Science.gov

Sample records for 4center dot2hsub 2o

  1. Synthesis and characterization of the layered zirconium arsenate Zr{sub 2}O{sub 3}(HAsO{sub 4}){center_dot}nH{sub 2}O

    SciTech Connect

    Bortun, A.I.; Bortun, L.N.; Clearfield, A.; Trobajo, C.; Garcia, J.R.

    1998-04-01

    Layered sodium zirconium arsenate of composition Zr{sub 2}O{sub 3}(NaAsO{sub 4}){center_dot}3H{sub 2}O was prepared by the reaction between Zr(OC{sub 3}H{sub 7}){sub 4} and sodium arsenate in alkaline media (pH > 12) under mild hydrothermal conditions (180--200 C). Two hydrogen forms of the zirconium arsenate ({psi}-ZrAs) Zr{sub 2}O{sub 3}(HAsO{sub 4}){center_dot}3H{sub 2}O and Zr{sub 2}O{sub 3}(HAsO{sub 4}){center_dot}H{sub 2}O, were prepared by acid treatment of the sodium form. The intercalation of n-alkylamines into the {psi}-ZrAs from the gas phase was studied. The synthesized materials were characterized by elemental analysis, thermogravimetric analysis, infrared spectroscopy and powder X-ray diffraction. The data indicate that the zirconium arsenate is isostructural to {psi}-Zr{sub 2}O{sub 3}(HPO{sub 4}){center_dot}nH{sub 2}O (n = 0.5, 1.5). The new compounds exhibit high hydrolytic stability in alkaline media. The ion exchange behavior of the {psi}-Zr{sub 2}O{sub 3}(HAsO{sub 4}){center_dot}3H{sub 2}O towards alkali, alkaline-earth, and some di- and tri-valent metal cations in different solutions was studied over a wide pH range (2--14) by the batch technique.

  2. Copper uranyl phosphate and arsenate incorporating an organic ligand with a pillared layer structure: [Cu(4,4 Prime -bpy)(UO{sub 2}){sub 0.5}(HPO{sub 4})(H{sub 2}PO{sub 4})]{center_dot}H{sub 2}O and [Cu(4,4 Prime -bpy)(UO{sub 2}){sub 0.5}(HAsO{sub 4})(H{sub 2}AsO{sub 4})]{center_dot}1.5H{sub 2}O

    SciTech Connect

    Wang, Chih-Min; Lii, Kwang-Hwa

    2013-01-15

    Two mixed-metal uranium compounds, [Cu(4,4 Prime -bpy)(UO{sub 2}){sub 0.5}(HPO{sub 4})(H{sub 2}PO{sub 4})]{center_dot}H{sub 2}O (1) and [Cu(4,4 Prime -bpy)(UO{sub 2}){sub 0.5}(HAsO{sub 4})(H{sub 2}AsO{sub 4})]{center_dot}1.5H{sub 2}O (2) have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction, fluorescence spectroscopy, and magnetic susceptibility. They are the first examples of mixed-metal uranium phosphate and arsenate incorporating an organic ligand. Their structures contain copper uranyl phosphate/arsenate layers which are covalently linked by 4,4 Prime -bpy pillars to form a 3-D framework structure. The fluorescence spectrum of 1 shows the characteristic vibronic structure of the UO{sub 2}{sup 2+} moiety despite the presence of copper(II) ions in its structure. The two compounds are isostructural and crystallize in the monoclinic space group C2/c with a=20.184(4) A, b=8.921(2) A, c=19.095(3) A, {beta}=115.15(1) Degree-Sign , and R{sub 1}=0.0244 for 1, and a=20.184(1) A, b=9.0210(5) A, c=19.714(1) A, {beta}=114.879(1) Degree-Sign , and R{sub 1}=0.0399 for 2. - Graphical abstract.: A new copper uranyl phosphate and the arsenate analog have been presented. The compounds contain copper uranyl phosphate/arsenate layers covalently linked by 4,4 Prime -bipyridine pillars into an open-framework structure.

  3. Stratospheric H2O

    NASA Technical Reports Server (NTRS)

    Ellsaesser, H. W.; Harries, J. E.; Kley, D.; Penndorf, R.

    1980-01-01

    The present state of our knowledge and understanding of H2O in the stratosphere is reviewed. This reveals continuing discrepancies between observations and expectations following from the Brewer-Dobson hypothesis of stratospheric circulation. In particular, available observations indicate unexplained upward and poleward directed H2O gradients immediately downstream from the tropical tropopause and variable vertical gradients above 20 km which generally disagree with those expected from oxidation of CH4.

  4. CaSeO4-0.625H2O - Water Channel Occupation in a bassanite Related Structure

    SciTech Connect

    S Fritz; H Schmidt; I Paschke; O Magdysyuk; R Dinnebier; D Freyer; W Voigt

    2011-12-31

    Calcium selenate subhydrate, CaSeO{sub 4} {center_dot} 0.625H{sub 2}O, was prepared by hydrothermal conversion of CaSeO{sub 4} {center_dot} 2H{sub 2}O at 463 K. From the single crystals obtained in the shape of hexagonal needles, 50-300 {micro}m in length, the crystal structure could be solved in a trigonal unit cell with space group P3{sub 2}21. The cell was confirmed and refined by high-resolution synchrotron powder diffraction. The subhydrate was characterized by thermal analysis and Raman spectroscopy.

  5. N2O FIELD STUDY

    EPA Science Inventory

    The report gives results of measurements of nitrous oxide (N2O) emissions from coal-fired utility boilers at three electric power generating stations. Six units were tested, two at each site, including sizes ranging from 165 to 700 MW. Several manufacturers and boiler firing type...

  6. N2O and NOy

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Jackman, C. H.; Douglass, A. R.; Strahan, S. E.

    2003-01-01

    The principal loss processes for ozone in the stratosphere are either directly or indirectly closely coupled to the abundance and distribution of reactive oxides of nitrogen (NOy). The main source of NOy in the stratosphere is N2O, a trace gas that is changing significantly as a result of anthropogenic forcing. Thus diagnosis of the distributions of N2O, NOy, and their coupling is required to evaluate any chemistry-climate model aspiring to accurately simulate ozone change. In the NASA Assessment of the Effects of High-speed Aircraft in the Stratosphere: 1998 we found that the sensitivity of various models ozone to perturbation did correspond consistently with their background NOy distribution. Coordinated NOy and N2O mixing ratio distributions are available from observations: ER-2 aircraft in the lower stratosphere and ATMOS and balloon profiles to higher altitudes at a subset of latitudes and seasons. Although close comparison to these diagnostics is crucial, unfortunately the distributions are due to a combination of transport and chemical processes, and isolating the source of differences is not always simple. However, in combination with other transport and photochemical diagnostics, comparison with N2O and NOy can be very instructive in evaluation of model processes and performance.

  7. The Vaporization of B2O3(l) to B2O3(g) and B2O2(g)

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers, Dwight L.

    2011-01-01

    The vaporization of B2O3 in a reducing environment leads to formation of both B2O3(g) and B2O2(g). While formation of B2O3(g) is well understood, many questions about the formation of B2O2(g) remain. Previous studies using B(s) + B2O3(l) have led to inconsistent thermodynamic data. In this study, it was found that after heating, B(s) and B2O3(l) appear to separate and variations in contact area likely led to the inconsistent vapor pressures of B2O2(g). To circumvent this problem, an activity of boron is fixed with a two-phase mixture of FeB and Fe2B. Both second and third law enthalpies of formation were measured for B2O2(g) and B2O3(g). From these the enthalpies of formation at 298.15 K are calculated to be -479.9 +/- 41.5 kJ/mol for B2O2(g) and -833.4 +/- 13.1 kJ/mol for B2O3(g). Ab initio calculations to determine the enthalpies of formation of B2O2(g) and B2O3(g) were conducted using the W1BD composite method and show good agreement with the experimental values.

  8. Diffusion of oxygen in amorphous Al2O3, Ta2O5, and Nb2O5

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Toda, T.; Tsukui, S.; Tane, M.; Ishimaru, M.; Suzuki, T.; Nakajima, H.

    2014-07-01

    The self-diffusivity of oxygen in amorphous Al2O3 (a-Al2O3), a-Ta2O5, and a-Nb2O5 was investigated along with structural analysis in terms of pair distribution function (PDF). The low activation energy, ˜1.2 eV, for diffusion in the oxides suggests a single atomic jump of oxygen ions mediated via vacancy-like defects. However, the pre-exponential factor for a-Ta2O5 and a-Nb2O5 with lower bond energy was two orders of magnitude larger than that for a-Al2O3 with higher bond energy. PDF analyses revealed that the short-range configuration in a-Ta2O5 and a-Nb2O5 was more broadly distributed than that in a-Al2O3. Due to the larger variety of atomic configurations of a-Ta2O5 and a-Nb2O5, these oxides have a higher activation entropy for diffusion than a-Al2O3. The entropy term for diffusion associated with short-range structures was shown to be a dominant factor for diffusion in amorphous oxides.

  9. Structure of Calcium Aluminate Decahydrate (CaAl2O4.10D2O) from Neutron and X-ray Powder Diffraction Data

    SciTech Connect

    Christensen,A.; Lebech, B.; Sheptyakov, D.; Hanson, J.

    2007-01-01

    Calcium aluminate decahydrate is hexagonal with the space group P63/m and Z = 6. The compound has been named CaAl2O4{center_dot}10H2O (CAH10) for decades and is known as the product obtained by hydration of CaAl2O4 (CA) in the temperature region 273-288 K - one of the main components in high-alumina cements. The lattice constants depend on the water content. Several sample preparations were used in this investigation: one CAH10, three CAD10 and one CA(D/H)10, where the latter is a zero-matrix sample showing no coherent scattering contribution from the D/H atoms in a neutron diffraction powder pattern. The crystal structure including the positions of the H/D atoms was determined from analyses of four neutron diffraction powder patterns by means of the ab initio crystal structure determination program FOX and the FULLPROF crystal structure refinement program. Additionally, eight X-ray powder diffraction patterns (Cu K[alpha]1 and synchrotron X-rays) were used to establish phase purity. The analyses of these combined neutron and X-ray diffraction data clearly show that the previously published positions of the O atoms in the water molecules are in error. Thermogravimetric analysis of the CAD10 sample preparation used for the neutron diffraction studies gave the composition CaAl2(OD)8(D2O)2{center_dot}2.42D2O. Neutron and X-ray powder diffraction data gave the structural formula CaAl2(OX)8(X2O)2{center_dot}[gamma]X2O (X = D, H and D/H), where the [gamma] values are sample dependent and lie between 2.3 and 3.3.

  10. Variation of properties of glasses along the 3Bi2O3 X 5B2O3-4PbO X B2O3 and PbO X 2B2O3-2PbO X Bi2O3 sections of the PbO-Bi2O3-B2O3 ternary system

    SciTech Connect

    Zargarova, M.I.; Shuster, N.S.

    1985-07-01

    Already published data on the phase diagrams of Pb-B2O3, Bi2O3-B2O3, and PbO-Bi2O3 systems serve as the basis of this investigation, together with original experiments on the PbO-Bi2O3-B2O3 ternary system. The authors establish the quasi binary nature of the 3Bi2O3 X 5B2O3 - 4PbO X B2O3 section with the formation of the congruently melting ternary compound 3Bi2O3 X 8PbO X 7B2O3, and they demonstrate the role of the ternary compound 3Bi2O3 X 8PbO X 7B2O3 as a glass former in the PbO-Bi2O3 - B2O3 system.

  11. Na(H2O)[Mn(H2O)2(BP2O8)]: Crystal structure refinement

    NASA Astrophysics Data System (ADS)

    Yakubovich, O. V.; Steele, I.; Dimitrova, O. V.

    2009-01-01

    The crystal structure of synthetic manganese sodium borophosphate hydrate Na(H2O)[Mn(H2O)2(BP2O8)] was refined based on X-ray diffraction data. The compound was prepared by soft hydrothermal synthesis in the MnCl2-Na3PO4-B2O3-H2O system. The unit-cell parameters are a= 9.602(1) Å, c= 16.037(3) Å, sp. gr. P6522, Z= 6, D x = 2.57 g/cm3. The water molecules were found to be statistically distributed in the channels of the mixed anionic paraframework consisting of (BO4) and (PO4) tetrahedra and [MnO4(H2O)2] octahedra. The hydrogen atoms of the water molecules coordinated to the Mn2+ cations were located and their positional and thermal parameters were refined. The crystal-chemical features of borophosphates of the general formula A x M(H2O)2(BP2O8)(H2O) are considered.

  12. Thermodynamics of Cr2O3, FeCr2O4, ZnCr2O4 and CoCr2O4

    SciTech Connect

    Ziemniak SE, Anovitz LM, Castelli RA, Porter WD

    2007-01-09

    High temperature heat capacity measurements were obtained for Cr{sub 2}O{sub 3}, FeCr{sub 2}O{sub 4}, ZnCr{sub 2}O{sub 4} and CoCr{sub 2}O{sub 4} using a differential scanning calorimeter. These data were combined with previously-available, overlapping heat capacity data at temperatures up to 400 K and fitted to 5-parameter Maier-Kelley C{sub p}(T) equations. Expressions for molar entropy were then derived by suitable integration of the Maier-Kelley equations in combination with recent S{sup o}(298) evaluations. Finally, a database of high temperature equilibrium measurements on the formation of these oxides was constructed and critically evaluated. Gibbs energies of Cr{sub 2}O{sub 3}, FeCr{sub 2}O{sub 4} and CoCr{sub 2}O{sub 4} were referenced by averaging the most reliable results at reference temperatures of 1100, 1400 and 1373 K, respectively, while Gibbs energies for ZnCr{sub 2}O{sub 4} were referenced to the results of Jacob [Thermochim. Acta 15 (1976) 79-87] at 1100 K. Thermodynamic extrapolations from the high temperature reference points to 298.15 K by application of the heat capacity correlations gave {Delta}{sub f}G{sup o}(298) = -1049.96, -1339.40, -1428.35 and -1326.75 kJ mol{sup -1} for Cr{sub 2}O{sub 3}, FeCr{sub 2}O{sub 4}, ZnCr{sub 2}O{sub 4} and CoCr{sub 2}O{sub 4}, respectively.

  13. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  14. In2O3/Bi2Sn2O7 heterostructured nanoparticles with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xing, Yonglei; Que, Wenxiu; Yin, Xingtian; He, Zuoli; Liu, Xiaobin; Yang, Yawei; Shao, Jinyou; Kong, Ling Bing

    2016-11-01

    In2O3/Bi2Sn2O7 composite photocatalysts with various contents of cubic In2O3 nanoparticles were fabricated by using impregnation method. A thriving modification of Bi2Sn2O7 by an introduction of In2O3 was confirmed by using X-ray diffraction, UV-vis diffuse reflectance spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The samples composed of hybrids of In2O3 and Bi2Sn2O7 exhibited a much higher photocatalytic activity for the degradation of Rhodamine B under visible light, as compared with pure In2O3 and Bi2Sn2O7 nanoparticles. Optimized composition of the composite photocatalysts was 0.1In2O3/Bi2Sn2O7, which shows a rate constant higher than those of pure In2O3 and Bi2Sn2O7 by 4.06 and 3.21 times, respectively. Based on Mott-Schottky analysis and active species detection, the photoexcited electrons in the conduction band of In2O3 and the holes in the valence band of Bi2Sn2O7 participated in reduction and oxidation reactions, respectively. Hence, rad OH, rad O2- and h+ were the main active species involved in the photocatalytic reaction of the In2O3/Bi2Sn2O7 composite photocatalysts. The effective separation process of the photogenerated electron-hole pairs was testified by photocurrent test.

  15. Cl2O4 in the Stratosphere

    ERIC Educational Resources Information Center

    Whisnant, David M.; Lever, Lisa; Howe, Jerry

    2005-01-01

    A comprehensive project in which the students use computational chemistry to investigate a larger chlorine oxide, Cl2O4 is described. The students start the project by reading a scenario and then follow a series of hyperlinks to develop, along with their colleagues, a better understanding of the implications of the presence of Cl2O4 in the…

  16. Electron ionization of H2O

    NASA Astrophysics Data System (ADS)

    King, Simon J.; Price, Stephen D.

    2008-11-01

    Relative partial ionization cross-sections and precursor-specific relative partial ionization cross-sections for fragment ions formed by electron ionization of H2O have been measured using time-of-flight mass spectrometry coupled with a 2D ion coincidence technique. We report data for the formation of H+, H2+, O2+, O+ and OH+ relative to the formation of H2O+, as a function of ionizing electron energy from 30 to 200 eV. This data includes, for the first time, measurements on the formation all positive ion pairs and ion triples by dissociative multiple electron ionization of H2O. Through determinations of the kinetic energy release involved in ion pair formation we provide further evidence that indirect processes contribute significantly to the yield of H+ + OH+ ion pairs below the vertical double ionization threshold.

  17. Infrared spectra of the Ne2-N2O, Ar2-N2O trimers

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Michaelian, K. H.; McKellar, A. R. W.; Moazzen-Ahmadi, N.

    2012-08-01

    Spectra of the van der Waals trimers Ar2-N2O and Ne2-N2O are studied in the region of the N2O ν1 fundamental (≈2220 cm-1) using a tunable quantum cascade laser to probe a pulsed supersonic expansion from a slit jet nozzle. Improved data are obtained for the dimers Ar-N2O and Ne-N2O, and the Q-branch of Ar3-N2O is tentatively assigned. The vibrational shifts for Nen-N2O are almost exactly linear for n = 0-2. However, for Arn-N2O the n = 2 band origin is slightly blue-shifted compared to the linear prediction, and the n = 3 origin (if correct) is more significantly blue-shifted (by 0.09 cm-1).

  18. Plasma etching behavior of Y2O3 ceramics: Comparative study with Al2O3

    NASA Astrophysics Data System (ADS)

    Cao, Yu-Chao; Zhao, Lei; Luo, Jin; Wang, Ke; Zhang, Bo-Ping; Yokota, Hiroki; Ito, Yoshiyasu; Li, Jing-Feng

    2016-03-01

    The plasma etching behavior of Y2O3 coating was investigated and compared with that of Al2O3 coating under various conditions, including chemical etching, mixing etching and physical etching. The etching rate of Al2O3 coating declined with decreasing CF4 content under mixing etching, while that of Y2O3 coating first increased and then decreased. In addition, the Y2O3 coating demonstrated higher erosion-resistance than Al2O3 coating after exposing to fluorocarbon plasma. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formations of YF3 and AlF3 on the Y2O3 and Al2O3 coatings, respectively, which acted as the protective layer to prevent the surface from further erosion with fluorocarbon plasma. It was revealed that the etching behavior of Y2O3 depended not only on the surface fluorination but also on the removal of fluoride layer. To analyze the effect of porosity, Y2O3 bulk samples with high density were prepared by spark plasma sintering, and they demonstrated higher erosion-resistances compared with Y2O3 coating.

  19. H2O Adsorption Kinetics on Smectites

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Howard, J.; Quinn, R. C.

    2000-01-01

    The adsorptive equilibration of H2O with montomorillonite has been measured. At low temperatures and pressures equilibration can require many hours, effectively preventing smectites at the martian surface from responding to diurnal pressure and temperature variations.

  20. Investigation of luminescence and laser transition of Dy3+ in Li2O-Gd2O3-Bi2O3-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Zaman, F.; Kaewkhao, J.; Srisittipokakun, N.; Wantana, N.; Kim, H. J.; Rooh, G.

    2016-05-01

    The aim of this study is to develop Li2O-Gd2O3-Bi2O3-B2O3 glass doped with different concentration of Dy3+ ions by melt quenching technique for different applications in photonics and laser devices. From the experimental oscillator strength (fexp) of the absorption spectra the JO intensity parameters (Ω λ = 2, 4, 6) have been calculated, and by using these JO intensity parameters various radiative parameters were calculated. By using JO theory the radiative transition probability (AR), radiative lifetime (τR) and branching ratio (βR) for Dy3+ ion have been found. A decrease in lifetimes of the prepared glass by increasing concentration of Dy3+ is because of the energy transfer through cross relaxation and resonant energy transfer channels in the present glass matrix. Using experimental and calculated lifetimes, the quantum efficiency (η) and non-radiative relaxation rates (WNR) of 4F9/2 excited state have been calculated. From emission spectra, effective bandwidths (Δλeff) and emission stimulated emission cross section σ (λp) were found for 4F9/2 → 6HJ (J = 15/2, 13/2, 11/2 and 9/2). Chromaticity results revealed that the CCT values of the LGBiBDy glass samples are in between to those of day light and commercial white light LED sources. Further investigations are under way for the optimization of dopant concentration in the Li2O-Gd2O3-Bi2O3-B2O3 glass.

  1. Metastability in the MgAl2O4-Al2O3 System

    DOE PAGES

    Wilkerson, Kelley R.; Smith, Jeffrey D.; Hemrick, James G.

    2014-07-22

    Aluminum oxide must take a spinel form ( γ-Al2O3) at elevated temperatures in order for extensive solid solution to form between MgAl2O4 and α-Al2O3. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al2O3 at 1500°C, 83.0 wt% Al2O3 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been defined at temperatures up to 1700°C which could have significant implications for material processing and properties. Additionally, initial processing could have major implications on final chemistry. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevatedmore » temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present, resulting in no eutectic crystal formation during solidification.« less

  2. Structural Changes of Y2O3 and La2O3 Films by Heat Treatment

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takashi; Izumi, Yukiko; Hashimoto, Hideki; Oosawa, Masanori; Sugita, Yoshihiro

    2006-08-01

    Structural changes of Y2O3 films and La2O3 films deposited on some oxidized silicon substrates were studied using X-ray photoelectron spectroscopy (XPS), Secondary ion mass spectrometry (SIMS), and Fourier transform infrared spectroscopy attenuated total reflection method (FT-IR ATR). Y2O3 and La2O3 films on chemical oxide and NH3 annealed oxy-nitride were prepared by the Low-pressure chemical vapor deposition (LPCVD) method using an lanthanide-dipivaloyl-methanate (Ln-DPM) complex. The Y2O3 film and the La2O3 film on the both kinds of substrate already contained a partly silicate structure at the interface side as a result of an interface reaction during the deposition process. During post deposition annealing, the whole film structure of the Y2O3 and the La2O3 on the chemical oxide changed to a silicate structure due to silicon diffusion with interface reaction. In the case of the Y2O3 film, this interface reaction can be suppressed using thermal oxy-nitride as the interfacial layer. In the case of the La2O3 film, the suppression effect using oxy-nitride was smaller than the case with the Y2O3 film. Also, it was found that there was a strong correlation between the structural change of the films and the change of flat-band-voltage of both Y2O3 and La2O3 MIS diodes during post-deposition-annealing.

  3. Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil Emulsions.

    PubMed

    Weng, Lindong; Tessier, Shannon N; Smith, Kyle; Edd, Jon F; Stott, Shannon L; Toner, Mehmet

    2016-09-13

    Ice nucleation is of fundamental significance in many areas, including atmospheric science, food technology, and cryobiology. In this study, we investigated the ice-nucleation characteristics of picoliter-sized drops consisting of different D2O and H2O mixtures with and without the ice-nucleating bacteria Pseudomonas syringae. We also studied the effects of commonly used cryoprotectants such as ethylene glycol, propylene glycol, and trehalose on the nucleation characteristics of D2O and H2O mixtures. The results show that the median freezing temperature of the suspension containing 1 mg/mL of a lyophilized preparation of P. syringae is as high as -4.6 °C for 100% D2O, compared to -8.9 °C for 100% H2O. As the D2O concentration increases every 25% (v/v), the profile of the ice-nucleation kinetics of D2O + H2O mixtures containing 1 mg/mL Snomax shifts by about 1 °C, suggesting an ideal mixing behavior of D2O and H2O. Furthermore, all of the cryoprotectants investigated in this study are found to depress the freezing phenomenon. Both the homogeneous and heterogeneous freezing temperatures of these aqueous solutions depend on the water activity and are independent of the nature of the solute. These findings enrich our fundamental knowledge of D2O-related ice nucleation and suggest that the combination of D2O and ice-nucleating agents could be a potential self-ice-nucleating formulation. The implications of self-nucleation include a higher, precisely controlled ice seeding temperature for slow freezing that would significantly improve the viability of many ice-assisted cryopreservation protocols.

  4. Thermal and fragility studies on microwave synthesized K2O-B2O3-V2O5 glasses

    NASA Astrophysics Data System (ADS)

    Harikamalasree, Reddy, M. Sudhakara; Viswanatha, R.; Reddy, C. Narayana

    2016-05-01

    Glasses with composition xK2O-60B2O3-(40-x) V2O5 (15 ≤ x ≤ 39 mol %) was prepared by an energy efficient microwave method. The heat capacity change (ΔCp) at glass transition (Tg), width of glass transition (ΔTg), heat capacities in the glassy (Cpg) and liquid (Cpl) state for the investigated glasses were extracted from Modulated Differential Scanning Calorimetry (MDSC) thermograms. The width of glass transition is less than 30°C, indicating that these glasses belongs to fragile category. Fragility functions [NBO]/(Vm3Tg) and (ΔCp/Cpl)increases with increasing modifier oxide concentration. Increase in fragility is attributed to the increasing coordination of boron. Further, addition of K2O creates NBOs and the flow mechanism involves bond switching between BOs and NBOs. Physical properties exhibit compositional dependence and these properties increase with increasing K2O concentration. The observed variations are qualitatively analyzed.

  5. Thermal decomposition of (UO2)O2(H2O)2·2H2O: Influence on structure, microstructure and hydrofluorination

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Rivenet, M.; Berrier, E.; de Waele, I.; Arab, M.; Amaraggi, D.; Morel, B.; Abraham, F.

    2017-01-01

    The thermal decomposition of uranyl peroxide tetrahydrate, (UO2)O2(H2O)2.2H2O, was studied by combining high temperature powder X-ray diffraction, scanning electron microscopy, thermal analyses and spectroscopic techniques (Raman, IR and 1H NMR). In situ analyses reveal that intermediates and final uranium oxides obtained upon heating are different from that obtained after cooling at room temperature and that the uranyl precursor used to synthesize (UO2)O2(H2O)2·2H2O, sulfate or nitrate, has a strong influence on the peroxide thermal behavior and morphology. The decomposition of (UO2)O2(H2O)2·2H2O ex sulfate is pseudomorphic and leads to needle-like shaped particles of metastudtite, (UO2)O2(H2O)2, and UO3-x(OH)2x·zH2O, an amorphous phase found in air in the following of (UO2)O2(H2O)2 dehydration. (UO2)O2(H2O)2·2H2O and the compounds resulting from its thermal decomposition are very reactive towards hydrofluorination as long as their needle-like morphology is kept.

  6. Cu2O nanoparticles synthesis by microplasma

    PubMed Central

    Du, ChangMing; Xiao, MuDan

    2014-01-01

    A simple microplasma method was used to synthesize cuprous oxide (Cu2O) nanoparticles in NaCl–NaOH–NaNO3 electrolytic system. Microplasma was successfully used as the cathode and copper plate was used as the anode. The Cu2O products are characterized by X–ray powder diffraction (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The results show that the morphology of Cu2O nanocrystals obtained by this technology is mainly dependent on the electrolytic media, stirring, current density and reaction temperature. The uniform and monodisperse sphere Cu2O nanoparticles with the size about 400 ~ 600 nm can be easily obtained in H2O–ethylene glycol mix–solvent (volume ratio 1:1) and appropriate current density with stirring at room temperature. In addition, the possible mechanism has been reported in the article. And the average energy consumed in producing 1 g Cu2O nanoparticles is 180 kJ. For the flexibility and effectiveness of this microplasma technology, it will have broad application prospects in the realm of nanoscience, energy and environment. PMID:25475085

  7. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 MPa(H2O)

    NASA Astrophysics Data System (ADS)

    London, David; Morgan, George B.; Babb, Harold A.; Loomis, Jennifer L.

    1993-12-01

    The addition of phosphorus to H2O-saturated and initially subaluminous haplogranitic (Qz-Ab-Or) compositions at 200 MPa(H2O) promotes expansion of the liquidus field of quartz, a marked decrease of the solidus temperature, increased solubility limits of H2O in melt at low phosphorus concentrations, and fractionation of melt out of the haplogranite plane (projected along an Or28 isopleth) toward a peralkaline, silica-poor but quartz-saturated minimum composition. The partition coefficient for P2O5 between aqueous vapor and melt with an ASI (aluminum saturation index, mol Al/[mol Na+K])=1 is negligible (0.06), and consequently so are the effects of phosphorus on other melt-vapor relations involving major components. Phosphorus becomes more soluble in vapor, however, as the concentration of a NaPO3 component increases via the fractionation of melt by crystallization of quartz and feldspar. The experimental results here corroborate existing concepts regarding the interaction of phosphorus with alkali aluminosilicate melt: phosphorus has an affinity for alkalis and Al, but not Si. Phosphorus is incorporated into alkali feldspars by the exchange component AlPSi-2. For subaluminous compositions (ASI=1), the distribution coefficient of phosphorus between alkali feldspar and melt, D[P]Af/m, is 0.3. This value increases to D[P]Af/m=1.0 at a melt ASI value of 1.3. The increase in D[P]Af/m with ASI is expected from the fact that excess Al promotes the AlPSi-2 exchange. With this experimental data, the P2O5 content of feldspars and whole rocks can reveal important facets of crystallization and phosphorus geochemistry in subaluminous to peraluminous granitic systems.

  8. Glass transition temperature and conductivity in Li2O and Na2O doped borophosphate glasses

    NASA Astrophysics Data System (ADS)

    Ashwajeet, J. S.; Sankarappa, T.; Ramanna, R.; Sujatha, T.; Awasthi, A. M.

    2015-08-01

    Two alkali doped Borophosphate glasses in the composition, (B2O3)0.2. (P2O5)0.3. (Na2O)(0.5-x). (Li2O)x, where x = 0.05 to 0.50 were prepared by standard melt quenching method at 1200K. Non-crystalline nature was confirmed by XRD studies. Room temperature density was measured by Archimedes principle. DC conductivity in the temperature range from 300K to 575K has been measured. Samples were DSC studied in the temperature range from 423K to 673K and glass transition temperature was determined. Glass transition temperature passed through minima for Li2O con.2centration between 0.25 and 0.30 mole fractions. Activation energy of conduction has been determined by analyzing temperature variation of conductivity determining Arrhenius law. Conductivity passed through minimum and activation passed through maximum for Li2O content from 0.25 to 0.30 mole fractions. Glass transition temperature passed through minimum for the same range of Li2O content. These results revealed mixed alkali effect taking place in these glasses. It is for the first time borophosphate glasses doped with Li2O and Na2O have been studied for density and dc conductivity and, the mixed alkali effect (MAE) has been observed.

  9. Moessbauer Effect Study of Bi2O3. Na2O. B2O3. Fe2O3 Glass System

    SciTech Connect

    Salah, S.H.; Kashif, I.; Salem, S.M.; Mostafa, A.G.; El-Manakhly, K.A.

    2005-04-26

    Sodium-tetra-borate host glass containing both bismuth and iron cations were prepared obeying the composition (Na2B4O7)0.75 (Fe2O3)0.25-x (Bi2O3)x [where x = 0.0, 0.05, 0.10, 0.15, 0.20, and 0.25 mol.%]. X-ray diffraction indicated that all samples were in a homogeneous glassy phase. Moessbauer effect results showed that all iron ions appeared as Fe3+ ions occupying tetrahedral coordination state. The covalency of the Fe-O bond increased as bismuth oxide was gradually increased. IR measurements indicated the presence of some non-bridging oxygens and confirmed that iron ions occupy the tetrahedral coordination state. It was found also that, as Bi2O3 was gradually increased both magnetic susceptibility and specific volume decreased, while both density and molar volume increased.

  10. Kinetics of HO2 + HO2 -> H2O2 + O2: Implications for Stratospheric H2O2

    NASA Astrophysics Data System (ADS)

    Christensen, L. E.; Okumura, M.; Sander, S. P.; Salawitch, R. J.; Toon, G. C.; Sen, B.; Blavier, J.-F.; Jucks, K. W.

    2002-05-01

    The reaction HO2 + HO2 -> H2O2 + O2(1) has been studied at 100 Torr and 222 K to 295 K. Experiments employing photolysis of Cl2/CH3OH/O2/N2 and F2/H2/O2/N2 gas mixtures to produce HO2 confirmed that methanol enhanced the observed reaction rate. At 100 Torr, zero methanol, k1 = (8.8 +/- 0.9) 10-13 × exp[(210 +/- 26)/T] cm3 molecule-1 s-1 (2σ uncertainties), which agrees with current recommendations at 295 K but is nearly 2 times slower at 231 K. The general expression for k1, which includes the dependence on bath gas density, is k1 = (1.5 +/- 0.2) × 10-12 × exp[(19 +/- 31)/T] + 1.7 × 10-33 × [M] × exp[1000/T], where the second term is taken from the JPL00-3 recommendation. The revised rate largely accounts for a discrepancy between modeled and measured [H2O2] in the lower to middle stratosphere.

  11. Isotopic separation of D.sub.2 O from H.sub.2 O using ruthenium adsorbent

    DOEpatents

    Thiel, Patricia A.

    1990-04-10

    A method of enrichment of D.sub.2 O in solutions of D.sub.2 O in H.sub.2 O by contacting said solutions in the steam phase with hexagonal crystalline to produce enriched D.sub.2 O. The passages may be repeated to achieve a desired amount of D.sub.2 O.

  12. Influences of Na2O and K2O Additions on Electrical Conductivity of CaO-MgO-Al2O3-SiO2 Melts

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hua; Zheng, Wei-Wei; Chou, Kuo-Chih

    2017-01-01

    The present study investigated the influences of Na2O and K2O additions on electrical conductivity of blast furnace type CaO-MgO-Al2O3-SiO2 melts by the four-electrode method. Both the single addition of Na2O or K2O and the double additions of Na2O and K2O were studied. It was found that electrical conductivity monotonously increased as the amount of Na2O addition was gradually increased, whereas, when K2O was added, there was a continuous decrease of electrical conductivity. With melts containing both Na2O and K2O, electrical conductivity first decreased but then increased when Na2O was gradually substituted for K2O while keeping the molar fractions of other components constant. In other words, the mixed-alkali effect took place in CaO-Mg-Al2O3-SiO2-ΣR2O melts.

  13. Influences of Na2O and K2O Additions on Electrical Conductivity of CaO-MgO-Al2O3-SiO2 Melts

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hua; Zheng, Wei-Wei; Chou, Kuo-Chih

    2017-04-01

    The present study investigated the influences of Na2O and K2O additions on electrical conductivity of blast furnace type CaO-MgO-Al2O3-SiO2 melts by the four-electrode method. Both the single addition of Na2O or K2O and the double additions of Na2O and K2O were studied. It was found that electrical conductivity monotonously increased as the amount of Na2O addition was gradually increased, whereas, when K2O was added, there was a continuous decrease of electrical conductivity. With melts containing both Na2O and K2O, electrical conductivity first decreased but then increased when Na2O was gradually substituted for K2O while keeping the molar fractions of other components constant. In other words, the mixed-alkali effect took place in CaO-Mg-Al2O3-SiO2-ΣR2O melts.

  14. Electron collisions with the CH2O-H2O complex

    NASA Astrophysics Data System (ADS)

    Freitas, T. C.; Bettega, M. H. F.; Lima, M. A. P.; Canuto, S.

    2009-11-01

    In this conference we will present cross sections for elastic electron collisions with the CH2O-H2O complex bonded through hydrogen bond. We will investigate electron collisions with different structures of this complex which were obtained by Classical Monte Carlo simulations. This work would help in understanding the hole of water in the dissociative electron attachment in biological molecules.

  15. Infrared Spectra of the NE_2-N_2O, AR_2-N_2O Trimers

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Moazzen-Ahmadi, N.; Michaelian, K. H.; McKellar, A. R. W.

    2013-06-01

    Spectra of the van der Waals trimers Ar_2-N_2O and Ne_2-N_2O are studied in the region of the N_2O ν_1 fundamental (˜2224 cm^{-1}) using a tunable quantum cascade laser to probe a pulsed supersonic expansion from a slit jet nozzle. Improved data are also obtained for the dimers Ar-N_2O and Ne-N_2O, with the latter representing a significant improvement on the best previous results. As well, a feature in the spectrum is tentatively assigned as the Q-branch of Ar_3-N_2O. The observed vibrational shifts for Ne_n-N_2O are almost exactly linear for n = 0-2. However, for Ar_n-N_2O the n = 2 band origin is slightly blue-shifted compared to the linear prediction, and the n = 3 origin (if correct) is more significantly blue-shifted (by 0.09 cm^{-1}).

  16. Thermodynamic Assessment of the Y2o3-yb2o3-zro2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2002-01-01

    Yttria-zirconia (Y2O3-ZrO2) is the most widely used of the rare earth oxide-zirconia systems. There are numerous experimental studies of the phase boundaries in this system. In this paper, we assess these data and derive parameters for the solution models in this system. There is current interest in other rare earth oxide-zirconia systems as well as systems with several rare earth oxides and zirconia, which may offer improved properties over the Y2O3-ZrO2 system. For this reason, we also assess the ytterbia-zirconia (Yb2O3-ZrO2) and Y2O3-Yb2O3-ZrO2 system.

  17. The Successive H2O Binding Energies for Fe(H2O)n(+)

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The binding energy, computed using density functional theory (DFT), are in good agreement with experiment. The bonding is electrostatic (charge-dipole) in origin for all systems. The structures are therefore determined mostly by metal-ligand and ligand-ligand repulsion. The computed structure for FeH2O(+) is C(2v) where sp hybridization is important in reducing the Fe-H2O repulsion. Fe(H2O)2(+) has D2d symmetry where sdo hybridization is the primary factor leading to the linear O-Fe-O geometry. The bonding in Fe(H2O)3(+) and Fe(H2O)4(+) are very complex because ligand-ligand and metal-ligand repulsion, both for the in-plane and out-of-plane water lone-pair orbitals, are important.

  18. The adsorption of water on Cu2O and Al2O3 thin films

    SciTech Connect

    Deng, Xingyi; Herranz, Tirma; Weis, Christoph; Bluhm, Hendrik; Salmeron, Miquel

    2008-06-27

    The initial stages of water condensation, approximately 6 molecular layers, on two oxide surfaces, Cu{sub 2}O and Al{sub 2}O{sub 3}, have been investigated by using ambient pressure X-ray photoelectron spectroscopy at relative humidity values (RH) from 0 to >90%. Water adsorbs first dissociatively on oxygen vacancies producing adsorbed hydroxyl groups in a stoichiometric reaction: O{sub lattic} + vacancies + H{sub 2}O = 2OH. The reaction is completed at {approx}1% RH and is followed by adsorption of molecular water. The thickness of the water film grows with increasing RH. The first monolayer is completed at {approx}15% RH on both oxides and is followed by a second layer at 35-40% RH. At 90% RH, about 6 layers of H{sub 2}O film have been formed on Al{sub 2}O{sub 3}.

  19. H2O Adsorption Kinetics on Smectites

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Quinn, Richard C.; Howard, Jeanie; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The adsorptive equilibration of H2O a with montomorillonite, a smectite clay has been measured. At low temperatures and pressures, equilibration can require many hours, effectively preventing smectites at the martian surface from responding rapidly to diurnal pressure and temperature variations.

  20. EPA H2O Software Tool

    EPA Science Inventory

    EPA H2O allows user to: Understand the significance of EGS in Tampa Bay watershed; visually analyze spatial distribution of the EGS in Tampa Bay watershed; obtain map and summary statistics of EGS values in Tampa Bay watershed; analyze and compare potential impacts of development...

  1. EPA H2O User Manual

    EPA Science Inventory

    EPA H2O is a software tool designed to support research being conducted in the Tampa Bay watershed to provide information, data, and approaches and guidance that communities can use to examine alternatives when making strategic decisions to support a prosperous and environmentall...

  2. Isotopomer mapping approach to determine N_{2}O production pathways and N_{2}O reduction

    NASA Astrophysics Data System (ADS)

    Lewicka-Szczebak, Dominika; Well, Reinhard; Cardenas, Laura; Bol, Roland

    2016-04-01

    Stable isotopomer analyses of soil-emitted N2O (δ15N, δ18Oand SP = 15N site preference within the linear N2O molecule) may help to distinguish N2O production pathways and to quantify N2O reduction to N2. Different N2O forming processes are characterised by distinct isotopic characteristics. Bacterial denitrification shows significantly lower SP and δ18Ovalues when compared to fungal denitrification and nitrification processes. But SP and δ18Ovalues are also altered during N2O reduction to N2, when the residual N2O is enriched in 18Oand centrally located 15N, resulting in increased δ18Oand SP values. Hence, the interpretation of these isotope characteristics is not straightforward, because higher δ18Oand SP values may be due to admixture of N2O from fungal denitrification or nitrification, or due to N2O reduction to N2. One of these processes, either admixture or reduction, can be quite well quantified if the other one is determined with independent methods. But usually both processes are unknown and the ability to estimate both of them simultaneously would be very beneficial. Here we present an attempt to determine both the admixture and the reduction simultaneously using the isotopomer mapping, i.e. the relation between δ18Oand SP. The measured sample points are typically situated between the two lines: reduction line with a typical slope of about 0.35 and mixing line with a higher slope of about 0.8. Combining the reduction and the mixing vector allows for the determination of both processes based on the location of the sample point between the lines. We tested this new approach for laboratory incubation studies, where a reference method for N2O reduction quantification was applied, i.e. 15N gas flux method or incubations in He atmosphere. This allowed us to check how well the calculated amounts for N2O reduction agree with the results provided by the reference method. The general trend was quite well reflected in our calculated results, however, quite

  3. Mössbauer study and magnetic properties of MgFe2O4 crystallized from the glass system B2O3/K2O/P2O5/MgO/Fe2O3

    NASA Astrophysics Data System (ADS)

    Shabrawy, S. El; Bocker, C.; Miglierini, M.; Schaaf, P.; Tzankov, D.; Georgieva, M.; Harizanova, R.; Rüssel, C.

    2017-01-01

    An iron containing magnesium borate glass with the mol% composition 51.7 B2O3/9.3 K2O /1 P2O5/27.6MgO/10.4Fe2O3was prepared by the conventional melts quenching method followed by a thermal treatment process at temperatures in the range from 530 to 604 °C.The thermally treated samples were characterized by X-ray diffraction, scanning and transmission electron microscopy. It was shown that superparamagnetic MgFe2O4 nanoparticles were formed during thermal treatment. The size of the spinel type crystals was in the range from 6 to 15 nm. Mössbauer spectra of the powdered glass ceramic samples and the extracted nanoparticles after dissolving the glass matrix in diluted acid were recorded at room temperature. The deconvolution of the spectra revealed the crystallization of two spinel phases MgFe2O4 (as a dominant phase) and superparamagnetic maghemite, γ-Fe2O3 (as a secondary phase). Room temperature magnetic measurements showed that, increasing the crystallization temperature changed the superparamagnetic behavior of the samples to ferrimagnetic behavior. The Curie temperatures of the samples were measured and showed a higher value than that of the pure bulk MgFe2O4.

  4. Reaction of N2O5 with H2O on carbonaceous surfaces

    NASA Technical Reports Server (NTRS)

    Brouwer, L.; Rossi, M. J.; Golden, D. M.

    1986-01-01

    The heterogeneous reaction of N2O5 with commercially available ground charcoal in the absence of H2O revealed a physisorption process (gamma = 0.003), together with a redox reaction generating mostly NO. Slow HNO3 formation was the result of the interaction of N2O5 with H2O that was still adsorbed after prolonged pumping at 0.0001 torr. In the presence of H2O, the same processes with gamma = 0.005 are observed. The redox reaction dominates in the early stages of the reaction, whereas the hydrolysis gains importance later at the expense of the redox reaction. The rate law for HNO3 generation was found to be d(HNO3)/dt = k(bi)(H2O)(N2O5) with k(bi), the effective bimolecular rate constants, for 10 mg of carbon being (1.6 + or - 0.3) x 10 to the -13th cu cm/s.

  5. Threshold ionization spectroscopy of H2O, HDO and D2O and low-lying vibrational levels of HDO+ and D2O+

    NASA Astrophysics Data System (ADS)

    Lauzin, Clément; Jacovella, Ugo; Merkt, Frédéric

    2015-12-01

    Rotationally resolved photoelectron spectra of jet-cooled H2O, HDO and D2O have been recorded near the origin of the ? photoionising transition following single-photon ionization using the complementary techniques of mass-analysed threshold-ionization (MATI) and pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy. A gas mixture of H2O, HDO and D2O with Ar was obtained by mixing H2O (ℓ) and D2O (ℓ) in a reservoir and bubbling Ar gas through the mixture. To unambiguously assign the photoelectron bands to H2O, HDO or D2O, the PFI-ZEKE photoelectron spectra of the mixture were compared to MATI spectra and to spectra of H2O. Analysis of the rotational structure of the origin bands (v+1 = 0, v2+ = 0, v+3 = 0) ← (v1 = 0, v2 = 0, v3 = 0) of H2O, HDO and D2O and of the transitions to the (010), (020) and (100) levels of D2O+ and the first excited level of the O-D stretching mode of HDO+ provided new information on the photoionization dynamics of water and the energy level structure of HDO+ and D2O+.

  6. H2O Outgassing from Silicones

    SciTech Connect

    Dinh, L N; Maxwell, R S; Schildbach, M A; Balazs, B; McLean II, W

    2004-11-09

    In this fiscal year, we have tested the H{sub 2}O outgassing model for TR55 against independent core tests performed at different temperatures by our collaborators at Y12. At higher temperature ({approx} 71 C), the model properly predicts moisture outgassing from TR55 over the entire experiment. At lower temperature ({approx} 42.5 C), the model correctly predicts long-term moisture outgassing. However, in short-term limit, a better fit with core tests might be expected when the diffusion effect of H{sub 2}O through the silicone matrix is included into the model in the near future. A lookup table for the moisture content as well as moisture outgassing kinetics for M9787 which have previously been heated to 460K for one day and then exposed to relevant low levels of moisture is also now available as a reference for engineers/technicians in the fields.

  7. Nb2O5 nanofiber memristor

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; Velichko, A. A.; Jalalian, A.

    2013-07-01

    Non-woven bead-free 100 μm long and 80-200 nm in diameter highly crystalline orthorhombic T-Nb2O5 nanofibers were sintered by sol-gel assisted electrospinning technique. Electrical and dielectric spectroscopy tests of individual fibers clamped onto Pt coated Si substrate were performed using a spreading resistance mode of atomic force microscope. Reproducible resistive switching with ON-OFF resistance ratio as high as 2 × 104 has a bipolar character, starts with a threshold voltage of 0.8-1.7 V, and follows by continuous growth of conductivity. Resistive memory effect is associated with a voltage-driven accumulation/depletion of oxygen vacancies at Nb2O5/Pt cathode interface. Poole-Frenkel emission from the electronic states trapped at reduced NbOx complexes determines a shape of Nb2O5/Pt diode I-V characteristics. Simple thermodynamic model explains a threshold character of switching, relates experimentally observed characteristics in low and high resistive states, and gives a reasonable estimate of the concentration of oxygen vacancies.

  8. Absolute cross sections for dissociative electron attachment to H2O and D2O

    NASA Astrophysics Data System (ADS)

    Rawat, Prashant; Prabhudesai, Vaibhav S.; Aravind, G.; Rahman, M. A.; Krishnakumar, E.

    2007-12-01

    The dissociative electron attachment (DEA) process to water (H2O) and heavy water (D2O) has been studied in the gas phase in a cross beam experiment for electron energies up to 20 eV. The apparatus used eliminates discrimination due to the kinetic energy and angular distribution of the ions. The cross sections are normalized to absolute values using the cross section for production of O- from O2 (Rapp and Briglia 1965 J. Chem. Phys. 43 1480). These are the first exhaustive measurements of absolute cross sections for both the H- and O- from H2O and D- and O- from D2O at all the three resonances. The results are compared with the scarce data available in the literature. Isotope effect is observed at the 12 eV resonance in the H- channel and at all the three resonances in the O- channel.

  9. A study of the N2O5-SO2-O3 reaction system.

    PubMed

    Daubendiek, R L; Calvert, J G

    1975-01-01

    Infrared spectroscopy was used to follow the rates of the chemical changes in gaseous N(2)O(5)-SO(2) and N(2)O(5)-SO(2)-O(3) mixtures. Several results of interest to atmospheric scientists were obtained. (I) SO(3) was not a detectable product of these reaction systems, and no significant SO(2) removal occurred. From the kinetic treatment of these results, estimates were derived for the upper limits of the rate constants of the reactions 1 and 2: NO(3) + SO(2) leads to NO(2) + SO(3) (1); N2O5 +SO2 leads to N(2)O(4) + SO(3) (2); k(1) less than or equal to 4.2 1. mole-minus 1sec-minus 1; k(2) less than or equal to 2.5 x 10-minus 2 1. mole-minus1sec-minus 1 at 30 degrees C. These data suggest that reactions 1 and 2 are not important removal paths for SO(2) in the sunlight irradiated, NO(x)hydrocarbon polluted atmospheres. (II) The near ultraviolet absorption spectrum of pure N(2)O(5) has been determined. From these results and estimates of the actinic irradiance, it was shown that the rate of photochemical decomposition of N(2)O(5) by the absorption of solar light in the urban atmosphere is an unimportant factor among the reactions which establish the N(2)O(5) and NO(3) concentrations. (III) It has been observed that gaseous SO(3) and NO(2) react rapidly to form a relatively nonvolatile white solid. Preliminary data suggest a 1:1 mole ratio for this adduct. The significance, if any, of this and related compounds in urban aerosol formation must be evaluated.

  10. Interfacial-layers-free Ga2O3(Gd2O3)/Ge MOS Diodes

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Lin, T. D.; Lee, K. Y.; Huang, M. L.; Tung, L. T.; Hong, M.; Kwo, J.

    2008-03-01

    High κ dielectric Ga2O3(Gd2O3) films were deposited directly on Ge by Molecular-Beam-Epitaxy without the employment of GeON interfacial layer. Excellent electrical properties, such as a high κ value of 14.5, a low leakage current density of only 3x10-9 A/cm^2 at Vfb+1V, and well-behaved CV characteristics, were demonstrated, even being subjected to a 500^oC annealing in N2 ambient for 5 min. An abrupt Ga2O3(Gd2O3)/Ge interface without any interfacial layer was revealed by high-resolution transmission electron microscopy as well as in-situ x-ray photoelectron spectroscopy (XPS). Detailed XPS studies indicate that the oxide/Ge interface consists of mainly Ge-O-Gd bonding, distinctly different from that of native oxide. Furthermore, the 500^oC annealing did not change the chemical bonding, implying a great thermodynamic stability of the hetero-structure. The outstanding electrical and thermodynamic properties qualified Ga2O3(Gd2O3) as a promising dielectric for Ge and proved the GeON interfacial layer to be unnecessary.

  11. The H2O2-H2O Hypothesis: Extremophiles Adapted to Conditions on Mars?

    NASA Astrophysics Data System (ADS)

    Houtkooper, Joop M.; Schulze-Makuch, Dirk

    2007-08-01

    The discovery of extremophiles on Earth is a sequence of discoveries of life in environments where it had been deemed impossible a few decades ago. The next frontier may be the Martian surface environment: could life have adapted to this harsh environment? What we learned from terrestrial extremophiles is that life adapts to every available niche where energy, liquid water and organic materials are available so that in principle metabolism and propagation are possible. A feasible adaptation mechanism to the Martian surface environment would be the incorporation of a high concentration of hydrogen peroxide in the intracellular fluid of organisms. The H2O2-H2O hypothesis suggests the existence of Martian organisms that have a mixture of H2O2 and H2O instead of salty water as their intracellular liquid (Houtkooper and Schulze-Makuch, 2007). The advantages are that the freezing point is low (the eutectic freezes at 56.5°C) and that the mixture is hygroscopic. This would enable the organisms to scavenge water from the atmosphere or from the adsorbed layers of water molecules on mineral grains, with H2O2 being also a source of oxygen. Moreover, below its freezing point the H2O2-H2O mixture has the tendency to supercool. Hydrogen peroxide is not unknown to biochemistry on Earth. There are organisms for which H2O2 plays a significant role: the bombardier beetle, Brachinus crepitans, produces a 25% H2O2 solution and, when attacked by a predator, mixes it with a fluid containing hydroquinone and a catalyst, which produces an audible steam explosion and noxious fumes. Another example is Acetobacter peroxidans, which uses H2O2 in its metabolism. H2O2 plays various other roles, such as the mediation of physiological responses such as cell proliferation, differentiation, and migration. Moreover, most eukaryotic cells contain an organelle, the peroxisome, which mediates the reactions involving H2O2. Therefore it is feasible that in the course of evolution, water-based organisms

  12. Effect of Bi2O3 addition on electron paramagnetic resonance, optical absorption, and conductivity in vanadyl-doped Li2O-K2O-Bi2O3-B2O3 glasses.

    PubMed

    Subhadra, M; Kistaiah, P

    2011-02-17

    Glasses with composition 15Li(2)O-15K(2)O-xBi(2)O(3)-(65 - x)-B(2)O(3)/5V(2)O(5) (3 ≤ x ≤ 15) have been prepared by the conventional melt quench technique. The electron paramagnetic resonance spectra of VO(2+) in these glasses have been recorded in the X-band frequency (≈9.3 GHz) at room temperature. The spin Hamiltonian parameters and covalency rates were evaluated. It was found that the V(4+) ions exist as vanadyl (VO(2+)) ions and are in an octahedral coordination with a tetragonal compression. The covalency rates (1 - α(2)) and (1 - γ(2)) indicate moderate covalency for the σ- and π-bonds. It was observed that the spin-Hamiltonian parameters depend slightly on the relative concentration of Bi(2)O(3). The optical properties of this glass system are studied from the optical absorption spectra recorded in the wavelength range 200-800 nm. The fundamental absorption edge has been identified from the optical absorption spectra. The values of optical band gap for indirect allowed transitions have been determined using available theories. The direct current electrical conductivity, σ, has been measured in the temperature range 373-573 K. The conductivity decreases with the increase in Bi(2)O(3) concentration. This has been discussed in terms of the decrease in the number of mobile ions and their mobility. An attempt is made to correlate the EPR, optical, and electrical results and to find the effect of Bi(2)O(3) content on these parameters.

  13. Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3

    NASA Astrophysics Data System (ADS)

    El Shabrawy, Samha; Bocker, Christian; Rüssel, Christian

    2016-10-01

    Spherical magnetic Mg-Fe-O nanoparticles were successfully prepared by the crystallization of glass in the system K2O/B2O3/MgO/P2O5/Fe2O3. The magnetic glass ceramics were prepared by melting the raw materials using the conventional melt quenching technique followed by a thermal treatment at temperatures in the range 560-700 °C for a time ranging from 2 to 8 h. The studies of the X-ray diffraction, electron microscopy and FTIR spectra confirmed the precipitation of finely dispersed spherical (Mg, Fe) based spinel nanoparticles with a minor quantity of hematite (α-Fe2O3) in the glass matrix. The average size of the magnetic nano crystals increases slightly with temperature and time from 9 to 15 nm as determined by the line broadening from the XRD patterns. XRD studies show that annealing the glass samples for long periods of time at temperature ≥604 °C results in an increase of the precipitated hematite concentration, dissolution of the spinel phase and the formation of magnesium di-borate phase (Mg2B2O5). For electron microscopy, the particles were extracted by two methods; (i) replica extraction technique and (ii) dissolution of the glass matrix by diluted acetic acid. An agglomeration of the nano crystals to larger particles (25-35 nm) was observed.

  14. Synthesis, Structure, and Ethanol Gas Sensing Properties of In2O3 Nanorods Decorated with Bi2O3 Nanoparticles.

    PubMed

    Park, Sunghoon; Kim, Soohyun; Sun, Gun-Joo; Lee, Chongmu

    2015-04-22

    Bi2O3-decorated In2O3 nanorods were synthesized using a one-step process, and their structure, as well as the effects of decoration of In2O3 nanorods with Bi2O3 on the ethanol gas-sensing properties were examined. The multiple networked Bi2O3-decorated In2O3 nanorod sensor showed responses of 171-1774% at ethanol concentrations of 10-200 ppm at 200 °C. The responses of the Bi2O3-decorated In2O3 nanorod sensor were stronger than those of the pristine-In2O3 nanorod sensors by 1.5-4.9 times at the corresponding concentrations. The two sensors exhibited short response times and long recovery times. The optimal Bi concentration in the Bi2O3-decorated In2O3 nanorod sensor and the optimal operation temperature of the sensor were 20% and 200 °C, respectively. The Bi2O3-decorated In2O3 nanorod sensor showed selectivity for ethanol gas over other gases. The origin of the enhanced response, sensing speed, and selectivity for ethanol gas of the Bi2O3-decorated In2O3 nanorod sensor to ethanol gas is discussed.

  15. Electron collisions with the CH2O-H2O complex

    NASA Astrophysics Data System (ADS)

    Freitas, T. C.; Lima, M. A. P.; Canuto, S.; Bettega, M. H. F.

    2009-12-01

    We report cross sections for elastic collisions of low-energy electrons with the CH2O-H2O complex. We employed the Schwinger multichannel method with pseudopotentials in the static-exchange and in the static-exchange-polarization approximations for energies from 0.1 to 20 eV. We considered four different hydrogen-bonded structures for the complex that were generated by classical Monte Carlo simulations. Our aim is to investigate the effect of the water molecule on the π∗ shape resonance of formaldehyde. Previous studies reported a π∗ shape resonance for CH2O at around 1 eV. The resonance positions of the complexes appear at lower energies in all cases due to the mutual polarization between the two molecules. This indicates that the presence of water may favor dissociation by electron impact and may lead to an important effect on strand breaking in wet DNA by electron impact.

  16. Redetermination of metarossite, CaV5+ 2O6·2H2O

    PubMed Central

    Kobsch, Anaïs; Downs, Robert T.; Domanik, Kenneth J.

    2016-01-01

    The crystal structure of metarossite, ideally CaV2O6·2H2O [chemical name: calcium divanadium(V) hexa­oxide dihydrate], was first determined using precession photographs, with fixed isotropic displacement parameters and without locating the positions of the H atoms, leading to a reliability factor R = 0.11 [Kelsey & Barnes (1960 ▸). Can. Mineral. 6, 448–466]. This communication reports a structure redetermination of this mineral on the basis of single-crystal X-ray diffraction data of a natural sample from the Blue Cap mine, San Juan County, Utah, USA (R1 = 0.036). Our study not only confirms the structural topology reported in the previous study, but also makes possible the refinement of all non-H atoms with anisotropic displacement parameters and all H atoms located. The metarossite structure is characterized by chains of edge-sharing [CaO8] polyhedra parallel to [100] that are themselves connected by chains of alternating [VO5] trigonal bipyramids parallel to [010]. The two H2O mol­ecules are bonded to Ca. Analysis of the displacement parameters show that the [VO5] chains librate around [010]. In addition, we measured the Raman spectrum of metarossite and compared it with IR and Raman data previously reported. Moreover, heating of metarossite led to a loss of water, which results in a transformation to the brannerite-type structure, CaV2O6, implying a possible dehydration pathway for the compounds M 2+V2O6·xH2O, with M = Cu, Cd, Mg or Mn, and x = 2 or 4. PMID:27920917

  17. Stability of Fluorine-Free CaO-SiO2-Al2O3-B2O3-Na2O Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang

    2017-01-01

    B2O3 and Na2O are key components of fluorine-free mold fluxes for continuous casting, but both are highly volatile, which affects the flux stability. This paper investigated the evaporation of the SiO2-CaO-Al2O3-B2O3-Na2O fluxes (Na2O: 6 to 10 wt pct, CaO/SiO2 ratio: 0.8 to 1.3) in the temperatures ranging from 1573 K to 1673 K (1300 °C to 1400 °C) using thermogravimetric analysis. The weight loss as a result of the flux evaporation increased with the increasing temperature for all fluxes. The rate of evaporation was found to be very small for the Na2O-free flux but significantly increased with the addition of Na2O. The high evaporation rate of fluxes in the presence of B2O3 and Na2O was attributed to the formation of highly volatile NaBO2. Changing the ratio of CaO/SiO2, however, did not affect the rate of evaporation. Kinetic analysis of the evaporation processes demonstrated that external mass transfer contributed to the rate of evaporation.

  18. Stability of Fluorine-Free CaO-SiO2-Al2O3-B2O3-Na2O Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang

    2017-04-01

    B2O3 and Na2O are key components of fluorine-free mold fluxes for continuous casting, but both are highly volatile, which affects the flux stability. This paper investigated the evaporation of the SiO2-CaO-Al2O3-B2O3-Na2O fluxes (Na2O: 6 to 10 wt pct, CaO/SiO2 ratio: 0.8 to 1.3) in the temperatures ranging from 1573 K to 1673 K (1300 °C to 1400 °C) using thermogravimetric analysis. The weight loss as a result of the flux evaporation increased with the increasing temperature for all fluxes. The rate of evaporation was found to be very small for the Na2O-free flux but significantly increased with the addition of Na2O. The high evaporation rate of fluxes in the presence of B2O3 and Na2O was attributed to the formation of highly volatile NaBO2. Changing the ratio of CaO/SiO2, however, did not affect the rate of evaporation. Kinetic analysis of the evaporation processes demonstrated that external mass transfer contributed to the rate of evaporation.

  19. Electrical resistivity surface for FeO-Fe2O3-P2O5 glasses

    NASA Technical Reports Server (NTRS)

    Vaughan, J. G.; Kinser, D. L.

    1975-01-01

    The dc electrical properties and microstructure of x(FeO-Fe2O3)-(100-x)P2O5 glasses were investigated up to a maximum of x = 75 mol %. Results indicate that, in general, the minimum resistivity of the glass does not occur at equal Fe(2+) and Fe(3+) concentrations, although for the special case where x = 55 mol % the minimum does occur at Fe(2+)/Fe total = 0.5, as reported by other investigators. Evidence presented shows that the position of the minimum resistivity is a function of total iron content. The minimum shifts to glasses richer in Fe(2+) at higher total iron concentrations.

  20. Electronic structure and ground-state properties of alkali-metal oxides-Li 2O, Na 2O, K 2O and Rb 2O: A first-principles study

    NASA Astrophysics Data System (ADS)

    Eithiraj, R. D.; Jaiganesh, G.; Kalpana, G.

    2007-06-01

    Self-consistent scalar-relativistic band structure calculations have been performed to investigate the electronic structure and ground-state properties of alkali-metal oxides Li 2O, Na 2O, K 2O and Rb 2O in cubic antifluorite (anti-CaF 2-type) structure using the linear muffin-tin orbital in its tight-binding representation (TB-LMTO) method. The calculated ground-state properties of these compounds such as equilibrium lattice parameter and bulk modulus are in agreement with the other theoretical calculations and experimental results. The results of the electronic structure calculations show that Li 2O, K 2O and Rb 2O are indirect band gap semiconductors, whereas Na 2O is found to be a direct band gap semiconductor.

  1. Tuneable magnetic properties of hydrothermally synthesised core/shell CoFe2O4/NiFe2O4 and NiFe2O4/CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Almeida, Trevor P.; Moro, Fabrizio; Fay, Michael W.; Zhu, Yanqiu; Brown, Paul D.

    2014-05-01

    Core/shell hetero-nanostructures of hydrothermally synthesised cobalt and nickel ferrites are shown to exhibit novel magnetic properties. The compositions and phase distributions of homogeneous Co0.5Ni0.5Fe2O4, and core/shell NiFe2O4-Core/CoFe2O4-Shell and CoFe2O4-Core/NiFe2O4-Shell nanoparticles (NPs) are confirmed using high-resolution transmission electron microscopy and electron energy loss spectroscopy. SQUID magnetometry investigations demonstrate that, at room temperature, homogeneous Co0.5Ni0.5Fe2O4 NPs ( 8 nm in diameter) are in the super-paramagnetic state, the magnetisation of NiFe2O4-Core/CoFe2O4-Shell NPs ( 11 nm in diameter) is partially blocked, whilst CoFe2O4-Core/NiFe2O4-Shell NPs ( 11 nm in diameter) are in a blocked state. In particular, NiFe2O4-Core/CoFe2O4-Shell NPs exhibit twice the out-of-phase χ″ susceptibility of CoFe2O4-Core/NiFe2O4-Shell NPs, being dominated by the magnetisation of the core ferrite phase. Hence, when exposed to a high-frequency magnetic field, it is considered that the high χ″ susceptibility of NiFe2O4-Core/CoFe2O4-Shell NPs will promote large magnetically induced heating effects, making these core/shell NPs strong candidates for hyperthermia applications.

  2. Room-temperature Formation of Hollow Cu2O Nanoparticles

    SciTech Connect

    Hung, Ling-I; Tsung, Chia-Kuang; Huang, Wenyu; Yang, Peidong

    2010-01-18

    Monodisperse Cu and Cu2O nanoparticles (NPs) are synthesized using tetradecylphosphonic acid as a capping agent. Dispersing the NPs in chloroform and hexane at room temperature results in the formation of hollow Cu2O NPs and Cu@Cu2O core/shell NPs, respectively. The monodisperse Cu2O NPs are used to fabricate hybrid solar cells with efficiency of 0.14percent under AM 1.5 and 1 Sun illumination.

  3. Microcosm N2O emissions wth calibration

    EPA Pesticide Factsheets

    The dataset consists of measurements of soil nitrous oxide emissions from soils under three different amendments: glucose, cellulose, and manure. Data includes the four isotopomers of nitrous oxide (14N15N16O, 15N14N16O, 14N14N18O, 14N14N16O), and the site preference.This dataset is associated with the following publication:Chen , H., D. Williams , P. Deshmukh , F. Birgand, B. Maxwell, and J. Walker. Probing the Biological Sources of Soil N2O Emissions by Quantum Cascade Laser-Based 15N Isotopocule Analysis. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL. Soil Science Society of America, Madison, WI, USA, 100(0): 175-181, (2016).

  4. Magnetic impurities in HNb2O5

    NASA Astrophysics Data System (ADS)

    Schilling, Osvaldo F.; Ghivelder, Luis

    2001-12-01

    Cu, Fe, Gd and Nd dopants were added to HNb2O5 in a range of concentrations to investigate the influence on the magnetic properties. The dopants fill the vacant sites in the channels along the b axis of the structure. Magnetic moments tend to remain localized in the dopants. AC susceptibility measurements display low temperature undulations associated with short range magnetic correlations within small clusters (of two or three ions) of dopants. Glauber spin-flip kinetics for Ising spin rings can be applied to these data. Although the magnetic behaviour is mostly Curie-Weiss above 20 K, the susceptibility data display a temperature-independent residual paramagnetic signal. We attribute this signal to Van Vleck orbital paramagnetism associated with bonding-antibonding transitions within Nb4+ or Cu2+ spin-paired dimers.

  5. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells

    PubMed Central

    Wang, Zi-Yu; Song, Jian; Zhang, Dong-Sheng

    2009-01-01

    AIM: To study the methods of preparing the magnetic nano-microspheres of Fe2O3 and As2O3/Fe2O3 complexes and their therapeutic effects with magnetic fluid hyperthermia (MFH). METHODS: Nanospheres were prepared by chemical co-precipitation and their shape and diameter were observed. Hemolysis, micronucleus, cell viability, and LD50 along with other in vivo tests were performed to evaluate the Fe2O3 microsphere biocompatibility. The inhibition ratio of tumors after Fe2O3 and As2O3/Fe2O3 injections combined with induced hyperthermia in xenograft human hepatocarcinoma was calculated. RESULTS: Fe2O3 and As2O3/Fe2O3 particles were round with an average diameter of 20 nm and 100 nm as observed under transmission electron microscope. Upon exposure to an alternating magnetic field (AMF), the temperature of the suspension of magnetic particles increased to 41-51°C, depending on different particle concentrations, and remained stable thereafter. Nanosized Fe2O3 microspheres are a new kind of biomaterial without cytotoxic effects. The LD50 of both Fe2O3 and As2O3/Fe2O3 in mice was higher than 5 g/kg. One to four weeks after Fe2O3 and As2O3/Fe2O3 complex injections into healthy pig livers, no significant differences were found in serum AST, ALT, BUN and Cr levels among the pigs of all groups (P > 0.05), and no obvious pathological alterations were observed. After exposure to alternating magnetic fields, the inhibition ratio of the tumors was significantly different from controls in the Fe2O3 and As2O3/Fe2O3 groups (68.74% and 82.79%, respectively; P < 0.01). Tumors of mice in treatment groups showed obvious necrosis, while normal tissues adjoining the tumor and internal organs did not. CONCLUSION: Fe2O3 and As2O3/Fe2O3 complexes exerted radiofrequency-induced hyperthermia and drug toxicity on tumors without any liver or kidney damage. Therefore, nanospheres are ideal carriers for tumor-targeted therapy. PMID:19554652

  6. PREPARATION, CHARACTERIZATION AND ACTIVITY OF AL2O3-SUPPORTED V2O5 CATALYSTS

    EPA Science Inventory

    A series of activated alumina supported vanadium oxide catalysts with various V2O5 loadings ranging from 5 to 25 wt% has been prepared by wet impregnation technique. A combination of various physico-chemical techniques such as BET surface areas, oxygen chemisorption, X-ray diffra...

  7. High Temperature Mechanical Characterization and Analysis of Al2O3 /Al2O3 Composition

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Jaskowiak, Martha H.

    1999-01-01

    Sixteen ply unidirectional zirconia coated single crystal Al2O3 fiber reinforced polycrystalline Al2O3 was tested in uniaxial tension at temperatures to 1400 C in air. Fiber volume fractions ranged from 26 to 31%. The matrix has primarily open porosity of approximately 40%. Theories for predicting the Young's modulus, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of Al2O3/Al2O3 composites. The composite exhibited pseudo tough behavior (increased area under the stress/strain curve relative to monolithic alumina) from 22 to 1400 C. The rule-of-mixtures provides a good estimate of the Young's modulus of the composite using the constituent properties from room temperature to approximately 1200 C for short term static tensile tests in air. The ACK theory provides the best approximation of the first matrix cracking stress while accounting for residual stresses at room temperature. Difficulties in determining the fiber/matrix interfacial shear stress at high temperatures prevented the accurate prediction of the first matrix cracking stress above room temperature. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate tensile strength.

  8. Electrochemistry of LiCl-Li2O-H2O Molten Salt Systems

    SciTech Connect

    Natalie J. Gese; Batric Pesic

    2013-03-01

    Uranium can be recovered from uranium oxide (UO2) spent fuel through the combination of the oxide reduction and electrorefining processes. During oxide reduction, the spent fuel is introduced to molten LiCl-Li2O salt at 650 degrees C and the UO2 is reduced to uranium metal via two routes: (1) electrochemically, and (2) chemically by lithium metal (Li0) that is produced electrochemically. However, the hygroscopic nature of both LiCl and Li2O leads to the formation of LiOH, contributing hydroxyl anions (OH-), the reduction of which interferes with the Li0 generation required for the chemical reduction of UO2. In order for the oxide reduction process to be an effective method for the treatment of uranium oxide fuel, the role of moisture in the LiCl-Li2O system must be understood. The behavior of moisture in the LiCl-Li2O molten salt system was studied using cyclic voltammetry, chronopotentiometry and chronoamperometry, while reduction to hydrogen was confirmed with gas chromatography.

  9. Identification and stability of U sub 2 O sub 2 , U sub 2 O sub 3 , and U sub 2 O sub 4 gaseous oxides molecules

    SciTech Connect

    Guido, M. ); Balducci, G. )

    1991-10-01

    The U{sub 2}O{sub 3}{sub ({ital g})} and U{sub 2}O{sub 4}{sub ({ital g})} species have been for the first time identified by Knudsen cell-mass spectrometry and their heats of formation and atomization energies have been tentatively derived. A redetermination of these quantities for the already known UO{sub 3}{sub ({ital g})} and U{sub 2}O{sub 2}{sub ({ital g})} molecules has been also attempted.

  10. 40 CFR Table I-8 to Subpart I of... - Default Emission Factors (1-UN2O j) for N2O Utilization (UN2O j)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Default Emission Factors (1-UN2O j) for N2O Utilization (UN2O j) I Table I-8 to Subpart I of Part 98 Protection of Environment... Electronics Manufacturing Pt. 98, Subpt. I, Table I-8 Table I-8 to Subpart I of Part 98—Default...

  11. 40 CFR Table I-8 to Subpart I of... - Default Emission Factors (1-UN2O,j) for N2O Utilization (UN2O,j)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-UN2O,j) for N2O Utilization (UN2O,j) I Table I-8 to Subpart I of Part 98 Protection of Environment... Electronics Manufacturing Pt. 98, Subpt. I, Table I-8 Table I-8 to Subpart I of Part 98— Default...

  12. The chemisorption of H2O, HCOOH and CH3COOH on thin amorphous films of Al2O3

    NASA Technical Reports Server (NTRS)

    Lewis, B. F.; Weinberg, W. H.; Mosesman, M.

    1974-01-01

    Investigation of the irreversible chemisorption of water, formic acid and acetic acid on a thin amorphous aluminum oxide film, using inelastic tunneling spectroscopy. All of the tunnel junctions employed were Al-Al2O3-Pb junctions with the adsorbate on the Al2O3 surface between the Al2O3 and the Pb electrode. The results obtained include the finding that all Al2O3 surfaces prepared by oxidation of Al have free CH groups present on them.

  13. Effect of Ce2O3 on Structure, Viscosity, and Crystalline Phase of CaO-Al2O3-Li2O-Ce2O3 Slags

    NASA Astrophysics Data System (ADS)

    Qi, Jie; Liu, Chengjun; Zhang, Chi; Jiang, Maofa

    2017-02-01

    Aiming at devising new mold flux for Ce-bearing stainless steel, a fundamental investigation on the effect of Ce2O3 on properties of the CaO-Al2O3-Li2O-Ce2O3 slag was provided by the present work. The results show that adding Ce2O3 could decrease the viscosity of the slag due to its effects on decreasing the polymerization of the slag. The crystalline process was restrained by increasing the content of Ce2O3, and the crystalline phases also can be influenced by the slag structure. The crystalline phases were transferred from LiAlO2 and CaO to LiAlO2 and CaCeAlO4 with the addition of Ce2O3 to the slag, which could be well confirmed by the structure of the unit cell of the crystals.

  14. Disentangling gross N2O production and consumption in soil

    NASA Astrophysics Data System (ADS)

    Wen, Yuan; Chen, Zhe; Dannenmann, Michael; Carminati, Andrea; Willibald, Georg; Kiese, Ralf; Wolf, Benjamin; Veldkamp, Edzo; Butterbach-Bahl, Klaus; Corre, Marife D.

    2016-11-01

    The difficulty of measuring gross N2O production and consumption in soil impedes our ability to predict N2O dynamics across the soil-atmosphere interface. Our study aimed to disentangle these processes by comparing measurements from gas-flow soil core (GFSC) and 15N2O pool dilution (15N2OPD) methods. GFSC directly measures soil N2O and N2 fluxes, with their sum as the gross N2O production, whereas 15N2OPD involves addition of 15N2O into a chamber headspace and measuring its isotopic dilution over time. Measurements were conducted on intact soil cores from grassland, cropland, beech and pine forests. Across sites, gross N2O production and consumption measured by 15N2OPD were only 10% and 6%, respectively, of those measured by GFSC. However, 15N2OPD remains the only method that can be used under field conditions to measure atmospheric N2O uptake in soil. We propose to use different terminologies for the gross N2O fluxes that these two methods quantified. For 15N2OPD, we suggest using ‘gross N2O emission and uptake’, which encompass gas exchange within the 15N2O-labelled, soil air-filled pores. For GFSC, ‘gross N2O production and consumption’ can be used, which includes both N2O emitted into the soil air-filled pores and N2O directly consumed, forming N2, in soil anaerobic microsites.

  15. Disentangling gross N2O production and consumption in soil

    PubMed Central

    Wen, Yuan; Chen, Zhe; Dannenmann, Michael; Carminati, Andrea; Willibald, Georg; Kiese, Ralf; Wolf, Benjamin; Veldkamp, Edzo; Butterbach-Bahl, Klaus; Corre, Marife D.

    2016-01-01

    The difficulty of measuring gross N2O production and consumption in soil impedes our ability to predict N2O dynamics across the soil-atmosphere interface. Our study aimed to disentangle these processes by comparing measurements from gas-flow soil core (GFSC) and 15N2O pool dilution (15N2OPD) methods. GFSC directly measures soil N2O and N2 fluxes, with their sum as the gross N2O production, whereas 15N2OPD involves addition of 15N2O into a chamber headspace and measuring its isotopic dilution over time. Measurements were conducted on intact soil cores from grassland, cropland, beech and pine forests. Across sites, gross N2O production and consumption measured by 15N2OPD were only 10% and 6%, respectively, of those measured by GFSC. However, 15N2OPD remains the only method that can be used under field conditions to measure atmospheric N2O uptake in soil. We propose to use different terminologies for the gross N2O fluxes that these two methods quantified. For 15N2OPD, we suggest using ‘gross N2O emission and uptake’, which encompass gas exchange within the 15N2O-labelled, soil air-filled pores. For GFSC, ‘gross N2O production and consumption’ can be used, which includes both N2O emitted into the soil air-filled pores and N2O directly consumed, forming N2, in soil anaerobic microsites. PMID:27812012

  16. Soil invertebrate fauna affect N2 O emissions from soil.

    PubMed

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P < 0.001), but the cumulative N2 O emissions remained unaffected. We propose that increased soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies.

  17. H2O2 space shuttle APU

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A cryogenic H2-O2 auxiliary power unit (APU) was developed and successfully demonstrated. It has potential application as a minimum weight alternate to the space shuttle baseline APU because of its (1) low specific propellant consumption and (2) heat sink capabilities that reduce the amount of expendable evaporants. A reference system was designed with the necessary heat exchangers, combustor, turbine-gearbox, valves, and electronic controls to provide 400 shp to two aircraft hydraulic pumps. Development testing was carried out first on the combustor and control valves. This was followed by development of the control subsystem including the controller, the hydrogen and oxygen control valves, the combustor, and a turbine simulator. The complete APU system was hot tested for 10 hr with ambient and cryogenic propellants. Demonstrated at 95 percent of design power was 2.25 lb/hp-hr. At 10 percent design power, specific propellant consumption was 4 lb/hp-hr with space simulated exhaust and 5.2 lb/hp-hr with ambient exhaust. A 10 percent specific propellant consumption improvement is possible with some seal modifications. It was demonstrated that APU power levels could be changed by several hundred horsepower in less than 100 msec without exceeding allowable turbine inlet temperatures or turbine speed.

  18. NMR and Mössbauer Study of Al2O3-Eu2O3

    NASA Astrophysics Data System (ADS)

    Nava, N.; Salas, P.; Llanos, M. E.; Pérez-Pastenes, H.; Viveros, T.

    2005-02-01

    Alumina-europia mixed oxides with 5 and 10 wt.% Eu2O3 were studied by Mössbauer spectroscopy, 27Al MAS-NMR and X-ray diffraction (XRD). The samples were prepared by the sol-gel technique. The XRD patterns for the calcined samples show a broad peak around 2 θ = 30° which is assigned to the Eu2O3; after treatment with hydrogen at 1073 K no reduction to Eu+2 or Eu0 was observed. The NMR spectra show three peaks, which are assigned to the octahedral, pentahedral and tetrahedral aluminum sites; the intensity of each peak depends on the concentration of europium ions. The Mössbauer spectra of the calcined samples show a single peak near zero velocity which is attributed to the Eu+3; after H2 treatment at 1073 K similar spectra were obtained, suggesting Eu+3 is not reducibly at this temperature.

  19. Electrical transport and structural investigations in Cu2O substituted AgI-Ag2O-V2O5 glass-ceramic nanocomposites

    NASA Astrophysics Data System (ADS)

    Gupta, Neha; Dalvi, Anshuman; Awasthi, Barkha; Deva, Dinesh

    2012-06-01

    Glass-ceramic nanocomposites in Cu2O substituted AgI-(Ag2O)1-x-(Cu2O)x-V2O5 superionic system are prepared by annealing the melt-quenched glasses above the crystallization temperatures. Structural and electrical properties have been investigated. Scanning electron microscopy suggests the existence of fine particles of size 20-200 nm dispersed in the annealed glass matrix. Samples are essentially ionic and stable under conductivity-temperature cycles upto ˜ 160 °C. It is found that the conductivity in the nanocomposites increases with Cu2O substitution and highest conductivity is found to be ˜ 2 × 10-3 Ω-1cm-1 for x = 0.3 at room temperature. Differential scanning calorimetry scans confirm the existence of silver iodide crystallites in all the glass-ceramic compositions.

  20. Anomalous H+ and D+ conductance in H2O-D2O mixtures

    NASA Astrophysics Data System (ADS)

    Weingärtner, H.; Chatzidimttriou-Dreismann, C. A.

    1990-08-01

    A KNOWLEDGE of proton-transfer dynamics and hydrogen-bonding in water and aqueous solutions is necessary for the understanding of many important chemical and biological processes. For example, quantum effects related to proton transfer (or tunnelling) in H+(H2O)n clusters of liquid water (where n = 1,2,· · ·) are known to have a dominant role in the proton conductance mechanism1,2 and are responsible for the high conductances of H+ and OH- in water. A new quantum theoretical approach to this process has been presented3, which is based on the hypothesis that there are quantum correlations4-8 between each H+ and the protons of the surrounding water molecules, leading to the formation of coherent dissipative structures3,8. From further investigations, one of us predicted that an anomalous decrease of H+ conductance in H2O-D2O mixtures would take place9. Having thought of an experiment to test these predictions9 we now report the experimental results and conclude that an anomalous decrease in proton conductance does indeed occur.

  1. Electron collisions with the CH{sub 2}O-H{sub 2}O complex

    SciTech Connect

    Freitas, T. C.; Lima, M. A. P.; Canuto, S.; Bettega, M. H. F.

    2009-12-15

    We report cross sections for elastic collisions of low-energy electrons with the CH{sub 2}O-H{sub 2}O complex. We employed the Schwinger multichannel method with pseudopotentials in the static-exchange and in the static-exchange-polarization approximations for energies from 0.1 to 20 eV. We considered four different hydrogen-bonded structures for the complex that were generated by classical Monte Carlo simulations. Our aim is to investigate the effect of the water molecule on the pi* shape resonance of formaldehyde. Previous studies reported a pi* shape resonance for CH{sub 2}O at around 1 eV. The resonance positions of the complexes appear at lower energies in all cases due to the mutual polarization between the two molecules. This indicates that the presence of water may favor dissociation by electron impact and may lead to an important effect on strand breaking in wet DNA by electron impact.

  2. N2O emissions from a nitrogen-enriched river

    USGS Publications Warehouse

    McMahon, P.B.; Dennehy, K.F.

    1999-01-01

    Nitrous oxide (N2O) emissions from the South Platte River in Colorado were measured using closed chambers in the fall, winter, and summer of 1994- 1995. The South Platte River was enriched in inorganic N (9-800 ??M) derived from municipal wastewater effluent and groundwater return flows from irrigated agricultural fields. River water was as much as 2500% supersaturated with N2O, and median N2O emission rates from the river surface ranged from less than 90 to 32 600 ??g-N m-2 d-1. Seventy-nine percent of the variance in N2O emission rates was explained by concentrations of total inorganic N in river water and by water temperature. The estimated total annual N2O emissions from the South Platte River were 2 x 1013-6 x 1013 ??g-N yr-1. This amount of annual N2O emissions was similar to the estimated annual N2O emissions from all primary municipal wastewater treatment processes in the United States (1). Results from this study indicate that N-enriched rivers could be important anthropogenic sources of N2O to the atmosphere. However, N2O emission measurements from other N-enriched rivers are needed to better quantify this source.Nitrous oxide (N2O) emissions from the South Platte River in Colorado were measured using closed chambers in the fall, winter, and summer of 1994-1995. The South Platte River was enriched in inorganic N (9-800 ??M) derived from municipal wastewater effluent and groundwater return flows from irrigated agricultural fields. River water was as much as 2500% supersaturated with N2O, and median N2O emission rates from the river surface ranged from less than 90 to 32 600 ??g-N m-2 d-1. Seventy-nine percent of the variance in N2O emission rates was explained by concentrations of total inorganic N in river water and by water temperature. The estimated total annual N2O emissions from the South Platte River were 2??1013-6??1013 ??g-N yr-1. This amount of annual N2O emissions was similar to the estimated annual N2O emissions from all primary municipal

  3. Interactions of D2O with methane and fluoromethane surfaces.

    PubMed

    Souda, R; Kawanowa, H; Kondo, M; Gotoh, Y

    2004-03-22

    TOF-SIMS is used to investigate the interactions between D2O and hydrophobic molecules, such as CH4, CH3F, CH2F2, CHF3, and CF4, at cryogenic temperatures (15 K). By irradiation with a 1.5-keV He+ beam, the D(+)(D2O)n ions are ejected efficiently from the D2O nanoclusters physisorbed on the CF4 layer due to Coulomb explosion: the ion yields are by about two orders of magnitude higher than those from a thick D2O layer via the kinetic sputtering. The D(+)(D2O)n yields decrease on the CHnF(4-n) layer with increasing the number of the C-H group. This is because the Coulombic fission is quenched due to the delocalization of valence holes through the C-H...H-C and C-H...D2O contacts. A pure D2O film is hardly grown on the CH4 layer as a consequence of intermixing whereas the D2O molecules basically adsorb on the surfaces of fluoromethanes, suggesting the attractive (water-repellent) interactions in the C-H...D2O (C-F...D2O) contacts. The C-H...O bond behaves like a conventional O-H...O hydrogen bond as far as the collision-induced proton transfer reaction is concerned.

  4. Crystallographic and magnetic properties of the hyperthermia material CoFe2O4@AlFe2O4

    NASA Astrophysics Data System (ADS)

    Choi, Hyunkyung; An, Mijeong; Eom, Wonyoung; Lim, Sae Wool; Shim, In-Bo; Kim, Chul Sung; Kim, Sam Jin

    2017-01-01

    Hard/soft CoFe2O4@AlFe2O4 core/shell nanoparticles were prepared by using a high temperature thermal decomposition method with seed-mediated growth. The structural, magnetic and thermal properties of the nanoparticles were investigated by using X-ray diffraction, vibrating sample magnetometer, MagneTherm, and Mössbauer spectroscopy. The crystal structure of nanoparticles was determined to be cubic spinel ferrite with space group Fd-3m. The CoFe2O4 nanoparticles were found to show high magnetization and coercivity while AlFe2O4 nanoparticles were found to show low magnetization and coercivity. The CoFe2O4@AlFe2O4 core/shell nanoparticles showed intermediate values of magnetization and the coercivity between those of CoFe2O4 and AlFe2O4. Also, the blocking temperature ( T B ) of the nanoparticles (NPs) was observed to be 280, 50, and 225 K for CoFe2O4, AlFe2O4 and CoFe2O4@AlFe2O4, respectively. The core/shell ferrite shows a T B near 225 K, associated with the harder CoFe2O4 NPs. Temperatures below 225 K, the zero-field-cooled curves show changes in their slopes at a temperature near 50 K, corresponding to the second blocking temperature associated with the softer AlFe2O4 NPs.

  5. Sc2O3, Er2O3, and Y2O3 thin films by MOCVD from volatile guanidinate class of rare-earth precursors.

    PubMed

    Milanov, Andrian P; Xu, Ke; Cwik, Stefan; Parala, Harish; de los Arcos, Teresa; Becker, Hans-Werner; Rogalla, Detlef; Cross, Richard; Paul, Shashi; Devi, Anjana

    2012-12-07

    Alternative novel precursor chemistries for the vapor phase deposition of rare-earth (RE) oxide thin films were developed by synthesising the homoleptic guanidinate compounds tris(N,N'-diisopropyl-2-dimethylamidoguanidinato)-scandium(III) [Sc(DPDMG)(3)] (1), tris(N,N'-diisopropyl-2-dimethylamidoguanidinato)-erbium(III), [Er(DPDMG)(3)] (2) and tris(N,N'-diisopropyl-2-dimethylamidoguanidinato)-yttrium(III), [Y(DPDMG)(3)] (3). All three compounds are monomeric as revealed by single crystal X-ray diffraction (XRD) analysis, nuclear magnetic resonance (NMR) and electron impact mass spectrometry (EI-MS). The thermal analysis revealed that the compounds are volatile and very stable under evaporation conditions. Therefore the complexes were evaluated as precursors for the growth of Sc(2)O(3), Er(2)O(3) and Y(2)O(3) thin films, respectively, by metal-organic chemical vapor deposition (MOCVD). Uniform Sc(2)O(3), Er(2)O(3) and Y(2)O(3) films on Si(100) substrates with reproducible quality were grown by MOCVD by the combination of the respective guanidinate precursors and oxygen in the temperature range 350-700 °C. The structural, morphological, compositional and electrical properties of the films were investigated in detail. The most relevant film properties are highlighted in relation to the distinct advantages of the novel precursor chemistries in comparison to the commonly used literature known RE precursors. This study shows that compounds 1-3 are very good precursors for MOCVD yielding Sc(2)O(3), Er(2)O(3) and Y(2)O(3) thin films which are stoichiometric and display suitable electrical properties for their potential use as high dielectric constant (high-k) materials.

  6. Successful Nd3+ Doping of Li2O-B2O3-Al2O3 Vitreous System: Optical Characterization and Judd-Ofelt Spectroscopic Calculations

    NASA Astrophysics Data System (ADS)

    Silva, V. A.; Morais, P. C.; Morais, R. F.; Dantas, N. O.

    2016-12-01

    This study reports on the synthesis and the physical characterization of a ternary boron-rich (B-rich) lithium-boron-aluminum (LBA: Li2O-B2O3-Al2O3) vitreous system successfully doped with increasing Nd2O3 content ( xNd2O3:LBA) in the range 0 ≤ x ≤ 5 wt %. The as-produced samples were investigated using optical absorption, photoluminescence emission, Raman spectroscopy, and differential thermal analysis. The Judd-Ofelt (JO) theory was used to assess the intensity parameters ( Ω λ ), transition probabilities ( A( J, J')), branch ratios ( β), emission cross-sections ( σ), quantum efficiencies ( Y), experimental ( τ exp ) and calculated ( τ rad ) radiative lifetimes, and the spectroscopic quality values ( χ = Ω 4/ Ω 6) as a function of the nominal Nd2O3 doping content. Over the range of our investigation (0 ≤ x ≤ 5 wt %), we found that the Ω 2 and Ω 6JO parameters monotonically increased from 0.17 to 1.26 × 10-20 and from 1.19 to 1.84 × 10-20, respectively. In contrast, over the same range of nominal Nd2O3 doping content we found that the Ω 4 JO parameter decreased monotonically from 4.12 to 2.05 × 1 0-20. Although the τ exp values increased at the low end of nominal Nd2O3 content (up to 2.5 wt %), nonradiative energy transfer mechanisms (e.g., energy migration, cross-relaxation, and losses from networked phonons and O-H vibrational modes) governed the process at the high end of the nominal Nd2O3 content. A competition mechanism was proposed to explain the observed behavior in the 4F3/2 ⟶ 4IJ'transition lifetime for hosted Nd3+ ions.

  7. Fabrication development of Li 2O pebbles by wet process

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kunihiko; Fuchinoue, Katsuhiro; Saito, Shigeru; Watarumi, Kazutoshi; Furuya, Takemi; Kawamura, Hiroshi

    1998-03-01

    Lithium oxide (Li 2O) is one of the best tritium breeding materials. A small sphere of Li 2O is proposed in some designs of fusion blankets. Recently, reprocessing technology on irradiated ceramic tritium breeders was developed from the viewpoint of effective use of resources and reduction of radioactive wastes. The wet process is advantageous for fabricating small Li 2O pebbles from the reprocessed lithium-bearing solutions. Preliminary fabrication tests of Li 2O pebbles by the wet process were carried out. However, the density of the pebbles obtained was only 55%. Therefore, process improvement tests were performed in order to increase the density of Li 2O pebbles fabricated by this method. The improved process yielded Li 2O pebbles in the target range of 80-85% T.D.

  8. Na2MoO2As2O7

    PubMed Central

    Jouini, Raja; Zid, Mohamed Faouzi; Driss, Ahmed

    2012-01-01

    Disodium molybdenum dioxide diarsenate, Na2MoO2As2O7, has been synthesized by a solid-state reaction. The structure is built up from MoAs2O12 linear units sharing corners to form a three-dimensional framework containing tunnels running along the a-axis direction in which the Na+ cations are located. In this framework, the AsV atoms are tetra­hedrally coordinated and form an As2O7 group. The MoVI atom is displaced from the center of an octa­hedron of O atoms. Two Na+ cations are disordered about inversion centres. Structural relationships between different compounds: A 2MoO2As2O7 (A = K, Rb), AMOP2O7 (A = Na, K, Rb; M = Mo, Nb) and MoP2O7 are discussed. PMID:23468669

  9. Characterization of SDC-Al2O3 solid electrolyte

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Raju, K. C. James; Reddy, C. Vishnuvardhan

    2012-06-01

    SDC20-Al2O3 materials were synthesized through the sol-gel method. Dense SDC20-Al2O3 ceramics were obtained through sintering the pellets at 1300°C. SDC20-Al2O3 materials were characterized by XRD, SEM and impedance spectroscopy. XRD measurements indicate that synthesized materials crystallized in cubic structure. Average crystallite size of the samples was in the range 11-12 nm. The relative density of SDC20-Al2O3 samples was over 95% of the theoretical density. Addition of Al2O3 promotes densification. Surface morphology was analyzed using SEM. The two-probe a.c. impedance spectroscopy was used to study the total ionic conductivity of doped and co-doped ceria in the temperature range 350-700°C. The SDC20-Al2O3 composition showed improved total ionic conductivity and minimum activation energy.

  10. Non-linear Electrical Characteristics of ZnO Modified by Trioxides Sb2O3, Bi2O3, Fe2O3, Al2O3 and La2O3

    NASA Astrophysics Data System (ADS)

    Mekap, Anita; Das, Piyush R.; Choudhary, R. N. P.

    2016-08-01

    The non-linear behavior of polycrystalline-ZnO-based voltage-dependent resistors is considered in the present study. A high-temperature solid-state reaction route was used to synthesize polycrystalline samples of ZnO modified by small amounts of the trioxides Sb2O3, Bi2O3, Fe2O3, etc. in various proportions. X-ray diffraction and scanning electron microscopy techniques were used to study the structural and microstructural characteristics of modified ZnO. Detailed studies of non-linear phenomena of the I-V characteristics, dielectric permittivity ( ɛ r), impedance ( Z), etc. of the samples have provided many interesting results. All the samples exhibited dielectric anomaly. Non-linear variation in polarization with electric field for all the samples was observed. Moreover, significant non-linearity in the I-V characteristics was observed in the breakdown region of all the samples at room temperature. The non-linear coefficient ( α) in different cases, i.e. for I- V, ɛ r- f, ɛ r- T, and ɛ r- Z, was calculated and found to be appreciable. The frequency dependence of ac conductivity suggests that the material obeys Jonscher's universal power law.

  11. Structural Investigations of MnO-Bi2O3 and MnO-Bi2O3-As2O3 Glass Systems by IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ardelean, I.; Todor, Ioana; Păşcuţă, P.; Ioncu, V.

    Glasses from xMnO . (100-x)Bi2O3 and xMnO . (100-x)[Bi2O3 . As2O3] systems, with 0<= x<= 50 mol% were obtained in the same conditions and characterized by IR spectroscopy. The influence of a gradual increase of MnO content on the glass structure and the effect of changing the glass matrix compositions, were projected. The presence and the dependence of the bismuthate structural units BiO3 and BiO6 on the MnO content was analyzed.

  12. Theoretical and experimental determination of the electronic structure of V(2)O(5), reduced V(2)O(5-x) and sodium intercalated NaV(2)O(5).

    PubMed

    Laubach, Stefan; Schmidt, Peter C; Thissen, Andreas; Fernandez-Madrigal, Francisco Javier; Wu, Qi-Hui; Jaegermann, Wolfram; Klemm, Matthias; Horn, Siegfried

    2007-05-28

    In this work the electronic structure of V(2)O(5), reduced V(2)O(5-x) (V(16)O(39)) and sodium intercalated NaV(2)O(5) has been studied by both theoretical and experimental methods. Theoretical band structure calculations have been performed using density functional methods (DFT). We have investigated the electron density distribution of the valence states, the total density of states (total DOS) and the partial valence band density of states (PVBDOS). Experimentally, amorphous V(2)O(5) thin films have been prepared by physical vapour deposition (PVD) on freshly cleaved highly oriented pyrolytic graphite (HOPG) substrates at room temperature with an initial oxygen understoichiometry of about 4%, resulting in a net stoichiometry of V(2)O(4.8). These films have been intercalated by sodium using vacuum deposition with subsequent spontaneous intercalation (NaV(2)O(5)) at room temperature. Resonant V3p-V3d photoelectron spectroscopy (ResPES) experiments have been performed to determine the PVBDOS focusing on the calculation of occupation numbers and the determination of effective oxidation state, reflecting ionicity and covalency of the V-O bonds. Using X-ray absorption near edge spectra (XANES) an attempt is made to visualize the changes in the unoccupied DOS due to sodium intercalation. For comparison measurements on nearly stoichiometric V(2)O(5) single crystals have been performed. The experimental data for the freshly cleaved and only marginally reduced V(2)O(5) single crystals and the NaV(2)O(5) results are in good agreement with the calculated values. The ResPES results for V(2)O(4.8) agree in principle with the calculations, but the trends in the change of the ionicity differ between experiment and theory. Experimentally we find partly occupied V 3d states above the oxygen 2p-like states and a band gap between these and the unoccupied states. In theory one finds this occupation scheme assuming oxygen vacancies in V(2)O(5) and by performing a spin

  13. Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials.

    PubMed

    Snetkov, Ilya L; Silin, Dmitry E; Palashov, Oleg V; Khazanov, Efim A; Yagi, Hideki; Yanagitani, Takagimi; Yoneda, Hitoki; Shirakawa, Akira; Ueda, Ken-Ichi; Kaminskii, Alexander A

    2013-09-09

    Thermally induced depolarization and thermal lens of three Konoshima Chemical Co. laser-ceramics samples Yb(3+):Lu(2)O(3)(C(Yb) ≈ 1.8 at.%), Yb(3+):Y(2)O(3)(C(Yb) ≈ 1.8 at.%), and Yb(3+):Sc(2)O(3) (C(Yb) ≈ 2.5 at.%) were measured in experiment at different pump power. The results allowed us to estimate the thermal conductivity of the investigated ceramic samples and compare their thermo-optical properties. The thermo-optical constants P and Q and its sign measured for these materials at the first time.

  14. Oxygen Transport in Melts Based on V2O5

    NASA Astrophysics Data System (ADS)

    Klimashin, Anton; Belousov, Valery

    2016-02-01

    An oxygen ion transport model was developed for oxide melts based on V2O5. Within the framework of this model, the values of the parabolic rate constant of catastrophic oxidation of V2O5-deposited copper and the oxygen flux through the slags based on molten V2O5 were calculated and compared with experimental data. The calculated and experimental values are of the same order of magnitude which shows an adequacy of the model.

  15. Sources and sinks for atmospheric N2O

    NASA Technical Reports Server (NTRS)

    Mcelroy, M. B.; Elkins, J. W.; Wofsy, S. C.; Yung, Y. L.

    1976-01-01

    Observations of the temporal and spatial distribution of N2O in solution are not yet sufficient to permit quantitative assessment of the role of the ocean in the budget of atmospheric N2O. Consideration of the global nitrogen cycle suggests that the land should be the primary source of N2O. The gas is removed in the atmosphere by photolysis and by reaction with O(1D), and there may be additional sinks in the ocean.

  16. Diurnality of soil nitrous oxide (N2O) emissions

    NASA Astrophysics Data System (ADS)

    Gelfand, I.; Moyer, R.; Poe, A.; Pan, D.; Abraha, M.; Chen, J.; Zondlo, M. A.; Robertson, P.

    2015-12-01

    Soil emissions of nitrous oxide (N2O) are important contributors to the greenhouse gas balance of the atmosphere. Agricultural soils contribute ~65% of anthropogenic N2O emissions. Understanding temporal and spatial variability of N2O emissions from agricultural soils is vital for closure of the global N2O budget and the development of mitigation opportunities. Recent studies have observed higher N2O fluxes during the day and lower at night. Understanding the mechanisms of such diurnality may have important consequences for our understanding of the N cycle. We tested the hypothesis that diurnal cycles are driven by root carbon exudes that stimulate denitrification and therefore N2O production. Alternatively, we considered that the cycle could result from higher afternoon temperatures that accelerate soil microbial activity. We removed all plants from a corn field plot and left another plot untouched. We measured soil N2O emissions in each plot using a standard static chamber technique throughout the corn growing season. And also compared static chamber results to ecosystem level N2O emissions as measured by eddy covariance tower equipped with an open-path N2O sensor. We also measured soil and air temperatures and soil water and inorganic N contents. Soil N2O emissions followed soil inorganic N concentrations and in control plot chambers ranged from 10 μg N m-2 hr-1 before fertilization to 13×103 after fertilization. We found strong diurnal cycles measured by both techniques with emissions low during night and morning hours and high during the afternoon. Corn removal had no effect on diurnality, but had a strong effect on the magnitude of soil N2O emissions. Soil temperature exhibited a weak correlation with soil N2O emissions and could not explain diurnal patterns. Further studies are underway to explore additional mechanisms that might contribute to this potentially important phenomena.

  17. Molecular dynamics simulations of D2O ice photodesorption

    NASA Astrophysics Data System (ADS)

    Arasa, C.; Andersson, S.; Cuppen, H.; van Dishoeck, E. F.; Kroes, G. J.

    2011-05-01

    We present results of MD calculations performed to study the photodissociation of D2O in an amorphous ice at different ice temperatures in order to investigate isotope effects on the photodesorption processes. In dense interstellar clouds, small dust particles of micrometer silicates are covered by ice mantles, mainly consisting of H2O and also of CO, CO2. Previous MD calculations of H2O ice at Tice=10-90 K show that the photodesorption of H while OH remains trapped is the main outcome in the first three monolayers (MLs). On the other hand, the H and OH photofragments released recombine or are trapped at separate positions in the deeper MLs and can react with other species in the ice. Desorption and trapping probabilities have been calculated following photoexcitation of D2O amorphous ice at 10, 20, 60 and 90 K, and the main conclusions agree with previous calculations of H2O ice. But, the average D photodesorption probability is smaller than that of the H atom, whereas the average OD radical photodesorption probability is larger than that of OH, and the average D2O photodesorption probability is larger than that for H2O due to the D2O kick-out mechanism. The total (OD + D2O) yield has been compared with experiments and the total (OH + H2O) yield from previous simulations. We find better agreement when we compare experimental yields with calculated yields for D2O ice than when we compare with calculated yields for H2O ice.

  18. Nitrous oxide (N2O) emission from aquaculture: a review.

    PubMed

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Khanal, Samir Kumar

    2012-06-19

    Nitrous oxide (N(2)O) is an important greenhouse gas (GHG) which has a global warming potential 310 times that of carbon dioxide (CO(2)) over a hundred year lifespan. N(2)O is generated during microbial nitrification and denitrification, which are common in aquaculture systems. To date, few studies have been conducted to quantify N(2)O emission from aquaculture. Additionally, very little is known with respect to the microbial pathways through which N(2)O is formed in aquaculture systems. This review suggests that aquaculture can be an important anthropogenic source of N(2)O emission. The global N(2)O-N emission from aquaculture in 2009 is estimated to be 9.30 × 10(10) g, and will increase to 3.83 × 10(11)g which could account for 5.72% of anthropogenic N(2)O-N emission by 2030 if the aquaculture industry continues to increase at the present annual growth rate (about 7.10%). The possible mechanisms and various factors affecting N(2)O production are summarized, and two possible methods to minimize N(2)O emission, namely aquaponic and biofloc technology aquaculture, are also discussed. The paper concludes with future research directions.

  19. A shock tube study of OH + H(2)O(2) --> H(2)O + HO(2) and H(2)O(2) + M --> 2OH + M using laser absorption of H(2)O and OH.

    PubMed

    Hong, Zekai; Cook, Robert D; Davidson, David F; Hanson, Ronald K

    2010-05-13

    The rate constants of the reactions: (1) H2O2+M-->2OH+M, (2) OH+H2O2-->H2O+HO2 were measured in shock-heated H(2)O(2)/Ar mixtures using laser absorption diagnostics for H(2)O and OH. Time-histories of H(2)O were monitored using tunable diode laser absorption at 2550.96 nm, and time-histories of OH were achieved using ring dye laser absorption at 306 nm. Initial H(2)O(2) concentrations were also determined utilizing the H(2)O diagnostic. On the basis of simultaneous time-history measurements of OH and H(2)O, k(2) was found to be 4.6 x 10(13) exp(-2630 K/T) [cm(3) mol(-1) s(-1)] over the temperature range 1020-1460 K at 1.8 atm; additional measurements of k(2) near 1 atm showed no significant pressure dependence. Similarly, k(1) was found to be 9.5 x 10(15) exp(-21 250 K/T) [cm(3) mol(-1) s(-1)] over the same temperature and pressure range.

  20. N2O production, a widespread trait in fungi

    NASA Astrophysics Data System (ADS)

    Maeda, Koki; Spor, Aymé; Edel-Hermann, Véronique; Heraud, Cécile; Breuil, Marie-Christine; Bizouard, Florian; Toyoda, Sakae; Yoshida, Naohiro; Steinberg, Christian; Philippot, Laurent

    2015-04-01

    N2O is a powerful greenhouse gas contributing both to global warming and ozone depletion. While fungi have been identified as a putative source of N2O, little is known about their production of this greenhouse gas. Here we investigated the N2O-producing ability of a collection of 207 fungal isolates. Seventy strains producing N2O in pure culture were identified. They were mostly species from the order Hypocreales order--particularly Fusarium oxysporum and Trichoderma spp.--and to a lesser extent species from the orders Eurotiales, Sordariales, and Chaetosphaeriales. The N2O 15N site preference (SP) values of the fungal strains ranged from 15.8‰ to 36.7‰, and we observed a significant taxa effect, with Penicillium strains displaying lower SP values than the other fungal genera. Inoculation of 15 N2O-producing strains into pre-sterilized arable, forest and grassland soils confirmed the ability of the strains to produce N2O in soil with a significant strain-by-soil effect. The copper-containing nitrite reductase gene (nirK) was amplified from 45 N2O-producing strains, and its genetic variability showed a strong congruence with the ITS phylogeny, indicating vertical inheritance of this trait. Taken together, this comprehensive set of findings should enhance our knowledge of fungi as a source of N2O in the environment.

  1. Cu2O-based solar cells using oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-01-01

    We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu2O heterojunction solar cells fabricated using p-type Cu2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa2O4 thin-film layer. In most of the Cu2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga2O3-Al2O3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (Voc) were obtained by using a relatively small amount of MgO or Al2O3, e.g., (ZnO)0.91-(MgO)0.09 and (Ga2O3)0.975-(Al2O3)0.025, respectively. When Cu2O-based heterojunction solar cells were fabricated using Al2O3-Ga2O3-MgO-ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Voc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu2O heterojunction solar cells fabricated using Na-doped Cu2O (Cu2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a Voc of 0.84 V were obtained in a MgF2/AZO/n-(Ga2O3-Al2O3)/p-Cu2O:Na heterojunction solar cell fabricated using a Cu2O:Na sheet with a resistivity of approximately 10 Ω·cm and a (Ga0.975Al0.025)2

  2. The H2O/D2O isotope effect in crystalline lanthanide sulfates at photo-, radio-, and triboluminescence

    NASA Astrophysics Data System (ADS)

    Sharipov, G. L.; Tukhbatullin, A. A.; Mescheryakova, E. S.

    2016-02-01

    We comparatively studied the H2O/D2O isotope effect of lanthanide sulfate crystallohydrates on photo-, radio-, and triboluminescence and lifetimes of the excited Ln3+ ions. Replacing H2O by D2O leads to an increase in the luminescence intensity whereas this process does not affect the maxima positions in photo-, radio-, and triboluminescence spectra. This isotope effect agrees with the known concepts of changes in luminescence quantum yields of the Ln3+ ions being the main emitters. The bands of OH and OD radicals arise in triboluminescence spectra of lanthanide sulfate crystallohydrates (with H2O or D2O) registered in argon atmosphere in UV region. This supports the proposition that water destruction occurs at the degradation of the crystallohydrates.

  3. Exact vibrational energies of non-rotating H 2O and D 2O using an accurate ab initio potential

    NASA Astrophysics Data System (ADS)

    Bowman, Joel M.; Wierzbicki, Andrzej; Zúñiga, Jose

    1988-09-01

    Variationally exact vibrational energies are reported for non-rotating H 2O and D 2O using the recent CCSDT-1 ab initio potential of Bartlett, Cole, Purvis, Ermler, Hsieh and Shavitt as fit to an SPF quartic force field by Ermler. Twenty vibrational states are calculated for H 2O and D 2O and compared with experimental data. The agreement with experiment is fairly good; however, when the second-order bending force constant is reduced slightly, the agreement with experiment improves significantly. For eighteen states of H 2O the largest error is 15 cm -1 and the average absolute error is 6 cm -1. For eight states of D 2O the largest error is 7 cm -1 and the average absolute error is 4 cm -1.

  4. Phase transformations during the interaction of Nb2O5 and FeNb2O6 with aluminum

    NASA Astrophysics Data System (ADS)

    Mansurova, A. N.; Chumarev, V. M.; Leont'ev, L. I.; Gulyaeva, R. I.; Sel'menskikh, N. I.

    2012-11-01

    The phase transformations that occur during the interaction of niobium pentoxide and iron niobate with aluminum are studied by differential scanning calorimetry, X-ray diffraction analysis and electronprobe microanalysis. The sequence of the formation of intermediate phases based on an NbO2 solid solution is revealed. It is shown that the reduction of niobium from Nb2O5 is hindered by the formation of hard-to-reduce oxides Al2O3 · 25Nb2O5, Al2O3 · 9Nb2O5 and AlNbO4. The interaction of FeNb2O6 with aluminum is accompanied by the formation of [(Fe,Nb)O2]s.s and NbO2 solid solutions.

  5. Tuning the conductance of H2O@C60 by position of the encapsulated H2O

    PubMed Central

    Zhu, Chengbo; Wang, Xiaolin

    2015-01-01

    The change of conductance of single-molecule junction in response to various external stimuli is the fundamental mechanism for the single-molecule electronic devices with multiple functionalities. We propose the concept that the conductance of molecular systems can be tuned from inside. The conductance is varied in C60 with encapsulated H2O, H2O@C60. The transport properties of the H2O@C60-based nanostructure sandwiched between electrodes are studied using first-principles calculations combined with the non-equilibrium Green’s function formalism. Our results show that the conductance of the H2O@C60 is sensitive to the position of the H2O and its dipole direction inside the cage with changes in conductance up to 20%. Our study paves a way for the H2O@C60 molecule to be a new platform for novel molecule-based electronics and sensors. PMID:26643873

  6. Ionic liquid-based hydrothermal synthesis of Lu2O3 and Lu2O3:Eu3+ microcrysals

    NASA Astrophysics Data System (ADS)

    Li, Yinyan; Xu, Shiqing

    2016-09-01

    Uniform and well-defined Lu2O3 and Lu2O3:Eu3+ microarchitectures have been successfully synthesized via a green and facile ionic liquid-based hydrothermal method followed by a subsequent calcination process. Novel 3D micro-rodbundles and 1D microrods of Lu2O3 and Lu2O3:Eu3+ were controllably obtained through this method. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and photoluminescence spectra were used to characterize the micromaterials. The proposed formation mechanisms have been investigated on the basis of a series of SEM studies of the products obtained at different hydrothermal durations. The results indicated that hydrothermal temperature and the ionic liquid-tetrabutylammonium hydroxide were two key factors for the formation as well as the morphology control of the Lu2O3 and Lu2O3:Eu3+ microarchitectures.

  7. Calculation of Phase Equilibria in the Y2O3-Yb2O3-ZrO2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2001-01-01

    Rare earth oxide stabilized zirconias find a wide range of applications. An understanding of phase equilibria is essential to all applications. In this study, the available phase boundary data and thermodynamic data is collected and assessed. Calphad-type databases are developed to completely describe the Y2O3-ZrO2, Yb2O3-ZrO2, and Y2O3-Yb2O3 systems. The oxide units are treated as components and regular and subregular solution models are used. The resultant calculated phase diagrams show good agreement with the experimental data. Then the binaries are combined to form the database for the Y2O3-Yb2O3-ZrO2 psuedo-ternary.

  8. Selective oxidation of vinyl chloride on Ag2O(100), Cu2O(100), and Au2O(100) surfaces: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Ren, Rui-Peng; Cheng, Lu; Lv, Yong-Kang

    2014-12-01

    Vinyl chloride (VC) is the simplest asymmetric olefin molecule and is greatly harmful to the environment and human health. To find an effective oxidation approach to decrease VC emission, the selective oxidation reaction of the VC molecule on Ag2O(100), Cu2O(100), and Au2O(100) surfaces has been investigated by using density functional theory in the present work. Five different reaction pathways in two steps on the three surfaces have been proposed and discussed. The result shows that the formation of chloroacetadehyde is more favored than the formation of chloroethylene epoxide and acetyl chloride, and the activation energy of chloroacetadehyde formation on the Ag2O(100) surface is lower than that on the other two surfaces.

  9. Dielectric properties of PbO-P 2O 5-As 2O 3 glass system with Ga 2O 3 as additive

    NASA Astrophysics Data System (ADS)

    Sahaya Baskaran, G.; Ramana Reddy, M. V.; Krishna Rao, D.; Veeraiah, N.

    2008-02-01

    PbO-P 2O 5-As 2O 3 glasses containing different concentrations of Ga 2O 3 (ranging from 0 to 5 mol%) were prepared. Dielectric properties (constant ɛ', loss tan δ, ac conductivity σ over a range of frequency and temperature) of these glasses have been investigated. The analysis of the results of these studies together with the data on spectroscopic studies (optical absorption, infrared and Raman spectra) indicated that there is a gradual transformation of gallium ions from octahedral positions to tetrahedral positions, as the concentration of Ga 2O 3 is increased up to 4.0 mol%. Beyond this concentration, the tetrahedral occupancy of gallium ions however, seemed to be low.

  10. Effect of H2O, and combined effects of H2O + F, H2O + CO2, and H2O + F + CO2 on the viscosity of a natural basalt from Fuego volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Robert, G.; Whittington, A. G.; Knipping, J.; Scherbarth, S.; Stechern, A.; Behrens, H.

    2012-12-01

    We measured the viscosity of 5 series of remelted natural basalt from Fuego volcano, Guatemala. These series include single and multiple volatile species: H2O, F, H2O-F, H2O-CO2, and H2O-CO2-F. The hydrous glasses were synthesized at 3 kbar and 1250°C in Internally Heated Pressure Vessels. The multiple volatile series were synthesized at 5 kbar and 1250°C. CO2 was added as Ag2C2O4, F as AlF3, and H2O as distilled water. The anhydrous, F-bearing series was synthesized at 1 atm by simply remelting the Fuego basalt and adding F as CaF2.The natural, dry, remelted Fuego basalt has an NBO/T of 0.64. The following comparisons are based on parallel-plate viscosity measurements in the range ~108 to 1012 Pa s. The temperature at which the viscosity is 1012 Pa s (T12) is taken to be the viscosimetric glass transition temperature (Tg). The addition of 2 wt.% H2O results in a decrease of T12 of ~150°C for basalt. Fluorine on its own has a measurable, but much smaller effect, than the equivalent amount of water. Indeed, ~2 wt.% F results in a T12 depression of only ~30°C. When H2O and F are both present, their effects are approximately additive. For example, the viscosity of a basalt with 1.44 wt.% H2O is very similar to the viscosity of a basalt with ~1 wt.% H2O and ~1.25 wt.% F, and the viscosities of a basalt with 2.29 wt.% H2O and a basalt with ~1.65 wt.% H2O and ~1.3 wt.% F are also very similar. The effect of CO2 is somewhat ambiguous. The viscosity of a basalt with ~1.7 wt.% H2O, ~1.3 wt.% F and ~0.2 wt.% CO2 is essentially the same as the viscosity of a basalt with 2.29 wt.% H2O, so CO2 seems to have a negligible or even viscosity-increasing effect when F and H2O are also present. However, a basalt with ~0.84 wt.% H2O and ~0.09 wt.% CO2 has about the same viscosity as a basalt with 1.34 wt.% H2O, which could suggest a strong (viscosity-decreasing) effect of very small amounts of CO2. These results suggest that the effects on viscosity of F in basaltic systems are

  11. Synthesis and characterization of phosphates in molten systems Cs 2O-P 2O 5-CaO- MIII2O 3 ( MIII—Al, Fe, Cr)

    NASA Astrophysics Data System (ADS)

    Zatovsky, Igor V.; Strutynska, Nataliya Yu.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.; Ogorodnyk, Ivan V.; Shishkin, Oleg V.

    2011-03-01

    The crystallization of complex phosphates from the melts of Cs 2O-P 2O 5-CaO- MIII2O 3 ( MIII—Al, Fe, Cr) systems have been investigated at fixed value Cs/P molar ratios equal to 0.7, 1.0 and 1.3 and Са/Р=0.2 and Ca/ МIII=1. The fields of crystallization of CsCaP 3O 9, β-Ca 2P 2O 7, Cs 2CaP 2O 7, Cs 3CaFe(P 2O 7) 2, Ca 9MIII(PO 4) 7 ( MIII—Fe, Cr), Cs 0.63Ca 9.63Fe 0.37(PO 4) 7 and CsCa 10(PO 4) 7 were determined. Obtained phosphates were investigated using powder X-ray diffraction and FTIR spectroscopy. Novel whitlockite-related phases CsCa 10(PO 4) 7 and Cs 0.63Ca 9.63Fe 0.37(PO 4) 7 have been characterized by single crystal X-ray diffraction: space group R3c, a=10.5536(5) and 10.5221(4) Å, с=37.2283(19) and 37.2405(17) Å, respectively.

  12. High-temperature heat capacity of stannates Pr2Sn2O7 and Nd2Sn2O7

    NASA Astrophysics Data System (ADS)

    Denisova, L. T.; Irtyugo, L. A.; Beletskii, V. V.; Denisov, V. M.

    2016-07-01

    Oxide compounds Pr2Sn2O7 and Nd2Sn2O7 have been obtained by solid-phase synthesis. The effect of temperature on the heat capacity of Pr2Sn2O7 (360-1045 K) and Nd2Sn2O7 (360-1030 K) has been studied using differential scanning calorimetry. The thermodynamic properties of the compounds (changes in enthalpy, entropy, and the reduced Gibbs energy) have been calculated by the experimental data of C p = f( T).

  13. N2O fluxes at the soil-atmosphere interface in various ecosystems and the global N2O budget

    NASA Technical Reports Server (NTRS)

    Banin, Amos

    1987-01-01

    The overall purpose of this research task is to study the effects of soil properties and ecosystem variables on N2O exchanges at the soil-atmosphere interface, and to assess their effects on the globle N2O budget. Experimental procedures are implemented in various sites to measure the source/sink relations of N2O at the soil-atmosphere interface over prolonged periods of time as part of the research of biogeochemical cycling in terrestrial ecosystems. A data-base for establishing quantitative correlations between N2O fluxes and soil and environmental parameters that are of potential use for remote sensing, is being developed.

  14. Scavenging of H2O2 by mouse brain mitochondria

    PubMed Central

    Starkov, Anatoly A.; Andreyev, Alexander Yu; Zhang, Steven F.; Starkova, Natalia N.; Korneeva, Maria; Syromyatnikov, Mikhail; Popov, Vasily N.

    2015-01-01

    Mitochondrial reactive oxygen species (ROS) metabolism is unique in that mitochondria both generate and scavenge ROS. Recent estimates of ROS scavenging capacity of brain mitochondria are surprisingly high, ca. 9-12 nmol H2O2/min/mg, which is ~100 times higher than the rate of ROS generation. This raises a question whether brain mitochondria are a source or a sink of ROS. We studied the interaction between ROS generation and scavenging in mouse brain mitochondria by measuring the rate of removal of H2O2 added at a concentration of 0.4 μM, which is close to the reported physiological H2O2 concentrations in tissues, under conditions of low and high levels of mitochondrial H2O2 generation. With NAD-linked substrates, the rate of H2O2 generation by mitochondria was ~50–70 pmol/min/mg. The H2O2 scavenging dynamics was best approximated by the first order reaction equation. H2O2 scavenging was not affected by the uncoupling of mitochondria, phosphorylation of added ADP, or the genetic ablation of glutathione peroxidase 1, but decreased in the absence of respiratory substrates, in the presence of thioredoxin reductase inhibitor auranofin, or in partially disrupted mitochondria. With succinate, the rate of H2O2 generation was ~2,200–2,900 pmol/min/mg; the scavenging of added H2O2 was masked by a significant accumulation of generated H2O2 in the assay medium. The obtained data were fitted into a simple model that reasonably well described the interaction between H2O2 scavenging and production. It showed that mitochondria are neither a sink nor a source of H2O2, but can function as both at the same time, efficiently stabilizing exogenous H2O2 concentration at a level directly proportional to the ratio of the H2O2 generation rate to the rate constant of the first order scavenging reaction. PMID:25248416

  15. Characteristics of oxynitrides grown in N{sub 2}O

    SciTech Connect

    Saks, N.S.; Ma, D.I.; Twigg, M.E.; Fleetwood, D.M.

    1994-08-01

    MOS oxides have been fabricated by oxidation of silicon in N{sub 2}O. Processes studied include oxidation in N{sub 2}O alone, and two-step oxidation in O{sub 2} followed by N{sub 2}O. For both oxides, a nitrogen-rich layer with a peak N concentration of {approximately} 0.5 at. % is observed at the Si-SiO{sub 2} interface with SIMS. Electrical characteristics of N{sub 2}O oxides, such as breakdown and defect generation, are generally improved, especially for the two-step process. Drawbacks typically associated with NH{sub 3}-nitrided oxides such as high fixed oxide charge and enhanced electron trapping, are not observed in N{sub 2}O oxides, which is probably due to their smaller nitrogen content.

  16. The structure of the O2-N2O complex.

    PubMed

    Salmon, Steven R; Lane, Joseph R

    2015-09-28

    We have investigated the lowest energy structures and interaction energies of the oxygen nitrous oxide complex (O2-N2O) using explicitly correlated coupled cluster theory. We find that the intermolecular potential energy surface of O2-N2O is very flat, with two minima of comparable energy separated by a low energy first order saddle point. Our results are able to conclusively distinguish between the two sets of experimental geometric parameters for O2-N2O that were previously determined from rotationally resolved infrared spectra. The global minimum structure of O2-N2O is therefore found to be planar with a distorted slipped parallel structure. Finally, we show that the very flat potential energy surface of O2-N2O is problematic when evaluating vibrational frequencies with a numerical Hessian and that consideration should be given as to whether results might change if the step-size is varied.

  17. Treatment of N2O in pulsed microwave torch discharge

    NASA Astrophysics Data System (ADS)

    Jasiński, M.; Czylkowski, D.; Zakrzewski, Z.; Mizeraczyk, J.

    2004-03-01

    Results of using a moderate-power (several hundred Watts) pulsed microwave torch plasma (MTP) to the conversion of atmospheric-pressure nitrous oxide (N2O) into nitrogen oxides (NO, NO2 and N2O4) are presented. The pulsed regime allowed to decrease the average power used, resulting in a higher value of energy efficiency by about 10% (reaching several hundred g[N2O]/kWh) at the same efficiency of the decomposition of N2O (70÷90%) as at the continuous operation of MTP. The removal rate increased up to 200 g[N2O]/h. The obtained results suggest the pulsed MTP promising for efficient decomposition of various gaseous pollutants, e.g. fluorocarbons.

  18. Measurements of H2O2 during WATOX-86

    NASA Astrophysics Data System (ADS)

    Heikes, Brian G.; Walega, James G.; Kok, Gregory L.; Lind, John A.; Lazrus, Allan L.

    1988-03-01

    Measurements of gas phase H2O2 were made on all Western Atlantic Ocean Experiment 1986 (WATOX-86) flights aboard the National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft. These were some of the first airborne real-time H2O2 measurements made in winter. Operation of the instru- ment was limited to altitude < 3.1 km with a detection limit, determined by interference considerations, of 0.05 parts per billion by volume (ppbv), 10% calibration accuracy and 0.03-ppbv precision. Experimental measurements showed the mean H2O2 to be 0.12 ppbv (standard deviation = 0.07, maximum = 1.2 ppbv). Vertical structure was observed with maximum H2O2 above the cloud-capped marine boundary layer. Boundary layer H2O2 was typically at or below the detection limit.

  19. Infrared spectroscopy of V2+(H2O) complexes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, B.; Duncan, M. A.

    2012-03-01

    Doubly charged vanadium-water complexes are produced by laser vaporization in a pulsed supersonic expansion. Size-selected ions are studied with infrared photodissociation spectroscopy in the O-H stretch region using argon complex predissociation. Density functional theory calculations provide structures and vibrational spectra of these ions. The O-H stretches of V2+(H2O) appear at lower frequencies than those of the free water molecule or V+(H2O). The symmetric stretch is more intense than the asymmetric stretch in both V+(H2O) and V2+(H2O) complexes. Spectra of V2+(H2O)Arn (n = 2-7) show that the coordination of the V2+ is filled with six ligands, i.e. one water and five argon atoms.

  20. Isotopic Monitoring of N2O Emissions from Wastewater Treatment: Evidence for N2O Production Associated with Anammox Metabolism?

    NASA Astrophysics Data System (ADS)

    Harris, E. J.; Wunderlin, P.; Joss, A.; Emmenegger, L.; Kipf, M.; Wolf, B.; Mohn, J.

    2015-12-01

    Microbial production is the major source of N2O, the strongest greenhouse gas produced within the nitrogen cycle, and the most important stratospheric ozone destructant released in the 21st century. Wastewater treatment is an important and growing source of N2O, with best estimates predicting N2O emissions from this sector will have increased by >25% by 2020. Novel treatment employing partial nitritation-anammox, rather than traditional nitrification-denitrification, has the potential to achieve a neutral carbon footprint due to increased biogas production - if N2O production accounts for <0.5-1% of total nitrogen turnover. As a further motivation for this research, microbial pathways identified from wastewater treatment can be applied to our understanding of N cycling in the natural environment. This study presents the first online isotopic measurements of offgas N2O from a partial-nitritation anammox reactor 1. The measured N2O isotopic composition - in particular the N2O isotopic site preference (SP = δ15Nα - δ15Nβ) - was used to understand N2O production pathways in the reactor. When N2O emissions peaked due to high dissolved oxygen concentrations, low SP showed that N2O was produced primarily via nitrifier denitrification by ammonia oxidizing bacteria (AOBs). N2O production by AOBs via NH2OH oxidation, in contrast, did not appear to be important under any conditions. Over the majority of the one-month measurement period, the measured SP was much higher than expected following our current understanding of N2O production pathways 2. SP reached 41‰ during normal operating conditions and achieved a maximum of 45‰ when nitrite was added under anoxic conditions. These results could be explained by unexpectedly strong heterotrophic N2O reduction despite low dissolved organic matter concentrations, or by an incomplete understanding of isotopic fractionation during N2O production from NH2OH oxidation by AOBs - however the explanation most consistent with all

  1. Study on catalytic incineration of methane using Cr2O3/gamma-Al2O3 as the catalyst.

    PubMed

    Wang, Ching-Huei; Lin, Shiow-Shyung

    2004-01-01

    A fixed bed reactor was employed to investigate the catalytic incineration of CH4 by various supported transition metal oxide catalysts, with a view of finding the optimal one. Results indicated that the active species, the support, the metal content, the weight hourly space velocity (WHSV), and the inlet CH4 concentration were all important factors affecting CH4 oxidation. Cr2O3/gamma-Al2O3 was found to be the most active catalyst among the seven gamma-Al2O3-supported metal oxide catalysts tested. With Cr2O3 as the active species, gamma-Al2O3 was the most suitable of six supports tested. Furthermore, the optimal Cr content of Cr2O3/ gamma-Al2O3 was 9 wt.%. X-ray diffraction (XRD) patterns showed that it was formation of CrO3 crystals that caused a decline in catalyst activity at Cr content above 9wt.%. Using the optimal Cr2O3/gamma-Al2O3 catalyst, CH4 was completely oxidized at about 390 degrees C. much lower than the temperature required by noble metal catalysts for the same outcome. The stability of Cr2O3/gamma-Al2O3 was good and was not affected by the reaction temperature, demonstrated by a nearly constant conversion rate of CH4 of 57% at 350 degrees C and 97% at 380 degrees C during a 20 h on-stream test. However, WHSV and inlet concentration of CH4 did affect CH4 conversion noticeably. For complete oxidation of CH4, the reaction temperature required increased with WHSV and inlet CH4 concentration.

  2. Effects of CaO/SiO2 Ratio and Na2O Content on Melting Properties and Viscosity of SiO2-CaO-Al2O3-B2O3-Na2O Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Zhang, Chen; Cai, Dexiang; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg

    2017-02-01

    This paper investigated the effects of CaO/SiO2 ratio (0.8 to 1.5) and Na2O concentration (6 to 9 wt pct) on melting properties and viscosity of SiO2-CaO-Al2O3-B2O3-Na2O mold fluxes with a fixed B2O3 content. Melting properties of fluxes (softening temperature T s, hemispherical temperature T h, and fluidity temperature T f) were determined by the hot-stage microscopy method. Viscosity was measured using rotating cylindrical viscometer, and structure of quenched fluxes was studied using Raman spectroscopy. Equilibrium phases in the SiO2-CaO-Al2O3-B2O3-Na2O system were calculated using FactSage. It was found that T h decreased with increasing CaO/SiO2 ratio from 0.8 to 1.0 and increased with a further increase in the CaO/SiO2 ratio to 1.5. The effect of Na2O content in the range of 6 to 9 wt pct on T h of the flux with a fixed CaO/SiO2 ratio at 1.3 was marginal. Increasing CaO/SiO2 ratio and Na2O content increased the break temperature and reduced the value of viscosity at 1673 K (1400 °C). Viscosity of liquid fluxes was discussed in the relationship with the flux structure. Melting properties and viscosity of boracic fluxes were compared with those of industrial fluorine-containing mold fluxes.

  3. UV-induced N2O emission from plants

    NASA Astrophysics Data System (ADS)

    Bruhn, Dan; Albert, Kristian R.; Mikkelsen, Teis N.; Ambus, Per

    2014-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone-depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2h-1, mostly due to the UV component. The emission response to UV-A is of the same magnitude as that to UV-B. Therefore, UV-A is more important than UV-B given the natural UV-spectrum at Earth's surface. Plants also emitted N2O in darkness, although at reduced rates. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  4. Studies on the local structures and spin Hamiltonian parameters for the rhombic Nb4+ centers in MO2 (M = Sn, Ti and Ge) crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Z.-H.; Wu, S.-Y.; Xu, P.; Li, L.-L.; Zhang, S.-X.

    2011-02-01

    The local structures and the spin Hamiltonian parameters for the substitutional Nb4+ centers in MO2 (M = Sn, Ti and Ge) crystals are theoretically studied using the perturbation formulas of these parameters for a 4d1 ion in a rhombically compressed octahedron. The above Nb4+ centers are found to experience the Jahn-Teller distortions, characteristic of the relative axial compressions (~ 0.01-0.02 Å) and the non-axial (planar) angular increases (~ 3°). As a result, the ligand octahedra are transformed from original elongation on host tetravalent cation sites to compression in the impurity centers, with additional non-axial distortions smaller than those in the hosts. The influences of the Jahn-Teller distortions and the ligand orbital contributions are also analyzed.

  5. Pseudo-Jahn-Teller and relaxation-rate analyses of a model for the hydride ion at the E' 4 center in alpha quartz

    NASA Astrophysics Data System (ADS)

    Georgiev, M.; Manov, A.

    1988-02-01

    Calculated cluster data on the energy vs hydride-ion displacement for the E' 4 center, as reported by Isoya, Weil, and Halliburton, are re-analyzed in terms of the Pseudo-Jahn-Teller effect. Realistic values are obtained of the vibronic-mixing parameters giving credibility to our interpretation. Relaxation rates are computed of hydrogen transfer between two opposite off-center sites.

  6. Effects of architectures and H2O2 additions on the photocatalytic performance of hierarchical Cu2O nanostructures

    NASA Astrophysics Data System (ADS)

    Deng, Xiaolong; Zhang, Qiang; Zhao, Qinqin; Ma, Lisha; Ding, Meng; Xu, Xijin

    2015-01-01

    Cu2O hierarchical nanostructures with different morphologies were successfully synthesized by a solvothermal method using copper (II) nitrate trihydrate (Cu(NO3)2ṡ3H2O) and ethylene glycol (EG) as initial reagents. The obtained nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area test, and UV-vis spectroscopy. The synthesis conditions (copper source, temperature, and reaction time) dominated the compositions and the formation of crystals with different morphologies. The visible light photocatalytic properties of as-prepared Cu2O nanostructures were investigated with and without hydrogen peroxide (H2O2), and the effect of H2O2 were evaluated by monitoring the degradation of methyl orange (MO) with various amounts of H2O2. It was revealed that the degree of the photodegradation of MO depends on the amount of H2O2 and the morphology of Cu2O.

  7. Dielectric and spectroscopic properties of PbO-Nb2O5-P2O5:V2O5 glass system

    NASA Astrophysics Data System (ADS)

    Krishna Mohan, N.; Sahaya Baskaran, G.; Veeraiah, N.

    2006-06-01

    PbO-Nb2O5-P2O5 glasses containing different concentrations of V2O5 ranging from 0 to 1.0 mol% were prepared. A number of studies, viz. differential thermal analysis, infrared, optical absorption, Raman and ESR spectra and dielectric properties (dielectric constant , loss tan δ, a.c. conductivity ac over a range of frequency and temperature), of these glasses have been carried out. The results have been analysed in the light of different oxidation states of vanadium ions. The analysis indicates that when the concentration of V2O5 is increased gradually, vanadium ions are observed to exist mostly in the V4+ state, occupy network-modifying positions and decrease the rigidity of the glass network. A transformation of NbO4 to NbO6 structural units and a decrease in the concentration of PO4 structural units have also been observed with an increase in the concentration of V2O5 in the glass network.

  8. Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content.

    PubMed

    Smith, J M; King, S P; Barney, E R; Hanna, J V; Newport, R J; Pickup, D M

    2013-01-21

    Calcium phosphate based biomaterials are extensively used in the context of tissue engineering: small changes in composition can lead to significant changes in properties allowing their use in a wide range of applications. Samples of composition (Al(2)O(3))(x)(Na(2)O)(0.11-x)(CaO)(0.445)(P(2)O(5))(0.445), where x = 0, 0.03, 0.05, and 0.08, were prepared by melt quenching. The atomic-scale structure has been studied using neutron diffraction and solid state (27)Al MAS NMR, and these data have been rationalised with the determined density of the final glass product. With increasing aluminium concentration the density increases initially, but beyond about 3 mol. % Al(2)O(3) the density starts to decrease. Neutron diffraction data show a concomitant change in the aluminium speciation, which is confirmed by (27)Al MAS NMR studies. The NMR data reveal that aluminium is present in 4, 5, and 6-fold coordination and that the relative concentrations of these environments change with increasing aluminium concentration. Materials containing aluminium in 6-fold coordination tend to have higher densities than analogous materials with the aluminium found in 4-fold coordination. Thus, the density changes may readily be explained in terms of an increase in the relative concentration of 4-coordinated aluminium at the expense of 6-fold aluminium as the Al(2)O(3) content is increased beyond 3 mol. %.

  9. KCo(H2O)2BP2O8·0.48H2O and K0.17Ca0.42Co(H2O)2BP2O8·H2O: two cobalt borophosphates with helical ribbons and disordered (K,Ca)/H2O schemes.

    PubMed

    Guesmi, Abderrahmen; Driss, Ahmed

    2012-08-01

    The two title compounds, potassium diaquacobalt(II) borodiphosphate 0.48-hydrate and potassium-calcium(0.172/0.418) diaquacobalt(II) borodiphosphate monohydrate, were synthesized hydrothermally. They are new members of the borophosphate family characterized by (∞)[BP(2)O(8)](3-) helices running along [001] and constructed of boron (Wyckoff position 6b, twofold axis) and phosphorus tetrahedra. The [CoBP(2)O(8)](-) anionic frameworks in the two materials are structurally similar and result from a connection in the ab plane between the CoO(4)(H(2)O)(2) coordination octahedra (6b position) and the helical ribbons. Nevertheless, the two structures differ in the disorder schemes of the K,Ca and H(2)O species. The alkali cations in the structure of the pure potassium compound are disordered over three independent positions, one of them located on a 6b site. Its framework is characterized by double occupation of the tunnels by water molecules located on twofold rotation axes (6b) and a fraction of alkali cations; its cell parameters, compared with those for the mixed K,Ca compound, show abnormal changes, presumably due to the disorder. For the K,Ca compound, the K and Ca cations are on twofold axes (6b) and the channels are occupied only by disordered solvent water molecules. This shows that it is possible, due to the flexibility of the helices, to replace the alkali and alkaline earth cations while retaining the crystal framework.

  10. Uncertainties in United States agricultural N2O emissions: comparing forward model simulations to atmospheric N2O data.

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.; Saikawa, E.; Dlugokencky, E. J.; Andrews, A. E.; Sweeney, C.

    2014-12-01

    Atmospheric N2O concentrations have increased from 275 ppb in the preindustrial to about 325 ppb in recent years, a ~20% increase with important implications for both anthropogenic greenhouse forcing and stratospheric ozone recovery. This increase has been driven largely by synthetic fertilizer production and other perturbations to the global nitrogen cycle associated with human agriculture. Several recent regional atmospheric inversion studies have quantified North American agricultural N2O emissions using top-down constraints based on atmospheric N2O data from the National Oceanic and Atmospheric Administration (NOAA) Global Greenhouse Gas Reference Network, including surface, aircraft and tall tower platforms. These studies have concluded that global N2O inventories such as EDGAR may be underestimating the true U.S. anthropogenic N2O source by a factor of 3 or more. However, simple back-of-the-envelope calculations show that emissions of this magnitude are difficult to reconcile with the basic constraints of the global N2O budget. Here, we explore some possible reasons why regional atmospheric inversions might overestimate the U.S. agricultural N2O source. First, the seasonality of N2O agricultural sources is not well known, but can have an important influence on inversion results, particularly when the inversions are based on data that are concentrated in the spring/summer growing season. Second, boundary conditions can strongly influence regional inversions but the boundary conditions used may not adequately account for remote influences on surface data such as the seasonal stratospheric influx of N2O-depleted air. We will present a set of forward model simulations, using the Community Land Model (CLM) and two atmospheric chemistry tracer transport models, MOZART and the Whole Atmosphere Community Climate Model (WACCM), that examine the influence of terrestrial emissions and atmospheric chemistry and dynamics on atmospheric variability in N2O at U.S. and

  11. Structural and optical properties of 60B2O3-(20-x)Na2O-10PbO-10Al2O3:xTiO2:yNd2O3 glasses

    NASA Astrophysics Data System (ADS)

    de Souza, N. C. A.; Santos, C. C.; Guedes, I.; Dantas, N. O.; Vermelho, M. V. D.

    2013-10-01

    In this work we investigate the effect of replacing Na2O by TiO2 on the structural and spectroscopic characteristics of the Nd2O3-doped 60B2O3-(20-x)Na2O-10PbO-10Al2O3:xTiO2:yNd2O3 borate glass matrix. Measurements of X-ray patterns, glass temperatures (Tg), vibrational (Raman and infrared (IR)) and optical (absorption and emission) spectra were carried out. The trend of Tg, the Judd-Ofelt parameters and Nephelauxetic ratio as the TiO2 and Nd2O3 concentration increases was interpreted quantitatively and qualitatively in terms of the network bonds and coordination numbers. Measurements of Tg across the Nd-doped glass series for different levels of Ti suggests changes in the rigidity of the matrix due to change of coordination of boron oxide resulting from the BO4-BO3 back conversion effect. The changes observed in the Raman and IR spectra are related to the BO3 → BO4 conversion effect. The variation of the Judd-Ofelt parameters Ω and Ω indicates that the average rare earth-ligand radius decreases establishing an electronic density distribution when Nd3+ concentration increases. This effect is interpreted in terms of Judd-Ofelt parameters and by the bonding parameter b due to Nephelauxetic effect.

  12. CO DIFFUSION INTO AMORPHOUS H{sub 2}O ICES

    SciTech Connect

    Lauck, Trish; Karssemeijer, Leendertjan; Cuppen, Herma M.; Shulenberger, Katherine; Rajappan, Mahesh; Öberg, Karin I. E-mail: koberg@cfa.harvard.edu

    2015-03-10

    The mobility of atoms, molecules, and radicals in icy grain mantles regulates ice restructuring, desorption, and chemistry in astrophysical environments. Interstellar ices are dominated by H{sub 2}O, and diffusion on external and internal (pore) surfaces of H{sub 2}O-rich ices is therefore a key process to constrain. This study aims to quantify the diffusion kinetics and barrier of the abundant ice constituent CO into H{sub 2}O-dominated ices at low temperatures (15–23 K), by measuring the mixing rate of initially layered H{sub 2}O(:CO{sub 2})/CO ices. The mixed fraction of CO as a function of time is determined by monitoring the shape of the infrared CO stretching band. Mixing is observed at all investigated temperatures on minute timescales and can be ascribed to CO diffusion in H{sub 2}O ice pores. The diffusion coefficient and final mixed fraction depend on ice temperature, porosity, thickness, and composition. The experiments are analyzed by applying Fick’s diffusion equation under the assumption that mixing is due to CO diffusion into an immobile H{sub 2}O ice. The extracted energy barrier for CO diffusion into amorphous H{sub 2}O ice is ∼160 K. This is effectively a surface diffusion barrier. The derived barrier is low compared to current surface diffusion barriers in use in astrochemical models. Its adoption may significantly change the expected timescales for different ice processes in interstellar environments.

  13. Nitrogen fertiliser formulation: The impact on N2O emissions

    NASA Astrophysics Data System (ADS)

    Harty, Mary; Krol, Dominika; Carolan, Rachael; McNeill, Gavin; McGeough, Karen; Laughlin, Ronnie; Watson, Catherine; Richards, Karl; Lanigan, Gary; Forrestal, Patrick

    2015-04-01

    Agriculture was responsible for 31% of Ireland's Agricultural Greenhouse Gas (GHG) emissions in 2012, with 39% of these emissions arising from chemical/organic fertilizers in the form of nitrous oxide (N2O). Switching from calcium ammonium nitrate (CAN) to a urea based fertiliser limits the soil residence period of nitrate, the major substrate for denitrification loss in the N2O form. However, urea is susceptible to ammonia (NH3) volatilisation but this risk can be managed using urease inhibitors. The aim of this study was to evaluate the effect of switching from CAN to urea, urea with the urease inhibitor N- (n-butyl) thiophosphoric triamide (trade name Agrotain®) and/or the nitrification inhibitor dicyandiamide (DCD on direct and indirect N2O emissions. The experiment is a two year study (commenced March 2013) at six permanent pasture sites located on the island of Ireland, at Johnstown Castle Co. Wexford, Moorepark Co. Cork and Hillsborough Co. Down, covering a range of soil textures and drainage characteristics. The experiment simulated a grazing environment; annual fertiliser N was applied at different rates (0, 100, 200, 300, 400 or 500 kg N ha-1) in five equal splits, with grass harvested prior to fertilizer application. Direct N2O emissions were quantified regularly using static chambers over 1 year and indirect N2O from ammonia volatilisation was measured using wind tunnels and annual emission factors calculated. Switching from CAN to urea dramatically reduced direct N2O emissions, but had little effect on dry-matter yield. However, there was evidence of pollution swapping of direct for indirect N2O from NH3. In the first year, two urea based formulations successfully reduced both direct and indirect N2O emissions at all sites. Fertiliser formulation strategy has the potential to be a solution for reduction of direct and indirect N2O emissions.

  14. NOAA's Global Network of N2O Observations

    NASA Astrophysics Data System (ADS)

    Dlugokencky, E. J.; Crotwell, A. M.; Crotwell, M.; Masarie, K. A.; Lang, P. M.; Dutton, G. S.; Hall, B. D.

    2014-12-01

    Nitrous oxide has surpassed CFC-12 to become the third largest contributor to radiative forcing. When climate impacts for equal emitted masses of N2O and CO2 are integrated over 100 years, N2O impacts are about 300 times greater than those of CO2. Increasing the atmospheric burden of N2O also decreases the abundance of O3 in the stratosphere. With reductions in emissions of ODSs as a result of the Montreal Protocol, N2O now has the largest ODP-weighted emissions of all gases. Given its long lifetime of about 130 years, today's emissions will impact climate and stratospheric O3 for a long time. Because emission rates are very small and spread over enormous areas, the detailed N2O budget has large uncertainties. It also means measurement requirements on precision and accuracy are stringent, especially for the background atmosphere. The Carbon Cycle Group of NOAA ESRL's Global Monitoring Division began measuring N2O in discrete air samples collected as part of its global cooperative air sampling network in 1998. Data from about 60 air sampling sites provide important constraints on the large-scale budget of N2O and provide boundary conditions for continental and regional-scale studies. This presentation will briefly describe the procedures used to ensure the data are of sufficient quality to meet scientific demands, and describe remaining limitations. Although sampling is infrequent (weekly), the data are quite useful in N2O budget studies. Examples will be given of large scale constraints on N2O's budget, including the global burden, trends in the burden, global emissions, spatial distributions, vertical gradients, and seasonal patterns.

  15. Pyruvate protects pathogenic spirochetes from H2O2 killing.

    PubMed

    Troxell, Bryan; Zhang, Jun-Jie; Bourret, Travis J; Zeng, Melody Yue; Blum, Janice; Gherardini, Frank; Hassan, Hosni M; Yang, X Frank

    2014-01-01

    Pathogenic spirochetes cause clinically relevant diseases in humans and animals, such as Lyme disease and leptospirosis. The causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of leptospirosis, Leptospria interrogans, encounter reactive oxygen species (ROS) during their enzootic cycles. This report demonstrated that physiologically relevant concentrations of pyruvate, a potent H2O2 scavenger, and provided passive protection to B. burgdorferi and L. interrogans against H2O2. When extracellular pyruvate was absent, both spirochetes were sensitive to a low dose of H2O2 (≈0.6 µM per h) generated by glucose oxidase (GOX). Despite encoding a functional catalase, L. interrogans was more sensitive than B. burgdorferi to H2O2 generated by GOX, which may be due to the inherent resistance of B. burgdorferi because of the virtual absence of intracellular iron. In B. burgdorferi, the nucleotide excision repair (NER) and the DNA mismatch repair (MMR) pathways were important for survival during H2O2 challenge since deletion of the uvrB or the mutS genes enhanced its sensitivity to H2O2 killing; however, the presence of pyruvate fully protected ΔuvrB and ΔmutS from H2O2 killing further demonstrating the importance of pyruvate in protection. These findings demonstrated that pyruvate, in addition to its classical role in central carbon metabolism, serves as an important H2O2 scavenger for pathogenic spirochetes. Furthermore, pyruvate reduced ROS generated by human neutrophils in response to the Toll-like receptor 2 (TLR2) agonist zymosan. In addition, pyruvate reduced neutrophil-derived ROS in response to B. burgdorferi, which also activates host expression through TLR2 signaling. Thus, pathogenic spirochetes may exploit the metabolite pyruvate, present in blood and tissues, to survive H2O2 generated by the host antibacterial response generated during infection.

  16. Pyruvate Protects Pathogenic Spirochetes from H2O2 Killing

    PubMed Central

    Troxell, Bryan; Zhang, Jun-Jie; Bourret, Travis J.; Zeng, Melody Yue; Blum, Janice; Gherardini, Frank; Hassan, Hosni M.; Yang, X. Frank

    2014-01-01

    Pathogenic spirochetes cause clinically relevant diseases in humans and animals, such as Lyme disease and leptospirosis. The causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of leptospirosis, Leptospria interrogans, encounter reactive oxygen species (ROS) during their enzootic cycles. This report demonstrated that physiologically relevant concentrations of pyruvate, a potent H2O2 scavenger, and provided passive protection to B. burgdorferi and L. interrogans against H2O2. When extracellular pyruvate was absent, both spirochetes were sensitive to a low dose of H2O2 (≈0.6 µM per h) generated by glucose oxidase (GOX). Despite encoding a functional catalase, L. interrogans was more sensitive than B. burgdorferi to H2O2 generated by GOX, which may be due to the inherent resistance of B. burgdorferi because of the virtual absence of intracellular iron. In B. burgdorferi, the nucleotide excision repair (NER) and the DNA mismatch repair (MMR) pathways were important for survival during H2O2 challenge since deletion of the uvrB or the mutS genes enhanced its sensitivity to H2O2 killing; however, the presence of pyruvate fully protected ΔuvrB and ΔmutS from H2O2 killing further demonstrating the importance of pyruvate in protection. These findings demonstrated that pyruvate, in addition to its classical role in central carbon metabolism, serves as an important H2O2 scavenger for pathogenic spirochetes. Furthermore, pyruvate reduced ROS generated by human neutrophils in response to the Toll-like receptor 2 (TLR2) agonist zymosan. In addition, pyruvate reduced neutrophil-derived ROS in response to B. burgdorferi, which also activates host expression through TLR2 signaling. Thus, pathogenic spirochetes may exploit the metabolite pyruvate, present in blood and tissues, to survive H2O2 generated by the host antibacterial response generated during infection. PMID:24392147

  17. Scintillation and luminescence characteristics of Ce3+doped in Li2O-Gd2O3-BaO-B2O3 scintillating glasses

    NASA Astrophysics Data System (ADS)

    Zaman, F.; Rooh, G.; Srisittipokakun, N.; Kim, H. J.; Kaewnuam, E.; Meejitpaisan, P.; Kaewkhao, J.

    2017-01-01

    Ce3+ activated Li2O-Gd2O3-BaO-B2O3glass scintillator containing neutron-capture elements (7Li, 11Band 158Gd)were developed by conventional melt-quenching technique. Luminescence spectra under UV and X-ray excitation showed Ce3+ion emission due to 5d→4f transition at 391 nm. Energy transfer from the host glass to Ce3+ions were confirmed by VUV-UV and XEL spectra. The highest emission intensity of Ce3+ions were observed at 0.5 mol%of CeF3. For the same concentration the decay time was obtained to be 19.7 ns and their mean critical distance was calculated about 22.33 Å. The observed decay constants revealed that direct electron-hole capture was a dominant scintillation process in the present glass matrix.

  18. Optical Properties of K2O-Li2O-WO3-B2O3 Glasses: Evidence of Mixed Alkali Effect

    NASA Astrophysics Data System (ADS)

    Edukondalu, Avula; Sripathi, T.; Kareem Ahmmad, Shaik; Rahman, Syed; Sivakumar, K.

    2017-02-01

    Glass with compositions xK2O-(30 - x)Li2O-10WO3-60B2O3 for 0 ≤ x ≤ 30 mol.% have been prepared using the normal melt quenching technique. The optical reflection and absorption spectra were recorded at room temperature in the wavelength range 300-800 nm. From the absorption edge studies, the values of the optical band gap ( E opt) and Urbach energy (Δ E) have been evaluated. The values of E opt and Δ E vary non-linearly with composition parameter, showing the mixed alkali effect. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple Di-Domenico model.

  19. AC CONDUCTION PHENOMENON OF Li2O-WO3-B2O3 GLASSES DOPED WITH V2O5

    NASA Astrophysics Data System (ADS)

    Rao, Linganaboina Srinivasa; Veeraiah, Nalluri; Rao, Tumu Venkatappa

    2013-04-01

    The glass composition 40Li2O-5WO3-(55-x)B2O3: xV2O5 for x = 0.2, 0.4, 0.6 and 0.8 is chosen for the present study. The glass samples were synthesized by conventional melt-quenching technique. The dielectric properties such as constant (ɛ‧), loss (tan δ) and ac conductivity (σac) are carried out as a function of temperature (30-270°C) and frequency (102-105 Hz). The glass sample (at x = 0.6) exhibited highest ac conductivity (σac) and spreading factor (β) among all the samples. All glasses exhibited mixed conduction (both electronic and ionic) at high temperatures. The frequency exponent s denotes the ac conduction mechanism is associated with both QMT model (at low temperatures) and CBH model (at high temperatures).

  20. Gamma ray shielding and structural properties of Bi2O3-PbO-B2O3-V2O5 glass system

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2014-04-01

    The present work has been undertaken to evaluate the applicability of Bi2O3-PbO-B2O3-V2O5 glass system as gamma ray shielding material. Gamma ray mass attenuation coefficient has been determined theoretically using WinXcom computer software developed by National Institute of Standards and Technology. A meaningful comparison of their radiation shielding properties has been made in terms of their half value layer parameter with standard radiation shielding concrete 'barite'. Structural properties of the prepared glass system have been investigated in terms of XRD and FTIR techniques in order to check the possibility of their commercial utility as alternate to conventional concrete for gamma ray shielding applications.

  1. New epsilon-Bi2O3 metastable polymorph.

    PubMed

    Cornei, Nicoleta; Tancret, Nathalie; Abraham, Francis; Mentré, Olivier

    2006-06-26

    The new metastable epsilon-Bi2O3 polymorph has been prepared by hydrothermal treatment and structurally characterized. It shows strong relationships with the room temperature alpha form and the metastable beta form through rearrangements of [Bi2O3] columns formed by edge-sharing OBi4 tetrahedra. Its fully ordered crystal structure yields an ionic insulating character. It irreversibly transforms at 400 degrees C to the alpha form. The chemical analysis indicates its undoped bismuth oxide nature, then leading to the fifth characterized Bi2O3 polymorph to date.

  2. Current status of Ga2O3 power devices

    NASA Astrophysics Data System (ADS)

    Higashiwaki, Masataka; Murakami, Hisashi; Kumagai, Yoshinao; Kuramata, Akito

    2016-12-01

    Gallium oxide (Ga2O3) is an emerging wide-bandgap semiconductor for high-power, low-loss transistors and diodes by virtue of its excellent material properties and suitability for mass production. In this paper, we begin by discussing the material properties of Ga2O3 that make it an attractive alternative to not only Si but also other wide-bandgap materials such as SiC and GaN. State-of-the-art Ga2O3-based devices that have been fabricated to date demonstrate the performance potential for power electronics applications.

  3. Electrical conductivity studies of Bi{sub 2}O{sub 3}-Li{sub 2}O-ZnO-B{sub 2}O{sub 3} glasses

    SciTech Connect

    Bale, Shashidhar; Rahman, Syed

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Ac conductivity measurements and its analysis has been performed on Bi{sub 2}O{sub 3}-Li{sub 2}O-ZnO-B{sub 2}O{sub 3} glasses in the temperature range 30-300 Degree-Sign C and a frequency range of 100 Hz to 1 MHz. Black-Right-Pointing-Pointer The dc conductivity increased and the activation energy decreased with lithium content. Black-Right-Pointing-Pointer The frequency dependent conductivity has been analyzed employing conductivity and modulus formalisms. Black-Right-Pointing-Pointer The onset of conductivity relaxation shifts towards higher frequencies with temperature. Black-Right-Pointing-Pointer The Almond-West conductivity formalism is used to explain the scaling behavior, and the relaxation mechanism is independent of temperature. -- Abstract: Ac conductivity measurements and its analysis has been performed on xBi{sub 2}O{sub 3}-(65-x)Li{sub 2}O-20ZnO-15B{sub 2}O{sub 3} (0 {<=} x {<=} 20) glasses in the temperature range 30-300 Degree-Sign C and a frequency range of 100 Hz to 1 MHz. The dc conductivity increased and the activation energy decreased with lithium content. The frequency dependent conductivity has been analyzed employing conductivity and modulus formalisms. The onset of conductivity relaxation shifts towards higher frequencies with temperature. The Almond-West conductivity formalism is used to explain the scaling behavior, and the relaxation mechanism is independent of temperature.

  4. In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na2O-CaO-B2O3-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Abo-Naf, Sherief M.; Khalil, El-Sayed M.; El-Sayed, El-Sayed M.; Zayed, Hamdia A.; Youness, Rasha A.

    2015-06-01

    Na2O-CaO-B2O3-P2O5 glasses have been prepared by the melt-quenching method. B2O3 content was systematically increased from 5 to 30 mol%, at the expense of P2O5, in the chemical composition of these glasses. Density, Vickers microhardness and fracture toughness of the prepared glasses were measured. In vitro bioactivity of the glasses was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °C for 3, 7, 14 and 30 days. The glasses were tested in the form of glass grains as well as bulk slabs. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The kinetics of degradation of the glass particles were monitored by measuring the weight loss of the particles and the ionic concentration of Ca, P and B in the SBF solution using inductive coupled plasma-atomic emission spectroscopy (ICP-AES). The obtained results revealed the formation of a bioactive hydroxyapatite (HA) layer, composed of nano-crystallites, on the surface of glass grains after the in vitro assays. The results have been used to understand the formation of HA as a function of glass composition and soaking time in the SBF. It can be pointed out that increasing B2O3 content in glass composition enhances the bioactivity of glasses. The nanometric particle size of the formed HA and in vitro bioactivity of the studied glasses make them possible candidates for tissue engineering application.

  5. Quantitative photoabsorption and fluorescence study of H2O and D2O at 50-190 nm

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Suto, Masako

    1986-01-01

    The photoabsorption cross sections and the fluorescence quantum yields of H2O and D2O were measured in the 50-190 nm region using synchrotron radiation as a light source. The oscillator strengths for the Rydberg states of H2O and D2O were determined from the absorption cross sections measured. The processes for the production of fluorescence from the excited species H(asterisk) (n greater than 2), D(asterisk) (n greater than 2), OH(asterisk) (A) and OD(asterisk) (A) are discussed. The upper limit for the dissociation energy of D(D-OD) was determined, from the threshold of the OD(A-X) fluorescence, to be 5.14 + or - 0.01 eV. The upper limit for the cross section of visible fluorescence from the excited H2O(+) ions was determined to be 2 x 10 to the -19th sq cm. A comparison between the photoexcitation spectra of H2O and D2O is made.

  6. Refined vibrational data for H/sub 2/O isolated in D/sub 2/O cubic ice

    SciTech Connect

    Bertie, J.E.; Devlin, J.P.

    1984-02-02

    There has recently been a rapid and significant advance in the structural and dynamical modeling of the condensed phases of water (Rice, Whalley, and others). To an appreciable extent this advance has depended on the availability of relatively complete vibrational data for the internal modes of ice (H/sub 2/O and D/sub 2/O) as well as for the isotopically decoupled frequencies of D/sub 2/O, HOD, and H/sub 2/O isolated in ice matrices. Of these data the positions of nu/sub 1/ and nu/sub 2/ for H/sub 2/O isolated in D/sub 2/O ice have been assigned with the least confidence. In this work the FT IR data required for the assignment of nu/sub 1/ and nu/sub 2/ of isolated H/sub 2/O have been reevaluated at 90 K in a different spectroscopic laboratory and, also, at a lower temperature (15 K). The reduced temperature and the use of slightly higher dilution ratios have permitted a somewhat clearer observation of the isolated molecule spectrum, but basically the tentative values for nu/sub 1/ and nu/sub 2/ have been affirmed. The suggested values for nu/sub 1/, nu/sub 2/, and nu/sub 3/ are 3215, 1740, and 3262 cm/sup -1/ at 15 K and 3225, 1735, and 3270 cm/sup -1/ at 90 K.

  7. Retardation mechanism of ultrathin Al2O3 interlayer on Y2O3 passivated gallium nitride surface.

    PubMed

    Quah, Hock Jin; Cheong, Kuan Yew

    2014-05-28

    A systematic investigation was carried out by incorporating an ultrathin aluminum oxide (Al2O3) as an interlayer between yttrium oxide (Y2O3) passivation layer and GaN substrate. The sandwiched samples were then subjected to postdeposition annealing in oxygen ambient from 400 to 800 °C. The Al2O3 interlayer was discovered to play a significant role in slowing down inward diffusion of oxygen through the Y2O3 passivation layer as well as in impeding outward diffusion of Ga(3+) and N(3-) from the decomposed GaN surface. These beneficial effects have suppressed subsequent formation of interfacial layer. A mechanism in association with the function of Al2O3 as an interlayer was suggested and discussed. The mechanism was explicitly described on the basis of the obtained results from X-ray diffraction, X-ray photoelectron spectroscopy, energy-filtered transmission electron microscopy (TEM), high resolution TEM, and electron energy loss spectroscopy line scan. A correlation between the proposed mechanism and metal-oxide-semiconductor characteristics of Y2O3/Al2O3/GaN structure has been proposed.

  8. Outbursts of H2O in Comet P/Halley

    NASA Astrophysics Data System (ADS)

    Larson, H. P.; Hu, H.-Y.; Mumma, M. J.; Weaver, H. A.

    1990-07-01

    Comet Halley gas-production monitoring efforts in March 1986 with the NASA Kuiper Airborne Observatory's Fourier transform spectrometer have indicated rapid temporal variations in H2O emissions; a continuous record of an H2O outburst was thus obtained. The event, in which H2O brightness increased by a factor of 2.2 in less than 10 min, is ascribable to an energetic process in the nucleus whose character may have been that of amorphous H2O ice crystallization, chemical explosion, thermal stress, or a compressed gas pocket. The timing and energy of the event appear to require an internal energy source; amorphous ice crystallization is held to be most consistent with compositional and thermal models of cometary nuclei as well as the observations.

  9. Effects of Substitution of K2O for Na2O on the Bioactivity of CaO-Na2O-SiO2-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Kim, Taehee; Hwang, Chawon; Gwoo, Donggun; Park, Hoyyul; Ryu, Bong-Ki

    2012-10-01

    The compositional dependences of bioactivity, thermal properties, atomic structure, and surface morphology have been investigated in the CaO-Na2O-SiO2-P2O5 system; this system is known as a bioglass. 45S5 Bioglass® is known to be a general and highly bioactive material. However, the bioactivity of this glassy material is expected to be improved by modifying the alkali-metal composition. Thermal properties, density, and molar volume were measured to investigate the structural packing. FT-IR spectra and X-ray diffraction were used to confirm the structures of these glasses. The morphology was examined using field emission electron microscopy, and the formation of a Ca-P layer was studied using an energy-dispersive system. This study shows that the tendency to form a calcium phosphate layer is increased with the substitution of K2O for Na2O.

  10. Potential thermoelectric performance of hole-doped Cu2O

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Parker, David; Du, Mao-Hua; Singh, David J.

    2013-04-01

    High thermoelectric performance in oxides requires stable conductive materials that have suitable band structures. Here we show, based on an analysis of the thermopower and related properties using first-principles calculations and Boltzmann transport theory in the relaxation time approximation, that hole-doped Cu2O may be such a material. We find that hole-doped Cu2O has a high thermopower of above 200 μV K-1 even with doping levels as high as 5.2 × 1020 cm-3 at 500 K, mainly attributed to the heavy valence bands of Cu2O. This is reminiscent of the cobaltate family of high-performance oxide thermoelectrics and implies that hole-doped Cu2O could be an excellent thermoelectric material if suitably doped.

  11. Phonon-mediated nuclear spin relaxation in H2O

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Azami, Shinya; Arakawa, Ichiro

    2017-03-01

    A theoretical model of the phonon-mediated nuclear spin relaxation in H2O trapped by cryomatrices has been established for the first time. In order to test the validity of this model, we measured infrared spectra of H2O trapped in solid Ar, which showed absorption peaks due to rovibrational transitions of ortho- and para-H2O in the spectral region of the bending vibration. We monitored the time evolution of the spectra and analyzed the rotational relaxation associated with the nuclear spin flip to obtain the relaxation rates of H2O at temperatures of 5-15 K. Temperature dependence of the rate is discussed in terms of the devised model.

  12. Interaction energy and the shift in OH stretch frequency on hydrogen bonding for the H2O --> H2O, CH3OH --> H2O, and H2O --> CH3OH dimers.

    PubMed

    Campen, Richard Kramer; Kubicki, James D

    2010-04-15

    The ability to use calculated OH frequencies to assign experimentally observed peaks in hydrogen bonded systems hinges on the accuracy of the calculation. Here we test the ability of several commonly employed model chemistries--HF, MP2, and several density functionals paired with the 6-31+G(d) and 6-311++G(d,p) basis sets--to calculate the interaction energy (D(e)) and shift in OH stretch fundamental frequency on dimerization (delta(nu)) for the H(2)O --> H(2)O, CH(3)OH --> H(2)O, and H(2)O --> CH(3)OH dimers (where for X --> Y, X is the hydrogen bond donor and Y the acceptor). We quantify the error in D(e) and delta(nu) by comparison to experiment and high level calculation and, using a simple model, evaluate how error in D(e) propagates to delta(nu). We find that B3LYP and MPWB1K perform best of the density functional methods studied, that their accuracy in calculating delta(nu) is approximately 30-50 cm(-1) and that correcting for error in D(e) does little to heighten agreement between the calculated and experimental delta(nu). Accuracy of calculated delta(nu) is also shown to vary as a function of hydrogen bond donor: while the PBE and TPSS functionals perform best in the calculation of delta(nu) for the CH(3)OH --> H(2)O dimer their performance is relatively poor in describing H(2)O --> H(2)O and H(2)O --> CH(3)OH.

  13. The role of H2O in the Saturn ionosphere

    NASA Astrophysics Data System (ADS)

    Shemansky, Donald; Liu, Xianming

    2010-05-01

    Stellar occultations in the Cassini Ultraviolet Imaging Spectrograph Experiment observation program have provided measurements of the vertical profiles of H2 and and minor components of the atmosphere. The minor species identified and measured in the extinction spectra to date are CH4, C2H2, and C2H4. Measurements of abundance profiles are reported here, with limits on H2O content. The focus of this paper is on H2O because of the importance of this species to the understanding of upper atmospheric physical chemistry with significant consequences for ionospheric properties and energy budget. Ionospheric theory published in several papers beginning as early as 1984 have a common critical dependence on a sufficiently large H2O mixing ratio to control the lifetime of the assumed dominant ion, H+. The vertical extinction profiles, which extend down to an impact parameter of 300 km above the 1 bar pressure level, show no evidence of H2O in the spectrum at mid and low latitudes, establishing a mixing ratio [H2O]/[H2] ≤ 4 × 10-8, compatible with earlier global average measurements. The upper limit on H2O abundance at mid latitude establishes a mixing ratio more an order of magnitude too low to influence the ionosphere population in competition with calculated H+ + H2 X(v:J) charge capture reaction rates. The analysis of the extinction spectra produces densities and mixing ratios of the observed species and these results are reported and discussed.

  14. Microfaceting of Cu2O and its implications in photochemistry

    NASA Astrophysics Data System (ADS)

    Lee, Yunjae; Lee, Taehun; Lee, Yonghyuk; Soon, Aloysius

    The high Miller-index microfacets e.g. {211}, {311}, and {522} have been proposed to play a key role in shape-controlled crystal engineering of Cu2O polyhedrons for various clean energy applications. These Cu2O microcrystals with high Miller-index microfacets are found to have a higher photocatalytic activity than those with octahedra and cube morphologies, and thus suggesting that the catalytically active sites are more abundant on the high Miller-index surfaces. Although much effort has been devoted to the actual synthesis and characterizations of these shaped Cu2O nanocrystals with various morphologies, a firm theoretical understanding of these system are currently limited to low Miller-index facets of Cu2O. Here, we perform first-principles density-functional theory (DFT) calculations to study the surface energetics and electronic structure of these high Miller-index Cu2O surfaces, and evaluate their overpotential for water redox reactions on Cu2O, in comparison with that for the low Miller-index surfaces.

  15. Silicon solar cells with Al2O3 antireflection coating

    NASA Astrophysics Data System (ADS)

    Dobrzański, Leszek; Szindler, Marek; Drygała, Aleksandra; Szindler, Magdalena

    2014-09-01

    The paper presents the possibility of using Al2O3 antireflection coatings deposited by atomic layer deposition ALD. The ALD method is based on alternate pulsing of the precursor gases and vapors onto the substrate surface and then chemisorption or surface reaction of the precursors. The reactor is purged with an inert gas between the precursor pulses. The Al2O3 thin film in structure of the finished solar cells can play the role of both antireflection and passivation layer which will simplify the process. For this research 50×50 mm monocrystalline silicon solar cells with one bus bar have been used. The metallic contacts were prepared by screen printing method and Al2O3 antireflection coating by ALD method. Results and their analysis allow to conclude that the Al2O3 antireflection coating deposited by ALD has a significant impact on the optoelectronic properties of the silicon solar cell. For about 80 nm of Al2O3 the best results were obtained in the wavelength range of 400 to 800 nm reducing the reflection to less than 1%. The difference in the solar cells efficiency between with and without antireflection coating was 5.28%. The LBIC scan measurements may indicate a positive influence of the thin film Al2O3 on the bulk passivation of the silicon.

  16. Neutron scattering study on cathode LiMn2O4 and solid electrolyte 5(Li2O)(P2O5)

    NASA Astrophysics Data System (ADS)

    Kartini, E.; Putra, Teguh P.; Jahya, A. K.; Insani, A.; Adams, S.

    2014-09-01

    Neutron scattering is very important technique in order to investigate the energy storage materials such as lithium-ion battery. The unique advantages, neutron can see the light atoms such as Hydrogen, Lithium, and Oxygen, where those elements are negligible by other corresponding X-ray method. On the other hand, the energy storage materials, such as lithium ion battery is very important for the application in the electric vehicles, electronic devices or home appliances. The battery contains electrodes (anode and cathode), and the electrolyte materials. There are many challenging to improve the existing lithium ion battery materials, in order to increase their life time, cyclic ability and also its stability. One of the most scientific challenging is to investigate the crystal structure of both electrode and electrolyte, such as cathodes LiCoO2, LiMn2O4 and LiFePO4, and solid electrolyte Li3PO4. Since all those battery materials contain Lithium ions and Oxygen, the used of neutron scattering techniques to study their structure and related properties are very important and indispensable. This article will review some works of investigating electrodes and electrolytes, LiMn2O4 and 5(Li2O)(P2O5), by using a high resolution powder diffraction (HRPD) at the multipurpose research reactor, RSG-Sywabessy of the National Nuclear Energy Agency (BATAN), Indonesia.

  17. Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-fan; Ji, Zhen; Chen, Ke; Jia, Cheng-chang; Yang, Shan-wu; Wang, Meng-ya

    2017-02-01

    Al2O3/TiO2/Fe2O3/Yb2O3 composite powder was synthesized via the sol-gel method. The structure, morphology, and radar-absorption properties of the composite powder were characterized by transmission electron microscopy, X-ray diffraction analysis and RF impedance analysis. The results show that two types of particles exist in the composite powder. One is irregular flakes (100-200 nm) and the other is spherical Al2O3 particles (smaller than 80 nm). Electromagnetic wave attenuation is mostly achieved by dielectric loss. The maximum value of the dissipation factor reaches 0.76 (at 15.68 GHz) in the frequency range of 2-18 GHz. The electromagnetic absorption of waves covers 2-18 GHz with the matching thicknesses of 1.5-4.5 mm. The absorption peak shifts to the lower-frequency area with increasing matching thickness. The effective absorption band covers the frequency range of 2.16-9.76 GHz, and the maximum absorption peak reaches -20.18 dB with a matching thickness of 3.5 mm at a frequency of 3.52 GHz.

  18. Ionic-to-electronic conductivity of glasses in the P2O5-V2O5-ZnO-Li2O system

    NASA Astrophysics Data System (ADS)

    Langar, A.; Sdiri, N.; Elhouichet, H.; Ferid, M.

    2016-12-01

    Glasses having a composition 15V2O5-5ZnO-(80- x P2O5- xLi2O ( x = 5 , 10, 15 mol%) were prepared by the conventional melt quenching. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in a frequency range from 10 Hz to 10 MHz and in a temperature range from 513 K to 566 K. The structure of the amorphous synthetic product was corroborated by X-ray diffraction (disappearance of nacrite peaks). The DC conductivity follows the Arrhenius law and the activation energy determined by regression analysis varies with the content of Li2O. Frequency-dependent AC conductivity was analyzed by Jonscher's universal power law, which is varying as ωn, and the temperature-dependent power parameter supported by the Correlated Barrier Hopping (CBH) model. For x = 15 mol%, the values of n ≤ 0.5 confirm the dominance of ionic conductivity. The analysis of the modulus formalism with a distribution of relaxation times was carried out using the Kohlrausch-Williams-Watts (KWW) stretched exponential function. The stretching exponent, β, is dependent on temperature. The analysis of the temperature variation of the M" peak indicates that the relaxation process is thermally activated. Modulus study reveals the temperature-dependent non-Debye-type relaxation phenomenon.

  19. Strain-induced topological transition in SrRu2O6 and CaOs2O6

    DOE PAGES

    Ochi, Masayuki; Arita, Ryotaro; Trivedi, Nandini; ...

    2016-05-24

    The topological property of SrRumore » $$_2$$O$$_6$$ and isostructural CaOs$$_2$$O$$_6$$ under various strain conditions is investigated using density functional theory. Based on an analysis of parity eigenvalues, we anticipate that a three-dimensional strong topological insulating state should be realized when band inversion is induced at the A point in the hexagonal Brillouin zone. For SrRu$$_2$$O$$_6$$, such a transition requires rather unrealistic tuning, where only the $c$ axis is reduced while other structural parameters are unchanged. However, given the larger spin-orbit coupling and smaller lattice constants in CaOs$$_2$$O$$_6$$, the desired topological transition does occur under uniform compressive strain. Our study paves a way to realize a topological insulating state in a complex oxide, which has not been experimentally demonstrated so far.« less

  20. Geometry of α-Cr2O3(0001) as a Function of H2O Partial Pressure

    PubMed Central

    2015-01-01

    Surface X-ray diffraction has been employed to elucidate the surface structure of α-Cr2O3(0001) as a function of water partial pressure at room temperature. In ultra high vacuum, following exposure to ∼2000 Langmuir of H2O, the surface is found to be terminated by a partially occupied double layer of chromium atoms. No evidence of adsorbed OH/H2O is found, which is likely due to either adsorption at minority sites, or X-ray induced desorption. At a water partial pressure of ∼30 mbar, a single OH/H2O species is found to be bound atop each surface Cr atom. This adsorption geometry does not agree with that predicted by ab initio calculations, which may be a result of some differences between the experimental conditions and those modeled. PMID:26877825

  1. Oceanic N2O emissions in the 21st century

    NASA Astrophysics Data System (ADS)

    Martinez-Rey, J.; Bopp, L.; Gehlen, M.; Tagliabue, A.; Gruber, N.

    2014-12-01

    The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known on how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. We implemented two different parameterizations of N2O production, which differ primarily at low oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12% in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 Tg N yr-1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the Oxygen Minimum Zones (OMZs), i.e., in the Eastern Tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production associated primarily with denitrification. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around -0.009 W m-2 K-1, which is comparable to the potential increase from terrestrial N2O sources. However, the assesment for a compensation between the terrestrial and marine feedbacks calls for an improved representation of N2O production terms in fully coupled next generation of Earth System Models.

  2. Borate mineral assemblages in the system Na2OCaOMgOB2O3H2O

    USGS Publications Warehouse

    Christ, C.L.; Truesdell, A.H.; Erd, Richard C.

    1967-01-01

    he significant known hydrated borate mineral assemblages (principally of the western United States) in the system Na2OCaOz.sbnd;MgOB2O3H2O are expressible in three ternary composition diagrams. Phase rule interpretation of the diagrams is consistent with observation, if the activity of H2O is generally considered to be determined by the geologic environment. The absence of conflicting tie-lines on a diagram indicates that the several mineral assemblages of the diagram were formed under relatively narrow ranges of temperature and pressure. The known structural as well as empirical formulas for the minerals are listed, and the more recent (since 1960) crystal structure findings are discussed briefly. Schematic Gibbs free energy-composition diagrams based on known solubility-temperature relations in the systems Na2B4O7-H2O and Na2B4O7-NaCl-H2O, are highly useful in the interpretation and prediction of the stability relations in these systems; in particular these diagrams indicate clearly that tincalconite, although geologically important, is everywhere a metastable phase. Crystal-chemical considerations indicate that the same thermodynamic and kinetic behavior observed in the Na2B4O7-H2O system will hold in the Ca2B6O11-H2O system. This conclusion is confirmed by the petrologic evidence. The chemical relations among the mineral assemblages of a ternary diagram are expressed by a schematic "activity-activity" diagram. These activity-activity diagrams permit the tracing-out of the paragenetic sequences as a function of changing cation and H2O activities. ?? 1967.

  3. Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Samanta, A. N.; Chakraborty, S.

    2009-08-01

    In the present paper, conjugate heat transfer approach has been used to numerically study laminar forced convective heat transfer characteristics of Al2O3/H2O nanofluid flowing in a silicon microchannel heat sink (MCHS) of rectangular cross-section using thermal dispersion model. Results are presented in terms of thermal resistance that characterizes MCHS performance. It is observed that use of nanofluid improves MCHS performance by reducing fin (conductive) thermal resistance.

  4. Hydrothermal phase equilibria in Ln 2O 3-H 2O-CO 2 systems . I. The lighter lanthanides

    NASA Astrophysics Data System (ADS)

    Tareen, J. A. K.; Kutty, T. R. N.

    1980-10-01

    Phase diagrams for Nd 2O 3-H 2O-CO 2 and Gd 2O 3-H 2O-CO 2 systems at 1500 atm are given along with the results of selected runs in La, Sm and Eu systems. The stable phases in systems of La and Nd, are Ln(OH)CO 3-B, Ln 2O 2CO 3-II and LnOOH, in addition to the Ln(OH) 3 phase at extremely low partial pressures of CO 2 in the system. The systems become more and more complex with decreasing ionic radi and the number of stable carbonate phases increases. Ln 2(CO 3) 3 · 3H 2O orthorhombic (tengerate-like phase) is stable from Sm to Gd in addition to the other phases. The Gd(OH)CO 3-A (ancylite-like phase) is hydrothermally stable at XCO 2 ⩾ 0.5 while its hexagonal polymorph, Gd(OH)CO 3-B is stable at low partial pressures of CO 2 in the system.

  5. N2O Emission Trends From a Global Atmospheric Inversion

    NASA Astrophysics Data System (ADS)

    Thompson, R.; Chevallier, F.; Zaehle, S.; Dlugokencky, E. J.

    2015-12-01

    Nitrous oxide (N2O) is the third most important long-lived greenhouse gas and contributes strongly to stratospheric ozone depletion through the formation of NO. Concentrations of N2O in the atmosphere have increased by approximately 20% since the pre-industrial era owing largely to the intensification of agriculture and the use of mineral nitrogen fertilizers. Top-down methods can be used to constrain the emissions of N2O using observations of atmospheric concentrations. Inverse modelling is a top-down approach, which relates changes in N2O concentrations to the emissions with the help of an atmospheric transport model. Using the global inverse model, LMDz-PyVar, we estimated N2O emissions from 1996 to 2012 (covering the period when sufficient atmospheric observations are available). Emissions were estimated monthly with a horizontal resolution of 3.25° × 1.875°. From the inversion, we estimate a global mean emission of 17.0 ± 0.8 TgN y-1, however, the emissions varied substantially from year-to-year. The largest inter-annual variability was located in the tropics and subtropics, where it appears to be correlated with ENSO climate variability. We did not find any significant trend in the global emission over 1996 - 2012, however, we did find important trends on continental scales. In South and East Asia, South America and Africa, N2O emissions increased, consistent with increasing use of N-fertilizer. In contrast, in Europe and North America, N2O emissions decreased. In Europe, this is correlated with a decrease in N-fertilizer use, while in North America the decrease is possibly due to climate variability and changes in agricultural practices.

  6. Subsolidus phase equilibria and properties in the system Bi 2O 3:Mn 2O 3±x:Nb 2O 5

    NASA Astrophysics Data System (ADS)

    Vanderah, T. A.; Lufaso, M. W.; Adler, A. U.; Levin, I.; Nino, J. C.; Provenzano, V.; Schenck, P. K.

    2006-11-01

    Subsolidus phase relations have been determined for the Bi-Mn-Nb-O system in air (750-900 °C). Phases containing Mn 2+, Mn 3+, and Mn 4+ were all observed. Ternary compound formation was limited to pyrochlore (A 2B 2O 6O'), which formed a substantial solid solution region at Bi-deficient stoichiometries (relative to Bi 2(Mn,Nb) 2O 7) suggesting that ≈14-30% of the A-sites are occupied by Mn (likely Mn 2+). X-ray powder diffraction data confirmed that all Bi-Mn-Nb-O pyrochlores form with structural displacements, as found for the analogous pyrochlores with Mn replaced by Zn, Fe, or Co. A structural refinement of the pyrochlore 0.4000:0.3000:0.3000 Bi 2O 3:Mn 2O 3±x:Nb 2O 5 using neutron powder diffraction data is reported with the A and O' atoms displaced (0.36 and 0.33 Å, respectively) from ideal positions to 96g sites, and with Mn 2+ on A-sites and Mn 3+ on B-sites (Bi 1.6Mn 2+0.4(Mn 3+0.8Nb 1.2)O 7, Fd3¯m (♯227), a=10.478(1) Å); evidence of A or O' vacancies was not found. The displacive disorder is crystallographically analogous to that reported for Bi 1.5Zn 0.92Nb 1.5O 6.92, which has a similar concentration of small B-type ions on the A-sites. EELS spectra for this pyrochlore were consistent with an Mn oxidation between 2+ and 3+. Bi-Mn-Nb-O pyrochlores exhibited overall paramagnetic behavior with negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. At 300 K and 1 MHz the relative dielectric permittivity of Bi 1.600Mn 1.200Nb 1.200O 7 was ≈128 with tan δ=0.05; however, at lower frequencies the sample was conductive which is consistent with the presence of mixed-valent Mn. Low-temperature dielectric relaxation such as that observed for Bi 1.5Zn 0.92Nb 1.5O 6.92 and other bismuth-based pyrochlores was not observed. Bi-Mn-Nb-O pyrochlores were readily obtained as single crystals and also as textured thin films using pulsed laser deposition.

  7. Polar hexagonal tungsten bronze-type oxides: KNbW2O9, RbNbW2O9, and KTaW2O9.

    PubMed

    Chang, H Y; Sivakumar, T; Ok, K M; Halasyamani, P Shiv

    2008-10-06

    The synthesis, crystal structures, second-harmonic generation (SHG), piezoelectric, pyroelectric, and ferroelectric properties of three polar noncentrosymmetric (NCS) hexagonal tungsten bronze-type oxides are reported. The materials KNbW 2O 9, RbNbW 2O 9, and KTaW 2O 9 were synthesized by standard solid-state techniques and structurally characterized by laboratory powder X-ray diffraction. The compounds are isostructural, crystallizing in the polar NCS space group Cmm2. The materials exhibit a corner-shared MO 6 (M = Nb (5+)/W (6+) or Ta (5+)/W (6+)) octahedral framework, with K (+) or Rb (+) occupying the "hexagonal" tunnels. The d (0) transition metals, Nb (5+), Ta (5+), and W (6+), are displaced from the center of their oxide octahedra attributable to second-order Jahn-Teller effects. SHG measurements using 1064 nm radiation revealed frequency-doubling efficiencies ranging from 180 to 220 x alpha-SiO 2. Converse piezoelectric measurements resulted in d 33 values ranging from 10 to 41 pm V (-1). The total pyroelectric coefficient, p, at 50 degrees C ranged from -6.5 to -34.5 muC K (-1) m (-2). The reported materials are also ferroelectric, as demonstrated by hysteresis loops (polarization vs electric field). Spontaneous polarization values, P s, ranging from 2.1 to 8.4 muC cm (-2) were measured. The magnitudes of the SHG efficiency, piezoelectric response, pyroelectric coefficient, and ferroelectric polarization are strongly dependent on the out-of-center distortion of the d (0) transition metals. Structure-property relationships are discussed and explored. Crystal data: KNbW 2O 9, orthorhombic, space group Cmm2 (No. 35), a = 21.9554(2) A, b = 12.60725(15) A, c = 3.87748(3) A, V = 1073.273(13) A (3), and Z = 6; RbNbW 2O 9, orthorhombic, space group Cmm2 (No. 35), a = 22.00985(12) A, b = 12.66916(7) A, c = 3.8989(2) A, V = 1086.182(10) A (3), and Z = 6; KTaW 2O 9, orthorhombic, space group Cmm2 (No. 35), a = 22.0025(2) A, b = 12.68532(14) A, c = 3.84456(4) A, V

  8. The role of ionic sizes in inducing the cubic to tetragonal distortion in AV2O4 and ACr2O4 (A = Zn, Mg and Cd) compounds

    NASA Astrophysics Data System (ADS)

    Lal, Sohan; Pandey, Sudhir K.

    2016-11-01

    Cubic to tetragonal distortion in AV2O4 and ACr2O4 (A = Zn, Mg and Cd) compounds have been a contentious issue for last two decades. Different groups have proposed different mechanisms to understand such a distortion in these spinels, which are: (i) spin lattice coupling mechanism known as the spin driven Jahn-Teller (JT) effect, (ii) the strong relativistic spin-orbit coupling, a moderate JT distortion and weak V-V interactions and (iii) the JT effect. Now, in order to know the possible cause for such a distortion, we have avoided these complexities (various interactions among spin, electronic, orbital and lattice degrees of freedom) by carrying out spin unpolarized calculations. The calculated values of bulk moduli for ZnV2O4 (ZnCr2O4), MgV2O4 (MgCr2O4) and CdV2O4 (CdCr2O4) are found to be ˜289 (˜254), ˜244 (˜243) and ˜230 (˜233) GPa, respectively which suggest that CdV2O4 (among vanadates) and CdCr2O4 (among chromates) are more compressible. For vanadates and chromates, the order of calculated values of lattice parameter a are found to CdV2O4 > MgV2O4 > ZnV2O4 and CdCr2O4 > MgCr2O4 > ZnCr2O4, respectively and are consistent with the experimental results. The calculated values of cubic to tetragonal distortion (c/a), with c/a < 1 for ZnV2O4 (ZnCr2O4), MgV2O4 (MgCr2O4) and CdV2O4 (CdCr2O4) are ˜0.996 (˜0.997), ˜0.995 (˜0.994) and ˜0.997 (˜0.998), respectively. These values are in good agreement with the experimental data for ZnV2O4, MgV2O4, ZnCr2O4 and MgCr2O4 compounds. The present study clearly shows the role of ionic sizes in inducing the cubic to tetragonal distortion in these spinels. However, the discrepancies between the calculated and experimental data for CdV2O4 and CdCr2O4 are expected to improve by considering the above mentioned mechanisms. These mechanisms also appear to be responsible for deciding the other physical properties of these compounds.

  9. Destruction and Sequestration of H2O on Mars

    NASA Astrophysics Data System (ADS)

    Clark, Benton

    2016-07-01

    The availability of water in biologically useable form on any planet is a quintessential resource, even if the planet is in a zone habitable with temperature regimes required for growth of organisms (above -18 °C). Mars and most other planetary objects in the solar system do not have sufficient liquid water at their surfaces that photosynthesis or chemolithoautotrophic metabolism could occur. Given clear evidence of hydrous mineral alteration and geomorphological constructs requiring abundant supplies of liquid water in the past, the question arises whether this H2O only became trapped physically as ice, or whether there could be other, more or less accessible reservoirs that it has evolved into. Salts containing S or Cl appear to be ubiquitous on Mars, having been measured in soils by all six Mars landed missions, and detected in additional areas by orbital investigations. Volcanoes emit gaseous H2S, S, SO2, HCl and Cl2. A variety of evidence indicates the geochemical fate of these gases is to be transformed into sulfates, chlorides, chlorates and perchlorates. Depending on the gas, the net reaction causes the destruction of between one and up to eight molecules of H2O per atom of S or Cl (although hydrogen atoms are also released, they are lost relatively rapidly to atmospheric escape). Furthermore, the salt minerals formed often incorporate H2O into their crystalline structures, and can result in the sequestration of up to yet another six (sometimes, more) molecules of H2O. In addition, if the salts are microcrystalline or amorphous, they are potent adsorbents for H2O. In certain cases, they are even deliquescent under martian conditions. Finally, the high solubility of the vast majority of these salts (with notable exception of CaSO4) can result in dense brines with low water activity, aH, as well as cations which can be inimical to microbial metabolism, effectively "poisoning the well." The original geologic materials on Mars, igneous rocks, also provide some

  10. Isotopologue fractionation during N(2)O production by fungal denitrification.

    PubMed

    Sutka, Robin L; Adams, Gerard C; Ostrom, Nathaniel E; Ostrom, Peggy H

    2008-12-01

    Identifying the importance of fungi to nitrous oxide (N2O) production requires a non-intrusive method for differentiating between fungal and bacterial N2O production such as natural abundance stable isotopes. We compare the isotopologue composition of N2O produced during nitrite reduction by the fungal denitrifiers Fusarium oxysporum and Cylindrocarpon tonkinense with published data for N2O production during bacterial nitrification and denitrification. The fractionation factors for bulk nitrogen isotope values for fungal denitrification were in the range -74.7 to -6.6 per thousand. There was an inverse relationship between the absolute value of the fractionation factors and the reaction rate constant. We interpret this in terms of variation in the relative importance of the rate constants for diffusion and enzymatic reduction in controlling the net isotope effect for N2O production during fungal denitrification. Over the course of nitrite reduction, the delta(18)O values for N2O remained constant and did not exhibit a relationship with the concentration characteristic of an isotope effect. This probably reflects isotopic exchange with water. Similar to the delta(18)O data, the site preference (SP; the difference in delta(15)N between the central and outer N atoms in N2O) was unrelated to concentration during nitrite reduction and, therefore, has the potential to act as a conservative tracer of production from fungal denitrification. The SP values of N2O produced by F. oxysporum and C. tonkinense were 37.1 +/- 2.5 per thousand and 36.9 +/- 2.8 per thousand, respectively. These SP values are similar to those obtained in pure culture studies of bacterial nitrification but quite distinct from SP values for bacterial denitrification. The large magnitude of the bulk nitrogen isotope fractionation and the delta(18)O values associated with fungal denitrification are distinct from bacterial production pathways; thus multiple isotopologue data holds much promise for

  11. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  12. N2O Decomposed by Discharge Plasma with Catalysts

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Huang, Hao; Xu, Jie; Yang, Qi; Tao, Gongkai

    2015-12-01

    A great deal of attention has been focused on discharge plasma as it can rapidly decompose N2O without additives, which is not only a kind of greenhouse gas but also a kind of damages to the ozone layer. The thermal equilibrium plasma is chosen to combine with catalysts to decompose N2O, and its characteristics are analyzed in the present paper. The results indicate that NO and NO2 were formed besides N2 and O2 during N2O decomposition when N2O was treated merely by discharge plasma. Concentration of NO declined greatly when the discharge plasma was combined with catalysts. Results of Raman spectra analysis on CeO2, Ce0.75Zr0.25O2 and Ce0.5Zr0.5O2 imply that the products selectivity has been obviously improved in discharge plasma decomposing N2O because of the existence of massive oxygen vacancies over the composite oxide catalysts. supported by National Natural Science Foundation of China (No. 50677026) and the Applied Basic Research Program of Wuhan, China (No. 2015060101010068)

  13. Role of Metabolic H2O2 Generation

    PubMed Central

    Sies, Helmut

    2014-01-01

    Hydrogen peroxide, the nonradical 2-electron reduction product of oxygen, is a normal aerobic metabolite occurring at about 10 nm intracellular concentration. In liver, it is produced at 50 nmol/min/g of tissue, which is about 2% of total oxygen uptake at steady state. Metabolically generated H2O2 emerged from recent research as a central hub in redox signaling and oxidative stress. Upon generation by major sources, the NADPH oxidases or Complex III of the mitochondrial respiratory chain, H2O2 is under sophisticated fine control of peroxiredoxins and glutathione peroxidases with their backup systems as well as by catalase. Of note, H2O2 is a second messenger in insulin signaling and in several growth factor-induced signaling cascades. H2O2 transport across membranes is facilitated by aquaporins, denoted as peroxiporins. Specialized protein cysteines operate as redox switches using H2O2 as thiol oxidant, making this reactive oxygen species essential for poising the set point of the redox proteome. Major processes including proliferation, differentiation, tissue repair, inflammation, circadian rhythm, and aging use this low molecular weight oxygen metabolite as signaling compound. PMID:24515117

  14. In situ synthesis, enhanced luminescence and application in dye sensitized solar cells of Y2O3/Y2O2S:Eu3+ nanocomposites by reduction of Y2O3:Eu3+

    PubMed Central

    Yuan, Guohai; Li, Mingxia; Yu, Mingqi; Tian, Chungui; Wang, Guofeng; Fu, Honggang

    2016-01-01

    Y2O3/Y2O2S:Eu3+ nanocomposites were successfully prepared by reducing Y2O3:Eu3+ nanocrystals. The obtained Y2O3/Y2O2S:Eu3+ nanocomposites not only can emit enhanced red luminescence excited at 338 nm, but also can be used to improve the efficiency of the dye sensitized solar cells, resulting an efficiency of 8.38%, which is a noticeable enhancement of 12% compared to the cell without Y2O3/Y2O2S:Eu3+ nanocomposites. The results of the incident photon to current, dynamic light scattering, and diffuse reflectance spectra indicated that the enhancement of the cell efficiency was mainly related to the light scattering effect of Y2O3/Y2O2S:Eu3+ nanocomposites. As a phosphor powder, the emission at ~615 nm of Y2O3/Y2O2S:Eu3+ was split into two sub-bands. Compared with Y2O3:Eu3+, the 5D0 → 7F0 and 5D0 → 7F1 emissions of Y2O3/Y2O2S:Eu3+ showed a little red-shift. PMID:27872492

  15. In situ synthesis, enhanced luminescence and application in dye sensitized solar cells of Y2O3/Y2O2S:Eu3+ nanocomposites by reduction of Y2O3:Eu3+

    NASA Astrophysics Data System (ADS)

    Yuan, Guohai; Li, Mingxia; Yu, Mingqi; Tian, Chungui; Wang, Guofeng; Fu, Honggang

    2016-11-01

    Y2O3/Y2O2S:Eu3+ nanocomposites were successfully prepared by reducing Y2O3:Eu3+ nanocrystals. The obtained Y2O3/Y2O2S:Eu3+ nanocomposites not only can emit enhanced red luminescence excited at 338 nm, but also can be used to improve the efficiency of the dye sensitized solar cells, resulting an efficiency of 8.38%, which is a noticeable enhancement of 12% compared to the cell without Y2O3/Y2O2S:Eu3+ nanocomposites. The results of the incident photon to current, dynamic light scattering, and diffuse reflectance spectra indicated that the enhancement of the cell efficiency was mainly related to the light scattering effect of Y2O3/Y2O2S:Eu3+ nanocomposites. As a phosphor powder, the emission at ~615 nm of Y2O3/Y2O2S:Eu3+ was split into two sub-bands. Compared with Y2O3:Eu3+, the 5D0 → 7F0 and 5D0 → 7F1 emissions of Y2O3/Y2O2S:Eu3+ showed a little red-shift.

  16. Electronic, thermoelectric and optical properties of vanadium oxides: VO2, V2O3 and V2O 5

    NASA Astrophysics Data System (ADS)

    Lamsal, Chiranjivi

    Correlated electrons in vanadium oxides are responsible for their extreme sensitivity to external stimuli such as pressure, temperature or doping. As a result, several vanadium oxides undergo insulator-to-metal phase transition (IMT) accompanied by structural change. Unlike vanadium pentoxide (V2O5), vanadium dioxide (VO2) and vanadium sesquioxide (V2O3) show IMT in their bulk phases. In this study, we have performed one electron Kohn-Sham electronic band-structure calculations of VO2, V2O3 and V2O 5 in both metallic and insulating phases, implementing a full ab-initio simulation package based on Density Functional Theory (DFT), Plane Waves and Pseudopotentials (PPs). Electronic band structures are found to be influenced by crystal structure, crystal field splitting and strong hybridization between O2p and V3d bands. "Intermediate bands", with narrow band widths, lying just below the higher conduction bands, are observed in V2O 5 which play a critical role in optical and thermoelectric processes. Similar calculations are performed for both metallic and insulating phases of bulk VO2 and V2O3. Unlike in the metallic phase, bands corresponding to "valence electrons" considered in the PPs are found to be fully occupied in the insulating phases. Transport parameters such as Seebeck coefficient, electrical conductivity and thermal (electronic) conductivity are studied as a function of temperature at a fixed value of chemical potential close to the Fermi energy using Kohn-Sham band structure approach coupled with Boltzmann transport equations. Because of the layered structure and stability, only V2O5 shows significant thermoelectric properties. All the transport parameters have correctly depicted the highly anisotropic electrical conduction in V2O 5. Maxima and crossovers are also seen in the temperature dependent variation of Seebeck coefficient in V2O5, which can be consequences of "specific details" of the band structure and anisotropic electron-phonon interactions

  17. Fabrication of heterostructured Bi2O2CO3/Bi2O4 photocatalyst and efficient photodegradation of organic contaminants under visible-light.

    PubMed

    Sun, Meng; Li, Shuangli; Yan, Tao; Ji, Pengge; Zhao, Xia; Yuan, Kun; Wei, Dong; Du, Bin

    2017-03-14

    Heterostructured Bi2O2CO3/Bi2O4 photocatalysts were fabricated by a facile one-pot hydrothermal method, in which melem served as the sacrificial reagent to supply carbonate anions. The as-synthesized Bi2O2CO3/Bi2O4 heterojunction catalysts were characterized by X-ray diffraction, UV-vis diffuse reflectance spectra, X-ray photoelectron spectroscopy, scanning electron microscope, and transmission electron microscope. The XRD patterns of Bi2O2CO3/Bi2O4 catalysts showed the distinctive peaks of Bi2O2CO3 and Bi2O4. The SEM and TEM results showed that the pure Bi2O2CO3 possessed large plate morphology, while Bi2O4 were composed of various nanorods and particles. As for Bi2O2CO3/Bi2O4 heterojunction, it was obviously observed that Bi2O4 nanorods and particles were grown on the surfaces of Bi2O2CO3 plates. The visible light driven photocatalytic activity of Bi2O2CO3/Bi2O4 heterojunction photocatalyst was evaluated by decomposing dyes, phenol, and bisphenol A in water. Compared with Bi2O2CO3 and Bi2O4, the Bi2O2CO3/Bi2O4 photocatalysts have exhibited remarkable enhanced activity under visible light. The excellent activity can be mainly attributed to the enhanced separation efficiency of photo-generated carriers. Controlled experiments using different radical scavengers proved that O2(-) and h(+) played the main role in decomposing organic pollutants. The results of this work would provide a new sight for the construction of visible light-responsive photocatalysts with high performance.

  18. Field-based measurements of gross N2O production in soils using a 15N2O pool dilution technique

    NASA Astrophysics Data System (ADS)

    Yang, W. H.; Teh, Y.; Silver, W. L.

    2011-12-01

    Soils are a major source and sink of nitrous oxide (N2O), a potent greenhouse gas and catalyst for stratospheric ozone depletion. The controls on soil N2O emissions are poorly understood due to the difficulty in measuring gross N2O production and consumption rates. We tested a 15N2O pool dilution technique for simultaneously measuring gross N2O production and consumption rates from soils in the field. Our study site was a managed grassland in the Sacramento-San Joaquin River Delta that exhibited high N2O emissions, averaging 6.4 ± 2.6 mg N m-2 d-1. In the laboratory, gross N2O production and consumption compared well between the 15N2O pool dilution and acetylene inhibition methods whereas the 15NO3- tracer method measured significantly higher rates. In the field, N2O emissions were not significantly affected by increasing chamber headspace concentrations up to 100 ppb 15N2O. The pool dilution model estimates of 14N2O and 15N¬2O concentrations as well as net N2O fluxes fit observed data very well, suggesting that the technique yielded robust estimates of gross N2O production. Gross N2O production rates averaged 8.4 ± 3.2 mg N m-2 d-1 and were most strongly correlated to mineral N concentrations and denitrifying enzyme activity together (R2 = 0.73). Gross N2O consumption rates estimated using the pool dilution technique were 55 ± 1 % less than rates calculated as the difference between gross N2O production rates and net N2O fluxes, possibly due to heterogeneous and/or inadequate 15N2O tracer diffusion to deeper layers in the soil profile. Estimated and calculated gross N2O consumption rates constrained the proportion of produced N2O released to the atmosphere (termed the N2O yield) from 0.70 to 0.84. Gross N2O consumption rates and N2O yields were not strongly correlated to any soil property measured (i.e., soil moisture, pH, DEA, mineral N concentration, soil O2 concentration). Our study demonstrates that the 15N2O pool dilution technique is a valuable tool for

  19. Synthesis and several features of the Na2O-B2O3-Bi2O3-MoO3 glasses

    NASA Astrophysics Data System (ADS)

    Saddeek, Yasser B.; Abousehly, A. M.; Hussien, Shaban I.

    2007-08-01

    Glasses in the system Na2-2xB4-4xBixMo0.5xO7-4x, 0 <= x <= 0.4, have been prepared by the melt quenching technique. Elastic properties and IR spectroscopic studies have been employed to study the role of Bi2O3 and MoO3 on the structure of Na2B4O7 glass. Elastic properties and Debye temperature have been investigated using sound velocity measurements at 4 MHz. The results showed that the density and the molar volume increase while both sound velocities and the determined glass transition temperatures decrease with increase in x. Infrared spectra of the glasses reveal that the strong borate network consists of diborate units and is affected by the increase in the concentration of Bi2O3, and MoO3. These results are interpreted in terms of the increase in the number of non-bridging oxygen atoms, substitution of longer bond lengths of Bi-O, and Mo-O in place of shorter B-O bond and the change in Na+ ion concentration. The results indicate that bismuth and molybdenum ions have been substituted for boron ions as network modifier ions. The elastic moduli are observed to increase with the increase in Bi2O3 and MoO3 content. This contradiction in the elastic moduli-molar volume relation is attributed to the role of the respective bonds.

  20. AC conductivity and its scaling behavior in MgO-Li2O-B2O3-Bi2O3 glasses

    NASA Astrophysics Data System (ADS)

    Purnima, M.; Bale, Shashidhar; Samee, M. A.; Ahmmad, Shaik Kareem; Rahman, Syed

    2013-02-01

    In the present work, the compositional dependence of density, refractive index and glass transition temperature of xMgO-(25-x)Li2O-50B2O3-25Bi2O3 glasses is studied. Impedance spectroscopy technique is employed on these samples and the data are analyzed using Cole-Cole type impedance response function. The AC conductivity behavior of the present glasses has been investigated in the frequency range from 100 Hz to 1 MHz and as a function of temperature the measured AC data are analyzed using the Jonscher’s universal power law to explain the observed dispersive behavior of the electrical conductivity. The temperature and composition dependence scaling behavior in the AC conductivity are satisfactorily explained by scaling the AC conductivity σ‧(ω) by hopping frequency ωp. The frequency response of dielectric constant ɛ‧ and dielectric loss tanδ as a function of temperature were studied. The tanδ peak shifts to higher frequency with increasing temperature, indicating dipolar relaxation character of dielectric loss in the present glasses.

  1. Structural properties of Bi2O3-B2O3-SiO2-Na2O glasses for gamma ray shielding applications

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2016-03-01

    Glass samples of the xBi2O3-(0.70-x)B2O3-0.15SiO2-0.15Na2O (where x=0 up to 0.5 mol fraction) have been prepared in the laboratory by using melt quenching technique. 137Cs source has been used for experimental measurements of mass attenuation coefficient of γ-rays at 662 keV. Mass attenuation coefficient of our glass samples has been compared with standard nuclear radiation shield "barite concrete". It has been concluded that bismuth containing glass samples can be potential candidates for γ-ray shielding applications. Glasses must have appreciable elastic moduli values for their practical utility as γ-ray shields which are related to coordination number and non-bridging oxygens. Structural properties including coordination number and non-bridging oxygens of the structural units of the glass system have been estimated from the detailed analysis of Optical, Raman and FTIR spectra. Reported investigations can contribute to the development of transparent gamma ray shields.

  2. Super-high photocatalytic activity of Fe2O3 nanoparticles anchored on Bi2O2CO3 nanosheets with exposed {0 0 1} active facets

    NASA Astrophysics Data System (ADS)

    Hu, Dandan; Zhang, Kaiyou; Yang, Qi; Wang, Mingjun; Xi, Yi; Hu, Chenguo

    2014-10-01

    Structure engineering enables us to design novel photocatalysts with high efficiency and stability. Here visible light absorbing Fe2O3 semiconductor is chosen as sensitizer to modify wide band-gap Bi2O2CO3 semiconductor in order to enhance its photocatalytic properties by shifting the UV-driven catalytic activity to visible-light-driven catalytic activity. The Bi2O2CO3@Fe2O3 nanosheets with exposed active {0 0 1} facet were fabricated by a facile one-step modified hydrothermal method. The thermal stability, crystal structure, morphology and optical band gap were characterized. The photocatalytic activities of the Bi2O2CO3 and Bi2O2CO3@Fe2O3 with different molar ratio of Fe2O3 to Bi2O2CO3 were compared. It was found that the Bi2O2CO3@Fe2O3 catalyst can degrade rhodamine-B within 25 min under the simulated sunlight, displaying greatly enhanced photocatalytic activity with respect to the Bi2O2CO3 catalyst. The photocatalyst showed good photostability and recyclability. A mixture of multi-colored dyes including rhodamine-B, methylene blue and methyl orange can be completely degraded by the Bi2O2CO3@Fe2O3 catalyst (5 mol% Fe2O3) within 45 min under the simulated sunlight irradiation. The photocatalytic mechanism was discussed in detail.

  3. Mn2O3 Slurry Achieving Reduction of Slurry Waste

    NASA Astrophysics Data System (ADS)

    Kishii, Sadahiro; Nakamura, Ko; Hanawa, Kenzo; Watanabe, Satoru; Arimoto, Yoshihiro; Kurokawa, Syuhei; Doi, Toshiro K.

    2012-04-01

    Fumed silica is widely used for SiO2 chemical mechanical polishing (CMP). In semiconductor processes, only fresh slurry is used, the used slurry being disposed of. We have demonstrated that Mn2O3 abrasive slurry polishes dielectric SiO2 film, giving 4 times the removal rate of conventional fumed silica slurry. The higher removal rate reduces the total amount of slurry used, consequently reducing the amount of used slurry waste. The removal rate of Mn2O3 slurry remains constant for solid concentrations between l and 10 wt %, and stays constant without pad conditioning. These characteristics are very useful for slurry reuse. Remanufacture of Mn2O3 slurry from used slurry has been demonstrated, and the removal rates of the remanufactured and fresh slurries are the same. Reuse and remanufacturing drastically reduce the amount of waste.

  4. Raman tensor elements of β-Ga2O3

    PubMed Central

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-01-01

    The Raman spectrum and particularly the Raman scattering intensities of monoclinic β-Ga2O3 are investigated by experiment and theory. The low symmetry of β-Ga2O3 results in a complex dependence of the Raman intensity for the individual phonon modes on the scattering geometry which is additionally affected by birefringence. We measured the Raman spectra in dependence on the polarization direction for backscattering on three crystallographic planes of β-Ga2O3 and modelled these dependencies using a modified Raman tensor formalism which takes birefringence into account. The spectral position of all 15 Raman active phonon modes and the Raman tensor elements of 13 modes were determined and are compared to results from ab-initio calculations. PMID:27808113

  5. Photocatalytic activity of zinc modified Bi 2O 3

    NASA Astrophysics Data System (ADS)

    Hameed, Abdul; Gombac, Valentina; Montini, Tiziano; Felisari, Laura; Fornasiero, Paolo

    2009-12-01

    The surface of α-Bi 2O 3 was modified by either impregnating Zn acetate or coating with a sol-gel containing Zn hydroxide. The surface modified Bi 2O 3 powders were evaluated by UV-Visible spectroscopy, Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and surface area analysis (BET). The photocatalytic performances were evaluated for the degradation of phenol, methylene blue and methyl orange. The variations in photocatalytic activity were correlated with morphology change. The presence of ZnO does not significantly prevent the progressive formation of photocatalytically inactive (BiO) 2CO 3, while the dye decolourization capability of nanocomposite is significantly preserved with respect to that of bare Bi 2O 3.

  6. Vibrational predissociation of ArH2O

    NASA Astrophysics Data System (ADS)

    Bissonnette, C.; Clary, D. C.

    1992-12-01

    Accurate close-coupling calculations are used to investigate the vibrational predissociation of ArH2O as a function of the overall rotation J of the van der Waals complex. A full vibrational and rotational basis of H2O states is used in the calculation. The potential energy surface is of a form due to Cohen and Saykally and derived from far-infrared spectra, with an additional term to introduce the dependence on the vibrations of H2O. The linewidths calculated in this work show a maximum at J=6 and it is found that Fermi resonances affect dramatically the magnitude of the calculated linewidths. Good agreement with experimentally measured linewidths of Nesbitt and Lascola is achieved and the calculations provide a simple picture for the J dependence of the linewidths.

  7. CVD Lu(2)O(3):Eu coatings For Advanced Scintillators.

    PubMed

    Topping, Stephen G; Sarin, V K

    2009-03-01

    Currently Lu(2)O(3):Eu(3+) scintillators can only be fabricated via hot-pressing and pixelization, which is commercially not viable, thus restricting their use. Chemical vapor deposition is being developed as an alternative manufacturing process. Columnar coatings of Lu(2)O(3):Eu(3+) have been achieved using the halide-CO(2)-H(2) system, clearly signifying feasibility of the CVD process. Characterization of the coatings using high resolution scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis have been used as an aid to optimize process parameters and attain highly oriented and engineered coating structures. These results have clearly demonstrated that this process can be successfully used to tailor sub-micron columnar growth of Lu(2)O(3):Eu(3+), with the potential of ultra high resolution x-ray imaging.

  8. A Global PLASIMO Model for H2O Chemistry

    NASA Astrophysics Data System (ADS)

    Tadayon Mousavi, Samaneh; Koelman, Peter; Graef, Wouter; Mihailova, Diana; van Dijk, Jan; EPG/ Applied Physics/ Eindhoven University of Technology Team; Plasma Matters B. V. Team

    2016-09-01

    Global warming is one of the critical contemporary problems for mankind. Transformation of CO2 into fuels, like CH4, that are transportable with the current infrastructure seems a promising idea to solve this threatening issue. The final aim of this research is to produce CH4 by using microwave plasma in CO2 -H2 O mixture and follow-up catalytic processes. In this contribution we present a global model for H2 O chemistry that is based on the PLASIMO plasma modeling toolkit. The time variation of the electron energy and the species' densities are calculated based on the source and loss terms in plasma due to chemical reactions. The short simulation times of such models allow an efficient assessment and chemical reduction of the H2O chemistry, which is required for full spatially resolved simulations.

  9. Synthesis and thermal characterization of Al2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ismardi, A.; Rosadi, O. M.; Kirom, M. R.; Syarif, D. G.

    2016-11-01

    Al2O3 nanoparticle has been successfully synthesized using sol gel method from AlCl3. The obtained nanoparticles was then characterized for grain size measurement, the size of nanoparticles was 6 nm by using surface area meter (SAM) and Transmission Electron Microscopy (TEM). The crystallinity property of the product was then checked with XRD spectroscopy, the result shows that the diffraction peaks were match with the 10-0425 JCPDS database. Thermal property of the Al2O3 nanoparticles was then studied by mixing it with engine base fluid as nanofluid. The usage of nanofluid was expected to be heat absorber and woulo increase cooling process in cooling machine. The results showed that cooling time increases when the concentration of nanofluid was increased. Finally, it is concluded that thermal property of Al2O3 was studied and applicable to be mixed with engine coolant of cooler machine to reduce cooling time process.

  10. Water Oxidation by [(tpy)(H(2)O)(2)Ru(III)ORu(III)(H(2)O)(2)(tpy)](4+).

    PubMed

    Lebeau, Estelle L.; Adeyemi, S. Ajao; Meyer, Thomas J.

    1998-12-14

    The complex [(tpy)(C(2)O(4))Ru(III)ORu(III)(C(2)O(4))(tpy)].8H(2)O (1.8H(2)O) (tpy is 2,2':6',2"-terpyridine) has been prepared and characterized by X-ray crystallography and FTIR, resonance Raman, and (1)H NMR spectroscopies. From the results of the X-ray analysis, angleRuORu is 148.5 degrees with a torsional angle (O(22)-Ru(2)-O(1)-Ru(1)-O(12)) of 22.7 degrees and there is a short Ru-O bridge distance of 1.843 Å. 1 undergoes a chemically reversible one-electron, pH-independent oxidation at 0.73 V vs NHE (0.49 V vs SCE) from pH = 4-8 and a pH-dependent, two-electron, chemically irreversible reduction at -0.35 V below pH = 4.0. Addition of 1.8H(2)O to strong acid generates [(tpy)(H(2)O)(2)Ru(III)ORu(III)(H(2)O)(2)(tpy)](4+) (2), which has been characterized by UV-visible, resonance Raman, and (1)H NMR measurements. In pH-dependent cyclic voltammograms there is evidence for a series of redox couples interrelating oxidation states from Ru(II)ORu(II) to Ru(V)ORu(V). In contrast to the "blue dimer", cis,cis-[(bpy)(2)(H(2)O)Ru(III)ORu(III)(OH(2))(bpy)(2)](4+), oxidation state Ru(IV)ORu(IV) (Ru(V)ORu(III)?) does appear as a stable oxidation state. Oxidation of Ru(IV)ORu(IV) by Ce(IV) in 0.1 M HClO(4) is followed by rapid O(2) production and appearance of an anated form of Ru(IV)ORu(IV). O(2) formation is in competition with oxidative cleavage of Ru(V)ORu(V) by Ce(IV) to give [Ru(VI)(tpy)(O)(2)(OH(2))](2+). Anation and oxidative cleavage prevent this complex from being a true catalyst for water oxidation.

  11. Cu2O and Au/Cu2O particles: surface properties and applications in glucose sensing.

    PubMed

    Won, Yu-Ho; Stanciu, Lia A

    2012-09-26

    In this work we investigated the surface and facet-dependent catalytic properties of metal oxide particles as well as noble metal/metal oxide heterogeneous structures, with cuprous oxide (Cu(2)O) and Au/Cu(2)O being selected as model systems. As an example of application, we explored the potential of these materials in developing electrocatalytic devices. Cu(2)O particles were synthesized in various shapes, then used for testing their morphology-dependent electrochemical properties applied to the detection of glucose. While we did not attempt to obtain the best detection limit reported to date, the octahedral and hexapod Cu(2)O particles showed reasonable detection limits of 0.51 and 0.60 mM, respectively, which are physiologically relevant concentrations. However, detection limit seems to be less affected by particle shapes than sensitivity. Heterogeneous systems where Au NPs were deposited on the surface of Cu(2)O particles were also tested with similar results in terms of the effect of surface orientation.

  12. Structural study of radiolytic catalysts Ni-Ce/Al2O3 and Ni-Pt/Al2O3

    NASA Astrophysics Data System (ADS)

    Seridi, F.; Chettibi, S.; Keghouche, N.; Beaunier, P.; Belloni, J.

    2017-01-01

    Ni-Ce and Ni-Pt bimetallic catalysts supported over α-Al2O3 are synthesized by using co-impregnation method, and then reduced, each via radiolytic process or thermal H2-treatment. For Ni-Ce/Al2O3, the structural study reveals that Ce is alloyed with Ni as Ce2Ni7 nanoparticles in the radiation-reduced catalysts, while it segregates to the surface in the form of CeO2 in the H2-reduced catalysts. For Ni-Pt/Al2O3 radiolytic catalysts, Ni, Pt, NiPt and Ni3Pt nanoparticles, which size is 3.5 nm, are observed. When the radiation-reduced samples are tested in the benzene hydrogenation, they both display high conversion rate. However, the Ni-Pt/Al2O3 is more efficient than Ni-Ce/Al2O3. The performance of the catalysts is correlated with the high dispersion of the metal and the presence of intermetallic Ni-Pt and Ni-Ce phases. It is compared to that of other radiolytic monometallic/oxide catalysts of the literature.

  13. Study of electrical conductivity and phase transition in Bi2O3-V2O5 system

    NASA Astrophysics Data System (ADS)

    Beg, Saba; Haneef, Sadaf; Al-Areqi, Niyazi A. S.

    2010-12-01

    The solid solutions of bismuth-vanadate were prepared by the conventional solid-state reaction. The sample characterization and the study of phase transition were done by using FT-IR, X-ray diffraction (XRD) and DSC measurements. AC impedance measurements proved that the oxide ion conductivity predominantly arises from the grain and grain boundary contributions as two well-defined semicircles are clearly seen along with an inclined spike. The electrical conductivity of Bi2O3-V2O5 has been studied at different temperatures for various molar ratios. The isothermal conductivity increases with an increase in the concentration of V2O5 due to the vacancy migration phenomenon. It has been found that the conductivity of different compositions of Bi2O3-V2O5 increases and shows a jump in the temperature range 230-260°C due to the phase transition of BiVO4 from monoclinic scheelite type to that of tetragonal scheelite type. The endothermic peak in DSC at around 260°C reveals the phase transition, which is also confirmed by the XRD and FT-IR analysis. The XRD patterns confirmed the monoclinic structure of BiVO4.

  14. Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels

    NASA Astrophysics Data System (ADS)

    Wu, Xinyu; Wu, Huiying; Cheng, Ping

    2009-10-01

    Experimental investigations were performed on the single-phase flow and heat transfer characteristics through the silicon-based trapezoidal microchannels with a hydraulic diameter of 194.5 µm using Al2O3-H2O nanofluids with particle volume fractions of 0, 0.15% and 0.26% as the working fluids. The effects of the Reynolds number, Prandtl number and nanoparticle concentration on the pressure drop and convective heat transfer were investigated. Experimental results show that the pressure drop and flow friction of the nanofluids increased slightly when compared with that of the pure water, while the Nusselt number increased considerably. At the same pumping power, using nanofluids instead of pure water caused a reduction in the thermal resistance. It was also found that the Nusselt number increased with the increase in the particle concentration, Reynolds number and Prandtl number. Based on the experimental data, the dimensionless correlations for the flow friction and heat transfer of Al2O3-H2O nanofluids through silicon microchannels were proposed for the first time. The agglomeration and deposition of nanoparticles in the silicon microchannels were also examined in this paper. It was found that the Al2O3 nanoparticles deposited on the inner wall of microchannels more easily with increasing wall temperature, and once boiling commenced, there is a severe deposition and adhesion of nanoparticles to the inner wall, which makes the boiling heat transfer of nanofluids in silicon microchannels questionable.

  15. Partial pressures of H 2O above the diphasic Li 2O(s)-LiOH(s, l) system

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Johnson, C. E.

    1984-09-01

    The temperature dependence of the partial pressure of H 2O(g) above the Li 2O(s)-LiOH(s, l) system was determined for temperatures between 300 and 617°C. The partial pressures were measured by means of a flowing gas technique combined with continuous monitoring of the concentration of water vapor in a helium carrier gas. For the reaction LiOH(s) = Li 2O(s) + H 2O(g) , second law heat and entropy of reaction values of ΔH o = 30.7 ± 0.6 kcal/mol and ΔS o = 29.5 ± 1.0 cal/mol.K were obtained. Above the melting point of LiOH (744 K), these values were ΔH o =19.9 ± 0.6 kcal/mol and ΔS o =14.8 ± 0.8 cal/mol.K . Current measurements yield ΔH mo = 5.4 ± 0.4 kcal/mol for the heat of melting of LiOH, which is in good agreement with the JANAF recommended value of 4.99 kcal/mol. The results of these measurements can be used to partially describe the behavior of a Li 2O solid breeding blanket in anticipated fusion reactor environments.

  16. FT-IR and thermoluminescence investigation of P2O5-BaO-K2O glass system

    NASA Astrophysics Data System (ADS)

    Ivascu, C.; Timar-Gabor, A.; Cozar, O.

    2013-11-01

    The 0.5P2O5ṡxBaOṡ(0.5-x)K2O glass system (0≤x≤0.5mol%) is investigated by FT-IR and thermoluminescence as a possible dosimetic material. FT-IR spectra show structural network modifications with the composition variations of the studied glasses. The predominant absorption bands are characterized by two broad peaks near 500 cm-1, two weak peaks around 740 cm-1 and three peaks in the 900-1270 cm-1 region. The shift in the position of the band assigned to asymmetric stretching of PO2- group, υas(PO2-) modes from ˜1100 cm-1 to 1085 cm-1 and the decrease in its relative intensity with the increasing of K2O content shows a network modifier role of this oxide.. Luminescence investigations show that by adding modifier oxides in the phosphate glass a dose dependent TL signals result upon irradiation. Thus P2O5-BaO-K2O glass system is a possible candidate material for dosimetry in the dose 0 - 50 Gy range.

  17. Northern hemisphere mid-stratosphere vortex processes diagnosed from H2O, N2O and potential vorticity

    NASA Technical Reports Server (NTRS)

    Lahoz, W. A.; Carr, E. S.; Froidevaux, L.; Harwood, R. S.; Kumer, J. B.; Mergenthaler, J. L.; Peckham, G. E.; Read, W. G.; Ricaud, P. D.; Roche, A. E.

    1993-01-01

    Microwave Limb Sounder (MLS) H2O Cryogenic Limb Array Etalon Spectrometer (CLAES) N2O and potential vorticity calculated from UK Meteorological Office data are used to study mid-stratospheric vortex processes in the northern hemisphere winter of 1991-1992. Areas of moist air (at approx. 20 hPa) and N2O-poor air (at approx. 10hPa) are well-correlated with high values of potential vorticity and there is little or no large scale mixing across the vortex edge. We find evidence for the descent of relatively dry mesospheric air to the 840 K (approx. 10 hPa) level, as well as descent of moist air from the upper stratosphere to the 655 K (approx. 20 hPa) level. A reduction in the areas of the vortex and both the moist and H2O-poor regions is observed and there is evidence of moist and N2O-poor air parcels being extruded from the vortex.

  18. Gas sensing behaviour of Cr2O3 and W6+: Cr2O3 nanoparticles towards acetone

    NASA Astrophysics Data System (ADS)

    Kohli, Nipin; Hastir, Anita; Singh, Ravi Chand

    2016-05-01

    This paper reports the acetone gas sensing properties of Cr2O3 and 2% W6+ doped Cr2O3 nanoparticles. The simple cost-effective hydrolysis assisted co-precipitation method was adopted. Synthesized samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. XRD revealed that synthesized nanoparticles have corundum structure. The lattice parameters have been calculated by Rietveld refinement; and strain and crystallite size have been calculated by using the Williamson-Hall plots. For acetone gas sensing properties, the nanoparticles were applied as thick film onto alumina substrate and tested at different operating temperatures. The results showed that the optimum operating temperature of both the gas sensors is 250°C. At optimum operating temperature, the response of Cr2O3 and 2% W6+ doped Cr2O3 gas sensor towards 100 ppm acetone was found to be 25.5 and 35.6 respectively. The investigations revealed that the addition of W6+ as a dopant enhanced the sensing response of Cr2O3 nanoparticles appreciably.

  19. Quantitative CARS spectroscopy of CO2 and N2O.

    PubMed

    Hall, R J; Stufflebeam, J H

    1984-12-01

    Experimental and theoretical investigations of the CARS spectroscopy of CO2(2v2) and N2O(v3) were carried out. The experimental spectra were measured in a heated test cell, and excellent agreement with the observed temperature dependences was obtained from numerical simulations. Assignments were made for all hot bands, and the role of collisional narrowing was quantified. Observed nonresonant susceptibility effects in pure N2O have made it possible to estimate the nonresonant background susceptibility for this molecule by using the resonant contribution as a reference calibration.

  20. NiCo2O4-Based Supercapacitor Nanomaterials

    PubMed Central

    Wang, Chenggang; Zhou, E; He, Weidong; Deng, Xiaolong; Huang, Jinzhao; Ding, Meng; Wei, Xianqi; Liu, Xiaojing; Xu, Xijin

    2017-01-01

    In recent years, the research on supercapacitors has ushered in an explosive growth, which mainly focuses on seeking nano-/micro-materials with high energy and power densities. Herein, this review will be arranged from three aspects. We will summarize the controllable architectures of spinel NiCo2O4 fabricated by various approaches. Then, we introduce their performances as supercapacitors due to their excellent electrochemical performance, including superior electronic conductivity and electrochemical activity, together with the low cost and environmental friendliness. Finally, the review will be concluded with the perspectives on the future development of spinel NiCo2O4 utilized as the supercapacitor electrodes. PMID:28336875

  1. Magnetic properties of HoMn2O5

    NASA Astrophysics Data System (ADS)

    Radulov, I.; Lovchinov, V.; Dimitrov, D.; Apostolov, A.; Nizhankovskii, V.; Daszkiewicz, M.

    2007-04-01

    We have investigated the detailed field and temperature dependence of the dielectric constant, dielectric losses, electric polarization, magnetization and magnetostriction (MS) in orthorhombic HoMn2O5 single crystals. HoMn2O5 displays incommensurate antiferromagnetic ordering below 39 K, becoming commensurate on further cooling. The commensurate-incommensurate transition takes place at low temperatures. The inherent magnetic frustration in this material is lifted by a small lattice distortion, primarily involving shifts of the Mn3+ cations and giving rise to a canted antiferroelectric phase. Colossal magnetostriction (CMS) effect was observed and a novel phase transition diagram was build.

  2. Biologically produced volatile compounds: N2O emissions from soils

    NASA Technical Reports Server (NTRS)

    Banin, A.

    1985-01-01

    Tropospheric nitrous concentration has increased by 0.2 0.4% per year over the period 1975 to 1982, amounting to net addition to the atmosphere of 2.8 - 5.6 Tg N2O-N per year. This perturbation, if continued into the future, will affect stratospheric chemical cycles, and the thermal balance of the Earth. In turn it will have direct and indirect global effects on the biosphere. Though the budget and cycles of N2O on Earth are not yet fully resolved, accumulating information and recent modelling efforts permit a more complete evaluation and better definition of gaps in our knowledge.

  3. Isotopic measurements of N2O in a hypersaline pond

    NASA Astrophysics Data System (ADS)

    Peters, B. D.; Casciotti, K.; Samarkin, V.; Joye, S. B.; Madigan, M.; Schutte, C.

    2012-12-01

    Production of nitrous oxide (N2O) in aquatic environments has often been attributed to biological processes. However, reports of abiotic mechanisms of N2O production have suggested that such processes may be substantial in Antarctic Dry Valley soils. It has been proposed that the reduction of nitrate (NO3-) and nitrite (NO2-) coupled to Fe (II) oxidation can produce N2O with a characteristic site preference (SP), where SP is defined as the difference in nitrogen isotope ratio between the center and outside nitrogen atoms in the linear N2O molecule. The current study uses isotopic measurements of N2O, NO2-, and NO3- to examine N2O production mechanisms in Don Juan Pond (DJP), a hypersaline pond in the McMurdo Dry Valleys, Antarctica. [NO3-] and [NO2-] in DJP brine were quite high, ranging from 6,238 to 7,719μM and 23 to 36μM, respectively. N2O samples from pond water (brine) yielded δ15Nbulk of -38±1‰, δ18O of +60±2‰, and SP of +1±7‰. Gas collected from soil had similar N2O isotope ratios, with δ15Nbulk of -45±4‰, δ18O of +56±3‰, and SP of +6±1‰. These field measurements were interpreted using a two end member mixing model, in which the measured N2O was assumed to be a mixture between atmospheric N2O and N2O from a local source. Using the three isotope systems (δ15Nbulk, δ18O, and SP), a series of four equations were constructed with five unknowns: δ15Nbulk, δ18O, and SP of the source, and the fractional contributions of the local source and atmospheric N2O. Solving the equations required an assumption about one of the five unknowns. To do this, we used data from laboratory experiments carried out with sterile brine and DJP soil in order to provide an estimate of the N2O isotope signature of the abiotic source. DJP brine and soil measurements gave similar model results, and thus only results using DJP soil measurements are reported here. Assuming δ18O of the unknown local source is near +82‰(from abiotic laboratory experiments), then

  4. Terahertz absorption spectrum of D 2O vapor

    NASA Astrophysics Data System (ADS)

    Yu, B. L.; Yang, Y.; Zeng, F.; Xin, X.; Alfano, R. R.

    2006-02-01

    The absorption spectrum of D2O vapor from 0.2 to 2.0 THz (6.7-67 cm-1) which is associated with rotational modes was measured at one atmosphere using terahertz time-domain spectroscopy (THz-TDS). The linewidth and collisional dephasing times were measured for 26 pure rotational transitions in the ground vibrational state (0 0 0). The temperature dependence of the linewidth (Δν) behaves as Δν ∼ T-3/4 and the linewidth decrease with increasing temperature is attributed to the 1/r6 force of interaction between colliding D2O molecules.

  5. Re-quantifying China's N2O emissions from croplands

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Shang, Z.

    2015-12-01

    Reactive nitrogen (Nr) entering agricultural soils from fertilizer applications worldwide results into a 43%~63% of global anthropogenic N2O emissions (EDGAR, 2014; Saikawa et al., 2014; Tian et al., 2014). This contribution is likely to increase in countries with intensive agricultural systems such as China (Zhou et al., 2014). yet the patterns, trends, and the associated causes of Chinese emissions remains subject to large uncertainty; inventories of China's total agricultural soils N2O emissions at present varied by ~150% (Zhou et al., 2015). The primary sources of this uncertainty are conflicting estimates of emission factors, nitrogen inputs, and the associated environmental conditions, yet none of previous estimates are based upon large-scale measurements and high-resolution activity data. Here, we re-quantify China's N2O emissions from croplands from 1990 to 2012, including direct and indirect pathways, using updated and harmonized N input data, high-resolution environmental factors data, and a comprehensive dataset of global N2O observation networks. The spatially-variable emission factor, and leaching and runoff rates are derived by empirical upscaling of ground-based observations, but validated by ecosystem models and atmospheric inversions of N2O concentration data. N inputs, such as synthetic fertilizer, manure, crop residues, human excretion applied to croplands, are compiled at county-scale, and atmospheric N depositions are simulated by using LMDZ-OR-INCA atmospheric transport chemistry model that has been calibrated by Asian observation networks. We also develop the high-resolution datasets including landuse dynamics (1-km), SOC changes (0.1-deg), climates (0.1-deg), and irrigation rates (city-scale). Three main tasks have been performed in this study: i) the magnitude and spatiotemporal patterns of N2O emissions over China croplands from 1990 to 2012; ii) the attributions of anthropogenic causes of the spatial variations, interannual variability

  6. Magnetic Phase Transition in V2O3 Nanocrystals

    SciTech Connect

    Billinge, S.; Blagojevic, V.A.; Carlo, J.P.; Brus, L.E.; Steigerwald, M.L.; Uemura, Y.J.; Billinge, S.J.L.; Zhou, W.; Stephens, P.W.; Aczel, A.A.; Luke, G.M.

    2010-09-30

    V{sub 2}O{sub 3} nanocrystals can be synthesized through hydrothermal reduction in VO(OH){sub 2} using hydrazine as a reducing agent. Addition of different ligands to the reaction produces nanoparticles, nanorods, and nanoplatelets of different sizes. Small nanoparticles synthesized in this manner show suppression of the magnetic phase transition to lower temperatures. Using muon spin relaxation spectroscopy and synchrotron x-ray diffraction, we have determined that the volume fraction of the high-temperature phase, characterized by a rhombohedral structure and paramagnetism, gradually declines with decreasing temperature, in contrast to the sharp transition observed in bulk V{sub 2}O{sub 3}.

  7. Magnetic Phase Transition in V2O3 Nanocrystals

    SciTech Connect

    V Blagojevic; J Carlo; L Brus; M Steigerwald; Y Uemura; S Billinge; W Zhou; P Stephens; A Aczel; G Luke

    2011-12-31

    V{sub 2}O{sub 3} nanocrystals can be synthesized through hydrothermal reduction in VO(OH){sub 2} using hydrazine as a reducing agent. Addition of different ligands to the reaction produces nanoparticles, nanorods, and nanoplatelets of different sizes. Small nanoparticles synthesized in this manner show suppression of the magnetic phase transition to lower temperatures. Using muon spin relaxation spectroscopy and synchrotron x-ray diffraction, we have determined that the volume fraction of the high-temperature phase, characterized by a rhombohedral structure and paramagnetism, gradually declines with decreasing temperature, in contrast to the sharp transition observed in bulk V{sub 2}O{sub 3}.

  8. Vibrationally resolved shape resonant photoionization of N2O

    NASA Astrophysics Data System (ADS)

    Kelly, L. A.; Duffy, L. M.; Space, B.; Poliakoff, E. D.; Roy, P.

    1989-02-01

    A vibrationally resolved dispersed fluorescence study of 7sigma exp -1 shape resonant photoionization in N2O is presented. It is shown that the lower energy shape resonance results in non-Franck-Condon vibrational branching ratios over a wide range. It is found that the cross section curves for alternative vibrational modes behave differently and that the resonance behavior is influenced more by symmetric stretch than by the asymmetric stretching vibration. Spectroscopic data on the ionic potential surfaces and ratios of Franck-Condon factors for N2O(+) (A to X) transitions are obtained.

  9. H2O2_COD_EPA; MEC_acclimation

    EPA Pesticide Factsheets

    H2O2_COD_EPA: Measurements of hydrogen peroxide and COD concentrations for water samples from the MEC reactors.MEC_acclimation: raw data for current and voltage of the anode in the MEC reactor.This dataset is associated with the following publication:Sim, J., J. An, E. Elbeshbishy, R. Hodon, and H. Lee. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells. Bioresource Technology. Elsevier Online, New York, NY, USA, 195: 31-36, (2015).

  10. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2.

    PubMed Central

    Rao, M V; Paliyath, G; Ormrod, D P; Murr, D P; Watkins, C B

    1997-01-01

    We investigated how salicylic acid (SA) enhances H2O2 and the relative significance of SA-enhanced H2O2 in Arabidopsis thaliana. SA treatments enhanced H2O2 production, lipid peroxidation, and oxidative damage to proteins, and resulted in the formation of chlorophyll and carotene isomers. SA-enhanced H2O2 levels were related to increased activities of Cu,Zn-superoxide dismutase and were independent of changes in catalase and ascorbate peroxidase activities. Prolonging SA treatments inactivated catalase and ascorbate peroxidase and resulted in phytotoxic symptoms, suggesting that inactivation of H2O2-degrading enzymes serves as an indicator of hypersensitive cell death. Treatment of leaves with H2O2 alone failed to invoke SA-mediated events. Although leaves treated with H2O2 accumulated in vivo H2O2 by 2-fold compared with leaves treated with SA, the damage to membranes and proteins was significantly less, indicating that SA can cause greater damage than H2O2. However, pretreatment of leaves with dimethylthiourea, a trap for H2O2, reduced SA-induced lipid peroxidation, indicating that SA requires H2O2 to initiate oxidative damage. The relative significance of the interaction among SA, H2O2, and H2O2-metabolizing enzymes with oxidative damage and cell death is discussed. PMID:9306697

  11. Generating Breathable Air Through Dissociation of N2O

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Frankie, Brian

    2006-01-01

    A nitrous oxide-based oxygen-supply system (NOBOSS) is an apparatus in which a breathable mixture comprising 2/3 volume parts of N2 and 1/3 volume part of O2 is generated through dissociation of N2O. The NOBOSS concept can be adapted to a variety of applications in which there are requirements for relatively compact, lightweight systems to supply breathable air. These could include air-supply systems for firefighters, divers, astronauts, and workers who must be protected against biological and chemical hazards. A NOBOSS stands in contrast to compressed-gas and cryogenic air-supply systems. Compressed-gas systems necessarily include massive tanks that can hold only relatively small amounts of gases. Alternatively, gases can be stored compactly in greater quantities and at low pressures when they are liquefied, but then cryogenic equipment is needed to maintain them in liquid form. Overcoming the disadvantages of both compressed-gas and cryogenic systems, the NOBOSS exploits the fact that N2O can be stored in liquid form at room temperature and moderate pressure. The mass of N2O that can be stored in a tank of a given mass is about 20 times the mass of compressed air that can be stored in a tank of equal mass. In a NOBOSS, N2O is exothermically dissociated to N2 and O2 in a main catalytic reactor. In order to ensure the dissociation of N2O to the maximum possible extent, the temperature of the reactor must be kept above 400 C. At the same time, to minimize concentrations of nitrogen oxides (which are toxic), it is necessary to keep the reactor temperature at or below 540 C. To keep the temperature within the required range throughout the reactor and, in particular, to prevent the formation of hot spots that would be generated by local concentrations of the exothermic dissociation reaction, the N2O is introduced into the reactor through an injector tube that features carefully spaced holes to distribute the input flow of N2O widely throughout the reactor. A NOBOSS

  12. THE HIGH TEMPERATURE CHEMICAL REACTIVITY OF LI2O

    SciTech Connect

    Kessinger, G.; Missimer, D.

    2009-11-13

    The ultimate purpose of this study was to investigate the use of a Li-Ca mixture for direct reduction of actinide oxides to actinide metals at temperatures below 1500 C. For such a process to be successful, the products of the reduction reaction, actinide metals, Li{sub 2}O, and CaO, must all be liquid at the reaction temperature so the resulting actinide metal can coalesce and be recovered as a monolith. Since the established melting temperature of Li{sub 2}O is in the range 1427-1700 C and the melting temperature of CaO is 2654 C, the Li{sub 2}O-CaO (lithium oxidecalcium oxide) pseudo-binary system was investigated in an attempt to identify the presence of low-melting eutectic compositions. The results of our investigation indicate that there is no evidence of ternary Li-Ca-O phases or solutions melting below 1200 C. In the 1200-1500 C range utilizing MgO crucibles, there is some evidence for the formation of a ternary phase; however, it was not possible to determine the phase composition. The results of experiments performed with ZrO{sub 2} crucibles in the same temperature range did not show the formation of the possible ternary phase seen in the earlier experiment involving MgO crucibles, so it was not possible to confirm the possibility that a ternary Li-Ca-O or Li-Mg-O phase was formed. It appears that the Li{sub 2}O-CaO materials reacted, to some extent, with all of the container materials, alumina (Al{sub 2}O{sub 3}), magnesia (MgO), zirconia (ZrO{sub 2}), and 95% Pt-5% Au; however, to clarify the situation additional experiments are required. In addition to the primary purpose of this study, the results of this investigation led to the conclusions that: (1) The melting temperature of Li{sub 2}O may be as low as 1250 C, which is considerably lower than the previously published values in the range 1427-1700 C; (2) Lithium oxide (Li{sub 2}O) vaporizes congruently; (3) Lithium carbonate and Li2O react with 95% Pt-5% Au, and also reacts with pure Pt; and (4

  13. Magnetic frustration in the spinel compounds GeNi2O4 and GeCo2O4

    NASA Astrophysics Data System (ADS)

    Diaz, Sébastien; de Brion, Sophie; Chouteau, Gérard; Strobel, Pierre; Canals, Benjamin; Carvajal, Juan Rodriguez; Rakoto, Harison; Broto, Jean Marc

    2005-05-01

    In the spinel compounds AB2O4, the B sites form a pyrochlore lattice. GeCo2O4 and GeNi2O4 have been investigated using high magnetic field magnetization as well as neutron diffraction measurements. Both compounds become antiferromagnetic at low temperature (around 23 and 12K, respectively) with the same propagation vector. The magnetization then presents two spin flop fields and one huge saturation field (above 50T). The Curie-Weiss temperature is positive for the Co spinel and negative for the Ni one. A model taking into account the first neighbor interaction J1 together with two different third neighbor interactions J2 and J3 is able to account for the common observed magnetic behavior. J1 is ferromagnetic while J2 and J3 are antiferromagnetic, in agreement with Goodenough-Kanamori-Anderson rules. These competing interactions are responsible for the frustration in these compounds.

  14. Global Flux Balance in the Terrestrial H2O Cycle: Reconsidering the Post-Arc Subducted H2O Flux

    NASA Astrophysics Data System (ADS)

    Parai, R.; Mukhopadhyay, S.

    2010-12-01

    Quantitative estimates of H2O fluxes between the mantle and the exosphere (i.e., the atmosphere, oceans and crust) are critical to our understanding of the chemistry and dynamics of the solid Earth: the abundance and distribution of water in the mantle has dramatic impacts upon mantle melting, degassing history, structure and style of convection. Water is outgassed from the mantle is association with volcanism at mid-ocean ridges, ocean islands and convergent margins. H2O is removed from the exosphere at subduction zones, and some fraction of the subducted flux may be recycled past the arc into the Earth’s deep interior. Estimates of the post-arc subducted H2O flux are primarily based on the stability of hydrous phases at subduction zone pressures and temperatures (e.g. Schmidt and Poli, 1998; Rüpke et al., 2004; Hacker, 2008). However, the post-arc H2O flux remains poorly quantified, in part due to large uncertainties in the water content of the subducting slab. Here we evaluate estimated post-arc subducted fluxes in the context of mantle-exosphere water cycling, using a Monte Carlo simulation of the global H2O cycle. Literature estimates of primary magmatic H2O abundances and magmatic production rates at different tectonic settings are used with estimates of the total subducted H2O flux to establish the parameter space under consideration. Random sampling of the allowed parameter space affords insight into which input and output fluxes satisfy basic constraints on global flux balance, such as a limit on sea-level change over time. The net flux of H2O between mantle and exosphere is determined by the total mantle output flux (via ridges and ocean islands, with a small contribution from mantle-derived arc output) and the input flux subducted beyond the arc. Arc and back-arc output is derived mainly from the slab, and therefore cancels out a fraction of the trench intake in an H2O subcycle. Limits on sea-level change since the end of the Archaean place

  15. Bethe-Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3

    NASA Astrophysics Data System (ADS)

    Varley, Joel B.; Schleife, André

    2015-02-01

    Transparent conducting oxides keep attracting strong scientific interest not only due to their promising potential for ‘transparent electronics’ applications but also due to their intriguing optical absorption characteristics. Materials such as In2O3 and Ga2O3 have complicated unit cells and, consequently, are interesting systems for studying the physics of excitons and anisotropy of optical absorption. Since currently no experimental data is available, for instance, for their dielectric functions across a large photon-energy range, we employ modern first-principles computational approaches based on many-body perturbation theory to provide theoretical-spectroscopy results. Using the Bethe-Salpeter framework, we compute dielectric functions and we compare to spectra computed without excitonic effects. We find that the electron-hole interaction strongly modifies the spectra and we discuss the anisotropy of optical absorption that we find for Ga2O3 in relation to existing theoretical and experimental data.

  16. Thermoluminescence investigations on xY2O3 (60-x)P2O5·40SiO2 vitroceramics.

    PubMed

    Biró, Barna; Pascu, Andrada; Timar-Gabor, Alida; Simon, Viorica

    2015-04-01

    Thermoluminescence properties of xY2O3·(60-x)P2O5·40SiO2 vitroceramic compounds doped with xY2O3 at various concentrations (0≤x≤30mol%) were studied. Compounds with reduced Y2O3 concentration showed unsatisfactory dosimetric properties, while the vitroceramics composed of 20Y2O3·40P2O5·40SiO2 and 30Y2O3·30P2O5·40SiO2 exhibited bright signals, linear dose response and minimum detectable doses of 16mGy and 4mGy, respectively. Moreover, 30mol% Y2O3 doped vitroceramic exhibited good repeatability, acceptable batch homogeneity and poor fading signal, features that are recommending this material for dosimetry purposes.

  17. Epitaxial growth and electric properties of γ-Al2O3(110) films on β-Ga2O3(010) substrates

    NASA Astrophysics Data System (ADS)

    Hattori, Mai; Oshima, Takayoshi; Wakabayashi, Ryo; Yoshimatsu, Kohei; Sasaki, Kohei; Masui, Takekazu; Kuramata, Akito; Yamakoshi, Shigenobu; Horiba, Koji; Kumigashira, Hiroshi; Ohtomo, Akira

    2016-12-01

    Epitaxial growth and electrical properties of γ-Al2O3 films on β-Ga2O3(010) substrates were investigated regarding the prospect of a gate oxide in a β-Ga2O3-based MOSFET. The γ-Al2O3 films grew along the [110] direction and inherited the oxygen sublattice from β-Ga2O3 resulting in the unique in-plane epitaxial relationship of γ-Al2O3 [\\bar{1}10] ∥ β-Ga2O3[001]. We found that the γ-Al2O3 layer had a band gap of 7.0 eV and a type-I band alignment with β-Ga2O3 with conduction- and valence-band offsets of 1.9 and 0.5 eV, respectively. A relatively high trap density (≅ 2 × 1012 cm-2 eV-1) was found from the voltage shift of photoassisted capacitance-voltage curves measured for a Au/γ-Al2O3/β-Ga2O3 MOS capacitor. These results indicate good structural and electric properties and some limitations hindering the better understanding of the role of the gate dielectrics (a γ-Al2O3 interface layer naturally crystallized from amorphous Al2O3) in the β-Ga2O3 MOSFET.

  18. New Optical Constants for Amorphous and Crystalline H2O-ice and H2O-mixtures.

    NASA Technical Reports Server (NTRS)

    Mastrapa, Rachel; Bernstein, Max; Sandford, Scott

    2006-01-01

    We will present the products of new laboratory measurements of ices relevant to Trans-Neptunian Objects. We have calculated the real and imaginary indices of refraction for amorphous and crystalline H2O-ice and also H2O-rich ices containing other molecular species. We create ice samples by condensing gases onto a cold substrate. We measure the thickness of the sample by reflecting a He-Ne laser off of the sample and counting interference fringes as it grows. We then collect transmission spectra of the samples in the wavelength range from 0.7-22 micrometers. Using the thickness and the transmission spectra of the ice we calculate the imaginary part of the index of refraction. We then use a Kramers-Kronig calculation to calculate the real part of the index of refraction (Berland et al. 1994; Hudgins et al. 1993). These optical constants can then be used to create model spectra for comparison to spectra from Solar System objects, including TNOs. We will summarize the difference between the amorphous and crystalline H2O-ice spectra. These changes include weakening of features and shifting of features to shorter wavelength. One important result is that the 2 pm feature is stronger in amorphous H2O ice than it is in crystalline H2O-ice. We will also discuss the changes seen when H2O is mixed with other components, including CO2, CH4, HCN, and NH3 (Bernstein et al. 2005; Bernstein et al. 2006).

  19. Spinel to CaFe2O4 transformation: mechanism and properties of beta-CdCr2O4.

    PubMed

    Arévalo-López, Angel M; Dos santos-García, Antonio J; Castillo-Martínez, Elizabeth; Durán, Alejandro; Alario-Franco, Miguel A

    2010-03-15

    The CdCr(2)O(4) spinel transforms to a 10.6% denser new polymorph of the CaFe(2)O(4)-type structure at 10 GPa and 1100 degrees C. This new polymorph has a honeycomb-like structure because of double rutile-type chains formed by [Cr-O(6)] edge-shared octehedra. This crystal structure is prone to be magnetically frustrated and presents low-dimensional antiferromagnetism at 25 K < T < 150 K, accompanied by more complex interactions as the temperature decreases. These transitions are evidenced by magnetic susceptibility and heat capacity measurements. We also discuss a possible structural mechanism for the transformation.

  20. A laser flash photolysis kinetics study of the reaction OH + H2O2 yields HO2 + H2O

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Semmes, D. H.; Ravishankara, A. R.

    1981-01-01

    Absolute rate constants for the reaction are reported as a function of temperature over the range 273-410 K. OH radicals are produced by 266 nm laser photolysis of H2O2 and detected by resonance fluorescence. H2O2 concentrations are determined in situ in the slow flow system by UV photometry. The results confirm the findings of two recent discharge flow-resonance fluorescence studies that the title reaction is considerably faster, particularly at temperatures below 300 K, than all earlier studies had indicated. A table giving kinetic data from the reaction is included.

  1. High performance N2O4/amine elements blowapart

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Hypergolic earth-storable N2O4/Amine propellants are used for a wide range of liquid propulsion system applications. These propellants are highly reactive and can experience reactive stream separation (RSS, i.e., blowapart) which can inhibit intraelement mixing, hence reducing the overall spray mixture ratio and mass distribution, which can result in altered combustion efficiency, gas-side heat transfer coefficient, and stability. An experimental and analytical program was conducted to develop an understanding of the mechanisms controlling RSS. The program and product was development of design criteria for coping with RSS to allow the design of high performing, stable injectors. RSS mechanisms were identified using high speed color photography to observe reactive stream mixing of single element injectors tested with N2O4/MMH, N2O4/A-50, and N2O4/N2H4 propellants. The parametric characterization included modeling of the Space Shuttle Orbital Maneuvering System and Reaction Control System engine injectors.

  2. Recent progress in Ga2O3 power devices

    NASA Astrophysics Data System (ADS)

    Higashiwaki, Masataka; Sasaki, Kohei; Murakami, Hisashi; Kumagai, Yoshinao; Koukitu, Akinori; Kuramata, Akito; Masui, Takekazu; Yamakoshi, Shigenobu

    2016-03-01

    This is a review article on the current status and future prospects of the research and development on gallium oxide (Ga2O3) power devices. Ga2O3 possesses excellent material properties, in particular for power device applications. It is also attractive from an industrial viewpoint since large-size, high-quality wafers can be manufactured from a single-crystal bulk synthesized by melt-growth methods. These two features have drawn much attention to Ga2O3 as a new wide bandgap semiconductor following SiC and GaN. In this review, we describe the recent progress in the research and development on fundamental technologies of Ga2O3 devices, covering single-crystal bulk and wafer production, homoepitaxial thin film growth by molecular beam epitaxy and halide vapor phase epitaxy, as well as device processing and characterization of metal-semiconductor field-effect transistors, metal-oxide-semiconductor field-effect transistors and Schottky barrier diodes.

  3. H 2O + ions in comets: models and observations

    NASA Astrophysics Data System (ADS)

    Wegmann, R.; Jockers, K.; Bonev, T.

    1999-06-01

    An improved magnetohydrodynamic (MHD) model with chemistry is presented. The analysis of the source and sink terms for H 2O + shows that for small comets up to 11% of water molecules are finally ionized. For large comets (such as Halley) this fraction decreases to less than 3%. From the MHD scaling laws a similarity law for the individual ion densities is deduced which takes into account that the mother molecules are depleted by dissociation. This is applied to H 2O + ions. Radial density profiles from model calculations, observations by Giotto near comet Halley, and ground based observations of three comets confirm this scaling law for H 2O + ions. From the similarity law for the density a scaling law for the column density is derived which is more convenient to apply for ground based observations. From these scaling laws methods are derived which allow the determination of the water production rate from the ground based images of the H 2O + ions. Finally, the two dimensional images of model column densities are compared with observations.

  4. Preformance Analysis of NH3-H2O Absorption Cycle

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atsushi; Ozaki, Eiichi

    Different from H2O-LiBr absorption cycle, it is necessary to have rectifier between generator and condenser in NH3-H2O absorption cycle, because there mixes some steam in refrigerant vapor in the process of regenerating refrigerant from the ammonia strong aqueous solution. And in some case ex. partial load or heating, the efficiency of rectifier might decrease, if the flow rate of refrigerant vapor and ammonia aqueous solution decrease. As a result, steam flow into condenser with ammonia refrigerant vapor, which reduces cycle COPs of cooling and heating. Accordingly in order to evaluate the effect of ammonia concentration in refrigerant for the performance of NH3-H2O absorption heat pump, the simple design approach of modeling condenser and evaporator is introduced in this paper. In the model, the calculation of heat rate in condenser and evaporator was simplified considering the characteristic of NH3-H2O liquid-vapor equilibrium. Then the simulation for cycle perforance based on GAX absorption cycle was made using the efficiency of rectifier that established the ammonia concentration in refrigerant and it was derived that 3 [%] decrease of ammonia concentration in refrigerant induced 15 [%] decrcase of cooling COP and 7 [%] decrease of heating COP and that there existed the most suitable circulation ratio for each ammonia concentration in refrigerant.

  5. Magnetic properties of ZnFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Guskos, Niko; Glenis, Spiros; Typek, Janusz; Zolnierkiewicz, Grzegorz; Berczynski, Pawel; Wardal, Kamil; Guskos, Aleksander; Sibera, Daniel; Moszyński, Dariusz; Lojkowski, Witold; Narkiewicz, Urszula

    2012-04-01

    Fine particles of ZnFe2O4 were synthesized by a wet chemical method in the (80 wt.% Fe2O3 + 20 wt.% ZnO) system. The morphological and structural properties of the mixed system were investigated by scanning electron microscopy, X-ray diffraction, inductively coupled plasma atomic emission, and X-ray photoelectron spectroscopy. The major phase was determined to be the ZnFe2O4 spinel with particle size of 11 nm. The magnetic properties of the material were investigated by ferromagnetic resonance (FMR) in the temperature range from liquid helium to room temperature. A very intense, asymmetric FMR signal from ZnFe2O4 nanoparticles was recorded, which has been analyzed in terms of two Callen-lineshape lines. Temperature dependence of the FMR parameters was obtained from fitting the experimental lines with two component lines. Analysis of the FMR spectra in terms of two separate components indicates the presence of strongly anisotropic magnetic interactions.

  6. Neutron Studies of Tb2Mo2O7

    SciTech Connect

    Gardner, Jason; Ehlers, Georg; Diallo, Souleymane Omar

    2012-01-01

    We have used the new high energy resolution spectrometer (BaSiS), at the Spallation Neutron Source in Oak Ridge, to conclusively prove the existence of a low energy mode at 0.34(1) meV in the spin glass Tb{sub 2}Mo{sub 2}O{sub 7}. This mode is reminiscent of the excitation observed in the ordered phases of both Tb{sub 2}Ti{sub 2}O{sub 7} and Tb{sub 2}Sn{sub 2}O{sub 7}. The dynamical nature of the transition seen in the magnetization at {approx} 25 K suggests that this frustrated magnet shows a dynamic crossover between a high-temperature phase of poorly correlated, quickly relaxing spins to a low-temperature regime with much slower, short ranged spin correlations extending no further than to the next nearest neighbor. Existing theories explain the spin glass transition in terms of a phase transition and order parameters, and assume the existence of a distinct spin glass phase. There is no evidence for such a phase in Tb{sub 2}Mo{sub 2}O{sub 7}.

  7. Multidimentional Normal Mode Calculations for the OH Vibrational Spectra of (H_2O)_3^+, (H_2O)_3^+Ar, H^+(H_2O)_3, and H^+(H_2O)_3Ar

    NASA Astrophysics Data System (ADS)

    Li, Ying-Cheng; Chuang, Hsiao-Han; Tan, Jake Acedera; Takahashi, Kaito; Kuo, Jer-Lai

    2014-06-01

    Recent experimental observations of (H_2O)_3^+, (H_2O)_3^+Ar, H^+(H_2O)_3, and H^+(H_2O)_3Ar clusters in the region 1400-3800 wn show that the OH stretching vibration has distinct characteristics. Multidimensional normal mode calculations were carried out for OH stretching vibrations in the 1200-4000 wn photon energy range. The potential energy and dipole surfaces were evaluated by using first-principles methods. By comparing the calculated frequencies and intensities of OH stretching vibration with experimental spectra, we found that the assignment of OH strecthing of H_3O^+ moiety and free OH strectching vibration have resonable agreement with experimental data. Jeffrey M. Headrick, Eric G. Diken, Richard S. Walters, Nathan I. Hammer, Richard A. Christie, Jun Cui, Evgeniy M. Myshakin, Michael A. Duncan, Mark A. Johnson, Kenneth D. Jordan, Science, 2005, 17, 1765. Kenta Mizuse, Jer-Lai Kuo and Asuka Fujii, Chem. Sci., 2011, 2, 868 Kenta Mizuse and Asuka Fujii, J. Phys. Chem. A, 2013, 117, 929.

  8. Dissociative attachment of electrons to N2O

    NASA Technical Reports Server (NTRS)

    Krishnakumar, E.; Srivastava, S. K.

    1990-01-01

    Cross sections for the production of O(-) from N2O by the process of dissociative electron attachment have been measured for electron-impact energies ranging from 0 to 50 eV. Three new O(-) peaks are observed. The present data above 5-eV electron-impact energy differ considerably from the previous measurements.

  9. ZnFe2O4 antiferromagnetic structure redetermination

    NASA Astrophysics Data System (ADS)

    Kremenović, Aleksandar; Antić, Bratislav; Vulić, Predrag; Blanuša, Jovan; Tomic, Aleksandra

    2017-03-01

    Magnetic structure of ZnFe2O4 normal spinel is re-examined. Antiferromagnetic structure non-collinear model is established within Ca2 space group having four different crystallographic/magnetic sites for 32 Fe3+ spins within magnetic unit cell.

  10. The H2O Content of Granite Embryos

    NASA Astrophysics Data System (ADS)

    Bartoli, O.; Cesare, B.; Remusat, L.; Acosta-Vigil, A.; Poli, S.

    2014-12-01

    Quantification of H2O contents of natural granites has been an on-going challenge owing to the extremely fugitive character of H2O during cooling and ascent of melts and magmas. Here we approach this problem by studying granites in their source region (i.e. the partially melted continental crust) and we present the first NanoSIMS analyses of anatectic melt inclusions (MI) hosted in peritectic phases of migmatites and granulites. These MI which totally crystallized upon slow cooling represent the embryos of the upper-crustal granites. The approach based on the combination of MI and NanoSIMS has been here tested on amphibolite-facies migmatites at Ronda (S Spain) that underwent fluid-present to fluid-absent melting at ~700 °C and ~5 kbar. Small (≤ 5 µm) crystallized MI trapped in garnet have been remelted using a piston-cylinder apparatus and they show leucogranitic compositions. We measure high and variable H2O contents (mean of 6.5±1.4 wt%) in these low-temperature, low-pressure granitic melts. We demonstrate that, when the entire population from the same host is considered, MI reveal the H2O content of melt in the specific volume of rock where the host garnet grew. Mean H2O values for the MI in different host crystals range from 5.4 to 9.1 wt%. This range is in rather good agreement with experimental models for granitic melts at the inferred P-T conditions. Our study documents for the first time the occurrence of H2O heterogeneities in natural granitic melts at the source region. These heterogeneities are interpreted to reflect the birth of granitic melts under conditions of "mosaic" equilibrium, where the distinct fractions of melt experience different buffering assemblages at the micro-scale, with concomitant differences in melt H2O content. These results confirm the need for small-scale geochemical studies on natural samples to improve our quantitative understanding of crustal melting and granite formation. The same approach adopted here can be applied to

  11. The H2O content of granite embryos

    NASA Astrophysics Data System (ADS)

    Bartoli, Omar; Cesare, Bernardo; Remusat, Laurent; Acosta-Vigil, Antonio; Poli, Stefano

    2015-04-01

    Quantification of H2O contents of natural granites has been an on-going challenge owing to the extremely fugitive character of H2O during cooling and ascent of melts and magmas. Here we approach this problem by studying granites in their source region (i.e. the partially melted continental crust) and we present the first NanoSIMS analyses of anatectic melt inclusions (MI) hosted in peritectic phases of migmatites and granulites. These MI which totally crystallized upon slow cooling represent the embryos of the upper-crustal granites [1, 2, 3]. The approach based on the combination of MI and NanoSIMS has been here tested on amphibolite-facies migmatites at Ronda (S Spain) that underwent fluid-present to fluid-absent melting at ~700 °C and ~5 kbar. Small (≤ 5 µm) crystallized MI trapped in garnet have been remelted using a piston-cylinder apparatus and they show leucogranitic compositions. We measure high and variable H2O contents (mean of 6.5±1.4 wt%) in these low-temperature, low-pressure granitic melts. We demonstrate that, when the entire population from the same host is considered, MI reveal the H2O content of melt in the specific volume of rock where the host garnet grew. Mean H2O values for the MI in different host crystals range from 5.4 to 9.1 wt%. This range is in rather good agreement with experimental models for granitic melts at the inferred P-T conditions. Our study documents for the first time the occurrence of H2O heterogeneities in natural granitic melts at the source region [3]. These heterogeneities are interpreted to reflect the birth of granitic melts under conditions of "mosaic" equilibrium, where the distinct fractions of melt experience different buffering assemblages at the micro-scale, with concomitant differences in melt H2O content. These results confirm the need for small-scale geochemical studies on natural samples to improve our quantitative understanding of crustal melting and granite formation. The same approach adopted here can

  12. Magnetic characterization of iron oxides formed after thermal treatment of nontronite and the formation of three polymorphs of Fe2O3: α-Fe2O3, γ-Fe2O3, ɛ-Fe2O3

    NASA Astrophysics Data System (ADS)

    Berquo, T. S.; Moskowitz, B. M.

    2011-12-01

    Nontronite is an Fe-rich smectite clay that occurs widely in terrestrial soils, sediments and weathering formations and may also be present in the Martian regolith. The thermal decomposition of nontronite is known to form various magnetic iron oxides but their compositions, magnetic properties, and formation pathways remain poorly understood. The magnetic alteration products of nontronite have been proposed as a source for the magnetic phases in the surface layers and dust on Mars as well as in some archeological fired-bricks and ceramic pottery. One alteration product of nontronite is ɛ-Fe2O3 which is ferrimagnetic with a Curie temperature of ~ 500 K and extremely large coercivity (HC ~ 1-2 T) at 300 K. In this work nontronite samples from eight source localities were heated to 1000°C in air for one hour. The magnetic properties of the alteration products were investigated with low-temperature (LT) magnetization and AC susceptibility curves, hysteresis loops, Mossbauer spectroscopy, and X-ray diffraction. The thermal treatment was effective in converting the nontronite to a combination of different polymorphs of ferric oxide depending on source locality and included: hematite (α-Fe2O3), ɛ-Fe2O3, and a cubic spinel phase that suggest the presence of maghemite (γ-Fe2O3). Mossbauer spectra at 300 K identified hematite and ɛ-Fe2O3 as the main phases in 7 samples with amounts ranging from 26-100% for hematite 0-69% for ɛ-Fe2O3. One sample showed a paramagnetic Fe3+ doublet and a broad sextet characteristic of magnetic relaxation effects. Upon cooling to 4.2 K, the Mossbauer spectrum was consistent with maghemite. In all samples except one, the magnetic hyperfine fields for the hematite phase are slightly reduced as compared with its stoichiometric form indicating some iron substitution with ions such as Al. This is consistent with the observation that all but one sample lacked the characteristic Morin transition for pure hematite on LT-remanence warming curves

  13. Comparative Study of Al2O3 Optical Crystalline Thin Films Grown by Vapor Combinations of Al(CH3)3/N2O and Al(CH3)3/H2O2

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroshi; Toyoda, Koichi; Matsumoto, Masahiko; Obara, Minoru

    1993-12-01

    We compared the use of nitrous oxide (N2O) and hydrogen peroxide (H2O2) as the oxidant in digital chemical vapor deposition to obtain high-quality optical crystalline thin films of Al2O3. Optical constants and thicknesses of these films were investigated in terms of growth temperature, by using variable-angle spectroscopic ellipsometry.

  14. Phase evolution of Na2O-Al2O3-SiO2-H2O gels in synthetic aluminosilicate binders.

    PubMed

    Walkley, Brant; San Nicolas, Rackel; Sani, Marc-Antoine; Gehman, John D; van Deventer, Jannie S J; Provis, John L

    2016-04-07

    This study demonstrates the production of stoichiometrically controlled alkali-aluminosilicate gels ('geopolymers') via alkali-activation of high-purity synthetic amorphous aluminosilicate powders. This method provides for the first time a process by which the chemistry of aluminosilicate-based cementitious materials may be accurately simulated by pure synthetic systems, allowing elucidation of physicochemical phenomena controlling alkali-aluminosilicate gel formation which has until now been impeded by the inability to isolate and control key variables. Phase evolution and nanostructural development of these materials are examined using advanced characterisation techniques, including solid state MAS NMR spectroscopy probing (29)Si, (27)Al and (23)Na nuclei. Gel stoichiometry and the reaction kinetics which control phase evolution are shown to be strongly dependent on the chemical composition of the reaction mix, while the main reaction product is a Na2O-Al2O3-SiO2-H2O type gel comprised of aluminium and silicon tetrahedra linked via oxygen bridges, with sodium taking on a charge balancing function. The alkali-aluminosilicate gels produced in this study constitute a chemically simplified model system which provides a novel research tool for the study of phase evolution and microstructural development in these systems. Novel insight of physicochemical phenomena governing geopolymer gel formation suggests that intricate control over time-dependent geopolymer physical properties can be attained through a careful precursor mix design. Chemical composition of the main N-A-S-H type gel reaction product as well as the reaction kinetics governing its formation are closely related to the Si/Al ratio of the precursor, with increased Al content leading to an increased rate of reaction and a decreased Si/Al ratio in the N-A-S-H type gel. This has significant implications for geopolymer mix design for industrial applications.

  15. Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem.

    PubMed

    Van den Heuvel, R N; Bakker, S E; Jetten, M S M; Hefting, M M

    2011-05-01

    Quantification of harmful nitrous oxide (N(2)O) emissions from soils is essential for mitigation measures. An important N(2)O producing and reducing process in soils is denitrification, which shows deceased rates at low pH. No clear relationship between N(2)O emissions and soil pH has yet been established because also the relative contribution of N(2)O as the denitrification end product decreases with pH. Our aim was to show the net effect of soil pH on N(2)O production and emission. Therefore, experiments were designed to investigate the effects of pH on NO(3)(-) reduction, N(2)O production and reduction and N(2) production in incubations with pH values set between 4 and 7. Furthermore, field measurements of soil pH and N(2)O emissions were carried out. In incubations, NO(3)(-) reduction and N(2) production rates increased with pH and net N(2)O production rate was highest at pH 5. N(2)O reduction to N(2) was halted until NO(3)(-) was depleted at low pH values, resulting in a built up of N(2)O. As a consequence, N(2)O:N(2) production ratio decreased exponentially with pH. N(2)O reduction appeared therefore more important than N(2)O production in explaining net N(2)O production rates. In the field, a negative exponential relationship for soil pH against N(2)O emissions was observed. Soil pH could therefore be used as a predictive tool for average N(2)O emissions in the studied ecosystem. The occurrence of low pH spots may explain N(2)O emission hotspot occurrence. Future studies should focus on the mechanism behind small scale soil pH variability and the effect of manipulating the pH of soils.

  16. Oxygen vacancies in shape controlled Cu2O/reduced graphene oxide/In2O3 hybrid for promoted photocatalytic water oxidation and degradation of environmental pollutants.

    PubMed

    Liu, Jie; Ke, Jun; Li, Degang; Sun, Hongqi; Liang, Ping; Duan, Xiaoguang; Tian, Wenjie; Tade, Moses O; Liu, Shaomin; Wang, Shaobin

    2017-03-16

    A novel shape controlled Cu2O/reduced graphene oxide/In2O3 (Cu2O/RGO/In2O3) hybrid with abundant oxygen vacancies was prepared by a facile, surfactant-free method. The hybrid photocatalyst exhibits an increased photocatalytic activity in water oxidation and degradation of environmental pollutants (methylene blue and Cr6+ solutions) compared with pure In2O3 and Cu2O materials. The presence of oxygen vacancies in Cu2O/RGO/In2O3 and the formation of heterojunction between In2O3 and Cu2O induce extra diffusive electronic states above the valence band (VB) edge and reduce the band gap of the hybrid consequently. Besides, the increased activity of Cu2O/RGO/In2O3 hybrid is also attributed to the alignment of band edge, a process that is assisted by different Fermi levels between In2O3 and Cu2O, as well as the charge transfer and distribution onto the graphene sheets, which causes the downshift of VB of In2O3 and the significant increase in its oxidation potential. Additionally, a built-in electric field is generated on the interface of n-type In2O3 and p-type Cu2O, suppressing the recombination of photo-induced electron-hole pairs and allowing the photo-generated electrons and holes to participate in the reduction and oxidation reactions for oxidizing water molecules and pollutants more efficiently.

  17. Optimization of H2O2 dosage in microwave-H2O2 process for sludge pretreatment with uniform design method.

    PubMed

    Xiao, Qingcong; Yan, Hong; Wei, Yuansong; Wang, Yawei; Zeng, Fangang; Zheng, Xiang

    2012-01-01

    A microwave-H2O2 process for sludge pretreatment exhibited high efficiencies of releasing organics, nitrogen, and phosphorus, but large quantities of H2O2 residues were detected. A uniform design method was thus employed in this study to further optimize H2O2 dosage by investigating effects of pH and H2O2 dosage on the amount of H2O2 residue and releases of organics, nitrogen, and phosphorus. A regression model was established with pH and H2O2 dosage as the independent variables, and H2O2 residue and releases of organics, nitrogen, and phosphorus as the dependent variables. In the optimized microwave-H2O2 process, the pH value of the sludge was firstly adjusted to 11.0, then the sludge was heated to 80 degrees C and H2O2 was dosed at a H2O2:mixed liquor suspended solids (MLSS) ratio of 0.2, and the sludge was finally heated to 100 degrees C by microwave irradiation. Compared to the microwave-H2O2 process without optimization, the H2O2 dosage and the utilization rate of H2O2 in the optimized microwave-H2O2 process were reduced by 80% and greatly improved by 3.87 times, respectively, when the H2O2:MLSS dosage ratio was decreased from 1.0 to 0.2, resulting in nearly the same release rate of soluble chemical oxygen demand in the microwave-H2O2 process without optimization at H2O2:MLSS ratio of 0.5.

  18. FT-IR, Raman and thermoluminescence investigation of P 2O 5-BaO-Li 2O glass system

    NASA Astrophysics Data System (ADS)

    Ivascu, C.; Timar Gabor, A.; Cozar, O.; Daraban, L.; Ardelean, I.

    2011-05-01

    The 0.5P 2O 5· xBaO·(0.5- x) Li 2O glass system (0 ⩽ x ⩽ 0.5 mol%) is investigated by FT-IR, Raman and thermoluminescence as a possible dosimetic material. FT-IR and Raman spectra show structural network modifications with the composition variations of the studied glasses. The predominant absorption band from IR spectra is attributed to the symmetric stretching vibrations of P = O double bonds. Raman spectra of the studied glasses contain also typical phosphate glasses bands. Thus the band at ˜700 cm -1 is assigned to symmetric stretching vibrations of P-O-P groups and that from ˜1158 cm -1 is attributed to symmetric stretching motions of the non-bridging oxygen (NBO) atoms bonded to phosphorous atoms (PO 2) in phosphate tetrahedron. Finally FT-IR and Raman spectroscopies revealed a local network structure mainly based on Q 2 and Q 3 tetrahedrons connected by P-O-P linkages. Luminescence investigations show that by adding modifier oxides to phosphate glass dose dependent TL signals result upon irradiation. Thus P 2O 5-BaO-Li 2O glass system is a possible candidate material for dosimetry in the high dose range (>10 Gy).

  19. Synthesis and characterization of magnetic diphase ZnFe2O4 /γ-Fe2O3 electrospun fibers

    PubMed Central

    Arias, M.; Pantojas, V.M.; Perales, O.; Otaño, W.

    2011-01-01

    Magnetic nanofibers of ZnFe2O4 / γ-Fe2O3 composite were synthesized by electrospinning from a sol-gel solution containing a molar ratio Fe/Zn of 3. The effects of the calcination temperature on the phase composition, particle size and magnetic properties have been investigated. Zinc ferrite fibers were obtained by calcinating the electrospun fibers in air from 300 °C to 800 °C and characterized by thermogravimetric analyses, Fourier transformed infrared spectroscopy, x-ray photoemission spectroscopy, x-ray diffraction, vibration sample magnetometry and magnetic force microscopy. The resulting fibers, with diameters ranging from 90 to 150 nm, were ferrimagnetic with high saturation magnetization as compared to bulk. Increasing the calcination temperature resulted in an increase in particle size and saturation magnetization. The observed increase in saturation magnetization was most likely due to the formation and growth of ZnFe2O4 /γ-Fe2O3 diphase crystals. The highest saturation magnetization (45 emu/g) was obtained for fibers calcined at 800 °C. PMID:21779141

  20. Synthesis and characterization of magnetic diphase ZnFe 2O 4/γ-Fe 2O 3 electrospun fibers

    NASA Astrophysics Data System (ADS)

    Arias, M.; Pantojas, V. M.; Perales, O.; Otaño, W.

    2011-08-01

    Magnetic nanofibers of ZnFe2O4/γ-Fe2O3 composite were synthesized by electrospinning from a sol-gel solution containing a molar ratio (Fe/Zn) of 3. The effects of the calcination temperature on phase composition, particle size and magnetic properties have been investigated. Zinc ferrite fibers were obtained by calcinating the electrospun fibers in air from 300 to 800 °C and characterized by thermogravimetric analyses, Fourier transformed infrared spectroscopy, X-ray photoemission spectroscopy, X-ray diffraction, vibration sample magnetometry and magnetic force microscopy. The resulting fibers, with diameters ranging from 90 to 150 nm, were ferrimagnetic with high saturation magnetization as compared to bulk. An increase in the calcination temperature resulted in an increase in particle size and saturation magnetization. The observed increase in saturation magnetization was most likely due to the formation and growth of ZnFe2O4/γ-Fe2O3 diphase crystals. The highest saturation magnetization (45 emu/g) was obtained for fibers calcined at 800 °C.

  1. White light generation from Dy3+-doped ZnO-B2O3-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Jayasimhadri, M.; Jang, Kiwan; Lee, Ho Sueb; Chen, Baojiu; Yi, Soung-Soo; Jeong, Jung-Hyun

    2009-07-01

    Dysprosium doped ZnO-B2O3-P2O5 (ZBP) glasses were prepared by a conventional melt quenching technique in order to study the luminescent properties and their utility for white light emitting diodes (LEDs). X-ray diffraction spectra revealed the amorphous nature of the glass sample. The present glasses were characterized by infrared and Raman spectra to evaluate the vibrational features of the samples. The emission and excitation spectra were reported for the ZBP glasses. Strong blue (484 nm) and yellow (574 nm) emission bands were observed upon various excitations. These two emissions correspond to the F49/2→H615/2 and F49/2→H613/2 transitions of Dy3+ ions, respectively. Combination of these blue and yellow bands gives white light to the naked eye. First time, it was found that ZnO-B2O3-P2O5 glasses efficiently emit white light under 400 and 454 nm excitations, which are nearly match with the emissions of commercial GaN blue LEDs and InGaN LED, respectively. CIE chromaticity coordinates also calculated for Dy3+: ZBP glasses to evaluate the white light emission.

  2. Impedance spectroscopy study of SiO2-Li2O:Nd2O3 glasses

    SciTech Connect

    Pereia, R.; Gozzo, C B; Guedes, I.; Boatner, Lynn A; Terezo, A J; Costa, M M

    2014-01-01

    In the present study, neodymium-doped lithium silicate glasses have been prepared by the conventional melt-quenching technique. The dielectric properties, electric modulus and electrical conductivity of SiO2-Li2O (SiLi-0Nd) and SiO2-Li2O:Nd2O3 (SiLi-1.35Nd) have been studied from 1 Hz to 1 MHz in the 333 423 K temperature range. At a given temperature and frequency, we observe that the resistivity increases while the conductivity accordingly decreases when neodymium ions are added to the glass matrix. The activation energy of two distinct regions was evaluated from the ln( dc)=f(1/T) plot and was found to be E1(T<363K)=0.61(0.66)eV and E2(T>363K)=1.26(1.09)eV for SiLi-0Nd (SiLi-1,35Nd). The dielectric constant ( Re) decreases while the dielectric loss (tan ( )) increases under Nd2O3 doping. We also observe that for both glasses, Re and tan ( ) tend to increase with increasing temperature and decrease with increasing frequency.

  3. Infrared and UV-visible spectroscopic studies of gamma-irradiated Sb2O3-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Marzouk, Samir Y.; Elbatal, Fatma H.

    2014-04-01

    Glasses from the binary Sb2O3-B2O3 system were prepared in the compositional range 90-30 Sb2O3 mol%. UV-visible spectroscopic measurements were carried out in the range 190-1100 nm before and after successive gamma rays irradiation (1, 3, 4 Mrad). Infrared absorption of the samples was measured by the KBr technique in the range 4000-400 cm-1 and the same measurements were repeated after gamma irradiation with 4 kGy. Experimental results indicate that antimony borate glasses reveal quite shielding behavior towards gamma rays irradiation as observed with heavy metal cations bearing glasses such as Bi3+ and Pb2+. Infrared absorption spectra reveal characteristic absorption bands specific for the glass-forming borate units and Sb-O units. Glasses containing high antimony oxide content can thus be recommended as promising radiation-shielding material because they show resistant to gamma irradiation due to the presence of high percent of heavy metal oxide (Sb2O3).

  4. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    PubMed

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-α) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-α, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems.

  5. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    PubMed

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H2O2, UV/O3, and UV/H2O2/O3) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H2O2/O3 was the most effective process for removing HAN precursors, followed by UV/H2O2, and UV/O3, respectively. For 20min contact time, the UV/H2O2/O3, UV/H2O2, and UV/O3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL(-1) in UV/O3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H2O2, and UV/H2O2/O3), except for the UV/O3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k'DCANFP) by the UV/H2O2/O3, UV/H2O2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k'DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors.

  6. Silicate-H2O Systems at High Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Tailby, N.; Mavrogenes, J. A.; Hermann, J.; O'Neill, H. S.

    2008-12-01

    Since the discovery of the second critical endpoint (CP2) in the albite-water system, numerous attempts have been made to determine the pressure and temperature of this CP2 and the mutual solubilities within more complex systems. The P-T position of the CP2 has been estimated for many systems: SiO2 (<10 kb/900 °C, Newton and Manning, 2008); NaAlSi3O8 (15 kb/800 °C, Burnham and Davis, 1974; Shen and Keppler, 1997); Pelite (50 kb/1,000 °C, Schmidt et al., 2004), basalt (50 kb/ 1000 °C, Kessel et al., 2004), Peridotite (38 kb/1000 °C, Mibe et al., 2007). A number of experimental techniques have been used to determine phase relations and H2O solubility in experiments. These include in-situ experimental techniques (e.g., HYDAC; Shen and Keppler, 1997), fluid trap techniques (e.g., diamond traps; Stalder et al., 2000), and single crystal weight-loss techniques (e.g., SiO2-H2O techniques employed by Newton and Manning, 2008). None of these techniques is without difficulties, as H2O rich experiments need to overcome huge retrograde fluid solubilities upon quench in order to determine mutual solubilities at experimental conditions. We have developed a new technique to determine "rock"-H2O relationships at high-P conditions, with particular focus on the shape and locus of solvi in pressure temperature space. In this series of experiments, an oxygen fugacity buffer (Re-ReO2) and a sliding H-fugacity sensor (NiO-Ni-Pd mixture) are combined to monitor H2O activity over the entire range of pressure and temperature. Unlike other techniques, the use of sensor capsules does not require textural interpretation of experiments. H2O activity is related to oxygen and hydrogen fugacity by the reaction: H2O = H2 + ½O2 NiO-Ni-Pd mixtures were placed within a ZrO2 jacket and sealed within a welded 2.3 mm Pt capsule. This 2.3 mm Pt sensor capsule was then encased within a larger, thick walled 6 mm diameter Ag capsule. Pelite-H2O mixtures and oxygen buffers were held within this larger

  7. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  8. Keggin polyoxoanion supported organic-inorganic trinuclear lutetium cluster, {Na(H2O)3[Lu(pydc)(H2O)3]3}[SiW12O40]·26.5H2O.

    PubMed

    Li, Suzhi; Zhang, Dongdi; Guo, Yuan Yuan; Ma, Pengtao; Qiu, Xiaoyang; Wang, Jingping; Niu, Jingyang

    2012-09-07

    A novel strawberry-like organic-inorganic hybrid, {Na(H(2)O)(3)[Lu(pydc)(H(2)O)(3)](3)}[SiW(12)O(40)]·26.5H(2)O (H(2)pydc = pyridine-2,6-dicarboxylate) containing an intriguing trinuclear lutetium cluster {Na(H(2)O)(3)[Lu(pydc)(H(2)O)(3)](3)}(4+) has been synthesized and its luminescent properties, IR, UV, TG, PXRD analyses and single crystal X-ray diffraction were investigated.

  9. Structural properties of Y2O3–Al2O3 liquids and glasses: An overview

    SciTech Connect

    Wilding, Martin C.; Wilson, Mark; McMillan, Paul F.; Benmore, Chris J.; Weber, J. K.R.; Deschamps, Thierry; Champagnon, Bernard

    2015-01-01

    Liquids in the system Y2O3- Al2O3 have been the subject of considerable study because of the reported occurrence of a first-order density and entropy-driven liquid-liquid phase transition (LLPT) in the supercooled liquid state. The observations have become controversial because of the presence of crystalline material that can be formed simultaneously and that can mask the nucleation and growth of the lower density liquid. The previous work is summarized here along with arguments for and against the different viewpoints. Also two studies have been undertaken to investigate the LLPT in this refractory system with emphasis on determining the structure of unequivocally amorphous materials. These include the in situ high energy X-ray diffraction (HEXRD) of supercooled Y2O3 - Al2O3 liquids and the low frequency vibrational dynamics of recovered glasses. Manybody molecular dynamics simulations are also used to interpret the results of both studies. The HEXRD measurements, combined with aerodynamic levitation and rapid data acquisition techniques, show that for the 20 mol% Y2O3 (i.e. AlY20) liquid there is a shift in the position of the first peak in the diffraction pattern over a narrow temperature range (2100-1800 K) prior to crystallization. Microbeam Raman spectroscopy measurements made on AlY20 glasses clearly show contrasting spectra in the low frequency part of the spectrum for low(LDA) and high-density (HDA) glassy regions. The molecular dynamics simulations identify contrasting coordination environments around oxygen anions for the high- (HDL) and low-density (LDL) liquids. (C) 2014 Elsevier B.V. All rights reserved.

  10. CaO--P2O5--Na2O-based sintering additives for hydroxyapatite (HAp) ceramics.

    PubMed

    Kalita, S J; Bose, S; Hosick, H L; Bandyopadhyay, A

    2004-05-01

    We have assessed the effect of CaO--P2O5--Na2O-based sintering additives on mechanical and biological properties of hydroxyapatite (HAp) ceramics. Five different compositions of sintering additives were selected and prepared by mixing of CaO, P2O5, and Na2CO3 powders. 2.5 wt% of each additive was combined with commercial HAp powder, separately, followed by ball milling, and sintering at 1250 degrees C and 1300 degrees C in a muffle furnace. Green and sintered densities of the compacts were analyzed for the influence of additives on densification of HAp. Phase analyses were carried out using an X-ray diffractometer. Vickers microhardness testing was used to evaluate hardness of sintered compacts of different compositions. A maximum microhardness of 4.6 (+/- 0.28) GPa was attained for a composition with 2.5 wt% addition of CaO:P2O5:Na2O in the ratio of 3:3:4. Results from mechanical property evaluation showed that some of these sintering additives improved failure strength of HAp under compressive loading. Maximum compressive strength was observed for samples with 2.5 wt% addition of CaO. Average failure strength for this set of samples was calculated to be 220 (+/- 50) MPa. Cytotoxicity, and cell attachment studies were carried out using a modified human osteoblast cell line called OPC-1. In vitro results showed that these compositions were non-toxic. Some sintering aids enhanced cell attachment and proliferation, which was revealed from SEM examination of the scaffolds seeded with OPC-1 cells.

  11. The Molar Volume of FeO-MgO-Fe2O3-Cr2O3-Al2O3-TiO2 Spinels

    NASA Astrophysics Data System (ADS)

    Hamecher, E. A.; Antoshechkina, P. M.; Ghiorso, M. S.; Asimow, P. D.

    2011-12-01

    A new model of molar volume has been calibrated in the spinel supersystem (Mg,Fe2+)(Al,Cr,Fe3+)2O4 - (Mg,Fe2+)2TiO4. A total of 832 X-ray and neutron diffraction experiments performed on spinels at ambient and in situ high-P, T conditions (from the American Mineralogist Crystal Structure Database (Downs and Hall-Wallace, 2003) and other sources) were used to calibrate end-member equations of state and an excess volume model for this system. The effect on molar volume of cation ordering over the octahedral and tetrahedral sites is captured with linear dependence on Mg2+, Al3+, and Fe3+ site occupancy terms. We allowed standard state volumes and coefficients of thermal expansion of the end members to vary within their uncertainties during extraction of the mixing properties, in order to achieve the best fit. Published equations of states of the various spinel end members were analyzed to obtain optimal values of the bulk modulus and its pressure derivative, for each explicit end member. For any spinel composition in the supersystem, the model molar volume is obtained by adding excess volume and cation order-dependent terms to a linear combination of the five end member volumes, estimated at pressure and temperature using the high-T Vinet equation of state. The model has a total of 31 parameters and fits nearly all experiments to within 0.02 J/bar/mol, or better than 0.5% in volume. The model is compared to the current MELTS (Ghiorso and Sack, 1995; Ghiorso et al., 2002) spinel model with a demonstration of the impact of the model difference on the estimated spinel-garnet lherzolite transition pressure. Our primary motivation in this work is the development of a comprehensive spinel molar volume model for use in calibration of activity-composition models of garnet and pyroxene solid solutions. The thermodynamic models, along with a new silicate liquid equation of state, will be incorporated into the next generation MELTS model, xMELTS. The new solid solution models

  12. Global and regional emissions estimates for N2O

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Prinn, R. G.; Dlugokencky, E.; Ishijima, K.; Dutton, G. S.; Hall, B. D.; Langenfelds, R.; Tohjima, Y.; Machida, T.; Manizza, M.; Rigby, M.; O'Doherty, S.; Patra, P. K.; Harth, C. M.; Weiss, R. F.; Krummel, P. B.; van der Schoot, M.; Fraser, P. J.; Steele, L. P.; Aoki, S.; Nakazawa, T.; Elkins, J. W.

    2014-05-01

    We present a comprehensive estimate of nitrous oxide (N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also collected discrete air samples in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute of Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7% per year, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally gridded a priori N2O emissions over the 37 years since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in recent years, most likely

  13. Global and regional emissions estimates for N2O

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Prinn, R. G.; Dlugokencky, E.; Ishijima, K.; Dutton, G. S.; Hall, B. D.; Langenfelds, R.; Tohjima, Y.; Machida, T.; Manizza, M.; Rigby, M.; O'Doherty, S.; Patra, P. K.; Harth, C. M.; Weiss, R. F.; Krummel, P. B.; van der Schoot, M.; Fraser, P. B.; Steele, L. P.; Aoki, S.; Nakazawa, T.; Elkins, J. W.

    2013-07-01

    We present a comprehensive estimate of nitrous oxide ( N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also discrete air samples collected in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute for Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7 % yr-1, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally-gridded a priori N2O emissions over the 37 yr since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in the recent years, most likely

  14. Global and regional emissions estimates for N2O

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Prinn, R. G.; Dlugokencky, E. J.; Ishijima, K.; Dutton, G. S.; Hall, B. D.; Langenfelds, R.; Tohjima, Y.; Machida, T.; Manizza, M.; Rigby, M. L.; Odoherty, S. J.; Patra, P. K.; Harth, C.; Weiss, R. F.; Krummel, P. B.; van der Schoot, M.; Fraser, P.; Steele, P.; Aoki, S.; Nakazawa, T.; Elkins, J. W.

    2013-12-01

    We present a comprehensive estimate of nitrous oxide (N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also discrete air samples collected in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute for Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7%yr-1, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally-gridded a priori N2O emissions over the 37 yr since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in the recent years, most likely due

  15. Structural investigation of BaOsbnd B2O3sbnd P2O5 glasses by NMR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Koudelka, Ladislav; Kalenda, Petr; Mošner, Petr; Černošek, Zdeněk; Montagne, Lionel; Revel, Bertrand

    2016-09-01

    Glasses of the ternary system BaOsbnd B2O3sbnd P2O5 were prepared and studied in broad concentration limits covering the whole vitrification domain: 20-50 mol% BaO, 0-40 mol% B2O3 and 20-60 mol% P2O5. Their structure was studied with combinations of Raman spectroscopy, 31P MAS NMR spectroscopy and 11B MAS NMR spectroscopy. The obtained results are discussed in several compositional lines A: (100-x)Ba(PO3)2sbnd xB2O3, B: 40BaOsbnd yB2O3sbnd (60-y)P2O5, C: (50-z)BaOsbnd zB2O3sbnd 50P2O5, D: (60-w)BaOsbnd wB2O3sbnd 40P2O5 and E: uBaOsbnd 40B2O3sbnd (60-u)P2O5. Boron oxide incorporates into the phosphate network in the form of BO4 and BO3 groups and increases their glass transition temperature. Nevertheless, the increase in Tg is only steep within the region of 0-20 mol% B2O3 reaching a maximum at the glasses with ∼30 mol% B2O3. In the lines A, B and E a decrease in the P2O5 and an increase of B2O3 content results in the shortening of phosphate chains with decreasing P2O5 content; these changes are most pronounced in line B with a constant BaO content. In lines C and D with a constant P2O5 content a decrease in the BaO content results, in contrast, in the reverse transformation of phosphate structural units in the direction Q1 → Q2 → Q3 as detected from Raman spectra and 31P MAS NMR spectra. 11B MAS NMR spectra revealed that only BO4 units are present in the glasses with 0-20 mol% B2O3. In the glasses of the E series the fraction of BO3 units increases with a decreasing P2O5 content. By the decomposition of the 11B MAS NMR spectra it is possible to estimate the fractions of basic structural units formed by boron - B(OP)3O, B(OP)2O2 and BO3 in all the glasses of the glass forming region.

  16. [{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20]36-: a molecular quantum spin icosidodecahedron.

    PubMed

    Botar, Bogdan; Kögerler, Paul; Hill, Craig L

    2005-07-07

    Self-assembly of aqueous solutions of molybdate and vanadate under reducing, mildly acidic conditions results in a polyoxomolybdate-based {Mo72V30} cluster compound Na8K16(VO)(H2O)5[K10 subset{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20].150H2O, 1, a quantum spin-based Keplerate structure.

  17. Three-dimensional Ag{sub 2}O/WO{sub 3}·0.33H{sub 2}O heterostructures for improving photocatalytic activity

    SciTech Connect

    He, Xiaoyu; Hu, Chenguo; Xi, Yi; Zhang, Kaiyou; Hua, Hao

    2014-02-01

    Highlights: • Ag{sub 2}O/WO{sub 3}·0.33H{sub 2}O 3D network heterostructures are prepared via a simple precipitatation method. • Ag{sub 2}O/WO{sub 3}·0.33H{sub 2}O networks exhibit much enhanced photocatalytic activity. • High photocatalytic activity is attributed to its heterostructure and 3D architectures. - Abstract: Three-dimensional Ag{sub 2}O/WO{sub 3}·0.33H{sub 2}O heterostructures were fabricated by loading Ag{sub 2}O nanoparticles on WO{sub 3}·0.33H{sub 2}O 3D networks via a simple chemical precipitation method. The Ag{sub 2}O/WO{sub 3}·0.33H{sub 2}O heterostructures exhibited much enhanced photocatalytic activity for the degradation of methylene blue (MB) under simulated solar light irradiation. The optimal molar ratio of Ag{sub 2}O and WO{sub 3}·0.33H{sub 2}O is 1:2. The outstanding photocatalytic activity of the Ag{sub 2}O/WO{sub 3}·0.33H{sub 2}O can be attributed to its large surface area of the three-dimensional networks, the enhanced sunlight absorption and the prevention of electrons–holes combination from the heterostructures. The experiment result demonstrates that wide band gap semiconductor (WO{sub 3}·0.33H{sub 2}O) modified by narrow band gap metal oxide (Ag{sub 2}O) with 3D architecture will be an effective route to enhance its photocatalytic activity.

  18. Probing Defects in Nitrogen-Doped Cu2O

    PubMed Central

    Li, Junqiang; Mei, Zengxia; Liu, Lishu; Liang, Huili; Azarov, Alexander; Kuznetsov, Andrej; Liu, Yaoping; Ji, Ailing; Meng, Qingbo; Du, Xiaolong

    2014-01-01

    Nitrogen doping is a promising method of engineering the electronic structure of a metal oxide to modify its optical and electrical properties; however, the doping effect strongly depends on the types of defects introduced. Herein, we report a comparative study of nitrogen-doping-induced defects in Cu2O. Even in the lightly doped samples, a considerable number of nitrogen interstitials (Ni) formed, accompanied by nitrogen substitutions (NO) and oxygen vacancies (VO). In the course of high-temperature annealing, these Ni atoms interacted with VO, resulting in an increase in NO and decreases in Ni and VO. The properties of the annealed sample were significantly modified as a result. Our results suggest that Ni is a significant defect type in nitrogen-doped Cu2O. PMID:25430516

  19. Poly[di-μ-aqua-di-aqua-bis-(μ7-oxalato-κ(9) O (1):O (1):O (1),O (2):O (2):O (2'):O (2'),O (1'):O (1'))calciumdicaesium].

    PubMed

    Kherfi, Hamza; Hamadène, Malika; Guehria-Laïdoudi, Achoura; Dahaoui, Slimane; Lecomte, Claude

    2013-01-01

    In the title compound, [CaCs2(C2O4)2(H2O)4] n , the Ca(2+) ion, lying on a twofold rotation axis, is coordinated by four O atoms from two oxalate ligands and two bridging water mol-ecules in an octa-hedral geometry. The Cs(+) ion is coordinated by seven O atoms from six oxalate ligands, one bridging water and one terminal water mol-ecule. The oxalate ligand displays a scarce high denticity. The structure contains parallel chain units runnig along [10-1], formed by two edge-sharing Cs polyhedra connected by CsO9 polyhedra connected by a face-sharing CaO6 octahedron. These chains are further linked by the oxalate ligands to build up a three-dimensional framework. O-H⋯O hydrogen bonds involving the water mol-ecules and the carboxyl-ate O atoms enhance the extended structure.

  20. The EUV spectrum of H2O by electron impact

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.

    1984-01-01

    The vacuum ultraviolet (VUV) spectrum of H2O produced by electron impact at 200 eV is presented. A total of 25 spectral features are identified at a resolution of 0.5 nm over the wavelength range from 40 to 280 nm. Absolute emission cross-sections were obtained for each of the features. The differences of the features are all attributed to the various excited states of the dissociation products, H, O and O(+). The Lyman-alpha feature is the brightest for electron-induced fluorescence of H2O from the UV to the near-IR, and had a cross-section of 6.3 (+ or - 1.0 x 10 to the -18th) sq cm at 200 eV. The Lyman-alpha feature contributed 74 percent of the total measured emission cross-section in the EUV.

  1. Optimal filling fraction of Ta2O5 inverse opals

    NASA Astrophysics Data System (ADS)

    Tubio, C. R.; Guitian, F.; Gil, A.

    2013-12-01

    Tantalum pentoxide (Ta2O5) inverse opals were prepared by combining the self-assembly process and sol-gel chemistry-based opal infiltration. The inverse opal was made by the infiltration of a tantalum(V) ethoxide solution in the interstices of the polystyrene colloidal crystal template, and then removing the original opal template by calcination. The infiltration process as well as the optimal precursor concentration has been investigated in order to obtain Ta2O5 inverse opals with the optimal filling fraction. The effects of processing, template sphere size, morphology, structural properties, filling fraction and composition of the inverse opal are provided by scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy analysis (EDS) and powder X-ray diffraction (XRD). The results correlate the concentration of the precursor with the filling fraction of the template.

  2. The Target: H2O on the Moon

    NASA Technical Reports Server (NTRS)

    Green, J.; Wys, J. Negusde; Zuppero, A.

    1992-01-01

    The importance of H2O on the lunar surface has long been identified as a high priority for the existence of a human colony for mining activities and, more recently, for space fuel. Using the Earth as an analog, volcanic activity would suggest the generation of water during lunar history. Evidence of volcanism is found not only in present lunar morphology, but in over 400 locations of lunar transient events cataloged by Middlehurst and Kuiper in the 1960's. These events consisted of sightings since early history of vapor emissions and bright spots or flares. Later infrared scanning by Saari and Shorthill showed 'hot spots', many of which coincided with transient event sites. Many of the locations of Middlehurst and Kuiper were the sites of repeat events, leading to the conclusion that these were possibly volcanic in nature. The detection and use of H2O from the lunar surface is discussed.

  3. In2O3 based perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Dong, Qi; Liu, Fangzhou; Wong, Man Kwong; Djurišić, Aleksandra B.; Ren, Zhiwei; Shen, Qian; Ng, Annie; Surya, Charles; Chan, Wai Kin

    2016-02-01

    Hybrid organic-inorganic perovskite solar cells have attracted lots of attention in recent years. Growth and properties of perovskite layer and its relationship to photovoltaic performance have been extensively studied. Comparably less attention was devoted to the research of the influence of electron transporting layer (ETL). Conventionally, TiO2 is selected as ETL. However, photocatalytic property of this transparent conductive metal oxide reduces the stability of perovskite solar cells under illumination. To realize the commercialization, the stability of perovskite solar cell must be improved. In this study, we replace TiO2 by In2O3, which is not only transparent and conductive, but also has little photocatalytic effect and it has higher electron mobility than TiO2. Investigation on different solution process methods of In2O3 as ETL is demonstrated.

  4. Antiferromagnetism of UO2⋅2H2O

    USGS Publications Warehouse

    Pankey, T.; Senftle, F.E.; Cuttitta, F.

    1963-01-01

    Magnetic susceptibility measurements have been made on UO2⋅xH2O for x=1.78 to x=2.13, and from 77° to 375°K. As the value of x decreased the susceptibility increased. Both these data and structural arguments imply that the formula of this compound is U(OH)4 rather than the dihydrate form. Based on this concept the data have been corrected for diamagnetism and also small amounts of UO2 and H2O which were present. The molar susceptibility of U4+ in U(OH)4 is nearly an order of magnitude less than in other uranium compounds, and it is suggested that this is probably due to superexchange between adjacent uranium atoms through intervening oxygen atoms.

  5. Biased dielectric response in LuFe2O4

    NASA Astrophysics Data System (ADS)

    Kudasov, Yu. B.; Markelova, M.; Maslov, D. A.; Platonov, V. V.; Surdin, O. M.; Kaul, A.

    2016-12-01

    A complex permittivity at a low level of excitation signal was measured in ceramic LuFe2O4. A Debye-type relaxation response with a strong temperature dependence of a characteristic frequency was observed in accordance with earlier works. A small DC bias of about 10 V/cm led to unusual changes in the dielectric response. At frequencies, which were lower than the characteristic one, the conductivity drastically increased with slight decrease of the real part of the permittivity under the bias. In the opposite case of low frequencies, there are no traces of the DC bias effect. We show that an inhomogeneous charge distribution over surface layer (domain structure) is essential for describing the biased dielectric response in LuFe2O4.

  6. Antiproton stopping in H2 and H2O

    NASA Astrophysics Data System (ADS)

    Bailey, J. J.; Kadyrov, A. S.; Abdurakhmanov, I. B.; Fursa, D. V.; Bray, I.

    2015-11-01

    Stopping powers of antiprotons in H2 and H2O targets are calculated using a semiclassical time-dependent convergent close-coupling method. In our approach the H2 target is treated using a two-center molecular multiconfiguration approximation, which fully accounts for the electron-electron correlation. Double-ionization and dissociative ionization channels are taken into account using an independent-event model. The vibrational excitation and nuclear scattering contributions are also included. The H2O target is treated using a neonization method proposed by C. C. Montanari and J. E. Miraglia [J. Phys. B 47, 015201 (2014), 10.1088/0953-4075/47/1/015201], whereby the ten-electron water molecule is described as a dressed Ne-like atom in a pseudospherical potential. Despite being the most comprehensive approach to date, the results obtained for H2 only qualitatively agree with the available experimental measurements.

  7. Ferromagnetic semiconductor nanoclusters: Co-doped Cu2O

    NASA Astrophysics Data System (ADS)

    Antony, Jiji; Qiang, You; Faheem, Muhammad; Meyer, Daniel; McCready, David E.; Engelhard, Mark H.

    2007-01-01

    5% Co-doped cuprous oxide dilute magnetic semiconducting cluster film composed of two different sizes of crystalline nanoclusters, prepared using sputtering-aggregation technique is found to be ferromagnetic at 400K. With the increase in average crystallite size from 4.2to8nm, the coercivity increased. Magnetic field up to 2T is applied and saturation magnetization is achieved at 3kOe field in both cases. Cu2O phase is observed from cluster film deposited on Si wafer when analyzed using x-ray diffraction. Co in Cu2O host reveals a +2 oxidation state via x-ray photoelectron spectroscopy. Positive magnetoresistance from samples exhibits a temperature dependent decrease.

  8. Interaction of Nd dopants with broadband emission centers in Bi2O3-B2O3 glass: local energy balance and its influence on optical properties

    NASA Astrophysics Data System (ADS)

    Ishii, Masashi; Fuchi, Shingo; Takeda, Yoshikazu

    2015-10-01

    Chemical and energetic interactions between broadband infrared intrinsic emission centers (IECs) of bismuthates and extrinsic emission centers (EECs) of Nd2O3 dopants were optically and electronically investigated. Although no visible absorption from the IEC was found in untreated Bi2O3-B2O3 glass, it was clearly observed after a moderate thermal treatment of  <200 °C, indicating chemical activity of O-deficient sites as the origin of IECs. On the other hand, Nd2O3 doping chemically stabilized the Bi2O3-B2O3 glass and suppressed IEC formation. By using a microwave measurement sensitive to electric dipoles, we found a ‘switching’ in local energy balance resulting from the Nd2O3 doping. This was explained by metallization of the O-deficient sites in the Bi2O3-B2O3 glass and multi-phonon excitation of IEC and EEC complexes in the Nd2O3-Bi2O3-B2O3 glass phosphor. Although the electric dipole observed by the microwave measurement was not necessarily caused by IEC, emission properties of the IEC and EEC complexes were consistent with energy balance switching; emissions from IECs after thermal treatment were quenched by EECs with multi-phonon excitation.

  9. Interaction of Nd dopants with broadband emission centers in Bi2O3-B2O3 glass: local energy balance and its influence on optical properties.

    PubMed

    Ishii, Masashi; Fuchi, Shingo; Takeda, Yoshikazu

    2015-10-07

    Chemical and energetic interactions between broadband infrared intrinsic emission centers (IECs) of bismuthates and extrinsic emission centers (EECs) of Nd2O3 dopants were optically and electronically investigated. Although no visible absorption from the IEC was found in untreated Bi2O3-B2O3 glass, it was clearly observed after a moderate thermal treatment of  <200 °C, indicating chemical activity of O-deficient sites as the origin of IECs. On the other hand, Nd2O3 doping chemically stabilized the Bi2O3-B2O3 glass and suppressed IEC formation. By using a microwave measurement sensitive to electric dipoles, we found a 'switching' in local energy balance resulting from the Nd2O3 doping. This was explained by metallization of the O-deficient sites in the Bi2O3-B2O3 glass and multi-phonon excitation of IEC and EEC complexes in the Nd2O3-Bi2O3-B2O3 glass phosphor. Although the electric dipole observed by the microwave measurement was not necessarily caused by IEC, emission properties of the IEC and EEC complexes were consistent with energy balance switching; emissions from IECs after thermal treatment were quenched by EECs with multi-phonon excitation.

  10. Epitaxially grown crystalline Al2O3 interlayer on β-Ga2O3(010) and its suppressed interface state density

    NASA Astrophysics Data System (ADS)

    Kamimura, Takafumi; Krishnamurthy, Daivasigamani; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2016-12-01

    Al2O3 films were deposited on β-Ga2O3(010) and β-Ga2O3 (\\bar{2}01) substrates by atomic layer deposition at 250 °C, and their interface state densities (D it) at shallow energies were evaluated using a high-low capacitance-voltage (C-V) method. Al2O3/β-Ga2O3(010) showed lower D it values (5.9 × 1010 to 9.3 × 1011 cm-2 eV-1) than Al2O3/β-Ga2O3 (\\bar{2}01) (2.0 × 1011 to 2.0 × 1012 cm-2 eV-1) in an energy range of -0.8 to -0.1 eV. Cross-sectional transmission electron microscopy analysis indicated the formation of a uniform amorphous Al2O3 layer on the β-Ga2O3 (\\bar{2}01) substrate. In contrast, a crystalline Al2O3 interlayer with a thickness of 3.2 ± 0.7 nm with an amorphous Al2O3 top layer was formed on the β-Ga2O3(010) substrate, which effectively decreased D it. Moreover, thicker interlayers showing lower D it values at deep state levels were formed at deposition temperatures higher than 100 °C, which were evaluated by shifts in the C-V curves.

  11. 40 CFR 1065.375 - Interference verification for N2O analyzers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... interference species and meets the specifications in § 1065.750 through distilled H2O in a sealed vessel. If... verification test, measure the H2O mole fraction,x H 2 O, of the humidified interference test gas as close as... wall temperatures in the transfer lines, fittings, and valves from the point where x H 2 O is...

  12. High-field magnetization of Dy2O3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1974-01-01

    The magnetization of powdered samples of Dy2O3 has been measured at temperatures between 1.45 and 4.2 K, in applied magnetic fields ranging to 70 kilogauss. A linear dependence of magnetization on applied field is observable in the high-field region, the slope of which is independent of temperature over the range investigated. The extrapolated saturation magnetic moment is about 2.77 Bohr magnetons per ion.

  13. High-field magnetization of Dy2O3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1974-01-01

    The magnetization of powdered samples of Dy2O3 has been measured at temperatures between 1.45 deg and 4.2 K, in applied magnetic fields ranging to 7 Teslas. A linear dependence of magnetization on applied field is observable in high field region, the slope of which is independent of temperature over the range investigated. The extrapolated saturation magnetic moment is 2.77 + or - 0.08 Bohr magnetons per ion.

  14. Light scattering by subwavelength Cu2O particles.

    PubMed

    Ullah, Kaleem; Liu, Xuefeng; Yadav, N P; Habib, Muhammad; Song, Li; García-Cámara, Braulio

    2017-03-01

    Novel metamaterials with new capabilities to manipulate light may be used by considering basic building blocks with new optical properties. This is the case with resonant magneto-dielectric particles. In this work, the resonant response of a high-dielectric Cu2O subwavelength particle is analyzed, both analytically and experimentally. The emergence of electric and magnetic resonances and their interferential effects, producing directional behaviors, can be used in a new generation of metamaterials, as well as new integrated optical devices.

  15. Dissociation dynamics of core excited N[sub 2]O

    SciTech Connect

    LeBrun, T. DRECAM, SPAM, CEA, CEN Saclay, 9119, Gif sur Yvette Cedex Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 ); Lavollee, M. ); Simon, M.; Morin, P. DRECAM, SPAM, CEA, CEN Saclay, 9119, Gif sur Yvette Cedex )

    1993-02-15

    Fragmentation of N[sub 2]O after selective core excitation of terminal and central nitrogen, has been studied by a multicoincidence technique (PEPIPICO) using synchrotron radiation. We show that dissociation dynamics is dependent upon the excited site, especially in the case of the atomization'' of the molecule. The central nitrogen is always found with very little kinetic energy, except after Nt[r arrow][Pi]* transition. A bent intermediate geometry is proposed to explain this observation.

  16. Role of H2O in Generating Subduction Zone Earthquakes

    NASA Astrophysics Data System (ADS)

    Hasegawa, A.

    2017-03-01

    A dense nationwide seismic network and high seismic activity in Japan have provided a large volume of high-quality data, enabling high-resolution imaging of the seismic structures defining the Japanese subduction zones. Here, the role of H2O in generating earthquakes in subduction zones is discussed based mainly on recent seismic studies in Japan using these high-quality data. Locations of intermediate-depth intraslab earthquakes and seismic velocity and attenuation structures within the subducted slab provide evidence that strongly supports intermediate-depth intraslab earthquakes, although the details leading to the earthquake rupture are still poorly understood. Coseismic rotations of the principal stress axes observed after great megathrust earthquakes demonstrate that the plate interface is very weak, which is probably caused by overpressured fluids. Detailed tomographic imaging of the seismic velocity structure in and around plate boundary zones suggests that interplate coupling is affected by local fluid overpressure. Seismic tomography studies also show the presence of inclined sheet-like seismic low-velocity, high-attenuation zones in the mantle wedge. These may correspond to the upwelling flow portion of subduction-induced secondary convection in the mantle wedge. The upwelling flows reach the arc Moho directly beneath the volcanic areas, suggesting a direct relationship. H2O originally liberated from the subducted slab is transported by this upwelling flow to the arc crust. The H2O that reaches the crust is overpressured above hydrostatic values, weakening the surrounding crustal rocks and decreasing the shear strength of faults, thereby inducing shallow inland earthquakes. These observations suggest that H2O expelled from the subducting slab plays an important role in generating subduction zone earthquakes both within the subduction zone itself and within the magmatic arc occupying its hanging wall.

  17. Knowledge of the systems H2O-SO3-N2O3. Report 1: The system H2SO4-H2O-N2O3

    NASA Technical Reports Server (NTRS)

    Stopperka, K.; Kilz, F.

    1977-01-01

    The amount of N2O3 being absorbed in 50-100% H2SO4 at 19, 60, and 95 C is directly proportional to the acid concentration and inversely proportional to the temperature. NO+ formation according to the above-formulated equation occurs only at H2SO4 concentrations greater than 52%. Absorption in highly concentrated sulfuric acid results in the formation of crystalline NOHSO4.

  18. Magnetoresistance in Sn-Doped In2O3Nanowires

    PubMed Central

    2009-01-01

    In this work, we present transport measurements of individual Sn-doped In2O3nanowires as a function of temperature and magnetic field. The results showed a localized character of the resistivity at low temperatures as evidenced by the presence of a negative temperature coefficient resistance in temperatures lower than 77 K. The weak localization was pointed as the mechanism responsible by the negative temperature coefficient of the resistance at low temperatures. PMID:20596280

  19. Near Infrared Spectra of H2O/HCN Mixtures

    NASA Technical Reports Server (NTRS)

    Mastrapa, R. M.; Bernstein, M. P.; Sanford, S. A.

    2006-01-01

    Cassini's VIMS has already returned exciting results interpreting spectra of Saturn's icy satellites. The discovery of unidentified features possibly due to CN compounds inspired the work reported here. We wanted to test HCN as a possibility for explaining these features, and also explore how the features of HCN change when mixed with H2O. We have previously noted that mixing H20 and CO2 produces new spectral features and that those features change with temperature and mixing ratio.

  20. Light scattering by subwavelength Cu2O particles

    NASA Astrophysics Data System (ADS)

    Ullah, Kaleem; Liu, Xuefeng; Yadav, N. P.; Habib, Muhammad; Song, Li; García-Cámara, Braulio

    2017-03-01

    Novel metamaterials with new capabilities to manipulate light may be used by considering basic building blocks with new optical properties. This is the case with resonant magneto-dielectric particles. In this work, the resonant response of a high-dielectric Cu2O subwavelength particle is analyzed, both analytically and experimentally. The emergence of electric and magnetic resonances and their interferential effects, producing directional behaviors, can be used in a new generation of metamaterials, as well as new integrated optical devices.

  1. Conductivity enhancement in mechanosynthesized Bi2O3

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, S.; Anirban, Sk.; Sinha, A.; Pradhan, S. K.; Dutta, A.

    2016-05-01

    Nanostructured Bi2O3 was prepared through mechanical alloying method. Detailed microstructural information was obtained after Rietveld refinement of the prepared samples. The Transmission Electron Microscope images confirmed the crystallinity of the sample. The average crystallite size decreases whereas microstrain increases due to milling. The ionic conductivity of the milled sample was found to have increased few orders than the unmilled sample. The change in structural and electrical properties due to milling were discussed and correlated.

  2. Visible Light Assisted Photocatalytic Hydrogen Generation by Ta2O5/Bi2O3, TaON/Bi2O3, and Ta3N5/Bi2O3 Composites

    DOE PAGES

    Adhikari, Shiba; Hood, Zachary D.; More, Karren Leslie; ...

    2015-06-15

    Composites comprised of two semiconducting materials with suitable band gaps and band positions have been reported to be effective at enhancing photocatalytic activity in the visible light region of the electromagnetic spectrum. Here, we report the synthesis, complete structural and physical characterizations, and photocatalytic performance of a series of semiconducting oxide composites. UV light active tantalum oxide (Ta2O5) and visible light active tantalum oxynitride (TaON) and tantalum nitride (Ta3N5) were synthesized, and their composites with Bi2O3 were prepared in situ using benzyl alcohol as solvent. The composite prepared using equimolar amounts of Bi2O3 and Ta2O5 leads to the formation ofmore » the ternary oxide, bismuth tantalate (BiTaO4) upon calcination at 1000 °C. The composites and single phase bismuth tantalate formed were characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) surface area measurement, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectroscopy, and photoluminescence. The photocatalytic activities of the catalysts were evaluated for generation of hydrogen using aqueous methanol solution under visible light irradiation (λ ≥ 420 nm). The results show that as-prepared composite photocatalysts extend the light absorption range and restrict photogenerated charge-carrier recombination, resulting in enhanced photocatalytic activity compared to individual phases. The mechanism for the enhanced photocatalytic activity for the heterostructured composites is elucidated based on observed activity, band positions calculations, and photoluminescence data.« less

  3. The H 2O ++ Ground State Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Bunker, P. R.; Bludsky, Ota; Jensen, Per; Wesolowski, S. S.; Van Huis, T. J.; Yamaguchi, Y.; Schaefer, H. F.

    1999-12-01

    At the correlation-consistent polarized-valence quadruple-zeta complete active space self-consistent field second-order configuration interaction level of ab initio theory (cc-pVQZ CASSCF-SOCI), we calculated 129 points on the ground electronic state potential energy surface of the water dication H2O++; this calculation includes the energy of X3Σ- OH+ at equilibrium and the energy of the triplet oxygen atom. We determined the parameters in an analytical function that represents this surface out to the (OH+ + H+) and (O + 2H+) dissociation limits, for bending angles from 70 to 180°. There is a metastable minimum in this surface, at an energy of 43 600 cm-1 above the H+ + OH+ dissociation energy, and the geometry at this minimum is linear (D∞h), with an OH bond length of 1.195 Å. On the path to dissociation to H+ + OH+, there is a saddle point at an energy of 530 cm-1 above the minimum, and the geometry at the saddle point is linear (C∞ Kv) with OH bond lengths of 1.121 and 1.489 Å. Using the stabilization method, we calculated the lowest resonance on this surface. Relative to the metastable local minimum on the potential energy surface, the position of the lowest resonance for H2O++, D2O++, and T2O++ is 1977(85), 1473(25), and 1249(10) cm-1, respectively, where the width of each resonance (in cm-1) is given in parentheses.

  4. Thermodynamic Properties of LiBr/H2O Solution

    NASA Astrophysics Data System (ADS)

    Murakami, Kazuhiko; Sato, Haruki; Watanabe, Koichi

    Although most of the absorption refrigeration/heat pump systems use LiBr/H2O solution for absorbent/refrigerant pair, there exist only a limited number of reliable sets of data on the bubble-point pressures of LiBr/H2O solution. The objective of the present study is to reveal the concentration and temperature dependence of bubble-point pressures of LiBr/H2O solution over a wide range of parameters so as to provide more precise set of thermodynamic property data for advanced design of the absorption refrigeration/heat pump equipments. A total of 44 bubble-point pressures have been measured along seven concentration isopleths of 20, 30, 40, 45, 50, 58 and 60 wt%LiBr solution which cover the range of temperatures 283-413 K and of pressures up to 300 kPa. The experimental uncertainties of temperature, pressure and concentration measurements were not greater than ±20mK, ±0.1 kPa and ±0.1wt%, respectively.

  5. Early Determinants of H2O2-Induced Endothelial Dysfunction

    PubMed Central

    Boulden, Beth M.; Widder, Julian D.; Allen, Jon C.; Smith, Debra A.; Al-Baldawi, Ruaa N.; Harrison, David G.; Dikalov, Sergey I.; Jo, Hanjoong; Dudley, Samuel C.

    2006-01-01

    Reactive oxygen species (ROS) can stimulate nitric oxide (NO•) production from the endothelium by transient activation of endothelial nitric oxide synthase (eNOS). With continued or repeated exposure, NO• production is reduced, however. We investigated the early determinants of this decrease in NO• production. Following an initial H2O2 exposure, endothelial cells responded by increasing NO• production measured electrochemically. NO• concentrations peaked by 10 min with a slow reduction over 30 min. The decrease in NO• at 30 min was associated with a 2.7 fold increase O2•− production (p<0.05) and a 14 fold reduction of the eNOS cofactor, tetrahydrobiopterin (BH4, p<0.05). Used as a probe for endothelial dysfunction, the integrated NO• production over 30 min upon repeat H2O2 exposure was attenuated by 2.1 fold (p=0.03). Endothelial dysfunction could be prevented by BH4 cofactor supplementation, by scavenging O2•− or peroxynitrite (ONOO−), or by inhibiting the NADPH oxidase. Hydroxyl radical (•OH) scavenging did not have an effect. In summary, early H2O2-induced endothelial dysfunction was associated with a decreased BH4 level and increased O2•− production. Dysfunction required O2•−, ONOO−, or a functional NADPH oxidase. Repeated activation of the NADPH oxidase by ROS may act as a feed forward system to promote endothelial dysfunction. PMID:16895801

  6. An Accurate Potential Energy Surface for H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  7. Structural properties of amorphous Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanh, B. T. H. L.; Hoang, V. V.; Zung, H.

    2008-10-01

    We have investigated the microstructure of amorphous Fe2O3 nanoparticles by using molecular dynamics (MD) simulations. Non-periodic boundary conditions with Born-Mayer type pair potentials were used to simulate a spherical model of different diameters of 2, 3, 4 and 5 nm. Structural properties of an amorphous model obtained at 350 K have been analyzed in detail through the partial radial distribution functions (PRPFs), coordination number distributions, bond-angle distributions and interatomic distances. Calculations showed that structural characteristics of the model are in qualitative agreement with the experimental data. The observation of a large amount of structural defects as the particle size is decreased suggested that surface structure strongly depends on the size of nanoparticles. In addition, surface structure of amorphous Fe2O3 nanoparticles have been studied and compared with that observed in the core and in the bulk counterpart. Radial density profiles and stoichiometry in morphous Fe2O3 nanoparticles were also found and discussed.

  8. A shock origin for interstellar H2O masers

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Elitzur, Moshe; Mckee, Christopher F.

    1993-01-01

    We present a comprehensive model for the powerful H2O masers observed in starforming regions. In this model the masers occur behind dissociative shocks propagating in dense regions. This paper focuses on high-velocity dissociative shocks in which the heat of H2 reformation on dust grains maintains a large column of 300 - 400 K gas, where the chemistry drives a considerable fraction of the oxygen not in CO to form H2O. The H2O column densities, the hydrogen densities, and the warm temperatures produced by these shocks are sufficiently high to enable powerful maser action, where the maser is excited by thermal collisions with H atoms and H2 molecules. A critical ingredient in determining the shock structure is the magnetic pressure, and the fields required by our models are in agreement with recent observations. The observed brightness temperatures are the result of coherent velocity regions which have dimensions in the shock plane that are five to 50 times the postshock thickness.

  9. Cathodoluminescence Studies of the Inhomogeneities in Sn-doped Ga2O3 Nanowires

    DTIC Science & Technology

    2009-01-01

    green to red emission correlates with a phase transition of β-Ga2O3 to polycrystalline SnO2 . The origin of the green emission band is discussed based...unintentionally doped) β-Ga2O3, Sn-doped β- Ga2O3 and Ga2O3- SnO2 nanowires (NWs). Sn-doped β- Ga2O3 NWs showed uniform luminescence which was red...shifted by 30 nm relative to that of undoped β-Ga2O3 NWs. The spectral luminescent variation along the Ga2O3- SnO2 NS was correlated with local

  10. Enhancement of photocatalytic activity over Bi2O3/black-BiOCl heterojunction

    NASA Astrophysics Data System (ADS)

    Kim, Dahye; Jung, Dongwoon

    2017-04-01

    Several Bi2O3/BiOCl heterojunction compounds with different Bi2O3/BiOCl ratios were prepared by treating Bi2O3 with HCl. Within the Bi2O3/BiOCl heterojunction, white BiOCl was turned into black by thermal treatment. Upon the result, Bi2O3/black-BiOCl heterojunction could be prepared. The photocatalytic activities of samples were tested depending upon the Bi2O3/BiOCl ratio. Basically, Bi2O3/black-BiOCl samples showed advanced photocatalytic activity compared with the original Bi2O3/white-BiOCl. The highest photocatalytic efficiency was found in the Bi2O3/black-BiOCl when Bi2O3/BiOCl ratio was 15/85.

  11. Dissociative recombination of H+(H2O)3 and D+(D2O)3 water cluster ions with electrons: Cross sections and branching ratios

    NASA Astrophysics Data System (ADS)

    Öjekull, J.; Andersson, P. U.; Nâgârd, M. B.; Pettersson, J. B. C.; Marković, N.; Derkatch, A. M.; Neau, A.; Al Khalili, A.; Rosén, S.; Larsson, M.; Semaniak, J.; Danared, H.; Källberg, A.; Österdahl, F.; af Ugglas, M.

    2007-11-01

    Dissociative recombination (DR) of the water cluster ions H+(H2O)3 and D+(D2O)3 with electrons has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). For the first time, absolute DR cross sections have been measured for H+(H2O)3 in the energy range of 0.001-0.8eV, and relative cross sections have been measured for D+(D2O)3 in the energy range of 0.001-1.0eV. The DR cross sections for H+(H2O)3 are larger than previously observed for H+(H2O)n (n=1,2), which is in agreement with the previously observed trend indicating that the DR rate coefficient increases with size of the water cluster ion. Branching ratios have been determined for the dominating product channels. Dissociative recombination of H+(H2O)3 mainly results in the formation of 3H2O+H (probability of 0.95±0.05) and with a possible minor channel resulting in 2H2O+OH+H2 (0.05±0.05). The dominating channels for DR of D+(D2O)3 are 3D2O+D (0.88±0.03) and 2D2O+OD+D2 (0.09±0.02). The branching ratios are comparable to earlier DR results for H+(H2O)2 and D+(D2O)2, which gave 2X2O+X (X=H,D) with a probability of over 0.9.

  12. The performance of Y2O3 as interface layer between La2O3 and p-type silicon substrate

    NASA Astrophysics Data System (ADS)

    Wang, Shulong; Chen, Yuhai; Liu, Hongxia; Zhang, Hailin

    2016-11-01

    In this study, the performance of Y2O3 as interface layer between La2O3 and p-type silicon substrate is studied with the help of atomic layer deposition (ALD) and magnetron sputtering technology. The surface morphology of the bilayer films with different structures are observed after rapid thermal annealing (RTA) by atomic force microscopy (AFM). The results show that Y2O3/Al2O3/Si structure has a larger number of small spikes on the surface and its surface roughness is worse than Al2O3/Y2O3/Si structure. The reason is that the density of Si substrate surface is much higher than that of ALD growth Al2O3. With the help of high-frequency capacitance-voltage(C-V) measurement and conductivity method, the density of interface traps can be calculated. After a high temperature annealing, the metal silicate will generate at the substrate interface and result in silicon dangling bond and interface trap charge, which has been improved by X-ray photoelectron spectroscopy (XPS) and interface trap charge density calculation. The interface trapped charge density of La2O3/Al2O3/Si stacked gate structure is lower than that of La2O3/Y2O3/Si gate structure. If Y2O3 is used to replace Al2O3 as the interfacial layer, the accumulation capacitance will increase obviously, which means lower equivalent oxide thickness (EOT). Our results show that interface layer Y2O3 grown by magnetron sputtering can effectively ensure the interface traps near the substrate at relative small level while maintain a relative higher dielectric constant than Al2O3.

  13. Crystal structure and vibrational spectra of BaH 4I 2O 10·2H 2O

    NASA Astrophysics Data System (ADS)

    Haeuseler, H.; Wagener, M.

    2008-12-01

    By crystallization from strongly acidic aqueous solutions barium-tetrahydrogen-decaoxodiperiodate-dihydrate, BaH 4I 2O 10·2H 2O has been obtained (S.G. C2/ c, No. 15) with the lattice constants a = 12.728(3), b = 7.987(2), c = 9.459(2), and β = 94.07(3). IR and Raman spectra are given and analysed with respect to the internal vibrations of the HIO102- ion and the hydrogen bond system. According to high temperature Raman spectra and DTA and TG measurements, the compound decomposes via unknown salts with the anion IO4- above 230 °C to the corresponding iodate which above 575 °C starts to disproportionate to the periodate Ba 5(IO 6) 2.

  14. Computational study of the I2O5 + H2O = 2 HOIO2 gas-phase reaction

    NASA Astrophysics Data System (ADS)

    Khanniche, Sarah; Louis, Florent; Cantrel, Laurent; Černušák, Ivan

    2016-10-01

    This paper presents the mechanism and the kinetics of the I2O5 (g) + H2O (g) = 2 HOIO2 (g) reaction. The potential energy surface was explored with the B3LYP and MP2 methods with the aug-cc-pVTZ basis set. The rate constants were computed as a function of temperature (250-750 K) using transition state theory. At the CCSD(T)/CBS level, the rate constants were estimated to be: (k in cm3 molecule-1 s-1) kforward(T) = 3.61 × 10-22 × T2.05 exp (-32.3 (kJ mol-1)/RT) and kreverse (T) = 6.73 × 10-27 × T2.90 exp (-24.5 (kJ mol-1)/RT). Implications for atmospheric chemistry and nuclear safety issues are discussed.

  15. H2O Adsorption on Smectites: Application to the Diurnal Variation of H2O in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Howard, J.; Quinn, R. C.

    2000-01-01

    Observations of the Martian planetary boundary layer lead to interpretations that are baffling and contradictory. In this paper, we specifically address the question of whether or not water vapor finds a substantial diurnal reservoir in the Martian regolith. To address this issue, we have measured H2O adsorption kinetics on SWy-1, a Na-rich montmorillonite from Wyoming. The highest-temperature (273 K) data equilibrates rapidly. Data gathered at realistic H2O partial pressures and temperatures appropriate to early morning show two phenomena that preclude a significant role for smectites in diurnally exchanging a large column abundance. First, the equilibration timescale is longer than a sol. Second, the equilibrium abundances are a small fraction of that predicted by earlier adsorption isotherms. The explanation for this phenomenon is that smectite clay actually increases its surface area as a function of adsorptive coverage. At Mars-like conditions, we show that the interlayer sites of smectites are likely to be unavailable.

  16. Spectroscopic investigations of Er3+ :CdO-Bi2 O3-B2O3 glasses.

    PubMed

    Nageswara Raju, C; Adinarayana Reddy, C; Sailaja, S; Seo, Hyo Jin; Sudhakar Reddy, B

    2012-01-01

    This article reports on the optical properties of Er3+ ions doped CdO-Bi2O3-B2O3 (CdBiB) glasses. The materials were characterized by optical absorption and emission spectra. By using Judd-Ofelt theory, the intensity parameters Ω(λ) (λ = 2, 4, 6) and also oscillatory strengths were calculated from the absorption spectra. The results were used to compute the radiative properties of Er3+ :CdBiB glasses. The concentration quenching and energy transfer from Yb3+ -Er3+ were explained. The stimulated emission cross-section, full width at half maximum (FWHM) and FWHM × σpE values are also calculated for all the Er3+ CdBiB glasses.

  17. Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement

    NASA Technical Reports Server (NTRS)

    Kopp, E.

    1984-01-01

    A model for production and loss of oxonium ions in the high-latitude D-region is developed, based on the observed excess of 34(+) which has been interpreted as H2O2(+). The loss mechanism suggested in the study is the attachment of N2 and/or CO2 in three-body reactions. Furthermore, mesospheric water vapor and H2O2 densities are inferred from measurements of four high-latitude ion compositions, based on the oxonium model. Mixing ratios of hydrogen peroxide of up to two orders of magnitude higher than previous values were obtained. A number of reactions, reaction constants, and a block diagram of the oxonium ion chemistry in the D-region are given.

  18. An ab initio study of the (H2O)20H+ and (H2O)21H+ water clusters

    NASA Astrophysics Data System (ADS)

    Kuś, Tomasz; Lotrich, Victor F.; Perera, Ajith; Bartlett, Rodney J.

    2009-09-01

    The study of the minimum Born-Oppenheimer structures of the protonated water clusters, (H2O)nH+, is performed for n =20 and 21. The structures belonging to four basic morphologies are optimized at the Hartree-Fock, second-order many-body perturbation theory and coupled cluster level, with the 6-31G, 6-31G∗, and 6-311G∗∗ basis sets, using the parallel ACES III program. The lowest energy structure for each n is found to be the cagelike form filled with H2O, with the proton located on the surface. The cage is the distorted dodecahedron for the 21-mer case, and partially rearranged dodecahedral structure for the 20-mer. The results confirm that the lowest energy structure of the magic number n =21 clusters corresponds to a more stable form than that of the 20-mer clusters.

  19. Critical Evaluation and Thermodynamic Optimization of the Na2O-FeO-Fe2O3 System

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-02-01

    A complete literature review, critical evaluation, and thermodynamic optimization of experimental phase diagrams and thermodynamic properties of the Na2O-FeO-Fe2O3 system were performed at 1 bar total pressure. A set of optimized model parameters obtained for all phases present in this system reproduces available and reliable thermodynamic properties and phase equilibria within experimental error limits from 298 K (25 °C) to above liquidus temperatures for all compositions and oxygen partial pressures from metallic saturation to 1 atm. The liquid phase was modeled based on the Modified Quasichemical Model by considering the possible formation of NaFeO2 associate in the liquid state. Complicated subsolidus phase relations depending on the oxygen partial pressure and temperature were elucidated, and discrepancies among experimental data were resolved.

  20. ESR and magnetization studies of Fe2O3-Bi2O3-ZnO-PbO glass system

    NASA Astrophysics Data System (ADS)

    Pelluri, Sandhya Rani; Singh, Rajender

    2016-11-01

    The electron spin resonance (ESR) and magnetization measurements were undertaken to understand the magnetic phenomena in the glass system with composition (Fe2O3)x (70 Bi2O3 20 ZnO 10 PbO)1-x (x=15, 20 and 25 mol%). At high temperature the ESR spectra consists of narrow resonance at g~2. As the temperature decreases a second resonance peak emerges and with further decrease in temperature, the second resonance peak progressively shifts towards lower field value. The ESR data shows the formation of superparamagnetic clusters. The temperature dependent magnetization data exhibits a spin glass-like transition and a superparamagnetic blocking at a temperature which increases with increase in x value.

  1. Crystallization Kinetics and Excess Free Energy of H2O and D2O Nanoscale Films of Amorphous Solid Water

    SciTech Connect

    Smith, R. Scott; Matthiesen, Jesper; Knox, Jake R.; Kay, Bruce D.

    2011-06-16

    Temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) are used to investigate the crystallization kinetics and measure the excess free energy of metastable amorphous solid water films (ASW) of H2O and D2O grown using molecular beams. The desorption rates from the amorphous and crystalline phases of ASW are distinct, and as such, crystallization manifests can be observed in the TPD spectrum. The crystallization kinetics were studied by varying the TPD heating rate from 0.001 to 3 K/s. A coupled desorptioncrystallization kinetic model accurately simulates the desorption spectra and accurately predicts the observed temperature shifts in the crystallization. Isothermal crystallization studies using RAIRS are in agreement with the TPD results. Furthermore, highly sensitive measurements of the desorption rates were used to determine the excess free energy of ASW near 150 K. The excess entropy obtained from these data are consistent with there being a thermodynamic continuity between ASW and supercooled liquid water.

  2. Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3.

    PubMed

    Zhang, Guozhen; Wu, Hao; Chen, Chao; Wang, Ti; Yue, Jin; Liu, Chang

    2015-01-01

    Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3 dielectrics have been fabricated on indium tin oxide-coated polyethylene naphthalate substrates by atomic layer deposition. A capacitance density of 7.8 fF/μm(2) at 10 KHz was obtained, corresponding to a dielectric constant of 26.3. Moreover, a low leakage current density of 3.9 × 10(-8) A/cm(2) at 1 V has been realized. Bending test shows that the capacitors have better performances in concave conditions than in convex conditions. The capacitors exhibit an average optical transmittance of about 70% in visible range and thus open the door for applications in transparent and flexible integrated circuits.

  3. Reconstructing Final H2O Contents of Hydrated Rhyolitic Glasses: Insights into H2O Degassing and Eruptive Style of Silicic Submarine Volcanoes

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Nichols, A. R.; Tani, K.; Llewellin, E. W.

    2015-12-01

    H2O degassing influences the evolution of magma viscosity and vesicularity during ascent through the crust, and ultimately the eruptive style. Investigating H2O degassing requires data on both initial and final H2O contents. Initial H2O contents are revealed by melt inclusion data, while final H2O contents are found from dissolved H2O contents of volcanic glass. However volcanic glasses, particularly of silicic composition, are susceptible to secondary hydration i.e. the addition of H2O from the surrounding environment at ambient temperature during the time following pyroclast deposition. Obtaining meaningful final H2O data therefore requires distinguishing between the original final dissolved H2O content and the H2O added subsequently during hydration. Since H2O added during hydration is added as molecular H2O (H2Om), and the species interconversion between H2Om and hydroxyl (OH) species is negligible at ambient temperature, the final OH content of the glass remains unaltered during hydration. By using H2O speciation models to find the original H2Om content that would correspond to the measured OH content of the glass, the original total H2O (H2Ot) content of the glass prior to hydration can be reconstructed. These H2O speciation data are obtained using FTIR spectroscopy. In many cases, particularly where vesicular glasses necessitate thin wafers, OH cannot be measured directly and instead is calculated indirectly as OH = H2Ot - H2Om. Here we demonstrate the importance of using a speciation-dependent H2Ot molar absorptivity coefficient to obtain accurate H2Ot and H2O speciation data and outline a methodology for calculating such a coefficient for rhyolite glasses, with application to hydrated silicic pumice from submarine volcanoes in the Japanese Izu-Bonin Arc. Although hydrated pumice from Kurose Nishi and Oomurodashi now contain ~1.0 - 2.5 wt% H2Ot, their pre-hydration final H2O contents were typically ~0.3 - 0.4 wt% H2Ot. Furthermore, we show that pre

  4. DC electrical conductivity of Ag2O-TeO2-V2O5 glassy systems

    NASA Astrophysics Data System (ADS)

    Souri, D.; Tahan, Z. Esmaeili; Salehizadeh, S. A.

    2016-04-01

    In the present article, samples of xAg2O-40TeO2-(60 - x)V2O5 ternary tellurite glasses with 0 ≤ x ≤ 50 (in mol%) have been prepared using the melt-quenching technique. XRD analysis, density measurement by Archimedes' law, determination of reduced vanadium ions by titration method, and electrical conductivity measurement by using four-probe methods have been done for these glasses. The mixed electronic-ionic conduction of these glasses has been investigated over a wide temperature range of 150-380 K. The experimental results have been analyzed with different theoretical models of hopping conduction. The analysis shows that at high temperatures the conductivity data are consistent with Mott's model of phonon-assisted polaronic hopping, while Mott's variable-range hopping model and Greaves' hopping model are valid at low temperatures. The temperature dependence of the conductivity has been also interpreted in the framework of the percolation model proposed by Triberis and Friedman. The analysis of the conductivity data also indicates that the hopping in these tellurite glasses occurs in the non-adiabatic regime. In each sample, based upon the justified transport mechanism, carrier density and mobility have been determined at different temperatures. The values of oxygen molar volume indicate the effect of Ag2O concentration on the thermal stability or fragility of understudied samples.

  5. Immiscibility in the NiFe2O4-NiCr2O4 Spinel Binary

    SciTech Connect

    S Ziemniak

    2004-08-13

    The solid solution behavior of the Ni(Fe{sub 1-n}Cr{sub n}){sub 2}O{sub 4} spinel binary is investigated in the temperature range 400-1200 C. Non-ideal solution behavior, as exhibited by non-linear changes in lattice parameter with changes in n, is observed in a series of single-phase solids air-cooled from 1200 C. Air-annealing for one year at 600 C resulted in partial phase separation in a spinel binary having n = 0.5. Spinel crystals grown from NiO, Fe{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} reactants, mixed to give NiCrFeO{sub 4}, by Ostwald ripening in a molten salt solvent, exhibited single phase stability down to about 750 C (the estimated consolute solution temperature, T{sub cs}). A solvus exists below T{sub cs}. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to n values of 0.2 and 0.7 at 300 C. The extrapolated solvus is shown to be consistent with that predicted using a primitive regular solution model in which free energies of mixing are determined entirely from changes in configurational entropy at room temperature.

  6. Characterization and electrical properties of V 2O 5-CuO-P 2O 5 glasses

    NASA Astrophysics Data System (ADS)

    Al-Assiri, M. S.

    2008-08-01

    Characterization and electrical properties of vanadium-copper-phosphate glasses of compositions xV 2O 5-(40- x)CuO-60P 2O 5 have been reported. X-ray diffraction (XRD) confirms the amorphous nature of these glasses. It was observed that, the density ( d) decreases gradually while the molar volume ( Vm) increases with the increase of the vanadium oxide content in such glasses. This may be due to the effect of the polarizing power strength, PPS, which is a measure of ratio of the cation valance to its diameter. The dc conductivity increases while the activation energy decreases with the increase of the V 2O 5 content. The dc conductivity in the present glasses is electronic and depends strongly upon the average distance, R, between the vanadium ions. Analysis of the electrical properties has been made in the light of small polaron hopping model. The parameters obtained from the fits of the experimental data to this model are reasonable and consistent with glass composition. The conduction is attributed to non-adiabatic hopping of small polaron.

  7. Reactivity at the Cu2O(100):Cu-H2O interface: a combined DFT and PES study.

    PubMed

    Stenlid, J H; Soldemo, M; Johansson, A J; Leygraf, C; Göthelid, M; Weissenrieder, J; Brinck, T

    2016-11-09

    The water-cuprite interface plays an important role in dictating surface related properties. This not only applies to the oxide, but also to metallic copper, which is covered by an oxide film under typical operational conditions. In order to extend the currently scarce knowledge of the details of the water-oxide interplay, water interactions and reactions on a common Cu2O(100):Cu surface have been studied using high-resolution photoelectron spectroscopy (PES) as well as Hubbard U and dispersion corrected density functional theory (PBE-D3+U) calculations up to a bilayer water coverage. The PBE-D3+U results are compared with PBE, PBE-D3 and hybrid HSE06-D3 calculation results. Both computational and experimental results support a thermodynamically favored, and H2O coverage independent, surface OH coverage of 0.25-0.5 ML, which is larger than the previously reported value. The computations indicate that the results are consistent also for ambient temperatures under wet/humid and oxygen lean conditions. In addition, both DFT and PES results indicate that the initial (3,0;1,1) surface reconstruction is lifted upon water adsorption to form an unreconstructed (1 × 1) Cu2O(100) structure.

  8. A (3 + 3)-dimensional "hypercubic" oxide-ionic conductor: type II Bi2O3-Nb2O5.

    PubMed

    Ling, Chris D; Schmid, Siegbert; Blanchard, Peter E R; Petříček, Vaclav; McIntyre, Garry J; Sharma, Neeraj; Maljuk, Andrey; Yaremchenko, Aleksey A; Kharton, Vladislav V; Gutmann, Matthias; Withers, Ray L

    2013-05-01

    The high-temperature cubic form of bismuth oxide, δ-Bi2O3, is the best intermediate-temperature oxide-ionic conductor known. The most elegant way of stabilizing δ-Bi2O3 to room temperature, while preserving a large part of its conductivity, is by doping with higher valent transition metals to create wide solid-solutions fields with exceedingly rare and complex (3 + 3)-dimensional incommensurately modulated "hypercubic" structures. These materials remain poorly understood because no such structure has ever been quantitatively solved and refined, due to both the complexity of the problem and a lack of adequate experimental data. We have addressed this by growing a large (centimeter scale) crystal using a novel refluxing floating-zone method, collecting high-quality single-crystal neutron diffraction data, and treating its structure together with X-ray diffraction data within the superspace symmetry formalism. The structure can be understood as an "inflated" pyrochlore, in which corner-connected NbO6 octahedral chains move smoothly apart to accommodate the solid solution. While some oxide vacancies are ordered into these chains, the rest are distributed throughout a continuous three-dimensional network of wide δ-Bi2O3-like channels, explaining the high oxide-ionic conductivity compared to commensurately modulated phases in the same pseudobinary system.

  9. Effect of Yb2O3 doping on the grain boundary of NiFe2O4-10NiO-based cermets after sintering

    NASA Astrophysics Data System (ADS)

    He, Han-bing

    2015-12-01

    xYb2O3-15(20Ni-Cu)/(85 - x)(NiFe2O4-10NiO) ( x = 0, 0.25, 0.5, 0.75, 1.0, 2.0, and 10.0) cermets for aluminum electrolysis were prepared to investigate the effect of Yb2O3 doping on the grain boundary of the cermets after sintering. The results showed that each interface was very clear and that with increasing Yb2O3 content, most of the Yb was evenly distributed at the grain boundary. Moreover, according to the phase composition and microstructural analysis by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), and electron probe microanalysis (EPMA), YbFeO3 was produced along the grain boundary. The YbFeO3 was concluded to not only have formed from the interaction between the NiFe2O4 or Fe2O3 component and Yb2O3 at the grain boundary of the cermets, but also from the decomposition of NiFe2O4 into NiO and Fe2O3 and the subsequent reaction of Fe2O3 with Yb2O3. Thus, the production of YbFeO3 resulted in a cermet with high relative density, good electrical conductivity, and good corrosion resistance.

  10. Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil

    PubMed Central

    Harter, Johannes; Guzman-Bustamante, Ivan; Kuehfuss, Stefanie; Ruser, Reiner; Well, Reinhard; Spott, Oliver; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that is produced during microbial nitrogen transformation processes such as nitrification and denitrification. Soils represent the largest sources of N2O emissions with nitrogen fertilizer application being the main driver of rising atmospheric N2O concentrations. Soil biochar amendment has been proposed as a promising tool to mitigate N2O emissions from soils. However, the underlying processes that cause N2O emission suppression in biochar-amended soils are still poorly understood. We set up microcosm experiments with fertilized, wet soil in which we used 15N tracing techniques and quantitative polymerase chain reaction (qPCR) to investigate the impact of biochar on mineral and gaseous nitrogen dynamics and denitrification-specific functional marker gene abundance and expression. In accordance with previous studies our results showed that biochar addition can lead to a significant decrease in N2O emissions. Furthermore, we determined significantly higher quantities of soil-entrapped N2O and N2 in biochar microcosms and a biochar-induced increase in typical and atypical nosZ transcript copy numbers. Our findings suggest that biochar-induced N2O emission mitigation is based on the entrapment of N2O in water-saturated pores of the soil matrix and concurrent stimulation of microbial N2O reduction resulting in an overall decrease of the N2O/(N2O + N2) ratio. PMID:28008997

  11. Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil

    NASA Astrophysics Data System (ADS)

    Harter, Johannes; Guzman-Bustamante, Ivan; Kuehfuss, Stefanie; Ruser, Reiner; Well, Reinhard; Spott, Oliver; Kappler, Andreas; Behrens, Sebastian

    2016-12-01

    Nitrous oxide (N2O) is a potent greenhouse gas that is produced during microbial nitrogen transformation processes such as nitrification and denitrification. Soils represent the largest sources of N2O emissions with nitrogen fertilizer application being the main driver of rising atmospheric N2O concentrations. Soil biochar amendment has been proposed as a promising tool to mitigate N2O emissions from soils. However, the underlying processes that cause N2O emission suppression in biochar-amended soils are still poorly understood. We set up microcosm experiments with fertilized, wet soil in which we used 15N tracing techniques and quantitative polymerase chain reaction (qPCR) to investigate the impact of biochar on mineral and gaseous nitrogen dynamics and denitrification-specific functional marker gene abundance and expression. In accordance with previous studies our results showed that biochar addition can lead to a significant decrease in N2O emissions. Furthermore, we determined significantly higher quantities of soil-entrapped N2O and N2 in biochar microcosms and a biochar-induced increase in typical and atypical nosZ transcript copy numbers. Our findings suggest that biochar-induced N2O emission mitigation is based on the entrapment of N2O in water-saturated pores of the soil matrix and concurrent stimulation of microbial N2O reduction resulting in an overall decrease of the N2O/(N2O + N2) ratio.

  12. Thermodynamics and Structure of CaO-Al2O3-3 Mass Pct B2O3 Slag at 1773 K (1500 °C)

    NASA Astrophysics Data System (ADS)

    Shu, Qifeng; Li, Pengfei; Zhang, Xiang; Chou, Kuochih

    2016-12-01

    Activity values of Al2O3 in CaO-Al2O3-B2O3 systems at 1773 K (1500 °C) were determined experimentally using a gas-copper-slag equilibrium technique. The oxygen partial pressure was controlled by C/CO equilibrium. A negative deviation from ideality was found in measured activity of Al2O3. The activity coefficient of Al2O3 decreases with the increase of CaO/Al2O3 ratio. To interpret the variation of Al2O3 activity with composition, structures of CaO-Al2O3-B2O3 glassy slag were investigated by using Raman spectroscopy. It was found that the number of bridging oxygen decreases with increasing CaO/Al2O3 ratio. With increase of CaO content, the aluminate network was gradually depolymerized, which corresponds to the decrease of the activity coefficient of Al2O3.

  13. Effect of Cu2O morphology on photocatalytic hydrogen generation and chemical stability of TiO2/Cu2O composite.

    PubMed

    Zhu, Lihong; Zhang, Junying; Chen, Ziyu; Liu, Kejia; Gao, Hong

    2013-07-01

    Improving photocatalytic activity and stability of TiO2/Cu2O composite is a challenge in generating hydrogen from water. In this paper, the TiO2 film/Cu2O microgrid composite was prepared via a microsphere lithography technique, which possesses a remarkable performance of producing H2 under UV-vis light irradiation, in comparison with pure TiO2 film, Cu2O film and TiO2 film/Cu2O film. More interesting is that in TiO2 film/Cu2O microgrid, photo-corrosion of Cu2O can be retarded. After deposition of Pt on its surface, the photocatalytic activity of TiO2/Cu2O microgrid in producing H2 is improved greatly.

  14. Modifying γ-Al2O3 surface with Y2Sn2O7 pyrochlore: on monolayer dispersion behaviour of composite oxides.

    PubMed

    Xu, Xianglan; Liu, Fang; Tian, Jinshu; Peng, Honggen; Liu, Wenming; Fang, Xiuzhong; Zhang, Ning; Wang, Xiang

    2017-03-21

    To investigate the dispersion behaviours of composite oxides onto the supports, and to achieve better supports for Pd for CO oxidation, a series of Y2Sn2O7/Al2O3 composite oxides with different Y2Sn2O7 loadings were prepared via deposition-precipitation method. Using XRD and XPS extrapolation methods, it is revealed that similar to single component metal oxides, composite oxides can also disperse spantaneously onto the support surfaces to form a monlayer with a certain capacity. The monolayer dispersion capacity/threshhold for Y2Sn2O7 on γ-Al2O3 surface is 0.109 mmol*100 m-2 γ-Al2O3, equalling to 7.2% Y2Sn2O7 weight loading. It is deserved to mention here that this is the first work to demonstrate the monolayer dispersion phenomenon of a composite oxide on a support. After the combination of Y2Sn2O7 with γ-Al2O3, active oxygen species can be introduced onto the catalyst surfaces. Therefore, the interaction between Pd and the supports can be strengthened, thus improving the Pd dispersion in comparison with the individual Y2Sn2O7 support and inducing synergistic effect between Pd and the composite supports, which is beneficial to the activity of the catalysts. By tuning the γ-Al2O3 surface with different amount of pyrochlore Y2Sn2O7 compound, the CO oxidation activity on the 1%Pd/Y2Sn2O7/Al2O3 has been improved. These findings may put new insights for people to design and prepare competitve supported noble metal catalysts with less amount of noble metals.

  15. Nb2O5-γ-Al2O3 nanofibers as heterogeneous catalysts for efficient conversion of glucose to 5-hydroxymethylfurfural

    PubMed Central

    Jiao, Huanfeng; Zhao, Xiaoliang; Lv, Chunxiao; Wang, Yijun; Yang, Dongjiang; Li, Zhenhuan; Yao, Xiangdong

    2016-01-01

    One-dimensional γ-Al2O3 nanofibers were modified with Nb2O5 to be used as an efficient heterogeneous catalyst to catalyze biomass into 5-hydroxymethylfurfural (5-HMF). At low Nb2O5 loading, the niobia species were well dispersed on γ-Al2O3 nanofiber through Nb–O–Al bridge bonds. The interaction between Nb2O5 precursor and γ-Al2O3 nanofiber results in the niobia species with strong Lewis acid sites and intensive Brønsted acid sites, which made 5-HMF yield from glucose to reach the maximum 55.9~59.0% over Nb2O5-γ-Al2O3 nanofiber with a loading of 0.5~1 wt% Nb2O5 at 150 °C for 4 h in dimethyl sulfoxide. However, increasing Nb2O5 loading could lead to the formation of two-dimensional polymerized niobia species, three-dimensional polymerized niobia species and crystallization, which significantly influenced the distribution and quantity of the Lewis acid sites and Brönst acid sites over Nb2O5-γ-Al2O3 nanofiber. Lewis acid site Nbδ+ played a key role on the isomerization of glucose to fructose, while Brønsted acid sites are more active for the dehydration of generated fructose to 5-HMF. In addition, the heterogeneous Nb2O5-γ-Al2O3 nanofiber catalyst with suitable ratio of Lewis acid to Brönsted sites should display an more excellent catalytic performance in the conversion of glucose to 5-HMF. PMID:27666867

  16. Nb2O5-γ-Al2O3 nanofibers as heterogeneous catalysts for efficient conversion of glucose to 5-hydroxymethylfurfural

    NASA Astrophysics Data System (ADS)

    Jiao, Huanfeng; Zhao, Xiaoliang; Lv, Chunxiao; Wang, Yijun; Yang, Dongjiang; Li, Zhenhuan; Yao, Xiangdong

    2016-09-01

    One-dimensional γ-Al2O3 nanofibers were modified with Nb2O5 to be used as an efficient heterogeneous catalyst to catalyze biomass into 5-hydroxymethylfurfural (5-HMF). At low Nb2O5 loading, the niobia species were well dispersed on γ-Al2O3 nanofiber through Nb–O–Al bridge bonds. The interaction between Nb2O5 precursor and γ-Al2O3 nanofiber results in the niobia species with strong Lewis acid sites and intensive Brønsted acid sites, which made 5-HMF yield from glucose to reach the maximum 55.9~59.0% over Nb2O5-γ-Al2O3 nanofiber with a loading of 0.5~1 wt% Nb2O5 at 150 °C for 4 h in dimethyl sulfoxide. However, increasing Nb2O5 loading could lead to the formation of two-dimensional polymerized niobia species, three-dimensional polymerized niobia species and crystallization, which significantly influenced the distribution and quantity of the Lewis acid sites and Brönst acid sites over Nb2O5-γ-Al2O3 nanofiber. Lewis acid site Nbδ+ played a key role on the isomerization of glucose to fructose, while Brønsted acid sites are more active for the dehydration of generated fructose to 5-HMF. In addition, the heterogeneous Nb2O5-γ-Al2O3 nanofiber catalyst with suitable ratio of Lewis acid to Brönsted sites should display an more excellent catalytic performance in the conversion of glucose to 5-HMF.

  17. Selective Encaging of N2O in N2O-N2 Binary Gas Hydrates via Hydrate-Based Gas Separation.

    PubMed

    Yang, Youjeong; Shin, Donghoon; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Kim, Dongseon; Shin, Hee-Young; Cha, Minjun; Yoon, Ji-Ho

    2017-02-22

    The crystal structure and guest inclusion behaviors of nitrous oxide-nitrogen (N2O-N2) binary gas hydrates formed from N2O/N2 gas mixtures are determined through spectroscopic analysis. Powder X-ray diffraction results indicate that the crystal structure of all the N2O-N2 binary gas hydrates is identified as the structure I (sI) hydrate. Raman spectra for N2O-N2 binary gas hydrate formed from N2O/N2 (80/20, 60/40, 40/60 mol %) gas mixtures reveal that N2O molecules occupy both large and small cages of the sI hydrate. In contrast, there is a single Raman band of N2O molecules for N2O-N2 binary gas hydrate formed from N2O/N2 (20/80 mol %) gas mixture, indicating that N2O molecules are trapped in only large cages of sI hydrate. From temperature-dependent Raman spectra and the Predictive Soave-Redlich-Kwong (PSRK) model calculation, we confirm the self-preservation of N2O-N2 binary gas hydrates in the temperature range of 210-270 K. Both the experimental measurements and the PSRK model calculations demonstrate the preferential occupation of N2O molecules rather than N2 molecules in the hydrate cages, leading to a possible process for separating N2O from gas mixtures via hydrate formation. The phase equilibrium conditions, pseudo pressure-composition (P-x) diagram, and gas storage capacity of N2O-N2 binary gas hydrates are discussed in detail.

  18. Quantifying N2O reduction to N2 based on N2O isotopocules - validation with independent methods (helium incubation and 15N gas flux method)

    NASA Astrophysics Data System (ADS)

    Lewicka-Szczebak, Dominika; Augustin, Jürgen; Giesemann, Anette; Well, Reinhard

    2017-02-01

    Stable isotopic analyses of soil-emitted N2O (δ15Nbulk, δ18O and δ15Nsp = 15N site preference within the linear N2O molecule) may help to quantify N2O reduction to N2, an important but rarely quantified process in the soil nitrogen cycle. The N2O residual fraction (remaining unreduced N2O, rN2O) can be theoretically calculated from the measured isotopic enrichment of the residual N2O. However, various N2O-producing pathways may also influence the N2O isotopic signatures, and hence complicate the application of this isotopic fractionation approach. Here this approach was tested based on laboratory soil incubations with two different soil types, applying two reference methods for quantification of rN2O: helium incubation with direct measurement of N2 flux and the 15N gas flux method. This allowed a comparison of the measured rN2O values with the ones calculated based on isotopic enrichment of residual N2O. The results indicate that the performance of the N2O isotopic fractionation approach is related to the accompanying N2O and N2 source processes and the most critical is the determination of the initial isotopic signature of N2O before reduction (δ0). We show that δ0 can be well determined experimentally if stable in time and then successfully applied for determination of rN2O based on δ15Nsp values. Much more problematic to deal with are temporal changes of δ0 values leading to failure of the approach based on δ15Nsp values only. For this case, we propose here a dual N2O isotopocule mapping approach, where calculations are based on the relation between δ18O and δ15Nsp values. This allows for the simultaneous estimation of the N2O-producing pathways' contribution and the rN2O value.

  19. H2O and HCl trace gas kinetics on crystalline HCl hydrates and amorphous HCl / H2O in the range 170 to 205 K: the HCl / H2O phase diagram revisited

    NASA Astrophysics Data System (ADS)

    Iannarelli, R.; Rossi, M. J.

    2014-05-01

    In this laboratory study, H2O ice films of 1 to 2 μm thickness have been used as surrogates for ice particles at atmospherically relevant conditions in a stirred flow reactor (SFR) to measure the kinetics of evaporation and condensation of HCl and H2O on crystalline and amorphous HCl hydrates. A multidiagnostic approach has been employed using Fourier transform infrared spectroscopy (FTIR) absorption in transmission to monitor the condensed phase and residual gas mass spectrometry (MS) for the gas phase. An average stoichiometric ratio of H2O : HCl = 5.8 ± 0.7 has been measured for HCl . 6H2O, and a mass balance ratio between HCl adsorbed onto ice and the quantity of HCl measured using FTIR absorption (Nin - Nesc - Nads) / NFTIR = 1.18 ± 0.12 has been obtained. The rate of evaporation Rev(HCl) for crystalline HCl hexahydrate (HCl . 6H2O) films and amorphous HCl / H2O mixtures has been found to be lower by a factor of 10 to 250 compared to Rev(H2O) in the overlapping temperature range 175 to 190 K. Variations of the accommodation coefficient α(HCl) on pure HCl . 6H2O up to a factor of 10 at nominally identical conditions have been observed. The kinetics (α, Rev) are thermochemically consistent with the corresponding equilibrium vapour pressure. In addition, we propose an extension of the HCl / H2O phase diagram of crystalline HCl . 6H2O based on the analysis of deconvoluted FTIR spectra of samples outside its known existence area. A brief evaluation of the atmospheric importance of both condensed phases - amorphous HCl / H2O and crystalline HCl . 6H2O - is performed in favour of the amorphous phase.

  20. Isotopomer-selective spectra of a single intact H2O molecule in the Cs+(D2O)5H2O isotopologue: Going beyond pattern recognition to harvest the structural information encoded in vibrational spectra

    SciTech Connect

    Wolke, Conrad T.; Fournier, Joseph A.; Miliordos, Evangelos; Kathmann, Shawn M.; Xantheas, Sotiris S.; Johnson, Mark A.

    2016-02-21

    We report the vibrational signatures of a single H2O water molecule occupying distinct sites of the hydration network in the Cs+(H2O)6 cluster. This is accomplished using isotopomer selective IR-IR hole-burning on the Cs+(D2O)5(H2O) clusters formed by gas-phase exchange of a single, intact H2O molecule for D2O in the Cs+(D2O)6 ion. The OH stretching pattern of the Cs+(H2O)6 isotopologue is accurately recovered by superposition of the isotopomer spectra, thus establishing that the H2O incorporation is random and that the OH stretching manifold is largely due to contributions from decoupled water molecules. This behavior enables a powerful new way to extract structural information from vibrational spectra of size-selected clusters by explicitly identifying the local environments responsible for specific infrared features. The Cs+(H2O)6 structure was unambiguously assigned to the 4.1.1 isomer (a homodromic water tetramer with two additional flanking water molecules) from the fact that its computed IR spectrum matches the observed overall pattern and recovers the embedded correlations in the two OH stretching bands of the water molecule in the Cs+(D2O)5(H2O) isotopomers. The 4.1.1 isomer is the lowest in energy among other candidate networks at advanced (e.g., CCSD(T)) levels of theoretical treatment after corrections for (anharmonic) zero-point energy (ZPE). With the structure in hand, we then explore the mechanical origin of the various band locations using a local electric field formalism. This approach promises to provide a transferrable scheme for the prediction of the OH stretching fundamentals displayed by water networks in close proximity to solute ions.

  1. Isotopomer-selective spectra of a single intact H2O molecule in the Cs+(D2O)5H2O isotopologue: Going beyond pattern recognition to harvest the structural information encoded in vibrational spectra

    NASA Astrophysics Data System (ADS)

    Wolke, Conrad T.; Fournier, Joseph A.; Miliordos, Evangelos; Kathmann, Shawn M.; Xantheas, Sotiris S.; Johnson, Mark A.

    2016-02-01

    We report the vibrational signatures of a single H2O molecule occupying distinct sites of the hydration network in the Cs+(H2O)6 cluster. This is accomplished using isotopomer-selective IR-IR hole-burning on the Cs+(D2O)5(H2O) clusters formed by gas-phase exchange of a single, intact H2O molecule for D2O in the Cs+(D2O)6 ion. The OH stretching pattern of the Cs+(H2O)6 isotopologue is accurately recovered by superposition of the isotopomer spectra, thus establishing that the H2O incorporation is random and that the OH stretching manifold is largely due to contributions from decoupled water molecules. This behavior enables a powerful new way to extract structural information from vibrational spectra of size-selected clusters by explicitly identifying the local environments responsible for specific infrared features. The Cs+(H2O)6 structure was unambiguously assigned to the 4.1.1 isomer (a homodromic water tetramer with two additional flanking water molecules) from the fact that its computed IR spectrum matches the observed overall pattern and recovers the embedded correlations in the two OH stretching bands of the water molecule in the Cs+(D2O)5(H2O) isotopomers. The 4.1.1 isomer is the lowest in energy among other candidate networks at advanced (e.g., CCSD(T)) levels of theoretical treatment after corrections for (anharmonic) zero-point energy. With the structure in hand, we then explore the mechanical origin of the various band locations using a local electric field formalism. This approach promises to provide a transferrable scheme for the prediction of the OH stretching fundamentals displayed by water networks in close proximity to solute ions.

  2. Coordination Modes of Americium in the Am2(C2O4)3(H2O)6·4H2O Oxalate: Synthesis, Crystal Structure, Spectroscopic Characterizations and Comparison in the M2(C2O4)3(H2O)6·nH2O (M = Ln, An) Series.

    PubMed

    Tamain, C; Arab-Chapelet, B; Rivenet, M; Legoff, X F; Loubert, G; Grandjean, S; Abraham, F

    2016-01-04

    Americium oxalate single crystals, Am2(C2O4)3(H2O)6·4H2O, were prepared by in situ oxalic acid generation by slow hydrolysis of the diester. Their structure was determined by single-crystal X-ray diffraction and was solved by the direct methods and Fourier difference techniques. The structure (space group P21/c, a = 11.184(4) Å, b = 9.489(4) Å, c = 10.234(4) Å, β = 114.308(8)°, Z = 2) consists of layers formed by six-membered rings of actinide metals connected through oxalate ions. The americium atoms are nine-coordinated by six oxygen atoms from three bidentate oxalate ligands and three water molecules. The distances within the coordination sphere as well as infrared and Raman spectra of several isostructural lanthanide (Ce(III), Pr(III), Nd(III), Sm(III), Gd(III)) and actinide (Pu(III), Am(III)) oxalates were compared to evaluate the similarities and the differences between the two series.

  3. The electronic structure and optical properties of ABP 2O 7 ( A = Na, Li) double phosphates

    NASA Astrophysics Data System (ADS)

    Hizhnyi, Yu. A.; Oliynyk, A.; Gomenyuk, O.; Nedilko, S. G.; Nagornyi, P.; Bojko, R.; Bojko, V.

    2008-01-01

    Partial densities of states and reflection spectra of NaAlP 2O 7, KAlP 2O 7 and LiInP 2O 7 double phosphate crystals are calculated by the full-potential linear-augmented-plane-wave (FLAPW) method. Experimental reflection spectra of KAlP 2O 7, CsAlP 2O 7 and NaInP 2O 7 are measured in the 4-20 eV energy range. The values of band gaps, Eg, are found from a comparison of experiment and calculations to be 6.0 eV for NaAlP 2O 7 and KAlP 2O 7, and 4.6 eV for LiInP 2O 7.

  4. The thermal stability of sideronatrite and its decomposition products in the system Na2O-Fe2O3-SO2-H2O

    NASA Astrophysics Data System (ADS)

    Ventruti, Gennaro; Scordari, Fernando; Della Ventura, Giancarlo; Bellatreccia, Fabio; Gualtieri, Alessandro F.; Lausi, Andrea

    2013-09-01

    The thermal stability of sideronatrite, ideally Na2Fe3+(SO4)2(OH)·3(H2O), and its decomposition products were investigated by combining thermogravimetric and differential thermal analysis, in situ high-temperature X-ray powder diffraction (HT-XRPD) and Fourier transform infrared spectroscopy (HT-FTIR). The data show that for increasing temperature there are four main dehydration/transformation steps in sideronatrite: (a) between 30 and 40 °C sideronatrite transforms into metasideronatrite after the loss of two water molecules; both XRD and FTIR suggest that this transformation occurs via minor adjustments in the building block. (b) between 120 and 300 °C metasideronatrite transforms into metasideronatrite II, a still poorly characterized phase with possible orthorhombic symmetry, consequently to the loss of an additional water molecule; X-ray diffraction data suggest that metasideronatrite disappears from the assemblage above 175 °C. (c) between 315 and 415 °C metasideronatrite II transforms into the anhydrous Na3Fe(SO4)3 compound. This step occurs via the loss of hydroxyl groups that involves the breakdown of the [Fe3+(SO4)2(OH)]{∞/2-} chains and the formation of an intermediate transient amorphous phase precursor of Na3Fe(SO4)3. (d) for T > 500 °C, the Na3Fe(SO4)3 compound is replaced by the Na-sulfate thenardite, Na2SO4, plus Fe-oxides, according to the Na3Fe3+(SO4)3 → 3/2 Na2(SO4) + 1/2 Fe2O3 + SOx reaction products. The Na-Fe sulfate disappears around 540 °C. For higher temperatures, the Na-sulfates decomposes and only hematite survives in the final product. The understanding of the thermal behavior of minerals such as sideronatrite and related sulfates is important both from an environmental point of view, due to the presence of these phases in evaporitic deposits, soils and sediments including extraterrestrial occurrences, and from the technological point of view, due to the use of these materials in many industrial applications.

  5. K3VO2(V2As2O12)

    PubMed Central

    Ezzine, Safa; Zid, Mohamed Faouzi; Driss, Ahmed

    2009-01-01

    A new potassium vanadium arsenate, tripotassium trivanadium bis­(arsenate) hexa­oxide, K3VO2(V2As2O12), was synthesized by a solid-state reaction at 743 K. The structure is built up from VO5 pyramids, VO4 tetra­hedra (.m. symmetry) and AsO4 tetra­hedra linked together by corner-sharing to form a three-dimensional framework. The two crystallographically independent K+ cations, one of which has .m. symmetry, are located in the inter­connected tunnels running along the a and b directions. PMID:21583723

  6. Synthesis of RNA using 2'-O-DTM protection.

    PubMed

    Semenyuk, Andrey; Földesi, Andras; Johansson, Tommy; Estmer-Nilsson, Camilla; Blomgren, Peter; Brännvall, Mathias; Kirsebom, Leif A; Kwiatkowski, Marek

    2006-09-27

    tert-Butyldithiomethyl (DTM), a novel hydroxyl protecting group, cleavable under reductive conditions, was developed and applied for the protection of 2'-OH during solid-phase RNA synthesis. This function is compatible with all standard protecting groups used in oligonucleotide synthesis, and allows for fast and high-yield synthesis of RNA. Oligonucleotides containing the 2'-O-DTM groups can be easily deprotected under the mildest possible aqueous and homogeneous conditions. The preserved 5'-O-DMTr function can be used for high-throughput cartridge RNA purification.

  7. Observation of the visible absorption spectrum of H2O(+)

    NASA Technical Reports Server (NTRS)

    Das, Biman; Farley, John W.

    1991-01-01

    The water cation, H2O(+), has been studied, using laser absorption spectroscopy in a velocity-modulated discharge. It is shown that it is possible to observe the absorption spectrum of an ion that is not a terminal ion, despite the weak absorption oscillator strength, and despite the use of a relatively noisy dye laser. The relative intensities of the absorption lines have been measured to an accuracy of 13 percent. It is concluded that if the absorption cross section of a single transition can be measured absolutely, then the entire manifold will be known absolutely.

  8. INTERSTELLAR H{sub 2}O MASERS FROM J SHOCKS

    SciTech Connect

    Hollenbach, David; Elitzur, Moshe; McKee, Christopher F.

    2013-08-10

    We present a model in which the 22 GHz H{sub 2}O masers observed in star-forming regions occur behind shocks propagating in dense regions (preshock density n{sub 0} {approx} 10{sup 6}-10{sup 8} cm{sup -3}). We focus on high-velocity (v{sub s} {approx}> 30 km s{sup -1}) dissociative J shocks in which the heat of H{sub 2} re-formation maintains a large column of {approx}300-400 K gas; at these temperatures the chemistry drives a considerable fraction of the oxygen not in CO to form H{sub 2}O. The H{sub 2}O column densities, the hydrogen densities, and the warm temperatures produced by these shocks are sufficiently high to enable powerful maser action. The observed brightness temperatures (generally {approx} 10{sup 11}-10{sup 14} K) are the result of coherent velocity regions that have dimensions in the shock plane that are 10-100 times the shock thickness of {approx}10{sup 13} cm. The masers are therefore beamed toward the observer, who typically views the shock ''edge-on'', or perpendicular to the shock velocity; the brightest masers are then observed with the lowest line-of-sight velocities with respect to the ambient gas. We present numerical and analytic studies of the dependence of the maser inversion, the resultant brightness temperature, the maser spot size and shape, the isotropic luminosity, and the maser region magnetic field on the shock parameters and the coherence path length; the overall result is that in galactic H{sub 2}O 22 GHz masers, these observed parameters can be produced in J shocks with n{sub 0} {approx} 10{sup 6}-10{sup 8} cm{sup -3} and v{sub s} {approx} 30-200 km s{sup -1}. A number of key observables such as maser shape, brightness temperature, and global isotropic luminosity depend only on the particle flux into the shock, j = n{sub 0} v{sub s} , rather than on n{sub 0} and v{sub s} separately.

  9. SiO2-P2O5-HfO2-Al2O3-Na2O glasses activated by Er3+ ions: From bulk sample to planar waveguide fabricated by rf-sputtering

    NASA Astrophysics Data System (ADS)

    Chiasera, A.; Vasilchenko, I.; Dorosz, D.; Cotti, M.; Varas, S.; Iacob, E.; Speranza, G.; Vaccari, A.; Valligatla, S.; Zur, L.; Lukowiak, A.; Righini, G. C.; Ferrari, M.

    2017-01-01

    0.4 Er3+-doped 90.7 SiO2 - 4.4 P2O5 - 2.3 HfO2 - 1.7 Al2O3 - 0.7 Na2O planar waveguide was fabricated by multi-target rf-sputtering technique starting by massive Er3+-activated P2O5-SiO2-Al2O3-Na2O glass. The optical parameters were measured by m-line apparatus operating at 632.8, 1319 and 1542 nm. The waveguide compositions were investigated by Energy Dispersive X-ray Spectroscopy and its morphology analyzed by Atomic Force Microscopy. The waveguide exhibits a single propagation mode at 1319 and 1542 nm with an attenuation coefficient of 0.2 dB/cm in the infrared. The emission of 4I13/2 → 4I15/2 transition of Er3+ ion, with a 28.5 nm bandwidth was observed upon TE0 mode excitation at 514.5 nm. The optical and spectroscopic features of the Er3+-activated parent P2O5-SiO2-Al2O3-Na2O glass were also investigated.

  10. Direct charge carrier injection into Ga2O3 thin films using an In2O3 cathode buffer layer: their optical, electrical and surface state properties

    NASA Astrophysics Data System (ADS)

    Cui, W.; Zhao, X. L.; An, Y. H.; Guo, D. Y.; Qing, X. Y.; Wu, Z. P.; Li, P. G.; Li, L. H.; Cui, C.; Tang, W. H.

    2017-04-01

    Conductive Ga2O3 thin films with an In2O3 buffer layer have been prepared on c-plane sapphire substrates using a laser molecular beam epitaxy technique. The effects of the In2O3 buffer layer on the structure and optical, electrical and surface state properties of the Ga2O3 films have been studied. The change in conductivity of the thin films is attributed to different thicknesses of the In2O3 buffer layer, which determine the concentration of charge carriers injected into the upper Ga2O3 layer from the interface of the bilayer thin films. In addition, the increase in flat band voltage shift and capacitance values as the In2O3 buffer layer thickens are attributed to the increase in surface state density, which also contributes to the rapid shrinkage of the optical band gap of the Ga2O3. With transparency to visible light, high n-type conduction and the ability to tune the optical band gap and surface state density, we propose that Ga2O3/In2O3 bilayer thin film is an ideal n-type semiconductor for fabrication of transparent power devices, solar cell electrodes and gas sensors.

  11. Hybrid supercapacitor devices based on MnCo2O4 as the positive electrode and FeMn2O4 as the negative electrode

    NASA Astrophysics Data System (ADS)

    Nagamuthu, Sadayappan; Vijayakumar, Subbukalai; Lee, Seong-Hun; Ryu, Kwang-Sun

    2016-12-01

    MnCo2O4 nanosheets and FeMn2O4 nanospheres were synthesized using a hydrothermal method. Choline chloride was used as the capping agent during the preparation of the nanoparticles. XRD patterns confirmed the spinel structure of MnCo2O4 and FeMn2O4. XPS measurements were used to determine the oxidation state of the prepared spinel metal oxides. HRTEM images revealed the formation of hexagonal nanosheets of MnCo2O4 and nanospheres of FeMn2O4. Electrochemical measurements were made for both positive and negative electrodes using three electrode systems. MnCo2O4 Exhibits 282C g-1 and FeMn2O4 yields 110C g-1 at a specific current of 1 A g-1. Hybrid supercapacitor device was fabricated using MnCo2O4 as the positive and FeMn2O4 as the negative electrode material. The hybrid supercapacitor device was delivered a maximum power of 37.57 kW kg-1.

  12. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels

    PubMed Central

    Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki

    2015-01-01

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs. PMID:26582471

  13. Structural and thermoelectric power properties of Na-doped V2O5·nH2O nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    El-Desoky, M. M.; Al-Assiri, M. S.; Bahgat, A. A.

    2014-08-01

    X-ray diffraction (XRD), thermoelectric power (S) and at room temperature electrical conductivity (σ) of Na+1-doped V2O5·nH2O nanocrystalline thin films fabricated by sol gel technique (colloid route) were studied. XRD showed that the Na2O-V2O5·nH2O thin films are highly oriented nanocrystals. The average value of particle size was found to be about 7.5 nm. The thermoelectric power showed that the thermoelectric power for all present nanocrystalline thin films samples decreased with increasing Na+1 content. However, the electrical conductivity increased with increasing Na+1 content. There is evidence that small polarons are responsible for determining the transport properties of the Na+1 doped V2O5·nH2O nanocrystalline thin films samples. The high value of electrical conductivity and small value of thermoelectric power is ideal for device applications, where device to device variation of the thermoelectric power must be small. This preparation technique was demonstrated to fabricate high quality Na2O-V2O5·nH2O nanocrystalline thin films for thermoelectric device applications. However, this may be further used for deposition with an ink-jet printer.

  14. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki

    2015-11-01

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.

  15. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels.

    PubMed

    Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki

    2015-11-19

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.

  16. Effect of H2O2 dosing strategy on sludge pretreatment by microwave-H2O2 advanced oxidation process.

    PubMed

    Wang, Yawei; Wei, Yuansong; Liu, Junxin

    2009-09-30

    Considering characteristics of breaking down H(2)O(2) into water and molecular oxygen by catalase in waste activated sludge (WAS), the effect of H(2)O(2) dosing strategy on sludge pretreatment by the advanced oxidation process (AOP) of microwave-H(2)O(2) was investigated by batch experiments for optimizing H(2)O(2) dosage. Results showed that the catalase in sludge was active at the low temperature range between 15 degrees C and 45 degrees C, and gradually lost activity from 60 degrees C to 80 degrees C. Therefore, the H(2)O(2) was dosed at 80 degrees C, to which the waste activated sludge was first heated by the microwave (MW), and then the sludge dosed with H(2)O(2) was continuously heated till 100 degrees C by the microwave. Results at different H(2)O(2) dosages showed that the higher the H(2)O(2) dosing ratio was, the more the SCOD and total organic carbon (TOC) were released into the supernatant, and the optimum range of H(2)O(2)/TCOD ratio should be between 0.1 and 1.0. The percentages of consumed H(2)O(2) in the AOP of microwave and H(2)O(2) treating the WAS were 25.38%, 22.53%, 14.82%, 13.61% and 19.63% at different H(2)O(2)/TCOD dosing ratios of 0.1, 0.5, 1, 2, 4, respectively. Along with the increasing H(2)O(2)/TCOD ratio, the contents of TCOD on particles, soluble substances and mineralization increased and the TCOD distribution on solids decreased.

  17. Catalase activity is stimulated by H(2)O(2) in rich culture medium and is required for H(2)O(2) resistance and adaptation in yeast.

    PubMed

    Martins, Dorival; English, Ann M

    2014-01-01

    Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD) and in phosphate buffer (pH 7.4). Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media.

  18. N2O5 measurement in Hong Kong by a chemical ionization mass spectrometry: Presence of high N2O5 and implications

    NASA Astrophysics Data System (ADS)

    Jun, Tham Yee; Tao, Wang; Zhe, Wang; Xinfeng, Wang; Chao, Yan; Qiaozhi, Zha; Zheng, Xu; Likun, Xue

    2014-05-01

    Dinitrogen pentoxide (N2O5) plays key roles in a number of nocturnal chemical processes within the troposphere, including the sink of nitrogen oxides (NOx). However, accurate measurement of this atmospheric trace compound remains as a challenging task, especially in polluted environment like China. We initially deploy a thermal dissociation chemical ionization mass spectrometry (TD-CIMS) for N2O5 field measurement in Hong Kong from 2010-2012. Unusual high N2O5 signal measured as NO3- (62 amu) were frequently observed. Various interference tests and correction were conducted to verify the data, but we caution the use of 62 amu for measuring ambient N2O5 in a high NOx environment like Hong Kong. Therefore, we optimized the CIMS to measure N2O5 as ion cluster of I(N2O5)- at 235 amu with some minor improvements and demonstrated to has the ability for simultaneous in situ measurements of N2O5 at an urban site. Then, the CIMS was deployed to another field study at a mountain-top site (Tai Mo Shan). A comparison of N2O5 measurement with a cavity ring-down spectrometry was performed and found to be in good correlation with the CIMS. High concentration of N2O5 was observed between the boundary layer and there are some occasions where N2O5 exceeds several ppb, which is among the highest values ever reported. These results provide deeper understanding on the chemistry of NOx in a polluted environment. Furthermore, our first observation of nitryl chloride (ClNO2) and its co-existence with N2O5 also implies an active heterogeneous reactivity between N2O5 and chloride particles in an Asian environment. Thus, N2O5 is an important nocturnal intermediate and has the potential in jump-starting the atmospheric photochemistry in this region

  19. Al2O3 Scale Development on Iron Aluminides

    SciTech Connect

    Zhang, Xiao-Feng; Thaidigsmann, Katja; Ager, Joel; Hou, Peggy Y.

    2005-11-10

    The structure and phase of the Al{sub 2}O{sub 3} scale that forms on an Fe{sub 3}Al-based alloy (Fe-28Al-5Cr) (at %) was investigated by transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). Oxidation was performed at 900 C and 1000 C for up to 190 min. TEM revealed that single-layer scales were formed after short oxidation times. Electron diffraction was used to show that the scales are composed of nanoscale crystallites of the {theta}, {gamma}, and {alpha} phases of alumina. Band-like structure was observed extending along three 120{sup o}-separated directions within the surface plane. Textured {theta} and {gamma} grains were the main components of the bands, while mixed {alpha} and transient phases were found between the bands. Extended oxidation produced a double-layered scale structure, with a continuous {alpha} layer at the scale/alloy interface, and a {gamma}/{theta} layer at the gas surface. The mechanism for the formation of Al{sub 2}O{sub 3} scales on iron aluminide alloys is discussed and compared to that for nickel aluminide alloys.

  20. Interaction of Peroxynitric Acid with Solid H2O Ice

    NASA Technical Reports Server (NTRS)

    Li, Zhuangjie; Friedl, Randall R.; Moore, Steven B.; Sander, Stanley P.

    1996-01-01

    The uptake of peroxynitric acid (PNA), HO2NO2 or HNO4, on solid H2O ice at 193 K (-80 C) was studied using a fast flow-mass spectrometric technique. An uptake coefficient of 0.15 +/- 0.10 was measured, where the quoted uncertainty denotes 2 standard deviations. The uptake process did not result in the production of gas phase products. The composition of the condensed phase was investigated using programmed heating (3 K/min) of the substrate coupled with mass spectrometric detection of desorbed species. Significant quantities of HNO, and HNO3 desorbed from the substrates at temperatures above 225 K and 246 K, respectively. The desorbed HNO3, which was less than 9% of the desorbed HNO, and remained unchanged upon incubation of the substrate, was likely due to impurities in the HNO4 samples rather than reaction of HNO, on the substrate. The onset temperatures for HNO4 desorption increased with increasing H2O to HNO4 ratios, indicating that HNO4, like HNO3, tends to be hydrated in the presence of water. These observations suggest possible mechanisms for removal of HNO4 or repartitioning of total odd nitrogen species in the Earth's upper troposphere and stratosphere.

  1. Decomposition of N2O over particulate matter

    NASA Technical Reports Server (NTRS)

    Rebbert, R. E.; Ausloos, P.

    1978-01-01

    Nitrous oxide is shown to undergo both a thermal and a photochemical decomposition at 296 K when it is adsorbed on various dry sands. The photochemical process occurs with light of wavelengths greater than 280 nm, where gaseous N2O does not absorb. At low pressures (less than 0.1 torr) the half-life for the thermal decomposition of nitrous oxide to nitrogen when placed in contact with about 5 gm of heat-treated Tunisian sand in a one-liter vessel was 350 + or - 35 days. Under certain photolytic conditions this half-life was reduced. The efficiency of the photolytic process for a particular sand depends on the pressure and on the wavelength of light. For Tunisian sand at 1.1 torr and with the full mercury arc, the destruction efficiency is about 0.00002 molecule/incident photon. These results indicate that particulate matter in the troposphere may be responsible for the decomposition of nitrous oxide and hence act as an atmospheric sink for N2O. However, moisture causes a drastic reduction in the number of molecules dissociated per incident photon.

  2. Infrared absorption of H_2_O toward massive young stars.

    NASA Astrophysics Data System (ADS)

    van Dishoeck, E. F.; Helmich, F. P.

    1996-11-01

    We present ISO-SWS observations of absorption lines of gas-phase water within its bending vibrational mode at 6μm toward four massive young stars, which cover a range in physical parameters. Hot water with an excitation temperature >200K is detected toward GL 2136 and GL 4176, in addition to GL 2591 discussed by Helmich et al. (1996A&A...315L.173H). The abundance of water with respect to H_2_ is high in these regions, ~(2-3)x10^-5^, and comparable to the solid H_2_O abundance. In contrast, no gas-phase water absorption lines are seen toward NGC 7538 IRS9. The amount of gas-phase water is correlated with the column density of warm gas along the line of sight. Infrared observations of a larger variety of sources may provide insight into the relative importance of evaporation of grain mantles vs. high temperature gas-phase chemistry in producing the observed high abundance of H_2_O.

  3. Fe2O3 nanoparticles for airborne organophosphate detection

    NASA Astrophysics Data System (ADS)

    Phillips, Joshua; Soliz, Jennifer; Hauser, Adam

    Dire need for early detection of organophosphates (OP) exists in both civilian (pesticide/herbicide buildup) and military (G/V nerve agents) spheres. Nanoparticle materials are excellent candidates for the detection and/or decontamination of hazardous materials, owing to their large surface to volume ratios and tailored surface functionality. Within this category, metal oxides include structures that are stable with the range of normal environmental conditions (temperature, humidity), but have strong, specific reaction mechanisms (hydrolysis, oxidation, catalysis, stoichiometric reaction) with toxic compounds. In this talk, we will present on the suitability of Fe2O3 nanoparticles as airborne organophosphate detectors. 23 nm particles were exposed to a series of organophosphate compounds (dimethyl methylphosphonate, dimethyl chlorophosphonate, diisopropyl methylphosphonate), and studied by x-ray magnetic circular dichroism and x-ray absorption spectroscopy to confirm the stoichiometric Fe2O3 to FeO mechanism and determine magnetic sensor feasibility. AC Impedance Spectroscopy shows both high sensitivity and selectivity via frequency dependence in both impedance and resistivity, suggesting some feasibility for impedimetric devices. We acknowledge funding under Army Research Office STIR Award #W911F-15-1-0104. J.R.S. acknowledges funding from the Defense Threat Reduction Agency under Projects BA13PHM210 and BA07PRO104. J.R.S. also acknowledges funding under a NRC fellowship.

  4. Al2O3-based nanofluids: a review

    PubMed Central

    2011-01-01

    Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%. PMID:21762528

  5. The source of stratospheric NO and N2O

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.

    1984-01-01

    The photodissociation of O3 was investigated as a possible sources of N2O production in the stratosphere. Photolysis was conducted at 1576 A to generate the excited O2 states that react with N2 to form N2O. At this wavelength, there is a quantum yield of two for prompt production of oygen atoms, which is a consequence of the existence of two photodissociative channels giving comparable yields. One of these channels gives O(D1) and O2(b1sigma(+)subg), with a quantum yield of 0.6, whereas the other results in fragmentation of the O3, with production of three ground state oxygen atoms. The O2(b) is generated with vibrational excitation, and there are comparable populations in levels O to 3. These observations are the first to show O2(b) production from any photodissociative process, and were made under conditions in which the kinetics of vibrationally excited O2(b) can be studied. It appears that O3 photodissociation at 1576 A is not a good system for generating the higher electronic states of O2; it is likely that better results will be obtained at 1930 A.

  6. Metamagnetic Nematic Phase of Sr3Ru2O7

    NASA Astrophysics Data System (ADS)

    MacKenzie, Andrew

    2008-03-01

    In this talk I will review our group's recent observations that a quantum phase with pronounced electrical transport anisotropies forms in the vicinity of a metamagnetic quantum critical point in Sr3Ru2O7. The behaviour, which is strongly dependent on disorder and is only seen in the highest purity crystals, has phenomenological similarities with prior observations on two-dimensional electron gases in semiconductor devices [1,2]. Its appearance in bulk in Sr3Ru2O7 has allowed us to perform a number of thermodynamic measurements, and also offers the promise of study using modern surface-based spectroscopies such as angle resolved photoemission and spectroscopic imaging scanning tunneling microscopy. References [1] For example M.P. Lilly et al., Phys. Rev. Lett. 82, 394 (1999); ibid 83, 824 (1999) [2] W. Pan et al., Phys. Rev. Lett. 83, 820 (1999). Collaborators: S.A. Grigera^1, R.A. Borzi^1,2, A. Rost^1, J.F. Mercure^1, J. Farrell^1, R.S. Perry^3, A.G. Green^1, M. Allan^1, M. Wang^4, J. Lee^1, F. Baumberger^1, S.J.S Lister^1, S.L. Lee^1, J.C.S. Davis^1,4, Z.X. Shen^5, Y. Maeno^6. ^1 University of St Andrews, Scotland ^2 INFTA, La Plata, Argentina ^3 University of Edinburgh, Scotland ^4 Cornell University, USA ^5 Stanford University, USA ^6 Kyoto University, Japan

  7. Al2O3-based nanofluids: a review.

    PubMed

    Sridhara, Veeranna; Satapathy, Lakshmi Narayan

    2011-07-16

    Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%.

  8. Thermal equation of state of CaFe 2O 4-type MgAl 2O 4

    NASA Astrophysics Data System (ADS)

    Sueda, Yuichiro; Irifune, Tetsuo; Sanehira, Takeshi; Yagi, Takehiko; Nishiyama, Norimasa; Kikegawa, Takumi; Funakoshi, Ken-ichi

    2009-05-01

    In situ X-ray diffraction measurements of CaFe 2O 4-type MgAl 2O 4 have been conducted at pressures up to 42 GPa and temperatures to 2400 K using Kawai-type multianvil apparatus with sintered diamond anvils. Additional measurements have also been conducted at pressures to 12 GPa using diamond anvil cell with helium as a pressure medium at room temperature, and at temperatures to 836 K at the ambient pressure using a high-temperature X-ray diffractometer. The analysis of room-temperature data yielded V0 = 240.1(2) Å 3, K0 = 205(6) GPa, and K0=4.1(3). A fit of the present data to high-temperature Birch-Murnaghan equation of state (EOS) yielded (∂ K0/∂ T) P = -0.030(2) GPa/K and α0 = a0 + b0T with values of a0 = 1.96(13) × 10 -5 K -1 and b0 = 1.64(24) × 10 -8 K -2. The present data set was also fitted to Mie-Grüneisen-Debye (MGD) EOS and we obtained γ0 = 1.73(7), q = 2.03(37), and θ0 = 1546(104) K. Density changes of MORB have been estimated using the newly obtained thermoelastic parameters, assuming that the Al-rich phase in this composition possesses the CaFe 2O 4-type structure under the lower mantle P, T conditions. The calculated densities along geotherms for the normal mantle and subducting cold slabs are both significantly higher than those of typical seismological models, confirming the conclusion of some recent results on MORB by laser-heated diamond anvil cell experiments.

  9. Phase equilibria in the system Nd2O3- P2O5- H2O and growth of NdP5O14 single crystals under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Yoshimura, Masahiro; Fujii, Kazutaka; Sōmiya, Shigeyuki

    1985-04-01

    Phase equilibria in the system Nd2O3- P2O5- H2O were determined under hydrothermal conditions at 500 and 350°C under 100 MPa by quenching techniques. There exist three types of neodymium phosphates: NdPO 4, NdP 3O 9 and NdP 5O 14, and a liquid phase of highly condensed phosphoric acid at both temperatures. The composition of the liquid phase with which NdP 5O 14 and NdP 3O 9 or NdP 3O 9 and NdPO 4 could coexist at 500°C was 3% Nd2O3-80% P2O5-17% H2O or 4% Nd2O3-74% P2O5 -22% H2O respectively, while that at 350°C changed to 2% Nd2O3-78% P2O5-20% H2O or 2% Nd2O3-75% P2O5-23% H2O respectively. These results indicate that the solubility curve of NdP 5O 14 had a positive slope against temperature, which allowed us to apply a temperature gradient method for the crystal growth of NdP 5O 14. Polyhedral crystals of 0.5 mm in maximum size were grown at the upper part of a gold capsule ( T⋍400°C) through the transportation due to Δ T=100°C after 10 days. These crystals had flat and smooth surfaces and contained less bubble-shaped inclusions than crystals synthesized under isothermal conditions. Crystals obtained at the lower part of the gold capsule ( T=500°C) were polyhedral 1 mm in maximum size. Growth experiments with Δ T=50°C yielded no crystals at the upper part in the capsule ( T⋍450°C), probably due to an insufficient transportation.

  10. N2O seasonal distributions and air-sea exchange in UK estuaries: Implications for the tropospheric N2O source from European coastal waters

    NASA Astrophysics Data System (ADS)

    Barnes, J.; Upstill-Goddard, R. C.

    2011-03-01

    We report measurements of dissolved nitrous oxide (N2O), dissolved inorganic nitrogen, and turbidity in surveys of six UK inner estuaries between February 2000 and October 2002: the Humber, Forth, Tamar, Tyne, Tees, and Tay. We also present dissolved N2O data for the Wash outer estuary from May 1995 and dissolved O2 data for the Forth estuary from June 2001. N2O was always supersaturated relative to air and was highest in the Humber (range 140-6500%) and generally higher at all sites during summer. In estuaries with well defined turbidity maximum zones (TMZs) at low salinity, N2O was maximal in the TMZ, coincident with high NH4+ and/or NO3-. Inspection of the broad relationships between N2O, NH4+, NO3-, NO2-, and O2 revealed a predominantly nitrification source for the N2O in the estuaries studied; denitrification-derived N2O was apparently unimportant and denitrification did not constitute a significant NO3- sink. In the anthropogenically impacted Tees estuary N2O (saturation 140-2000%) was attributed to high NH4+ in sewage and industrial effluent. N2O emissions were thus primarily a function of NH4+ derived from internal resuspension and/or ammonification, or external inputs and were independent of river-borne NO3-. We reevaluated total UK and European estuarine N2O emissions using these and published data, based on an aerially weighted approach that separately identified inner and outer estuaries, and a downward revision of the total European estuarine area used in a recent synthesis. Our revised estimates, ˜1.9 ± 1.2 × 109 g N2O yr-1 for the UK and 6.8 ± 13.2 × 109 g N2O yr-1 for Europe (including UK) are dominated by large (area ˜200-500 km2) anthropogenically impacted macrotidal inner estuaries. By contrast large pristine macrotidal systems, small inner estuaries, and large outer estuaries appear to be comparatively minor N2O sources. The UK estuarine N2O source is <2% of the UK N2O budget. Our revised European estuarine N2O emission is around 2 orders

  11. Synergistic effect of Fe2O3/Ho2O3 Co-modified 2D-titanate heterojunctions on enhanced photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaona; Liu, Xinzhao; Lu, Dingze; Wu, Pei; Yan, Qiuyang; Liu, Min; Fang, Pengfei

    2017-01-01

    TiO2-based nanosheets (TNSs) co-modified by Fe2O3 and Ho2O3 were synthesized by one-pot hydrothermal method using Fe(NO3)3 and Ho(NO3)3 as precursors compositing with TiO2. The Fe2O3/Ho2O3-TNSs heterojunctions possessed a thickness of approximately 3-4 nm, large specific surface area of 210-310 cm2/g, with Fe2O3 and Ho2O3 nanoparticles highly dispersed over the surface of the nanosheets. The crystallization of the samples gradually increased with the amount of Fe2O3 nanoparticles, which was confirmed by the XRD, BET and Raman spectra, indicating that Ho2O3 and Fe2O3 influenced the crystallinity and structure evolution of the TNSs, besides, led to an improved the visible-light absorption. Surface photocurrent and fluorescence spectral studies revealed that the photo-generated charge carrier separation efficiency could be efficiently improved by an appropriate amount of modification. The Fe2O3/Ho2O3-TNSs exhibited synergistic effect on photocatalytic degradation of RhB as well as MO under visible light. The highest efficiency was obtained by 0.05%-Fe2O3/Ho2O3-TNSs (Fe:Ho:Ti = 0.05:1:100), which was 8.86 and 6.72 times than that of individual 1.0%-Ho2O3-TNSs (Ho:Ti = 1:100) and 0.05%-Fe2O3-TNSs (Fe:Ti = 0.05:100), respectively. The possible mechanism for enhanced visible-light-induced photocatalytic activity was proposed. Ho2O3 introduced in the photocatalysts may act as the hole capture while Fe2O3 may share the same Fermi levels with TNSs and serve as the electron capture center in the n-n-p system, which reduced the recombination rate of photo-induced electron-hole pairs.

  12. Structure and photoluminescence properties of rare-earth free narrow-band red-emitting Mg6ZnGeGa2O12: Mn4+ phosphor excited by NUV light

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Wang, Yuhua

    2017-02-01

    A kind novel red emission Mg6ZnGeGa2O12: Mn4+ phosphor under NUV excitation is synthesized successfully by high temperature solid-state reaction. The structure of Mg6ZnGeGa2O12 is investigated by TEM and X-ray powder diffraction (XRD) Rietveld Refinement; the luminescence properties are measured by diffuse reflection spectra, emission spectra, excitation spectra, decay curves and temperature dependence spectra. The result indicated that it has one octahedral site and tetrahedral site in crystal structure. Mn4+ can occupy octahedral (Mg2+(Zn2+)/Ga3+) site. It can emit red light peaking at 660 nm under NUV (420 nm) excitation. The critical quenching concentration of Mn4+ was about 1.0 mol%. The concentration quenching mechanism investigates to be a d-d interaction for the Mn4+ center. The CIE chromaticity coordinates and FWHM are (0.717, 0.283) and 25 nm. The PL intensity of Mg6ZnGeGa2O12: 1.0%Mn4+ drops to 75% when the temperature is raised up to 150 °C. It implies that Mg6ZnGeGa2O12: Mn4+ is a potential red phosphor matching NUV LED chips.

  13. Crack-free thick (∼5 µm) α-Ga2O3 films on sapphire substrates with α-(Al,Ga)2O3 buffer layers

    NASA Astrophysics Data System (ADS)

    Oda, Masaya; Kaneko, Kentaro; Fujita, Shizuo; Hitora, Toshimi

    2016-12-01

    To obtain crack-free thick α-Ga2O3 films on sapphire substrates, effects and behaviors of buffer layers have been investigated. With the growth of an α-Ga2O3 layer, there appeared an unintentionally formed layer in the sample, which was associated with stress accumulation and could be the seed for crack generation. We obtained a thick (∼5 µm) α-Ga2O3 layer on a sapphire substrate with the insertion of α-(Al0.12Ga0.88)2O3/α-(Al0.02Ga0.98)2O3 buffer layers, and for this sample, we did not observe the intermediate layer, suggesting that the buffer layers were effective for eliminating the stress accumulation at the α-Ga2O3/sapphire interface region.

  14. Effect of MgO-Y2O3 Powders and Sintering Temperature on Properties of Al2O3-TiC Composites

    NASA Astrophysics Data System (ADS)

    Kasuriya, Supawan; Atong, Duangduen

    Al2O3-30%TiC composites doped with 0.5%MgO and 0.3-1.0% Y2O3 additives are pressureless-sintered at different conditions such as temperatures, soaking times, and heating rates under an argon atmosphere. The physical, mechanical properties, and cutting performance of sintered composites were compared with commercial one. In this work, the Al2O3-30%TiC composites doped with 0.5%MgO and 0.3%Y2O3 sintered at 1800°C obtained highest density of 97% of theoretical and flexural strength of 343 MPa. In addition, the cutting performance of the Al2O3-30%TiC-0.5%MgO-0.3%Y2O3 sintered at 1800°C was comparable with the commercial cutting tool.

  15. Magnetic properties of CoFe2O4 and ZnFe2O4 nanoparticles synthesized by novel chemical route

    NASA Astrophysics Data System (ADS)

    Kharat, S. P.; Darvade, T. C.; Gaikwad, S. K.; Baraskar, B. G.; Kakade, S. G.; Kambale, R. C.; Kolekar, Y. D.

    2016-05-01

    CoFe2O4 and ZnFe2O4 nanoparticles were synthesized by modified and cost effective sol-gel autocombustion method. X-ray diffraction study confirms the spinel phase formation of face centered cubic lattice with space group Fd3m and without any impurity. Magnetic measurements demonstrate that the CoFe2O4 shows saturation magnetization of 2.73 µB/f.u. where as ZnFe2O4 shows paramagnetic behavior. Magnetic behavior of CoFe2O4 and ZnFe2O4 is confirmed from Mössbauer studies. Effect of sintering on structural, magnetic and cation occupancy of substituted cobalt ferrite is discussed in this paper.

  16. Responsive mechanism of a newly synthesized fluorescent probe for sensing H2O2, NO and H2O2/NO

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Jin; Wang, Xin; Zhou, Yong; Zhao, Ke; Wang, Chuan-Kui

    2016-10-01

    Optical properties of a newly synthesized fluorescent probe for H2O2, NO and H2O2/NO are investigated by employing time-dependent density functional theory. Three different sets of fluorescence signals are obtained when the probe reacts with H2O2, NO and H2O2/NO. Analysis of molecular orbitals is presented to explore responsive mechanism of the probe for the detected objects, where the fluorescent resonance energy transfer process is for H2O2 (H2O2/NO) and the intramolecular charge transfer process is for NO. Our results provide theoretical explanation of the experimental results, and importantly, suggest possibility of the probe as a two-photon fluorescent sensor.

  17. Electronic structure of spinel oxides ZnSc2O4 and ZnY2O4: A first principle study

    NASA Astrophysics Data System (ADS)

    Ghosh, Anima; Kumari, Anita; Rajagopalan, M.; Thangavel, R.

    2015-08-01

    The electronic structure spinel ZnSc2O4 and ZnY2O4 were studied by the self-consistent tight-binding linearized muffin-tin orbital method with the atomic sphere approximation. The calculated results predict these zinc-based spinel oxides to be direct-gap materials. The direct gap at Γ is found to value 3.9 eV for ZnSc2O4 and 3.4 eV for ZnY2O4. The systematic decrease in the gap is attributed to the presence of 3d orbital's of Zn and Sc/Y and the associated p-d hybridization in the upper valence band of ZnSc2O4 and ZnY2O4. The value of lattice parameters, band gap, bulk modulus, are deduced and reported for the first time to our knowledge.

  18. Microcrystalline phase transformation from ZrF4·HF·2H2O to ZrO2 through the intermediate phases ZrF4·3H2O, ZrF4·H2O, Zr2OF6·H2O and ZrF4

    NASA Astrophysics Data System (ADS)

    Dey, C. C.

    2014-09-01

    The behavior of hydrated zirconium fluoride has been studied by perturbed angular correlation spectroscopy. It is found that the crystalline compound ZrF4·HF·2H2O, formed initially by drying solution of Zr metal in concentrated HF, transforms spontaneously to ZrF4·3H2O. This trihydrated compound dehydrates to ZrF4 through the intermediate monohydrates ZrF4·H2O and Zr2OF6·H2O. The compound ZrF4 finally transforms to ZrO2 at ∼343 K. Different crystalline phases of ZrF4·HF·2H2O, ZrF4·3H2O, ZrF4·H2O, Zr2OF6·H2O, ZrF4 and ZrO2 have been identified and characterized by PAC spectroscopy. From previous PAC measurements, the intermediate ZrF4·H2O and Zr2OF6·H2O were not observed and the dehydration from ZrF4·3H2O to ZrF4 was found to be routed directly. Present measurements by PAC exhibits dissimilar crystal structures for ZrF4·3H2O and ZrF4·H2O unlike the crystal structures found in hafnium analogous compounds.

  19. Identifying N2O formation and emissions from a full-scale partial nitritation reactor.

    PubMed

    Mampaey, Kris E; De Kreuk, Merle K; van Dongen, Udo G J M; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2016-01-01

    In this study, N2O formation and emissions from a full-scale partial nitritation (SHARON) reactor were identified through a three-weeks monitoring campaign during which the off-gas was analysed for N2O, O2, CO2 and NO. The overall N2O emission was 3.7% of the incoming ammonium load. By fitting the N2O emission to a theoretical gas stripping profile, the N2O emissions could be assigned to aerobically formed N2O and N2O formed under anoxic conditions. This was further substantiated by liquid N2O measurements. Under standard operation, 70% of the N2O emission was attributed to anoxic N2O formation. Dedicated experiments revealed that low dissolved oxygen concentrations (<1.0 gO2·m(-3)) and longer anoxic periods resulted in an increased N2O emission. Minimising or avoiding anoxic conditions has the highest effect in lowering the N2O emissions. As an additional result, the use of the off-gas N2O concentration measurements to monitor the gas-liquid mass transfer rate coefficient (kLa) during dynamic reactor operation was demonstrated.

  20. Bactericidal Mechanisms of Ag2O/TNBs under both Dark and Light Conditions

    NASA Astrophysics Data System (ADS)

    Jin, Yinjia; Dai, Zhaoyi; Liu, Fei; Kim, Hyunjung; Tong, Meiping; Hou, Yanglong

    2013-04-01

    Ag2O deposited titanium dioxides nanobelts (Ag2O/TNBs) were fabricated and used to investigate the toxic effects on aquatic microorganisms. The disinfection activities of Ag2O/TNBs on two representative bacterial strains: Gram-negative E. coli and Gram-positive B. subtilis, were examined under both dark and light conditions. Ag2O/TNBs exhibited stronger bactericidal activities than TNBs under both dark and light conditions. For both cell types, disinfection effects of Ag2O/TNBs were greater under light conditions relative to those under dark conditions. The bactericidal mechanisms of Ag2O/TNBs under both dark and light conditions were explored. Under dark conditions, neither Ag+ ions released from Ag2O/TNBs nor TNBs contributed to the bactericidal activities of Ag2O/TNBs. Under light conditions, both the released Ag+ions and TNBs yet were found to have contributions to the bactericidal effects of Ag2O/TNBs. Active species (H2O2, ?O2-, ande-) generated by Ag2O/TNBs played important roles in the disinfection processes under both dark and light conditions. Without the presence of active species, the direct contact of Ag2O/TNBs with bacterial cells had no bactericidal effect.

  1. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No....

  2. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No....

  3. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No....

  4. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No....

  5. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No....

  6. Influence of operational key parameters on the photocatalytic decolorization of Rhodamine B dye using Fe2+/H2O2/Nb2O5/UV system.

    PubMed

    Hashemzadeh, Fatemeh; Rahimi, Rahmatollah; Gaffarinejad, Ali

    2014-04-01

    The present research deals with the development of a new heterogeneous photocatalysis and Fenton hybrid system for the removal of color from textile dyeing wastewater as Rhodamine B (RhB) solutions by using Fe(2+)/H2O2/Nb2O5 as a photocatalytic system. The application of this photocatalytic system for the decolorization of dye contaminants is not reported in the literature yet. Different parameters like dye concentration, Nb2O5/Fe(2+) catalyst amount, pH, and H2O2 concentration have been studied. The optimum conditions for the decolorization of the dye were initial concentration of 10 mg L(-1) of dye, pH 4, and Nb2O5/Fe(2+) catalyst concentration of 0.5 g L(-1)/50 mg L(-1). The optimum value of H2O2 concentration for the conditions used in this study was 700 mg L(-1). Moreover, the efficiency of the Nb2O5/photo-Fenton hybrid process in comparison to photo-Fenton alone and a dark Fenton process as a control experiment to decolorize the RhB solution has been investigated. The combination of photo-Fenton and Nb2O5 catalysts has been proved to be the most effective for the treatment of such type of wastewaters. The results revealed that the RhB dye was decolorized in a higher percent (78 %) by the Nb2O5/photo-Fenton hybrid process (Fe(2+)/H2O2/Nb2O5/UV) than by the photo-Fenton process alone (37 %) and dark Fenton process (14 %) after 120 min of treatment. Moreover, the Nb2O5 catalyst as a heterogeneous part of the photocatalytic system was demonstrated to have good stability and reusability.

  7. MDSC, electrical conductivity and optical absorption studies of 40B 2O 3-20CdO-(40-x)Bi 2O 3-xLi 2O glasses

    NASA Astrophysics Data System (ADS)

    Vijaya Kumar, R.; Srinivasu, Ch.; Siva Kumar, K.

    2011-02-01

    Quaternary glasses with composition 40B 2O 3-20CdO-(40-x)Bi 2O 3-xLi 2O where 0 ≤ x ≤ 40 were prepared by melt quench technique. The density of the glass samples which is evaluated by Archimedes method showed that the density increases with Bi 2O 3 content. The modulated differential scanning calorimetry (MDSC) studies have been done on these samples to evaluate various thermo dynamical parameters. The value of glass transition temperature (T g) decreases with the Li 2O content. The dc electrical conductivity studies revealed that the conductivity in these glass samples increases with Li 2O content, where as the activation energy decreases. Theoretical optical basicity values decreases with Li 2O content. The optical absorption studies revealed that the cutoff wavelength increases while optical band gap energy (E opt) and Urbach energy (Δ E) decreases with increase of Li 2O content. The E opt values of these glasses are found to be in the range 2.848-3.258 eV where as the values of Δ E lies in the range 0.21-0.33 eV.

  8. Correlation among electronic polarizability, optical basicity and interaction parameter of Bi 2O 3-B 2O 3 glasses

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Wang, Xiaoli; Lin, Hai; Wang, Zhiqiang

    2007-03-01

    For optical basicity and electronic polarizability, the previous studies basically concentrate on the wavelength range of the visible light region. However, heavy metal oxides glasses have a reputation of being good materials for infrared region. In this study, new data of the average electronic polarizability of the oxide ion α, optical basicity Λ and Yamashita-Kurosawa's interaction parameter A of Bi 2O 3-B 2O 3 glasses have been calculated in a wavelength range from 404.66 to 1083.03 nm. The present investigation suggests that both α and Λ increase gradually with increasing wave number, and A decreases with increasing wave number. Furthermore, close correlations are studied among α, Λ, A and refractive index n in this paper. Particularly, it has been found that a quantitative relationship between electronic polarizability and optical basicity is observed in a wavelength range from 404.66 to 1083.03 nm. Our present study extends over a wide range of α, Λ and A values.

  9. Light Emission Intensities of Luminescent Y2O3:Eu and Gd2O3:Eu Particles of Various Sizes

    PubMed Central

    Adam, Jens; Metzger, Wilhelm; Koch, Marcus; Rogin, Peter; Coenen, Toon; Atchison, Jennifer S.; König, Peter

    2017-01-01

    There is great technological interest in elucidating the effect of particle size on the luminescence efficiency of doped rare earth oxides. This study demonstrates unambiguously that there is a size effect and that it is not dependent on the calcination temperature. The Y2O3:Eu and Gd2O3:Eu particles used in this study were synthesized using wet chemistry to produce particles ranging in size between 7 nm and 326 nm and a commercially available phosphor. These particles were characterized using three excitation methods: UV light at 250 nm wavelength, electron beam at 10 kV, and X-rays generated at 100 kV. Regardless of the excitation source, it was found that with increasing particle diameter there is an increase in emitted light. Furthermore, dense particles emit more light than porous particles. These results can be explained by considering the larger surface area to volume ratio of the smallest particles and increased internal surface area of the pores found in the large particles. For the small particles, the additional surface area hosts adsorbates that lead to non-radiative recombination, and in the porous particles, the pore walls can quench fluorescence. This trend is valid across calcination temperatures and is evident when comparing particles from the same calcination temperature. PMID:28336860

  10. Intermediate magnetization state and competing orders in Dy2Ti2O7 and Ho2Ti2O7

    PubMed Central

    Borzi, R. A.; Gómez Albarracín, F. A.; Rosales, H. D.; Rossini, G. L.; Steppke, A.; Prabhakaran, D.; Mackenzie, A. P.; Cabra, D. C.; Grigera, S. A.

    2016-01-01

    Among the frustrated magnetic materials, spin-ice stands out as a particularly interesting system. Residual entropy, freezing and glassiness, Kasteleyn transitions and fractionalization of excitations in three dimensions all stem from a simple classical Hamiltonian. But is the usual spin-ice Hamiltonian a correct description of the experimental systems? Here we address this issue by measuring magnetic susceptibility in the two most studied spin-ice compounds, Dy2Ti2O7 and Ho2Ti2O7, using a vector magnet. Using these results, and guided by a theoretical analysis of possible distortions to the pyrochlore lattice, we construct an effective Hamiltonian and explore it using Monte Carlo simulations. We show how this Hamiltonian reproduces the experimental results, including the formation of a phase of intermediate polarization, and gives important information about the possible ground state of real spin-ice systems. Our work suggests an unusual situation in which distortions might contribute to the preservation rather than relief of the effects of frustration. PMID:27558021

  11. Thermogravimetric analyses of combustion of lignocellulosic materials in N2/O2 and CO2/O2 atmospheres.

    PubMed

    Lai, ZhiYi; Ma, XiaoQian; Tang, YuTing; Lin, Hai; Chen, Yong

    2012-03-01

    The combustion of paper, fruit waste and plant residue mixtures representing the lignocellulosic materials of municipal solid waste (MSW) in different atmospheres (80N(2)/20O(2), 70N(2)/30O(2), 60N(2)/40O(2), 50N(2)/50O(2), 80CO(2)/20O(2), 70CO(2)/30O(2), 60CO(2)/40O(2), 50CO(2)/50O(2)) was analyzed thermogravimetrically. Replacement of 80% N(2) by 80% CO(2) resulted in a slightly later ignition, a lower maximum weight loss rate and a change in reactions occurring above 600°C; however, as the oxygen concentration increased from 20% to 50% in CO(2)/O(2) atmosphere, the ignition temperature decreased from 318.5 to 310.8°C and the maximum weight loss rate increased from 20.82% to 23.57%/min. An oxygen content of 30% in the CO(2)/O(2) atmosphere achieved a similar combustion performance as a 80N(2)/20O(2). The fruit waste mixture had the least residual weight (about 5%) and the earliest ignition (about 220°C). This work contributes to the comprehensive understanding of lignocellulosic materials combustion and development of MSW oxy-fuel combustion.

  12. MAO-synthesized Al 2O 3-supported V 2O 5 nano-porous catalysts: Growth, characterization, and photoactivity

    NASA Astrophysics Data System (ADS)

    Bayati, M. R.; Zargar, H. R.; Molaei, R.; Golestani-Fard, F.; Zanganeh, N.; Kajbafvala, A.

    2010-04-01

    V 2O 5-loaded Al 2O 3 layers were successfully grown via micro-arc oxidation (MAO) process for the first time. Surface morphology and topography of the layers were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM). It was found that the composite layers had a porous structure with a rough surface which is suitable for catalytic applications. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDS) techniques were also employed to study phase structure and chemical composition of the composite layers. The layers consisted of γ-alumina, α-alumina, and vanadium pentoxide phases in which their relative contents varied with the applied voltage. Meanwhile, optical properties of the composite layers were investigated using UV-vis spectrophotometry technique, and the band gap energy was calculated as 3.15 eV. Furthermore, photocatalytic performance of the synthesized composite layers was determined by measuring the decomposition rate of methylene blue solution, as a model compound, on the surface of the layers under ultra violet photo-irradiation. It was found that more than 91% of the methylene blue was degraded after 120 min with a rate constant of k = 0.0192 min -1.

  13. Intermediate magnetization state and competing orders in Dy2Ti2O7 and Ho2Ti2O7.

    PubMed

    Borzi, R A; Gómez Albarracín, F A; Rosales, H D; Rossini, G L; Steppke, A; Prabhakaran, D; Mackenzie, A P; Cabra, D C; Grigera, S A

    2016-08-25

    Among the frustrated magnetic materials, spin-ice stands out as a particularly interesting system. Residual entropy, freezing and glassiness, Kasteleyn transitions and fractionalization of excitations in three dimensions all stem from a simple classical Hamiltonian. But is the usual spin-ice Hamiltonian a correct description of the experimental systems? Here we address this issue by measuring magnetic susceptibility in the two most studied spin-ice compounds, Dy2Ti2O7 and Ho2Ti2O7, using a vector magnet. Using these results, and guided by a theoretical analysis of possible distortions to the pyrochlore lattice, we construct an effective Hamiltonian and explore it using Monte Carlo simulations. We show how this Hamiltonian reproduces the experimental results, including the formation of a phase of intermediate polarization, and gives important information about the possible ground state of real spin-ice systems. Our work suggests an unusual situation in which distortions might contribute to the preservation rather than relief of the effects of frustration.

  14. High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4

    NASA Astrophysics Data System (ADS)

    Zhai, Shuangmeng; Yin, Yuan; Shieh, Sean R.; Shan, Shuangming; Xue, Weihong; Wang, Ching-Pao; Yang, Ke; Higo, Yuji

    2016-04-01

    In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0' = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.

  15. Viscosity Measurement and Structure Analysis of Cr2O3-Bearing CaO-SiO2-MgO-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Li, Qiuhan; Gao, Jintao; Zhang, Yanling; An, Zhuoqing; Guo, Zhancheng

    2017-02-01

    In this study, the effects of different Cr2O3 contents and optical basicity (denoted by Λ) on the viscosity and structure of the Cr2O3-bearing CaO-SiO2-MgO-Al2O3 slag were investigated. The viscosities of Cr2O3-bearing CaO-SiO2-MgO-Al2O3 slags in the liquid phase below 1823 K (1550 °C) were measured by rotating-cylinder method, and the structures of the slags were examined via Raman spectroscopy. Three different parameters were used to characterize the structures of the slags. The results showed that the viscosity of the slags increased as the Cr2O3 content increased, but decreased as Λ increased. The Cr3+ ions acted as network formers and increased the degree of polymerization (DOP), and thus, the addition of Cr2O3 to the slag increased the number of bridging oxygen atoms in the silicate structural units. Generally, the viscosity increased by increasing DOP. In addition, there was a linear inverse relationship between the viscous activation energy ( E μ ) and Λ. Furthermore, as the Cr2O3 content increased, the gradients of the plots of E μ vs Λ decreased. This indicates that for a slag with a high Cr2O3 content, trying to improve the fluidity of the slag by increasing Λ has a limited effect.

  16. Antimicrobial effect of Al2O3, Ag and Al2O3/Ag thin films on Escherichia coli and Pseudomonas putida

    NASA Astrophysics Data System (ADS)

    Angelov, O.; Stoyanova, D.; Ivanova, I.; Todorova, S.

    2016-10-01

    The influence of Al2O3, Ag and Al2O3/Ag thin films on bacterial growth of Gramnegative bacteria Pseudomonas putida and Escherichia coli is studied. The nanostructured thin films are deposited on glass substrates without intentional heating through r.f. magnetron sputtering in Ar atmosphere of Al2O3 and Ag targets or through sequential sputtering of Al2O3 and Ag targets, respectively. The individual Ag thin films (thickness 8 nm) have a weak bacteriostatic effect on Escherichia coli expressed as an extended adaptive phase of the bacteria up to 5 hours from the beginning of the experiment, but the final effect is only 10 times lower bacterial density than in the control. The individual Al2O3 film (20 nm) has no antibacterial effect against two strains E. coli - industrial and pathogenic. The Al2O3/Ag bilayer films (Al2O3 20 nm/Ag 8 nm) have strong bactericidal effect on Pseudomonas putida and demonstrate an effective time of disinfection for 2 hours. The individual films Al2O3 and Ag have not pronounced antibacterial effect on Pseudomonas putida. A synergistic effect of Al2O3/Ag bilayer films in formation of oxidative species on the surface in contact with the bacterial suspension could be a reason for their antimicrobial effect on E. coli and P. putida.

  17. Characteristics of ethylene glycol-Al2O3 nanofluids prepared by utilizing Al2O3 nanoparticles synthesized from local bauxite

    NASA Astrophysics Data System (ADS)

    Syarif, D. G.

    2016-11-01

    Nanoparticles of Al2O3 have been synthesized from local bauxite mineral, and ethylene glycol (EG)-Al2O3 nanofluids have been prepared. Powder Al(OOH) was extracted from local bauxite using bayer process, and heated at 600°C for 3 hours to get Al2O3 nanoparticles. XRD analyses showed that the Al2O3 nanoparticles crystallizes in γ-Al2O3 with crystallite size of 4.12 nm. The specific surface area of the ACO3 nanoparticles was 296.72 m2/gr. Viscosity of the EG-Al2O3 nanofluids was temperature dependent, and decreased with increasing temperature. The viscosity of the nanofluids increased with the concentration of the Al2O3 nanoparticles. Meanwhile, Critical Heat Flux (CHF) enhancement of the nanofluids increased with the concentration of the Al2O3 nanoparticles. The largest CHF enhancement was 54% at Al2O3 concentration of 0.095 vol %.

  18. Study of the transient "free" OH radical generated in H2O-H2O2 mixtures by stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Li, Fangfang; Ma, Zhiwei; Wang, Shenghan; Li, Tianyu; Sun, Chenglin; Li, Zhanlong; Men, Zhiwei

    2017-03-01

    Forward and backward stimulated Raman scattering (SRS) were studied in the H2O2-H2O mixtures by a strong excitation laser with 532 nm. Only the backward SRS (BSRS) of the H2O2-H2O system shows an unexpected SRS shoulder peak at around 3600 cm- 1, which is similar to the characteristic peak of "free" OH radical. The generation of the "free" OH radical is mainly attributed to the dissociation of hydrogen peroxide (HP) molecules. Simultaneously, the ionization of HP-water clusters generates a part of "free" OH radical under the Laser-induced breakdown (LIB). The interaction of water and HP is also discussed.

  19. Study of ZrO2/Al2O3/ZrO2 and Al2O3/ZrO2/Al2O3 stack structures deposited by sol-gel method on Si

    NASA Astrophysics Data System (ADS)

    Vitanov, P.; Harizanova, A.; Ivanova, T.; Dimitrova, T.

    2010-02-01

    Based on our previous experience with pseudobinary alloys of (Al2O3)x(ZrO2)1-x as high-k materials and passivating coatings for solar cells, stack systems of ZrO2/Al2O3/ZrO2and Al2O3/ZrO2/Al2O3, deposited by simple and low cost sol-gel technology have been studied. The thin films of ZrO2 and Al2O3 were sequentially obtained on Si substrates including spin coating deposition from stable solutions. High resolution scanning electron microscopy (HRSEM) was used to compare the morphology of the nanolaminates. The layers were optically characterized by UV-VIS spectrophotometry. The electrical measurements were carried out on metal-insulator-semiconductor (MIS) structures. Their leakage current and relative permittivity were determined.

  20. [Vibrational spectra of monoclinic diphosphates of formula AMP2O7].

    PubMed

    Serghini Idrissi, M; Rghioui, L; Nejjar, R; Benarafa, L; Saidi Idrissi, M; Lorriaux, A; Wallart, F

    2004-07-01

    The monoclinic pyrophosphates with AMP2O7 formula were synthesized. Their infrared and Raman spectra have been reported and analysed. The results of a force field calculation for CaCuP2O7 are presented.

  1. Isotopic signature of N(2)O produced by marine ammonia-oxidizing archaea.

    PubMed

    Santoro, Alyson E; Buchwald, Carolyn; McIlvin, Matthew R; Casciotti, Karen L

    2011-09-02

    The ocean is an important global source of nitrous oxide (N(2)O), a greenhouse gas that contributes to stratospheric ozone destruction. Bacterial nitrification and denitrification are thought to be the primary sources of marine N(2)O, but the isotopic signatures of N(2)O produced by these processes are not consistent with the marine contribution to the global N(2)O budget. Based on enrichment cultures, we report that archaeal ammonia oxidation also produces N(2)O. Natural-abundance stable isotope measurements indicate that the produced N(2)O had bulk δ(15)N and δ(18)O values higher than observed for ammonia-oxidizing bacteria but similar to the δ(15)N and δ(18)O values attributed to the oceanic N(2)O source to the atmosphere. Our results suggest that ammonia-oxidizing archaea may be largely responsible for the oceanic N(2)O source.

  2. Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Gao, Yupeng; Wang, Libo; Li, Zhengyang; Zhou, Aiguo; Hu, Qianku; Cao, Xinxin

    2014-09-01

    MXenes are novel graphene-like 2-D materials. Cu2O is an effective additive for thermal decomposition of ammonium perchlorate (AP). We reported the synthesis of MXene (Ti3C2), Cu2O and MXene-Cu2O respectively. The samples were characterized by means of X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Results indicate that the MXene is composed of lots of nano-sheets and the thickness is 30 ± 10 nm, and Cu2O nanoparticles nucleate and grow heterogeneously directly on the surface of MXene. The effect of these MXene, Cu2O and MXene-Cu2O samples on the thermal decomposition of AP were investigated using TG-DSC. The results revealed that MXene-Cu2O have a great influence on the thermal decomposition of AP than that of pure MXene and Cu2O.

  3. Effect of the Molar Ratio of B2O3 to Bi2O3 in Al Paste with Bi2O3-B2O3-ZnO Glass on Screen Printed Contact Formation and Si Solar Cell Performance

    NASA Astrophysics Data System (ADS)

    Kim, Bit-Na; Kim, Hyeong Jun; Chang, Hyo Sik; Hong, Hyun Seon; Ryu, Sung-Soo; Lee, Heon

    2013-10-01

    In this study, eco-friendly Pb-free Bi2O3-B2O3-ZnO glass frits were chosen as an inorganic additive for the Al paste used in Si solar cells. The effects of the molar ratio of Bi2O3 to B2O3 in the glass composition on the electrical resistance of the Al electrode and on the cell performance were investigated. The results showed that as the molar ratio of Bi2O3 to B2O3 increased, the glass transition temperature and softening temperature decreased because of the reduced glass viscosity. In Al screen-printed Si solar cells, as the molar ratio of Bi2O3 to B2O3 increased, the sheet electrical resistance of the Al electrode decreased and the cell efficiency increased. The uniformity and thickness of the back-surface field was significantly influenced by the glass composition.

  4. Co-precipitation synthesis of Y2O2SO4:Eu3+ nanophosphor and comparison of photoluminescence properties with Y2O3:Eu3+ and Y2O2S:Eu3+ nanophosphors

    NASA Astrophysics Data System (ADS)

    Lian, Jingbao; Qin, Hua; Liang, Ping; Liu, Feng

    2015-10-01

    Eu3+ ions activated yttrium oxysulfate (Y2O2SO4:Eu3+) nanophosphor has been successfully synthesized by a co-precipitation method from commercially available Y(NO3)3·6H2O, Eu(NO3)3·6H2O, (NH4)2SO4 and NH3·H2O as the starting materials. Detailed characterizations of the synthetic products were obtained by differential thermal analysis, thermogravimetry and derivative thermogravimetry (DTA-TG-DTG), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. The results revealed that the precursor was composed of amorphous yttrium hydroxide sulfate when (NH4)2SO4 was introduced in the reaction system. Moreover, the precursor could be converted into pure Y2O2SO4 phase by calcining at 800 °C for 2 h in air and pure Y2O2S phase could be obtained by calcining Y2O2SO4 at 800 °C for 1 h in hydrogen atmosphere. The as-synthesized Y2O2SO4 phosphor particles are quasi-spherical in shape, slight aggregation and about 20-30 nm in size. PL spectra of the Y2O2SO4:Eu3+ nanophosphor under 270 nm ultraviolet (UV) light excitation show a red emission at 620 nm as the most prominent peak, which attributes to the 5D0→7F2 transition of Eu3+ ions. The quenching concentration of Eu3+ ions was 5 mol%, and its corresponding fluorescence lifetime was 1.49 ms according to the linear fitting result. Furthermore, the Y2O3 nanophosphor was synthesized by similar reaction and comparison of PL properties among three kinds of Eu3+ activated nanophosphors was also systematically discussed.

  5. Magnetic properties of Dy2Ti2O7

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1973-01-01

    Measurements were made of the magnetization, differential magnetic susceptibility, and magnetic entropy of powered samples of Dy2Ti2O7. The saturation magnetic moment is 4.7 + or - 0.2 Bohr magnetons per Dy ion, instead of 10 as predicted by Hund's rules. A temperature-independent magnetization is observed in the saturation region. Absolute values of magnetic entropy have been obtained for temperatures from 1.25 to 20 K, in applied fields up to 10.4 tesla. The magnetic entropy approaches a maximum value consistent with a ground-state multiplicity of 2. Low field magnetization and differential susceptibility data show a transition to antiferromagnetism near 1.35 K. A construction of the magnetic specific heat from the zero field entropy shows an anomaly near the same temperature.

  6. Investigation of nanostructured Lu2O3:Tb

    NASA Astrophysics Data System (ADS)

    Zych, E.; Deren, Przemyslaw J.; Strek, Wieslaw; Meijerink, Andries; Domagala, K.; Mielcarek, W.

    2001-04-01

    Nano structured Lu2O3, both plane and doped with Tb, was prepared utilizing a combustion technique. The best crystallity of the products can be obtained initiating the reaction within 560-700 $DEGC range of temperature. Tb easily enters the nano scaled host lattice both as Tb3+ and Tb4+. The former gives rise to a typical green emission of the ion, while the later introduces a broad-band visible absorption, due to charge transfer transitions. The green emission of Tb3+ from a raw material may be radically increased by after- preparation heat-treatment. Undoped material gives rise to a blue emission, which disappears when Tb content with respect to Lu reaches 0.0001% or higher level.

  7. Impurity Enhancement of Al_2O_3/Al Adhesion

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Smith, John R.; Zhang, Wenqing; Evans, Anthony

    2003-03-01

    Our first-principles computations indicate that the clean Al_2O_3/Al interface is relatively weak - weaker than bulk Al. Fracture experiments reveal that the interface is relatively strong with observed failure in bulk Al, however. This paradox is resolved via doping effects of the common impurity C. We have found that only 1/3 of a monolayer of carbon segregated to the interface can increase the work of separation by a factor of 3. The resulting strong interface is consistent with fracture experiments. It arises due to void formation in the interface, which provides low-strain sites for the carbon to segregate to. The degree of void formation is consistent with the relatively high heat of oxide formation of Al.

  8. First Principle Predictions of Isotopic Shifts in H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We compute isotope independent first and second order corrections to the Born-Oppenheimer approximation for water and use them to predict isotopic shifts. For the diagonal correction, we use icMRCI wavefunctions and derivatives with respect to mass dependent, internal coordinates to generate the mass independent correction functions. For the non-adiabatic correction, we use scaled SCF/CIS wave functions and a generalization of the Handy method to obtain mass independent correction functions. We find that including the non-adiabatic correction gives significantly improved results compared to just including the diagonal correction when the Born-Oppenheimer potential energy surface is optimized for H2O-16. The agreement with experimental results for deuterium and tritium containing isotopes is nearly as good as our best empirical correction, however, the present correction is expected to be more reliable for higher, uncharacterized levels.

  9. Submillimeter D2O-18 molecular laser with optical pumping

    NASA Astrophysics Data System (ADS)

    Svich, V. A.; Pokormiakho, N. G.; Topkov, A. N.

    1980-11-01

    In the considered investigation, nine new emission lines of the D2O-18 molecule were observed over the wavelength range from 96 to 140 micrometers. In the experiments, a CO2 TEA laser was used for optical pumping. The TEA laser was operated at atmospheric pressure with an output energy up to 2 J and a pulse length of 100 ns. A gaseous mixture with a composition of CO2:N2:He = 1:1:4 was excited by means of a pulsed transverse discharge. A resonator with a length of 1 m was formed by a spherical mirror with a radius of curvature of 10 m, and a gold-plated echelette grating with 100 lines/mm. The submillimeter cell consisted of a glass tube with an inside diameter of 80 mm and a length of 1270 mm, and the spherical mirrors of the submillimeter resonator.

  10. High Performance N2O4/Amine Elements

    NASA Technical Reports Server (NTRS)

    Falk, A. Y.

    1976-01-01

    An analytical and experimental investigation was conducted to develop an understanding of the mechanisms that cause reactive stream separation, commonly called blowapart, for hypergolic propellants. The investigation was limited to the N2O4/MMH propellant combination and to a range of engine-operating conditions applicable to the space tug and space shuttle attitude control and orbital maneuvering engines. Primary test variables were: chamber pressure (1 to 20 atm), fuel injection temperature (283 to 400 K)m and propellant injection velocity (9 to 50 m/s). The injector configuration studied was the unlike doublet. The reactive stream separation experiments were conducted using special combustors designed to permit photography of the near-injector spray combustion flow field. Analysis of color motion pictures provided the means of determining the occurrence of reactive stream separation.

  11. Fabry-Perot observations of Comet Halley H2O(+)

    NASA Technical Reports Server (NTRS)

    Scherb, F.; Roesler, F. L. D.; Harlander, J.; Magee-Sauer, K.

    1990-01-01

    Fabry-Perot scanning spectrometer observations of Comet Halley's H2O(+) emissions have yielded 6158.64 and 6158.85 A spin doublet data at distances in the range of 0 to 2 million km from the comet heat in the antisunward direction. Cometary plasma outflow velocities were ascertained on the basis of the emissions' Doppler shifts, yielding results that were mostly but not exclusively consistent with the plasma's constant antisunward acceleration; the acceleration varied from night to night of observations over a 30-300 cm/sec range. The unusual plasma kinematics of December 14-15, 1985, and January 10, 1986, may be associated with the tail-disconnection activity observed by others.

  12. Intermolecular potential for thermal H2O-He collisions

    NASA Technical Reports Server (NTRS)

    Palma, Amedeo; Green, Sheldon; Defrees, D. J.; Mclean, A. D.

    1988-01-01

    Theoretical potentials for rotational excitation of H2O by He were constructed via several methods, all of which start with a large basis set SCF interaction. The semiempirical Hartree-Fock with damped dispersion model adds a damped long-range attraction with parameters adjusted to fit experimental total differential cross sections. Purely ab initio potentials add correlation energies obtained via perturbation theory (MP2 and MP4) or a variational method (ICF1). Scattering calculations were performed on all surfaces to compare wih available beam scattering and pressure broadening data and to assess sensitivity of state-to-state rates to uncertainties in the potential. From comparison with the limited experimental data, the ICF1 surface appears to be marginally better than the MP4 surface. Thermal rates calculated from this surface should be accurate to better than 50 percent, at least for the larger, more important rates.

  13. Ferroelectricity in high-density H2O ice

    DOE PAGES

    Caracas, Razvan; Hemley, Russell J.

    2015-04-01

    The origin of longstanding anomalies in experimental studies of the dense solid phases of H2O ices VII, VIII, and X is examined using a combination of first-principles theoretical methods. We find that a ferroelectric variant of ice VIII is energetically competitive with the established antiferroelectric form under pressure. The existence of domains of the ferroelectric form within anti-ferroelectric ice can explain previously observed splittings in x-ray diffraction data. The ferroelectric form is stabilized by density and is accompanied by the onset of spontaneous polarization. Here, the presence of local electric fields triggers the preferential parallel orientation of the water moleculesmore » in the structure, which could be stabilized in bulk using new high-pressure techniques.« less

  14. Utilization of membranes for H2O recycle system

    NASA Technical Reports Server (NTRS)

    Ohya, H.; Oguchi, M.

    1986-01-01

    Conceptual studies of closed ecological life support systems (CELSS) carried out at NAL in Japan for a water recycle system using membranes are reviewed. The system will treat water from shower room, urine, impure condensation from gas recycle system, and so on. The H2O recycle system is composed of prefilter, ultrafiltration membrane, reverse osmosis membrane, and distillator. Some results are shown for a bullet train of toilet-flushing water recycle equipment with an ultraviltration membrane module. The constant value of the permeation rate with a 4.7 square meters of module is about 70 1/h after 500th of operation. Thermovaporization with porous polytetrafluorocarbon membrane is also proposed to replce the distillator.

  15. 12Cao-7Al2o3 Electride Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Rand, Lauren P. (Inventor); Williams, John D. (Inventor); Martinez, Rafael A. (Inventor)

    2016-01-01

    The use of the electride form of 12CaO-7Al.sub.2O.sub.3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  16. Ferroelectricity in high-density H2O ice.

    PubMed

    Caracas, Razvan; Hemley, Russell J

    2015-04-07

    The origin of longstanding anomalies in experimental studies of the dense solid phases of H2O ices VII, VIII, and X is examined using a combination of first-principles theoretical methods. We find that a ferroelectric variant of ice VIII is energetically competitive with the established antiferroelectric form under pressure. The existence of domains of the ferroelectric form within anti-ferroelectric ice can explain previously observed splittings in x-ray diffraction data. The ferroelectric form is stabilized by density and is accompanied by the onset of spontaneous polarization. The presence of local electric fields triggers the preferential parallel orientation of the water molecules in the structure, which could be stabilized in bulk using new high-pressure techniques.

  17. Planar H2O masers in star-forming regions

    NASA Technical Reports Server (NTRS)

    Elitzur, Moshe; Hollenbach, David J.; Mckee, Christopher F.

    1992-01-01

    The paper examines the planar geometry of shocked material, which is the key property in enabling the high brightness temperatures of H2O masers in star-forming regions. The brightness temperature, beaming angle, and the maser spot size are determined for thin, saturated planar masers under the assumption that the velocity change across the maser due to ordered motions is small compared with the thermal or microturbulent line width. For a given set of physical parameters, the brightness temperature is essentially fully determined by the length of the velocity-coherent region in the shocked plane along the line of sight. Effective aspect ratios (about 5-50) are found that are in agreement with values previously inferred from observed brightness temperatures.

  18. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NASA Astrophysics Data System (ADS)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-11-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we have detected 14 new H2O emission lines. These include five 321-312ortho-H2O lines (Eup/k = 305 K) and nine J = 2 para-H2O lines, either 202-111(Eup/k = 101 K) or 211-202(Eup/k = 137 K). The apparent luminosities of the H2O emission lines are μLH2O 6-21 × 108 L⊙ (3 <μ< 15, where μ is the lens magnification factor), with velocity-integrated line fluxes ranging from 4-15 Jy km s-1. We have also observed CO emission lines using EMIR on the IRAM 30 m telescope in seven sources (most of those have not yet had their CO emission lines observed). The velocity widths for CO and H2O lines are found to be similar, generally within 1σ errors in the same source. With almost comparable integrated flux densities to those of the high-J CO line (ratios range from 0.4 to 1.1), H2O is found to be among the strongest molecular emitters in high-redshift Hy/ULIRGs. We also confirm our previously found correlation between luminosity of H2O (LH2O) and infrared (LIR) that LH2O LIR1.1-1.2, with ournew detections. This correlation could be explained by a dominant role of far-infrared pumping in the H2O excitation. Modelling reveals that the far-infrared radiation fields have warm dust temperature Twarm 45-75 K, H2O column density per unit velocity interval NH2O /ΔV ≳ 0.3 × 1015 cm-2 km-1 s and 100 μm continuum opacity τ100> 1 (optically thick), indicating that H2O is likely to trace highly obscured warm dense gas. However, further observations of J ≥ 4 H2O lines are needed to better constrain the continuum optical depth and other physical conditions of the molecular gas and dust. We have also detected H2O+ emission in three sources. A tight correlation

  19. Observations of H2O in Titan's atmosphere with Herschel

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Lellouch, E.; Lara, L. M.; Courtin, R.; Hartogh, P.; Rengel, M.

    2012-04-01

    Disk averaged observations of several H2O far infrared lines in Titan’s atmosphere were performed with the Herschel Space Observatory, as part of the guaranteed time key program "Water and related chemistry in the Solar System" (HssO, see Hartogh et al 2011). Two instruments were used: (i) HIFI, a heterodyne instrument (R~ 106 ) in the sub-millimeter, which measured the H2O(110-101) rotational transition at 557 GHz on June 10 and Dec. 31, 2010 (ii) PACS, a photoconductor spectrometer (R~103) which measured three water lines at 108.1, 75.4 and 66.4 microns on June 22, 2010. Additional PACS measurements at 66.4 microns on Dec. 15 and 22, 2010 and on July 09, 2011, do not show any significant line intensity variation with time, nor between the leading/trailing sides (i.e. longitude). Spectra were analyzed with a line-by-line radiative transfer code accounting for spherical geometry (Moreno et al. 2011). This model considers the H2O molecular opacity from JPL catalog (Pickett et al. 1998) and also includes collision-induced opacities N2-N2, N2-CH4 and CH4-CH4 (Borysow and Frommhold 1986, 1987, Borysow and Tang 1993). Far infrared aerosol opacities derived by CIRS were included, following Anderson and Samuelson (2011) for their vertical distribution and spectral dependencies. Analysis of the 557 GHz narrow line (FWHM ~ 2 MHz) indicates that it originates at altitudes above 300 km, while lines measured with PACS probe mainly deeper levels (80-150 km). The HIFI and PACS observations are fitted simultaneously, considering a vertical distribution of H2O mixing ratio which follows a power law dependency q=q0(P/P0)n, where q0 is the mixing ratio at some reference pressure level P0, taken near the expected condensation level. Model fits will be presented, and compared with previously proposed H2O vertical distributions. We show in particular that both the steep profile proposed by Lara et al. (1996) (and adopted by Coustenis et al. (1998) to model the first detection of H2O

  20. Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe-Fe2O3 composites.

    PubMed

    Cheng, J; Huang, T; Zheng, Y F

    2014-07-01

    In this study, the effects of Fe2O3 (addition, 2, 5, 10, and 50 wt %) on the microstructure, mechanical properties, corrosion behaviors, and in vitro biocompatibility of Fe-Fe2O3 composites fabricated by spark plasma sintering were systematically investigated as a novel-structure biodegradable metallic material. The results of X-ray diffraction analysis and optical microscopy indicated that Fe-Fe2O3 composite is composed of α-Fe and FeO instead of Fe2O3. Both eletrochemical measurements and immersion test showed a faster degradation rate of Fe-2Fe2O3 and Fe-5Fe2O3 composites than pure iron and Fe-5Fe2O3 exhibited the fastest corrosion rate among these composites. Besides, the effect of Fe2O3 on the corrosion behavior of Fe-Fe2O3 composites was discussed. The extracts of Fe-Fe2O3 composite exhibited no cytotoxicity to both ECV304 and L929 cells, whereas greatly reduced cell viabilities of vascular smooth muscle cells. In addition, good hemocompatibility of all Fe-Fe2O3 composites and pure iron was obtained. To sum up, Fe-5Fe2O3 composite is a promising alternative for biodegradable stent material with elevated corrosion rate, enhanced mechanical properties, as well as excellent biocompatibility.

  1. Structure and Properties of Some Layered U2O5 Phases: A Density Functional Theory Study.

    PubMed

    Molinari, Marco; Brincat, Nicholas A; Allen, Geoffrey C; Parker, Stephen C

    2017-04-05

    U2O5 is the boundary composition between the fluorite and the layered structures of the UO2→3 system and the least studied oxide in the group. δ-U2O5 is the only layered structure proposed so far experimentally, although evidence of fluorite-based phases has also been reported. Our DFT work explores possible structures of U2O5 stoichiometry by starting from existing M2O5 structures (where M is an actinide or transition metal) and replacing the M ions with uranium ions. For all structures, we predicted structural and electronic properties including bulk moduli and band gaps. The majority of structures were found to be less stable than δ-U2O5. U2O5 in the R-Nb2O5 structure was found to be a competitive structure in terms of stability, whereas U2O5 in the Np2O5 structure was found to be the most stable overall. Indeed, by including the vibrational contribution to the free energy using the frequencies obtained from the optimized unit cells we predict that Np2O5 structured U2O5 is the most thermodynamically stable under ambient conditions. δ-U2O5 only becomes more stable at high temperatures and/or pressures. This suggests that a low-temperature synthesis route should be tested and so potentially opens a new avenue of research for pentavalent uranium oxides.

  2. High-Performance Photothermal Conversion of Narrow-Bandgap Ti2 O3 Nanoparticles.

    PubMed

    Wang, Juan; Li, Yangyang; Deng, Lin; Wei, Nini; Weng, Yakui; Dong, Shuai; Qi, Dianpeng; Qiu, Jun; Chen, Xiaodong; Wu, Tom

    2017-01-01

    Ti2 O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2 O3 nanoparticles possess strong light absorption and nearly 100% internal solar-thermal conversion efficiency. Furthermore, Ti2 O3 -nanoparticle-based thin film shows potential use in seawater desalination and purification.

  3. 40 CFR 1065.372 - NDUV analyzer HC and H2O interference verification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.372 NDUV analyzer HC and H2O interference verification. (a) Scope and frequency. If you... analyzer installation and after major maintenance. (b) Measurement principles. Hydrocarbons and H2O...

  4. 40 CFR 1065.372 - NDUV analyzer HC and H2O interference verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.372 NDUV analyzer HC and H2O interference verification. (a) Scope and frequency. If you... analyzer installation and after major maintenance. (b) Measurement principles. Hydrocarbons and H2O...

  5. Al2O3 passivation effect in HfO2·Al2O3 laminate structures grown on InP substrates.

    PubMed

    Kang, Hang-Kyu; Kang, Yu-Seon; Kim, Dae-Kyoung; Baik, Min; Song, Jin Dong; An, Youngseo; Kim, Hyoungsub; Cho, Mann-Ho

    2017-04-07

    The passivation effect of an Al2O3 layer on electrical properties were investigated in HfO2--Al2O3 laminate structures grown on InP substrate by atomic layer deposition (ALD). The chemical state using HR-XPS showed that interfacial reactions were dependent on the presence of the Al2O3 passivation layer and its sequence in the HfO2--Al2O3 laminate structures. The Al2O3/HfO2/Al2O3 structure showed the best electrical characteristics, due to the interfacial reaction, compared with those of different stacking structures. The top Al2O3 layer suppressed the interdiffusion of oxidizing species into the HfO2 films, while the bottom Al2O3 layer blocked the outdiffusion of In and P atoms. As a result, the formation of In-O bonds was effectively suppressed in the Al2O3/HfO2/Al2O3/InP structure than that of HfO2-on-InP system. Moreover, conductance data revealed that the Al2O3/ layer on InP reduces the midgap traps to 2.6 × 10(12) eV(-1)cm(-2) (compared with that of HfO2/InP = 5.4 × 10(12) eV(-1)cm(-2)). The suppression of gap states caused by the outdiffusion of In atoms significantly controls the degradation of capacitors caused by leakage current through the stacked oxide layers.

  6. Experimental Studies on the Formation of D2O and D2O2 by Implantation of Energetic D+ Ions into Oxygen Ices

    NASA Astrophysics Data System (ADS)

    Bennett, Chris J.; Ennis, Courtney P.; Kaiser, Ralf I.

    2014-02-01

    The formation of water (H2O) in the interstellar medium is intrinsically linked to grain-surface chemistry; thought to involve reactions between atomic (or molecular) hydrogen with atomic oxygen (O), molecular oxygen (O2), and ozone (O3). Laboratory precedent suggests that H2O is produced efficiently when O2 ices are exposed to H atoms (~100 K). This leads to the sequential generation of the hydroxyperoxyl radical (HO2), then hydrogen peroxide (H2O2), and finally H2O and a hydroxyl radical (OH); despite a barrier of ~2300 K for the last step. Recent detection of the four involved species toward ρ Oph A supports this general scenario; however, the precise formation mechanism remains undetermined. Here, solid O2 ice held at 12 K is exposed to a monoenergetic beam of 5 keV D+ ions. Products formed during the irradiation period are monitored through FTIR spectroscopy. O3 is observed through seven archetypal absorptions. Three additional bands found at 2583, 2707, and 1195 cm -1 correspond to matrix isolated DO2 (ν1) and D2O2 (ν1, ν5), and D2O (ν2), respectively. During subsequent warming, the O2 ice sublimates, revealing a broad band at 2472 cm-1 characteristic of amorphous D2O (ν1, ν3). Sublimating D2, D2O, D2O2, and O3 products were confirmed through their subsequent detection via quadrupole mass spectrometry. Reaction schemes based on both thermally accessible and suprathermally induced chemistries were developed to fit the observed temporal profiles are used to elucidate possible reaction pathways for the formation of D2-water. Several alternative schemes to the hydrogenation pathway (O2→HO2→H2O2→H2O) were identified; their astrophysical implications are briefly discussed.

  7. I + (H2O)2 → HI + (H2O)OH Forward and Reverse Reactions. CCSD(T) Studies Including Spin-Orbit Coupling.

    PubMed

    Wang, Hui; Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F

    2016-03-03

    The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system.

  8. The synergetic effect of metal oxide support on Fe2O3 for chemical looping combustion: A theoretical study

    NASA Astrophysics Data System (ADS)

    Qin, Wu; Wang, Yang; Dong, Changqing; Zhang, Junjiao; Chen, Qiuluan; Yang, Yongping

    2013-10-01

    This study deals with the synergetic effect of Al2O3 on Fe2O3 for chemical-looping combustion (CLC) of CO, in comparison with the synergetic effects of ZrO2 and MgO reported in our previous works. Property analysis of Fe2O3/Al2O3 shows that new bonds form cross the interface making Fe2O3 less prone to agglomerate on Al2O3, and 0.129 e transfers from Al2O3 to Fe2O3 to activate the electronic state of Fe2O3. Al2O3 [ZrO2 and MgO] favors the thermal stability of Fe2O3 by preventing the phase transformation, markedly regulates charge populations on the O-Fe bonds and their overlaps and hence tunes the redox properties of Fe2O3. The reaction mechanism analysis demonstrates that Al2O3 [ZrO2 and MgO] activates Fe2O3 for oxidizing CO into CO2 (accompanied by the reduction of Fe2O3) in the fuel reactor, which decrease the height of barrier energy (Ea), and the Ea follows clearly Fe2O3 > Fe2O3/Al2O3 > Fe2O3/MgO > Fe2O3/ZrO2. However, these supports usually increase the Ea for oxidizing Fe2O2 into Fe2O3 by O2 in the air reactor, and the Ea follows clearly Fe2O3/ZrO2 > Fe2O3/Al2O3 > Fe2O3/MgO > Fe2O3. It is argued that different supports could be applied to a given CLC system of different thermodynamic properties.

  9. The effect of soil pH on N2O/(N2O+N2) product ratio of denitrification depends on soil NO3- concentration

    NASA Astrophysics Data System (ADS)

    Senbayram, Mehmet; Dittert, Klaus; Well, Reinhard; Lewicka-Szczebak, Dominika; Lammel, Joachim; Bakken, Lars

    2015-04-01

    Globally, agricultural soils account for about 60% of the atmospheric N2O emissions and denitrification in soil is the major source of atmospheric N2O, which contributes to global warming and destruction of stratospheric ozone. Denitrification is the microbially mediated process of dissimilatory nitrate reduction that may produce not only N2O but also nitric oxide (NO), and molecular nitrogen (N2). The major controls on denitrification rates are soil NO3, O2, and labile C levels. Typically, when soils become more anoxic, larger proportions of N2O produced in denitrification are further reduced to N2 before leaving the soil. Microbial ecology may possibly find solutions to this major environmental problem of agricultural systems once mechanisms controlling the product ratio of denitrification (N2O/N2O+N2) are better understood. Recent investigations of these gaseous microbial products provided the evidence for a negative effect of soil acidity on the N2O/N2O+N2 product ratio. However, in an earlier study, we showed that, regardless of soil type, higher NO3- concentrations in soil may also retard the reduction of N2O to N2. In this context, the positive effect of higher soil pH on the N2O/(N2O+N2) product ratio in soils with high NO3- content is still poorly understood. Therefore, we set up a number of incubation experiments in order to test short-term and long-term effects of soil pH and NO3- concentration on denitrification rates and the product stoichiometry of denitrification. We measured N2O, NO as well as elemental N2 in soils with pH levels ranging 4.1 to pH 6.9 collected from a long-term liming experiment. In a continuous flow incubation system we evacuated and flushed all vessels with He. Then, fresh He was directed through an inlet in the lid at a flow rate of 15-30 ml min-1. Gas samples were analyzed twice a day for N2O by ECD and for N2 by TCD detectors. Denitrification rates increased significantly with increasing soil pH, however, during the initial

  10. Identification and isolation of active N2O reducers in rice paddy soil.

    PubMed

    Ishii, Satoshi; Ohno, Hiroki; Tsuboi, Masahiro; Otsuka, Shigeto; Senoo, Keishi

    2011-12-01

    Dissolved N(2)O is occasionally detected in surface and ground water in rice paddy fields, whereas little or no N(2)O is emitted to the atmosphere above these fields. This indicates the occurrence of N(2)O reduction in rice paddy fields; however, identity of the N(2)O reducers is largely unknown. In this study, we employed both culture-dependent and culture-independent approaches to identify N(2)O reducers in rice paddy soil. In a soil microcosm, N(2)O and succinate were added as the electron acceptor and donor, respectively, for N(2)O reduction. For the stable isotope probing (SIP) experiment, (13)C-labeled succinate was used to identify succinate-assimilating microbes under N(2)O-reducing conditions. DNA was extracted 24  h after incubation, and heavy and light DNA fractions were separated by density gradient ultracentrifugation. Denaturing gradient gel electrophoresis and clone library analysis targeting the 16S rRNA and the N(2)O reductase gene were performed. For culture-dependent analysis, the microbes that elongated under N(2)O-reducing conditions in the presence of cell-division inhibitors were individually captured by a micromanipulator and transferred to a low-nutrient medium. The N(2)O-reducing ability of these strains was examined by gas chromatography/mass spectrometry. Results of the SIP analysis suggested that Burkholderiales and Rhodospirillales bacteria dominated the population under N(2)O-reducing conditions, in contrast to the control sample (soil incubated with only (13)C-succinate). Results of the single-cell isolation technique also indicated that the majority of the N(2)O-reducing strains belonged to the genera Herbaspirillum (Burkholderiales) and Azospirillum (Rhodospirillales). In addition, Herbaspirillum strains reduced N(2)O faster than Azospirillum strains. These results suggest that Herbaspirillum spp. may have an important role in N(2)O reduction in rice paddy soils.

  11. Zeta-Fe2O3 - A new stable polymorph in iron(III) oxide family

    NASA Astrophysics Data System (ADS)

    Tuček, Jiří; Machala, Libor; Ono, Shigeaki; Namai, Asuka; Yoshikiyo, Marie; Imoto, Kenta; Tokoro, Hiroko; Ohkoshi, Shin-Ichi; Zbořil, Radek

    2015-10-01

    Iron(III) oxide shows a polymorphism, characteristic of existence of phases with the same chemical composition but distinct crystal structures and, hence, physical properties. Four crystalline phases of iron(III) oxide have previously been identified: α-Fe2O3 (hematite), β-Fe2O3, γ-Fe2O3 (maghemite), and ɛ-Fe2O3. All four iron(III) oxide phases easily undergo various phase transformations in response to heating or pressure treatment, usually forming hexagonal α-Fe2O3, which is the most thermodynamically stable Fe2O3 polymorph under ambient conditions. Here, from synchrotron X-ray diffraction experiments, we report the formation of a new iron(III) oxide polymorph that we have termed ζ-Fe2O3 and which evolved during pressure treatment of cubic β-Fe2O3 ( space group) at pressures above 30 GPa. Importantly, ζ-Fe2O3 is maintained after pressure release and represents the first monoclinic Fe2O3 polymorph (I2/a space group) that is stable at atmospheric pressure and room temperature. ζ-Fe2O3 behaves as an antiferromagnet with a Néel transition temperature of ~69 K. The complex mechanism of pressure-induced transformation of β-Fe2O3, involving also the formation of Rh2O3-II-type Fe2O3 and post-perovskite-Fe2O3 structure, is suggested and discussed with respect to a bimodal size distribution of precursor nanoparticles.

  12. Depletion-mode In 0.2Ga 0.8As/GaAs MOSFET with molecular beam epitaxy grown Al 2O 3/Ga 2O 3(Gd 2O 3) as gate dielectrics

    NASA Astrophysics Data System (ADS)

    Lin, C. A.; Lin, T. D.; Chiang, T. H.; Chiu, H. C.; Chang, P.; Hong, M.; Kwo, J.

    2009-03-01

    Depletion-mode In 0.2Ga 0.8As/GaAs metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated with molecular beam epitaxy (MBE) grown Al 2O 3/Ga 2O 3(Gd 2O 3) as the gate dielectric in two comparable processes. In the "metal-gate-last" process, a 12 μm gate-length depletion-mode n-channel InGaAs/GaAs MOSFET with a Ga 2O 3(Gd 2O 3) gate oxide 6 nm thick shows an accumulated drain current density of 135 mA/mm at Vg=2 V. In the other process of "metal-gate-first" process, the device with same gate dielectric, channel, and gate length exhibits a larger drain current density of 175 mA/mm at the same gate bias. In addition, there is a broader transfer characteristics and higher extrinsic peak transconductance of 48 mS/mm in the metal-gate-first process. MOS capacitors from both processes have exhibited excellent capacitance-voltage ( C- V) characteristics with minor dispersion, negligible hysteresis, and κ values of 13.7-13.9 in Ga 2O 3(Gd 2O 3).

  13. Influence of Ar/O2/H2O Feed Gas and N2/O2/H2O Environment on the Interaction of Time Modulated MHz Atmospheric Pressure Plasma Jet (APPJ) with Model Polymers

    NASA Astrophysics Data System (ADS)

    Oehrlein, Gottlieb; Luan, Pingshan; Knoll, Andrew; Kondeti, Santosh; Bruggeman, Peter

    2016-09-01

    An Ar/O2/H2O fed time modulated MHz atmospheric pressure plasma jet (APPJ) in a sealed chamber was used to study plasma interaction with model polymers (polystyrene, poly-methyl methacrylate, etc.). The amount of H2O in the feed gas and/or present in the N2, O2, or N2/O2 environment was controlled. Short lived species such as O atoms and OH radicals play a crucial role in polymer etching and surface modifications (obtained from X-ray photoelectron spectroscopy of treated polymers without additional atmospheric exposure). Polymer etching depth for Ar/air fed APPJ mirrors the decay of gas phase O atoms with distance from the APPJ nozzle in air and is consistent with the estimated O atom flux at the polymer surface. Furthermore, whereas separate O2 or H2O admixture to Ar enhances polymer etching, simultaneous addition of O2 and H2O to Ar quenches polymer etching. This can be explained by the mutual quenching of O with OH, H and HO2 in the gas phase. Results where O2 and/or H2O in the environment were varied are consistent with these mechanisms. All results will be compared with measured and simulated species densities reported in the literature. We gratefully acknowledge funding from US Department of Energy (DE-SC0001939) and National Science Foundation (PHY-1415353).

  14. Effects of CaO/P2O5 ratio on the structure and elastic properties of SiO2-CaO-Na2O-P2O5 bioglasses.

    PubMed

    Lin, Chung-Cherng; Chen, Shih-Fan; Leung, Kak Si; Shen, Pouyan

    2012-02-01

    The evolution of elastic properties and structure upon the change of CaO/P(2)O(5) ratio in SiO(2)-CaO-Na(2)O-P(2)O(5) glasses (45S5-derived and 55S4-derived) at ambient conditions has been studied by using both Brillouin and Raman spectroscopy coupled with X-ray diffraction. Under the same SiO(2)/Na(2)O ratio, it is found that a decrease in CaO/P(2)O(5) molar ratio has caused a more-polymerized silicate network via a net consumption of Q(0), Q(1), and Q(2) species yet enriching in Q(3) and Q(4) species. Brillouin experiments revealed that all the bulk, shear and Young's moduli of the glasses studied increases with the increase of CaO/P(2)O(5) molar ratio. The unexpected variation trend in shear modulus can be correlated to the contribution from cohesion, the less-polymerized phosphate Q species, and density. Compared to the 45S5-derived, the more-polymerized 55S4-deived glass has a lower bulk but slightly higher shear modulus at the given CaO/P(2)O(5) ratio.

  15. Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to Yb2Ti2O7, Er2Ti2O7, and Er2Sn2O7

    NASA Astrophysics Data System (ADS)

    Yan, Han; Benton, Owen; Jaubert, Ludovic; Shannon, Nic

    2017-03-01

    The family of magnetic rare-earth pyrochlore oxides R2M2O7 plays host to a diverse array of exotic phenomena, driven by the interplay between geometrical frustration and spin-orbit interaction, which leads to anisotropy in both magnetic moments and their interactions. In this article we establish a general, symmetry-based theory of pyrochlore magnets with anisotropic exchange interactions. Starting from a very general model of nearest-neighbor exchange between Kramers ions, we find four distinct classical ordered states, all with q =0 , competing with a variety of spin liquids and unconventional forms of magnetic order. The finite-temperature phase diagram of this model is determined by Monte Carlo simulation, supported by classical spin-wave calculations. We pay particular attention to the region of parameter space relevant to the widely studied materials Er2Ti2O7 , Yb2Ti2O7 , and Er2Sn2O7 . We find that many of the most interesting properties of these materials can be traced back to the "accidental" degeneracies where phases with different symmetries meet. These include the ordered ground-state selection by fluctuations in Er2Ti2O7 , the dimensional reduction observed in Yb2Ti2O7 , and the lack of reported magnetic order in Er2Sn2O7 . We also discuss the application of this theory to other pyrochlore oxides.

  16. Transport properties of PbO-P2O5-ZnO-Li2O glass system

    NASA Astrophysics Data System (ADS)

    Lakshmikantha, R.; Rajaramakrishna, R.; Ayachit, N. H.; Anavekar, R. V.

    2012-06-01

    The electrical conductivity of Li+ ion conducting lead zinc phosphate glasses have been carried out both as a function of temperature and frequency in the temperature range 458-510K and over frequencies 40 Hz to 10 MHz. The dc conductivities show Arrhenius behavior and show compositional dependence. The σ decreases with increase in Li2O content. The ac conductivity behavior has been analyzed using Almond-West power law using a single exponent. The exponent 's' obtained from the power law fits is found to have values ranging from 0.74 - 0.80 in these glasses and shows moderate temperature dependence, which is attributed to high degree of modification in the glass network.

  17. Visible light catalysis of rhodamine B using nanostructured Fe(2)O(3), TiO(2) and TiO(2)/Fe(2)O(3) thin films.

    PubMed

    Mahadik, M A; Shinde, S S; Mohite, V S; Kumbhar, S S; Moholkar, A V; Rajpure, K Y; Ganesan, V; Nayak, J; Barman, S R; Bhosale, C H

    2014-04-05

    The Fe(2)O(3), TiO(2) and TiO(2)/Fe(2)O(3) composite films are deposited using spray pyrolysis method onto glass and FTO coated substrates. The structural, morphological, optical and photocatalytic properties of Fe(2)O(3), TiO(2) and TiO(2)/Fe(2)O(3) thin films are studied. XRD analysis confirms that films are polycrystalline with rhombohedral and tetragonal crystal structures for Fe2O3 and TiO(2) respectively. The photocatalytic activity was tested for the degradation of Rhrodamine B (Rh B) in aqueous medium. The rate constant (-k) was evaluated as a function of the initial concentration of species. Substantial reduction in concentrations of organic species was observed from COD and TOC analysis. Photocatalytic degradation effect is relatively higher in case of the TiO(2)/Fe(2)O(3) than TiO(2) and Fe(2)O(3) thin film photoelectrodes in the degradation of Rh B and 98% removal efficiency of Rh B is obtained after 20min. The photocatalytic experimental results indicate that TiO(2)/α-Fe(2)O(3) photoelectrode is promising material for removing of water pollutants.

  18. Communication: Quasiclassical trajectory calculations of correlated product-state distributions for the dissociation of (H2O)2 and (D2O)2

    NASA Astrophysics Data System (ADS)

    Czakó, Gábor; Wang, Yimin; Bowman, Joel M.

    2011-10-01

    Stimulated by recent experiments [B. E. Rocher-Casterline, L. C. Ch'ng, A. K. Mollner, and H. Reisler, J. Chem. Phys. 134, 211101 (2011)], we report quasiclassical trajectory calculations of the dissociation dynamics of the water dimer, (H2O)2 (and also (D2O)2) using a full-dimensional ab initio potential energy surface. The dissociation is initiated by exciting the H-bonded OH(OD)-stretch, as done experimentally for (H2O)2. Normal mode analysis of the fragment pairs is done and the correlated vibrational populations are obtained by (a) standard histogram binning (HB), (b) harmonic normal-mode energy-based Gaussian binning (GB), and (c) a modified version of (b) using accurate vibrational energies obtained in the Cartesian space. We show that HB allows opening quantum mechanically closed states, whereas GB, especially via (c), gives physically correct results. Dissociation of both (H2O)2 and (D2O)2 mainly produces either fragment in the bending excited (010) state. The H2O(J) and D2O(J) rotational distributions are similar, peaking at J = 3-5. The computations do not show significant difference between the ro-vibrational distributions of the donor and acceptor fragments. Diffusion Monte Carlo computations are performed for (D2O)2 providing an accurate zero-point energy of 7247 cm-1, and thus, a benchmark D0 of 1244 ± 5 cm-1.

  19. Low-Cost and Facile Synthesis of the Vanadium Oxides V2O3, VO2, and V2O5 and Their Magnetic, Thermochromic and Electrochromic Properties.

    PubMed

    Mjejri, Issam; Rougier, Aline; Gaudon, Manuel

    2017-02-06

    In this study, vanadium sesquioxide (V2O3), dioxide (VO2), and pentoxide (V2O5) were all synthesized from a single polyol route through the precipitation of an intermediate precursor: vanadium ethylene glycolate (VEG). Various annealing treatments of the VEG precursor, under controlled atmosphere and temperature, led to the successful synthesis of the three pure oxides, with sub-micrometer crystallite size. To the best of our knowledge, the synthesis of the three oxides V2O5, VO2, and V2O3 from a single polyol batch has never been reported in the literature. In a second part of the study, the potentialities brought about by the successful preparation of sub-micrometer V2O5, VO2, and V2O3 are illustrated by the characterization of the electrochromic properties of V2O5 films, a discussion about the metal to insulator transition of VO2 on the basis of in situ measurements versus temperature of its electrical and optical properties, and the characterization of the magnetic transition of V2O3 powder from SQUID measurements. For the latter compound, the influence of the crystallite size on the magnetic properties is discussed.

  20. Aggregation and stability of Fe2O3:Influence of humic acid concentration, Fe2O3 concentration and pH

    NASA Astrophysics Data System (ADS)

    Ahmad, Nur Suraya; Radiman, Shahidan; Yaacob, Wan Zuhairi Wan

    2016-11-01

    The scenario of released nanoparticles from consumer product into the environment especially natural waters are increased concern nowadays. Assessing their aggregation and stability under environmental conditions are important to determining their fate and behavior in natural waters. The aggregation behavior of Fe2O3 nanoparticles (NPs) was investigated at variable concentration of humic acid, Fe2O3 NPs concentration and pH variation in solution using dynamic light scattering to measure their z-average hydrodynamic diameter and zeta potential value. The stability are then evaluated by assessing their aggregation and disaggregation. Increasing humic acid concentration induced the disaggregation of Fe2O3 NPs. At a lower concentrations of Fe2O3 (< 30 mg/L), aggregate formed and disaggregation take place with increasing Fe2O3 concentration (50, 100, 150, 200 mg/L). The maximum aggregation was found in pH 4 at a constant concentration of humic acid of 100 mg/L and concentration of Fe2O3 (100 mg/L). High pH (>5) of solution induced disaggregation of suspensions and make it stable in the solution. TEM imaging have confirmed that Fe2O3 NPs aggregate and disaggregate in the presence of humic acid. Our study result shows that aggregation and stability of Fe2O3 NPs were depends on concentration of humic acid, concentration of NPs itself and the pH of the solutions.

  1. First-principles study of electronic properties of La2Hf2O7 and Gd2Hf2O7

    SciTech Connect

    Li, Ni; Xiao, H. Y.; Zu, Xiaotao T.; Wang, Lumin M.; Ewing, R. C.; Lian, Jie; Gao, Fei

    2007-09-15

    The structural and electronic properties of A2Hf2O7 (A=La and Gd) pyrochlore compounds are investigated by means of first-principles total energy calculations. Also, the formation energies of defects are calculated, and the results can be used to explain the stability of pyrochlores. Hybridizations between A 5p and O 2s and between A 5d and O 2p states are observed, but the interaction between A 5p and O 2s orbitals is much stronger in Gd2Hf2O7 than that in La2Hf2O7. Gd2Hf2O7 compound shows much different density of state distribution from that of La2Hf2O7. Mulliken overlap population analysis shows that the A-O48f and A-O8b bonds in Gd2Hf2O7 are more ionic than the corresponding bonds in La2Hf2O7, while the Hf-O48f bond in Gd2Hf2O7 is more covalent. These calculations suggest that A-O48f and A-O8b bonds may play important roles in their responses to irradiation-induced amorphization observed experimentally.

  2. Catalytic performance of V2O5-MoO3/γ-Al2O3 catalysts for partial oxidation of n-hexane1

    NASA Astrophysics Data System (ADS)

    Mahmoudian, R.; Khodadadi, Z.; Mahdavi, Vahid; Salehi, Mohammed

    2016-01-01

    In the current study, a series of V2O5-MoO3 catalyst supported on γ-Al2O3 with various V2O5 and MoO3 loadings was prepared by wet impregnation technique. The characterization of prepared catalysts includes BET surface area, powder X-ray diffraction (XRD), and oxygen chemisorptions. The partial oxidation of n-hexane by air over V2O5-MoO3/γ-Al2O3 catalysts was carried out under flow condition in a fixed bed glass reactor. The effect of V2O5 loading, temperature, MoO3 loading, and n-hexane LHSV on the n-hexane conversion and the product selectivity were investigated. The partial oxygenated products of n-hexane oxidation were ethanol, acetic anhydride, acetic acid, and acetaldehyde. The 10% V2O5-1%MoO3/γ-Al2O3 was found in most active and selective catalyst during partial oxidation of n-hexane. The results indicated that by increasing the temperature, the n-hexane conversion increases as well, although the selectivity of the products passes through a maximum by increasing the temperature.

  3. Preparation of iron aluminate (FeAl2O4) nanoparticles from FeAl2O4 hollow particles fabricated by using a spray pyrolysis process

    NASA Astrophysics Data System (ADS)

    Yun, Jaecheol; Kim, Yangdo; Park, Dahee; Yun, Jung-Yeul

    2015-05-01

    Iron aluminate (FeAl2O4) hollow particles with a spinel structure were synthesized by using a spray pyrolysis process. FeAl2O4 hollow particles were formed at a reaction temperature of 900 °C at a flow rate of 40 L/min as a result of the rapid solvent evaporation and decomposition gases from the droplets in the spray solution prepared from metal salts and organic reagents. FeAl2O4 hollow particles were fabricated at a reaction temperature of 900 °C with a flow rate of 40 L/min. The FeAl2O4 hollow particles were heat treated for 3 hours at 600 °C in a 5% H2/Ar atmosphere to form the crystal particles. Subsequently, FeAl2O4 nanoparticles were fabricated from the FeAl2O4 hollow particles by using the wet milling process. After milling for 60 minutes, transmission electron microscopy revealed the FeAl2O4 particles to have a mean size of approximately 50 nm. The FeAl2O4 nanoparticles were fabricated successfully by using a two-step process, spray pyrolysis and wet milling.

  4. Isotope signatures of N2O emitted from vegetable soil: Ammonia oxidation drives N2O production in NH4+-fertilized soil of North China

    PubMed Central

    Zhang, Wei; Li, Yuzhong; Xu, Chunying; Li, Qiaozhen; Lin, Wei

    2016-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas. In North China, vegetable fields are amended with high levels of N fertilizer and irrigation water, which causes massive N2O flux. The aim of this study was to determine the contribution of microbial processes to N2O production and characterize isotopic signature effects on N2O source partitioning. We conducted a microcosm study that combined naturally abundant isotopologues and gas inhibitor techniques to analyze N2O flux and its isotopomer signatures [δ15Nbulk, δ18O, and SP (intramolecular 15N site preference)] that emitted from vegetable soil after the addition of NH4+ fertilizers. The results show that ammonia oxidation is the predominant process under high water content (70% water-filled pore space), and nitrifier denitrification contribution increases with increasing N content. δ15Nbulk and δ18O of N2O may not provide information about microbial processes due to great shifts in precursor signatures and atom exchange, especially for soil treated with NH4+ fertilizer. SP and associated two end-member mixing model are useful to distinguish N2O source and contribution. Further work is needed to explore isotopomer signature stability to improve N2O microbial process identification. PMID:27387280

  5. Effect of Fe2O3 and Binder on the Electrochemical Properties of Fe2O3/AB (Acetylene Black) Composite Electrodes

    NASA Astrophysics Data System (ADS)

    Anh, Trinh Tuan; Thuan, Vu Manh; Thang, Doan Ha; Hang, Bui Thi

    2017-01-01

    In an effort to find the best anode material for Fe/air batteries, a Fe2O3/AB (Acetylene Black) composite was prepared by dry-type ball milling using Fe2O3 nanoparticles and AB as the active and additive materials, respectively. The effects of various binders and Fe2O3 content on the electrochemical properties of Fe2O3/AB electrodes in alkaline solution were investigated. It was found that the content of Fe2O3 strongly affected the electrochemical behavior of Fe2O3/AB electrodes; with Fe2O3 nanopowder content reaching 70 wt.% for the electrode and showing improvement of the cyclability. When the electrode binder polytetrafluoroethylene (PTFE) was used, clear redox peaks were observed via cyclic voltammetry (CV), while polyvinylidene fluoride-containing electrodes provided CV curves with unobservable redox peaks. Increasing either binder content in the electrode showed a negative effect in terms of the cyclability of the Fe2O3/AB electrode.

  6. Non-volatile Al2O3 Memory using Nanoscale Al-rich Al2O3 Thin Film as a Charge Storage Layer

    NASA Astrophysics Data System (ADS)

    Nakata, Shunji; Saito, Kunio; Shimada, Masaru

    2006-04-01

    This article describes the fabrication process and capacitance-voltage (C-V) characteristics of a new non-volatile Al2O3 memory with nanoscale thin film deposited by electron-cyclotron-resonance sputtering. Al-rich Al2O3 shows characteristics somewhere between Al and Al2O3 in the refractive index and wet etching rate. C-V characteristics of Al-rich Al2O3 memory show a large hysteresis window due to the Al-rich structure, while there is no hysteresis window in the case of stoichiometric Al2O3. This memory is expected to stay non-volatile for several years or more because the capacitance value after writing and erasing operation remained almost unchanged after 4 h at T=85 °C. Also, another new memory structure comprising SiO2/Al2O3 and the Al-rich Al2O3 structure is proposed, which features increased mobility due to the reduction of electron scattering at the Si/Al2O3 interface.

  7. A Ca substitution study of NaV2O4: High-pressure synthesis of the Na1-xCaxV2O4 solid solution

    SciTech Connect

    Varga, Tamas; Mitchell, John F.; Yamaura, Kazunari; Mandrus, David; Wang, Jun

    2009-01-01

    Ambient pressure CaV{sub 2}O{sub 4} and high-pressure NaV{sub 2}O{sub 4} crystallize in the CaFe{sub 2}O{sub 4} structure type containing double chains of edge-sharing VO{sub 6} octahedra. Recent measurements on NaV{sub 2}O{sub 4} reveal low-dimensional metallicity and evidence of half-metallic ferromagnetism. In contrast, CaV{sub 2}O{sub 4} is an antiferromagnetic insulator. To explore the evolution of these ground-state behaviors, we have prepared a series of Ca-doped NaV{sub 2}O{sub 4} compounds with the formula Na{sub 1-x}Ca{sub x}V{sub 2}O{sub 4} (x = 0-1) using high-pressure synthesis. Samples at the Na end (x = 0-0.07) show a broad antiferromagnetic transition in the 120-160 K range in accordance with earlier reports. Transport measurements show an insulator-metal transition at x {approx} 0.2. Samples with higher Ca concentrations (x = 0.4-0.7) exhibit a metal-insulator transition around 150 K. The results for the Na{sub 1-x}Ca{sub x}V{sub 2}O{sub 4} solid solution is discussed in comparison to existing studies at the Ca- and Na-rich ends.

  8. Facile synthesis and characterization of ZnFe{sub 2}O{sub 4}/{alpha}-Fe{sub 2}O{sub 3} composite hollow nanospheres

    SciTech Connect

    Shen, Yu; Li, Xinyong; Zhao, Qidong; Hou, Yang; Tade, Moses; Liu, Shaomin

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer ZnFe{sub 2}O{sub 4}/{alpha}-Fe{sub 2}O{sub 3} composite hollow nanospheres were successfully synthesized via a facile method. Black-Right-Pointing-Pointer Detailed structural, morphology and the phase composition were studied. Black-Right-Pointing-Pointer The incorporation of ZnFe{sub 2}O{sub 4} and {alpha}-Fe{sub 2}O{sub 3} gives an appropriate band gap value to utilize solar energy. -- Abstract: ZnFe{sub 2}O{sub 4}/{alpha}-Fe{sub 2}O{sub 3} composite hollow nanospheres were successfully fabricated via a facile one-pot solvothermal method, utilizing polyethylene glycol as soft template. X-ray diffraction and scanning electron microscopy analysis revealed that the prepared nanospheres with cubic spinel and rhombohedra composite structure had a uniform diameter of about 370 nm, and the hollow structure could be further confirmed by transmission electron microscopy. Energy dispersive X-ray, X-ray photoelectron spectroscopy and Fourier transform infrared techniques were also applied to characterize the elemental composition and chemical bonds in the hollow nanospheres. The ZnFe{sub 2}O{sub 4}/{alpha}-Fe{sub 2}O{sub 3} composite hollow nanospheres show attractive light absorption property for potential applications in electronics, optics, and catalysis.

  9. Site-specific N2O isotopic compositions from Brazilian Amazon soils and their implications for the global N2O isotope budget

    NASA Astrophysics Data System (ADS)

    Park, S.; Perez, T. J.; Thompson, A. E.; Boering, K. A.; Firestone, M. K.; Trumbore, S. E.; Tyler, S. C.

    2004-12-01

    The site-specific 15N signature of N2O (i.e., the 15N isotopic composition at the central or terminal position, expressed as δ 15Nα or δ 15Nβ ) from natural sources (e.g., tropical rain forest soils) remains poorly explored, despite indications from the few measurements available that the signature can be used for distinguishing microbiological N2O production mechanisms in soils and for reducing uncertainties in the global isotope budget. We present measurements of site-specific δ 15Nα , δ 15Nbulk (i.e., the average of the two N atom positions), and δ 18O of N2O of soil gas samples collected in March 2002 during the rainy season in the Tapajos National Forest (TNF), Para, Brazil and on N2O emissions from soil incubation experiments using the TNF soils and soils from Nova Vida Farm, Rondonia, Brazil. The microbiological and physical processes that could play roles in the observed distribution and variation of N2O isotopologues from the tropical forest soils will be discussed and compared with results for N2O produced in laboratory cultures of denitrifying bacteria and with stratospheric N2O observations. We then use the combination of data from tropical soils, bacterial cultures and the stratosphere to constrain the contribution of the tropical forest soils to the atmospheric N2O isotope budget.

  10. Isotope signatures of N2O emitted from vegetable soil: Ammonia oxidation drives N2O production in NH4+-fertilized soil of North China

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Li, Yuzhong; Xu, Chunying; Li, Qiaozhen; Lin, Wei

    2016-07-01

    Nitrous oxide (N2O) is a potent greenhouse gas. In North China, vegetable fields are amended with high levels of N fertilizer and irrigation water, which causes massive N2O flux. The aim of this study was to determine the contribution of microbial processes to N2O production and characterize isotopic signature effects on N2O source partitioning. We conducted a microcosm study that combined naturally abundant isotopologues and gas inhibitor techniques to analyze N2O flux and its isotopomer signatures [δ15Nbulk, δ18O, and SP (intramolecular 15N site preference)] that emitted from vegetable soil after the addition of NH4+ fertilizers. The results show that ammonia oxidation is the predominant process under high water content (70% water-filled pore space), and nitrifier denitrification contribution increases with increasing N content. δ15Nbulk and δ18O of N2O may not provide information about microbial processes due to great shifts in precursor signatures and atom exchange, especially for soil treated with NH4+ fertilizer. SP and associated two end-member mixing model are useful to distinguish N2O source and contribution. Further work is needed to explore isotopomer signature stability to improve N2O microbial process identification.

  11. Effect of Bi2O3 particle sizes and addition of starch into Bi2O3-PVA composites for X-ray shielding

    NASA Astrophysics Data System (ADS)

    Noor Azman, Nurul Z.; Musa, Nur F. L.; Nik Ab Razak, Nik N. A.; Ramli, Ramzun M.; Mustafa, Iskandar S.; Abdul Rahman, Azhar; Yahaya, Nor Z.

    2016-09-01

    The effect of Bi2O3 particle sizes filled PVA composites on X-ray transmission for X-ray shielding purpose had been successfully fabricated and analyzed by using X-ray fluorescent spectroscopy (XRF) and mammography units with various low X-ray energy ranges. Besides, a preliminary investigation was carried out by using XRF unit to obtain the effect of starch addition into the composite on the X-ray transmissions by both particle sizes of Bi2O3-PVA composites. The results showed that the ability of the composite to attenuate the initial X-ray beam was augmented with the increased Bi2O3 weight percentage (wt%). The density of both particle sizes of Bi2O3-PVA composites was compared with the addition of 1 and 3 wt% starch, while a fluctuation of density occurred for the composites without starch. Moreover, the nano-sized Bi2O3-PVA composite without starch did not exemplify better X-ray attenuation capability compared to its micro-sized counterpart even though their density was higher than the micro-sized Bi2O3-PVA composite. However, the nano-sized Bi2O3-PVA composite with starch offered better particle size effect for X-ray shielding ability than its micro-sized counterpart compared to the Bi2O3-PVA composites without starch.

  12. Potential N2O Emissions from the Tanks of Bromeliads Suggest an Additional Source of N2O in the Neotropics.

    PubMed

    Suleiman, Marcel; Brandt, Franziska B; Brenzinger, Kristof; Martinson, Guntars O; Braker, Gesche

    2016-12-06

    We studied the propensity of the tank bromeliad Werauhia gladioliflora to emit the greenhouse gas nitrous oxide (N2O) at current and at increased N deposition levels in the range of predicted future scenarios. Potential production rates and net accumulation of N2O from tank substrate corresponded to N availability. N2O was produced in excess at all N levels due to a low level of N2O reductase activity which agreed well with a low abundance of N2O reducers compared to nitrite reducers. Transcriptional activation, however, indicated that expression of denitrification genes may be enhanced with increasing N supply eventually leading to more efficient N2O turnover with potential for adaptation of denitrifier communities to higher N levels. Our findings indicate that tank bromeliads may constitute a novel source of N2O in Neotropical forest canopies but further studies are required to understand the size and significance of in situ N2O fluxes from tank bromeliads to the environment.

  13. Post-treatment of palm oil mill effluent (POME) using combined persulphate with hydrogen peroxide (S2O8(2-)/H2O2) oxidation.

    PubMed

    Lin, Chia Ken; Bashir, Mohammed J K; Abu Amr, Salem S; Sim, Lan Ching

    2016-12-01

    The aim of the current study is to evaluate the effectiveness of combined persulphate with hydrogen peroxide (S2O8(2-)/H2O2) oxidation as a post-treatment of biologically treated palm oil mill effluent (POME) for the first time in the literature. The removal efficiencies of chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), and suspended solids (SS) were 36.8%, 47.6%, and 90.6%, respectively, by S2O8(2-) oxidation alone under certain operation conditions (i.e., S2O8(2-) = 0.82 g, pH 11, and contact time 20 min). Nevertheless, the combined process (S2O8(2-)/H2O2) achieved 75.8% and 87.1% removals of NH3-N and SS, respectively, under 2.45/1.63 g/g H2O2/S2O8(2-), pH 11, and 20 min oxidation. Moreover, 56.9% of COD was removed at pH 8.4.

  14. Simultaneous mapping of H 2O and H 2O 2 on Mars from infrared high-resolution imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Greathouse, T. K.; Richter, M. J.; Bézard, B.; Fouchet, T.; Lefèvre, F.; Montmessin, F.; Forget, F.; Lebonnois, S.; Atreya, S. K.

    2008-06-01

    New maps of martian water vapor and hydrogen peroxide have been obtained in November-December 2005, using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infra Red Telescope facility (IRTF) at Mauna Kea Observatory. The solar longitude L was 332° (end of southern summer). Data have been obtained at 1235-1243 cm -1, with a spectral resolution of 0.016 cm -1 ( R=8×10). The mean water vapor mixing ratio in the region [0°-55° S; 345°-45° W], at the evening limb, is 150±50 ppm (corresponding to a column density of 8.3±2.8 pr-μm). The mean water vapor abundance derived from our measurements is in global overall agreement with the TES and Mars Express results, as well as the GCM models, however its spatial distribution looks different from the GCM predictions, with evidence for an enhancement at low latitudes toward the evening side. The inferred mean H 2O 2 abundance is 15±10 ppb, which is significantly lower than the June 2003 result [Encrenaz, T., Bézard, B., Greathouse, T.K., Richter, M.J., Lacy, J.H., Atreya, S.K., Wong, A.S., Lebonnois, S., Lefèvre, F., Forget, F., 2004. Icarus 170, 424-429] and lower than expected from the photochemical models, taking in account the change in season. Its spatial distribution shows some similarities with the map predicted by the GCM but the discrepancy in the H 2O 2 abundance remains to be understood and modeled.

  15. Structural investigation in the TiB{sub 2}-(Na{sub 2}O.B{sub 2}O{sub 3}.Al{sub 2}O{sub 3}) system

    SciTech Connect

    Buixaderas, Elena; Maria Anghel, Elena; Petrescu, Simona; Osiceanu, Petre

    2010-09-15

    Composites in the TiB{sub 2}-Na{sub 2}O.B{sub 2}O{sub 3}.Al{sub 2}O{sub 3} systems, TiB{sub 2}-MBA (MB stands for sodium metaborate and A is Al{sub 2}O{sub 3}), were prepared by self-propagating high-temperature synthesis (SHS), in simultaneous mode. Selection of these compositions was ruled by the interesting properties of both TiB{sub 2} and double borates of alkali metal and aluminum. The structure of the obtained materials was evaluated by micro-Raman spectroscopy, from room temperature up to 600 {sup o}C, and X-ray photoelectron spectroscopy (XPS). Formation of the TiB{sub 2} and TiO{sub 2-x}B{sub x} phases along with TiO{sub 2} as rutile were identified as titanium speciation in the grain phase embedded in a sodium aluminum borate matrix. Integration of the Raman spectra of the grain phases revealed a TiB{sub 2} content of 16.99% and 23.32% for the two composite investigated 2TiB{sub 2}.2MBA and 3TiB{sub 2}.5MBA. A constrained-width model for the spectral deconvolution of the high-frequency Raman band was forwarded to calculate the proportion of tetrahedral boron atoms (7.424%) in the blank borate matrix Na{sub 2}B{sub 2}O{sub 4}.Al{sub 2}O{sub 3} in solid phase. - Graphical abstract: Deconvolution of the reduced Raman spectrum of the grain phase in TiB{sub 2}-(Na{sub 2}O.B{sub 2}O{sub 3}.Al{sub 2}O{sub 3}) composite along with its Raman micrographs collected at room temperature.

  16. Investigation of the hydration process in 3CaO.Al(2)O(3)-CaSO(4) . 2H(2)O-plasticizer-H(2)O systems by X-ray diffraction.

    PubMed

    Carazeanu, Ionela; Chirila, Elisabeta; Georgescu, Maria

    2002-06-10

    The development of the hydration process in 3CaO.Al(2)O(3)-CaSO(4) . 2H(2)O-H(2)O system is studied by X-ray diffraction in the presence of varying contents of new plasticizer admixtures belonging to the lignosulphonates class (calcium lignosuphonate-LSC) and condensates melamine formaldehyde sulfonated class-MSF (VIMC-11). The plasticizer admixtures were added in proportion of 0.1-1% solid substance. The influence of the plasticizer admixtures on the hydration process with increasing time is observed and it is shown to depend on the nature and content of the admixtures and the reaction time. The strong adsorption of admixtures on the surfaces on the anhydrous or partially hydrated particles of the system can explain the influence of the admixtures upon the kinetics of the hydration process retardation or acceleration. These plasticizer admixtures influence also the evolution of the hydrated compounds and forming of the hardening structure in the 3CaO.Al(2)O(3)-CaSO(4) . 2H(2)O-H(2)O system; their proportion in the system and the considered length of hardening are correlated. In the 3CaO.Al(2)O(3)-CaSO(4) . 2H(2)O-H(2)O system there are two different influences of the plasticizer admixtures upon the hydration process. One is a delaying action, as a result of plasticizer adsorption on the surface of the anhydrous and hydrated compound particles and another one is the intensifying action due to the stronger dispersion of the particles in aqueous medium.

  17. H2O2 levels in rainwater collected in south Florida and the Bahama Islands

    NASA Technical Reports Server (NTRS)

    Zika, R.; Saltzman, E.; Chameides, W. L.; Davis, D. D.

    1982-01-01

    Measurements of H2O2 in rainwater collected in Miami, Florida, and the Bahama Islands area indicate the presence of H2O2 concentration levels ranging from 100,000 to 700,000 M. No systematic trends in H2O2 concentration were observed during an individual storm, in marked contrast to the behavior of other anions for example, NO3(-), SO4(-2), and Cl(-). The data suggest that a substantial fraction of the H2O2 found in precipitation is generated by aqueous-phase reactions within the cloudwater rather than via rainout and washout of gaseous H2O2.

  18. The relaxation of OH (v=1) and OD (v=1) by H2O and D2O at temperatures from 251 to 390 K.

    PubMed

    McCabe, D C; Rajakumar, B; Marshall, P; Smith, I W M; Ravishankara, A R

    2006-10-21

    We report rate coefficients for the relaxation of OH(v=1) and OD(v=1) by H2O and D2O as a function of temperature between 251 and 390 K. All four rate coefficients exhibit a negative dependence on temperature. In Arrhenius form, the rate coefficients for relaxation (in units of 10(-12) cm3 molecule-1 s-1) can be expressed as: for OH(v=1)+H2O between 263 and 390 K: k=(2.4+/-0.9) exp((460+/-115)/T); for OH(v=1)+D2O between 256 and 371 K: k=(0.49+/-0.16) exp((610+/-90)/T); for OD(v=1)+H2O between 251 and 371 K: k=(0.92+/-0.16) exp((485+/-48)/T); for OD(v=1)+D2O between 253 and 366 K: k=(2.57+/-0.09) exp((342+/-10)/T). Rate coefficients at (297+/-1 K) are also reported for the relaxation of OH(v=2) by D2O and the relaxation of OD(v=2) by H2O and D2O. The results are discussed in terms of a mechanism involving the formation of hydrogen-bonded complexes in which intramolecular vibrational energy redistribution can occur at rates competitive with re-dissociation to the initial collision partners in their original vibrational states. New ab initio calculations on the H2O-HO system have been performed which, inter alia, yield vibrational frequencies for all four complexes: H2O-HO, D2O-HO, H2O-DO and D2O-DO. These data are then employed, adapting a formalism due to Troe (J. Troe, J. Chem. Phys., 1977, 66, 4758), in order to estimate the rates of intramolecular energy transfer from the OH (OD) vibration to other modes in the complexes in order to explain the measured relaxation rates-assuming that relaxation proceeds via the hydrogen-bonded complexes.

  19. OPTICAL PROPERTIES OF N-DOPED Cu2O THIN FILMS DEPOSITED BY RF-MAGNETRON SPUTTERING Cu2O TARGET

    NASA Astrophysics Data System (ADS)

    Lai, Guozhong; Wu, Yangwei; Lin, Limei; Qu, Yan; Lai, Fachun

    2014-05-01

    N-doped Cu2O films were deposited on quartz substrates by reactive magnetron sputtering a Cu2O target. The optical constants and thicknesses of the films with different nitrogen partial pressure (NPP) were retrieved from transmittance data by an optical model which combines the Forouhi-Bloomer model with modified Drude model. The results show that when NPP increases from 0.0 to 0.033 Pa, the optical gap decreases from 2.14 to 1.95 eV. Additionally, an optical absorption process in the infrared region below the optical band gap was observed for N-doped Cu2O films, which was not found in the pure Cu2O film. This is because an intermediate band (IB) in the band gap results from nitrogen doping. It is believed that N-doped Cu2O film with suitable NPP could be used to enhance the energy conversion efficiency for photovoltaic cells.

  20. Stability of Al2O3 and Al2O3/a-SiNx:H stacks for surface passivation of crystalline silicon

    NASA Astrophysics Data System (ADS)

    Dingemans, G.; Engelhart, P.; Seguin, R.; Einsele, F.; Hoex, B.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2009-12-01

    The thermal and ultraviolet (UV) stability of crystalline silicon (c-Si) surface passivation provided by atomic layer deposited Al2O3 was compared with results for thermal SiO2. For Al2O3 and Al2O3/a-SiNx:H stacks on 2 Ω cm n-type c-Si, ultralow surface recombination velocities of Seff<3 cm/s were obtained and the passivation proved sufficiently stable (Seff<14 cm/s) against a high temperature "firing" process (>800 °C) used for screen printed c-Si solar cells. Effusion measurements revealed the loss of hydrogen and oxygen during firing through the detection of H2 and H2O. Al2O3 also demonstrated UV stability with the surface passivation improving during UV irradiation.

  1. Hydrogen induced passivation of Si interfaces by Al2O3 films and SiO2/Al2O3 stacks

    NASA Astrophysics Data System (ADS)

    Dingemans, G.; Beyer, W.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2010-10-01

    The role of hydrogen in Si surface passivation is experimentally identified for Al2O3 (capping) films synthesized by atomic layer deposition. By using stacks of SiO2 and deuterated Al2O3, we demonstrate that hydrogen is transported from Al2O3 to the underlying SiO2 already at relatively low annealing temperatures of 400 °C. This leads to a high level of chemical passivation of the interface. Moreover, the thermal stability of the passivation up to 800 °C was significantly improved by applying a thin Al2O3 capping film on the SiO2. The hydrogen released from the Al2O3 film favorably influences the passivation of Si interface defects.

  2. Comprehensive copper ion hydration: experimental and theoretical investigation of Cu2+(H2O)n, Cu+(H2O)n, CuOH+(H2O)n

    NASA Astrophysics Data System (ADS)

    Sweeney, Andrew

    Guided ion beam tandem mass spectrometry is used to probe the kinetic energy dependence of both Cu2+(H2O)n, where n = 5--10, and CuOH+(H2O)n, where n = 0--4 colliding with Xe. The resulting cross sections are analyzed using statistical models to yield 0 K bond dissociation energies (BDEs). The primary dissociation pathway for Cu2+(H2O)n consists of water loss followed by the sequential loss of additional waters at higher energies until n = 7, at which point charge separation to form CuOH+(H2O) m + H+(H2O)n-m-2 is energetically favored. The primary dissociation pathway for CuOH+(H 2O)n is also water loss and is followed by the sequential loss of additional waters at higher energies until n = 1, at which point OH loss become competitive. The BDEs for loss of water and OH from CuOH +(H2O) are combined in a thermodynamic cycle with literature values to derive BDEs for the loss of OH from CuOH+(H 2O)n, where n = 0, 2--4. Infrared multiple photon dissociation (IRPD) spectroscopy is performed on CuOH+(H2O)n, where n = 2--9. These spectra are characterized through comparison to theoretical spectra of low energy isomers. It is found that CuOH+(H2O) n prefers a 4-coordinate inner shell, although contributions from 5-coordinate geometries cannot be ruled out in most cases and are clearly present for n = 7. This preference is found in the Cu2+(H2O) n system as well and differs from the Cu+(H2O) n system, which prefers a 2-coordinate inner shell. Electronic structure calculations are further employed to yield BDEs which agree reasonably well with experimental values. A method for modeling kinetic energy release distributions (KERD) on a guided ion beam tandem mass spectrometer is proposed. This method achieves reasonable agreement with dissociations occurring over loose transition states when reactants have little energy in excess of the dissociation threshold. Current limitations and future possibilities of this method are discussed in detail.

  3. Formation of hydroxyapatite onto glasses of the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives.

    PubMed

    Agathopoulos, S; Tulyaganov, D U; Ventura, J M G; Kannan, S; Karakassides, M A; Ferreira, J M F

    2006-03-01

    New bioactive glasses with compositions based on the CaO-MgO-SiO(2) system and additives of B(2)O(3), P(2)O(5), Na(2)O, and CaF(2) were prepared. The in vitro mineralization behaviour was tested by immersion of powders or bulk glasses in simulated body fluid (SBF). Monitoring of ionic concentrations in SBF and scanning electron microscopy (SEM) observations at the surface of the glasses were conducted over immersion time. Raman and infrared (IR) spectroscopy shed light on the structural evolution occurring at the surface of the glasses that leads to formation of hydroxyapatite.

  4. Nqrs Data for C8H5Li2O4.5 [C8H4Li2O4·1/2(H2O)] (Subst. No. 1059)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C8H5Li2O4.5 [C8H4Li2O4·1/2(H2O)] (Subst. No. 1059)

  5. Nqrs Data for C9H26N3Na2O14P [C9H12N3Na2O7P·7(H2O)] (Subst. No. 1198)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C9H26N3Na2O14P [C9H12N3Na2O7P·7(H2O)] (Subst. No. 1198)

  6. Isotopomer Analysis of N2O Produced During Waste Water Treatment

    NASA Astrophysics Data System (ADS)

    Toyoda, S.; Fujiwara, A.; Yoshida, N.

    2007-12-01

    Nitrous oxide (N2O) is an important trace gas in the atmosphere since it is radiatively active in the troposphere and also a precursor of nitric oxide which catalytically destroys ozone in the stratosphere. Isotopomer ratios (elemental N and O isotope ratios and site-specific N isotope ratios in asymmetric molecule of NNO) have been studied to understand its complex geochemical cycle. Microbial processes such as nitrification and denitrification are the largest N2O sources, and pure culture incubation studies showed that intramolecular 15N-site preference (SP) in N2O can differentiate the two N2O producing processes, hydroxylamine oxidation and nitrite reduction. However, there have been still few studies on N2O isotopomer ratios in complex bacterial systems. In this paper, we investigated the isotopomer ratios in N2O produced in waste water treatment system in order to evaluate characteristics of N2O emitted from human sewage and to understand N2O dynamics in microbial consortia (activated sludge). Water and gas samples were collected step by step in two different treatment systems in a sewage plant in Tokyo. High dissolved N2O concentration (up to 7600%\\ saturation) was observed in biological reaction tanks and isotopomer ratios confirmed active N2O production by microbes. Moreover, isotopomer ratios showed large variations throughout the whole treatment system and suggested that N2O is produced in settling and chlorination steps as well as biological reaction steps.

  7. Following the N2O consumption at the Oxygen Minimum Zone in the eastern South Pacific

    NASA Astrophysics Data System (ADS)

    Cornejo, M.; Farías, L.

    2012-03-01

    Oxygen deficient zones (OMZs), such as those found in the eastern South Pacific (ESP), are the most important N2O sources in the world ocean relative to their volume. N2O production is related to low O2 concentrations and high primary productivity. However, when O2 is sufficiently low, canonical denitrification takes place and N2O consumption can be expected. N2O distribution in the ESP was analyzed over a wide latitudinal range (from 5° to 30° S and 71°-76° to ~84° W) based on ~890 N2O measurements. The intense consumption of N2O appears to be related to secondary NO2- accumulation, the best indicator of very low O2 levels. Using relationships that depend on threshold levels of O2 (<8 μM) and nitrite (>0.75 μM), we reproduced the apparent N2O production (ΔN2O) with high reliability (r2=0.73 p=0.01). Our results contribute to quantify the ratio of N2O production/consumption that is being cycling in O2 deficient water of N2O and may improve the prediction of N2O behavior under future scenarios of the OMZ expansion.

  8. [Effects of applying controlled release fertilizers on N2O emission from a lateritic red soil].

    PubMed

    Du, Ya-qin; Zheng, Li-xing; Fan, Xiao-lin

    2011-09-01

    Static closed chamber technique and contrast method were adopted to study the effects of three coated compound fertilizers (N:P2O5:K2O = 19:8.6:10.5, high N; 14.4:14.4:14.4, balanced NPK; and 12.5:9.6:20.2, high K) on the NO2O emission from a lateritic red soil under the condition of no crop planting, taking uncoated compound fertilizers (N:P2O5:K2O = 20:9:11, high N; 15:15:15, balanced NPK; and 13:10:21, high K) as the contrasts. Different formula of fertilizer NPK induced significant difference in the N2O emission. Under the application of uncoated compound fertilizers, the cumulative N2O emission was in the order of balanced NPK > or = high N > high K. Applying coated compound fertilizers decreased the N2O emission significantly, and the emission amount under the application of high N, balanced NPK, and high K was 34.4%, 30.5%, and 89.3% of the corresponding uncoated compound fertilizers, respectively. Comparing with the application of uncoated compound fertilizers, applying coated compound fertilizers also decreased the daily N2O flux significantly, and delayed and shortened the N2O peak, suggesting that coated fertilizers could reduce soil nitrogen loss and the global warming potential induced by N2O emission.

  9. Ta2O5 nanobars and their composites: synthesis and characterization.

    PubMed

    George, P P; Gedanken, A

    2008-11-01

    Novel Ta2O5 nanobars anchored on micron-sized carbon spheres were synthesized by the thermal decomposition of pentaethoxy tantalate, Ta(OEt)5. This one-step reaction was carried out using the RAPET (Reaction Under Autogenic Pressure at Elevated Temperature) method by dissociating Ta(OEt)5 at 800 degrees C for 3 h. The as-prepared Ta2O5/C nanobar-composite was annealed under air at 500 degrees C for 3 h (eliminating the carbon spheres), resulting in neat Ta2O5 nanobars. The products, Ta2O5/C and Ta2O5 nanobars, were characterized using methods such as electron microscopy (SEM, TEM, HRTEM, SAEDS, EA, EDX) and Powder-XRD. Transmission electron microscope (TEM) images indicated the particle size of the Ta2O5 nanobars coated on 40-60 nm carbon spheres. The optical properties of the Ta2O5/C nanobar-composite and the neat Ta2O5 nanobars were determined by UV-vis absorption spectrometry and their band gaps were found at 265 (4.7 eV) and 260 nm (4.8 eV), respectively. A PL band was also observed for a Ta2O5/C nanobar-composite and Ta2O5 nanobars. The above results indicate that Ta2O5 nanobars have a promising application in optical devices.

  10. Trapped charge densities in Al2O3-based silicon surface passivation layers

    NASA Astrophysics Data System (ADS)

    Jordan, Paul M.; Simon, Daniel K.; Mikolajick, Thomas; Dirnstorfer, Ingo

    2016-06-01

    In Al2O3-based passivation layers, the formation of fixed charges and trap sites can be strongly influenced by small modifications in the stack layout. Fixed and trapped charge densities are characterized with capacitance voltage profiling and trap spectroscopy by charge injection and sensing, respectively. Al2O3 layers are grown by atomic layer deposition with very thin (˜1 nm) SiO2 or HfO2 interlayers or interface layers. In SiO2/Al2O3 and HfO2/Al2O3 stacks, both fixed charges and trap sites are reduced by at least a factor of 5 compared with the value measured in pure Al2O3. In Al2O3/SiO2/Al2O3 or Al2O3/HfO2/Al2O3 stacks, very high total charge densities of up to 9 × 1012 cm-2 are achieved. These charge densities are described as functions of electrical stress voltage, time, and the Al2O3 layer thickness between silicon and the HfO2 or the SiO2 interlayer. Despite the strong variation of trap sites, all stacks reach very good effective carrier lifetimes of up to 8 and 20 ms on p- and n-type silicon substrates, respectively. Controlling the trap sites in Al2O3 layers opens the possibility to engineer the field-effect passivation in the solar cells.

  11. Interfacial tension between immiscible melts in the system K2O - FeO - Fe2O3 - Al2O3 - SiO2

    NASA Astrophysics Data System (ADS)

    Kaehn, J.; Veksler, I. V.; Franz, G.; Dingwell, D. B.

    2009-12-01

    Interfacial tension is a very important parameter of the kinetics of phase nucleation, dissolution and growth. Excess surface energy contributes to the energy barrier for phase nucleation, and works as the main driving force for minimization of phase contact surfaces in heterogeneous systems. Immiscible silicate melts have been found to form in a broad range of basaltic, dacitic and rhyolitic magmas (Philpotts, 1982). However, liquid-liquid interfaces remain poorly studied in comparison with crystal-melt and vapor-melt interfaces. Here we present first experimental measurements of interfacial tension between synthetic Fe-rich and silica-rich immiscible melts composed of Fe oxides, K2O, alumina and silica. According to Naslund (1983), the miscibility gap in the 5-oxide system expands with increasing fO2 and becomes widest in air (fO2 = 0.2). Our goal was to estimate the maximal liquid-liquid interfacial tension for the immiscible liquids composed of silica and Fe oxides. Therefore, we have chosen the most contrasting liquid compositions that coexist in air at and above 1465 °C. Silica-rich and Fe-rich conjugate liquids at these conditions contain 73 and 17 wt. % SiO2, and 14 and 80 wt. % FeOt, respectively. These starting compositions were synthesized by fusion of reagent-grade oxides and K2CO3 at 1600 °C. In addition to interfacial tension, we have measured density and surface tension of individual coexisting liquids. All the measurements were done at 1500, 1527 and 1550 °C. Density was measured by the Archimedean method; surface and interfacial tensions were calculated from the maximal pool on a vertical cylinder (a 3-mm Pt rod attached to a high precision balance). We found interfacial tension between the immiscible liquids to decrease with increasing temperature from 16.4±2 mN/m at 1500 °C to 8.2±0.8 mN/m at 1550 °C. These values are approximately 2 orders of magnitude lower than typical interfacial tensions between silicate melts and crystals (Wanamaker

  12. Neutral pH Gel Electrolytes for V2O5·0.5H2O-Based Energy Storage Devices.

    PubMed

    Qian, Aniu; Zhuo, Kai; Karthick Kannan, Padmanathan; Chung, Chan-Hwa

    2016-12-21

    Gel electrolytes are considered to be promising candidates for the use in supercapacitors. It is worthy to systematically evaluate the internal electrochemical mechanisms with a variety of cations (poly(vinyl alcohol) (PVA)-based Li(+), Na(+), and K(+)) toward redox-type electrode. Herein, we describe a quasi-solid-state PVA-KCl gel electrolyte for V2O5·0.5H2O-based redox-type capacitors, effectively avoiding electrochemical oxidation and structural breakdown of layered V2O5·0.5H2O during 10 000 charge-discharge cycles (98% capacitance retention at 400 mV s(-1)). With the gel electrolyte, symmetric V2O5·0.5H2O-reduced graphene oxide (V2O5·0.5H2O-rGO) devices exhibited a volumetric capacitance of 136 mF cm(-3), which was much higher than that of 68 mF cm(-3) for PVA-NaCl and 45 mF cm(-3) for PVA-LiCl. Additionally, hybrid full cells of activated carbon cloth//V2O5·0.5H2O-rGO delivered an energy density of 102 μWh cm(-3) and a power density of 73.38 mW cm(-3) over a wide potential window of 2 V. The present study provides direct experimental evidence for the contribution of PVA-KCl gel electrolytes toward quick redox reactions for redox-type capacitors, which is also helpful for the development of neutral pH gel electrolytes for energy storage devices.

  13. Formation and stability of crystalline and amorphous Al2O3 layers deposited on Ga2O3 nanowires by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Katz, M. B.; Twigg, M. E.; Prokes, S. M.

    2016-09-01

    Although the crystalline α and γ phases are the most stable forms of alumina, small-diameter (<6 nm) nanoparticles are known to be completely amorphous, due to the surface energy being correspondingly lower for the less stable non-crystalline phase. Al2O3 films with a thickness of 5 nm grown by low temperature (200 °C) atomic layer deposition (ALD) on small-diameter (<20 nm) Ga2O3 nanowires (NWs), however, are identified by transmission electron microscopy as belonging to the α, γ, and possibly θ crystalline phases of Al2O3, while films deposited on larger diameter (>20 nm) NWs are found to be amorphous. Indeed, until recently, all Al2O3, films deposited by low-temperature ALD using trimethylaluminum and water have been reported to be amorphous, regardless of film thickness or substrate. The formation of a crystalline ALD film can be understood in terms of the energetics of misfit dislocations that maintain the registry between the ALD film and the NW substrate, as well as the influence of strain and surface energy. The decreasing energy of co-axial misfit dislocations with NW diameter results in a corresponding decrease in the contribution of the Al2O3/Ga2O3 interface to the free energy, while the interfacial energy for an amorphous film is independent of the NW diameter. Therefore, for NW cores of sufficiently small diameter, the free energy contribution of the Al2O3/Ga2O3 interface is smaller for crystalline films than for amorphous films, thereby favoring the formation of crystalline films for small-diameter NWs. For ALD Al2O3 films of 10 nm thickness deposited on small-diameter Ga2O3 NWs, however, only the first 5 nm of the ALD film is found to be crystalline, possibly due to well-established kinetic limitations to low temperature epitaxial growth.

  14. Anormalous Optical Absorption in Porous Al_2O3 Host Matrix---Nano-Oxide Particle Nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Lide; Zhang, Biao; Mo, Chimei

    1996-03-01

    Porous Al_2O3 host matrix---nano-γ-Fe_2O3 particle composites (porous nanocomposite) were prepared by pyrolysis of Fe(NO_3)_39H_2O in porous nano- Al_2O3 matrix at 250^0C. Comparing with simple nanocomposites formed by mixing nano-γ-Fe_2O3 and compacting at room temperature, followed by annealing at 250^0C, the following anomalous optical behaviors were observed: for porous nanocomposite containing 5% Fe_2O_3, the aborption edge shifts obviously from 827nm to 543nm, and with increasing dopping amount of Fe_2O3 from 5% to 70%, blue shift phenomina decreases. Namely, the absorption edge moves from 543nm to 710nm. The mechanism of shift of the absorption edge is discussed.

  15. [Characteristics of N2O emissions from vegetal soils on Fildes peninsula, Antarctica].

    PubMed

    Sun, L; Zhu, R; Xie, Z; Zhao, J; Xing, G; Shi, S; Du, L

    2001-07-01

    The N2O fluxes from the vegetal soils were first measured on the Fildes peninsula, Antarctica, and the total N2O emission was also estimated in the summer 2 months. The daily variations of N2O fluxes appeared single-peak trend under the sunshine or rainy weather conditions but they were irregular under the snow weather conditions and inconsistent with the atmospheric temperatures. The seasonal variations of the N2O fluxes were affected by the temperature and rainfall. The conditions during the transitions between dry and wet seasons improved the N2O emission. The total N2O emissions from moss and lichen soils were 3.7152 kg and 2.5344 kg, respectively. It follows that the vegetal soils are the sources for the atmospheric N2O on the Fildes peninsula, Antarctica.

  16. Structural and Vibrational Properties of Corundum-type In2O3 Nanocrystals under Compression.

    PubMed

    Sans Tresserras, Juan Angel; Vilaplana, Rosario; Errandonea, Daniel; Cuenca Gotor, Vanesa Paula; Garcia-Domene, Braulio; Popescu, Catalin; Manjon Herrera, Francisco; Singhal, Anshu; Achary, S N; Martinez-Garcia, Domingo; Pellicer-Porres, Julio; Rodriguez Hernandez, Placida; Munoz, Alfonso

    2017-03-30

    This work reports the structural and vibrational properties of nanocrystals of corundum-type In2O3 (rh-In2O3) at high pressures by using angle-dispersive x-ray diffraction and Raman scattering measurements up to 30 GPa. The equation of state and the pressure dependence of the Raman-active modes of the corundum phase in nanocrystals are in good agreement with previous studies on bulk material and compare nicely with theoretical simulations on bulk rh-In2O3. Nanocrystalline rh-In2O3 showed stability under compression at least up to 20 GPa, unlike bulk rh-In2O3 which gradually transforms to the orthorhombic Pbca (Rh2O3-III-type) structure above 12-14 GPa. The different stability range found in nanocrystalline and bulk In2O3 is discussed.

  17. Hydrogen-bond-directed assemblies of [La(18-crown-6)(H2O)4](BiCl6)·3H2O and [Nd(18-crown-6)(H2O)4](BiCl6)·3.5H2O regulated by different symmetries

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Yong; Li, Jian; Zeng, Ying; Wen, He-Rui; Du, Zi-Yi

    2016-12-01

    The reactions of La2O3 or Nd2O3 with BiCl3 and 18-crown-6 in the presence of excessive hydrochloric acid afforded two ion-pair compounds, namely [La(18-crown-6)(H2O)4](BiCl6)·3H2O (1) and [Nd(18-crown-6)(H2O)4](BiCl6)·3.5H2O (2). Although these two compounds contain similar building blocks, they exhibit two distinct hydrogen-bonded networks, which are mainly induced by the slightly different geometries of their large-sized cationic [Ln(18-crown-6)(H2O)4]3+ components.

  18. Fabrication and optical properties of Y2O3: Eu3+ nanofibers prepared by electrospinning.

    PubMed

    Dong, Guoping; Chi, Yingzhi; Xiao, Xiudi; Liu, Xiaofeng; Qian, Bin; Ma, Zhijun; Wu, E; Zeng, Heping; Chen, Danping; Qiu, Jianrong

    2009-12-07

    Y(2)O(3): Eu(3+) nanofibers with the average diameter of ~300 nm were in situ fabricated by electrospinning. X-ray diffraction (XRD) pattern confirmed that the Y(2)O(3): Eu(3+) nanofibers were composed of pure body-centered cubic (bcc) Y(2)O(3) phase. High-resolution transmission electron microscopy (HRTEM) results indicated that Y(2)O(3): Eu(3+) nanofibers were constituted of nonspherical crystalline grains, and these crystalline grains were orderly arranged along the axial direction of single nanofiber. These Y(2)O(3): Eu(3+) nanofibers showed a partially polarized photoluminescence (PL). The arrangement of crystalline grains and the mismatch of dielectric constant between Y(2)O(3): Eu(3+) nanofiber and its environment probably contributed together to the polarized PL from Y(2)O(3): Eu(3+) nanofiber.

  19. Effects of substrates on N2O emissions in an anaerobic ammonium oxidation (anammox) reactor.

    PubMed

    Jin, Yue; Wang, Dunqiu; Zhang, Wenjie

    2016-01-01

    N2O emission in the anaerobic ammonium oxidation (anammox) process is of growing concern. In this study, effects of substrate concentrations on N2O emissions were investigated in an anammox reactor. Extremely high N2O emissions of 1.67 % were led by high NH4-N concentrations. Results showed that N2O emissions have a positive correlation with NH4-N concentrations in the anammox reactor. Reducing NH4-N concentrations by recycling pump resulted in decreasing N2O emissions. In addition, further studies were performed to identify a key biological process that is contributed to N2O emissions from the anammox reactor. Based on the results obtained, Nitrosomonas, which can oxidize ammonia to nitrite, was deemed as the main sources of N2O emissions.

  20. Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction.

    PubMed

    DelloStritto, Daniel J; Connell, Patrick J; Dick, Gregory M; Fancher, Ibra S; Klarich, Brittany; Fahmy, Joseph N; Kang, Patrick T; Chen, Yeong-Renn; Damron, Derek S; Thodeti, Charles K; Bratz, Ian N

    2016-03-01

    We demonstrated previously that TRPV1-dependent coupling of coronary blood flow (CBF) to metabolism is disrupted in diabetes. A critical amount of H2O2 contributes to CBF regulation; however, excessive H2O2 impairs responses. We sought to determine the extent to which differential regulation of TRPV1 by H2O2 modulates CBF and vascular reactivity in diabetes. We used contrast echocardiography to study TRPV1 knockout (V1KO), db/db diabetic, and wild type C57BKS/J (WT) mice. H2O2 dose-dependently increased CBF in WT mice, a response blocked by the TRPV1 antagonist SB366791. H2O2-induced vasodilation was significantly inhibited in db/db and V1KO mice. H2O2 caused robust SB366791-sensitive dilation in WT coronary microvessels; however, this response was attenuated in vessels from db/db and V1KO mice, suggesting H2O2-induced vasodilation occurs, in part, via TRPV1. Acute H2O2 exposure potentiated capsaicin-induced CBF responses and capsaicin-mediated vasodilation in WT mice, whereas prolonged luminal H2O2 exposure blunted capsaicin-induced vasodilation. Electrophysiology studies re-confirms acute H2O2 exposure activated TRPV1 in HEK293A and bovine aortic endothelial cells while establishing that H2O2 potentiate capsaicin-activated TRPV1 currents, whereas prolonged H2O2 exposure attenuated TRPV1 currents. Verification of H2O2-mediated activation of intrinsic TRPV1 specific currents were found in isolated mouse coronary endothelial cells from WT mice and decreased in endothelial cells from V1KO mice. These data suggest prolonged H2O2 exposure impairs TRPV1-dependent coronary vascular signaling. This may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes.

  1. Quartz crystal microbalance studies of Al2O3 atomic layer deposition using trimethylaluminum and water at 125 degrees C.

    PubMed

    Wind, R A; George, S M

    2010-01-28

    Al(2)O(3) atomic layer deposition (ALD) growth with Al(CH(3))(3) (trimethylaluminum (TMA)) and H(2)O as the reactants was examined at the relatively low temperature of 125 degrees C using quartz crystal microbalance (QCM) measurements. The total Al(2)O(3) ALD mass gain per cycle (MGPC) and MGPCs during the individual TMA and H(2)O reactions were measured versus TMA and H(2)O exposures. The Al(2)O(3) MGPC increased with increasing H(2)O and TMA exposures at fixed TMA and H(2)O exposures, respectively. However, the TMA and H(2)O reactions were not completely self-limiting. The slower surface reaction kinetics at lower temperature may require very long exposures for the reactions to reach completion. The Al(2)O(3) MGPCs increased quickly versus H(2)O exposure and slowly reached limiting values that were only weakly dependent on the TMA doses. Small TMA exposures were also sufficient for the Al(2)O(3) MGPCs to reach different limiting values for different H(2)O doses. The TMA MGPCs increased for higher TMA exposures at all H(2)O exposures. In contrast, the H(2)O MGPCs decreased for higher TMA exposures at all H(2)O exposures. This decrease may occur from more dehydroxylation at larger hydroxyl coverages after the H(2)O exposures. The hydroxyl coverage after the H(2)O exposure was dependent only on the H(2)O exposure. The Al(2)O(3) MGPC was also linearly dependent on the hydroxyl coverage after the H(2)O dose. Both the observed hydroxyl coverage versus H(2)O exposure and the Al(2)O(3) ALD growth versus H(2)O and TMA exposures were fit using modified Langmuir adsorption isotherm expressions where the pressures are replaced with exposures. These results should be useful for understanding low-temperature Al(2)O(3) ALD, which is important for coating organic, polymeric, and biological substrates.

  2. Coin-like α-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance.

    PubMed

    Lv, Hualiang; Liang, Xiaohui; Cheng, Yan; Zhang, Haiqian; Tang, Dongming; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2015-03-04

    In this paper, we designed a novel core-shell composite for microwave absorption application in which the α-Fe2O3 and the porous CoFe2O4 nanospheres served as the core and shell, respectively. Interestingly, during the solvothermal process, the solvent ratio (V) of PEG-200 to distilled water played a key role in the morphology of α-Fe2O3 for which irregular flake, coin-like, and thinner coin-like forms of α-Fe2O3 can be produced with the ratios of 1:7, 1:3, and 1:1, respectively. The porous 70 nm diameter CoFe2O4 nanospheres were generated as the shell of α-Fe2O3. It should be noted that the CoFe2O4 coating layer did not damage the original shape of α-Fe2O3. As compared with the uncoated α-Fe2O3, the Fe2O3@CoFe2O4 composites exhibited improved microwave absorption performance over the tested frequency range (2-18 GHz). In particular, the optimal reflection loss value of the flake-like composite can reach -60 dB at 16.5 GHz with a thin coating thickness of 2 mm. Furthermore, the frequency bandwidth corresponding to the RLmin value below -10 dB was up to 5 GHz (13-18 GHz). The enhanced microwave absorption properties of these composites may originate from the strong electron polarization effect (i.e., the electron polarization between Fe and Co) and the electromagnetic wave scattering on this special porous core-shell structure. In addition, the synergy effect between α-Fe2O3 and CoFe2O4 also favored balancing the electromagnetic parameters. Our results provided a promising approach for preparing an absorbent with good absorption intensity and a broad frequency that was lightweight.

  3. Microstructural development of protective Al2O3 scales

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1984-01-01

    Microstructural characteristics of Al2O3 scales grown as protective coatings on NiCrAl alloys used in jet engines are described. The alloys were pure or doped with 0.3 percent Zr or Y and oxidized in 1 atm air at 1100 C for 0.1, 1 or 20.0 hr. The scales were then examined under a microscope. Transient epitaxial scales, formed during the 0.1 hr treatment and containing Ni, Cr and Al, consisted of a mosaic of subgrains and precipitates of different phases. The Y and Zr dopants had no effect on the nucleation site locations. The appearance of intergranular porosity at 0.1 hr was exacerbated after the 1 hr treatment. A bimodal void distribution appeared after 20 hr, when no porosity was evident. The detection of local areas of preferred orientation is taken as a spur to further studies of scale growth to gain control of the grain size or even to produce single crystal scales.

  4. Radiation endurance in Al2O3 nanoceramics

    NASA Astrophysics Data System (ADS)

    García Ferré, F.; Mairov, A.; Ceseracciu, L.; Serruys, Y.; Trocellier, P.; Baumier, C.; Kaïtasov, O.; Brescia, R.; Gastaldi, D.; Vena, P.; Beghi, M. G.; Beck, L.; Sridharan, K.; di Fonzo, F.

    2016-09-01

    The lack of suitable materials solutions stands as a major challenge for the development of advanced nuclear systems. Most issues are related to the simultaneous action of high temperatures, corrosive environments and radiation damage. Oxide nanoceramics are a promising class of materials which may benefit from the radiation tolerance of nanomaterials and the chemical compatibility of ceramics with many highly corrosive environments. Here, using thin films as a model system, we provide new insights into the radiation tolerance of oxide nanoceramics exposed to increasing damage levels at 600 °C –namely 20, 40 and 150 displacements per atom. Specifically, we investigate the evolution of the structural features, the mechanical properties, and the response to impact loading of Al2O3 thin films. Initially, the thin films contain a homogeneous dispersion of nanocrystals in an amorphous matrix. Irradiation induces crystallization of the amorphous phase, followed by grain growth. Crystallization brings along an enhancement of hardness, while grain growth induces softening according to the Hall-Petch effect. During grain growth, the excess mechanical energy is dissipated by twinning. The main energy dissipation mechanisms available upon impact loading are lattice plasticity and localized amorphization. These mechanisms are available in the irradiated material, but not in the as-deposited films.

  5. Potential dual imaging nanoparticle: Gd2O3 nanoparti