride lipase (ATGL), the key lipolytic enzyme in the first step of TG breakdown. Expressing core in livers or mouse embryonic fibroblasts of ATGL(-/-) mice no longer decreases TG degradation as observed in LDs from wild-type mice, supporting the model that core reduces lipolysis by engaging ATGL. Core must localize at LDs to inhibit lipolysis, as ex vivo TG hydrolysis is impaired in purified LDs coated with core but not when free core is added to LDs. Coimmunoprecipitation experiments revealed that core does not directly interact with the ATGL complex but, unexpectedly, increased the interaction between ATGL and its activator CGI-58 as well as the recruitment of both proteins to LDs. These data link the anti-lipolytic activity of the HCV core protein with altered ATGL binding to CGI-58 and the enhanced association of both proteins with LDs.

  4. The neuroendocrine protein VGF is sorted into dense-core granules and is secreted apically by polarized rat thyroid epithelial cells.

    PubMed

    Gentile, Flaviana; Calì, Gaetano; Zurzolo, Chiara; Corteggio, Annunziata; Rosa, Patrizia; Calegari, Federico; Levi, Andrea; Possenti, Roberta; Puri, Claudia; Tacchetti, Carlo; Nitsch, Lucio

    2004-04-15

    We have expressed the neuroendocrine VGF protein in FRT rat thyroid cells to study the molecular mechanisms of its sorting to the regulated and polarized pathways of secretion. By immunoelectron microscopy, we have demonstrated that VGF localizes in dense-core granules. Rapid secretion of VGF is induced by PMA stimulation. Moreover, human chromogranin B, a protein of the regulated pathway, co-localizes in the same granules with VGF. In confluent, FRT monolayers on filters protein secretion occur from the apical cell domain. VGF deletion mutants have been generated. By confocal microscopy, we have found that in transient transfection, all mutant proteins are sorted into granules and co-localize with the full-length VGF. They all retain the apical polarity of secretion. We also found that intracellular VGF and its deletion mutants are largely in an aggregated form. We conclude that FRT thyroid cells correctly decode the sorting information of VGF. The signals present on the protein to enter the granules and to be secreted apically cannot be separated from each other and are not in just one discrete portion of the protein. We propose that selective aggregation might represent the signal for sorting VGF to the regulated, apical route.

  5. Surface protein imprinted core-shell particles for high selective lysozyme recognition prepared by reversible addition-fragmentation chain transfer strategy.

    PubMed

    Li, Qinran; Yang, Kaiguang; Liang, Yu; Jiang, Bo; Liu, Jianxi; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2014-12-24

    A novel kind of lysozyme (Lys) surface imprinted core-shell particles was synthesized by reversible addition-fragmentation chain transfer (RAFT) strategy. With controllable polymer shell chain length, such particles showed obviously improved selectivity for protein recognition. After the RAFT initial agent and template protein was absorbed on silica particles, the prepolymerization solution, with methacrylic acid and 2-hydroxyethyl methacrylate as the monomers, and N,N'-methylenebis(acrylamide) as the cross-linker, was mixed with the silica particles, and the polymerization was performed at 40 °C in aqueous phase through the oxidation-reduction initiation. Ater polymerization, with the template protein removal and destroying dithioester groups with hexylamine, the surface Lyz imprinted particles were obtained with controllable polymer chain length. The binding capacity of the Lys imprinted particles could reach 5.6 mg protein/g material, with the imprinting factor (IF) as 3.7, whereas the IF of the control material prepared without RAFT strategy was only 1.6. The absorption equilibrium could be achieved within 60 min. Moreover, Lys could be selectively recognized by the imprinted particles from both a four-proteins mixture and egg white sample. All these results demonstrated that these particles prepared by RAFT strategy are promising to achieve the protein recognition with high selectivity.

  6. The Crystal Structure of the Core Domain of a Cellulose Induced Protein (Cip1) from Hypocrea jecorina, at 1.5 Å Resolution

    PubMed Central

    Jacobson, Frida; Karkehabadi, Saeid; Hansson, Henrik; Goedegebuur, Frits; Wallace, Louise; Mitchinson, Colin; Piens, Kathleen; Stals, Ingeborg; Sandgren, Mats

    2013-01-01

    In an effort to characterise the whole transcriptome of the fungus Hypocrea jecorina, cDNA clones of this fungus were identified that encode for previously unknown proteins that are likely to function in biomass degradation. One of these newly identified proteins, found to be co-regulated with the major H. jecorina cellulases, is a protein that was denoted Cellulose induced protein 1 (Cip1). This protein consists of a glycoside hydrolase family 1 carbohydrate binding module connected via a linker region to a domain with yet unknown function. After cloning and expression of Cip1 in H. jecorina, the protein was purified and biochemically characterised with the aim of determining a potential enzymatic activity for the novel protein. No hydrolytic activity against any of the tested plant cell wall components was found. The proteolytic core domain of Cip1 was then crystallised, and the three-dimensional structure of this was determined to 1.5 Å resolution utilising sulphur single-wavelength anomalous dispersion phasing (sulphor-SAD). A calcium ion binding site was identified in a sequence conserved region of Cip1 and is also seen in other proteins with the same general fold as Cip1, such as many carbohydrate binding modules. The presence of this ion was found to have a structural role. The Cip1 structure was analysed and a structural homology search was performed to identify structurally related proteins. The two published structures with highest overall structural similarity to Cip1 found were two poly-lyases: CsGL, a glucuronan lyase from H. jecorina and vAL-1, an alginate lyase from the Chlorella virus. This indicates that Cip1 may be a lyase. However, initial trials did not detect significant lyase activity for Cip1. Cip1 is the first structure to be solved of the 23 currently known Cip1 sequential homologs (with a sequence identity cut-off of 25%), including both bacterial and fungal members. PMID:24039705

  7. O-GlcNAcylation of ATG4B positively regulates autophagy by increasing its hydroxylase activity.

    PubMed

    Jo, Yoon Kyung; Park, Na Yeon; Park, So Jung; Kim, Byung-Gyu; Shin, Ji Hyun; Jo, Doo Sin; Bae, Dong-Jun; Suh, Young-Ah; Chang, Jeong Ho; Lee, Eun Kyung; Kim, Sang-Yeob; Kim, Jin Cheon; Cho, Dong-Hyung

    2016-08-30

    Autophagy is a catabolic degradation process and maintains cellular homeostasis. And autophagy is activated in response to various stress conditions. Although O-GlcNAcylation functions a sensor for nutrient and stress, the relationship between O-GlcNAcylation and autophagy is largely unknown. Here, we identified that ATG4B is novel target for O-GlcNAcylation under metabolic stress condition. Treatment with PugNAc, an O-GlcNAcase inhibitor increased activation of autophagy in SH-SY5Y cells. Both bimolecular fluorescence complementation and immunoprecipitation assay indicated that OGT directly interacts with ATG4B in SH-SY5Y cells. We also found that the O-GlcNAcylated ATG4B was increased in autophagy activation conditions, and down-regulation of OGT reduces O-GlcNAcylation of ATG4B under low glucose condition. Furthermore, the proteolytic activity of ATG4B for LC3 cleavage was enhanced in PugNAc-treated cells. Taken together, these results imply that O-GlcNAcylation of ATG4B regulates autophagy activation by increasing its proteolytic activity under metabolic stress condition.

  8. O-GlcNAcylation of ATG4B positively regulates autophagy by increasing its hydroxylase activity

    PubMed Central

    Jo, Yoon Kyung; Park, Na Yeon; Park, So Jung; Kim, Byung-Gyu; Shin, Ji Hyun; Jo, Doo Sin; Bae, Dong-Jun; Suh, Young-Ah; Chang, Jeong Ho; Lee, Eun Kyung; Kim, Sang-Yeob; Kim, Jin Cheon; Cho, Dong-Hyung

    2016-01-01

    Autophagy is a catabolic degradation process and maintains cellular homeostasis. And autophagy is activated in response to various stress conditions. Although O-GlcNAcylation functions a sensor for nutrient and stress, the relationship between O-GlcNAcylation and autophagy is largely unknown. Here, we identified that ATG4B is novel target for O-GlcNAcylation under metabolic stress condition. Treatment with PugNAc, an O-GlcNAcase inhibitor increased activation of autophagy in SH-SY5Y cells. Both bimolecular fluorescence complementation and immunoprecipitation assay indicated that OGT directly interacts with ATG4B in SH-SY5Y cells. We also found that the O-GlcNAcylated ATG4B was increased in autophagy activation conditions, and down-regulation of OGT reduces O-GlcNAcylation of ATG4B under low glucose condition. Furthermore, the proteolytic activity of ATG4B for LC3 cleavage was enhanced in PugNAc-treated cells. Taken together, these results imply that O-GlcNAcylation of ATG4B regulates autophagy activation by increasing its proteolytic activity under metabolic stress condition. PMID:27527864

  9. Mechanisms of Membrane Binding of Small GTPase K-Ras4B Farnesylated Hypervariable Region*

    PubMed Central

    Jang, Hyunbum; Abraham, Sherwin J.; Chavan, Tanmay S.; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I.; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. PMID:25713064

  10. The Cry4B toxin of Bacillus thuringiensis subsp. israelensis kills Permethrin-resistant Anopheles gambiae, the principal vector of malaria.

    PubMed

    Ibrahim, Mohamed A; Griko, Natalya B; Bulla, Lee A

    2013-04-01

    Resurgence of malaria has been attributed, in part, to the development of resistance by Anopheles gambiae, a principal vector of the disease, to various insecticidal compounds such as Permethrin. Permethrin, a neurotoxicant, is widely used to impregnate mosquito nets. An alternative strategy to control mosquitoes is the use of Bacillus thuringiensis subsp. israelensis (Bti) because there is no observable resistance in the field to the bacterium. Bti kills mosquitoes by targeting cadherin molecules residing in the midgut epithelium of larvae of the insect. Cry proteins (Cry4A, Cry4B, Cry10A and Cry11A) produced by the bacterium during the sporulation phase of its life cycle bind to the cadherin molecules, which serve as receptors for the proteins. These Cry proteins have variable specificity to a variety of mosquitoes, including Culex and Aedes as well as Anopheles. Importantly, selective mosquitocidal action is occasioned by binding of the respective Cry toxins to cadherins distinctive to individual mosquito species. Differential fractionation of the four Cry proteins from a novel Bti isolate (M1) and cloning and expression of their genes in Escherichia coli revealed that Cry4B is the only Cry protein that exerts insecticidal action against An. gambiae. Indeed, it does so against a Permethrin-resistant strain of the mosquito. The other three Cry proteins are ineffective. Multiple sequence alignments of the four Cry proteins revealed a divergent sequence motif in the Cry4B toxin, which most likely determines binding of the toxin to its cognate receptor, BT-R3, in An. gambiae and to its specific toxicity. A model showing Cry4B toxin binding to BT-R3 is presented.

  11. Clusters of isoleucine, leucine, and valine side chains define cores of stability in high‐energy states of globular proteins: Sequence determinants of structure and stability

    PubMed Central

    Kathuria, Sagar V.; Chan, Yvonne H.; Nobrega, R. Paul; Özen, Ayşegül

    2015-01-01

    Abstract Measurements of protection against exchange of main chain amide hydrogens (NH) with solvent hydrogens in globular proteins have provided remarkable insights into the structures of rare high‐energy states that populate their folding free‐energy surfaces. Lacking, however, has been a unifying theory that rationalizes these high‐energy states in terms of the structures and sequences of their resident proteins. The Branched Aliphatic Side Chain (BASiC) hypothesis has been developed to explain the observed patterns of protection in a pair of TIM barrel proteins. This hypothesis supposes that the side chains of isoleucine, leucine, and valine (ILV) residues often form large hydrophobic clusters that very effectively impede the penetration of water to their underlying hydrogen bond networks and, thereby, enhance the protection against solvent exchange. The linkage between the secondary and tertiary structures enables these ILV clusters to serve as cores of stability in high‐energy partially folded states. Statistically significant correlations between the locations of large ILV clusters in native conformations and strong protection against exchange for a variety of motifs reported in the literature support the generality of the BASiC hypothesis. The results also illustrate the necessity to elaborate this simple hypothesis to account for the roles of adjacent hydrocarbon moieties in defining stability cores of partially folded states along folding reaction coordinates. PMID:26660714

  12. Alphavirus capsid proteins self-assemble into core-like particles in insect cells: A promising platform for nanoparticle vaccine development.

    PubMed

    Hikke, Mia C; Geertsema, Corinne; Wu, Vincen; Metz, Stefan W; van Lent, Jan W; Vlak, Just M; Pijlman, Gorben P

    2016-02-01

    The mosquito-borne chikungunya virus (CHIKV) causes arthritic diseases in humans, whereas the aquatic salmonid alphavirus (SAV) is associated with high mortality in aquaculture of salmon and trout. Using modern biotechnological approaches, promising vaccine candidates based upon highly immunogenic, enveloped virus-like particles (eVLPs) have been developed. However, the eVLP structure (core, lipid membrane, surface glycoproteins) is more complex than that of non-enveloped, protein-only VLPs, which are structurally and morphologically 'simple'. In order to develop an alternative to alphavirus eVLPs, in this paper we engineered recombinant baculovirus vectors to produce high levels of alphavirus core-like particles (CLPs) in insect cells by expression of the CHIKV and SAV capsid proteins. The CLPs localize in dense nuclear bodies within the infected cell nucleus and are purified through a rapid and scalable protocol involving cell lysis, sonication and low-speed centrifugation steps. Furthermore, an immunogenic epitope from the alphavirus E2 glycoprotein can be successfully fused to the N-terminus of the capsid protein without disrupting the CLP self-assembling properties. We propose that immunogenic epitope-tagged alphavirus CLPs produced in insect cells present a simple and perhaps more stable alternative to alphavirus eVLPs.

  13. The T=1 capsid protein of Penicillium chrysogenum virus is formed by a repeated helix-rich core indicative of gene duplication.

    PubMed

    Luque, Daniel; González, José M; Garriga, Damiá; Ghabrial, Said A; Havens, Wendy M; Trus, Benes; Verdaguer, Nuria; Carrascosa, José L; Castón, José R

    2010-07-01

    Penicillium chrysogenum virus (PcV), a member of the Chrysoviridae family, is a double-stranded RNA (dsRNA) fungal virus with a multipartite genome, with each RNA molecule encapsidated in a separate particle. Chrysoviruses lack an extracellular route and are transmitted during sporogenesis and cell fusion. The PcV capsid, based on a T=1 lattice containing 60 subunits of the 982-amino-acid capsid protein, remains structurally undisturbed throughout the viral cycle, participates in genome metabolism, and isolates the virus genome from host defense mechanisms. Using three-dimensional cryoelectron microscopy, we determined the structure of the PcV virion at 8.0 A resolution. The capsid protein has a high content of rod-like densities characteristic of alpha-helices, forming a repeated alpha-helical core indicative of gene duplication. Whereas the PcV capsid protein has two motifs with the same fold, most dsRNA virus capsid subunits consist of dimers of a single protein with similar folds. The spatial arrangement of the alpha-helical core resembles that found in the capsid protein of the L-A virus, a fungal totivirus with an undivided genome, suggesting a conserved basic fold. The encapsidated genome is organized in concentric shells; whereas the inner dsRNA shells are well defined, the outermost layer is dense due to numerous interactions with the inner capsid surface, specifically, six interacting areas per monomer. The outermost genome layer is arranged in an icosahedral cage, sufficiently well ordered to allow for modeling of an A-form dsRNA. The genome ordering might constitute a framework for dsRNA transcription at the capsid interior and/or have a structural role for capsid stability.

  14. Amyloid Core Formed of Full-Length Recombinant Mouse Prion Protein Involves Sequence 127–143 but Not Sequence 107–126

    PubMed Central

    Chatterjee, Biswanath; Lee, Chung-Yu; Lin, Chen; Chen, Eric H.-L.; Huang, Chao-Li; Yang, Chien-Chih; Chen, Rita P.-Y.

    2013-01-01

    The principal event underlying the development of prion disease is the conversion of soluble cellular prion protein (PrPC) into its disease-causing isoform, PrPSc. This conversion is associated with a marked change in secondary structure from predominantly α-helical to a high β-sheet content, ultimately leading to the formation of aggregates consisting of ordered fibrillar assemblies referred to as amyloid. In vitro, recombinant prion proteins and short prion peptides from various species have been shown to form amyloid under various conditions and it has been proposed that, theoretically, any protein and peptide could form amyloid under appropriate conditions. To identify the peptide segment involved in the amyloid core formed from recombinant full-length mouse prion protein mPrP(23–230), we carried out seed-induced amyloid formation from recombinant prion protein in the presence of seeds generated from the short prion peptides mPrP(107–143), mPrP(107–126), and mPrP(127–143). Our results showed that the amyloid fibrils formed from mPrP(107–143) and mPrP(127–143), but not those formed from mPrP(107–126), were able to seed the amyloidogenesis of mPrP(23–230), showing that the segment residing in sequence 127–143 was used to form the amyloid core in the fibrillization of mPrP(23–230). PMID:23844138

  15. Protein architecture and core residues in unwound α-helices provide insights to the transport function of plant AtCHX17.

    PubMed

    Czerny, Daniel D; Padmanaban, Senthilkumar; Anishkin, Andriy; Venema, Kees; Riaz, Zoya; Sze, Heven

    2016-09-01

    Using Arabidopsis thaliana AtCHX17 as an example, we combine structural modeling and mutagenesis to provide insights on its protein architecture and transport function which is poorly characterized. This approach is based on the observation that protein structures are significantly more conserved in evolution than linear sequences, and mechanistic similarities among diverse transporters are emerging. Two homology models of AtCHX17 were obtained that show a protein fold similar to known structures of bacterial Na(+)/H(+) antiporters, EcNhaA and TtNapA. The distinct secondary and tertiary structure models highlighted residues at positions potentially important for CHX17 activity. Mutagenesis showed that asparagine-N200 and aspartate-D201 inside transmembrane5 (TM5), and lysine-K355 inside TM10 are critical for AtCHX17 activity. We reveal previously unrecognized threonine-T170 and lysine-K383 as key residues at unwound regions in the middle of TM4 and TM11 α-helices, respectively. Mutation of glutamate-E111 located near the membrane surface inhibited AtCHX17 activity, suggesting a role in pH sensing. The long carboxylic tail of unknown purpose has an alternating β-sheet and α-helix secondary structure that is conserved in prokaryote universal stress proteins. These results support the overall architecture of AtCHX17 and identify D201, N200 and novel residues T170 and K383 at the functional core which likely participates in ion recognition, coordination and/or translocation, similar to characterized cation/H(+) exchangers. The core of AtCHX17 models according to EcNhaA and TtNapA templates faces inward and outward, respectively, which may reflect two conformational states of the alternating access transport mode for proteins belonging to the plant CHX family.

  16. Lateral diffusion of peripheral membrane proteins on supported lipid bilayers is controlled by the additive frictional drags of (1) bound lipids and (2) protein domains penetrating into the bilayer hydrocarbon core.

    PubMed

    Ziemba, Brian P; Falke, Joseph J

    2013-01-01

    Peripheral membrane proteins bound to lipids on bilayer surfaces play central roles in a wide array of cellular processes, including many signaling pathways. These proteins diffuse in the plane of the bilayer and often undergo complex reactions involving the binding of regulatory and substrate lipids and proteins they encounter during their 2D diffusion. Some peripheral proteins, for example pleckstrin homology (PH) domains, dock to the bilayer in a relatively shallow position with little penetration into the bilayer. Other peripheral proteins exhibit more complex bilayer contacts, for example classical protein kinase C isoforms (PKCs) bind as many as six lipids in stepwise fashion, resulting in the penetration of three PKC domains (C1A, C1B, C2) into the bilayer headgroup and hydrocarbon regions. A molecular understanding of the molecular features that control the diffusion speeds of proteins bound to supported bilayers would enable key molecular information to be extracted from experimental diffusion constants, revealing protein-lipid and protein-bilayer interactions difficult to study by other methods. The present study investigates a range of 11 different peripheral protein constructs comprised by 1-3 distinct domains (PH, C1A, C1B, C2, anti-lipid antibody). By combining these constructs with various combinations of target lipids, the study measures 2D diffusion constants on supported bilayers for 17 different protein-lipid complexes. The resulting experimental diffusion constants, together with the known membrane interaction parameters of each complex, are used to analyze the molecular features correlated with diffusional slowing and bilayer friction. The findings show that both (1) individual bound lipids and (2) individual protein domains that penetrate into the hydrocarbon core make additive contributions to the friction against the bilayer, thereby defining the 2D diffusion constant. An empirical formula is developed that accurately estimates the diffusion

  17. Selective enrichment of metal-binding proteins based on magnetic core/shell microspheres functionalized with metal cations.

    PubMed

    Fang, Caiyun; Zhang, Lei; Zhang, Xiaoqin; Lu, Haojie

    2015-06-21

    Metal binding proteins play many important roles in a broad range of biological processes. Characterization of metal binding proteins is important for understanding their structure and biological functions, thus leading to a clear understanding of metal associated diseases. The present study is the first to investigate the effectiveness of magnetic microspheres functionalized with metal cations (Ca(2+), Cu(2+), Zn(2+) and Fe(3+)) as the absorbent matrix in IMAC technology to enrich metal containing/binding proteins. The putative metal binding proteins in rat liver were then globally characterized by using this strategy which is very easy to handle and can capture a number of metal binding proteins effectively. In total, 185 putative metal binding proteins were identified from rat liver including some known less abundant and membrane-bound metal binding proteins such as Plcg1, Acsl5, etc. The identified proteins are involved in many important processes including binding, catalytic activity, translation elongation factor activity, electron carrier activity, and so on.

  18. Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite.

    PubMed

    Lin, Hsiang-Yin; Chen, Jhun-Chen; Wei, Miao-Ju; Lien, Yi-Chen; Li, Huang-Hsien; Ko, Swee-Suak; Liu, Zin-Huang; Fang, Su-Chiung

    2014-01-01

    Orchidaceae is one of the most abundant and diverse families in the plant kingdom and its unique developmental patterns have drawn the attention of many evolutionary biologists. Particular areas of interest have included the co-evolution of pollinators and distinct floral structures, and symbiotic relationships with mycorrhizal flora. However, comprehensive studies to decipher the molecular basis of growth and development in orchids remain scarce. Cell proliferation governed by cell-cycle regulation is fundamental to growth and development of the plant body. We took advantage of recently released transcriptome information to systematically isolate and annotate the core cell-cycle regulators in the moth orchid Phalaenopsis aphrodite. Our data verified that Phalaenopsis cyclin-dependent kinase A (CDKA) is an evolutionarily conserved CDK. Expression profiling studies suggested that core cell-cycle genes functioning during the G1/S, S, and G2/M stages were preferentially enriched in the meristematic tissues that have high proliferation activity. In addition, subcellular localization and pairwise interaction analyses of various combinations of CDKs and cyclins, and of E2 promoter-binding factors and dimerization partners confirmed interactions of the functional units. Furthermore, our data showed that expression of the core cell-cycle genes was coordinately regulated during pollination-induced reproductive development. The data obtained establish a fundamental framework for study of the cell-cycle machinery in Phalaenopsis orchids.

  19. Crystal structure of PHO4 bHLH domain-DNA complex: flanking base recognition.

    PubMed Central

    Shimizu, T; Toumoto, A; Ihara, K; Shimizu, M; Kyogoku, Y; Ogawa, N; Oshima, Y; Hakoshima, T

    1997-01-01

    The crystal structure of a DNA-binding domain of PHO4 complexed with DNA at 2.8 A resolution revealed that the domain folds into a basic-helix-loop-helix (bHLH) motif with a long but compact loop that contains a short alpha-helical segment. This helical structure positions a tryptophan residue into an aromatic cluster so as to make the loop compact. PHO4 binds to DNA as a homodimer with direct reading of both the core E-box sequence CACGTG and its 3'-flanking bases. The 3'-flanking bases GG are recognized by Arg2 and His5. The residues involved in the E-box recognition are His5, Glu9 and Arg13, as already reported for bHLH/Zip proteins MAX and USF, and are different from those recognized by bHLH proteins MyoD and E47, although PHO4 is a bHLH protein. PMID:9303313

  20. The trappin gene family: proteins defined by an N-terminal transglutaminase substrate domain and a C-terminal four-disulphide core.

    PubMed Central

    Schalkwijk, J; Wiedow, O; Hirose, S

    1999-01-01

    Recently, several new genes have been discovered in various species which are homologous to the well-characterized human epithelial proteinase inhibitor elafin/SKALP (skin-derived anti-leukoproteinase). Because of the high degree of conservation and the similarities in genomic organization, we propose that these genes belong to a novel gene family. At the protein level, the family members are defined by: (1) an N-terminal domain consisting of a variable number of repeats with the consensus sequence Gly-Gln-Asp-Pro-Val-Lys that can act as an anchoring motif by transglutaminase cross-linking, and (2) a C-terminal four-disulphide core or whey acidic protein (WAP) domain, which harbours a functional motif involved in binding of proteinases and possibly other proteins. We have proposed the name trappin gene family as a unifying nomenclature for this group of proteins (trappin is an acronym for TRansglutaminase substrate and wAP domain containing ProteIN, and refers to its functional property of 'getting trapped' in tissues by covalent cross-linking). Analysis of the trappin family members shows extensive diversification in bovidae and suidae, whereas the number of primate trappins is probably limited. Recent biochemical and cell biological data on the human trappin family member elafin/SKALP suggest that this molecule is induced in epidermis by cellular stress. We hypothesize that trappins play an important role in the regulation of inflammation and in protection against tissue damage in stratified epithelia. PMID:10359639

  1. MPP2 is a postsynaptic MAGUK scaffold protein that links SynCAM1 cell adhesion molecules to core components of the postsynaptic density

    PubMed Central

    Rademacher, Nils; Schmerl, Bettina; Lardong, Jennifer A.; Wahl, Markus C.; Shoichet, Sarah A.

    2016-01-01

    At neuronal synapses, multiprotein complexes of trans-synaptic adhesion molecules, scaffold proteins and neurotransmitter receptors assemble to essential building blocks required for synapse formation and maintenance. Here we describe a novel role for the membrane-associated guanylate kinase (MAGUK) protein MPP2 (MAGUK p55 subfamily member 2) at synapses of rat central neurons. Through interactions mediated by its C-terminal SH3-GK domain module, MPP2 binds to the abundant postsynaptic scaffold proteins PSD-95 and GKAP and localises to postsynaptic sites in hippocampal neurons. MPP2 also colocalises with the synaptic adhesion molecule SynCAM1. We demonstrate that the SynCAM1 C-terminus interacts directly with the MPP2 PDZ domain and that MPP2 does not interact in this manner with other highly abundant postsynaptic transmembrane proteins. Our results highlight a previously unexplored role for MPP2 at postsynaptic sites as a scaffold that links SynCAM1 cell adhesion molecules to core proteins of the postsynaptic density. PMID:27756895

  2. A truncated fragment of Ov-ASP-1 consisting of the core pathogenesis-related-1 (PR-1) domain maintains adjuvanticity as the full-length protein.

    PubMed

    Guo, Jingjing; Yang, Yi; Xiao, Wenjun; Sun, Weilai; Yu, Hong; Du, Lanying; Lustigman, Sara; Jiang, Shibo; Kou, Zhihua; Zhou, Yusen

    2015-04-15

    The Onchocerca volvulus activation-associated secreted protein-1 (Ov-ASP-1) has good adjuvanticity for a variety of antigens and vaccines, probably due to its ability activate antigen-processing cells (APCs). However, the functional domain of Ov-ASP-1 as an adjuvant is not clearly defined. Based on the structural prediction of this protein family, we constructed a 16-kDa recombinant protein of Ov-ASP-1 that contains only the core pathogenesis-related-1 (PR-1) domain (residues 10-153), designated ASPPR. We found that ASPPR exhibits adjuvanticity similar to that of the full-length Ov-ASP-1 (residues 10-220) for various antigens, including ovalbumin (OVA), HBsAg protein antigen, and the HIV peptide 5 (Pep5) antigen, but it is more suitable for vaccine design in ASPPR-antigen fusion proteins, and more stable in PBS than Ov-ASP-1 stored at -70 °C. These results suggest that ASPPR might be the functional region of Ov-ASP-1 as an adjuvant, and therefore could be developed as an adjuvant for human use.

  3. Zasp52, a Core Z-disc Protein in Drosophila Indirect Flight Muscles, Interacts with α-Actinin via an Extended PDZ Domain

    PubMed Central

    Liao, Kuo An; González-Morales, Nicanor

    2016-01-01

    Z-discs are organizing centers that establish and maintain myofibril structure and function. Important Z-disc proteins are α-actinin, which cross-links actin thin filaments at the Z-disc and Zasp PDZ domain proteins, which directly interact with α-actinin. Here we investigate the biochemical and genetic nature of this interaction in more detail. Zasp52 is the major Drosophila Zasp PDZ domain protein, and is required for myofibril assembly and maintenance. We show by in vitro biochemistry that the PDZ domain plus a C-terminal extension is the only area of Zasp52 involved in the interaction with α-actinin. In addition, site-directed mutagenesis of 5 amino acid residues in the N-terminal part of the PDZ domain, within the PWGFRL motif, abolish binding to α-actinin, demonstrating the importance of this motif for α-actinin binding. Rescue assays of a novel Zasp52 allele demonstrate the crucial importance of the PDZ domain for Zasp52 function. Flight assays also show that a Zasp52 mutant suppresses the α-actinin mutant phenotype, indicating that both proteins are core structural Z-disc proteins required for optimal Z-disc function. PMID:27783625

  4. An AP4B1 frameshift mutation in siblings with intellectual disability and spastic tetraplegia further delineates the AP-4 deficiency syndrome.

    PubMed

    Abdollahpour, Hengameh; Alawi, Malik; Kortüm, Fanny; Beckstette, Michael; Seemanova, Eva; Komárek, Vladimír; Rosenberger, Georg; Kutsche, Kerstin

    2015-02-01

    The recently proposed adaptor protein 4 (AP-4) deficiency syndrome comprises a group of congenital neurological disorders characterized by severe intellectual disability (ID), delayed or absent speech, hereditary spastic paraplegia, and growth retardation. AP-4 is a heterotetrameric protein complex with important functions in vesicle trafficking. Mutations in genes affecting different subunits of AP-4, including AP4B1, AP4E1, AP4S1, and AP4M1, have been reported in patients with the AP-4 deficiency phenotype. We describe two siblings from a non-consanguineous couple who presented with severe ID, absent speech, microcephaly, growth retardation, and progressive spastic tetraplegia. Whole-exome sequencing in the two patients identified the novel homozygous 2-bp deletion c.1160_1161delCA (p.(Thr387Argfs*30)) in AP4B1. Sanger sequencing confirmed the mutation in the siblings and revealed it in the heterozygous state in both parents. The AP4B1-associated phenotype has previously been assigned to spastic paraplegia-47. Identification of a novel AP4B1 alteration in two patients with clinical manifestations highly similar to other individuals with mutations affecting one of the four AP-4 subunits further supports the observation that loss of AP-4 assembly or functionality underlies the common clinical features in these patients and underscores the existence of the clinically recognizable AP-4 deficiency syndrome.

  5. Phosphodiesterase 4B negatively regulates endotoxin-activated interleukin-1 receptor antagonist responses in macrophages

    PubMed Central

    Yang, Jing-Xing; Hsieh, Kou-Chou; Chen, Yi-Ling; Lee, Chien-Kuo; Conti, Marco; Chuang, Tsung-Hsien; Wu, Chin-Pyng; Jin, S.-L. Catherine

    2017-01-01

    Activation of TLR4 by lipopolysaccharide (LPS) induces both pro-inflammatory and anti-inflammatory cytokine production in macrophages. Type 4 phosphodiesterases (PDE4) are key cAMP-hydrolyzing enzymes, and PDE4 inhibitors are considered as immunosuppressors to various inflammatory responses. We demonstrate here that PDE4 inhibitors enhance the anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1Ra) secretion in LPS-activated mouse peritoneal macrophages, and this response was regulated at the transcriptional level rather than an increased IL-1Ra mRNA stability. Studies with PDE4-deficient macrophages revealed that the IL-1Ra upregulation elicited by LPS alone is PKA-independent, whereas the rolipram-enhanced response was mediated by inhibition of only PDE4B, one of the three PDE4 isoforms expressed in macrophages, and it requires PKA but not Epac activity. However, both pathways activate CREB to induce IL-1Ra expression. PDE4B ablation also promoted STAT3 phosphorylation (Tyr705) to LPS stimulation, but this STAT3 activation is not entirely responsible for the IL-1Ra upregulation in PDE4B-deficient macrophages. In a model of LPS-induced sepsis, only PDE4B-deficient mice displayed an increased circulating IL-1Ra, suggesting a protective role of PDE4B inactivation in vivo. These findings demonstrate that PDE4B negatively modulates anti-inflammatory cytokine expression in innate immune cells, and selectively targeting PDE4B should retain the therapeutic benefits of nonselective PDE4 inhibitors. PMID:28383060

  6. The higher level of complexity of K-Ras4B activation at the membrane

    PubMed Central

    Jang, Hyunbum; Banerjee, Avik; Chavan, Tanmay S.; Lu, Shaoyong; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2016-01-01

    Is nucleotide exchange sufficient to activate K-Ras4B? To signal, oncogenic rat sarcoma (Ras) anchors in the membrane and recruits effectors by exposing its effector lobe. With the use of NMR and molecular dynamics (MD) simulations, we observed that in solution, farnesylated guanosine 5′-diphosphate (GDP)-bound K-Ras4B is predominantly autoinhibited by its hypervariable region (HVR), whereas the GTP-bound state favors an activated, HVR-released state. On the anionic membrane, the catalytic domain adopts multiple orientations, including parallel (∼180°) and perpendicular (∼90°) alignments of the allosteric helices, with respect to the membrane surface direction. In the autoinhibited state, the HVR is sandwiched between the effector lobe and the membrane; in the active state, with membrane-anchored farnesyl and unrestrained HVR, the catalytic domain fluctuates reinlessly, exposing its effector-binding site. Dimerization and clustering can reduce the fluctuations. This achieves preorganized, productive conformations. Notably, we also observe HVR-autoinhibited K-Ras4B-GTP states, with GDP-bound-like orientations of the helices. Thus, we propose that the GDP/GTP exchange may not be sufficient for activation; instead, our results suggest that the GDP/GTP exchange, HVR sequestration, farnesyl insertion, and orientation/localization of the catalytic domain at the membrane conjointly determine the active or inactive state of K-Ras4B. Importantly, K-Ras4B-GTP can exist in active and inactive states; on its own, GTP binding may not compel K-Ras4B activation.—Jang, H., Banerjee, A., Chavan, T. S, Lu, S., Zhang, J., Gaponenko, V., Nussinov, R. The higher level of complexity of K-Ras4B activation at the membrane. PMID:26718888

  7. Sites within the complement C3b/C4b receptor important for the specificity of ligand binding.

    PubMed Central

    Krych, M; Hourcade, D; Atkinson, J P

    1991-01-01

    Cysteine-rich repeated units of 40-70 amino acids are building blocks of many mammalian proteins, including 12 proteins of the complement system. Human complement arranged motifs, designated short consensus repeats (SCRs), which constitute the entire extracellular portion of this protein. Klickstein et al. [Klickstein, L. B., Bartow, T. J., Miletic, V., Rabson, L. D., Smith, J. A. & Fearon, D. T. (1988) J. Exp. Med. 168, 1699-1717 (abstr.)] localized a C4b binding domain to SCR-1 and/or SCR-2 and a C3b binding domain to SCR-8 and/or SCR-9. These SCRs bind different ligands, although SCR-1 and SCR-8 are 55% homologous and SCR-2 and SCR-9 are 70% homologous. To examine if one or two SCRs are required for ligand binding and to define sites within the SCRs that determine specificity of binding, mutagenesis analysis of a truncated, secreted form of CR1, called CR1-4 by Hourcade et al. [Hourcade, D., Meisner, D. R., Atkinson, J. P. & Holers, V. M. (1988) J. Exp. Med. 168, 1255-1270], was undertaken. The latter, composed of the first eight and one-half amino-terminal SCRs of CR1, efficiently bound C4b but not iC3. SCR-1 and SCR-2 were necessary for this interaction. Analysis of the mutant CR1-4 proteins, in which amino acids in SCR-1 and SCR-2 were substituted a few at a time with the homologous amino acids of SCR-8 and SCR-9, led to the identification of one amino acid in SCR-1 and three amino acids in SCR-2 important for C4b binding. Furthermore, five amino acids at the end of SCR-9, if placed in the homologous positions of SCR-2, conferred iC3 binding and are likely essential for ligand binding activity of SCR-8 and SCR-9. This iC3 binding occurred only if SCR-1 was present, indicating that two contiguous SCRs are necessary for this interaction. These results provide identification of amino acids within SCRs that are important for ligand binding. Images PMID:1827918

  8. Evaluation of a new wide pore core-shell material (Aeris WIDEPORE) and comparison with other existing stationary phases for the analysis of intact proteins.

    PubMed

    Fekete, Szabolcs; Berky, Róbert; Fekete, Jenő; Veuthey, Jean-Luc; Guillarme, Davy

    2012-05-04

    The separation of large biomolecules such as proteins or monoclonal antibodies (mAbs) by RPLC can be drastically enhanced thanks to the use of columns packed with wide-pore porous sub-2 μm particles or shell particles. In this context, a new wide-pore core-shell material has been recently released under the trademark Aeris WIDEPORE. It is made of a 3.2 μm solid inner core surrounded by a 0.2 μm porous layer (total particle size of 3.6 μm). The aim of this study was to evaluate the performance of this new material, compare it to other recently developed and older conventional wide-pore columns and demonstrate its applicability to real-life separations of proteins and mAbs. At first, the traditional h(min) values of the Aeris WIDEPORE column were determined for small model compounds. The h(min) values were equal to 1.7-1.8 and 1.4 for the 2.1 and 4.6 mm I.D. columns, respectively, which are in agreement with the values reported for other core-shell materials. In the case of a small protein Insulin (5.7 kDa), the achievable lowest h value was below 2 and this impressive result confirms that the Aeris WIDEPORE material should be dedicated to protein analysis. This column was then compared with five other commercially available wide-pore and medium-pore stationary phases, in the gradient elution mode, using various flow rates, gradient steepness and model proteins of MW=5.7-66.8 kDa. The Aeris WIDEPORE material often provided the best performance, in terms of peak capacity, peak capacity per time and pressure unit (PPT) and also based on the gradient kinetic plot representation. Finally, real separations of filgrastim (18.8 kDa) and its oxidized and reduced forms were performed on the different columns and the Aeris WIDEPORE material provided the most impressive performance (peak capacity>100 for t(grad)<6 min). Last but not least, this new material was also evaluated on digested and reduced mAb and powerful, high-throughput separations were also attained.

  9. The C Terminus of the Core β-Ladder Domain in Japanese Encephalitis Virus Nonstructural Protein 1 Is Flexible for Accommodation of Heterologous Epitope Fusion

    PubMed Central

    Yen, Li-Chen; Liao, Jia-Teh; Lee, Hwei-Jen; Chou, Wei-Yuan; Chen, Chun-Wei; Lin, Yi-Ling

    2015-01-01

    ABSTRACT NS1 is the only nonstructural protein that enters the lumen of the endoplasmic reticulum (ER), where NS1 is glycosylated, forms a dimer, and is subsequently secreted during flavivirus replication as dimers or hexamers, which appear to be highly immunogenic to the infected host, as protective immunity can be elicited against homologous flavivirus infections. Here, by using a trans-complementation assay, we identified the C-terminal end of NS1 derived from Japanese encephalitis virus (JEV), which was more flexible than other regions in terms of housing foreign epitopes without a significant impact on virus replication. This mapped flexible region is located in the conserved tip of the core β-ladder domain of the multimeric NS1 structure and is also known to contain certain linear epitopes, readily triggering specific antibody responses from the host. Despite becoming attenuated, recombinant JEV with insertion of a neutralizing epitope derived from enterovirus 71 (EV71) into the C-terminal end of NS1 not only could be normally released from infected cells, but also induced dual protective immunity for the host to counteract lethal challenge with either JEV or EV71 in neonatal mice. These results indicated that the secreted multimeric NS1 of flaviviruses may serve as a natural protein carrier to render epitopes of interest more immunogenic in the C terminus of the core β-ladder domain. IMPORTANCE The positive-sense RNA genomes of mosquito-borne flaviviruses appear to be flexible in terms of accommodating extra insertions of short heterologous antigens into their virus genes. Here, we illustrate that the newly identified C terminus of the core β-ladder domain in NS1 could be readily inserted into entities such as EV71 epitopes, and the resulting NS1-epitope fusion proteins appeared to maintain normal virus replication, secretion ability, and multimeric formation from infected cells. Nonetheless, such an insertion attenuated the recombinant JEV in mice

  10. Peptidergic cell-specific synaptotagmins in Drosophila: localization to dense-core granules and regulation by the bHLH protein DIMMED.

    PubMed

    Park, Dongkook; Li, Peiyao; Dani, Adish; Taghert, Paul H

    2014-09-24

    Bioactive peptides are packaged in large dense-core secretory vesicles, which mediate regulated secretion by exocytosis. In a variety of tissues, the regulated release of neurotransmitters and hormones is dependent on calcium levels and controlled by vesicle-associated synaptotagmin (SYT) proteins. Drosophila express seven SYT isoforms, of which two (SYT-α and SYT-β) were previously found to be enriched in neuroendocrine cells. Here we show that SYT-α and SYT-β tissue expression patterns are similar, though not identical. Furthermore, both display significant overlap with the bHLH transcription factor DIMM, a known neuroendocrine (NE) regulator. RNAi-mediated knockdown indicates that both SYT-α and SYT-β functions are essential in identified NE cells as these manipulations phenocopy loss-of-function states for the indicated peptide hormones. In Drosophila cell culture, both SYT-α and neuropeptide cargo form DIMM-dependent fluorescent puncta that are coassociated by super-resolution microscopy. DIMM is required to maintain SYT-α and SYT-β protein levels in DIMM-expressing cells in vivo. In neurons normally lacking all three proteins (DIMM(-)/SYT-α(-)/SYT-β(-)), DIMM misexpression conferred accumulation of endogenous SYT-α and SYT-β proteins. Furthermore transgenic SYT-α does not appreciably accumulate in nonpeptidergic neurons in vivo but does so if DIMM is comisexpressed. Among Drosophila syt genes, only syt-α and syt-β RNA levels are upregulated by DIMM overexpression. Together, these data suggest that SYT-α and SYT-β are important for NE cell physiology, that one or both are integral membrane components of the large dense-core vesicles, and that they are closely regulated by DIMM at a post-transcriptional level.

  11. Discover natural compounds as potential phosphodiesterase-4B inhibitors via computational approaches.

    PubMed

    Li, Jing; Zhou, Nan; Liu, Wen; Li, Jianzong; Feng, Yu; Wang, Xiaoyun; Wu, Chuanfang; Bao, Jinku

    2016-05-01

    cAMP, intracellular cyclic adenosine monophosphate, is a ubiquitous second messenger that plays a key role in many physiological processes. PDE4B which can reduce the cAMP level by hydrolyzing cAMP to 5'-AMP has become a therapeutic target for the treatment of human diseases such as respiratory disorders, inflammation diseases, neurological and psychiatric disorders. However, the use of currently available PDE4B inhibitors is restricted due to serious side effects caused by targeting PDE4D. Hence, we are attempting to find out subfamily-selective PDE4B inhibitors from natural products, using computer-aided approaches such as virtual screening, docking, and molecular dynamics simulation. Finally, four potential PDE4B-selective inhibitors (ZINC67912770, ZINC67912780, ZINC72320169, and ZINC28882432) were found. Compared to the reference drug (roflumilast), they scored better during the virtual screening process. Binding free energy for them was -317.51, -239.44, -215.52, and -165.77 kJ/mol, better than -129.05 kJ/mol of roflumilast. The pharmacophore model of the four candidate inhibitors comprised six features, including one hydrogen bond donor, four hydrogen bond acceptors, and one aromatic ring feature. It is expected that our study will pave the way for the design of potent PDE4B-selective inhibitors of new drugs to treat a wide variety of diseases such as asthma, COPD, psoriasis, depression, etc.

  12. Overexpression of Rhodobacter sphaeroides PufX-bearing maltose-binding protein and its effect on the stability of reconstituted light-harvesting core antenna complex.

    PubMed

    Sakai, Shunnsuke; Hiro, Akito; Kondo, Masaharu; Mizuno, Toshihisa; Tanaka, Toshiki; Dewa, Takehisa; Nango, Mamoru

    2012-03-01

    The PufX protein, encoded by the pufX gene of Rhodobacter sphaeroides, plays a key role in the organization and function of the core antenna (LH1)-reaction centre (RC) complex, which collects photons and triggers primary photochemical reactions. We synthesized a PufX/maltose-binding protein (MBP) fusion protein to study the effect of the PufX protein on the reconstitution of B820 subunit-type and LH1-type complexes. The fusion protein was synthesized using an Escherichia coli expression system and purified by affinity chromatography. Reconstitution experiments demonstrated that the MBP-PufX protein destabilizes the subunit-type complex (20°C), consistent with previous reports. Interestingly, however, the preformed LH1-type complex was stable in the presence of MBP-PufX. The MBP-PufX protein did not influence the preformed LH1-type complexes (4°C). The LH1-type complex containing MBP-PufX showed a unique temperature-dependent structural transformation that was irreversible. The predominant form of the complex at 4°C was the LH1-type. When shifted to 20°C, subunit-type complexes became predominant. Upon subsequent cooling back to 4°C, instead of re-forming the LH1-type complexes, the predominant form remained the subunit-type complexes. In contrast, reversible transformation of LH1 (4°C) and subunit-type complexes (20°C) occurs in the absence of PufX. These results are consistent with the suggestion that MBP-PufX interacts with the LH1α- polypeptide in the subunit (α/β)-type complex (at 20°C), preventing oligomerization of the subunit to form LH1-type complexes.

  13. AJUBA LIM Proteins Limit Hippo Activity in Proliferating Cells by Sequestering the Hippo Core Kinase Complex in the Cytosol

    PubMed Central

    Jagannathan, Radhika; Schimizzi, Gregory V.; Zhang, Kun; Loza, Andrew J.; Yabuta, Norikazu; Nojima, Hitoshi

    2016-01-01

    The Hippo pathway controls organ growth and is implicated in cancer development. Whether and how Hippo pathway activity is limited to sustain or initiate cell growth when needed is not understood. The members of the AJUBA family of LIM proteins are negative regulators of the Hippo pathway. In mammalian epithelial cells, we found that AJUBA LIM proteins limit Hippo regulation of YAP, in proliferating cells only, by sequestering a cytosolic Hippo kinase complex in which LATS kinase is inhibited. At the plasma membranes of growth-arrested cells, AJUBA LIM proteins do not inhibit or associate with the Hippo kinase complex. The ability of AJUBA LIM proteins to inhibit YAP regulation by Hippo and to associate with the kinase complex directly correlate with their capacity to limit Hippo signaling during Drosophila wing development. AJUBA LIM proteins did not influence YAP activity in response to cell-extrinsic or cell-intrinsic mechanical signals. Thus, AJUBA LIM proteins limit Hippo pathway activity in contexts where cell proliferation is needed. PMID:27457617

  14. Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers

    PubMed Central

    Hsu, Yung-Hen; Lin, Chang-Tun; Yu, Yi-Hsun; Chou, Ying-Chao; Liu, Shih-Jung; Chan, Err-Cheng

    2016-01-01

    In this study, we developed biodegradable sheath-core-structured drug-eluting nanofibers for sustainable delivery of antibiotics (vancomycin and ceftazidime) and recombinant human bone morphogenetic protein (rhBMP-2) via electrospinning. To prepare the biodegradable sheath-core nanofibers, we first prepared solutions of poly(d,l)-lactide-co-glycolide, vancomycin, and ceftazidime in 1,1,1,3,3,3-hexafluoro-2-propanol and rhBMP-2 in phosphate-buffered solution. The poly(d,l)-lactide-co-glycolide/antibiotics and rhBMP-2 solutions were then fed into two different capillary tubes controlled by two independent pumps for coaxial electrospinning. The electrospun nanofiber morphology was observed under a scanning electron microscope. We further characterized the in vitro antibiotic release from the nanofibers via high-performance liquid chromatography and that of rhBMP-2 via enzyme-linked immunosorbent assay and alkaline phosphatase activity. We showed that the biodegradable coaxially electrospun nanofibers could release high vancomycin/ceftazidime concentrations (well above the minimum inhibition concentration [MIC]90) and rhBMP-2 for >4 weeks. These experimental results demonstrate that novel biodegradable nanofibers can be constructed with various pharmaceuticals and proteins for long-term drug deliveries. PMID:27574423

  15. Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers.

    PubMed

    Hsu, Yung-Hen; Lin, Chang-Tun; Yu, Yi-Hsun; Chou, Ying-Chao; Liu, Shih-Jung; Chan, Err-Cheng

    2016-01-01

    In this study, we developed biodegradable sheath-core-structured drug-eluting nanofibers for sustainable delivery of antibiotics (vancomycin and ceftazidime) and recombinant human bone morphogenetic protein (rhBMP-2) via electrospinning. To prepare the biodegradable sheath-core nanofibers, we first prepared solutions of poly(d,l)-lactide-co-glycolide, vancomycin, and ceftazidime in 1,1,1,3,3,3-hexafluoro-2-propanol and rhBMP-2 in phosphate-buffered solution. The poly(d,l)-lactide-co-glycolide/antibiotics and rhBMP-2 solutions were then fed into two different capillary tubes controlled by two independent pumps for coaxial electrospinning. The electrospun nanofiber morphology was observed under a scanning electron microscope. We further characterized the in vitro antibiotic release from the nanofibers via high-performance liquid chromatography and that of rhBMP-2 via enzyme-linked immunosorbent assay and alkaline phosphatase activity. We showed that the biodegradable coaxially electrospun nanofibers could release high vancomycin/ceftazidime concentrations (well above the minimum inhibition concentration [MIC]90) and rhBMP-2 for >4 weeks. These experimental results demonstrate that novel biodegradable nanofibers can be constructed with various pharmaceuticals and proteins for long-term drug deliveries.

  16. Antibodies to the Core Proteins of Nairobi Sheep Disease Virus/Ganjam Virus Reveal Details of the Distribution of the Proteins in Infected Cells and Tissues

    PubMed Central

    Lasecka, Lidia; Bin-Tarif, Abdelghani; Bridgen, Anne; Juleff, Nicholas; Waters, Ryan A.; Baron, Michael D.

    2015-01-01

    Nairobi sheep disease virus (NSDV; also called Ganjam virus in India) is a bunyavirus of the genus Nairovirus. It causes a haemorrhagic gastroenteritis in sheep and goats with mortality up to 90%. The virus is closely related to the human pathogen Crimean-Congo haemorrhagic fever virus (CCHFV). Little is currently known about the biology of NSDV. We have generated specific antibodies against the virus nucleocapsid protein (N) and polymerase (L) and used these to characterise NSDV in infected cells and to study its distribution during infection in a natural host. Due to its large size and the presence of a papain-like protease (the OTU-like domain) it has been suggested that the L protein of nairoviruses undergoes an autoproteolytic cleavage into polymerase and one or more accessory proteins. Specific antibodies which recognise either the N-terminus or the C-terminus of the NSDV L protein showed no evidence of L protein cleavage in NSDV-infected cells. Using the specific anti-N and anti-L antibodies, it was found that these viral proteins do not fully colocalise in infected cells; the N protein accumulated near the Golgi at early stages of infection while the L protein was distributed throughout the cytoplasm, further supporting the multifunctional nature of the L protein. These antibodies also allowed us to gain information about the organs and cell types targeted by the virus in vivo. We could detect NSDV in cryosections prepared from various tissues collected post-mortem from experimentally inoculated animals; the virus was found in the mucosal lining of the small and large intestine, in the lungs, and in mesenteric lymph nodes (MLN), where NSDV appeared to target monocytes and/or macrophages. PMID:25905707

  17. Antibodies to the core proteins of Nairobi sheep disease virus/Ganjam virus reveal details of the distribution of the proteins in infected cells and tissues.

    PubMed

    Lasecka, Lidia; Bin-Tarif, Abdelghani; Bridgen, Anne; Juleff, Nicholas; Waters, Ryan A; Baron, Michael D

    2015-01-01

    Nairobi sheep disease virus (NSDV; also called Ganjam virus in India) is a bunyavirus of the genus Nairovirus. It causes a haemorrhagic gastroenteritis in sheep and goats with mortality up to 90%. The virus is closely related to the human pathogen Crimean-Congo haemorrhagic fever virus (CCHFV). Little is currently known about the biology of NSDV. We have generated specific antibodies against the virus nucleocapsid protein (N) and polymerase (L) and used these to characterise NSDV in infected cells and to study its distribution during infection in a natural host. Due to its large size and the presence of a papain-like protease (the OTU-like domain) it has been suggested that the L protein of nairoviruses undergoes an autoproteolytic cleavage into polymerase and one or more accessory proteins. Specific antibodies which recognise either the N-terminus or the C-terminus of the NSDV L protein showed no evidence of L protein cleavage in NSDV-infected cells. Using the specific anti-N and anti-L antibodies, it was found that these viral proteins do not fully colocalise in infected cells; the N protein accumulated near the Golgi at early stages of infection while the L protein was distributed throughout the cytoplasm, further supporting the multifunctional nature of the L protein. These antibodies also allowed us to gain information about the organs and cell types targeted by the virus in vivo. We could detect NSDV in cryosections prepared from various tissues collected post-mortem from experimentally inoculated animals; the virus was found in the mucosal lining of the small and large intestine, in the lungs, and in mesenteric lymph nodes (MLN), where NSDV appeared to target monocytes and/or macrophages.

  18. Wetting of microstructured alumina fabricated by epitaxial growth of Al4B2O9 whiskers

    NASA Astrophysics Data System (ADS)

    Wang, Yifeng; Feng, Jicai; Chen, Zhe; Song, Xiaoguo; Cao, Jian

    2015-12-01

    Topographical microstructures were fabricated on alumina by epitaxial growth of Al4B2O9 whiskers in air. The products were characterized via scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The whiskers were found to grow along the [0 0 1] crystallographic direction, and the lattice mismatch between Al2O3 and Al4B2O9 was determined to be 0.03%. The wetting of the Al4B2O9-whisker-coated surfaces by Ag-36.7Cu-8.0Ti at.% alloy was studied. The time needed to reach the equilibrium stage reduced as the temperature increased, and the final contact angle for liquid alloy on the rough surface was 27° at 880 °C. The wetting dynamics of the whiskers coated surfaces was investigated. After wetting, a whisker-interconnected region was formed between alumina and the alloy.

  19. Alternative pathways for association and dissociation of the calmodulin-binding domain of plasma membrane Ca(2+)-ATPase isoform 4b (PMCA4b).

    PubMed

    Penniston, John T; Caride, Ariel J; Strehler, Emanuel E

    2012-08-24

    The calmodulin (CaM)-binding domain of isoform 4b of the plasma membrane Ca(2+) -ATPase (PMCA) pump is represented by peptide C28. CaM binds to either PMCA or C28 by a mechanism in which the primary anchor residue Trp-1093 binds to the C-terminal lobe of the extended CaM molecule, followed by collapse of CaM with the N-terminal lobe binding to the secondary anchor Phe-1110 (Juranic, N., Atanasova, E., Filoteo, A. G., Macura, S., Prendergast, F. G., Penniston, J. T., and Strehler, E. E. (2010) J. Biol. Chem. 285, 4015-4024). This is a relatively rapid reaction, with an apparent half-time of ~1 s. The dissociation of CaM from PMCA4b or C28 is much slower, with an overall half-time of ~10 min. Using targeted molecular dynamics, we now show that dissociation of Ca(2+)-CaM from C28 may occur by a pathway in which Trp-1093, although deeply embedded in a pocket in the C-terminal lobe of CaM, leaves first. The dissociation begins by relatively rapid release of Trp-1093, followed by very slow release of Phe-1110, removal of C28, and return of CaM to its conformation in the free state. Fluorescence measurements and molecular dynamics calculations concur in showing that this alternative path of release of the PMCA4b CaM-binding domain is quite different from that of binding. The intermediate of dissociation with exposed Trp-1093 has a long lifetime (minutes) and may keep the PMCA primed for activation.

  20. Circadian changes in core body temperature, metabolic rate and locomotor activity in rats on a high-protein, carbohydrate-free diet.

    PubMed

    Yamaoka, Ippei; Hagi, Mieko; Doi, Masako

    2009-12-01

    Ingestion of a high-protein meal results in body weight loss due to elevated energy expenditure, while also increasing satiety and decreasing subsequent food intake. The present study aimed to clarify the effects of a high-protein, carbohydrate-free diet (HPCFD) on these physiological indicators from a circadian perspective. Rats were given HPCFD or a pair-fed normal protein content diet (20% protein; NPD) for 4 d. The HPCFD group lost more body weight than the NPD group. Oxygen consumption (VO(2)) in the HPCFD group did not change during the experimental period, and tended to be higher during the light (L) phase than in the NPD group. Carbon dioxide production (VCO(2)) during the L phase was higher in the HPCFD group than in the NPD group, where VCO(2) was gradually decreased during the last dark (D) phase and throughout the L phase. The HPCFD group exhibited higher daily core body temperature (T(b)), particularly during the late D phase and throughout the L phase when compared to the NPD group. Locomotor activities during the D phase of the NPD group tended to gradually increase and were thus significantly higher than in the HPCFD group. These results suggest that HPCFD, even if energy intake is insufficient, maintains circadian changes in metabolic rates, resulting in maintenance of elevated daily T(b) and body weight reduction without increasing activity.

  1. The core and carboxyl-terminal domains of the integrase protein of human immunodeficiency virus type 1 each contribute to nonspecific DNA binding.

    PubMed Central

    Engelman, A; Hickman, A B; Craigie, R

    1994-01-01

    The integrase protein of human immunodeficiency virus type 1 removes two nucleotides from the 3' ends of reverse-transcribed human immunodeficiency virus type 1 DNA (3' processing) and covalently inserts the processed ends into a target DNA (DNA strand transfer). Mutant integrase proteins that lack the amino-and/or carboxyl-terminal domains are incapable of catalyzing 3' processing and DNA strand transfer but are competent for an apparent reversal of the DNA strand transfer reaction (disintegration) in vitro. Here, we investigate the binding of integrase to DNA by UV cross-linking. Cross-linked complexes form with a variety of DNA substrates independent of the presence of divalent metal ion. Analysis with amino- and carboxyl-terminal deletion mutant proteins shows that residues 213 to 266 of the 288-residue protein are required for efficient cross-linking in the absence of divalent metal ion. Carboxyl-terminal deletion mutants that lack this region efficiently cross-link only to the branched disintegration DNA substrate, and this reaction is dependent on the presence of metal ion. Both the core and C-terminal domains of integrase therefore contribute to nonspecific DNA binding. Images PMID:8057470

  2. Possible Involvement of the Double-Stranded RNA-Binding Core Protein ςA in the Resistance of Avian Reovirus to Interferon

    PubMed Central

    Martínez-Costas, José; González-López, Claudia; Vakharia, Vikram N.; Benavente, Javier

    2000-01-01

    Treatment of primary cultures of chicken embryo fibroblasts with a recombinant chicken alpha/beta interferon (rcIFN) induces an antiviral state that causes a strong inhibition of vaccinia virus and vesicular stomatitis virus replication but has no effect on avian reovirus S1133 replication. The fact that avian reovirus polypeptides are synthesized normally in rcIFN-treated cells prompted us to investigate whether this virus expresses factors that interfere with the activation and/or the activity of the IFN-induced, double-stranded RNA (dsRNA)-dependent enzymes. Our results demonstrate that extracts of avian-reovirus-infected cells, but not those of uninfected cells, are able to relieve the translation-inhibitory activity of dsRNA in reticulocyte lysates, by blocking the activation of the dsRNA-dependent enzymes. In addition, our results show that protein ςA, an S1133 core polypeptide, binds to dsRNA in an irreversible manner and that clearing this protein from extracts of infected cells abolishes their protranslational capacity. Taken together, our results raise the interesting possibility that protein ςA antagonizes the IFN-induced cellular response against avian reovirus by blocking the intracellular activation of enzyme pathways dependent on dsRNA, as has been suggested for several other viral dsRNA-binding proteins. PMID:10627522

  3. A Dual Laser Scanning Confocal and Transmission Electron Microscopy Analysis of the Intracellular Localization, Aggregation and Particle Formation of African Horse Sickness Virus Major Core Protein VP7.

    PubMed

    Wall, Gayle V; Rutkowska, Daria A; Mizrachi, Eshchar; Huismans, Henk; van Staden, Vida

    2017-02-01

    The bulk of the major core protein VP7 in African horse sickness virus (AHSV) self-assembles into flat, hexagonal crystalline particles in a process appearing unrelated to viral replication. Why this unique characteristic of AHSV VP7 is genetically conserved, and whether VP7 aggregation and particle formation have an effect on cellular biology or the viral life cycle, is unknown. Here we investigated how different small peptide and enhanced green fluorescent protein (eGFP) insertions into the VP7 top domain affected VP7 localization, aggregation, and particle formation. This was done using a dual laser scanning confocal and transmission electron microscopy approach in conjunction with analyses of the solubility, aggregation, and fluorescence profiles of the proteins. VP7 top domain modifications did not prevent trimerization, or intracellular trafficking, to one or two discrete sites in the cell. However, modifications that resulted in a misfolded and insoluble VP7-eGFP component blocked trafficking, and precluded protein accumulation at a single cellular site, perhaps by interfering with normal trimer-trimer interactions. Furthermore, the modifications disrupted the stable layering of the trimers into characteristic AHSV VP7 crystalline particles. It was concluded that VP7 trafficking is driven by a balance between VP7 solubility, trimer forming ability, and trimer-trimer interactions.

  4. Genome-first approach diagnosed Cabezas syndrome via novel CUL4B mutation detection.

    PubMed

    Okamoto, Nobuhiko; Watanabe, Miki; Naruto, Takuya; Matsuda, Keiko; Kohmoto, Tomohiro; Saito, Masako; Masuda, Kiyoshi; Imoto, Issei

    2017-01-01

    Cabezas syndrome is a syndromic form of X-linked intellectual disability primarily characterized by a short stature, hypogonadism and abnormal gait, with other variable features resulting from mutations in the CUL4B gene. Here, we report a clinically undiagnosed 5-year-old male with severe intellectual disability. A genome-first approach using targeted exome sequencing identified a novel nonsense mutation [NM_003588.3:c.2698G>T, p.(Glu900*)] in the last coding exon of CUL4B, thus diagnosing this patient with Cabezas syndrome.

  5. Genome-first approach diagnosed Cabezas syndrome via novel CUL4B mutation detection

    PubMed Central

    Okamoto, Nobuhiko; Watanabe, Miki; Naruto, Takuya; Matsuda, Keiko; Kohmoto, Tomohiro; Saito, Masako; Masuda, Kiyoshi; Imoto, Issei

    2017-01-01

    Cabezas syndrome is a syndromic form of X-linked intellectual disability primarily characterized by a short stature, hypogonadism and abnormal gait, with other variable features resulting from mutations in the CUL4B gene. Here, we report a clinically undiagnosed 5-year-old male with severe intellectual disability. A genome-first approach using targeted exome sequencing identified a novel nonsense mutation [NM_003588.3:c.2698G>T, p.(Glu900*)] in the last coding exon of CUL4B, thus diagnosing this patient with Cabezas syndrome. PMID:28144446

  6. Mutation in the AP4B1 gene cause hereditary spastic paraplegia type 47 (SPG47) .

    PubMed

    Bauer, Peter; Leshinsky-Silver, Esther; Blumkin, Lubov; Schlipf, Nina; Schröder, Christopher; Schicks, Julia; Lev, Dorit; Riess, Olaf; Lerman-Sagie, Tally; Schöls, Ludger

    2012-02-01

    We recently identified a new locus for spastic paraplegia type 47 (SPG47) in a consanguineous Arabic family with two affected siblings with progressive spastic paraparesis,intellectual disability, seizures, periventricular white matter changes and thin corpus callosum. Using exome sequencing, we now identified a novel AP4B1 frameshift mutation (c.664delC) in this family. This mutation was homozygous in both affected siblings and heterozygous in both parents. The mutant allele was absent in 316 Caucasian and 200 ethnically matched control chromosomes. We propose that AP4B1 mutations cause SPG47 and should be considered in early onset spastic paraplegia with intellectual disability.

  7. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) T4B Experiment

    NASA Astrophysics Data System (ADS)

    McGuire, Thomas

    2016-10-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. The CFR uses a diamagnetic, high beta, magnetically encapsulated, linear ring cusp plasma confinement scheme. The goal of the T4B experiment is to demonstrate a suitable plasma target for heating experiments and to characterize the behavior of plasma sources in the CFR configuration. The design of the T4B experiment will be presented, including discussion of predicted behavior, plasma sources, heating mechanisms, diagnostics suite and relevant numerical modeling. ©2016 Lockheed Martin Corporation. All Rights Reserved.

  8. Cell-Free Hepatitis B Virus Capsid Assembly Dependent on the Core Protein C-Terminal Domain and Regulated by Phosphorylation

    PubMed Central

    Ludgate, Laurie; Liu, Kuancheng; Luckenbaugh, Laurie; Streck, Nicholas; Eng, Stacey; Voitenleitner, Christian; Delaney, William E.

    2016-01-01

    ABSTRACT Multiple subunits of the hepatitis B virus (HBV) core protein (HBc) assemble into an icosahedral capsid that packages the viral pregenomic RNA (pgRNA). The N-terminal domain (NTD) of HBc is sufficient for capsid assembly, in the absence of pgRNA or any other viral or host factors, under conditions of high HBc and/or salt concentrations. The C-terminal domain (CTD) is deemed dispensable for capsid assembly although it is essential for pgRNA packaging. We report here that HBc expressed in a mammalian cell lysate, rabbit reticulocyte lysate (RRL), was able to assemble into capsids when (low-nanomolar) HBc concentrations mimicked those achieved under conditions of viral replication in vivo and were far below those used previously for capsid assembly in vitro. Furthermore, at physiologically low HBc concentrations in RRL, the NTD was insufficient for capsid assembly and the CTD was also required. The CTD likely facilitated assembly under these conditions via RNA binding and protein-protein interactions. Moreover, the CTD underwent phosphorylation and dephosphorylation events in RRL similar to those seen in vivo which regulated capsid assembly. Importantly, the NTD alone also failed to accumulate in mammalian cells, likely resulting from its failure to assemble efficiently. Coexpression of the full-length HBc rescued NTD assembly in RRL as well as NTD expression and assembly in mammalian cells, resulting in the formation of mosaic capsids containing both full-length HBc and the NTD. These results have important implications for HBV assembly during replication and provide a facile cell-free system to study capsid assembly under physiologically relevant conditions, including its modulation by host factors. IMPORTANCE Hepatitis B virus (HBV) is an important global human pathogen and the main cause of liver cancer worldwide. An essential component of HBV is the spherical capsid composed of multiple copies of a single protein, the core protein (HBc). We have

  9. Daily rhythm in pineal phosphodiesterase (PDE) activity reflects adrenergic/3',5'-cyclic adenosine 5'-monophosphate induction of the PDE4B2 variant.

    PubMed

    Kim, Jong-So; Bailey, Michael J; Ho, Anthony K; Møller, Morten; Gaildrat, Pascaline; Klein, David C

    2007-04-01

    The pineal gland is a photoneuroendocrine transducer that influences circadian and circannual dynamics of many physiological functions via the daily rhythm in melatonin production and release. Melatonin synthesis is stimulated at night by a photoneural system through which pineal adenylate cyclase is adrenergically activated, resulting in an elevation of cAMP. cAMP enhances melatonin synthesis through actions on several elements of the biosynthetic pathway. cAMP degradation also appears to increase at night due to an increase in phosphodiesterase (PDE) activity, which peaks in the middle of the night. Here, it was found that this nocturnal increase in PDE activity results from an increase in the abundance of PDE4B2 mRNA (approximately 5-fold; doubling time, approximately 2 h). The resulting level is notably higher (>6-fold) than in all other tissues examined, none of which exhibit a robust daily rhythm. The increase in PDE4B2 mRNA is followed by increases in PDE4B2 protein and PDE4 enzyme activity. Results from in vivo and in vitro studies indicate that these changes are due to activation of adrenergic receptors and a cAMP-dependent protein kinase A mechanism. Inhibition of PDE4 activity during the late phase of adrenergic stimulation enhances cAMP and melatonin levels. The evidence that PDE4B2 plays a negative feedback role in adrenergic/cAMP signaling in the pineal gland provides the first proof that cAMP control of PDE4B2 is a physiologically relevant control mechanism in cAMP signaling.

  10. Stem cells with FGF4-bFGF fused gene enhances the expression of bFGF and improves myocardial repair in rats

    SciTech Connect

    Chen, Xiang-Qi; Chen, Liang-Long Fan, Lin; Fang, Jun; Chen, Zhao-Yang; Li, Wei-Wei

    2014-04-25

    Highlights: • BFGF exists only in the cytoplasm of live cells. • BFGF cannot be secreted into the extracellular space to promote cell growth. • We combine the secretion-promoting signal peptide of FGF4. • We successfully modified BMSCs with the fused genes of FGF4-bFGF. • We promoted the therapeutic effects of transplanted BMSCs in myocardial infarction. - Abstract: The aim of this study was to investigate whether the modification of bone marrow-derived mesenchymal stem cells (BMSCs) with the fused FGF4 (fibroblast growth factor 4)-bFGF (basic fibroblast growth factor) gene could improve the expression and secretion of BFGF, and increase the efficacies in repairing infarcted myocardium. We used In-Fusion technique to construct recombinant lentiviral vectors containing the individual gene of bFGF, enhanced green fluorescent protein (EGFP), or genes of FGF4-bFGF and EGFP, and then transfected these lentiviruses into rat BMSCs. We conducted an in vitro experiment to compare the secretion of bFGF in BMSCs infected by these lentiviruses and also examined their therapeutic effects in the treatment of myocardial infraction in a rodent study. Sixty rats were tested in the following five conditions: Group-SHAM received only sham operation as controls; Group-AMI received only injection of placebo PBS buffer; Group-BMSC, Group-bFGF and Group-FGF4-bFGF received implantation of BMSCs with empty lentivirus, bFGF lentivirus, and FGF4-bFGF lentivirus, respectively. Our results found out that the transplanted FGF4-bFGF BMSCs had the highest survival rate, and also the highest myocardial expression of bFGF and microvascular density as evidenced by Western blotting and immunohistochemistry, respectively. As compared to other groups, the Group-FGF4-BFGF rats had the lowest myocardial fibrotic fraction, and the highest left ventricular ejection fraction. These results suggest that the modification of BMSCs with the FGF4-bFGF fused gene can not only increase the expression of

  11. Perlwapin, an Abalone Nacre Protein with Three Four-Disulfide Core (Whey Acidic Protein) Domains, Inhibits the Growth of Calcium Carbonate Crystals

    PubMed Central

    Treccani, Laura; Mann, Karlheinz; Heinemann, Fabian; Fritz, Monika

    2006-01-01

    We have isolated a new protein from the nacreous layer of the shell of the sea snail Haliotis laevigata (abalone). Amino acid sequence analysis showed the protein to consist of 134 amino acids and to contain three sequence repeats of ∼40 amino acids which were very similar to the well-known whey acidic protein domains of other proteins. The new protein was therefore named perlwapin. In addition to the major sequence, we identified several minor variants. Atomic force microscopy was used to explore the interaction of perlwapin with calcite crystals. Monomolecular layers of calcite crystals dissolve very slowly in deionized water and recrystallize in supersaturated calcium carbonate solution. When perlwapin was dissolved in the supersaturated calcium carbonate solution, growth of the crystal was inhibited immediately. Perlwapin molecules bound tightly to distinct step edges, preventing the crystal layers from growing. Using lower concentrations of perlwapin in a saturated calcium carbonate solution, we could distinguish native, active perlwapin molecules from denaturated ones. These observations showed that perlwapin can act as a growth inhibitor for calcium carbonate crystals in saturated calcium carbonate solution. The function of perlwapin in nacre growth may be to inhibit the growth of certain crystallographic planes in the mineral phase of the polymer/mineral composite nacre. PMID:16861275

  12. [Knockdown of Larp4b in Lin(-) cells does not affect the colony forming ability of mouse hematopoietic cells].

    PubMed

    Wang, Xiao-Juan; Pang, Ya-Kun; Cheng, Hui; Dong, Fang; Liang, Hao-Yue; Zhang, Ying-Chi; Wang, Xiao-Min; Xu, Jing; Cheng, Tao; Yuan, Wei-Ping

    2013-06-01

    Larp4b is a member of the LARP family, which can interact with RNA and generally stimulate the translation of mRNA. Abnormal expression of Larp4b can be found in leukemia patients in our previous study. This study was purposed to detect the relative expression of Larp4b mRNA in different subpopulations of mouse hematopoietic cells, to construct lentivirus vector containing shLarp4b targeting mouse gene Larp4b and to explore its effects on mouse Lin(-) cells infected with shLarp4b by lentivirus. SF-LV-shLarP4b-EGFP and control vectors were constructed and two-plasmid lentivirus packing system was used to transfect 293T cells. After 48 h and 72 h, lentivirus SF-LV-shLarp4b-EGFP was harvested and was used to infect Lin(-) cells. After 48 h, EGFP(+) cells was sorted by flow cytometry (FCM). Meanwhile, semi-quantitative real time-PCR, AnnexinV-PE/7-AAD staining, PI staining and colony forming cell assay (CFC) were performed to determine the expression of Larp4b and its effect on the proliferation of hematopoietic progenitor cells. The results showed that Larp4b was highly expressed in myeloid cells. SF-LV-shLarp4b-EGFP was successfully constructed according to the restriction endonuclease digestion assay. RT-PCR confirmed that Larp4b was efficiently knockdown in mouse Lin(-) cells. The low expression of Larp4b did not affect the colony forming number, the apoptosis and cell cycle of Lin(-) cells. It is concluded that knockdown of Larp4b in mouse Lin(-) cells do not contribute to the colony forming ability and the growth of Lin(-) cells in vitro. This useful knockdown system will be used to study in vivo Larp4b in future.

  13. International Conference on Harmonisation; Guidance on Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the International Conference on Harmonisation Regions; Annex 9 on Tablet Friability General Chapter; availability. Notice.

    PubMed

    2010-04-05

    The Food and Drug Administration (FDA) is announcing the availability of a guidance entitled "4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the ICH Regions; Annex 9: Tablet Friability General Chapter." The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guidance provides the results of the ICH Q4B evaluation of the Tablet Friability General Chapter harmonized text from each of the three pharmacopoeias (United States, European, and Japanese) represented by the Pharmacopoeial Discussion Group (PDG). The guidance conveys recognition of the three pharmacopoeial methods by the three ICH regulatory regions and provides specific information regarding the recognition. The guidance is intended to recognize the interchangeability between the local regional pharmacopoeias, thus avoiding redundant testing in favor of a common testing strategy in each regulatory region. This guidance is in the form of an annex to the core guidance on the Q4B process entitled "Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the ICH Regions" (core ICH Q4B guidance).

  14. International Conference on Harmonisation; Guidance on Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the International Conference on Harmonisation Regions; Annex 14 on Bacterial Endotoxins Test General Chapter; availability. Notice.

    PubMed

    2013-10-23

    The Food and Drug Administration (FDA) is announcing the availability of a guidance entitled "Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the International Conference on Harmonisation Regions; Annex 14: Bacterial Endotoxins Test General Chapter.'' The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guidance provides the results of the ICH Q4B evaluation of the Bacterial Endotoxins Test General Chapter harmonized text from each of the three pharmacopoeias (United States, European, and Japanese) represented by the Pharmacopoeial Discussion Group (PDG). The guidance conveys recognition of the three pharmacopoeial methods by the three ICH regulatory regions and provides specific information regarding the recognition. The guidance is intended to recognize the interchangeability between the local regional pharmacopoeias, thus avoiding redundant testing in favor of a common testing strategy in each regulatory region. The guidance is in the form of an annex to the core guidance on the Q4B process entitled "Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the ICH Regions (core ICH Q4B guidance).

  15. International Conference on Harmonisation; guidance on Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the International Conference on Harmonisation Regions; Annex 6 on Uniformity of Dosage Units General Chapter; availability. Notice.

    PubMed

    2014-06-16

    The Food and Drug Administration (FDA) is announcing the availability of a guidance entitled "Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the International Conference on Harmonisation Regions; Annex 6: Uniformity of Dosage Units General Chapter.'' The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guidance provides the results of the ICH Q4B evaluation of the Uniformity of Dosage Units General Chapter harmonized text from each of the three pharmacopoeias (United States, European, and Japanese) represented by the Pharmacopoeial Discussion Group (PDG). The guidance conveys recognition of the three pharmacopoeial methods by the three ICH regulatory regions and provides specific information regarding the recognition. The guidance is intended to recognize the interchangeability between the local regional pharmacopoeias, thus avoiding redundant testing in favor of a common testing strategy in each regulatory region. The guidance is in the form of an annex to the core guidance on the Q4B process entitled ``Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the ICH Regions'' (core ICH Q4B guidance).

  16. International Conference on Harmonisation; Guidance on Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the International Conference on Harmonisation Regions; Annex 13 on Bulk Density and Tapped Density of Powders General Chapter; availability. Notice.

    PubMed

    2013-05-28

    The Food and Drug Administration (FDA) is announcing the availability of a guidance entitled "Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the International Conference on Harmonisation Regions; Annex 13: Bulk Density and Tapped Density of Powders General Chapter.'' The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guidance provides the results of the ICH Q4B evaluation of the Bulk Density and Tapped Density of Powders General Chapter harmonized text from each of the three pharmacopoeias (United States, European, and Japanese) represented by the Pharmacopoeial Discussion Group (PDG). The guidance conveys recognition of the three pharmacopoeial methods by the three ICH regulatory regions and provides specific information regarding the recognition. The guidance is intended to recognize the interchangeability between the local regional pharmacopoeias, thus avoiding redundant testing in favor of a common testing strategy in each regulatory region. The guidance is in the form of an annex to the core guidance on the Q4B process entitled ``Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the ICH Regions (core ICH Q4B guidance).

  17. Evidence for Posttranslational Protein Flavinylation in the Syphilis Spirochete Treponema pallidum: Structural and Biochemical Insights from the Catalytic Core of a Periplasmic Flavin-Trafficking Protein

    PubMed Central

    Deka, Ranjit K.; Brautigam, Chad A.; Liu, Wei Z.

    2015-01-01

    ABSTRACT The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete’s periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redox system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg2+-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg2+-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp’s dual activities, thereby underscoring the role of Mg2+ in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm. PMID:25944861

  18. Evidence for posttranslational protein flavinylation in the syphilis spirochete Treponema pallidum: Structural and biochemical insights from the catalytic core of a periplasmic flavin-trafficking protein

    DOE PAGES

    Deka, Ranjit K.; Brautigam, Chad A.; Liu, Wei Z.; ...

    2015-05-05

    The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete’s periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redoxmore » system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg²⁺-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg²⁺-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp’s dual activities, thereby underscoring the role of Mg²⁺ in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm.« less

  19. 16 CFR 1508.5 - Component spacing test method for § 1508.4(b).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Component spacing test method for § 1508.4(b). 1508.5 Section 1508.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR FULL-SIZE BABY CRIBS § 1508.5 Component spacing test method...

  20. 20. FOUR 4B17Gs BEING CONVERTED TO F9Cs. Photographic copy of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. FOUR 4B-17Gs BEING CONVERTED TO F-9Cs. Photographic copy of historic photograph. Jan.-June 1947 OAMA (o