Science.gov

Sample records for 4cl rna expression

  1. Phenolic Compounds and Expression of 4CL Genes in Silver Birch Clones and Pt4CL1a Lines

    PubMed Central

    Sutela, Suvi; Hahl, Terhi; Tiimonen, Heidi; Aronen, Tuija; Ylioja, Tiina; Laakso, Tapio; Saranpää, Pekka; Chiang, Vincent; Julkunen-Tiitto, Riitta; Häggman, Hely

    2014-01-01

    A small multigene family encodes 4-coumarate:CoA ligases (4CLs) catalyzing the CoA ligation of hydroxycinnamic acids, a branch point step directing metabolites to a flavonoid or monolignol pathway. In the present study, we examined the effect of antisense Populus tremuloides 4CL (Pt4CL1) to the lignin and soluble phenolic compound composition of silver birch (Betula pendula) Pt4CL1a lines in comparison with non-transgenic silver birch clones. The endogenous expression of silver birch 4CL genes was recorded in the stems and leaves and also in leaves that were mechanically injured. In one of the transgenic Pt4CL1a lines, the ratio of syringyl (S) and guaiacyl (G) lignin units was increased. Moreover, the transcript levels of putative silver birch 4CL gene (Bp4CL1) were reduced and contents of cinnamic acid derivatives altered. In the other two Pt4CL1a lines changes were detected in the level of individual phenolic compounds. However, considerable variation was found in the transcript levels of silver birch 4CLs as well as in the concentration of phenolic compounds among the transgenic lines and non-transgenic clones. Wounding induced the expression of Bp4CL1 and Bp4CL2 in leaves in all clones and transgenic lines, whereas the transcript levels of Bp4CL3 and Bp4CL4 remained unchanged. Moreover, minor changes were detected in the concentrations of phenolic compounds caused by wounding. As an overall trend the wounding decreased the flavonoid content in silver birches and increased the content of soluble condensed tannins. The results indicate that by reducing the Bp4CL1 transcript levels lignin composition could be modified. However, the alterations found among the Pt4CL1a lines and the non-transgenic clones were within the natural variation of silver birches, as shown in the present study by the clonal differences in the transcripts levels of 4CL genes, soluble phenolic compounds and condensed tannins. PMID:25502441

  2. Phenolic compounds and expression of 4CL genes in silver birch clones and Pt4CL1a lines.

    PubMed

    Sutela, Suvi; Hahl, Terhi; Tiimonen, Heidi; Aronen, Tuija; Ylioja, Tiina; Laakso, Tapio; Saranpää, Pekka; Chiang, Vincent; Julkunen-Tiitto, Riitta; Häggman, Hely

    2014-01-01

    A small multigene family encodes 4-coumarate:CoA ligases (4CLs) catalyzing the CoA ligation of hydroxycinnamic acids, a branch point step directing metabolites to a flavonoid or monolignol pathway. In the present study, we examined the effect of antisense Populus tremuloides 4CL (Pt4CL1) to the lignin and soluble phenolic compound composition of silver birch (Betula pendula) Pt4CL1a lines in comparison with non-transgenic silver birch clones. The endogenous expression of silver birch 4CL genes was recorded in the stems and leaves and also in leaves that were mechanically injured. In one of the transgenic Pt4CL1a lines, the ratio of syringyl (S) and guaiacyl (G) lignin units was increased. Moreover, the transcript levels of putative silver birch 4CL gene (Bp4CL1) were reduced and contents of cinnamic acid derivatives altered. In the other two Pt4CL1a lines changes were detected in the level of individual phenolic compounds. However, considerable variation was found in the transcript levels of silver birch 4CLs as well as in the concentration of phenolic compounds among the transgenic lines and non-transgenic clones. Wounding induced the expression of Bp4CL1 and Bp4CL2 in leaves in all clones and transgenic lines, whereas the transcript levels of Bp4CL3 and Bp4CL4 remained unchanged. Moreover, minor changes were detected in the concentrations of phenolic compounds caused by wounding. As an overall trend the wounding decreased the flavonoid content in silver birches and increased the content of soluble condensed tannins. The results indicate that by reducing the Bp4CL1 transcript levels lignin composition could be modified. However, the alterations found among the Pt4CL1a lines and the non-transgenic clones were within the natural variation of silver birches, as shown in the present study by the clonal differences in the transcripts levels of 4CL genes, soluble phenolic compounds and condensed tannins.

  3. Construction, expression, and characterization of Arabidopsis thaliana 4CL and Arachis hypogaea RS fusion gene 4CL::RS in Escherichia coli.

    PubMed

    Zhang, Erhao; Guo, Xuefeng; Meng, Zhifen; Wang, Jin; Sun, Jia; Yao, Xi; Xun, Hang

    2015-09-01

    Resveratrol is an important antioxidant that confers several beneficial effects on human health. 4-coumarate coenzyme A ligase (4CL) and resveratrol synthase (RS) are key rate-limiting enzymes in the biosynthetic pathway of resveratrol. Using gene fusion technology, the fusion gene, 4CL::RS, was constructed by the 4CL gene from Arabidopsis thaliana and RS gene from Arachis hypogaea. DNAMAN analysis showed that the fusion gene encoded a 964-amino acid protein with an approximate weight of 104.7 kDa and a pI of 5.63. A prokaryotic expression vector containing Nco-I and EcoR-I restriction sites, pET-30a/4CL::RS, was identified by liquid culture bacterial PCR, enzyme digestion, and sequencing, and then used in the induction of expression. Subsequently, a biosynthetic pathway of resveratrol was constructed in Escherichia coli BL21(DE3) that harbored pET-30a/4CL::RS. The recombinant strains were induced to express the fusion protein at 28 °C for 8 h. After bacterial cells were disrupted by hypothermic ultrasonication, the 4CL::RS fusion protein was thoroughly separated from tags using Ni-NTA affinity chromatography, and then detected by SDS-PAGE analysis. When the recombinant strains expressed the fusion protein, the precursor, p-coumaric acid, was converted to resveratrol. In the present study, the final concentration of resveratrol derived from 1 mM p-coumaric acid was 80.524 mg/L, with a 35.28 % (mol/mol) conversion yield.

  4. Identification of 4CL Genes in Desert Poplars and Their Changes in Expression in Response to Salt Stress.

    PubMed

    Zhang, Cai-Hua; Ma, Tao; Luo, Wen-Chun; Xu, Jian-Mei; Liu, Jian-Quan; Wan, Dong-Shi

    2015-09-18

    4-Coumarate:CoA ligase (4CL) genes are critical for the biosynthesis of plant phenylpropanoids. Here we identified 20 4CL genes in the genomes of two desert poplars (Populus euphratica and P. pruinosa) and salt-sensitive congener (P. trichocarpa), but 12 in Salix suchowensis (Salix willow). Phylogenetic analyses clustered all Salicaceae 4CL genes into two clades, and one of them (corresponding to the 4CL-like clade from Arabidopsis) showed signals of adaptive evolution, with more genes retained in Populus than Salix and Arabidopsis. We also found that 4CL12 (in 4CL-like clade) showed positive selection along the two desert poplar lineages. Transcriptional profiling analyses indicated that the expression of 4CL2, 4CL11, and 4CL12 changed significantly in one or both desert poplars in response to salt stress compared to that of in P. trichocarpa. Our results suggest that the evolution of the 4CL genes may have contributed to the development of salt tolerance in the two desert poplars.

  5. Antisense Down-Regulation of 4CL Expression Alters Lignification, Tree Growth, and Saccharification Potential of Field-Grown Poplar1[W][OA

    PubMed Central

    Voelker, Steven L.; Lachenbruch, Barbara; Meinzer, Frederick C.; Jourdes, Michael; Ki, Chanyoung; Patten, Ann M.; Davin, Laurence B.; Lewis, Norman G.; Tuskan, Gerald A.; Gunter, Lee; Decker, Stephen R.; Selig, Michael J.; Sykes, Robert; Himmel, Michael E.; Kitin, Peter; Shevchenko, Olga; Strauss, Steven H.

    2010-01-01

    Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula × Populus alba), we applied this strategy and examined field-grown transformants for both effects on wood biochemistry and tree productivity. The reductions in lignin contents obtained correlated well with 4CL RNA expression, with a sharp decrease in lignin amount being observed for RNA expression below approximately 50% of the nontransgenic control. Relatively small lignin reductions of approximately 10% were associated with reduced productivity, decreased wood syringyl/guaiacyl lignin monomer ratios, and a small increase in the level of incorporation of H-monomers (p-hydroxyphenyl) into cell walls. Transgenic events with less than approximately 50% 4CL RNA expression were characterized by patches of reddish-brown discolored wood that had approximately twice the extractive content of controls (largely complex polyphenolics). There was no evidence that substantially reduced lignin contents increased growth rates or saccharification potential. Our results suggest that the capacity for lignin reduction is limited; below a threshold, large changes in wood chemistry and plant metabolism were observed that adversely affected productivity and potential ethanol yield. They also underline the importance of field studies to obtain physiologically meaningful results and to support technology development with transgenic trees. PMID:20729393

  6. Regulation of 4CL, encoding 4-coumarate: coenzyme A ligase, expression in kenaf under diverse stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We cloned the full length 4CL ortholog encoding 4-coumarate: coenzymeA ligase from kenaf (Hibiscus cannabiuns) using degenerate primers and RACE (rapid amplification of cDNA ends) systems. The 4CL is a key regulatory enzyme of the phenylpropanoid pathway that regulates the activation of cinnamic ac...

  7. Fractionation of protein, RNA, and plasmid DNA in centrifugal precipitation chromatography using cationic surfactant CTAB containing inorganic salts NaCl and NH(4)Cl.

    PubMed

    Tomanee, Panarat; Hsu, James T; Ito, Yoichiro

    2004-10-05

    Centrifugal precipitation chromatography (CPC) is a separation system that mainly employs a moving concentration gradient of precipitating agent along a channel and solutes of interest undergo repetitive precipitation-dissolution, fractionate at different locations, and elute out from the channel according to their solubility in the precipitating agent solution. We report here for the first time the use of a CPC system for fractionation of protein, RNA, and plasmid DNA in clarified lysate produced from bacterial culture. The cationic surfactant cetyltrimethylammonium bromide (CTAB) was initially used as a precipitating agent; however, all biomolecules showed no differential solubility in the moving concentration gradient of this surfactant and, as a result, no separation of protein, RNA, and plasmid DNA occurred. To overcome this problem, inorganic salts such as NaCl and NH(4)Cl were introduced into solution of CTAB. The protein and RNA were found to have higher solubility with the addition of these salts and separated from the plasmid DNA. Decreasing surface charge density of CTAB upon addition of NaCl and NH(4)Cl was believed to lead to lower surfactant complexation, and therefore caused differential solubility and fractionation of these biomolecules. Addition of CaCl(2) did not improve solubility and separation of RNA from plasmid DNA.

  8. Two divergent members of a tobacco 4-coumarate:coenzyme A ligase (4CL) gene family. cDNA structure, gene inheritance and expression, and properties of recombinant proteins.

    PubMed Central

    Lee, D; Douglas, C J

    1996-01-01

    Several cDNA clones encoding 4-coumarate:coenzyme A ligase (4CL) were isolated from a tobacco (Nicotiana tabacum) cDNA library and grouped into two classes. Sequencing of one cDNA from each class showed that the clones were similar to other 4CL genes and about 80% identical with each other. Genomic Southern blots using DNA from Nicotiana sylvestris, Nicotiana tomentosiformis, and N. tabacum demonstrated the presence of both classes of 4CL sequences (4CL1 and 4CL2) in the progenitor species and in tobacco. Northern blots indicated that 4CL mRNA transcripts are highest in old stems and higher in the unpigmented corolla tubes than in the pigmented limbs of tobacco flowers. The 4CL genes are developmentally regulated and are wound and methyl jasmonate inducible. The relative abilities of recombinant 4CL1 and 4CL2 proteins to utilize 4-coumarate, ferulate, and caffeate as substrates were similar and comparable with that of 4CL in tobacco stem extracts. Surprisingly, both recombinant 4CL proteins utilized cinnamate as a substrate, an activity not observed in stem extracts. This activity was inhibited by a heat-labile, high-molecular-weight factor found in tobacco stem extracts, suggesting that the substrate specificity of 4CL is, in part, determined by the activity of proteinaceous cellular components. PMID:8819324

  9. NH4Cl Treatment Prevents Tissue Calcification in Klotho Deficiency

    PubMed Central

    Leibrock, Christina B.; Alesutan, Ioana; Voelkl, Jakob; Pakladok, Tatsiana; Michael, Diana; Schleicher, Erwin; Kamyabi-Moghaddam, Zahra; Quintanilla-Martinez, Leticia; Kuro-o, Makoto

    2015-01-01

    Klotho, a cofactor in suppressing 1,25(OH)2D3 formation, is a powerful regulator of mineral metabolism. Klotho-hypomorphic mice (kl/kl) exhibit excessive plasma 1,25(OH)2D3, Ca2+, and phosphate concentrations, severe tissue calcification, volume depletion with hyperaldosteronism, and early death. Calcification is paralleled by overexpression of osteoinductive transcription factor Runx2/Cbfa1, Alpl, and senescence-associated molecules Tgfb1, Pai-1, p21, and Glb1. Here, we show that NH4Cl treatment in drinking water (0.28 M) prevented soft tissue and vascular calcification and increased the life span of kl/kl mice >12-fold in males and >4-fold in females without significantly affecting extracellular pH or plasma concentrations of 1,25(OH)2D3, Ca2+, and phosphate. NH4Cl treatment significantly decreased plasma aldosterone and antidiuretic hormone concentrations and reversed the increase of Runx2/Cbfa1, Alpl, Tgfb1, Pai-1, p21, and Glb1 expression in aorta of kl/kl mice. Similarly, in primary human aortic smooth muscle cells (HAoSMCs), NH4Cl treatment reduced phosphate-induced mRNA expression of RUNX2/CBFA1, ALPL, and senescence-associated molecules. In both kl/kl mice and phosphate-treated HAoSMCs, levels of osmosensitive transcription factor NFAT5 and NFAT5-downstream mediator SOX9 were higher than in controls and decreased after NH4Cl treatment. Overexpression of NFAT5 in HAoSMCs mimicked the effect of phosphate and abrogated the effect of NH4Cl on SOX9, RUNX2/CBFA1, and ALPL mRNA expression. TGFB1 treatment of HAoSMCs upregulated NFAT5 expression and prevented the decrease of phosphate-induced NFAT5 expression after NH4Cl treatment. In conclusion, NH4Cl treatment prevents tissue calcification, reduces vascular senescence, and extends survival of klotho-hypomorphic mice. The effects of NH4Cl on vascular osteoinduction involve decrease of TGFB1 and inhibition of NFAT5-dependent osteochondrogenic signaling. PMID:25644113

  10. Systematic Analysis of the 4-Coumarate:Coenzyme A Ligase (4CL) Related Genes and Expression Profiling during Fruit Development in the Chinese Pear

    PubMed Central

    Cao, Yunpeng; Han, Yahui; Li, Dahui; Lin, Yi; Cai, Yongping

    2016-01-01

    In plants, 4-coumarate:coenzyme A ligases (4CLs), comprising some of the adenylate-forming enzymes, are key enzymes involved in regulating lignin metabolism and the biosynthesis of flavonoids and other secondary metabolites. Although several 4CL-related proteins were shown to play roles in secondary metabolism, no comprehensive study on 4CL-related genes in the pear and other Rosaceae species has been reported. In this study, we identified 4CL-related genes in the apple, peach, yangmei, and pear genomes using DNATOOLS software and inferred their evolutionary relationships using phylogenetic analysis, collinearity analysis, conserved motif analysis, and structure analysis. A total of 149 4CL-related genes in four Rosaceous species (pear, apple, peach, and yangmei) were identified, with 30 members in the pear. We explored the functions of several 4CL and acyl-coenzyme A synthetase (ACS) genes during the development of pear fruit by quantitative real-time PCR (qRT-PCR). We found that duplication events had occurred in the 30 4CL-related genes in the pear. These duplicated 4CL-related genes are distributed unevenly across all pear chromosomes except chromosomes 4, 8, 11, and 12. The results of this study provide a basis for further investigation of both the functions and evolutionary history of 4CL-related genes. PMID:27775579

  11. Systematic Analysis of the 4-Coumarate:Coenzyme A Ligase (4CL) Related Genes and Expression Profiling during Fruit Development in the Chinese Pear.

    PubMed

    Cao, Yunpeng; Han, Yahui; Li, Dahui; Lin, Yi; Cai, Yongping

    2016-10-19

    In plants, 4-coumarate:coenzyme A ligases (4CLs), comprising some of the adenylate-forming enzymes, are key enzymes involved in regulating lignin metabolism and the biosynthesis of flavonoids and other secondary metabolites. Although several 4CL-related proteins were shown to play roles in secondary metabolism, no comprehensive study on 4CL-related genes in the pear and other Rosaceae species has been reported. In this study, we identified 4CL-related genes in the apple, peach, yangmei, and pear genomes using DNATOOLS software and inferred their evolutionary relationships using phylogenetic analysis, collinearity analysis, conserved motif analysis, and structure analysis. A total of 149 4CL-related genes in four Rosaceous species (pear, apple, peach, and yangmei) were identified, with 30 members in the pear. We explored the functions of several 4CL and acyl-coenzyme A synthetase (ACS) genes during the development of pear fruit by quantitative real-time PCR (qRT-PCR). We found that duplication events had occurred in the 30 4CL-related genes in the pear. These duplicated 4CL-related genes are distributed unevenly across all pear chromosomes except chromosomes 4, 8, 11, and 12. The results of this study provide a basis for further investigation of both the functions and evolutionary history of 4CL-related genes.

  12. Sodium-bicarbonate cotransporter NBCn1/Slc4a7 inhibits NH4Cl-mediated inward current in Xenopus oocytes.

    PubMed

    Lee, Soojung; Choi, Inyeong

    2011-08-01

    The electroneutral Na(+)-HCO(3)(-) cotransporter NBCn1 (SLC4A7) contributes to intracellular pH maintenance and transepithelial HCO(3)(-) movement. In this study, we expressed NBCn1 in Xenopus oocytes and examined the effect of NBCn1 on oocyte NH(4)(+) transport by analysing changes in membrane potential, current and intracellular pH mediated by NH(4)Cl. In the presence of HCO(3)(-)/CO(2), applying NH(4)Cl (20 mm) produced intracellular acidification of oocytes. The acidification was faster in oocytes expressing NBCn1 than in control oocytes injected with water; however, NH(4)Cl-mediated membrane depolarization was smaller in oocytes expressing NBCn1. In HCO(3)(-)/CO(2)-free solution, NH(4)Cl produced a smaller inward current in NBCn1-expressing oocytes (56% inhibition by 20 mm NH(4)Cl, measured at --60 mV), while minimally affecting intracellular acidification. The inhibition of the current by NBCn1 was unaffected when BaCl(2) replaced KCl. Current-voltage relationships showed a positive and nearly linear relationship between NH(4)Cl-mediated current and voltage, which was markedly reduced by NBCn1. Large basal currents (before NH(4)Cl exposure) were produced in NBCn1-expressing oocytes owing to the previously characterized channel-like activity of NBCn1. Inhibiting this channel-like activity by Na(+) removal abolished the inhibitory effect of NBCn1 on NH(4)Cl-mediated currents. The currents were progressively reduced over 72-120 h after NBCn1 cRNA injection, during which the channel-like activity was high. These results indicate that NBCn1 stimulates NH(4)(+) transport by its Na(+)-HCO(3)(-) cotransport activity, while reducing NH(4)(+) conductance by its channel-like activity.

  13. Ammonia-induced miRNA expression changes in cultured rat astrocytes

    PubMed Central

    Oenarto, Jessica; Karababa, Ayse; Castoldi, Mirco; Bidmon, Hans J.; Görg, Boris; Häussinger, Dieter

    2016-01-01

    Hepatic encephalopathy is a neuropsychiatric syndrome evolving from cerebral osmotic disturbances and oxidative/nitrosative stress. Ammonia, the main toxin of hepatic encephalopathy, triggers astrocyte senescence in an oxidative stress-dependent way. As miRNAs are critically involved in cell cycle regulation and their expression may be regulated by oxidative stress, we analysed, whether astrocyte senescence is a consequence of ammonia-induced miRNA expression changes. Using a combined miRNA and gene microarray approach, 43 miRNA species which were downregulated and 142 genes which were upregulated by NH4Cl (5 mmol/l, 48 h) in cultured rat astrocytes were found. Ammonia-induced miRNA and gene expression changes were validated by qPCR and 43 potential miRNA target genes, including HO-1, were identified by matching upregulated mRNA species with predicted targets of miRNA species downregulated by ammonia. Inhibition of HO-1 targeting miRNAs which were downregulated by NH4Cl strongly upregulated HO-1 mRNA and protein levels and inhibited astrocyte proliferation in a HO-1-dependent way. Preventing ammonia-induced upregulation of HO-1 by taurine (5 mmol/l) as well as blocking HO-1 activity by tin-protoporphyrine IX fully prevented ammonia-induced proliferation inhibition and senescence. The data suggest that ammonia induces astrocyte senescence through NADPH oxidase-dependent downregulation of HO-1 targeting miRNAs and concomitant upregulation of HO-1 at both mRNA and protein level. PMID:26755400

  14. Modeling Equilibrium of microRNA Expression

    PubMed Central

    Chan, Lawrence W. C.

    2011-01-01

    MicroRNAs are a class of non-coding RNAs and the dysregulated expression of these short RNA molecules was frequently observed in cancer cells. The steady state level of microRNA concentration may differentiate the biological function of the cells between normal and impaired. To understand the steady state or equilibrium of microRNAs, their interactions with transcription factors and target genes need to be explored and visualized through prediction and network analysis algorithms. This article discusses the application of mathematical model for simulating the dynamics of network feedback loop so as to decipher the mechanism of microRNA regulation. PMID:22303331

  15. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis

    PubMed Central

    Jin, Xi; Feng, Chun-yan; Xiang, Zun; Chen, Yi-peng; Li, You-ming

    2016-01-01

    The pathogenesis of nonalcoholic steatohepatitis (NASH) is still unclear, where involvement of circRNA is considered for its active role as “miRNA sponge”. Therefore, we aimed to investigate the circRNA expression pattern in NASH and further construct the circRNA-miRNA-mRNA network for in-depth mechanism exploration. Briefly, NASH mice model was established by Methionine and choline deficiency (MCD) diet feeding. Liver circRNA and mRNA profile was initially screened by microarray and ensuing qRT-PCR verification was carried out. The overlapped predicted miRNAs as downstream targets of circRNAs and upstream regulators of mRNAs were verified by qRT-PCR and final circRNA-miRNA-mRNA network was constructed. Gene Ontology (GO) and KEGG pathway analysis were further applied to enrich the huge mRNA microarray data. To sum up, there were 69 up and 63 down regulated circRNAs as well as 2760 up and 2465 down regulated mRNAs in NASH group, comparing with control group. Randomly selected 13 of 14 mRNAs and 2 of 8 circRNAs were successfully verified by qRT-PCR. Through predicted overlapped miRNA verification, four circRNA-miRNA-mRNA pathways were constructed, including circRNA_002581-miR-122-Slc1a5, circRNA_002581- miR-122-Plp2, circRNA_002581-miR-122-Cpeb1 and circRNA_007585-miR-326- UCP2. GO and KEGG pathway analysis also enriched specific mRNAs. Therefore, circRNA profile may serve as candidate for NASH diagnosis and circRNA-miRNA -mRNA pathway may provide novel mechanism for NASH. PMID:27677588

  16. Antisense RNA suppression of peroxidase gene expression

    SciTech Connect

    Lagrimini, L.M.; Bradford, S.; De Leon, F.D. )

    1989-04-01

    The 5{prime} half the anionic peroxidase cDNA of tobacco was inserted into a CaMV 35S promoter/terminator expression cassette in the antisense configuration. This was inserted into the Agrobacterium-mediated plant transformation vector pCIBIO which includes kanamycin selection, transformed into two species of tobacco (N. tabacum and M. sylvestris), and plants were subsequently regenerated on kanamycin. Transgenic plants were analyzed for peroxidase expression and found to have 3-5 fold lower levels of peroxidase than wild-type plants. Isoelectric focusing demonstrated that the antisense RNA only suppressed the anionic peroxidase. Wound-induced peroxidase expression was found not to be affected by the antisense RNA. Northern blots show a greater than 5 fold suppression of anionic peroxidase mRNA in leaf tissue, and the antisense RNA was expressed at a level 2 fold over the endogenous mRNA. Plants were self-pollinated and F1 plants showed normal segregation. N. sylvestris transgenic plants with the lowest level of peroxidase are epinastic, and preliminary results indicate elevated auxin levels. Excised pith tissue from both species of transgenic plants rapidly collapse when exposed to air, while pith tissue from wild-type plants showed little change when exposed to air. Further characterization of these phenotypes is currently being made.

  17. miRNA and mRNA expression analysis reveals potential sex-biased miRNA expression

    PubMed Central

    Guo, Li; Zhang, Qiang; Ma, Xiao; Wang, Jun; Liang, Tingming

    2017-01-01

    Recent studies suggest that mRNAs may be differentially expressed between males and females. This study aimed to perform expression analysis of mRNA and its main regulatory molecule, microRNA (miRNA), to discuss the potential sex-specific expression patterns using abnormal expression profiles from The Cancer Genome Atlas database. Generally, deregulated miRNAs and mRNAs had consistent expression between males and females, but some miRNAs may be oppositely expressed in specific diseases: up-regulated in one group and down-regulated in another. Studies of miRNA gene families and clusters further confirmed that these sequence or location related miRNAs might have opposing expression between sexes. The specific miRNA might have greater expression divergence across different groups, suggesting flexible expression across different individuals, especially in tumor samples. The typical analysis regardless of the sex will ignore or balance these sex-specific deregulated miRNAs. Compared with flexible miRNAs, their targets of mRNAs showed relative stable expression between males and females. These relevant results provide new insights into miRNA-mRNA interaction and sex difference. PMID:28045090

  18. MicroRNA expression analysis using the Affymetrix Platform.

    PubMed

    Dee, Suzanne; Getts, Robert C

    2012-01-01

    Microarrays have been used extensively for messenger RNA expression monitoring. Recently, microarrays have been designed to interrogate expression levels of noncoding RNAs. Here, we describe methods for RNA labeling and the use of a miRNA array to identify and measure microRNA present in RNA samples.

  19. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p <0.05) differentially expressed after cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  20. Cloning, Functional Characterization and Site-Directed Mutagenesis of 4-Coumarate: Coenzyme A Ligase (4CL) Involved in Coumarin Biosynthesis in Peucedanum praeruptorum Dunn.

    PubMed

    Liu, Tingting; Yao, Ruolan; Zhao, Yucheng; Xu, Sheng; Huang, Chuanlong; Luo, Jun; Kong, Lingyi

    2017-01-01

    Coumarins are the main bioactive compounds in Peucedanum praeruptorum Dunn, a common Chinese herbal medicine. Nevertheless, the genes involved in the biosynthesis of core structure of coumarin in P. praeruptorum have not been identified yet. 4-Coumarate: CoA ligase (4CL) catalyzes the formation of hydroxycinnamates CoA esters, and plays an essential role at the divergence point from general phenylpropanoid metabolism to major branch pathway of coumarin. Here, three novel putative 4CL genes (Pp4CL1, Pp4CL7, and Pp4CL10) were isolated from P. praeruptorum. Biochemical characterization of the recombinant proteins revealed that Pp4CL1 utilized p-coumaric and ferulic acids as its two main substrates for coumarin biosynthesis in P. praeruptorum. Furthermore, Pp4CL1 also exhibited activity toward caffeic, cinnamic, isoferulic, and o-coumaric acids and represented a bona fide 4CL. Pp4CL7 and Pp4CL10 had no catalytic activity toward hydroxycinnamic acid compounds. But they had close phylogenetic relationship to true 4CLs and were defined as 4CL-like genes. Among all putative 4CLs, Pp4CL1 was the most highly expressed gene in roots, and its expression level was significantly up-regulated in mature roots compared with seedlings. Subcellular localization studies showed that Pp4CL1 and Pp4CL10 proteins were localized in the cytosol. In addition, site-directed mutagenesis of Pp4CL1 demonstrated that amino acids of Tyr-239, Ala-243, Met-306, Ala-309, Gly-334, Lys-441, Gln-446, and Lys-526 were essential for substrate binding or catalytic activities. The characterization and site-directed mutagenesis studies of Pp4CL1 lays a solid foundation for elucidating the biosynthetic mechanisms of coumarins in P. praeruptorum and provides further insights in understanding the structure-function relationships of this important family of proteins.

  1. Cloning, Functional Characterization and Site-Directed Mutagenesis of 4-Coumarate: Coenzyme A Ligase (4CL) Involved in Coumarin Biosynthesis in Peucedanum praeruptorum Dunn

    PubMed Central

    Liu, Tingting; Yao, Ruolan; Zhao, Yucheng; Xu, Sheng; Huang, Chuanlong; Luo, Jun; Kong, Lingyi

    2017-01-01

    Coumarins are the main bioactive compounds in Peucedanum praeruptorum Dunn, a common Chinese herbal medicine. Nevertheless, the genes involved in the biosynthesis of core structure of coumarin in P. praeruptorum have not been identified yet. 4-Coumarate: CoA ligase (4CL) catalyzes the formation of hydroxycinnamates CoA esters, and plays an essential role at the divergence point from general phenylpropanoid metabolism to major branch pathway of coumarin. Here, three novel putative 4CL genes (Pp4CL1, Pp4CL7, and Pp4CL10) were isolated from P. praeruptorum. Biochemical characterization of the recombinant proteins revealed that Pp4CL1 utilized p-coumaric and ferulic acids as its two main substrates for coumarin biosynthesis in P. praeruptorum. Furthermore, Pp4CL1 also exhibited activity toward caffeic, cinnamic, isoferulic, and o-coumaric acids and represented a bona fide 4CL. Pp4CL7 and Pp4CL10 had no catalytic activity toward hydroxycinnamic acid compounds. But they had close phylogenetic relationship to true 4CLs and were defined as 4CL-like genes. Among all putative 4CLs, Pp4CL1 was the most highly expressed gene in roots, and its expression level was significantly up-regulated in mature roots compared with seedlings. Subcellular localization studies showed that Pp4CL1 and Pp4CL10 proteins were localized in the cytosol. In addition, site-directed mutagenesis of Pp4CL1 demonstrated that amino acids of Tyr-239, Ala-243, Met-306, Ala-309, Gly-334, Lys-441, Gln-446, and Lys-526 were essential for substrate binding or catalytic activities. The characterization and site-directed mutagenesis studies of Pp4CL1 lays a solid foundation for elucidating the biosynthetic mechanisms of coumarins in P. praeruptorum and provides further insights in understanding the structure–function relationships of this important family of proteins. PMID:28144249

  2. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155

    PubMed Central

    Chung, Kwan-Ho; Hart, Christopher C.; Al-Bassam, Sarmad; Avery, Adam; Taylor, Jennifer; Patel, Paresh D.; Vojtek, Anne B.; Turner, David L.

    2006-01-01

    Vector-based RNA interference (RNAi) has emerged as a valuable tool for analysis of gene function. We have developed new RNA polymerase II expression vectors for RNAi, designated SIBR vectors, based upon the non-coding RNA BIC. BIC contains the miR-155 microRNA (miRNA) precursor, and we find that expression of a short region of the third exon of mouse BIC is sufficient to produce miR-155 in mammalian cells. The SIBR vectors use a modified miR-155 precursor stem–loop and flanking BIC sequences to express synthetic miRNAs complementary to target RNAs. Like RNA polymerase III driven short hairpin RNA vectors, the SIBR vectors efficiently reduce target mRNA and protein expression. The synthetic miRNAs can be expressed from an intron, allowing coexpression of a marker or other protein with the miRNAs. In addition, intronic expression of a synthetic miRNA from a two intron vector enhances RNAi. A SIBR vector can express two different miRNAs from a single transcript for effective inhibition of two different target mRNAs. Furthermore, at least eight tandem copies of a synthetic miRNA can be expressed in a polycistronic transcript to increase the inhibition of a target RNA. The SIBR vectors are flexible tools for a variety of RNAi applications. PMID:16614444

  3. Integrated analysis of microRNA and mRNA expression profiles in HBx-expressing hepatic cells

    PubMed Central

    Chen, Ruo-Chan; Wang, Juan; Kuang, Xu-Yuan; Peng, Fang; Fu, Yong-Ming; Huang, Yan; Li, Ning; Fan, Xue-Gong

    2017-01-01

    AIM To identify the miRNA-mRNA regulatory network in hepatitis B virus X (HBx)-expressing hepatic cells. METHODS A stable HBx-expressing human liver cell line L02 was established. The mRNA and miRNA expression profiles of L02/HBx and L02/pcDNA liver cells were identified by RNA-sequencing analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed to investigate the function of candidate biomarkers, and the relationship between miRNA and mRNA was studied by network analysis. RESULTS Compared with L02/pcDNA cells, 742 unregulated genes and 501 downregulated genes were determined as differentially expressed in L02/HBx cells. Gene ontology analysis suggested that the differentially expressed genes were relevant to different biological processes. Concurrently, 22 differential miRNAs were also determined in L02/HBx cells. Furthermore, integrated analysis of miRNA and mRNA expression profiles identified a core miRNA-mRNA regulatory network that is correlated with the carcinogenic role of HBx. CONCLUSION Collectively, the miRNA-mRNA network-based analysis could be useful to elucidate the potential role of HBx in liver cell malignant transformation and shed light on the underlying molecular mechanism and novel therapy targets for hepatocellular carcinoma. PMID:28348484

  4. Unmasking Upstream Gene Expression Regulators with miRNA-corrected mRNA Data

    PubMed Central

    Bollmann, Stephanie; Bu, Dengpan; Wang, Jiaqi; Bionaz, Massimo

    2015-01-01

    Expressed micro-RNA (miRNA) affects messenger RNA (mRNA) abundance, hindering the accuracy of upstream regulator analysis. Our objective was to provide an algorithm to correct such bias. Large mRNA and miRNA analyses were performed on RNA extracted from bovine liver and mammary tissue. Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%). Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%) and four levels of the magnitude of miRNA effect (ME) on mRNA expression (30%, 50%, 75%, and 83% mRNA reduction), we generated 17 different datasets (including the original dataset). For each dataset, we performed upstream regulator analysis using two bioinformatics tools. We detected an increased effect on the upstream regulator analysis with larger miRNA:mRNA pair bins and higher ME. The miRNA correction allowed identification of several upstream regulators not present in the analysis of the original dataset. Thus, the proposed algorithm improved the prediction of upstream regulators. PMID:27279737

  5. Analysis of Microarray and RNA-seq Expression Profiling Data.

    PubMed

    Hung, Jui-Hung; Weng, Zhiping

    2017-03-01

    Gene expression profiling refers to the simultaneous measurement of the expression levels of a large number of genes (often all genes in a genome), typically in multiple experiments spanning a variety of cell types, treatments, or environmental conditions. Expression profiling is accomplished by assaying mRNA levels with microarrays or next-generation sequencing technologies (RNA-seq). This introduction describes normalization and analysis of data generated from microarray or RNA-seq experiments.

  6. Telomere Length, TERT, and miRNA Expression

    PubMed Central

    Slattery, Martha L.; Herrick, Jennifer S.; Pellatt, Andrew J.; Wolff, Roger K.; Mullany, Lila E.

    2016-01-01

    It has been proposed that miRNAs are involved in the control of telomeres. We test that hypothesis by examining the association between miRNAs and telomere length (TL). Additionally, we evaluate if genetic variation in telomerase reverse transcriptase (TERT) is associated with miRNA expression levels. We use data from a population-based study of colorectal cancer (CRC), where we have previously shown associations between TL and TERT and CRC, to test associations between TL and miRNA expression and TERT and miRNA expression. To gain insight into functions of miRNAs associated with TERT we tested linear associations between miRNAs and their targeted gene mRNAs. An Agilent platform that contained information on over 2000 miRNAs was used. TL was measured using a multiplexed quantitative PCR (qPCR). RNAseq was used to assess gene expression. Our sample consisted of 1152 individuals with SNP data and miRNA expression data; 363 individuals with both TL and miRNA; and 148 individuals with miRNA and mRNA data. Thirty-three miRNAs were directly associated with TL after adjusting for age and sex (false discovery rate (FDR) of 0.05). TERT rs2736118 was associated with differences in miRNA expression between carcinoma and normal colonic mucosa for 75 miRNAs (FDR <0.05). Genes regulated by these miRNAs, as indicated by mRNA/miRNA associations, were associated with major signaling pathways beyond their TL-related functions, including PTEN, and PI3K/AKT signaling. Our data support a direct association between miRNAs and TL; differences in miRNA expression levels by TERT genotype were observed. Based on miRNA and targeted mRNA associations our data suggest that TERT is involved in non-TL-related functions by acting through altered miRNA expression. PMID:27627813

  7. Microarray analysis of circular RNA expression patterns in polarized macrophages

    PubMed Central

    Zhang, Yingying; Zhang, Yao; Li, Xueqin; Zhang, Mengying; Lv, Kun

    2017-01-01

    Circular RNAs (circRNAs) are generated from diverse genomic locations and are a new player in the regulation of post-transcriptional gene expression. Recent studies have revealed that circRNAs play a crucial role in fine-tuning the level of microRNA (miRNA)-mediated regulation of gene expression by sequestering miRNAs. The interaction of circRNAs with disease-associated miRNAs suggests that circRNAs are important in the pathology of disease. However, the effects and roles of circRNAs in macrophage polarization have yet to be explored. In the present study, we performed a circRNA microarray to compare the circRNA expression profiles of bone marrow-derived macrophages (BMDMs) under two distinct polarizing conditions (M1 macrophages induced by interferon-γ and LPS stimulation, and M2 macrophages induced by interleukin-4 stimulation). Our results showed that a total of 189 circRNAs were differentially expressed between M1 and M2 macrophages. Differentially expressed circRNAs with a high fold-change were selected for validation by RT-qPCR: circRNA-003780, circRNA-010056, and circRNA-010231 were upregulated and circRNA-003424, circRNA-013630, circRNA-001489 and circRNA-018127 were downregulated (fold-change >4, P<0.05) in M1 compared to M2, which was found to correlate with the microarray data. Furthermore, the most differentially expressed circRNAs within all the comparisons were annotated in detail with circRNA/miRNA interaction information using miRNA target prediction software. In conclusion, the present study provides novel insight into the role of circRNAs in macrophage differentiation and polarization. PMID:28075448

  8. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    PubMed Central

    Ludwig, Nicole; Werner, Tamara V.; Backes, Christina; Trampert, Patrick; Gessler, Manfred; Keller, Andreas; Lenhof, Hans-Peter; Graf, Norbert; Meese, Eckart

    2016-01-01

    Wilms tumor (WT) is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA) processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA) differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT. PMID:27043538

  9. Differential expression of microRNA (miRNA) in chordoma reveals a role for miRNA-1 in Met expression.

    PubMed

    Duan, Zhenfeng; Choy, Edwin; Nielsen, G Petur; Rosenberg, Andrew; Iafrate, John; Yang, Cao; Schwab, Joe; Mankin, Henry; Xavier, Ramnik; Hornicek, Francis J

    2010-06-01

    Emerging evidence suggests that microRNA (miRNA) expression signatures in cancer may have important diagnostic, prognostic, and therapeutic value, but there is no data on miRNA expression in chordoma. The purpose of this study was to identify the role of miRNAs in human chordoma. We analyzed miRNA expression in chordoma-derived cell lines and chordoma tissue by using miRNA microarray technology with unsupervised hierarchical clustering analysis. The relative expression levels of these miRNAs were confirmed by real-time quantitative RT-PCR and Northern blot analysis. To characterize the potential role of miRNA-1, miRNA-1 was stably transfected into a chordoma cell line, UCH1. The expression of miRNA-1 targeted gene Met in chordoma tissues was also studied. We observe that human chordoma tissues and cell lines can be distinguished from normal muscle tissue by comparing miRNA expression profiles. Several miRNAs were differentially expressed in chordoma cell lines compared to controls, and similar expression patterns were found in primary chordoma tissues. Importantly, we were able to show for the first time, to our knowledge, that expression of miRNA-1 and miRNA-206, two miRNAs implicated in a number of other cancer types, were markedly decreased in both chordoma tissues and cell lines. When chordoma cell lines were transfected with miRNA-1, downregulation of known miRNA-1 targets was observed. These targets included Met and HDAC4-two genes that were observed to be overexpressed in chordoma. Our results demonstrate that some miRNAs are differentially expressed in chordoma and, in particular, miRNA-1 may have a functional effect on chordoma tumor pathogenesis.

  10. Neuronal Activity Regulates Hippocampal miRNA Expression

    PubMed Central

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control. PMID:21984899

  11. Intratumoral Heterogeneity of MicroRNA Expression in Rectal Cancer

    PubMed Central

    Andersen, Rikke Fredslund; Nielsen, Boye Schnack; Sørensen, Flemming Brandt; Appelt, Ane Lindegaard; Jakobsen, Anders; Hansen, Torben Frøstrup

    2016-01-01

    Introduction An increasing number of studies have investigated microRNAs (miRNAs) as potential markers of diagnosis, treatment and prognosis. So far, agreement between studies has been minimal, which may in part be explained by intratumoral heterogeneity of miRNA expression. The aim of the present study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. Materials and Methods The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH) in tumour specimens from 27 patients with T3-4 rectal cancer. From each tumour, tissue from three different luminal localisations was examined. Inter- and intra-patient variability was assessed by calculating intraclass correlation coefficients (ICCs). Correlations between RT-qPCR and ISH were evaluated using Spearman’s correlation. Results ICCsingle (one sample from each patient) was higher than 50% for miRNA-21 and miRNA-31. For miRNA-125b, miRNA-145, and miRNA-630, ICCsingle was lower than 50%. The ICCmean (mean of three samples from each patient) was higher than 50% for miRNA-21(RT-qPCR and ISH), miRNA-125b (RT-qPCR and ISH), miRNA-145 (ISH), miRNA-630 (RT-qPCR), and miRNA-31 (RT-qPCR). For miRNA-145 (RT-qPCR) and miRNA-630 (ISH), ICCmean was lower than 50%. Spearman correlation coefficients, comparing results obtained by RT-qPCR and ISH, respectively, ranged from 0.084 to 0.325 for the mean value from each patient, and from -0.085 to 0.515 in the section including the deepest part of the tumour. Conclusion Intratumoral heterogeneity may influence the measurement of miRNA expression and consequently the number of samples needed for representative estimates. Our findings with two different methods suggest that one sample is sufficient for adequate assessment of miRNA-21 and miRNA-31, whereas more samples would improve the assessment of miRNA-125b, miRNA-145, and miRNA-630

  12. Detecting microRNA activity from gene expression data

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources. PMID:20482775

  13. Impact of RNA degradation on gene expression profiling

    PubMed Central

    2010-01-01

    Background Gene expression profiling is a highly sensitive technique which is used for profiling tumor samples for medical prognosis. RNA quality and degradation influence the analysis results of gene expression profiles. The impact of this influence on the profiles and its medical impact is not fully understood. As patient samples are very valuable for clinical studies, it is necessary to establish criteria for the RNA quality to be able to use these samples in later analysis. Methods To investigate the effects of RNA integrity on gene expression profiling, whole genome expression arrays were used. We used tumor biopsies from patients diagnosed with locally advanced rectal cancer. To simulate degradation, the isolated total RNA of all patients was subjected to heat-induced degradation in a time-dependent manner. Expression profiling was then performed and data were analyzed bioinformatically to assess the differences. Results The differences introduced by RNA degradation were largely outweighed by the biological differences between the patients. Only a relatively small number of probes (275 out of 41,000) show a significant effect due to degradation. The genes that show the strongest effect due to RNA degradation were, especially, those with short mRNAs and probe positions near the 5' end. Conclusions Degraded RNA from tumor samples (RIN > 5) can still be used to perform gene expression analysis. A much higher biological variance between patients is observed compared to the effect that is imposed by degradation of RNA. Nevertheless there are genes, very short ones and those with the probe binding side close to the 5' end that should be excluded from gene expression analysis when working with degraded RNA. These results are limited to the Agilent 44 k microarray platform and should be carefully interpreted when transferring to other settings. PMID:20696062

  14. An integrated analysis of differential miRNA and mRNA expressions in human gallstones.

    PubMed

    Yang, Bin; Liu, Bin; Bi, Pinduan; Wu, Tao; Wang, Qiang; Zhang, Jie

    2015-04-01

    Gallstone disease, including cholesterol precipitation in bile, increased bile salt hydrophobicity and gallbladder inflammation. Here, we investigated miRNA and mRNA involved in the formation of gallstones, and explored the molecular mechanisms in the development of gallstones. Differentially expressed 17 miRNAs and 525 mRNA were identified based on Illumina sequencing from gallbladder mucosa of patients with or without gallstones, and were validated by randomly selected 6 miRNAs and 8 genes using quantitative RT-PCR. 114 miRNA target genes were identified, whose functions and regulating pathways were related to gallstones. The differentially expressed genes were enriched upon lipoprotein binding and some metabolic pathways, and differentially expressed miRNAs enriched upon ABC transportation and cancer related pathways. A molecular regulatory network consisting of 17 differentially expressed miRNAs, inclusive of their target genes, was constructed. miR-210 and its potential target gene ATP11A were found to be differentially expressed in both miRNA and mRNA profiles. ATP11A was a direct target of miR-210, which was predicted to regulate the ABC-transporters pathway. The expression levels of ATP11A in the gallstone showed inverse correlation with miR-210 expression, and up-regulation of miR-210 could reduce ATP11A expression in HGBEC. This is the first report that indicates the existence of differences in miRNA and mRNA expression in patients with or without gallstones. Our data shed light on further investigating the mechanisms of gallstone formation.

  15. Polyester: simulating RNA-seq datasets with differential transcript expression

    PubMed Central

    Frazee, Alyssa C.; Jaffe, Andrew E.; Langmead, Ben; Leek, Jeffrey T.

    2015-01-01

    Motivation: Statistical methods development for differential expression analysis of RNA sequencing (RNA-seq) requires software tools to assess accuracy and error rate control. Since true differential expression status is often unknown in experimental datasets, artificially constructed datasets must be utilized, either by generating costly spike-in experiments or by simulating RNA-seq data. Results: Polyester is an R package designed to simulate RNA-seq data, beginning with an experimental design and ending with collections of RNA-seq reads. Its main advantage is the ability to simulate reads indicating isoform-level differential expression across biological replicates for a variety of experimental designs. Data generated by Polyester is a reasonable approximation to real RNA-seq data and standard differential expression workflows can recover differential expression set in the simulation by the user. Availability and implementation: Polyester is freely available from Bioconductor (http://bioconductor.org/). Contact: jtleek@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25926345

  16. Genetic variants in microRNA genes: impact on microRNA expression, function, and disease

    PubMed Central

    Cammaerts, Sophia; Strazisar, Mojca; De Rijk, Peter; Del Favero, Jurgen

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression and like any other gene, their coding sequences are subject to genetic variation. Variants in miRNA genes can have profound effects on miRNA functionality at all levels, including miRNA transcription, maturation, and target specificity, and as such they can also contribute to disease. The impact of variants in miRNA genes is the focus of the present review. To put these effects into context, we first discuss the requirements of miRNA transcripts for maturation. In the last part an overview of available databases and tools and experimental approaches to investigate miRNA variants related to human disease is presented. PMID:26052338

  17. Analysis of microRNA expression by in situ hybridization with RNA oligonucleotide probes

    PubMed Central

    Thompson, Robert C.; Deo, Monika; Turner, David L.

    2007-01-01

    In situ hybridization is an important tool for analyzing gene expression and developing hypotheses about gene functions. The discovery of hundreds of microRNA (miRNA) genes in animals has provided new challenges for analyzing gene expression and functions. The small size of the mature miRNAs (∼20-24 nucleotides in length) presents difficulties for conventional in situ hybridization methods. However, we have developed a modified in situ hybridization method for detection of mammalian miRNAs in tissue sections, based upon the use of RNA oligonucleotide probes in combination with highly specific wash conditions. Here we present detailed procedures for detection of miRNAs in tissue sections or cultured cells. The methods described can utilize either nonradioactive hapten-conjugated probes that are detected by enzyme-coupled antibodies, or radioactively labeled probes that are detected by autoradiography. The ability to visualize miRNA expression patterns in tissue sections provides an additional tool for the analyses of miRNA expression and function. In addition, the use of radioactively labeled probes should facilitate quantitative analyses of changes in miRNA gene expression. PMID:17889803

  18. Selective MicroRNA-Offset RNA Expression in Human Embryonic Stem Cells

    PubMed Central

    Juhila, Juuso; Holm, Frida; Weltner, Jere; Trokovic, Ras; Mikkola, Milla; Toivonen, Sanna; Balboa, Diego; Lampela, Riina; Icay, Katherine; Tuuri, Timo; Otonkoski, Timo; Wong, Garry; Hovatta, Outi

    2015-01-01

    Small RNA molecules, including microRNAs (miRNAs), play critical roles in regulating pluripotency, proliferation and differentiation of embryonic stem cells. miRNA-offset RNAs (moRNAs) are similar in length to miRNAs, align to miRNA precursor (pre-miRNA) loci and are therefore believed to derive from processing of the pre-miRNA hairpin sequence. Recent next generation sequencing (NGS) studies have reported the presence of moRNAs in human neurons and cancer cells and in several tissues in mouse, including pluripotent stem cells. In order to gain additional knowledge about human moRNAs and their putative development-related expression, we applied NGS of small RNAs in human embryonic stem cells (hESCs) and fibroblasts. We found that certain moRNA isoforms are notably expressed in hESCs from loci coding for stem cell-selective or cancer-related miRNA clusters. In contrast, we observed only sparse moRNAs in fibroblasts. Consistent with earlier findings, most of the observed moRNAs derived from conserved loci and their expression did not appear to correlate with the expression of the adjacent miRNAs. We provide here the first report of moRNAs in hESCs, and their expression profile in comparison to fibroblasts. Moreover, we expand the repertoire of hESC miRNAs. These findings provide an expansion on the known repertoire of small non-coding RNA contents in hESCs. PMID:25822230

  19. Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci

    PubMed Central

    Budach, Stefan; Heinig, Matthias; Marsico, Annalisa

    2016-01-01

    Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results. PMID:27260304

  20. MicroRNA expression in the aging mouse thymus.

    PubMed

    Ye, Yaqiong; Li, Daotong; Ouyang, Dan; Deng, Li; Zhang, Yuan; Ma, Yongjiang; Li, Yugu

    2014-09-01

    MicroRNAs (miRNAs) have been implicated in the process of aging in many model organisms, such as Caenorhabditis elegans, and in many organs, such as the mouse lung and human epididymis. However, the role of miRNAs in the thymus tissues of the aging mouse remains unclear. To address this question, we investigated the miRNA expression profiles in the thymuses of 1-, 10- and 19-month-old mice using miRNA array and qRT-PCR assays. A total of 223 mouse miRNAs were screened, and the expression levels of those miRNAs exhibited gradual increases and decreases over the course of thymus aging. Fifty miRNAs in the 10-month-old thymus and 81 miRNAs in the 19-month-old thymus were defined as differentially expressed miRNAs (p<0.05) in comparison with their levels in the 1-month-old mouse, and approximately one-third of these miRNAs were grouped within 11 miRNA clusters. Each miRNA cluster contained 2 to 5 miRNA genes, and most of the cluster members displayed similar expression patterns, being either increased or decreased. In addition, Ingenuity Pathway Analysis (IPA) software and the IPA database were used to analyze the 12 miRNAs that exhibited significant expression changes, revealing that as many as 15 pathways may be involved. Thus, our current study determined the expression profiles of miRNAs in the mouse thymus during the process of aging. The results suggested that these miRNAs could become meaningful biomarkers for studying thymus aging and that the aging-related alternations in miRNA expression may be involved in the regulation of cell proliferation, apoptosis, development and carcinogenesis/tumorigenesis.

  1. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides.

    PubMed

    Deo, Monika; Yu, Jenn-Yah; Chung, Kwan-Ho; Tippens, Melissa; Turner, David L

    2006-09-01

    We have developed an in situ hybridization procedure for the detection of microRNAs (miRNAs) in tissue sections from mouse embryos and adult organs. The method uses highly specific washing conditions for RNA oligonucleotide probes conjugated to a fluorescein hapten. We show that this method detects predominantly mature miRNAs rather than the miRNA precursors or primary transcripts. We have determined expression patterns for several miRNAs expressed in the developing and adult nervous system, including miR-124a, miR-9, miR-92, and miR-204. Whereas miR-124a is expressed in neurons, miR-9 is expressed in neural progenitors and some neurons, and miR-204 is expressed in the choroid plexus, retinal pigment epithelium, and ciliary body. miR-204 is located in an intron of the TRPM3 gene, and the TRPM3 mRNA is coexpressed with miR-204 in the choroid plexus. We also find that primary transcripts for miR-124a and miR-9 genes are expressed in patterns similar to their respective mature miRNAs. The ability to visualize expression of specific miRNAs in embryos and tissues should aid studies on miRNA function.

  2. Specific RNA Interference in Caenorhabditis elegans by Ingested dsRNA Expressed in Bacillus subtilis

    PubMed Central

    Lezzerini, Marco; van de Ven, Koen; Veerman, Martijn; Brul, Stanley; Budovskaya, Yelena V.

    2015-01-01

    In nematodes, genome-wide RNAi-screening has been widely used as a rapid and efficient method to identify genes involved in the aging processes. By far the easiest way of inducing RNA interference (RNAi) in Caenorhabditis elegans is by feeding Escherichia coli that expresses specific double stranded RNA (dsRNA) to knockdown translation of targeted mRNAs. However, it has been shown that E. coli is mildly pathogenic to C. elegans and this pathogenicity might influence aging and the accuracy of the RNAi-screening during aging may as well be affected. Here, we describe a novel system that utilizes the non-pathogenic bacterium Bacillus subtilis, to express dsRNA and therefore eliminates the effects of bacterial pathogenicity from the genetic analysis of aging. PMID:25928543

  3. Lentivirus-expressed siRNA vectors against Alzheimer disease.

    PubMed

    Peng, Kevin A; Masliah, Eliezer

    2010-01-01

    Amyloid precursor protein (APP) has been implicated in the pathogenesis of Alzheimer disease, and the accumulation of APP products ultimately leads to the familiar histopathological and clinical manifestations associated with this most common form of dementia. A protein that has been shown to promote APP accumulation is beta-secretase (beta-site APP cleaving enzyme 1, or BACE1), which is increased in the cerebrospinal fluid in those affected with Alzheimer disease. Through in vivo studies using APP transgenic mice, we demonstrated that decreasing the expression of BACE1 via lentiviral vector delivery of BACE1 siRNA has the potential for significantly reducing the cleavage of APP, accumulation of these products, and consequent neurodegeneration. As such, lentiviral-expressed siRNA against BACE1 is a therapeutic possibility in the treatment of Alzheimer disease. We detail the use of lentivirus-expressed siRNA as a method to ameliorate Alzheimer disease neuropathology in APP transgenic mice.

  4. Micro-RNA Expression and Function in Lymphomas

    PubMed Central

    Sandhu, Sukhinder K.; Croce, Carlo M.; Garzon, Ramiro

    2011-01-01

    The recent discovery of microRNAs (miRNAs) has introduced a new layer of complexity to the process of gene regulation. MiRNAs are essential for cellular function, and their dysregulation often results in disease. Study of miRNA expression and function in animal models and human lymphomas has improved our knowledge of the pathogenesis of this heterogeneous disease. In this paper, we attempt to describe the expression of miRNAs and their function in lymphomas and discuss potential miRNA-based therapies in the diagnosis and treatment of lymphomas. PMID:21461378

  5. Flexible expressed region analysis for RNA-seq with derfinder

    PubMed Central

    Collado-Torres, Leonardo; Nellore, Abhinav; Frazee, Alyssa C.; Wilks, Christopher; Love, Michael I.; Langmead, Ben; Irizarry, Rafael A.; Leek, Jeffrey T.; Jaffe, Andrew E.

    2017-01-01

    Differential expression analysis of RNA sequencing (RNA-seq) data typically relies on reconstructing transcripts or counting reads that overlap known gene structures. We previously introduced an intermediate statistical approach called differentially expressed region (DER) finder that seeks to identify contiguous regions of the genome showing differential expression signal at single base resolution without relying on existing annotation or potentially inaccurate transcript assembly. We present the derfinder software that improves our annotation-agnostic approach to RNA-seq analysis by: (i) implementing a computationally efficient bump-hunting approach to identify DERs that permits genome-scale analyses in a large number of samples, (ii) introducing a flexible statistical modeling framework, including multi-group and time-course analyses and (iii) introducing a new set of data visualizations for expressed region analysis. We apply this approach to public RNA-seq data from the Genotype-Tissue Expression (GTEx) project and BrainSpan project to show that derfinder permits the analysis of hundreds of samples at base resolution in R, identifies expression outside of known gene boundaries and can be used to visualize expressed regions at base-resolution. In simulations, our base resolution approaches enable discovery in the presence of incomplete annotation and is nearly as powerful as feature-level methods when the annotation is complete. derfinder analysis using expressed region-level and single base-level approaches provides a compromise between full transcript reconstruction and feature-level analysis. The package is available from Bioconductor at www.bioconductor.org/packages/derfinder. PMID:27694310

  6. miRNA expression during prickly pear cactus fruit development.

    PubMed

    Rosas-Cárdenas, Flor de Fátima; Caballero-Pérez, Juan; Gutiérrez-Ramos, Ximena; Marsch-Martínez, Nayelli; Cruz-Hernández, Andrés; de Folter, Stefan

    2015-02-01

    miRNAs are a class of small non-coding RNAs that regulate gene expression. They are involved in the control of many developmental processes, including fruit development. The increasing amount of information on miRNAs, on their expression, abundance, and conservation between various species, provides a new opportunity to study the role of miRNAs in non-model plant species. In this work, we used a combination of Northern blot and tissue print hybridization analysis to identify conserved miRNAs expressed during prickly pear cactus (Opuntia ficus indica) fruit development. Comparative profiling detected the expression of 34 miRNAs, which were clustered in three different groups that were associated with the different phases of fruit development. Variation in the level of miRNA expression was observed. Gradual expression increase of several miRNAs was observed during fruit development, including miR164. miR164 was selected for stem-loop RT-PCR and for a detailed spatial-temporal expression analysis. At early floral stages, miR164 was mainly localized in meristematic tissues, boundaries and fusion zones, while it was more homogenously expressed in fruit tissues. Our results provide the first evidence of miRNA expression in the prickly pear cactus and provide the basis for future research on miRNAs in Opuntia. Moreover, our analyses suggest that miR164 plays different roles during prickly pear cactus fruit development.

  7. Analysis of messenger RNA expression by in situ hybridization using RNA probes synthesized via in vitro transcription

    PubMed Central

    Carter, Bradley S.; Fletcher, Jonathan S.; Thompson, Robert C.

    2010-01-01

    The analysis of the spatial patterning of mRNA expression is critically important for assigning functional and physiological significance to a given gene product. Given the tens of thousands of mRNAs in the mammalian genome, a full assessment of individual gene functions would ideally be overlaid upon knowledge of the specific cell types expressing each mRNA. In situ hybridization approaches represent a molecular biological/histological method that can reveal cellular patterns of mRNA expression. Here, we present detailed procedures for the detection of specific mRNAs using radioactive RNA probes in tissue sections followed by autoradiographic detection. These methods allow for the specific and sensitive detection of spatial patterns of mRNA expression, thereby linking mRNA expression with cell type and function. Radioactive detection methods also facilitate semi-quantitative analyses of changes in mRNA gene expression. PMID:20699122

  8. Control of Cytokine mRNA Expression by RNA-binding Proteins and microRNAs

    PubMed Central

    Palanisamy, V.; Jakymiw, A.; Van Tubergen, E.A.; D’Silva, N.J.; Kirkwood, K.L.

    2012-01-01

    Cytokines are critical mediators of inflammation and host defenses. Regulation of cytokines can occur at various stages of gene expression, including transcription, mRNA export, and post- transcriptional and translational levels. Among these modes of regulation, post-transcriptional regulation has been shown to play a vital role in controlling the expression of cytokines by modulating mRNA stability. The stability of cytokine mRNAs, including TNFα, IL-6, and IL-8, has been reported to be altered by the presence of AU-rich elements (AREs) located in the 3′-untranslated regions (3′UTRs) of the mRNAs. Numerous RNA-binding proteins and microRNAs bind to these 3′UTRs to regulate the stability and/or translation of the mRNAs. Thus, this paper describes the cooperative function between RNA-binding proteins and miRNAs and how they regulate AU-rich elements containing cytokine mRNA stability/degradation and translation. These mRNA control mechanisms can potentially influence inflammation as it relates to oral biology, including periodontal diseases and oral pharyngeal cancer progression. PMID:22302144

  9. How to analyze gene expression using RNA-sequencing data.

    PubMed

    Ramsköld, Daniel; Kavak, Ersen; Sandberg, Rickard

    2012-01-01

    RNA-Seq is arising as a powerful method for transcriptome analyses that will eventually make microarrays obsolete for gene expression analyses. Improvements in high-throughput sequencing and efficient sample barcoding are now enabling tens of samples to be run in a cost-effective manner, competing with microarrays in price, excelling in performance. Still, most studies use microarrays, partly due to the ease of data analyses using programs and modules that quickly turn raw microarray data into spreadsheets of gene expression values and significant differentially expressed genes. Instead RNA-Seq data analyses are still in its infancy and the researchers are facing new challenges and have to combine different tools to carry out an analysis. In this chapter, we provide a tutorial on RNA-Seq data analysis to enable researchers to quantify gene expression, identify splice junctions, and find novel transcripts using publicly available software. We focus on the analyses performed in organisms where a reference genome is available and discuss issues with current methodology that have to be solved before RNA-Seq data can utilize its full potential.

  10. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1.

    PubMed

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem-loop structure containing the branch site near its apical loop and the 3' splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing.

  11. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1

    PubMed Central

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem–loop structure containing the branch site near its apical loop and the 3′ splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing. PMID:26546116

  12. The expression of miRNA-221 and miRNA-222 in gliomas patients and their prognosis.

    PubMed

    Xue, Liang; Wang, Yi; Yue, Shuyuan; Zhang, Jianning

    2017-01-01

    The aim of this study is to explore the expression of microRNA (miRNA)-221 and miRNA-222 in human glioma cells and tissues. The expression of miRNA-221 and miRNA-222 in human glioma cell line U87, U251, A172, LN229 and surgery resected glioma tissues were measured. The survival rate of X-ray (2 Gy) irradiated glioma cells were calculated. 165 cases of glioma patients were recruited successfully; the expression of miRNA-221 and miRNA-222 in their resected tissues were measured. The expression of miRNA-221 and miRNA-222 in cancer tissues were obviously higher than control tissues (normal brain tissue) and control cell (gastric mucosal epithelial cell, GES) (p < 0.05). The highly malignant glioma tissues expressed significantly higher miRNA-221 and miRNA-222 than low malignant glioma tissues. Patients with highly expressed miRNA-221 and miRNA-222 have shorter survival time. Survival rate of glioma cells was significantly higher than GES cell after irradiation (p < 0.05); miRNA-221 in glioma cells. The expressions of miRNA-221 and miRNA-222 in irritated glioma cells were positively correlated with the survival rate of glioma cells (r = 0.629, 0.712, both p < 0.01). For the 165 glioma patients, the expressions of miRNA-221 and miRNA-222 increased with the increasing of pathological grades (χ (2) = 42.85, p < 0.01); and their survival time decreased when miRNA-221 expression elevated (χ (2) = 57.12, p < 0.01). MiRNA-221 and miRNA-222 express highly in human glioma cells and tissues. Expression of miRNA-221 and miRNA-222 are closely related to pathological grading and prognosis of glioma; they could be used as independent prognostic factor for glioma.

  13. Genome-wide analysis of microRNA and mRNA expression signatures in cancer

    PubMed Central

    Li, Ming-hui; Fu, Sheng-bo; Xiao, Hua-sheng

    2015-01-01

    Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles. PMID:26299954

  14. High lib mRNA expression in breast carcinomas.

    PubMed

    Satoh, Kazuki; Hata, Mitsumi; Yokota, Hiroshi

    2004-06-30

    Lib, first identified as a novel beta-amyloid responsive gene in rat astrocytes, has an extracellular domain of 15 leucine-rich repeats (LRRs) followed by a transmembrane domain and a short cytoplasmic region. It is a distinctly inducible gene and is thought to play a key role in inflammatory states via the LRR extracellular motif, an ideal structural framework for protein-protein and protein-matrix interactions. To evaluate potential roles of Lib, we screened various tumors for Lib expression. Lib mRNA expression was high and uniquely expressed in breast tumor tissues, compared to paired normal breast tissues. Lib mRNA was localized in the ductal carcinoma cells and Lib protein displayed a homophilic association on the surface of cultured cells. These data suggest that Lib may play a role in the progression of breast carcinomas and may be a diagnostic marker for breast tumors.

  15. The mirror RNA expression pattern in human tissues

    PubMed Central

    Bythwood, Tameka N.; Xu, Wei; Li, Wenzhi; Rao, Weinian; Li, Qiling; Xue, Xue; Richards, Jendai; Ma, Li; Song, Qing

    2017-01-01

    It has been realized in recent years that non-coding RNAs are playing important roles in genome functions and human diseases. Here we developed a new technology and observed a new pattern of gene expression. We observed that over 72% of RNAs in human genome are expressed in forward-reverse pairs, just like mirror images of each other between forward expression and reverse expression; the overview showed that it cannot be simply described as transcript overlapping, so we designated it as mirror expression. Furthermore, we found that the mirror expression is gene-specific and tissue-specific, and less common in the proximal promoter regions. The size of the shadows varies between different genes, different tissues and different classes. The shadow expression is most significant in the Alu element, it was also observed among L1, Simple Repeats and LTR elements, but rare in other repeats such as low-complexity, LINE/L2, DNA and MIRs. Although there is no evidence yet about the relationship of this mirror pattern and double-strand RNA (dsRNA), this new striking pattern provides a new clue and a new direction to unveil the role of RNAs in the genome functions and diseases.

  16. Identify signature regulatory network for glioblastoma prognosis by integrative mRNA and miRNA co-expression analysis.

    PubMed

    Bing, Zhi-Tong; Yang, Guang-Hui; Xiong, Jie; Guo, Ling; Yang, Lei

    2016-12-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults. Patients with this disease have a poor prognosis. The objective of this study is to identify survival-related individual genes (or miRNAs) and miRNA -mRNA pairs in GBM using a multi-step approach. First, the weighted gene co-expression network analysis and survival analysis are applied to identify survival-related modules from mRNA and miRNA expression profiles, respectively. Subsequently, the role of individual genes (or miRNAs) within these modules in GBM prognosis are highlighted using survival analysis. Finally, the integration analysis of miRNA and mRNA expression as well as miRNA target prediction is used to identify survival-related miRNA -mRNA regulatory network. In this study, five genes and two miRNA modules that significantly correlated to patient's survival. In addition, many individual genes (or miRNAs) assigned to these modules were found to be closely linked with survival. For instance, increased expression of neuropilin-1 gene (a member of module turquoise) indicated poor prognosis for patients and a group of miRNA -mRNA regulatory networks that comprised 38 survival-related miRNA -mRNA pairs. These findings provide a new insight into the underlying molecular regulatory mechanisms of GBM.

  17. RNA expression profile of calcified bicuspid, tricuspid, and normal human aortic valves by RNA sequencing.

    PubMed

    Guauque-Olarte, Sandra; Droit, Arnaud; Tremblay-Marchand, Joël; Gaudreault, Nathalie; Kalavrouziotis, Dimitri; Dagenais, Francois; Seidman, Jonathan G; Body, Simon C; Pibarot, Philippe; Mathieu, Patrick; Bossé, Yohan

    2016-10-01

    The molecular mechanisms leading to premature development of aortic valve stenosis (AS) in individuals with a bicuspid aortic valve are unknown. The objective of this study was to identify genes differentially expressed between calcified bicuspid aortic valves (BAVc) and tricuspid valves with (TAVc) and without (TAVn) AS using RNA sequencing (RNA-Seq). We collected 10 human BAVc and nine TAVc from men who underwent primary aortic valve replacement. Eight TAVn were obtained from men who underwent heart transplantation. mRNA levels were measured by RNA-Seq and compared between valve groups. Two genes were upregulated, and none were downregulated in BAVc compared with TAVc, suggesting a similar gene expression response to AS in individuals with bicuspid and tricuspid valves. There were 462 genes upregulated and 282 downregulated in BAVc compared with TAVn. In TAVc compared with TAVn, 329 genes were up- and 170 were downregulated. A total of 273 upregulated and 147 downregulated genes were concordantly altered between BAVc vs. TAVn and TAVc vs. TAVn, which represent 56 and 84% of significant genes in the first and second comparisons, respectively. This indicates that extra genes and pathways were altered in BAVc. Shared pathways between calcified (BAVc and TAVc) and normal (TAVn) aortic valves were also more extensively altered in BAVc. The top pathway enriched for genes differentially expressed in calcified compared with normal valves was fibrosis, which support the remodeling process as a therapeutic target. These findings are relevant to understand the molecular basis of AS in patients with bicuspid and tricuspid valves.

  18. On a stochastic gene expression with pre-mRNA, mRNA and protein contribution.

    PubMed

    Rudnicki, Ryszard; Tomski, Andrzej

    2015-12-21

    In this paper we develop a model of stochastic gene expression, which is an extension of the model investigated in the paper [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.R. Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, J. Theor. Biol. 238 (2006) 348-367]. In our model, stochastic effects still originate from random fluctuations in gene activity status, but we precede mRNA production by the formation of pre-mRNA, which enriches classical transcription phase. We obtain a stochastically regulated system of ordinary differential equations (ODEs) describing evolution of pre-mRNA, mRNA and protein levels. We perform mathematical analysis of a long-time behavior of this stochastic process, identified as a piece-wise deterministic Markov process (PDMP). We check exact results using numerical simulations for the distributions of all three types of particles. Moreover, we investigate the deterministic (adiabatic) limit state of the process, when depending on parameters it can exhibit two specific types of behavior: bistability and the existence of the limit cycle. The latter one is not present when only two kinds of gene expression products are considered.

  19. Prolyl carboxypeptidase mRNA expression in the mouse brain.

    PubMed

    Jeong, Jin Kwon; Diano, Sabrina

    2014-01-13

    Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain.

  20. MicroRNA expression profiling of cat and dog kidneys.

    PubMed

    Ichii, Osamu; Otsuka, Saori; Ohta, Hiroshi; Yabuki, Akira; Horino, Taro; Kon, Yasuhiro

    2014-04-01

    MicroRNAs (miRNAs) play a role in the pathogenesis of certain diseases and may serve as biomarkers. Here, we present the first analysis of miRNA expression in the kidneys of healthy cats and dogs. Kidneys were divided into renal cortex (CO) and medulla (MD), and RNA sequence analysis was performed using the mouse genome as a reference. A total of 277, 276, 295, and 297 miRNAs were detected in cat CO, cat MD, dog CO, and dog MD, respectively. By comparing the expression ratio of CO to MD, we identified highly expressed miRNAs in each tissue as follows: 41 miRNAs including miR-192-5p in cat CO; 45 miRNAs including miR-323-3p in dog CO; 78 miRNAs including miR-20a-5p in cat MD; and 11 miRNAs including miR-132-5p in dog MD. Further, the target mRNAs of these miRNAs were identified. These data provide veterinary medicine critical information regarding renal miRNA expression.

  1. RNA-FISH to analyze allele-specific expression.

    PubMed

    Braidotti, G

    2001-01-01

    One of the difficulties associated with the analysis of imprinted gene expression is the need to distinguish RNA synthesis occurring at the maternal vs the paternally inherited copy of the gene. Most of the techniques used to examine allele-specific expression exploit naturally occurring polymorphisms and measure steady-state levels of RNA isolated from a pool of cells. Hence, a restriction fragment length polymorphism (RFLP) an be exploited in a heterozygote, by a reverse transcriptase polymerase chain reaction (RT-PCR)- based procedure, to analyze maternal vs paternal gene expression. The human IGF2R gene was analyzed in this way. Smrzka et al. (1) were thus able to show that the IGF2R gene possesses a hemimethylated, intronic CpG island analogous to the mouse imprinting box. However, IGF2R mRNA was detected that possessed the RFLP from both the maternal and paternal alleles in all but one of the 70 lymphoblastoid samples. (The one monoallelic sample reactivated its paternal allele with continued cell culturing.) It was concluded that monoallelic expression of the human gene is a polymorphic trait occurring in a small minority of all tested samples (reviewed in refs. 2,3). Although this is a sound conclusion, the question remains: Is the human IGF2R gene imprinted?

  2. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  3. Airway Epithelial miRNA Expression Is Altered in Asthma

    PubMed Central

    Solberg, Owen D.; Ostrin, Edwin J.; Love, Michael I.; Peng, Jeffrey C.; Bhakta, Nirav R.; Nguyen, Christine; Solon, Margaret; Nguyen, Cindy; Barczak, Andrea J.; Zlock, Lorna T.; Blagev, Denitza P.; Finkbeiner, Walter E.; Ansel, K. Mark; Arron, Joseph R.; Erle, David J.

    2012-01-01

    Rationale: Changes in airway epithelial cell differentiation, driven in part by IL-13, are important in asthma. Micro-RNAs (miRNAs) regulate cell differentiation in many systems and could contribute to epithelial abnormalities in asthma. Objectives: To determine whether airway epithelial miRNA expression is altered in asthma and identify IL-13–regulated miRNAs. Methods: We used miRNA microarrays to analyze bronchial epithelial brushings from 16 steroid-naive subjects with asthma before and after inhaled corticosteroids, 19 steroid-using subjects with asthma, and 12 healthy control subjects, and the effects of IL-13 and corticosteroids on cultured bronchial epithelial cells. We used quantitative polymerase chain reaction to confirm selected microarray results. Measurements and Main Results: Most (12 of 16) steroid-naive subjects with asthma had a markedly abnormal pattern of bronchial epithelial miRNA expression by microarray analysis. Compared with control subjects, 217 miRNAs were differentially expressed in steroid-naive subjects with asthma and 200 in steroid-using subjects with asthma (false discovery rate < 0.05). Treatment with inhaled corticosteroids had modest effects on miRNA expression in steroid-naive asthma, inducing a statistically significant (false discovery rate < 0.05) change for only nine miRNAs. qPCR analysis confirmed differential expression of 22 miRNAs that were highly differentially expressed by microarrays. IL-13 stimulation recapitulated changes in many differentially expressed miRNAs, including four members of the miR-34/449 family, and these changes in miR-34/449 family members were resistant to corticosteroids. Conclusions: Dramatic alterations of airway epithelial cell miRNA levels are a common feature of asthma. These alterations are only modestly corrected by inhaled corticosteroids. IL-13 effects may account for some of these alterations, including repression of miR-34/449 family members that have established roles in airway

  4. Analysis of microRNA expression in the prepubertal testis.

    PubMed

    Buchold, Gregory M; Coarfa, Cristian; Kim, Jong; Milosavljevic, Aleksandar; Gunaratne, Preethi H; Matzuk, Martin M

    2010-12-29

    Only thirteen microRNAs are conserved between D. melanogaster and the mouse; however, conditional loss of miRNA function through mutation of Dicer causes defects in proliferation of premeiotic germ cells in both species. This highlights the potentially important, but uncharacterized, role of miRNAs during early spermatogenesis. The goal of this study was to characterize on postnatal day 7, 10, and 14 the content and editing of murine testicular miRNAs, which predominantly arise from spermatogonia and spermatocytes, in contrast to prior descriptions of miRNAs in the adult mouse testis which largely reflects the content of spermatids. Previous studies have shown miRNAs to be abundant in the mouse testis by postnatal day 14; however, through Next Generation Sequencing of testes from a B6;129 background we found abundant earlier expression of miRNAs and describe shifts in the miRNA signature during this period. We detected robust expression of miRNAs encoded on the X chromosome in postnatal day 14 testes, consistent with prior studies showing their resistance to meiotic sex chromosome inactivation. Unexpectedly, we also found a similar positional enrichment for most miRNAs on chromosome 2 at postnatal day 14 and for those on chromosome 12 at postnatal day 7. We quantified in vivo developmental changes in three types of miRNA variation including 5' heterogeneity, editing, and 3' nucleotide addition. We identified eleven putative novel pubertal testis miRNAs whose developmental expression suggests a possible role in early male germ cell development. These studies provide a foundation for interpretation of miRNA changes associated with testicular pathology and identification of novel components of the miRNA editing machinery in the testis.

  5. Insights into psychosis risk from leukocyte microRNA expression

    PubMed Central

    Jeffries, C D; Perkins, D O; Chandler, S D; Stark, T; Yeo, E; Addington, J; Bearden, C E; Cadenhead, K S; Cannon, T D; Cornblatt, B A; Mathalon, D H; McGlashan, T H; Seidman, L J; Walker, E F; Woods, S W; Glatt, S J; Tsuang, M

    2016-01-01

    Dysregulation of immune system functions has been implicated in schizophrenia, suggesting that immune cells may be involved in the development of the disorder. With the goal of a biomarker assay for psychosis risk, we performed small RNA sequencing on RNA isolated from circulating immune cells. We compared baseline microRNA (miRNA) expression for persons who were unaffected (n=27) or who, over a subsequent 2-year period, were at clinical high risk but did not progress to psychosis (n=37), or were at high risk and did progress to psychosis (n=30). A greedy algorithm process led to selection of five miRNAs that when summed with +1 weights distinguished progressed from nonprogressed subjects with an area under the receiver operating characteristic curve of 0.86. Of the five, miR-941 is human-specific with incompletely understood functions, but the other four are prominent in multiple immune system pathways. Three of those four are downregulated in progressed vs. nonprogressed subjects (with weight -1 in a classifier function that increases with risk); all three have also been independently reported as downregulated in monocytes from schizophrenia patients vs. unaffected subjects. Importantly, these findings passed stringent randomization tests that minimized the risk of conclusions arising by chance. Regarding miRNA–miRNA correlations over the three groups, progressed subjects were found to have much weaker miRNA orchestration than nonprogressed or unaffected subjects. If independently verified, the leukocytic miRNA biomarker assay might improve accuracy of psychosis high-risk assessments and eventually help rationalize preventative intervention decisions. PMID:27959328

  6. Scaffolds for Artificial miRNA Expression in Animal Cells.

    PubMed

    Calloni, Raquel; Bonatto, Diego

    2015-10-01

    Artificial miRNAs (amiRNAs) are molecules that have been developed to promote gene silencing in a similar manner to naturally occurring miRNAs. amiRNAs are generally constructed by replacing the mature miRNA sequence in the pre-miRNA stem-loop with a sequence targeting a gene of interest. These molecules offer an interesting alternative to silencing approaches that are based on shRNAs and siRNAs because they present the same efficiency as these options and are less cytotoxic. amiRNAs have mostly been applied to gene knockdown in plants; they have been examined to a lesser extent in animal cells. Therefore, this article reviews the amiRNAs that have been developed for animal cells and focuses on the miRNA scaffolds that can already be applied to construct the artificial counterparts, as well as on the different approaches that have been described to promote amiRNA expression and silencing efficiency. Furthermore, the availability of amiRNA libraries and other tools that can be used to design and construct these molecules is briefly discussed, along with an overview of the therapeutic applications for which amiRNAs have already been evaluated.

  7. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression.

    PubMed

    Diederichs, Sven; Haber, Daniel A

    2007-12-14

    MicroRNAs are small endogenous noncoding RNAs involved in posttranscriptional gene regulation. During microRNA biogenesis, Drosha and Dicer process the primary transcript (pri-miRNA) through a precursor hairpin (pre-miRNA) to the mature miRNA. The miRNA is incorporated into the RNA-Induced Silencing Complex (RISC) with Argonaute proteins, the effector molecules in RNA interference (RNAi). Here, we show that all Argonautes elevate mature miRNA expression posttranscriptionally, independent of RNase activity. Also, we identify a role for the RISC slicer Argonaute2 (Ago2) in cleaving the pre-miRNA to an additional processing intermediate, termed Ago2-cleaved precursor miRNA or ac-pre-miRNA. This endogenous, on-pathway intermediate results from cleavage of the pre-miRNA hairpin 12 nucleotides from its 3'-end. By analogy to siRNA processing, Ago2 cleavage may facilitate removal of the nicked passenger strand from RISC after maturation. The multiple roles of Argonautes in the RNAi effector phase and miRNA biogenesis and maturation suggest coordinate regulation of microRNA expression and function.

  8. An Integrated Analysis of MicroRNA and mRNA Expression Profiles to Identify RNA Expression Signatures in Lambskin Hair Follicles in Hu Sheep

    PubMed Central

    Lv, Xiaoyang; Sun, Wei; Yin, Jinfeng; Ni, Rong; Su, Rui; Wang, Qingzeng; Gao, Wen; Bao, Jianjun; Yu, Jiarui; Wang, Lihong; Chen, Ling

    2016-01-01

    Wave patterns in lambskin hair follicles are an important factor determining the quality of sheep’s wool. Hair follicles in lambskin from Hu sheep, a breed unique to China, have 3 types of waves, designated as large, medium, and small. The quality of wool from small wave follicles is excellent, while the quality of large waves is considered poor. Because no molecular and biological studies on hair follicles of these sheep have been conducted to date, the molecular mechanisms underlying the formation of different wave patterns is currently unknown. The aim of this article was to screen the candidate microRNAs (miRNA) and genes for the development of hair follicles in Hu sheep. Two-day-old Hu lambs were selected from full-sib individuals that showed large, medium, and small waves. Integrated analysis of microRNA and mRNA expression profiles employed high-throughout sequencing technology. Approximately 13, 24, and 18 differentially expressed miRNAs were found between small and large waves, small and medium waves, and medium and large waves, respectively. A total of 54, 190, and 81 differentially expressed genes were found between small and large waves, small and medium waves, and medium and large waves, respectively, by RNA sequencing (RNA-seq) analysis. Differentially expressed genes were classified using gene ontology and pathway analyses. They were found to be mainly involved in cell differentiation, proliferation, apoptosis, growth, immune response, and ion transport, and were associated with MAPK and the Notch signaling pathway. Reverse transcription-polymerase chain reaction (RT-PCR) analyses of differentially-expressed miRNA and genes were consistent with sequencing results. Integrated analysis of miRNA and mRNA expression indicated that, compared to small waves, large waves included 4 downregulated miRNAs that had regulatory effects on 8 upregulated genes and 3 upregulated miRNAs, which in turn influenced 13 downregulated genes. Compared to small waves

  9. Globally increased ultraconserved noncoding RNA expression in pancreatic adenocarcinoma

    PubMed Central

    Lee, Eun Joo; Gusev, Yuriy; Allard, David; Sutaria, Dhruvitkumar S.; Badawi, Mohamed; Elgamal, Ola A.; Lerner, Megan R.; Brackett, Daniel J.; Calin, George A.; Schmittgen, Thomas D.

    2016-01-01

    Transcribed ultraconserved regions (T-UCRs) are a class of non-coding RNAs with 100% sequence conservation among human, rat and mouse genomes. T-UCRs are differentially expressed in several cancers, however their expression in pancreatic adenocarcinoma (PDAC) has not been studied. We used a qPCR array to profile all 481 T-UCRs in pancreatic cancer specimens, pancreatic cancer cell lines, during experimental pancreatic desmoplasia and in the pancreases of P48Cre/wt; KrasLSL-G12D/wt mice. Fourteen, 57 and 29% of the detectable T-UCRs were differentially expressed in the cell lines, human tumors and transgenic mouse pancreases, respectively. The vast majority of the differentially expressed T-UCRs had increased expression in the cancer. T-UCRs were monitored using an in vitro model of the desmoplastic reaction. Twenty-five % of the expressed T-UCRs were increased in the HPDE cells cultured on PANC-1 cellular matrix. UC.190, UC.233 and UC.270 were increased in all three human data sets. siRNA knockdown of each of these three T-UCRs reduced the proliferation of MIA PaCa-2 cells up to 60%. The expression pattern among many T-UCRs in the human and mouse pancreases closely correlated with one another, suggesting that groups of T-UCRs are co-activated in PDAC. Successful knockout of the transcription factor EGR1 in PANC-1 cells caused a reduction in the expression of a subset of T-UCRs suggesting that EGR1 may control T-UCR expression in PDAC. We report a global increase in expression of T-UCRs in both human and mouse PDAC. Commonalties in their expression pattern suggest a similar mechanism of transcriptional upregulation for T-UCRs in PDAC. PMID:27363020

  10. MicroRNA Expression Signature in Degenerative Aortic Stenosis

    PubMed Central

    2016-01-01

    Degenerative aortic stenosis, characterized by narrowing of the exit of the left ventricle of the heart, has become the most common valvular heart disease in the elderly. The aim of this study was to investigate the microRNA (miRNA) signature in degenerative AS. Through microarray analysis, we identified the miRNA expression signature in the tissue samples from healthy individuals (n = 4) and patients with degenerative AS (n = 4). Six miRNAs (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p) were overexpressed and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p, hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636, hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were downregulated in aortic tissue from AS patients. GeneSpring 13.1 was used to identify potential human miRNA target genes by comparing a 3-way comparison of predictions from TargetScan, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify potential pathways and functional annotations associated with AS. Twenty miRNAs were significantly differentially expressed between patients with AS samples and normal controls and identified potential miRNA targets and molecular pathways associated with this morbidity. This study describes the miRNA expression signature in degenerative AS and provides an improved understanding of the molecular pathobiology of this disease. PMID:27579316

  11. MicroRNA Expression Signature in Degenerative Aortic Stenosis.

    PubMed

    Shi, Jing; Liu, Hui; Wang, Hui; Kong, Xiangqing

    2016-01-01

    Degenerative aortic stenosis, characterized by narrowing of the exit of the left ventricle of the heart, has become the most common valvular heart disease in the elderly. The aim of this study was to investigate the microRNA (miRNA) signature in degenerative AS. Through microarray analysis, we identified the miRNA expression signature in the tissue samples from healthy individuals (n = 4) and patients with degenerative AS (n = 4). Six miRNAs (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p) were overexpressed and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p, hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636, hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were downregulated in aortic tissue from AS patients. GeneSpring 13.1 was used to identify potential human miRNA target genes by comparing a 3-way comparison of predictions from TargetScan, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify potential pathways and functional annotations associated with AS. Twenty miRNAs were significantly differentially expressed between patients with AS samples and normal controls and identified potential miRNA targets and molecular pathways associated with this morbidity. This study describes the miRNA expression signature in degenerative AS and provides an improved understanding of the molecular pathobiology of this disease.

  12. Cytokine mRNA expression in postischemic/reperfused myocardium.

    PubMed Central

    Herskowitz, A.; Choi, S.; Ansari, A. A.; Wesselingh, S.

    1995-01-01

    While the role of cytokines in mediating injury during hind limb skeletal muscle ischemia followed by reperfusion has recently been described, the role of cytokines in myocardial infarction and ischemia/reperfusion have remained relatively unexplored. We hypothesize that cytokines play an important role in the regulation of postischemic myocardial inflammation. This study reports the temporal sequence of proinflammatory cytokine gene expression in postischemic/reperfused myocardium and localizes interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha)-protein by immunostaining. Rats were subjected to either permanent left anterior descending (LAD) occlusion or to 35 minutes of LAD occlusion followed by reperfusion and sacrificed up to 7 days later. Rat-specific oligonucleotide probes were used to semiquantitatively assess the relative expression of mRNA for TNF-alpha, IL-1 beta, IL-2, IL-6, interferon-gamma (IFN-gamma), and transforming growth factor-beta 1 (TGF-beta 1) utilizing the reverse transcriptase-polymerase chain reaction amplification technique. Increased cardiac mRNA levels for all cytokines except IL-6 and IFN-gamma were measurable within 15 to 30 minutes of LAD occlusion and increased levels were generally sustained for 3 hours. During early reperfusion, mRNA levels for IL-6 and TGF-beta 1 were significantly reduced compared with permanent LAD occlusion. In both groups, cytokine mRNA levels all returned to baseline levels at 24 hours, while IL-1 beta, TNF-alpha, and TGF-beta 1 mRNA levels again rose significantly at 7 days only in animals with permanent LAD occlusion. Immunostaining for IL-1 beta and TNF-alpha protein revealed two patterns of reactivity: 1) microvascular staining for both IL-1 beta and TNF-alpha protein only in postischemic reperfused myocardium in early post-reperfusion time points; and 2) staining of infiltrating macrophages in healing infarct zones which was most prominent at 7 days after permanent LAD occlusion

  13. Noncytopathic Sindbis virus RNA vectors for heterologous gene expression

    PubMed Central

    Agapov, Eugene V.; Frolov, Ilya; Lindenbach, Brett D.; Prágai, Béla M.; Schlesinger, Sondra; Rice, Charles M.

    1998-01-01

    Infection of vertebrate cells with alphaviruses normally leads to prodigious expression of virus-encoded genes and a dramatic inhibition of host protein synthesis. Recombinant Sindbis viruses and replicons have been useful as vectors for high level foreign gene expression, but the cytopathic effects of viral replication have limited their use to transient studies. We recently selected Sindbis replicons capable of persistent, noncytopathic growth in BHK cells and describe here a new generation of Sindbis vectors useful for long-term foreign gene expression based on such replicons. Foreign genes of interest as well as the dominant selectable marker puromycin N-acteyltransferase, which confers resistance to the drug puromycin, were expressed as subgenomic transcripts of noncytopathic replicons or defective-interfering genomes complemented in trans by a replicon. Based on these strategies, we developed vectors that can be initiated via either RNA or DNA transfection and analyzed them for their level and stability of foreign gene expression. Noncytopathic Sindbis vectors express reasonably high levels of protein in nearly every cell. These vectors should prove to be flexible tools for the rapid expression of heterologous genes under conditions in which cellular metabolism is not perturbed, and we illustrate their utility with a number of foreign proteins. PMID:9789028

  14. PmiRExAt: plant miRNA expression atlas database and web applications.

    PubMed

    Gurjar, Anoop Kishor Singh; Panwar, Abhijeet Singh; Gupta, Rajinder; Mantri, Shrikant S

    2016-01-01

    High-throughput small RNA (sRNA) sequencing technology enables an entirely new perspective for plant microRNA (miRNA) research and has immense potential to unravel regulatory networks. Novel insights gained through data mining in publically available rich resource of sRNA data will help in designing biotechnology-based approaches for crop improvement to enhance plant yield and nutritional value. Bioinformatics resources enabling meta-analysis of miRNA expression across multiple plant species are still evolving. Here, we report PmiRExAt, a new online database resource that caters plant miRNA expression atlas. The web-based repository comprises of miRNA expression profile and query tool for 1859 wheat, 2330 rice and 283 maize miRNA. The database interface offers open and easy access to miRNA expression profile and helps in identifying tissue preferential, differential and constitutively expressing miRNAs. A feature enabling expression study of conserved miRNA across multiple species is also implemented. Custom expression analysis feature enables expression analysis of novel miRNA in total 117 datasets. New sRNA dataset can also be uploaded for analysing miRNA expression profiles for 73 plant species. PmiRExAt application program interface, a simple object access protocol web service allows other programmers to remotely invoke the methods written for doing programmatic search operations on PmiRExAt database.Database URL:http://pmirexat.nabi.res.in.

  15. PmiRExAt: plant miRNA expression atlas database and web applications

    PubMed Central

    Gurjar, Anoop Kishor Singh; Panwar, Abhijeet Singh; Gupta, Rajinder; Mantri, Shrikant S.

    2016-01-01

    High-throughput small RNA (sRNA) sequencing technology enables an entirely new perspective for plant microRNA (miRNA) research and has immense potential to unravel regulatory networks. Novel insights gained through data mining in publically available rich resource of sRNA data will help in designing biotechnology-based approaches for crop improvement to enhance plant yield and nutritional value. Bioinformatics resources enabling meta-analysis of miRNA expression across multiple plant species are still evolving. Here, we report PmiRExAt, a new online database resource that caters plant miRNA expression atlas. The web-based repository comprises of miRNA expression profile and query tool for 1859 wheat, 2330 rice and 283 maize miRNA. The database interface offers open and easy access to miRNA expression profile and helps in identifying tissue preferential, differential and constitutively expressing miRNAs. A feature enabling expression study of conserved miRNA across multiple species is also implemented. Custom expression analysis feature enables expression analysis of novel miRNA in total 117 datasets. New sRNA dataset can also be uploaded for analysing miRNA expression profiles for 73 plant species. PmiRExAt application program interface, a simple object access protocol web service allows other programmers to remotely invoke the methods written for doing programmatic search operations on PmiRExAt database. Database URL: http://pmirexat.nabi.res.in. PMID:27081157

  16. LncRNA ontology: inferring lncRNA functions based on chromatin states and expression patterns

    PubMed Central

    Li, Yongsheng; Chen, Hong; Pan, Tao; Jiang, Chunjie; Zhao, Zheng; Wang, Zishan; Zhang, Jinwen; Xu, Juan; Li, Xia

    2015-01-01

    Accumulating evidences suggest that long non-coding RNAs (lncRNAs) perform important functions. Genome-wide chromatin-states area rich source of information about cellular state, yielding insights beyond what is typically obtained by transcriptome profiling. We propose an integrative method for genome-wide functional predictions of lncRNAs by combining chromatin states data with gene expression patterns. We first validated the method using protein-coding genes with known function annotations. Our validation results indicated that our integrative method performs better than co-expression analysis, and is accurate across different conditions. Next, by applying the integrative model genome-wide, we predicted the probable functions for more than 97% of human lncRNAs. The putative functions inferred by our method match with previously annotated by the targets of lncRNAs. Moreover, the linkage from the cellular processes influenced by cancer-associated lncRNAs to the cancer hallmarks provided a “lncRNA point-of-view” on tumor biology. Our approach provides a functional annotation of the lncRNAs, which we developed into a web-based application, LncRNA Ontology, to provide visualization, analysis, and downloading of lncRNA putative functions. PMID:26485761

  17. Expression of microRNA-146 in osteoarthritis cartilage

    PubMed Central

    Yamasaki, Keiichiro; Nakasa, Tomoyuki; Miyaki, Shigeru; Ishikawa, Masakazu; Deie, Masataka; Adachi, Nobuo; Yasunaga, Yuji; Asahara, Hiroshi; Ochi, Mitsuo

    2009-01-01

    Objective A role of microRNAs, which are ∼22- nucleotide non coding RNAs, has recently been recognized in human diseases. The objective of this study was to identify the expression pattern of microRNA-146 (miR-146) in cartilage from patients with osteoarthritis (OA). Methods The expression of miR-146 in cartilage from 15 patients with OA was analyzed by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and by in situ hybridization. Induction of the expression of miR-146 by cultures of normal human articular chondrocytes following stimulation with interleukin-1β (IL-1β) was examined by quantitative RT-PCR. Results All cartilage samples were divided into three groups according to a modified Mankin scale; grade I: 0 - 5, grade II: 6 - 10, grade III: 11 - 14. In OA cartilage samples of grade I, the expression of miR-146a and Col2a1 was significantly higher than that of other groups (p<0.05). In OA cartilage of grades II and III, the expression of miR-146a and Col2a1 decreased while the expression of MMP13 was elevated in grade II. These data show that miR-146a is expressed intensely in cartilage with a low Mankin grade, and that miR-146a expression decreases in accordance with level of MMP13 expression. Section in situ hybridization of pri-miR-146a revealed that pri-miR-146a is expressed in chondrocytes in all layers, especially in the superficial layer where it is intensely expressed. The expression of miR-146 was markedly elevated by IL-1β stimulation in human chondrocytes in vitro. Conclusion This study shows that miR-146 is intensely expressed in low grade OA cartilage, and that its expression is induced by stimulation of IL-1β. MiR-146 might play a role in OA cartilage pathogenesis. PMID:19333945

  18. Deregulated messenger RNA expression during T cell apoptosis.

    PubMed Central

    Kerkhoff, E; Ziff, E B

    1995-01-01

    The IL-2 dependent murine cytotoxic T cell line CTLL-2 undergoes programmed cell death when deprived of its specific cytokine. We analyzed the expression of cell cycle related genes after IL-2 deprivation. Here we show that a generalized decrease and re elevation of the levels of mRNA takes place as part of the apoptotic program. The levels of several mRNAs encoding cell cycle functions, including cyclin D2, cyclin D3, cyclin B1, c-myc and max all declined at 1.5-3 h following IL-2 deprivation. Notably, the maxmRNA, which was shown to be expressed in proliferating, growth arrested and differentiated cells, is down regulated with the same kinetics as the other mRNAs. Surprisingly, the mRNAs whose levels declined at 1.5-3 h rose again at 10-14 h, a time which closely followed the time of the first detection of apoptotic DNA degradation, at 8 h, but which precedes actual loss of viability, at 14 h, as measured by trypan blue exclusion. Of all analyzed genes only the expression of the S-phase specific histone H4 gene resists the initial decrease and declines gradually over the course of cell death. Measurement of c-Myc protein synthesis at a late stage of the apoptotic program revealed that the accumulated reinduced mRNA is not translated into protein. Because transcriptional regulation has been shown to be dependent on the chromatin structure, the reinduction may be triggered by relaxation of the chromatin caused by alterations in the chromatin structure of apoptotic cells. Images PMID:8532529

  19. Deciphering Poxvirus Gene Expression by RNA Sequencing and Ribosome Profiling

    PubMed Central

    Cao, Shuai; Martens, Craig A.; Porcella, Stephen F.; Xie, Zhi; Ma, Ming; Shen, Ben

    2015-01-01

    ABSTRACT The more than 200 closely spaced annotated open reading frames, extensive transcriptional read-through, and numerous unpredicted RNA start sites have made the analysis of vaccinia virus gene expression challenging. Genome-wide ribosome profiling provided an unprecedented assessment of poxvirus gene expression. By 4 h after infection, approximately 80% of the ribosome-associated mRNA was viral. Ribosome-associated mRNAs were detected for most annotated early genes at 2 h and for most intermediate and late genes at 4 and 8 h. Cluster analysis identified a subset of early mRNAs that continued to be translated at the later times. At 2 h, there was excellent correlation between the abundance of individual mRNAs and the numbers of associated ribosomes, indicating that expression was primarily transcriptionally regulated. However, extensive transcriptional read-through invalidated similar correlations at later times. The mRNAs with the highest density of ribosomes had host response, DNA replication, and transcription roles at early times and were virion components at late times. Translation inhibitors were used to map initiation sites at single-nucleotide resolution at the start of most annotated open reading frames although in some cases a downstream methionine was used instead. Additional putative translational initiation sites with AUG or alternative codons occurred mostly within open reading frames, and fewer occurred in untranslated leader sequences, antisense strands, and intergenic regions. However, most open reading frames associated with these additional translation initiation sites were short, raising questions regarding their biological roles. The data were used to construct a high-resolution genome-wide map of the vaccinia virus translatome. IMPORTANCE This report contains the first genome-wide, high-resolution analysis of poxvirus gene expression at both transcriptional and translational levels. The study was made possible by recent methodological

  20. MicroRNA function in mast cell biology: protocols to characterize and modulate microRNA expression.

    PubMed

    Maltby, Steven; Plank, Maximilian; Ptaschinski, Catherine; Mattes, Joerg; Foster, Paul S

    2015-01-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules that can modulate mRNA levels through RNA-induced silencing complex (RISC)-mediated degradation. Recognition of target mRNAs occurs through imperfect base pairing between an miRNA and its target, meaning that each miRNA can target a number of different mRNAs to modulate gene expression. miRNAs have been proposed as novel therapeutic targets and many studies are aimed at characterizing miRNA expression patterns and functions within a range of cell types. To date, limited research has focused on the function of miRNAs specifically in mast cells; however, this is an emerging field. In this chapter, we will briefly overview miRNA synthesis and function and the current understanding of miRNAs in hematopoietic development and immune function, emphasizing studies related to mast cell biology. The chapter will conclude with fundamental techniques used in miRNA studies, including RNA isolation, real-time PCR and microarray approaches for quantification of miRNA expression levels, and antagomir design to interfere with miRNA function.

  1. Integrated Analysis of Long Noncoding RNA and mRNA Expression Profile in Advanced Laryngeal Squamous Cell Carcinoma

    PubMed Central

    Lian, Meng; Ma, Hongzhi; He, Ning; Liu, Honggang; Wang, Haizhou; Fang, Jugao

    2016-01-01

    Long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the expression pattern and function of lncRNAs in laryngeal squamous cell carcinoma (LSCC) are still unclear. To investigate the aberrantly expressed lncRNAs and mRNAs in advanced LSCC, we screened lncRNA and mRNA expression profiles in 9 pairs of primary Stage IVA LSCC tissues and adjacent non-neoplastic tissues by lncRNA and mRNA integrated microarrays. Gene Ontology and pathway analysis were performed to find out the significant function and pathway of the differentially expressed mRNAs, gene-gene functional interaction network and ceRNA network were constructed to select core mRNAs, and lncRNA-mRNA expression correlation network was built to identify the interactions between lncRNA and mRNA. qRT-PCR was performed to further validate the expressions of selected lncRNAs and mRNAs in advanced LSCC. We found 1459 differentially expressed lncRNAs and 2381 differentially expressed mRNAs, including 846 up-regulated lncRNAs and 613 down-regulated lncRNAs, 1542 up-regulated mRNAs and 839 down-regulated mRNAs. The mRNAs ITGB1, HIF1A, and DDIT4 were selected as core mRNAs, which are mainly involved in biological processes, such as matrix organization, cell cycle, adhesion, and metabolic pathway. LncRNA-mRNA expression correlation network showed LncRNA NR_027340, MIR31HG were positively correlated with ITGB1, HIF1A respectively. LncRNA SOX2-OT was negatively correlated with DDIT4. qRT-PCR further validated the expression of these lncRNAs and mRNAs. The work provides convincing evidence that the identified lncRNAs and mRNAs are potential biomarkers in advanced LSCC for further future studies. PMID:28033431

  2. A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing

    PubMed Central

    Landgraf, Pablo; Rusu, Mirabela; Sheridan, Robert; Sewer, Alain; Iovino, Nicola; Aravin, Alexei; Pfeffer, Sébastien; Rice, Amanda; Kamphorst, Alice O.; Landthaler, Markus; Lin, Carolina; Socci, Nicholas D.; Hermida, Leandro; Fulci, Valerio; Chiaretti, Sabina; Foà, Robin; Schliwka, Julia; Fuchs, Uta; Novosel, Astrid; Müller, Roman-Ulrich; Schermer, Bernhard; Bissels, Ute; Inman, Jason; Phan, Quang; Chien, Minchen; Weir, David B.; Choksi, Ruchi; De Vita, Gabriella; Frezzetti, Daniela; Trompeter, Hans-Ingo; Hornung, Veit; Teng, Grace; Hartmann, Gunther; Palkovits, Miklos; Di Lauro, Roberto; Wernet, Peter; Macino, Giuseppe; Rogler, Charles E.; Nagle, James W.; Ju, Jingyue; Papavasiliou, F. Nina; Benzing, Thomas; Lichter, Peter; Tam, Wayne; Brownstein, Michael J.; Bosio, Andreas; Borkhardt, Arndt; Russo, James J.; Sander, Chris; Zavolan, Mihaela; Tuschl, Thomas

    2007-01-01

    Summary MicroRNAs (miRNAs) are small non-coding regulatory RNAs that reduce stability and/or translation of fully or partially sequence-complementary target mRNAs. In order to identify miRNAs and to assess their expression patterns, we sequenced over 250 small RNA libraries from 26 different organ systems and cell types of human and rodents, enriched in neuronal as well as normal and malignant hematopoietic cells and tissues. We present expression profiles derived from clone count data and provide novel computational tools for their analysis. Unexpectedly, a relatively small set of miRNAs, many of which are ubiquitously expressed, account for most of the difference in miRNA profiles between cell lineages and tissues. This broad survey also provides detailed and accurate information about mature sequences, precursors, genome locations, maturation processes, inferred transcriptional units and conservation patterns. We also propose a subclassification scheme for miRNAs for assisting future experimental and computational functional analyses. PMID:17604727

  3. RNA polymerase errors cause splicing defects and can be regulated by differential expression of RNA polymerase subunits

    PubMed Central

    Carey, Lucas B

    2015-01-01

    Errors during transcription may play an important role in determining cellular phenotypes: the RNA polymerase error rate is >4 orders of magnitude higher than that of DNA polymerase and errors are amplified >1000-fold due to translation. However, current methods to measure RNA polymerase fidelity are low-throughout, technically challenging, and organism specific. Here I show that changes in RNA polymerase fidelity can be measured using standard RNA sequencing protocols. I find that RNA polymerase is error-prone, and these errors can result in splicing defects. Furthermore, I find that differential expression of RNA polymerase subunits causes changes in RNA polymerase fidelity, and that coding sequences may have evolved to minimize the effect of these errors. These results suggest that errors caused by RNA polymerase may be a major source of stochastic variability at the level of single cells. DOI: http://dx.doi.org/10.7554/eLife.09945.001 PMID:26652005

  4. Sequence and expression of ferredoxin mRNA in barley

    SciTech Connect

    Zielinski, R.; Funder, P.M.; Ling, V. )

    1990-05-01

    We have isolated and structurally characterized a full-length cDNA clone encoding ferredoxin from a {lambda}gt10 cDNA library prepared from barley leaf mRNA. The ferredoxin clone (pBFD-1) was fused head-to-head with a partial-length cDNA clone encoding calmodulin, and was fortuitously isolated by screening the library with a calmodulin-specific oligonucleotide probe. The mRNA sequence from which pBFD-1 was derived is expressed exclusively in the leaf tissues of 7-d old barley seedlings. Barley pre-ferredoxin has a predicted size of 15.3 kDal, of which 4.6 kDal are accounted for by the transit peptide. The polypeptide encoded by pBFD-1 is identical to wheat ferredoxin, and shares slightly more amino acid sequence similarity with spinach ferredoxin I than with ferredoxin II. Ferredoxin mRNA levels are rapidly increased 10-fold by white light in etiolated barley leaves.

  5. Distribution of miRNA expression across human tissues.

    PubMed

    Ludwig, Nicole; Leidinger, Petra; Becker, Kurt; Backes, Christina; Fehlmann, Tobias; Pallasch, Christian; Rheinheimer, Steffi; Meder, Benjamin; Stähler, Cord; Meese, Eckart; Keller, Andreas

    2016-05-05

    We present a human miRNA tissue atlas by determining the abundance of 1997 miRNAs in 61 tissue biopsies of different organs from two individuals collected post-mortem. One thousand three hundred sixty-four miRNAs were discovered in at least one tissue, 143 were present in each tissue. To define the distribution of miRNAs, we utilized a tissue specificity index (TSI). The majority of miRNAs (82.9%) fell in a middle TSI range i.e. were neither specific for single tissues (TSI > 0.85) nor housekeeping miRNAs (TSI < 0.5). Nonetheless, we observed many different miRNAs and miRNA families that were predominantly expressed in certain tissues. Clustering of miRNA abundances revealed that tissues like several areas of the brain clustered together. Considering -3p and -5p mature forms we observed miR-150 with different tissue specificity. Analysis of additional lung and prostate biopsies indicated that inter-organism variability was significantly lower than inter-organ variability. Tissue-specific differences between the miRNA patterns appeared not to be significantly altered by storage as shown for heart and lung tissue. MiRNAs TSI values of human tissues were significantly (P = 10(-8)) correlated with those of rats; miRNAs that were highly abundant in certain human tissues were likewise abundant in according rat tissues. We implemented a web-based repository enabling scientists to access and browse the data (https://ccb-web.cs.uni-saarland.de/tissueatlas).

  6. Cloning and expression profiling of testis-expressed piRNA-like RNAs

    PubMed Central

    Ro, Seungil; Park, Chanjae; Song, Rui; Nguyen, Dan; Jin, Jingling; Sanders, Kenton M.; McCarrey, John R.; Yan, Wei

    2007-01-01

    Using a novel small RNA cloning method, we identified 630 piRNA-like RNAs (pilRNAs) from the mouse testis, and 498 of them are novel. These pilRNA genes were mapped to all chromosomes as 71 clusters, and the majority of them (∼84%) are derived from intergenic, intronic, and exonic sequences. One of the structural characteristics for pilRNAs is that a single locus can encode numerous homologous pilRNAs with overlapping sequences. Hundreds or even thousands of pilRNAs from a single pilRNA gene cluster are all produced from a single long transcript. Expression profiling for 64 pilRNAs revealed that ∼14% of all the pilRNAs analyzed displayed a ubiquitous expression pattern, although the majority of (∼86%) pilRNAs were preferentially or exclusively expressed in meiotic and haploid male germ cells of the testis. Our semiquantitative analyses also suggest that the testis is the organ with the highest expression of pilRNAs both in number and in abundance. The large number, high abundance, unique genomic locations, and biogenesis all suggest that pilRNAs have important regulatory roles not only in spermatogenesis but also in other biological processes. PMID:17698640

  7. Genetic Architecture of MicroRNA Expression: Implications for the Transcriptome and Complex Traits

    PubMed Central

    Gamazon, Eric R.; Ziliak, Dana; Im, Hae Kyung; LaCroix, Bonnie; Park, Danny S.; Cox, Nancy J.; Huang, R. Stephanie

    2012-01-01

    We sought to comprehensively and systematically characterize the relationship between genetic variation, miRNA expression, and mRNA expression. Genome-wide expression profiling of samples of European and African ancestry identified in each population hundreds of miRNAs whose increased expression is correlated with correspondingly reduced expression of target mRNAs. We scanned 3′ UTR SNPs with a potential functional effect on miRNA binding for cis-acting expression quantitative trait loci (eQTLs) for the corresponding proximal target genes. To extend sequence-based, localized analyses of SNP effect on miRNA binding, we proceeded to dissect the genetic basis of miRNA expression variation; we mapped miRNA expression levels—as quantitative traits—to loci in the genome as miRNA eQTLs, demonstrating that miRNA expression is under significant genetic control. We found that SNPs associated with miRNA expression are significantly enriched with those SNPs already shown to be associated with mRNA. Moreover, we discovered that many of the miRNA-associated genetic variations identified in our study are associated with a broad spectrum of human complex traits from the National Human Genome Research Institute catalog of published genome-wide association studies. Experimentally, we replicated miRNA-induced mRNA expression inhibition and the cis-eQTL relationship to the target gene for several identified relationships among SNPs, miRNAs, and mRNAs in an independent set of samples; furthermore, we conducted miRNA overexpression and inhibition experiments to functionally validate the miRNA-mRNA relationships. This study extends our understanding of the genetic regulation of the transcriptome and suggests that genetic variation might underlie observed relationships between miRNAs and mRNAs more commonly than has previously been appreciated. PMID:22658545

  8. miRNA Expression in Pediatric Failing Human Heart

    PubMed Central

    Stauffer, Brian L.; Russell, Gloria; Nunley, Karin; Miyamoto, Shelley D.; Sucharov, Carmen C.

    2013-01-01

    miRNAs are short regulatory RNAs that can regulate gene expression through interacting with the 3'UTR of target mRNAs. Although the role of miRNAs has been extensively studied in adult human and animal models of heart disease, nothing is known about their expression in pediatric heart failure patients. Different than adults with heart failure, pediatric patients respond well to phosphodiesterase inhibitor (PDEi) treatment, which is safe in the outpatient setting, results in fewer heart failure emergency department visits, fewer cardiac hospital admissions and improved NYHA classification. We have recently shown that the pediatric heart failure patients display a unique molecular profile that is different from adults with heart failure. In this study we show for the first time that pediatric heart failure patients display a unique miRNA profile, and that expression of some miRNAs correlate with response to PDEi treatment. Moreover, we show that expression of Smad4, a potential target for PDEi-regulated miRNAs, is normalized in PDEi-treated patients. Since miRNAs may be used as therapy for human heart failure, our results underscore the importance of defining the molecular characteristics of pediatric heart failure patients, so age-appropriate therapy can be designed for this population. PMID:23333438

  9. MicroRNA expression profiles differentiate chronic pain condition subtypes

    PubMed Central

    Ciszek, Brittney P.; Khan, Asma A.; Dang, Hong; Slade, Gary D.; Smith, Shad; Bair, Eric; Maixner, William; Zolnoun, Denniz; Nackley, Andrea G.

    2015-01-01

    Chronic pain is a significant healthcare problem, ineffectively treated due to its unclear etiology and heterogeneous clinical presentation. Emerging evidence demonstrates that microRNAs regulate the expression of pain-relevant genes, yet little is known about their role in chronic pain. Here, we evaluate the relationship between pain, psychological characteristics, plasma cytokines and whole blood microRNAs in 22 healthy controls (HC); 33 subjects with chronic pelvic pain (vestibulodynia: VBD); and 23 subjects with VBD and irritable bowel syndrome (VBD+IBS). VBD subjects were similar to HCs in self-reported pain, psychological profiles and remote bodily pain. VBD+IBS subjects reported decreased health and function; and an increase in headaches, somatization and remote bodily pain. Furthermore, VBD subjects exhibited a balance in pro- and anti-inflammatory cytokines, while VBD+IBS subjects failed to exhibit a compensatory increase in anti-inflammatory cytokines. VBD subjects differed from controls in expression of 10 microRNAs of predicted importance for pain and estrogen signaling. VBD+IBS subjects differed from controls in expression of 11 microRNAs of predicted importance for pain, cell physiology and insulin signaling. MicroRNA expression was correlated with pain-relevant phenotypes and cytokine levels. These results suggest microRNAs represent a valuable tool for differentiating VBD subtypes (localized pain with apparent peripheral neurosensory disruption versus widespread pain with a central sensory contribution) that may require different treatment approaches. PMID:26166255

  10. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.

    PubMed

    Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong

    2017-03-01

    The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC

  11. MicroRNA Expression Profile in Penile Cancer Revealed by Next-Generation Small RNA Sequencing

    PubMed Central

    Zhang, Yuanwei; Xu, Bo; Zhou, Jun; Fan, Song; Hao, Zongyao; Shi, Haoqiang; Zhang, Xiansheng; Kong, Rui; Xu, Lingfan; Gao, Jingjing; Zou, Duohong; Liang, Chaozhao

    2015-01-01

    Penile cancer (PeCa) is a relatively rare tumor entity but possesses higher morbidity and mortality rates especially in developing countries. To date, the concrete pathogenic signaling pathways and core machineries involved in tumorigenesis and progression of PeCa remain to be elucidated. Several studies suggested miRNAs, which modulate gene expression at posttranscriptional level, were frequently mis-regulated and aberrantly expressed in human cancers. However, the miRNA profile in human PeCa has not been reported before. In this present study, the miRNA profile was obtained from 10 fresh penile cancerous tissues and matched adjacent non-cancerous tissues via next-generation sequencing. As a result, a total of 751 and 806 annotated miRNAs were identified in normal and cancerous penile tissues, respectively. Among which, 56 miRNAs with significantly different expression levels between paired tissues were identified. Subsequently, several annotated miRNAs were selected randomly and validated using quantitative real-time PCR. Compared with the previous publications regarding to the altered miRNAs expression in various cancers and especially genitourinary (prostate, bladder, kidney, testis) cancers, the most majority of deregulated miRNAs showed the similar expression pattern in penile cancer. Moreover, the bioinformatics analyses suggested that the putative target genes of differentially expressed miRNAs between cancerous and matched normal penile tissues were tightly associated with cell junction, proliferation, growth as well as genomic instability and so on, by modulating Wnt, MAPK, p53, PI3K-Akt, Notch and TGF-β signaling pathways, which were all well-established to participate in cancer initiation and progression. Our work presents a global view of the differentially expressed miRNAs and potentially regulatory networks of their target genes for clarifying the pathogenic transformation of normal penis to PeCa, which research resource also provides new insights

  12. Integrated bioinformatics analysis of chromatin regulator EZH2 in regulating mRNA and lncRNA expression by ChIP sequencing and RNA sequencing

    PubMed Central

    Li, Yuan; Luo, Mei; Shi, Xuejiao; Lu, Zhiliang; Sun, Shouguo; Huang, Jianbing; Chen, Zhaoli; He, Jie

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2), a dynamic chromatin regulator in cancer, represents a potential therapeutic target showing early signs of promise in clinical trials. EZH2 ChIP sequencing data in 19 cell lines and RNA sequencing data in ten cancer types were downloaded from GEO and TCGA, respectively. Integrated ChIP sequencing analysis and co-expressing analysis were conducted and both mRNA and long noncoding RNA (lncRNA) targets were detected. We detected a median of 4,672 mRNA targets and 4,024 lncRNA targets regulated by EZH2 in 19 cell lines. 20 mRNA targets and 27 lncRNA targets were found in all 19 cell lines. These mRNA targets were enriched in pathways in cancer, Hippo, Wnt, MAPK and PI3K-Akt pathways. Co-expression analysis confirmed numerous targets, mRNA genes (RRAS, TGFBR2, NUF2 and PRC1) and lncRNA genes (lncRNA LINC00261, DIO3OS, RP11-307C12.11 and RP11-98D18.9) were potential targets and were significantly correlated with EZH2. We predicted genome-wide potential targets and the role of EZH2 in regulating as a transcriptional suppressor or activator which could pave the way for mechanism studies and the targeted therapy of EZH2 in cancer. PMID:27835578

  13. Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling

    NASA Technical Reports Server (NTRS)

    Zanello, S. B.; Stevens, B.; Calvillo, E.; Tang, R.; Gutierrez Flores, B.; Hu, L.; Skog, J.; Bershad, E.

    2016-01-01

    While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sleep/circadian disruption and mood alterations, which, albeit likely multifactorial, can also result from elevation of intracranial pressure (ICP). We therefore hypothesize that these various symptoms are caused by disturbances in the neurophysiology of the brain structures and are correlated with molecular markers in the cerebrospinal fluid (CSF) as indicators of neurophysiological changes. Exosomes are 30-200 nm microvesicles shed into all biofluids, including blood, urine, and CSF, carrying a highly rich source of intact protein and RNA cargo. Exosomes have been identified in human CSF, and their proteome and RNA pool is a potential new reservoir for biomarker discovery in neurological disorders. The purpose of this study is to investigate changes in brain gene expression via exosome analysis in patients suffering from ICP elevation of varied severity (idiopathic intracranial hypertension -IIH), a condition which shares some of the neuroophthalmological features of VIIP, as a first step toward obtaining evidence suggesting that cognitive function and ICP levels can be correlated with biomarkers in the CSF. Our preliminary work, reported last year, validated the exosomal technology applicable to CSF analysis and demonstrated that it was possible to obtain gene expression evidence of inflammation processes in traumatic brain injury patients. We are now recruiting patients with suspected IIH requiring lumbar puncture at Baylor College of Medicine. Both CSF (5 ml) and human plasma (10 ml) are being collected in order to compare the pattern of differentially expressed genes observed in CSF and in blood. Since blood is much more accessible than CSF, we would like to determine whether plasma biomarkers for

  14. Regulation of Gene Expression in Plants through miRNA Inactivation

    PubMed Central

    Zhang, Yuanji; Ziegler, Todd E.; Roberts, James K.; Heck, Gregory R.

    2011-01-01

    Eukaryotic organisms possess a complex RNA-directed gene expression regulatory network allowing the production of unique gene expression patterns. A recent addition to the repertoire of RNA-based gene regulation is miRNA target decoys, endogenous RNA that can negatively regulate miRNA activity. miRNA decoys have been shown to be a valuable tool for understanding the function of several miRNA families in plants and invertebrates. Engineering and precise manipulation of an endogenous RNA regulatory network through modification of miRNA activity also affords a significant opportunity to achieve a desired outcome of enhanced plant development or response to environmental stresses. Here we report that expression of miRNA decoys as single or heteromeric non-cleavable microRNA (miRNA) sites embedded in either non-protein-coding or within the 3′ untranslated region of protein-coding transcripts can regulate the expression of one or more miRNA targets. By altering the sequence of the miRNA decoy sites, we were able to attenuate miRNA inactivation, which allowed for fine regulation of native miRNA targets and the production of a desirable range of plant phenotypes. Thus, our results demonstrate miRNA decoys are a flexible and robust tool, not only for studying miRNA function, but also for targeted engineering of gene expression in plants. Computational analysis of the Arabidopsis transcriptome revealed a number of potential miRNA decoys, suggesting that endogenous decoys may have an important role in natural modulation of expression in plants. PMID:21731706

  15. Decreased RNA-binding motif 5 expression is associated with tumor progression in gastric cancer.

    PubMed

    Kobayashi, Takahiko; Ishida, Junich; Shimizu, Yuichi; Kawakami, Hiroshi; Suda, Goki; Muranaka, Tetsuhito; Komatsu, Yoshito; Asaka, Masahiro; Sakamoto, Naoya

    2017-03-01

    RNA-binding motif 5 is a putative tumor suppressor gene that modulates cell cycle arrest and apoptosis. We recently demonstrated that RNA-binding motif 5 inhibits cell growth through the p53 pathway. This study evaluated the clinical significance of RNA-binding motif 5 expression in gastric cancer and the effects of altered RNA-binding motif 5 expression on cancer biology in gastric cancer cells. RNA-binding motif 5 protein expression was evaluated by immunohistochemistry using the surgical specimens of 106 patients with gastric cancer. We analyzed the relationships of RNA-binding motif 5 expression with clinicopathological parameters and patient prognosis. We further explored the effects of RNA-binding motif 5 downregulation with short hairpin RNA on cell growth and p53 signaling in MKN45 gastric cancer cells. Immunohistochemistry revealed that RNA-binding motif 5 expression was decreased in 29 of 106 (27.4%) gastric cancer specimens. Decreased RNA-binding motif 5 expression was correlated with histological differentiation, depth of tumor infiltration, nodal metastasis, tumor-node-metastasis stage, and prognosis. RNA-binding motif 5 silencing enhanced gastric cancer cell proliferation and decreased p53 transcriptional activity in reporter gene assays. Conversely, restoration of RNA-binding motif 5 expression suppressed cell growth and recovered p53 transactivation in RNA-binding motif 5-silenced cells. Furthermore, RNA-binding motif 5 silencing reduced the messenger RNA and protein expression of the p53 target gene p21. Our results suggest that RNA-binding motif 5 downregulation is involved in gastric cancer progression and that RNA-binding motif 5 behaves as a tumor suppressor gene in gastric cancer.

  16. Comprehensive expression analysis of miRNA in breast cancer at the miRNA and isomiR levels.

    PubMed

    Wu, Xianjin; Zeng, Rong; Wu, Shaoke; Zhong, Jixin; Yang, Lawei; Xu, Junfa

    2015-02-25

    Breast cancer (BC) is the main factor that leads cause of cancer death in women worldwide. A class of small non-coding RNAs, microRNAs (miRNAs), has been widely studied in human cancers as crucial regulatory molecule. Recent studies indicate that a series of isomiRs can be yielded from a miRNA locus, and these physiological miRNA isoforms have versatile roles in miRNA biogenesis. Herein, we performed a comprehensive analysis of miRNAs at the miRNA and isomiR levels in BC using next-generation sequencing data from The Cancer Genome Atlas (TCGA). Abnormally expressed miRNA (miR-21, miR-221, miR-155, miR-30e and miR-25) and isomiR profiles could be obtained at the miRNA and isomiR levels, and similar biological roles could be detected. IsomiR expression profiles should be further concerned, and especially isomiRs are actual regulatory molecules in the miRNA-mRNA regulatory networks. The study provides a comprehensive expression analysis at the miRNA and isomiR levels in BC, which indicates biological roles of isomiRs.

  17. Biological analysis of chronic lymphocytic leukemia: integration of mRNA and microRNA expression profiles.

    PubMed

    Dong, L; Bi, K H; Huang, N; Chen, C Y

    2016-01-08

    Chronic lymphocytic leukemia (CLL) is a disease that involves progressive accumulation of nonfunctioning lymphocytes and has a low cure rate. There is an urgent requirement to determine the molecular mechanism underlying this disease in order to improve the early diagnosis and treatment of CLL. In this study, genes differentially expressed between CLL samples and age-matched controls were identified using microRNA (miRNA) and mRNA expression profiles. Differentially expressed (DE) miRNA targets were predicted by combining five algorithms. Common genes were obtained on overlapping the DE mRNA and DE miRNA targets. Then, network and module analyses were performed. A total of 239 miRNA targets were predicted and 357 DE mRNAs were obtained. On intersecting miRNA targets and DE mRNAs, 33 common genes were obtained. The protein-protein interaction network and module analysis identified several crucial genes and modules that might be associated with the development of CLL. These DE mRNAs were significantly enriched in the hematopoietic cell lineage (P = 2.58E-4), mitogen-activated protein kinase signaling pathway (P = 0.0025), and leukocyte transendothelial migration pathway (P = 0.0026). Thus, we conducted biological analysis on integration of DE mRNAs and DE miRNAs in CLL, determined gene expression patterns, and screened out several important genes that might be related to CLL.

  18. MicroRNA buffering and altered variance of gene expression in response to Salmonella infection.

    PubMed

    Bao, Hua; Kommadath, Arun; Plastow, Graham S; Tuggle, Christopher K; Guan, Le Luo; Stothard, Paul

    2014-01-01

    One potential role of miRNAs is to buffer variation in gene expression, although conflicting results have been reported. To investigate the buffering role of miRNAs in response to Salmonella infection in pigs, we sequenced miRNA and mRNA in whole blood from 15 pig samples before and after Salmonella challenge. By analyzing inter-individual variation in gene expression patterns, we found that for moderately and lowly expressed genes, putative miRNA targets showed significantly lower expression variance compared with non-miRNA-targets. Expression variance between highly expressed miRNA targets and non-miRNA-targets was not significantly different. Further, miRNA targets demonstrated significantly reduced variance after challenge whereas non-miRNA-targets did not. RNA binding proteins (RBPs) are significantly enriched among the miRNA targets with dramatically reduced variance of expression after Salmonella challenge. Moreover, we found evidence that targets of young (less-conserved) miRNAs showed lower expression variance compared with targets of old (evolutionarily conserved) miRNAs. These findings point to the importance of a buffering effect of miRNAs for relatively lowly expressed genes, and suggest that the reduced expression variation of RBPs may play an important role in response to Salmonella infection.

  19. MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma.

    PubMed

    Sandoval, Juan; Díaz-Lagares, Angel; Salgado, Rocío; Servitje, Octavio; Climent, Fina; Ortiz-Romero, Pablo L; Pérez-Ferriols, Amparo; Garcia-Muret, Maria P; Estrach, Teresa; Garcia, Mar; Nonell, Lara; Esteller, Manel; Pujol, Ramon M; Espinet, Blanca; Gallardo, Fernando

    2015-04-01

    MicroRNAs usually regulate gene expression negatively, and aberrant expression has been involved in the development of several types of cancers. Microarray profiling of microRNA expression was performed to define a microRNA signature in a series of mycosis fungoides tumor stage (MFt, n=21) and CD30+ primary cutaneous anaplastic large cell lymphoma (CD30+ cALCL, n=11) samples in comparison with inflammatory dermatoses (ID, n=5). Supervised clustering confirmed a distinctive microRNA profile for cutaneous T-cell lymphoma (CTCL) with respect to ID. A 40 microRNA signature was found in MFt including upregulated onco-microRNAs (miR-146a, miR-142-3p/5p, miR-21, miR-181a/b, and miR-155) and downregulated tumor-suppressor microRNAs (miR-200ab/429 cluster, miR-10b, miR-193b, miR-141/200c, and miR-23b/27b). Regarding CD30+ cALCL, 39 differentially expressed microRNAs were identified. Particularly, overexpression of miR-155, miR-21, or miR-142-3p/5p and downregulation of the miR-141/200c clusters were observed. DNA methylation in microRNA gene promoters, as expression regulatory mechanism for deregulated microRNAs, was analyzed using Infinium 450K array and approximately one-third of the differentially expressed microRNAs showed significant DNA methylation differences. Two different microRNA methylation signatures for MFt and CD30+ cALCL were found. Correlation analysis showed an inverse relationship for microRNA promoter methylation and microRNA expression. These results reveal a subgroup-specific epigenetically regulated microRNA signatures for MFt and CD30+ cALCL patients.

  20. Long Noncoding RNA Expression during Human B-Cell Development

    PubMed Central

    Petri, Andreas; Dybkær, Karen; Bøgsted, Martin; Thrue, Charlotte Albæk; Hagedorn, Peter H.; Schmitz, Alexander; Bødker, Julie Støve; Johnsen, Hans Erik; Kauppinen, Sakari

    2015-01-01

    Long noncoding RNAs (lncRNAs) have emerged as important regulators of diverse cellular processes, but their roles in the developing immune system are poorly understood. In this study, we analysed lncRNA expression during human B-cell development by array-based expression profiling of eleven distinct flow-sorted B-cell subsets, comprising pre-B1, pre-B2, immature, naive, memory, and plasma cells from bone marrow biopsies (n = 7), and naive, centroblast, centrocyte, memory, and plasmablast cells from tonsil tissue samples (n = 6), respectively. A remapping strategy was used to assign the array probes to 37630 gene-level probe sets, reflecting recent updates in genomic and transcriptomic databases, which enabled expression profiling of 19579 long noncoding RNAs, comprising 3947 antisense RNAs, 5277 lincRNAs, 7625 pseudogenes, and 2730 additional lncRNAs. As a first step towards inferring the functions of the identified lncRNAs in developing B-cells, we analysed their co-expression with well-characterized protein-coding genes, a method known as “guilt by association”. By using weighted gene co-expression network analysis, we identified 272 lincRNAs, 471 antisense RNAs, 376 pseudogene RNAs, and 64 lncRNAs within seven sub-networks associated with distinct stages of B-cell development, such as early B-cell development, B-cell proliferation, affinity maturation of antibody, and terminal differentiation. These data provide an important resource for future studies on the functions of lncRNAs in development of the adaptive immune response, and the pathogenesis of B-cell malignancies that originate from distinct B-cell subpopulations. PMID:26394393

  1. Expression and functional studies on the noncoding RNA, PRINS.

    PubMed

    Szegedi, Krisztina; Göblös, Anikó; Bacsa, Sarolta; Antal, Mária; Németh, István Balázs; Bata-Csörgő, Zsuzsanna; Kemény, Lajos; Dobozy, Attila; Széll, Márta

    2012-12-21

    PRINS, a noncoding RNA identified earlier by our research group, contributes to psoriasis susceptibility and cellular stress response. We have now studied the cellular and histological distribution of PRINS by using in situ hybridization and demonstrated variable expressions in different human tissues and a consistent staining pattern in epidermal keratinocytes and in vitro cultured keratinocytes. To identify the cellular function(s) of PRINS, we searched for a direct interacting partner(s) of this stress-induced molecule. In HaCaT and NHEK cell lysates, the protein proved to be nucleophosmin (NPM) protein as a potential physical interactor with PRINS. Immunohistochemical experiments revealed an elevated expression of NPM in the dividing cells of the basal layers of psoriatic involved skin samples as compared with healthy and psoriatic uninvolved samples. Others have previously shown that NPM is a ubiquitously expressed nucleolar phosphoprotein which shuttles to the nucleoplasm after UV-B irradiation in fibroblasts and cancer cells. We detected a similar translocation of NPM in UV-B-irradiated cultured keratinocytes. The gene-specific silencing of PRINS resulted in the retention of NPM in the nucleolus of UV-B-irradiated keratinocytes; suggesting that PRINS may play a role in the NPM-mediated cellular stress response in the skin.

  2. Large-Scale microRNA Expression Profiling Identifies Putative Retinal miRNA-mRNA Signaling Pathways Underlying Form-Deprivation Myopia in Mice

    PubMed Central

    Vaz, Candida; Tanavde, Vivek M.; Maurer-Stroh, Sebastian; Zauscher, Stefan; Gonzalez, Pedro; Young, Terri L.

    2016-01-01

    Development of myopia is associated with large-scale changes in ocular tissue gene expression. Although differential expression of coding genes underlying development of myopia has been a subject of intense investigation, the role of non-coding genes such as microRNAs in the development of myopia is largely unknown. In this study, we explored myopia-associated miRNA expression profiles in the retina and sclera of C57Bl/6J mice with experimentally induced myopia using microarray technology. We found a total of 53 differentially expressed miRNAs in the retina and no differences in miRNA expression in the sclera of C57BL/6J mice after 10 days of visual form deprivation, which induced -6.93 ± 2.44 D (p < 0.000001, n = 12) of myopia. We also identified their putative mRNA targets among mRNAs found to be differentially expressed in myopic retina and potential signaling pathways involved in the development of form-deprivation myopia using miRNA-mRNA interaction network analysis. Analysis of myopia-associated signaling pathways revealed that myopic response to visual form deprivation in the retina is regulated by a small number of highly integrated signaling pathways. Our findings highlighted that changes in microRNA expression are involved in the regulation of refractive eye development and predicted how they may be involved in the development of myopia by regulating retinal gene expression. PMID:27622715

  3. Hierarchical Generative Biclustering for MicroRNA Expression Analysis

    NASA Astrophysics Data System (ADS)

    Caldas, José; Kaski, Samuel

    Clustering methods are a useful and common first step in gene expression studies, but the results may be hard to interpret. We bring in explicitly an indicator of which genes tie each cluster, changing the setup to biclustering. Furthermore, we make the indicators hierarchical, resulting in a hierarchy of progressively more specific biclusters. A non-parametric Bayesian formulation makes the model rigorous and yet flexible, and computations feasible. The formulation additionally offers a natural information retrieval relevance measure that allows relating samples in a principled manner. We show that the model outperforms other four biclustering procedures in a large miRNA data set. We also demonstrate the model's added interpretability and information retrieval capability in a case study that highlights the potential and novel role of miR-224 in the association between melanoma and non-Hodgkin lymphoma. Software is publicly available.

  4. Highest trkB mRNA expression in the entorhinal cortex among hippocampal subregions in the adult rat: contrasting pattern with BDNF mRNA expression.

    PubMed

    Tokuyama, W; Hashimoto, T; Li, Y X; Okuno, H; Miyashita, Y

    1998-11-20

    Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, regulate synaptic functions in the hippocampus of the adult rodent. In previous studies, in situ hybridization methods have been used to evaluate regional differences in BDNF and trkB mRNA expression levels in hippocampal subregions. However, these studies have failed to reach consensus regarding the regional differences in the mRNA expression levels. In the present study, we quantitated mRNA expression levels using two different methods, ribonuclease protection assays and a quantitative reverse-transcription polymerase chain reaction technique, in four hippocampal subregions: the entorhinal cortex, dentate gyrus (DG), CA3 and CA1. These two methods yielded the same results. We found that BDNF and trkB mRNA expression levels did not covary in the four subregions. BDNF and full length trkB (trkB FL) mRNA in the entorhinal cortex and the DG show contrasting expression patterns. The expression level of BDNF mRNA was highest in the DG among the hippocampal subregions and low in the entorhinal cortex and the CA1, whereas the trkB FL mRNA expression level was highest in the entorhinal cortex, low in the DG and lowest in the CA3. These results suggest regional differences in BDNF/TrkB signaling for maintenance and modifiability of neuronal connections in the hippocampal formation.

  5. Determinants of effective lentivirus-driven microRNA expression in vivo

    PubMed Central

    Mishima, Takuya; Sadovsky, Elena; Gegick, Margaret E.; Sadovsky, Yoel

    2016-01-01

    Manipulation of microRNA (miRNA) levels, including overexpression of mature species, has become an important biological tool, even motivating miRNA-based therapeutics. To assess key determinants of miRNA overexpression in a mammalian system in vivo, we sought to bypass the laborious generation of a transgenic animal by exploiting placental trophoblast-specific gene manipulation using lentiviral vectors, which has been instrumental in elucidating trophoblast biology. We examined the impact of several key components of miRNA stem loops and their flanking sequences on the efficiency of mature miRNA expression in vivo. By combining established and novel approaches for miRNA expression, we engineered lentivirus-driven miRNA expression plasmids, which we tested in the mouse placenta. We found that reverse sense inserts minimized single-strand splicing and degradation, and that maintaining longer, poly-A-containing arms flanking the miRNA stem-loop markedly enhanced transgenic miRNA expression. Additionally, we accomplished overexpression of diverse mammalian, drosophila, or C. elegans miRNAs, either based on native context or using a “cassette” replacement of the mature miRNA sequence. Together, we have identified primary miRNA sequences that are paramount for effective expression of mature miRNAs, and validated their role in mice. Principles established by our findings may guide the design of efficient miRNA vectors for in vivo use. PMID:27627961

  6. MicroRNA Seed Region Length Impact on Target Messenger RNA Expression and Survival in Colorectal Cancer.

    PubMed

    Mullany, Lila E; Herrick, Jennifer S; Wolff, Roger K; Slattery, Martha L

    2016-01-01

    microRNAs (miRNA) repress messenger RNAs post-transcriptionally through binding to the 3' UTR of the mRNA with the miRNA seed region. It has been purported that longer seed regions have a greater efficacy on mRNA repression. We tested this hypothesis by evaluating differential expression of miRNAs involved in regulating the immune response, an important mechanism in colorectal cancer (CRC), by seed length category. We subsequently evaluated differential expression of these miRNAs' targets in colonic tissue and the impact of these miRNAs on CRC survival. We determined sequence complementarity between each miRNA seed region and the 3' UTR of each experimentally verified mRNA target gene. We classified miRNAs into groups based on seed regions matching perfectly to a mRNA UTR with six bases beginning at position two, seven bases beginning at position one, seven bases beginning at position two, or eight bases beginning at position one. We analyzed these groups in terms of miRNA differential expression between carcinoma and normal colorectal mucosa, differential colonic target mRNA expression, and risk of dying from CRC. After correction for multiple comparisons, the proportion of the miRNAs that were associated with differential mRNA expression was 0% for the 6-mer, 13.64% for the 7α-mer group, 12.82% for the 7β-mer group, and 8.70% for the 8-mer group. The proportion of miRNAs associated with survival was 20% for the 6-mer group, 27.27% for the 7α-mer group, 10.23% for the 7β-mer group, and 21.74% for the 8-mer group. We did not see a linear relationship between seed length and miRNA expression dysregulation, mRNA expression, or survival. Our findings do not support the hypothesis the seed region length alone influences mRNA repression.

  7. T box RNA decodes both the information content and geometry of tRNA to affect gene expression.

    PubMed

    Grigg, Jason C; Chen, Yujie; Grundy, Frank J; Henkin, Tina M; Pollack, Lois; Ke, Ailong

    2013-04-30

    The T box leader sequence is an RNA element that controls gene expression by binding directly to a specific tRNA and sensing its aminoacylation state. This interaction controls expression of amino acid-related genes in a negative feedback loop. The T box RNA structure is highly conserved, but its tRNA binding mechanism is only partially understood. Known sequence elements are the specifier sequence, which recognizes the tRNA anticodon, and the antiterminator bulge, which base pairs with the tRNA acceptor end. Here, we reveal the crucial function of the highly conserved stem I distal region in tRNA recognition and report its 2.65-Å crystal structure. The apex of this region contains an intricately woven loop-loop interaction between two conserved motifs, the Adenine-guanine (AG) bulge and the distal loop. This loop-loop structure presents a base triple on its surface that is optimally positioned for base-stacking interactions. Mutagenesis, cross-linking, and small-angle X-ray scattering data demonstrate that the apical base triple serves as a binding platform to dock the tRNA D- and T-loops. Strikingly, the binding platform strongly resembles the D- and T-loop binding elements from RNase P and the ribosome exit site, suggesting that this loop-loop structure may represent a widespread tRNA recognition platform. We propose a two-checkpoint molecular ruler model for tRNA decoding in which the information content of tRNA is first examined through specifier sequence-anticodon interaction, and the length of the tRNA anticodon arm is then measured by the distal loop-loop platform. When both conditions are met, tRNA is secured, and its aminoacylation state is sensed.

  8. Differential expression of miRNA between the monolayer and three dimensional cells after ionizing radiation

    NASA Astrophysics Data System (ADS)

    Pan, Dong; Ren, Zhenxin; Hu, Burong

    2014-04-01

    We detect the expression of miRNA in 2D and 3D human lung epithelial cells (3KT). And our primary experimental results showed that more miRNA in 3D 3KT down regulated than in 2D 3KT cells after not only X-ray but also C-beam irradiation using the miRNA chip assay. Meanwhile, X-ray induced more significantly differential expression of miRNA when the relative expression value of miRNA in 3D cells were compared to 2D cells after irradiation.

  9. MicroRNA-150-regulated vectors allow lymphocyte-sparing transgene expression in hematopoietic gene therapy.

    PubMed

    Lachmann, N; Jagielska, J; Heckl, D; Brennig, S; Pfaff, N; Maetzig, T; Modlich, U; Cantz, T; Gentner, B; Schambach, A; Moritz, T

    2012-09-01

    Endogenous microRNA (miRNA) expression can be exploited for cell type-specific transgene expression as the addition of miRNA target sequences to transgenic cDNA allows for transgene downregulation specifically in cells expressing the respective miRNAs. Here, we have investigated the potential of miRNA-150 target sequences to specifically suppress gene expression in lymphocytes and thereby prevent transgene-induced lymphotoxicity. Abundance of miRNA-150 expression specifically in differentiated B and T cells was confirmed by quantitative reverse transcriptase PCR. Mono- and bicistronic lentiviral vectors were used to investigate the effect of miRNA-150 target sequences on transgene expression in the lymphohematopoietic system. After in vitro studies demonstrated effective downregulation of transgene expression in murine B220(+) B and CD3(+) T cells, the concept was further verified in a murine transplant model. Again, marked suppression of transgene activity was observed in B220(+) B and CD4(+) or CD8(+) T cells whereas expression in CD11b(+) myeloid cells, lin(-) and lin(-)/Sca1(+) progenitors, or lin(-)/Sca1(+)/c-kit(+) stem cells remained almost unaffected. No toxicity of miRNA-150 targeting in transduced lymphohematopoietic cells was noted. Thus, our results demonstrate the suitability of miRNA-150 targeting to specifically suppress transgene expression in lymphocytes and further support the concept of miRNA targeting for cell type-specific transgene expression in gene therapy approaches.

  10. MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary.

    PubMed

    Mishima, Takuya; Takizawa, Takami; Luo, Shan-Shun; Ishibashi, Osamu; Kawahigashi, Yutaka; Mizuguchi, Yoshiaki; Ishikawa, Tomoko; Mori, Miki; Kanda, Tomohiro; Goto, Tadashi; Takizawa, Toshihiro

    2008-12-01

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs that can regulate the expression of complementary mRNA targets. Identifying tissue-specific miRNAs is the first step toward understanding the biological functions of miRNAs, which include the regulation of tissue differentiation and the maintenance of tissue identity. In this study, we performed small RNA library sequencing in adult mouse testis and ovary to reveal their characteristic organ- and gender-specific profiles and to elucidate the characteristics of the miRNAs expressed in the reproductive system. We obtained 10,852 and 11 744 small RNA clones from mouse testis and ovary respectively (greater than 10,000 clones per organ), which included 6630 (159 genes) and 10,192 (154 genes) known miRNAs. A high level of efficiency of miRNA library sequencing was achieved: 61% (6630 miRNA clones/10,852 small RNA clones) and 87% (10,192/11,744) for adult mouse testis and ovary respectively. We obtained characteristic miRNA signatures in testis and ovary; 55 miRNAs were detected highly, exclusively, or predominantly in adult mouse testis and ovary, and discovered two novel miRNAs. Male-biased expression of miRNAs occurred on the X-chromosome. Our data provide important information on sex differences in miRNA expression that should facilitate studies of the reproductive organ-specific roles of miRNAs.

  11. Long-term expression of miRNA for RNA interference using a novel vector system based on a negative-strand RNA virus

    PubMed Central

    Honda, Tomoyuki; Yamamoto, Yusuke; Daito, Takuji; Matsumoto, Yusuke; Makino, Akiko; Tomonaga, Keizo

    2016-01-01

    RNA interference (RNAi) has emerged as a promising technique for gene therapy. However, the safe and long-term expression of small RNA molecules is a major concern for the application of RNAi therapies in vivo. Borna disease virus (BDV), a non-segmented, negative-strand RNA virus, establishes a persistent infection without obvious cytopathic effects. Unique among animal non-retroviral RNA viruses, BDV persistently establishes a long-lasting persistent infection in the nucleus. These features make BDV ideal for RNA virus vector persistently expressing small RNAs. Here, we demonstrated that the recombinant BDV (rBDV) containing the miR-155 precursor, rBDV-miR-155, persistently expressed miR-155 and efficiently silenced its target gene. The stem region of the miR-155 precursor in rBDV-miR-155 was replaceable by any miRNA sequences of interest and that such rBDVs efficiently silence the expression of target genes. Collectively, BDV vector would be a novel RNA virus vector enabling the long-term expression of miRNAs for RNAi therapies. PMID:27189575

  12. Use of Nascent RNA Microarrays to Study Inducible Gene Expression in Breast Cancer Cells

    DTIC Science & Technology

    2005-09-01

    detect inducible gene expression following activation of a transcription factor we used the p53 mutant lung cancer cell line H1299 /tsp53 expressing a...temperature-sensitive p53 gene and a control cell line H1299 /neo expressing a neo control vector. To activate the transcription factor p53 we lowered...expression in H1299 +tsp53 cells nascent RNA gene expression in H1299 +neo cells. Nascent RNA was collected 3 hours after switching to the permissive

  13. Integrated Analysis of LncRNA-mRNA Co-Expression Profiles in Patients with Moyamoya Disease

    PubMed Central

    Wang, Wen; Gao, Faliang; Zhao, Zheng; Wang, Haoyuan; Zhang, Lu; Zhang, Dong; Zhang, Yan; Lan, Qing; Wang, Jiangfei; Zhao, Jizong

    2017-01-01

    Moyamoya disease (MMD) is an idiopathic disease associated with recurrent stroke. However, the pathogenesis of MMD remains unknown. Therefore, we performed long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in blood samples from MMD patients (N = 15) and healthy controls (N = 10). A total of 880 differentially expressed lncRNAs (3649 probes) and 2624 differentially expressed mRNAs (2880 probes) were obtained from the microarrays of MMD patients and healthy controls (P < 0.05; Fold Change >2.0). Gene ontology (GO) and pathway analyses showed that upregulated mRNAs were enriched for inflammatory response, Toll-like receptor signaling pathway, chemokine signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway among others, while the downregulated mRNAs were enriched for neurological system process, digestion, drug metabolism, retinol metabolism and others. Our results showed that the integrated analysis of lncRNA-mRNA co-expression networks were linked to inflammatory response, Toll-like signaling pathway, cytokine-cytokine receptor interaction and MAPK signaling pathway. These findings may elucidate the pathogenesis of MMD, and the differentially expressed genes could provide clues to find key components in the MMD pathway. PMID:28176861

  14. Efficient expression of a protein coding gene under the control of an RNA polymerase I promoter.

    PubMed

    Palmer, T D; Miller, A D; Reeder, R H; McStay, B

    1993-07-25

    In mammalian cells, RNA polymerase I transcripts are uncapped and retain a polyphosphate 5' terminus. It is probably for this reason that they are poorly translated as messenger RNA. We show in this report that insertion of an Internal Ribosome Entry Site (IRES) into the 5' leader of an RNA polymerase I transcript overcomes the block to translation, presumably by substituting for the 5' trimethyl G cap. Addition of an SV40 polyA addition signal also enhances protein production from the RNA polymerase I transcript. RNA Polymerase I driven expression vectors containing both elements produce protein at levels comparable to that produced from RNA polymerase II driven expression vectors which utilize a retroviral LTR. RNA Polymerase I driven expression vectors may have a variety of uses both for basic research and for practical expression of recombinant proteins.

  15. Expression of Long Non-Coding RNA (lncRNA) Small Nucleolar RNA Host Gene 1 (SNHG1) Exacerbates Hepatocellular Carcinoma Through Suppressing miR-195

    PubMed Central

    Zhang, Hui; Zhou, Dong; Ying, Mingang; Chen, Minyong; Chen, Peng; Chen, Zhaoshuo; Zhang, Fan

    2016-01-01

    Background Aberrant expression of lncRNA has been suggested to have an association with tumorigenesis. Our study was designed to reveal the underlying connection between lncRNA SNHG1 and hepatocellular carcinoma (HCC) pathogenesis. Material/Methods A total of 122 pairs of HCC tissues (case group) and matched adjacent non-tumor liver tissues (control group) were collected for this study. RT-PCR and in situ hybridization were conducted to investigate differences in lncRNA SNHG1 expression between the case and control group. The expression levels of lncRNA SNHG1 and miR-195 in HepG2 cells transfected with SNHG1-mimic and SNHG1-inhibitor were measured by RT-PCR. The proliferation, invasion, and migration status of HepG2 cells after transfection were assessed through MTT assay, wound healing assay, and Transwell assay, respectively. Whether miR-195 is a direct downstream target of lncRNA SNHG1 was verified by both bioinformatics target gene prediction and dual-luciferase report assay. Results The expression level of lncRNA SNHG1 was remarkably upregulated in HCC tissues and cell lines compared with normal tissues and cell lines. High expression of lncRNA SNHG1 contributed to the downregulation of miR-195 in HepG2 cells. Also, lncRNA SNHG1 exacerbated HCC cell proliferation, invasion, and migration in vitro through the inhibition of miR-195. This suggests that miR-195 is a direct downstream target of lncRNA SNHG1. Conclusions lncRNA SNHG1 may contribute to the aggravation of HCC through the inhibition of miR-195. PMID:27932778

  16. A new Ebola virus nonstructural glycoprotein expressed through RNA editing.

    PubMed

    Mehedi, Masfique; Falzarano, Darryl; Seebach, Jochen; Hu, Xiaojie; Carpenter, Michael S; Schnittler, Hans-Joachim; Feldmann, Heinz

    2011-06-01

    Ebola virus (EBOV), an enveloped, single-stranded, negative-sense RNA virus, causes severe hemorrhagic fever in humans and nonhuman primates. The EBOV glycoprotein (GP) gene encodes the nonstructural soluble glycoprotein (sGP) but also produces the transmembrane glycoprotein (GP₁,₂) through transcriptional editing. A third GP gene product, a small soluble glycoprotein (ssGP), has long been postulated to be produced also as a result of transcriptional editing. To identify and characterize the expression of this new EBOV protein, we first analyzed the relative ratio of GP gene-derived transcripts produced during infection in vitro (in Vero E6 cells or Huh7 cells) and in vivo (in mice). The average percentages of transcripts encoding sGP, GP₁,₂, and ssGP were approximately 70, 25, and 5%, respectively, indicating that ssGP transcripts are indeed produced via transcriptional editing. N-terminal sequence similarity with sGP, the absence of distinguishing antibodies, and the abundance of sGP made it difficult to identify ssGP through conventional methodology. Optimized 2-dimensional (2D) gel electrophoresis analyses finally verified the expression and secretion of ssGP in tissue culture during EBOV infection. Biochemical analysis of recombinant ssGP characterized this protein as a disulfide-linked homodimer that was exclusively N glycosylated. In conclusion, we have identified and characterized a new EBOV nonstructural glycoprotein, which is expressed as a result of transcriptional editing of the GP gene. While ssGP appears to share similar structural properties with sGP, it does not appear to have the same anti-inflammatory function on endothelial cells as sGP.

  17. Integrated mRNA and lncRNA expression profiling for exploring metastatic biomarkers of human intrahepatic cholangiocarcinoma

    PubMed Central

    Lv, Lisheng; Wei, Miaoyan; Lin, Peiyi; Chen, Zhisheng; Gong, Peng; Quan, Zhiwei; Tang, Zhaohui

    2017-01-01

    Long noncoding RNAs (lncRNAs) is crucial for various human cancers, but the function and mechanism of lncRNAs is largely unknown in human intrahepatic cholangiocarcinoma (ICC), the second most common liver cancer. In this study, we performed transcriptomic profiling of ICC and normal tissues, and found 2148 lncRNAs and 474 mRNAs were significantly upregulated, whereas 568 lncRNAs and 409 mRNAs were downregulated in ICC tissues. Enrichment analysis suggests these differentially expressed genes mainly focus on response to stimulus, development, and cell proliferation. Further, potential lncRNAs involved in five signaling pathways (ERBB, JAK/STAT, MAPK, VEGF and WNT) were constructed by highly co-expressed with mRNAs in these signaling pathways. The differentially expressed lncRNA-mRNA co-regulated signaling pathways in ICC were further confirmed by lncRNA target prediction. Finally, the differentially expressed lncRNAs were confirmed by quantitative real-time PCR in 32 paired ICC and adjacent tissues. The correlation analysis between the expression levels of lncRNAs and clinicopathologic characteristics showed that EMP1-008, ATF3-008, and RCOR3-013 were observed significantly downregulated in ICC with tumor metastasis. These findings suggested that lncRNA expression profiling in ICC is profoundly different from that in noncancerous tissues, and lncRNA may be used as a potential diagnostic and prognostic biomarker for ICC metastasis.

  18. Comparison of microRNA expression levels between initial and recurrent glioblastoma specimens.

    PubMed

    Ilhan-Mutlu, Aysegül; Wöhrer, Adelheid; Berghoff, Anna Sophie; Widhalm, Georg; Marosi, Christine; Wagner, Ludwig; Preusser, Matthias

    2013-05-01

    Glioblastoma is the most frequent primary brain tumour in adults. Recent therapeutic advances increased patient's survival, but tumour recurrence inevitably occurs. The pathobiological mechanisms involved in glioblastoma recurrence are still unclear. MicroRNAs are small RNAs proposed o have important roles for cancer including proliferation, aggressiveness and metastases development. There exist only few data on the involvement of microRNAs in glioblastoma recurrence. We selected the following 7 microRNAs with potential relevance for glioblastoma pathobiology by means of a comprehensive literature search: microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222. We further selected 15 primary glioblastoma patients, of whom formalin fixed and paraffin embedded tissue (FFPE) of the initial and recurrence surgery were available. All patients had received first line treatment consisting of postoperative combined radiochemotherapy with temozolomide (n = 15). Non-neoplastic brain tissue samples from 3 patients with temporal lobe epilepsy served as control. The expression of the microRNAs were analysed by RT-qPCR. These were correlated with each other and with clinical parameters. All microRNAs showed detectable levels of expressions in glioblastoma group, whereas microRNA-10b was not detectable in epilepsy patients. MicroRNAs except microRNA-21 showed significantly higher levels in epilepsy patients when compared to the levels of first resection of glioblastoma. Comparison of microRNA levels between first and second resections revealed no significant change. Cox regression analyses showed no significant association of microRNA expression levels in the tumor tissue with progression free survival times. Expression levels of microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222 do not differ significantly between initial and recurrent glioblastoma.

  19. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles

    PubMed Central

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may

  20. Expression of APOBEC3B mRNA in Primary Breast Cancer of Japanese Women

    PubMed Central

    Tokunaga, Eriko; Yamashita, Nami; Tanaka, Kimihiro; Inoue, Yuka; Akiyoshi, Sayuri; Saeki, Hiroshi; Oki, Eiji; Kitao, Hiroyuki; Maehara, Yoshihiko

    2016-01-01

    Recent studies have identified the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3B (APOBEC3B) as a source of mutations in various malignancies. APOBEC3B is overexpressed in several human cancer types, including breast cancer. In this study, we analyzed APOBEC3B mRNA expression in 305 primary breast cancers of Japanese women using quantitative reverse transcription-PCR, and investigated the relationships between the APOBEC3B mRNA expression and clinicopathological characteristics, prognosis, and TP53 mutations. The expression of APOBEC3B mRNA was detected in 277 tumors and not detected in 28 tumors. High APOBEC3B mRNA expression was significantly correlated with ER- and PR-negativity, high grade and high Ki67 index. The APOBEC3B mRNA expression was highest in the triple-negative and lowest in the hormone receptor-positive/HER2-negative subtypes. The TP53 gene was more frequently mutated in the tumors with high APOBEC3B mRNA expression. High APOBEC3B mRNA expression was significantly associated with poor recurrence-free survival in all cases and the ER-positive cases. These findings were almost consistent with the previous reports from the Western countries. In conclusion, high APOBEC3B mRNA expression was related to the aggressive phenotypes of breast cancer, high frequency of TP53 mutation and poor prognosis, especially in ER-positive tumors. PMID:27977754

  1. Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format.

    PubMed

    Phua, Kyle K L; Leong, Kam W; Nair, Smita K

    2013-03-28

    Transfection efficiencies and transgene expression kinetics of messenger RNA (mRNA), an emerging class of nucleic acid-based therapeutics, have been poorly characterized. In this study, we evaluated transfection efficiencies of mRNA delivered in naked and nanoparticle format in vitro and in vivo using GFP and luciferase as reporters. While mRNA nanoparticles transfect primary human and mouse dendritic cells (DCs) efficiently in vitro, naked mRNA could not produce any detectable gene product. The protein expression of nanoparticle-mediated transfection in vitro peaks rapidly within 5-7h and decays in a biphasic manner. In vivo, naked mRNA is more efficient than mRNA nanoparticles when administered subcutaneously. In contrast, mRNA nanoparticle performs better when administered intranasally and intravenously. Gene expression is most transient when delivered intravenously in nanoparticle format with an apparent half-life of 1.4h and lasts less than 24h, and most sustained when delivered in the naked format subcutaneously at the base of tail with an apparent half-life of 18h and persists for at least 6days. Notably, exponential decreases in protein expression are consistently observed post-delivery of mRNA in vivo regardless of the mode of delivery (naked or nanoparticle) or the site of administration. This study elucidates the performance of mRNA transfection and suggests a niche for mRNA therapeutics when predictable in vivo transgene expression kinetics is imperative.

  2. Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue

    PubMed Central

    Sutherland, Lindsey N; Bomhof, Marc R; Capozzi, Lauren C; Basaraba, Susan A U; Wright, David C

    2009-01-01

    The purpose of the present investigation was to explore the effects of exercise and adrenaline on the mRNA expression of PGC-1α, a master regulator of mitochondrial biogenesis, in rat abdominal adipose tissue. We hypothesized that (1) exercise training would increase PGC-1α mRNA expression in association with increases in mitochondrial marker enzymes, (2) adrenaline would increase PGC-1α mRNA expression and (3) the effect of exercise on PGC-1α mRNA expression in white adipose tissue would be attenuated by a β-blocker. Two hours of daily swim training for 4 weeks led to increases in mitochondrial marker proteins and PGC-1α mRNA expression in epididymal and retroperitoneal fat depots. Additionally, a single 2 h bout of exercise led to increases in PGC-1α mRNA expression immediately following exercise cessation. Adrenaline treatment of adipose tissue organ cultures led to dose-dependent increases in PGC-1α mRNA expression. A supra-physiological concentration of adrenaline increased PGC-1α mRNA expression in epididymal but not retroperitoneal adipose tissue. β-Blockade attenuated the effects of an acute bout of exercise on PGC-1α mRNA expression in epididymal but not retroperitoneal fat pads. In summary, this is the first investigation to demonstrate that exercise training, an acute bout of exercise and adrenaline all increase PGC-1α mRNA expression in rat white adipose tissue. Furthermore it would appear that increases in circulating catecholamine levels may be one potential mechanism mediating exercise induced increases in PGC-1α mRNA expression in rat abdominal adipose tissue. PMID:19221126

  3. MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains

    PubMed Central

    Xi, Jiang; Yan, Zheng; Fu, Ning; Zhang, Xiaoyu; Menzel, Corinna; Liang, Hongyu; Yang, Hongyi; Zhao, Min; Zeng, Rong; Chen, Wei; Pääbo, Svante; Khaitovich, Philipp

    2011-01-01

    Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA) in the regulation of gene expression divergence among adult humans, chimpanzees, and rhesus macaques, in two brain regions: prefrontal cortex and cerebellum. Using a combination of high-throughput sequencing, miRNA microarrays, and Q-PCR, we have shown that up to 11% of the 325 expressed miRNA diverged significantly between humans and chimpanzees and up to 31% between humans and macaques. Measuring mRNA and protein expression in human and chimpanzee brains, we found a significant inverse relationship between the miRNA and the target genes expression divergence, explaining 2%–4% of mRNA and 4%–6% of protein expression differences. Notably, miRNA showing human-specific expression localize in neurons and target genes that are involved in neural functions. Enrichment in neural functions, as well as miRNA–driven regulation on the human evolutionary lineage, was further confirmed by experimental validation of predicted miRNA targets in two neuroblastoma cell lines. Finally, we identified a signature of positive selection in the upstream region of one of the five miRNA with human-specific expression, miR-34c-5p. This suggests that miR-34c-5p expression change took place after the split of the human and the Neanderthal lineages and had adaptive significance. Taken together these results indicate that changes in miRNA expression might have contributed to evolution of human cognitive functions. PMID:22022286

  4. Correlation analysis of the mRNA and miRNA expression profiles in the nascent synthetic allotetraploid Raphanobrassica

    PubMed Central

    Ye, Bingyuan; Wang, Ruihua; Wang, Jianbo

    2016-01-01

    Raphanobrassica is an allopolyploid species derived from inter-generic hybridization that combines the R genome from R. sativus and the C genome from B. oleracea var. alboglabra. In the present study, we used a high-throughput sequencing method to identify the mRNA and miRNA profiles in Raphanobrassica and its parents. A total of 33,561 mRNAs and 283 miRNAs were detected, 9,209 mRNAs and 134 miRNAs were differentially expressed respectively, 7,633 mRNAs and 39 miRNAs showed ELD expression, 5,219 mRNAs and 57 miRNAs were non-additively expressed in Raphanobrassica. Remarkably, differentially expressed genes (DEGs) were up-regulated and maternal bias was detected in Raphanobrassica. In addition, a miRNA-mRNA interaction network was constructed based on reverse regulated miRNA-mRNAs, which included 75 miRNAs and 178 mRNAs, 31 miRNAs were non-additively expressed target by 13 miRNAs. The related target genes were significantly enriched in the GO term ‘metabolic processes’. Non-additive related target genes regulation is involved in a range of biological pathways, like providing a driving force for variation and adaption in this allopolyploid. The integrative analysis of mRNA and miRNA profiling provides more information to elucidate gene expression mechanism and may supply a comprehensive and corresponding method to study genetic and transcription variation of allopolyploid. PMID:27874043

  5. Alterations of microRNA and microRNA-regulated messenger RNA expression in germinal center B-cell lymphomas determined by integrative sequencing analysis.

    PubMed

    Hezaveh, Kebria; Kloetgen, Andreas; Bernhart, Stephan H; Mahapatra, Kunal Das; Lenze, Dido; Richter, Julia; Haake, Andrea; Bergmann, Anke K; Brors, Benedikt; Burkhardt, Birgit; Claviez, Alexander; Drexler, Hans G; Eils, Roland; Haas, Siegfried; Hoffmann, Steve; Karsch, Dennis; Klapper, Wolfram; Kleinheinz, Kortine; Korbel, Jan; Kretzmer, Helene; Kreuz, Markus; Küppers, Ralf; Lawerenz, Chris; Leich, Ellen; Loeffler, Markus; Mantovani-Loeffler, Luisa; López, Cristina; McHardy, Alice C; Möller, Peter; Rohde, Marius; Rosenstiel, Philip; Rosenwald, Andreas; Schilhabel, Markus; Schlesner, Matthias; Scholz, Ingrid; Stadler, Peter F; Stilgenbauer, Stephan; Sungalee, Stéphanie; Szczepanowski, Monika; Trümper, Lorenz; Weniger, Marc A; Siebert, Reiner; Borkhardt, Arndt; Hummel, Michael; Hoell, Jessica I

    2016-11-01

    MicroRNA are well-established players in post-transcriptional gene regulation. However, information on the effects of microRNA deregulation mainly relies on bioinformatic prediction of potential targets, whereas proof of the direct physical microRNA/target messenger RNA interaction is mostly lacking. Within the International Cancer Genome Consortium Project "Determining Molecular Mechanisms in Malignant Lymphoma by Sequencing", we performed miRnome sequencing from 16 Burkitt lymphomas, 19 diffuse large B-cell lymphomas, and 21 follicular lymphomas. Twenty-two miRNA separated Burkitt lymphomas from diffuse large B-cell lymphomas/follicular lymphomas, of which 13 have shown regulation by MYC. Moreover, we found expression of three hitherto unreported microRNA. Additionally, we detected recurrent mutations of hsa-miR-142 in diffuse large B-cell lymphomas and follicular lymphomas, and editing of the hsa-miR-376 cluster, providing evidence for microRNA editing in lymphomagenesis. To interrogate the direct physical interactions of microRNA with messenger RNA, we performed Argonaute-2 photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation experiments. MicroRNA directly targeted 208 messsenger RNA in the Burkitt lymphomas and 328 messenger RNA in the non-Burkitt lymphoma models. This integrative analysis discovered several regulatory pathways of relevance in lymphomagenesis including Ras, PI3K-Akt and MAPK signaling pathways, also recurrently deregulated in lymphomas by mutations. Our dataset reveals that messenger RNA deregulation through microRNA is a highly relevant mechanism in lymphomagenesis.

  6. Canonical correlation analysis for RNA-seq co-expression networks

    PubMed Central

    Hong, Shengjun; Chen, Xiangning; Jin, Li; Xiong, Momiao

    2013-01-01

    Digital transcriptome analysis by next-generation sequencing discovers substantial mRNA variants. Variation in gene expression underlies many biological processes and holds a key to unravelling mechanism of common diseases. However, the current methods for construction of co-expression networks using overall gene expression are originally designed for microarray expression data, and they overlook a large number of variations in gene expressions. To use information on exon, genomic positional level and allele-specific expressions, we develop novel component-based methods, single and bivariate canonical correlation analysis, for construction of co-expression networks with RNA-seq data. To evaluate the performance of our methods for co-expression network inference with RNA-seq data, they are applied to lung squamous cell cancer expression data from TCGA database and our bipolar disorder and schizophrenia RNA-seq study. The preliminary results demonstrate that the co-expression networks constructed by canonical correlation analysis and RNA-seq data provide rich genetic and molecular information to gain insight into biological processes and disease mechanism. Our new methods substantially outperform the current statistical methods for co-expression network construction with microarray expression data or RNA-seq data based on overall gene expression levels. PMID:23460206

  7. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    NASA Astrophysics Data System (ADS)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  8. MicroRNA-33 suppresses CCL2 expression in chondrocytes

    PubMed Central

    Wei, Meng; Xie, Qingyun; Zhu, Jun; Wang, Tao; Zhang, Fan; Cheng, Yue; Guo, Dongyang; Wang, Ying; Mo, Liweng; Wang, Shuai

    2016-01-01

    CCL2-mediated macrophage infiltration in articular tissues plays a pivotal role in the development of the osteoarthritis (OA). miRNAs regulate the onset and progression of diseases via controlling the expression of a series of genes. How the CCL2 gene was regulated by miRNAs was still not fully elucidated. In the present study, we demonstrated that the binding sites of miR-33 in the 3′UTR of CCL2 gene were conserved in human, mouse and rat species. By performing gain- or loss-of-function studies, we verified that miR-33 suppressed CCL2 expression in the mRNA and protein levels. We also found that miR-33 suppressed the CCL2 levels in the supernatant of cultured primary mouse chondrocytes. With reporter gene assay, we demonstrated that miR-33 targeted at AAUGCA in the 3′UTR of CCL2 gene. In transwell migration assays, we demonstrated that the conditional medium (CM) from miR-33 deficient chondrocytes potentiated the monocyte chemotaxis in a CCL2 dependent manner. Finally, we demonstrated that the level of miR-33 was decreased, whereas the CCL2 level was increased in the articular cartilage from the OA patients compared with the control group. In summary, we identified miR-33 as a novel suppressor of CCL2 in chondrocytes. The miR-33/CCL2 axis in chondrocytes regulates monocyte chemotaxis, providing a potential mechanism of macrophage infiltration in OA. PMID:27129293

  9. Integrative analyses of RNA editing, alternative splicing, and expression of young genes in human brain transcriptome by deep RNA sequencing.

    PubMed

    Wu, Dong-Dong; Ye, Ling-Qun; Li, Yan; Sun, Yan-Bo; Shao, Yi; Chen, Chunyan; Zhu, Zhu; Zhong, Li; Wang, Lu; Irwin, David M; Zhang, Yong E; Zhang, Ya-Ping

    2015-08-01

    Next-generation RNA sequencing has been successfully used for identification of transcript assembly, evaluation of gene expression levels, and detection of post-transcriptional modifications. Despite these large-scale studies, additional comprehensive RNA-seq data from different subregions of the human brain are required to fully evaluate the evolutionary patterns experienced by the human brain transcriptome. Here, we provide a total of 6.5 billion RNA-seq reads from different subregions of the human brain. A significant correlation was observed between the levels of alternative splicing and RNA editing, which might be explained by a competition between the molecular machineries responsible for the splicing and editing of RNA. Young human protein-coding genes demonstrate biased expression to the neocortical and non-neocortical regions during evolution on the lineage leading to humans. We also found that a significantly greater number of young human protein-coding genes are expressed in the putamen, a tissue that was also observed to have the highest level of RNA-editing activity. The putamen, which previously received little attention, plays an important role in cognitive ability, and our data suggest a potential contribution of the putamen to human evolution.

  10. Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes

    PubMed Central

    Shvedova, Anna A.; Yanamala, Naveena; Kisin, Elena R.; Khailullin, Timur O.; Birch, M. Eileen; Fatkhutdinova, Liliya M.

    2016-01-01

    Background As the application of carbon nanotubes (CNT) in consumer products continues to rise, studies have expanded to determine the associated risks of exposure on human and environmental health. In particular, several lines of evidence indicate that exposure to multi-walled carbon nanotubes (MWCNT) could pose a carcinogenic risk similar to asbestos fibers. However, to date the potential markers of MWCNT exposure are not yet explored in humans. Methods In the present study, global mRNA and ncRNA expression profiles in the blood of exposed workers, having direct contact with MWCNT aerosol for at least 6 months (n = 8), were compared with expression profiles of non-exposed (n = 7) workers (e.g., professional and/or technical staff) from the same manufacturing facility. Results Significant changes in the ncRNA and mRNA expression profiles were observed between exposed and non-exposed worker groups. An integrative analysis of ncRNA-mRNA correlations was performed to identify target genes, functional relationships, and regulatory networks in MWCNT-exposed workers. The coordinated changes in ncRNA and mRNA expression profiles revealed a set of miRNAs and their target genes with roles in cell cycle regulation/progression/control, apoptosis and proliferation. Further, the identified pathways and signaling networks also revealed MWCNT potential to trigger pulmonary and cardiovascular effects as well as carcinogenic outcomes in humans, similar to those previously described in rodents exposed to MWCNTs. Conclusion This study is the first to investigate aberrant changes in mRNA and ncRNA expression profiles in the blood of humans exposed to MWCNT. The significant changes in several miRNAs and mRNAs expression as well as their regulatory networks are important for getting molecular insights into the MWCNT-induced toxicity and pathogenesis in humans. Further large-scale prospective studies are necessary to validate the potential applicability of such changes in mRNAs and mi

  11. Formaldehyde exposure alters miRNA expression profiles in the olfactory bulb.

    PubMed

    Li, Guifa; Yang, Jing; Ling, Shucai

    2015-01-01

    It has been reported that inhaling formaldehyde (FA) causes damage to the central nervous system. However, it is unclear whether FA can disturb the function of the olfactory bulb. Using a microarray, we found that FA inhalation altered the miRNA expression profile. Functional enrichment analysis of the predicted targets of the changed miRNA showed that the enrichment canonical pathways and networks associated with cancer and transcriptional regulation. FA exposure disrupts miRNA expression profiles within the olfactory bulb.

  12. Predicting the Function of 4-Coumarate:CoA Ligase (LJ4CL1) in Lonicera japonica

    PubMed Central

    Yuan, Yuan; Yu, Shulin; Yu, Jun; Zhan, Zhilai; Li, Minhui; Liu, Guiming; Wang, Xumin; Huang, Luqi

    2014-01-01

    4-Coumarate:CoA ligases (4CLs) are a group of essential enzymes involved in the pathway of phenylpropanoid-derived compound metabolisms; however it is still difficult to identify orthologs and paralogs of these important enzymes just based on sequence similarity of the conserved domains. Using sequence data of 20 plant species from the public databases and sequences from Lonicera japonica, we define 1252 adenosine monophosphate (AMP)-dependent synthetase/ligase sequences and classify them into three phylogenetic clades. 4CLs are in one of the four subgroups, according to their partitioning, with known proteins characterized in A. thaliana and Oryza sativa. We also defined 184 non-redundant sequences that encode proteins containing the GEICIRG motif and the taxonomic distribution of these GEICIRG-containing proteins suggests unique catalytic activities in plants. We further analyzed their transcription levels in L. japonica and L. japonica. var. chinensis flowers and chose the highest expressed genes representing the subgroups for structure and binding site predictions. Coupled with liquid chromatography-mass spectrometry (LC-MS) analysis of the L. japonica flowers, the structural study on putative substrate binding amino acid residues, ferulate, and 4-coumaric acid of the conserved binding-site of LJ4CL1 leads to a conclusion that this highly expressed protein group in the flowers may process 4-coumarate that represents 90% of the known phenylpropanoid-derived compounds. The activity of purified crude LJ4CL1 protein was analyzed using 4-coumarate as template and high activity indicating that 4-coumarate is one of the substrates of LJ4CL1. PMID:24518682

  13. Predicting the function of 4-coumarate:CoA ligase (LJ4CL1) in Lonicera japonica.

    PubMed

    Yuan, Yuan; Yu, Shulin; Yu, Jun; Zhan, Zhilai; Li, Minhui; Liu, Guiming; Wang, Xumin; Huang, Luqi

    2014-02-10

    4-Coumarate:CoA ligases (4CLs) are a group of essential enzymes involved in the pathway of phenylpropanoid-derived compound metabolisms; however it is still difficult to identify orthologs and paralogs of these important enzymes just based on sequence similarity of the conserved domains. Using sequence data of 20 plant species from the public databases and sequences from Lonicera japonica, we define 1252 adenosine monophosphate (AMP)-dependent synthetase/ligase sequences and classify them into three phylogenetic clades. 4CLs are in one of the four subgroups, according to their partitioning, with known proteins characterized in A. thaliana and Oryza sativa. We also defined 184 non-redundant sequences that encode proteins containing the GEICIRG motif and the taxonomic distribution of these GEICIRG-containing proteins suggests unique catalytic activities in plants. We further analyzed their transcription levels in L. japonica and L. japonica. var. chinensis flowers and chose the highest expressed genes representing the subgroups for structure and binding site predictions. Coupled with liquid chromatography-mass spectrometry (LC-MS) analysis of the L. japonica flowers, the structural study on putative substrate binding amino acid residues, ferulate, and 4-coumaric acid of the conserved binding-site of LJ4CL1 leads to a conclusion that this highly expressed protein group in the flowers may process 4-coumarate that represents 90% of the known phenylpropanoid-derived compounds. The activity of purified crude LJ4CL1 protein was analyzed using 4-coumarate as template and high activity indicating that 4-coumarate is one of the substrates of LJ4CL1.

  14. Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments

    PubMed Central

    2011-01-01

    Prior to the advent of new, deep sequencing methods, small RNA (sRNA) discovery was dependent on Sanger sequencing, which was time-consuming and limited knowledge to only the most abundant sRNA. The innovation of large-scale, next-generation sequencing has exponentially increased knowledge of the biology, diversity and abundance of sRNA populations. In this review, we discuss issues involved in the design of sRNA sequencing experiments, including choosing a sequencing platform, inherent biases that affect sRNA measurements and replication. We outline the steps involved in preprocessing sRNA sequencing data and review both the principles behind and the current options for normalization. Finally, we discuss differential expression analysis in the absence and presence of biological replicates. While our focus is on sRNA sequencing experiments, many of the principles discussed are applicable to the sequencing of other RNA populations. PMID:21356093

  15. Dietary glycerol for quail: association between productive performance and COX III mRNA expression.

    PubMed

    Silva, S C C; Gasparino, E; Batista, E; Tanamati, F; Vesco, A P D; Lala, B; de Oliveira, D P

    2016-05-25

    This study was carry out to evaluate mRNA expression of mitochondrial cytochrome c oxidase III in the Pectoralis superficialis muscle of 28-day-old quails fed diets containing 0, 8, and 12% glycerol. Total RNA was extracted (N = 10) and cDNA was amplified using specifics primers for qRT-PCR. Feed efficiency and feed intake were evaluated. COX III mRNA expression in breast muscle was higher in the group fed with 12% glycerol (0.863 AU); no differences were observed in the expression of this gene between the muscle of animals fed diets without glycerol (0.357 AU) and 8% glycerol (0.415 AU). Quails that showed greater COX III mRNA expression also showed the lowest feed efficiency. These results show that there is a difference in COX III mRNA expression in breast muscle of 28-day-old quail fed diets different concentrations of glycerol.

  16. Bioinspired Nanocomplex for Spatiotemporal Imaging of Sequential mRNA Expression in Differentiating Neural Stem Cells

    PubMed Central

    2015-01-01

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions. PMID:25494492

  17. Synthetic RNA-based switches for mammalian gene expression control.

    PubMed

    Ausländer, Simon; Fussenegger, Martin

    2017-04-04

    Synthetic ribonucleic acid (RNA)-based gene switches control RNA functions in a ligand-responsive manner. Key building blocks are aptamers that specifically bind to small molecules or protein ligands. Engineering approaches often combine rational design and high-throughput screening to identify optimal connection sites or sequences. In this report, we discuss basic principles and emerging design strategies for the engineering of RNA-based gene switches in mammalian cells. Their small size compared with those of transcriptional gene switches, together with advancements in design strategies and performance, may bring RNA-based switches to the forefront of biomedical and biotechnological applications.

  18. MicroRNA expression profiling identifies decreased expression of miR-205 in inflammatory breast cancer.

    PubMed

    Huo, Lei; Wang, Yan; Gong, Yun; Krishnamurthy, Savitri; Wang, Jing; Diao, Lixia; Liu, Chang-Gong; Liu, Xiuping; Lin, Feng; Symmans, William F; Wei, Wei; Zhang, Xinna; Sun, Li; Alvarez, Ricardo H; Ueno, Naoto T; Fouad, Tamer M; Harano, Kenichi; Debeb, Bisrat G; Wu, Yun; Reuben, James; Cristofanilli, Massimo; Zuo, Zhuang

    2016-04-01

    Inflammatory breast cancer is the most aggressive form of breast cancer. Identifying new biomarkers to be used as therapeutic targets is in urgent need. Messenger RNA expression profiling studies have indicated that inflammatory breast cancer is a transcriptionally heterogeneous disease, and specific molecular targets for inflammatory breast cancer have not been well established. We performed microRNA expression profiling in inflammatory breast cancer in comparison with locally advanced noninflammatory breast cancer in this study. Although many microRNAs were differentially expressed between normal breast tissue and tumor tissue, most of them did not show differential expression between inflammatory and noninflammatory tumor samples. However, by microarray analysis, quantitative reverse transcription PCR, and in situ hybridization, we showed that microRNA-205 expression was decreased not only in tumor compared with normal breast tissue, but also in inflammatory breast cancer compared with noninflammatory breast cancer. Lower expression of microRNA-205 correlated with worse distant metastasis-free survival and overall survival in our cohort. A small-scale immunohistochemistry analysis showed coexistence of decreased microRNA-205 expression and decreased E-cadherin expression in some ductal tumors. MicroRNA-205 may serve as a therapeutic target in advanced breast cancer including inflammatory breast cancer.

  19. Expression and regulatory effects of microRNA-182 in osteosarcoma cells: A pilot study

    PubMed Central

    BIAN, DONG-LIN; WANG, XUE-MEI; HUANG, KUN; ZHAI, QI-XI; YU, GUI-BO; WU, CHENG-HUA

    2016-01-01

    The aim of the present study was to evaluate the expression level of microRNA-182 (miRNA-182) in human osteosarcoma (OS) MG-63 cells and OS tissues, and to elucidate the effect of miRNA-182 on the biological activity of tumors. In the present study, the expression of miRNA-182 in human OS MG-63 cells, OS tissues and normal osteoblast hFOB1.19 cells was determined using quantitative polymerase chain reaction. Subsequently, a miRNA-182 mimic and inhibitor were utilized to regulate the expression level of this miRNA in MG-63 cells. Cell viability and proliferation were examined using cell counting kit-8 assays, and cell apoptosis was detected by flow cytometry. Cell invasion and migration assays were performed using Transwell chambers to analyze the biological functions of miRNA-182 in vitro. The present study demonstrated that the expression level of miRNA-182 in MG-63 cells and OS tissues was significantly increased compared with the hFOB1.19 cell line (P<0.05). The present study successfully performed cell transfections of miRNA-182 inhibitor and miRNA-182 mimic into MG-63 cells and achieved the desired transfection efficiency. The present study confirmed that upregulation of miRNA-182 promotes cell apoptosis and inhibits cell viability, proliferation, invasion and migration. The present findings additionally demonstrated that miRNA-182 is a tumor suppressor gene in OS. Therefore, regulating the expression of miRNA-182 may affect the biological behavior of OS cells, which suggests a potential role for miRNA-182 in molecular therapy for malignant tumors. PMID:27123060

  20. Integration of microRNA and mRNA expression profiles in the skin of systemic sclerosis patients

    PubMed Central

    Zhou, Bin; Zuo, Xiao Xia; Li, Yi Sha; Gao, Si Ming; Dai, Xiao Dan; Zhu, Hong Lin; Luo, Hui

    2017-01-01

    MicroRNAs (miRNAs) play important roles in the fibrosis of systemic sclerosis (SSc). However, the underlying miRNA-mRNA regulatory network is not fully understood. A systemic investigation of the role of miRNAs would be very valuable for increasing our knowledge of the pathogenesis of SSc. Here, we combined miRNA and mRNA expression profiles and bioinformatics analyses and then performed validation experiments. we identified 21 miRNAs and 2698 mRNAs that were differentially expressed in SSc. Among these, 17 miRNAs and their 33 target mRNAs (55 miRNA-mRNA pairs) were involved in Toll-like receptor, transforming growth factor β and Wnt signalling pathways. Validation experiments revealed that miR-146b, miR-130b, miR-21, miR-31 and miR-34a levels were higher whereas miR-145 levels were lower in SSc skin tissues and fibroblasts, normal fibroblasts and endothelial cells that were stimulated with SSc serum. ACVR2B, FZD2, FZD5 and SOX2 levels were increased in SSc skin fibroblasts, normal fibroblasts and endothelial cells that were stimulated with SSc serum. We did not identify any negative correlations among these miRNA-mRNA pairs. miR-21 was specifically expressed at higher levels in SSc serum. Six miRNAs and 4 mRNAs appear to play important roles in the pathogenesis of SSc are worth investigating in future functional studies. PMID:28211533

  1. SNP Regulation of microRNA Expression and Subsequent Colon Cancer Risk

    PubMed Central

    Mullany, Lila E.; Wolff, Roger K.; Herrick, Jennifer S.; Buas, Matthew F.; Slattery, Martha L.

    2015-01-01

    Introduction MicroRNAs (miRNAs) regulate messenger RNAs (mRNAs) and as such have been implicated in a variety of diseases, including cancer. MiRNAs regulate mRNAs through binding of the miRNA 5’ seed sequence (~7–8 nucleotides) to the mRNA 3’ UTRs; polymorphisms in these regions have the potential to alter miRNA-mRNA target associations. SNPs in miRNA genes as well as miRNA-target genes have been proposed to influence cancer risk through altered miRNA expression levels. Methods MiRNA-SNPs and miRNA-target gene-SNPs were identified through the literature. We used SNPs from Genome-Wide Association Study (GWAS) data that were matched to individuals with miRNA expression data generated from an Agilent platform for colon tumor and non-tumor paired tissues. These samples were used to evaluate 327 miRNA-SNP pairs for associations between SNPs and miRNA expression levels as well as for SNP associations with colon cancer. Results Twenty-two miRNAs expressed in non-tumor tissue were significantly different by genotype and 21 SNPs were associated with altered tumor/non-tumor differential miRNA expression across genotypes. Two miRNAs were associated with SNP genotype for both non-tumor and tumor/non-tumor differential expression. Of the 41 miRNAs significantly associated with SNPs all but seven were significantly differentially expressed in colon tumor tissue. Two of the 41 SNPs significantly associated with miRNA expression levels were associated with colon cancer risk: rs8176318 (BRCA1), ORAA 1.31 95% CI 1.01, 1.78, and rs8905 (PRKAR1A), ORGG 2.31 95% CI 1.11, 4.77. Conclusion Of the 327 SNPs identified in the literature as being important because of their potential regulation of miRNA expression levels, 12.5% had statistically significantly associations with miRNA expression. However, only two of these SNPs were significantly associated with colon cancer. PMID:26630397

  2. Differential microRNA expression is associated with androgen receptor expression in breast cancer.

    PubMed

    Shi, Yaqin; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Gu, Jun; Guan, Xiaoxiang

    2017-01-01

    The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)‑positive breast cancer compared with ER‑negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone‑dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR‑positive and ‑negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR‑positive compared with AR‑negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug‑resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer.

  3. microRNA expression in autonomous thyroid adenomas: Correlation with mRNA regulation.

    PubMed

    Floor, Sébastien L; Trésallet, Christophe; Hébrant, Aline; Desbuleux, Alice; Libert, Frédérick; Hoang, Catherine; Capello, Matteo; Andry, Guy; van Staveren, Wilma C G; Maenhaut, Carine

    2015-08-15

    The objective of the study was to identify the deregulated miRNA in autonomous adenoma and to correlate the data with mRNA regulation. Seven autonomous adenoma with adjacent healthy thyroid tissues were investigated. Twelve miRNAs were downregulated and one was upregulated in the tumors. Combining bioinformatic mRNA target prediction and microarray data on mRNA regulations allowed to identify mRNA targets of our deregulated miRNAs. A large enrichment in mRNA encoding proteins involved in extracellular matrix organization and different phosphodiesterases were identified among these putative targets. The direct interaction between miR-101-3p and miR-144-3p and PDE4D mRNA was experimentally validated. The global miRNA profiles were not greatly modified, confirming the definition of these tumors as minimal deviation tumors. These results support a role for miRNA in the regulation of extracellular matrix proteins and tissue remodeling occurring during tumor development, and in the important negative feedback of the cAMP pathway, which limits the consequences of its constitutive activation in these tumors.

  4. Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR

    PubMed Central

    Chambers, Carrie; Shuai, Bin

    2009-01-01

    Background MicroRNAs (miRNAs) are ~22-nt small non-coding RNAs that regulate the expression of specific target genes in many eukaryotes. In higher plants, miRNAs are involved in developmental processes and stress responses. Sexual reproduction in flowering plants relies on pollen, the male gametophyte, to deliver sperm cells to fertilize the egg cell hidden in the embryo sac. Studies indicated that post-transcriptional processes are important for regulating gene expression during pollen function. However, we still have very limited knowledge on the involved gene regulatory mechanisms. Especially, the function of miRNAs in pollen remains unknown. Results Using miRCURY LNA array technology, we have profiled the expression of 70 known miRNAs (representing 121 miRBase IDs) in Arabidopsis mature pollen, and compared the expression of these miRNAs in pollen and young inflorescence. Thirty-seven probes on the array were identified using RNAs isolated from mature pollen, 26 of which showed significant differences in expression between mature pollen and inflorescence. Real-time PCR based on TaqMan miRNA assays confirmed the expression of 22 miRNAs in mature pollen, and identified 8 additional miRNAs that were expressed at low level in mature pollen. However, the expression of 11 miRNA that were identified on the array could not be confirmed by the Taqman miRNA assays. Analyses of transcriptome data for some miRNA target genes indicated that miRNAs are functional in pollen. Conclusion In summary, our results showed that some known miRNAs were expressed in Arabidopsis mature pollen, with most of them being low abundant. The results can be utilized in future research to study post-transcriptional gene regulation in pollen function. PMID:19591667

  5. The Selenocysteine tRNA STAF-Binding Region is Essential for Adequate Selenocysteine tRNA Status, Selenoprotein Expression and Early Age Survival of Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    STAF is a transcription activating factor for a number of RNA Pol III-and RNA Pol II-dependent genes including the selenocysteine (Sec) tRNA gene. Here, the role of STAF in regulating expression of Sec tRNA and selenoproteins was examined in an invivo model. Heterozygous inactivation of the Staf gen...

  6. RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.

    PubMed

    Kadri, Sabah; Hinman, Veronica F; Benos, Panayiotis V

    2011-01-01

    microRNAs (miRNAs) are small (20-23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc.) to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads). Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common). We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html.

  7. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression.

    PubMed

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-05-26

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA-RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits.

  8. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-11-03

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  9. Cloning and expression of autogenes encoding RNA poly,erases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  10. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-10-20

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  11. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  12. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues.

    PubMed

    Lee, Je Hyuk; Daugharthy, Evan R; Scheiman, Jonathan; Kalhor, Reza; Ferrante, Thomas C; Terry, Richard; Turczyk, Brian M; Yang, Joyce L; Lee, Ho Suk; Aach, John; Zhang, Kun; Church, George M

    2015-03-01

    RNA-sequencing (RNA-seq) measures the quantitative change in gene expression over the whole transcriptome, but it lacks spatial context. In contrast, in situ hybridization provides the location of gene expression, but only for a small number of genes. Here we detail a protocol for genome-wide profiling of gene expression in situ in fixed cells and tissues, in which RNA is converted into cross-linked cDNA amplicons and sequenced manually on a confocal microscope. Unlike traditional RNA-seq, our method enriches for context-specific transcripts over housekeeping and/or structural RNA, and it preserves the tissue architecture for RNA localization studies. Our protocol is written for researchers experienced in cell microscopy with minimal computing skills. Library construction and sequencing can be completed within 14 d, with image analysis requiring an additional 2 d.

  13. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  14. Extent, Causes, and Consequences of Small RNA Expression Variation in Human Adipose Tissue

    PubMed Central

    Knights, Andrew J.; Abreu-Goodger, Cei; van de Bunt, Martijn; Guerra-Assunção, José Afonso; Bartonicek, Nenad; van Dongen, Stijn; Mägi, Reedik; Nisbet, James; Barrett, Amy; Rantalainen, Mattias; Nica, Alexandra C.; Quail, Michael A.; Small, Kerrin S.; Glass, Daniel; Enright, Anton J.; Winn, John; Deloukas, Panos; Dermitzakis, Emmanouil T.; McCarthy, Mark I.; Spector, Timothy D.; Durbin, Richard; Lindgren, Cecilia M.

    2012-01-01

    Small RNAs are functional molecules that modulate mRNA transcripts and have been implicated in the aetiology of several common diseases. However, little is known about the extent of their variability within the human population. Here, we characterise the extent, causes, and effects of naturally occurring variation in expression and sequence of small RNAs from adipose tissue in relation to genotype, gene expression, and metabolic traits in the MuTHER reference cohort. We profiled the expression of 15 to 30 base pair RNA molecules in subcutaneous adipose tissue from 131 individuals using high-throughput sequencing, and quantified levels of 591 microRNAs and small nucleolar RNAs. We identified three genetic variants and three RNA editing events. Highly expressed small RNAs are more conserved within mammals than average, as are those with highly variable expression. We identified 14 genetic loci significantly associated with nearby small RNA expression levels, seven of which also regulate an mRNA transcript level in the same region. In addition, these loci are enriched for variants significant in genome-wide association studies for body mass index. Contrary to expectation, we found no evidence for negative correlation between expression level of a microRNA and its target mRNAs. Trunk fat mass, body mass index, and fasting insulin were associated with more than twenty small RNA expression levels each, while fasting glucose had no significant associations. This study highlights the similar genetic complexity and shared genetic control of small RNA and mRNA transcripts, and gives a quantitative picture of small RNA expression variation in the human population. PMID:22589741

  15. Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes.

    PubMed

    Zhang, Qian; Koser, Stephanie L; Donkin, Shawn S

    2016-05-01

    Hepatocytes monolayers from neonatal calves were used to determine the responses of the cytosolic phosphoenolpyruvate carboxykinase (PCK1) mRNA expression to propionate and direct hormonal cues including cyclic AMP (cAMP), dexamethasone, and insulin. The responses of other key gluconeogenic genes, including mitochondrial phosphoenolpyruvate carboxykinase (PCK2), pyruvate carboxylase (PC), and glucose-6-phosphotase (G6PC), were also measured. Expression of PCK1 was linearly induced with increasing propionate concentrations in media and 2.5 mM propionate increased PCK1 mRNA at 3 and 6h of incubation; however, the induction disappeared at 12 and 24 h. The induction of PCK1 mRNA by propionate was mimicked by 1 mM cAMP, or in combination with 5 µM dexamethasone, but not by dexamethasone alone. The induction of PCK1 mRNA by propionate or cAMP was eliminated by addition of 100 nM insulin. Additionally, expression of PCK2 and PC mRNA was also induced by propionate in a concentration-dependent manner. Consistent with PCK1, propionate-stimulated PCK2 and PC mRNA expression was inhibited by insulin. Expression of G6PC mRNA was neither affected by propionate nor cAMP, dexamethasone, insulin, or their combinations. These findings demonstrate that propionate can directly regulate its own metabolism in bovine calf hepatocytes through upregulation of PCK1, PCK2, and PC mRNA expression.

  16. Integrated microRNA and protein expression analysis reveals novel microRNA regulation of targets in fetal down syndrome

    PubMed Central

    Lin, Hua; Sui, Weiguo; Li, Wuxian; Tan, Qiupei; Chen, Jiejing; Lin, Xiuhua; Guo, Hui; Ou, Minglin; Xue, Wen; Zhang, Ruohan; Dai, Yong

    2016-01-01

    Down syndrome (DS) is caused by trisomy of human chromosome 21 and is associated with a number of deleterious phenotypes. To investigate the role of microRNA (miRNA) in the regulation of DS, high-throughput Illumina sequencing technology and isobaric tagging for relative and absolute protein quantification analysis were utilized for simultaneous expression profiling of miRNA and protein in fetuses with DS and normal fetuses. A total of 344 miRNAs were associated with DS. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to investigate the proteins found to be differentially expressed. Functionally important miRNAs were determined by identifying enriched or depleted targets in the transcript and the protein expression levels were consistent with miRNA regulation. The results indicated that GRB2, TMSB10, RUVBL2, the hsa-miR-329 and hsa-miR-27b, hsa-miR-27a targets, and MAPK1, PTPN11, ACTA2 and PTK2 or other differentially expressed proteins were connected with each other directly or indirectly. Integrative analysis of miRNAs and proteins provided an expansive view of the molecular signaling pathways in DS. PMID:27666924

  17. Impact of microRNA regulation on variation in human gene expression

    PubMed Central

    Lu, Jian; Clark, Andrew G.

    2012-01-01

    MicroRNAs (miRNAs) are endogenously expressed small RNAs that regulate expression of mRNAs at the post-transcriptional level. The consequence of miRNA regulation is hypothesized to reduce the expression variation of target genes. However, it is possible that mutations in miRNAs and target sites cause rewiring of the miRNA regulatory networks resulting in increased variation in gene expression. By examining variation in gene expression patterns in human populations and between human and other primate species, we find that miRNAs have stabilized expression of a small number of target genes during primate evolution. Compared with genes not regulated by miRNAs, however, genes regulated by miRNAs overall have higher expression variation at the population level, and they display greater variation in expression among human ethnic groups or between human and other primate species. By integrating expression data with genotypes determined in the HapMap 3 and the 1000 Genomes Projects, we found that expression variation in miRNAs, genetic variants in miRNA loci, and mutations in miRNA target sites are important sources of elevated expression variation of miRNA target genes. A reasonable case can be made that natural selection is driving this pattern of variation. PMID:22456605

  18. Conserved piRNA Expression from a Distinct Set of piRNA Cluster Loci in Eutherian Mammals

    PubMed Central

    Zeng, Mei; Gerlach, Daniel; Yu, Michael; Berger, Bonnie; Naramura, Mayumi; Kile, Benjamin T.; Lau, Nelson C.

    2015-01-01

    The Piwi pathway is deeply conserved amongst animals because one of its essential functions is to repress transposons. However, many Piwi-interacting RNAs (piRNAs) do not base-pair to transposons and remain mysterious in their targeting function. The sheer number of piRNA cluster (piC) loci in animal genomes and infrequent piRNA sequence conservation also present challenges in determining which piC loci are most important for development. To address this question, we determined the piRNA expression patterns of piC loci across a wide phylogenetic spectrum of animals, and reveal that most genic and intergenic piC loci evolve rapidly in their capacity to generate piRNAs, regardless of known transposon silencing function. Surprisingly, we also uncovered a distinct set of piC loci with piRNA expression conserved deeply in Eutherian mammals. We name these loci Eutherian-Conserved piRNA cluster (ECpiC) loci. Supporting the hypothesis that conservation of piRNA expression across ~100 million years of Eutherian evolution implies function, we determined that one ECpiC locus generates abundant piRNAs antisense to the STOX1 transcript, a gene clinically associated with preeclampsia. Furthermore, we confirmed reduced piRNAs in existing mouse mutations at ECpiC-Asb1 and -Cbl, which also display spermatogenic defects. The Asb1 mutant testes with strongly reduced Asb1 piRNAs also exhibit up-regulated gene expression profiles. These data indicate ECpiC loci may be specially adapted to support Eutherian reproduction. PMID:26588211

  19. Conserved piRNA Expression from a Distinct Set of piRNA Cluster Loci in Eutherian Mammals.

    PubMed

    Chirn, Gung-Wei; Rahman, Reazur; Sytnikova, Yuliya A; Matts, Jessica A; Zeng, Mei; Gerlach, Daniel; Yu, Michael; Berger, Bonnie; Naramura, Mayumi; Kile, Benjamin T; Lau, Nelson C

    2015-11-01

    The Piwi pathway is deeply conserved amongst animals because one of its essential functions is to repress transposons. However, many Piwi-interacting RNAs (piRNAs) do not base-pair to transposons and remain mysterious in their targeting function. The sheer number of piRNA cluster (piC) loci in animal genomes and infrequent piRNA sequence conservation also present challenges in determining which piC loci are most important for development. To address this question, we determined the piRNA expression patterns of piC loci across a wide phylogenetic spectrum of animals, and reveal that most genic and intergenic piC loci evolve rapidly in their capacity to generate piRNAs, regardless of known transposon silencing function. Surprisingly, we also uncovered a distinct set of piC loci with piRNA expression conserved deeply in Eutherian mammals. We name these loci Eutherian-Conserved piRNA cluster (ECpiC) loci. Supporting the hypothesis that conservation of piRNA expression across ~100 million years of Eutherian evolution implies function, we determined that one ECpiC locus generates abundant piRNAs antisense to the STOX1 transcript, a gene clinically associated with preeclampsia. Furthermore, we confirmed reduced piRNAs in existing mouse mutations at ECpiC-Asb1 and -Cbl, which also display spermatogenic defects. The Asb1 mutant testes with strongly reduced Asb1 piRNAs also exhibit up-regulated gene expression profiles. These data indicate ECpiC loci may be specially adapted to support Eutherian reproduction.

  20. A Comprehensive Analysis of miRNA/isomiR Expression with Gender Difference

    PubMed Central

    Guo, Li; Liang, Tingming; Yu, Jiafeng; Zou, Quan

    2016-01-01

    Although microRNAs (miRNAs) have been widely studied as epigenetic regulation molecules, fewer studies focus on the gender difference at the miRNA and isomiR expression levels. In this study, we aim to understand the potential relationships between gender difference and miRNA/isomiR expression through a comprehensive analysis of small RNA-sequencing datasets based on different human diseases and tissues. Based on specific samples from males and females, we determined that some miRNAs may be diversely expressed between different tissues and genders. Thus, these miRNAs may exhibit inconsistent and even opposite expression between males and females. According to deregulated miRNA expression profiles, some dominantly expressed miRNA loci were selected to analyze isomiR expression patterns using rates of dominant isomiRs. In some miRNA loci, isomiRs showed statistical significance between tumor and normal samples and between males and females samples, suggesting that isomiR expression patterns are not always invariable but may vary between males and females, as well as among different tissues, tumors, and normal samples. The divergence implicates the fluctuation in the expression of miRNA and its detailed expression at the isomiR levels. The divergence also indicates that gender difference may be an important factor that affects the screening of disease-associated miRNAs and isomiRs. This study suggests that miRNA/isomiR expression and gender difference may be more complex than previously assumed and should be further studied according to specific samples from males or females. PMID:27167065

  1. COX-2 mRNA expression in esophageal squamous cell carcinoma (ESCC) and effect by NSAID.

    PubMed

    Liu, X; Li, P; Zhang, S-T; You, H; Jia, J-D; Yu, Z-L

    2008-01-01

    To investigate cyclooxygenase-2 (COX-2) mRNA expression in human esophageal squamous cell carcinoma and the effect of a non-steroidal anti-inflammatory drug (NSAID) on it, in order to explore the mechanism of COX-2 in esophageal squamous cell carcinoma (ESCC) carcinogenesis and the ability of NSAID to prevent or treat ESCC. Frozen specimens of human ESCC and adjacent normal esophageal squamous epithelium pairs (n = 22) were examined for COX-2 mRNA expression by reverse-transcription polymerase chain reaction (RT-PCR). After incubation with aspirin (a non-selective COX inhibitor) or Nimesulide (a selective COX-2 inhibitor), the proliferation status of two human esophageal squamous cancer cell lines, EC-9706 and EC-109, was quantified by 3-(4,5-dimethyl-thiazol-2yl)-2,5-diphenyltetrazolium bromide assay. The expression of COX-2 mRNA in these cells was detected by RT-PCR. COX-2 mRNA was expressed in 12 of 22 (54.5%) ESCC tissue samples, but it was undetectable in all the specimens of adjacent normal esophageal squamous epithelium COX-2 mRNA expression. Both aspirin (5-20 mmol/L) and Nimesulide (0.1-0.8 mmol/L) inhibited EC-9706 cell line proliferation and suppressed its COX-2 mRNA expression dose-dependently. However, only aspirin (5-20 mmol/L) could inhibit proliferation in the EC-109 cell line and suppress COX-2 mRNA expression. Nimesulide (0.1-0.8 mmol/L) could neither inhibit EC-109 cell growth nor suppress COX-2 mRNA expression. COX-2 mRNA expression is a frequent phenomenon in human ESCC tissue samples and plays an important role in the carcinogenesis of ESCC. NSAID may be useful in the chemoprevention and therapy of human ESCC and its effects are likely to be mediated by modulating COX-2 activity.

  2. Spironolactone Regulates HCN Protein Expression Through Micro-RNA-1 in Rats With Myocardial Infarction.

    PubMed

    Yu, Hua-Dong; Xia, Shuang; Zha, Cheng-Qin; Deng, Song-Bai; Du, Jian-Lin; She, Qiang

    2015-06-01

    Emerging evidence has shown that aldosterone blockers reduced the incidence of ventricular arrhythmias in patients with myocardial infarction (MI). However, the mechanism remains unknown. In this study, we investigated the mechanism by which spironolactone, a classic aldosterone blocker, regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN) protein expression in ischemic rat myocardium after MI. Eighteen rats surviving 24 hours after MI were randomly assigned into 3 groups: MI, spironolactone, and spironolactone + antagomir-1. Six sham-operated rats had a suture loosely tied around the left coronary artery, without ligation. The border zone of the myocardial infarct was collected from each rat at 1 week after MI. HCN2 and HCN4 protein and messenger RNA (mRNA) level were measured in addition to miRNA-1 levels. Spironolactone significantly increased miRNA-1 levels and downregulated HCN2 and HCN4 protein and mRNA levels. miRNA-1 suppression with antagomir-1 increased HCN2 and HCN4 protein levels; however, HCN2 and HCN4 mRNA levels were not affected. These results suggested that spironolactone could increase miRNA-1 expression in ischemic rat myocardium after MI and that the upregulation of miRNA-1 expression partially contributed to the posttranscriptional repression of HCN protein expression, which may contribute to the effect of spironolactone to reduce the incidence of MI-associated ventricular arrhythmias.

  3. The RNA-binding protein ELAV regulates Hox RNA processing, expression and function within the Drosophila nervous system

    PubMed Central

    Rogulja-Ortmann, Ana; Picao-Osorio, Joao; Villava, Casandra; Patraquim, Pedro; Lafuente, Elvira; Aspden, Julie; Thomsen, Stefan; Technau, Gerhard M.; Alonso, Claudio R.

    2014-01-01

    The regulated head-to-tail expression of Hox genes provides a coordinate system for the activation of specific programmes of cell differentiation according to axial level. Recent work indicates that Hox expression can be regulated via RNA processing but the underlying mechanisms and biological significance of this form of regulation remain poorly understood. Here we explore these issues within the developing Drosophila central nervous system (CNS). We show that the pan-neural RNA-binding protein (RBP) ELAV (Hu antigen) regulates the RNA processing patterns of the Hox gene Ultrabithorax (Ubx) within the embryonic CNS. Using a combination of biochemical, genetic and imaging approaches we demonstrate that ELAV binds to discrete elements within Ubx RNAs and that its genetic removal reduces Ubx protein expression in the CNS leading to the respecification of cellular subroutines under Ubx control, thus defining for the first time a specific cellular role of ELAV within the developing CNS. Artificial provision of ELAV in glial cells (a cell type that lacks ELAV) promotes Ubx expression, suggesting that ELAV-dependent regulation might contribute to cell type-specific Hox expression patterns within the CNS. Finally, we note that expression of abdominal A and Abdominal B is reduced in elav mutant embryos, whereas other Hox genes (Antennapedia) are not affected. Based on these results and the evolutionary conservation of ELAV and Hox genes we propose that the modulation of Hox RNA processing by ELAV serves to adapt the morphogenesis of the CNS to axial level by regulating Hox expression and consequently activating local programmes of neural differentiation. PMID:24803653

  4. The RNA-binding protein ELAV regulates Hox RNA processing, expression and function within the Drosophila nervous system.

    PubMed

    Rogulja-Ortmann, Ana; Picao-Osorio, Joao; Villava, Casandra; Patraquim, Pedro; Lafuente, Elvira; Aspden, Julie; Thomsen, Stefan; Technau, Gerhard M; Alonso, Claudio R

    2014-05-01

    The regulated head-to-tail expression of Hox genes provides a coordinate system for the activation of specific programmes of cell differentiation according to axial level. Recent work indicates that Hox expression can be regulated via RNA processing but the underlying mechanisms and biological significance of this form of regulation remain poorly understood. Here we explore these issues within the developing Drosophila central nervous system (CNS). We show that the pan-neural RNA-binding protein (RBP) ELAV (Hu antigen) regulates the RNA processing patterns of the Hox gene Ultrabithorax (Ubx) within the embryonic CNS. Using a combination of biochemical, genetic and imaging approaches we demonstrate that ELAV binds to discrete elements within Ubx RNAs and that its genetic removal reduces Ubx protein expression in the CNS leading to the respecification of cellular subroutines under Ubx control, thus defining for the first time a specific cellular role of ELAV within the developing CNS. Artificial provision of ELAV in glial cells (a cell type that lacks ELAV) promotes Ubx expression, suggesting that ELAV-dependent regulation might contribute to cell type-specific Hox expression patterns within the CNS. Finally, we note that expression of abdominal A and Abdominal B is reduced in elav mutant embryos, whereas other Hox genes (Antennapedia) are not affected. Based on these results and the evolutionary conservation of ELAV and Hox genes we propose that the modulation of Hox RNA processing by ELAV serves to adapt the morphogenesis of the CNS to axial level by regulating Hox expression and consequently activating local programmes of neural differentiation.

  5. First feed affects the expressions of microRNA and their targets in Atlantic cod.

    PubMed

    Bizuayehu, Teshome Tilahun; Furmanek, Tomasz; Karlsen, Ørjan; van der Meeren, Terje; Edvardsen, Rolf Brudvik; Rønnestad, Ivar; Hamre, Kristin; Johansen, Steinar D; Babiak, Igor

    2016-04-14

    To our knowledge, there is no report on microRNA (miRNA) expression and their target analysis in relation to the type of the first feed and its effect on the further growth of fish. Atlantic cod (Gadus morhua) larvae have better growth and development performance when fed natural zooplankton as a start-feed, as compared with those fed typical aquaculture start-feeds. In our experiment, two groups of Atlantic cod larvae were fed reference feed (zooplankton, mostly copepods, filtered from a seawater pond) v. aquaculture feeds: enriched rotifers (Brachionus sp.) and later brine shrimp (Artemia salina). We examined the miRNA expressions of six defined developmental stages as determined and standardised by body length from first feeding for both diet groups. We found eight miRNA (miR-9, miR-19a, miR-130b, miR-146, miR-181a, miR-192, miR-206 and miR-11240) differentially expressed between the two feeding groups in at least one developmental stage. We verified the next-generation sequencing data using real-time RT-PCR. We found 397 putative targets (mRNA) to the differentially expressed miRNA; eighteen of these mRNA showed differential expression in at least one stage. The patterns of differentially expressed miRNA and their putative target mRNA were mostly inverse, but sometimes also concurrent. The predicted miRNA targets were involved in different pathways, including metabolic, phototransduction and signalling pathways. The results of this study provide new nutrigenomic information on the potential role of miRNA in mediating nutritional effects on growth during the start-feeding period in fish larvae.

  6. A-to-I RNA editing promotes developmental stage-specific gene and lncRNA expression.

    PubMed

    Goldstein, Boaz; Agranat-Tamir, Lily; Light, Dean; Ben-Naim Zgayer, Orna; Fishman, Alla; Lamm, Ayelet T

    2017-03-01

    A-to-I RNA editing is a conserved widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions, mainly noncoding. Mutations in ADAR enzymes in Caenorhabditis elegans cause defects in normal development but are not lethal as in human and mouse. Previous studies in C. elegans indicated competition between RNA interference (RNAi) and RNA editing mechanisms, based on the observation that worms that lack both mechanisms do not exhibit defects, in contrast to the developmental defects observed when only RNA editing is absent. To study the effects of RNA editing on gene expression and function, we established a novel screen that enabled us to identify thousands of RNA editing sites in nonrepetitive regions in the genome. These include dozens of genes that are edited at their 3' UTR region. We found that these genes are mainly germline and neuronal genes, and that they are down-regulated in the absence of ADAR enzymes. Moreover, we discovered that almost half of these genes are edited in a developmental-specific manner, indicating that RNA editing is a highly regulated process. We found that many pseudogenes and other lncRNAs are also extensively down-regulated in the absence of ADARs in the embryo but not in the fourth larval (L4) stage. This down-regulation is not observed upon additional knockout of RNAi. Furthermore, levels of siRNAs aligned to pseudogenes in ADAR mutants are enhanced. Taken together, our results suggest a role for RNA editing in normal growth and development by regulating silencing via RNAi.

  7. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound

    PubMed Central

    McTiernan, Charles F.; Chen, Xucai; Klein, Edwin C.; Villanueva, Flordeliza S.

    2016-01-01

    RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease. PMID:27471848

  8. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition.

    PubMed

    Cava, Claudia; Bertoli, Gloria; Ripamonti, Marilena; Mauri, Giancarlo; Zoppis, Italo; Della Rosa, Pasquale Anthony; Gilardi, Maria Carla; Castiglioni, Isabella

    2014-01-01

    Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs (17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced number.

  9. Probe Region Expression Estimation for RNA-Seq Data for Improved Microarray Comparability.

    PubMed

    Uziela, Karolis; Honkela, Antti

    2015-01-01

    Rapidly growing public gene expression databases contain a wealth of data for building an unprecedentedly detailed picture of human biology and disease. This data comes from many diverse measurement platforms that make integrating it all difficult. Although RNA-sequencing (RNA-seq) is attracting the most attention, at present, the rate of new microarray studies submitted to public databases far exceeds the rate of new RNA-seq studies. There is clearly a need for methods that make it easier to combine data from different technologies. In this paper, we propose a new method for processing RNA-seq data that yields gene expression estimates that are much more similar to corresponding estimates from microarray data, hence greatly improving cross-platform comparability. The method we call PREBS is based on estimating the expression from RNA-seq reads overlapping the microarray probe regions, and processing these estimates with standard microarray summarisation algorithms. Using paired microarray and RNA-seq samples from TCGA LAML data set we show that PREBS expression estimates derived from RNA-seq are more similar to microarray-based expression estimates than those from other RNA-seq processing methods. In an experiment to retrieve paired microarray samples from a database using an RNA-seq query sample, gene signatures defined based on PREBS expression estimates were found to be much more accurate than those from other methods. PREBS also allows new ways of using RNA-seq data, such as expression estimation for microarray probe sets. An implementation of the proposed method is available in the Bioconductor package "prebs."

  10. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    SciTech Connect

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-08-15

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export.

  11. Integration of MicroRNA, mRNA, and Protein Expression Data for the Identification of Cancer-Related MicroRNAs

    PubMed Central

    Seo, Jiyoun; Jin, Daeyong; Choi, Chan-Hun; Lee, Hyunju

    2017-01-01

    MicroRNAs (miRNAs) are responsible for the regulation of target genes involved in various biological processes, and may play oncogenic or tumor suppressive roles. Many studies have investigated the relationships between miRNAs and their target genes, using mRNA and miRNA expression data. However, mRNA expression levels do not necessarily represent the exact gene expression profiles, since protein translation may be regulated in several different ways. Despite this, large-scale protein expression data have been integrated rarely when predicting gene-miRNA relationships. This study explores two approaches for the investigation of gene-miRNA relationships by integrating mRNA expression and protein expression data. First, miRNAs were ranked according to their effects on cancer development. We calculated influence scores for each miRNA, based on the number of significant mRNA-miRNA and protein-miRNA correlations. Furthermore, we constructed modules containing mRNAs, proteins, and miRNAs, in which these three molecular types are highly correlated. The regulatory interactions between miRNA and genes in these modules have been validated based on the direct regulations, indirect regulations, and co-regulations through transcription factors. We applied our approaches to glioblastomas (GBMs), ranked miRNAs depending on their effects on GBM, and obtained 52 GBM-related modules. Compared with the miRNA rankings and modules constructed using only mRNA expression data, the rankings and modules constructed using mRNA and protein expression data were shown to have better performance. Additionally, we experimentally verified that miR-504, highly ranked and included in the identified modules, plays a suppressive role in GBM development. We demonstrated that the integration of both expression profiles allows a more precise analysis of gene-miRNA interactions and the identification of a higher number of cancer-related miRNAs and regulatory mechanisms. PMID:28056026

  12. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system.

    PubMed

    Lee, Young Je; Hoynes-O'Connor, Allison; Leong, Matthew C; Moon, Tae Seok

    2016-03-18

    A central goal of synthetic biology is to implement diverse cellular functions by predictably controlling gene expression. Though research has focused more on protein regulators than RNA regulators, recent advances in our understanding of RNA folding and functions have motivated the use of RNA regulators. RNA regulators provide an advantage because they are easier to design and engineer than protein regulators, potentially have a lower burden on the cell and are highly orthogonal. Here, we combine the CRISPR system from Streptococcus pyogenes and synthetic antisense RNAs (asRNAs) in Escherichia coli strains to repress or derepress a target gene in a programmable manner. Specifically, we demonstrate for the first time that the gene target repressed by the CRISPR system can be derepressed by expressing an asRNA that sequesters a small guide RNA (sgRNA). Furthermore, we demonstrate that tunable levels of derepression can be achieved (up to 95%) by designing asRNAs that target different regions of a sgRNA and by altering the hybridization free energy of the sgRNA-asRNA complex. This new system, which we call the combined CRISPR and asRNA system, can be used to reversibly repress or derepress multiple target genes simultaneously, allowing for rational reprogramming of cellular functions.

  13. Diet and lifestyle factors associated with miRNA expression in colorectal tissue

    PubMed Central

    Slattery, Martha L; Herrick, Jennifer S; Mullany, Lila E; Stevens, John R; Wolff, Roger K

    2017-01-01

    MicroRNAs (miRNAs) are small non-protein-coding RNA molecules that regulate gene expression. Diet and lifestyle factors have been hypothesized to be involved in the regulation of miRNA expression. In this study it was hypothesized that diet and lifestyle factors are associated with miRNA expression. Data from 1,447 cases of colorectal cancer to evaluate 34 diet and lifestyle variables using miRNA expression in normal colorectal mucosa as well as for differential expression between paired carcinoma and normal tissue were used. miRNA data were obtained using an Agilent platform. Multiple comparisons were adjusted for using the false discovery rate q-value. There were 250 miRNAs differentially expressed between carcinoma and normal colonic tissue by level of carbohydrate intake and 198 miRNAs differentially expressed by the level of sucrose intake. Of these miRNAs, 166 miRNAs were differentially expressed for both carbohydrate intake and sucrose intake. Ninety-nine miRNAs were differentially expressed by the level of whole grain intake in normal colonic mucosa. Level of oxidative balance score was associated with 137 differentially expressed miRNAs between carcinoma and paired normal rectal mucosa. Additionally, 135 miRNAs were differentially expressed in colon tissue based on recent NSAID use. Other dietary factors, body mass index, waist and hip circumference, and long-term physical activity levels did not alter miRNA expression after adjustment for multiple comparisons. These results suggest that diet and lifestyle factors regulate miRNA level. They provide additional support for the influence of carbohydrate, sucrose, whole grains, NSAIDs, and oxidative balance score on colorectal cancer risk. PMID:28053552

  14. The RNA binding protein TIAR is involved in the regulation of human iNOS expression.

    PubMed

    Fechir, M; Linker, K; Pautz, A; Hubrich, T; Kleinert, H

    2005-09-05

    Human inducible NO synthase (iNOS) expression is regulated by post-transcriptional mechanisms. The 3'-untranslated region (3'-UTR) of the human iNOS mRNA contains AU-rich elements (ARE), which are known to be important for the regulation of mRNA stability. The 3'-UTR of the human iNOS mRNA has been shown to regulate human iNOS mRNA expression post-transcriptionally. One RNA-binding protein known to interact with AREs and to regulate mRNA stability is the T cell intracellular antigen-1-related protein (TIAR). In RNA binding studies TIAR displayed high affinity binding to the human iNOS 3'-UTR sequence. In RNase protection experiments, the cytokine incubation needed for iNOS expression did not change TIAR expression in DLD-1 cells. However, overexpression of TIAR in human DLD-1 colon carcinoma cells resulted in enhanced cytokine-induced iNOS expression. In conclusion, TIAR seems to be involved in the post-transcriptional regulation of human iNOS expression.

  15. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review)

    PubMed Central

    JIMÉNEZ-WENCES, HILDA; PERALTA-ZARAGOZA, OSCAR; FERNÁNDEZ-TILAPA, GLORIA

    2014-01-01

    Cancer is a complex disease caused by genetic and epigenetic abnormalities that affect gene expression. The progression from precursor lesions to invasive cervical cancer is influenced by persistent human papilloma virus (HPV) infection, which induces changes in the host genome and epigenome. Epigenetic alterations, such as aberrant miRNA expression and changes in DNA methylation status, favor the expression of oncogenes and the silencing of tumor-suppressor genes. Given that some miRNA genes can be regulated through epigenetic mechanisms, it has been proposed that alterations in the methylation status of miRNA promoters could be the driving mechanism behind their aberrant expression in cervical cancer. For these reasons, we assessed the relationship among HPV infection, cellular DNA methylation and miRNA expression. We conclude that alterations in the methylation status of protein-coding genes and various miRNA genes are influenced by HPV infection, the viral genotype, the physical state of the viral DNA, and viral oncogenic risk. Furthermore, HPV induces deregulation of miRNA expression, particularly at loci near fragile sites. This deregulation occurs through the E6 and E7 proteins, which target miRNA transcription factors such as p53. PMID:24737381

  16. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression

    PubMed Central

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E.; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-01-01

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA–RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits. PMID:25916845

  17. Surface tension measurements of aqueous ammonium chloride (NH4Cl) in air

    NASA Technical Reports Server (NTRS)

    Lowry, S. A.; Mccay, M. H.; Mccay, T. D.; Gray, P. A.

    1989-01-01

    Aqueous NH4Cl's solidification is often used to model metal alloy solidification processes. The present determinations of the magnitude of the variation of aqueous NH4Cl's surface tension as a function of both temperature and solutal concentration were conducted at 3, 24, and 40 C over the 72-100 wt pct water solutal range. In general, the surface tension increases 0.31 dyn/cm per percent decrease in wt pct of water, and decreases 0.13 dyn/cm for each increase in deg C. Attention is given to the experimental apparatus employed.

  18. Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus

    NASA Astrophysics Data System (ADS)

    Xu, Hongjie; Wu, Feng; Cao, Hongqing; Kan, Guanghan; Zhang, Hongyu; Yeung, Ella W.; Shang, Peng; Dai, Zhongquan; Li, Yinghui

    2015-02-01

    Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus in response to microgravity. MiRNAs and mRNA microarray of soleus after tail suspension (TS) for 7 and 14 days were performed followed by target gene and function annotation analysis and qRT-PCR. Relative muscle mass lost by 37.0% in TS-7 but less than 10% in the following three weeks. TS altered 23 miRNAs and 1313 mRNAs with at least 2-fold. QRT-PCR confirmed some of these changes. MiR-214, miR-486-5p and miR-221 continuously decreased. MiR-674 and Let-7e decreased only in TS-7, while miR-320b and miR-187 decreased only in TS-14. But there was no alteration of miR-320 and miR-206 in both time point. For mRNA detection, actn3 (5.1-fold and 13.8-fold) and myh4 (38-fold and 51.6-fold) increased abundantly and a3galt2 decreased. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. GO terms and cellular pathway of these alteration showed enrichment in regulation of muscle metabolism. Integration analysis of the miRNA and mRNA expression profiles confirmed that eleven genes were differently regulated by four miRNAs. This is the first study that showed expression pattern and synergistical regulation of miRNA and mRNA in rat soleus of TS for up to 14 days.

  19. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues

    PubMed Central

    Lee, Je Hyuk; Daugharthy, Evan R.; Scheiman, Jonathan; Kalhor, Reza; Ferrante, Thomas C.; Terry, Richard; Turczyk, Brian M.; Yang, Joyce L.; Lee, Ho Suk; Aach, John; Zhang, Kun; Church, George M.

    2014-01-01

    RNA sequencing measures the quantitative change in gene expression over the whole transcriptome, but it lacks spatial context. On the other hand, in situ hybridization provides the location of gene expression, but only for a small number of genes. Here we detail a protocol for genome-wide profiling of gene expression in situ in fixed cells and tissues, in which RNA is converted into cross-linked cDNA amplicons and sequenced manually on a confocal microscope. Unlike traditional RNA-seq our method enriches for context-specific transcripts over house-keeping and/or structural RNA, and it preserves the tissue architecture for RNA localization studies. Our protocol is written for researchers experienced in cell microscopy with minimal computing skills. Library construction and sequencing can be completed within 14 d, with image analysis requiring an additional 2 d. PMID:25675209

  20. Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration

    PubMed Central

    Dippold, Rachael P.; Vadigepalli, Rajanikanth; Gonye, Gregory E.; Patra, Biswanath; Hoek, Jan B.

    2012-01-01

    Background Adaptation to chronic ethanol treatment of rats results in a changed functional state of the liver and greatly inhibits its regenerative ability, which may contribute to the progression of alcoholic liver disease. Methods In this study we investigated the effect of chronic ethanol intake on hepatic miRNA expression in male Sprague-Dawley rats during the initial 24 hrs of liver regeneration following 70% partial hepatectomy (PHx) using microRNA (miRNA) microarrays. miRNA expression during adaptation to ethanol was investigated using RT-qPCR. Nuclear Factor kappa B (NFκB) binding at target miRNA promoters was investigated with chromatin immunoprecipitation. Results Unsupervised clustering of miRNA expression profiles suggested that miRNA expression was more affected by chronic ethanol feeding than by the acute challenge of liver regeneration after PHx. Several miRNAs that were significantly altered by chronic ethanol feeding, including miRs-34a, -103, -107, and -122 have been reported to play a role in regulating hepatic metabolism and the onset of these miRNA changes occurred gradually during the time course of ethanol feeding. Chronic ethanol feeding also altered the dynamic miRNA profile during liver regeneration. Promoter analysis predicted a role for Nuclear Factor kappa B (NFκB) in the immediate early miRNA response to PHx. NFκB binding at target miRNA promoters in the chronic ethanol-fed group was significantly altered and these changes directly correlated with the observed expression dynamics of the target miRNA. Conclusions Chronic ethanol consumption alters the hepatic miRNA expression profile such that the response of the metabolism-associated miRNAs occurs during long-term adaptation to ethanol rather than as an acute transient response to ethanol metabolism. Additionally, the dynamic miRNA program during liver regeneration in response to PHx is altered in the chronically ethanol-fed liver and these differences reflect, in part, differences

  1. The integrative analysis of microRNA and mRNA expression in Apis mellifera following maze-based visual pattern learning.

    PubMed

    Qin, Qiu-Hong; Wang, Zi-Long; Tian, Liu-Qing; Gan, Hai-Yan; Zhang, Shao-Wu; Zeng, Zhi-Jiang

    2014-10-01

    The honeybee (Apis mellifera) is a social insect with strong sensory capacity and diverse behavioral repertoire and is recognized as a good model organism for studying the neurobiological basis of learning and memory. In this study, we analyzed the changes in microRNA (miRNA) and messenger RNA (mRNA) following maze-based visual learning using next-generation small RNA sequencing and Solexa/lllumina Digital Gene Expression tag profiling (DGE). For small RNA sequencing, we obtained 13 367 770 and 13 132 655 clean tags from the maze and control groups, respectively. A total of 40 differentially expressed known miRNAs were detected between these two samples, and all of them were up-regulated in the maze group compared to the control group. For DGE, 5 681 320 and 5 939 855 clean tags were detected from the maze and control groups, respectively. There were a total of 388 differentially expressed genes between these two samples, with 45 genes up-regulated and 343 genes down-regulated in the maze group, compared to the control group. Additionally, the expression levels of 10 differentially expressed genes were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the expression trends of eight of them were consistent with the DGE result, although the degree of change was lower in amplitude. The integrative analysis of miRNA and mRNA expression showed that, among the 40 differentially expressed known miRNAs and 388 differentially expressed genes, 60 pairs of miRNA/mRNA were identified as co-expressed in our present study. These results suggest that both miRNA and mRNA may play a pivotal role in the process of learning and memory in honeybees. Our sequencing data provide comprehensive miRNA and gene expression information for maze-based visual learning, which will facilitate understanding of the molecular mechanisms of honeybee learning and memory.

  2. Abnormal expression of mRNA, microRNA alteration and aberrant DNA methylation patterns in rectal adenocarcinoma

    PubMed Central

    Liu, Xianglong; Yuan, Xiangfei; Qin, Hai; Zhang, Xipeng

    2017-01-01

    Aim Rectal adenocarcinoma (READ) is a malignancy cancer with the high morbidity and motility worldwide. Our study aimed to explore the potential pathogenesis of READ through integrated analysis of gene expression profiling and DNA methylation data. Methods The miRNA, mRNA expression profiling and corresponding DNA methylation data were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed mRNAs/ miRNAs/methylated regions (DEmRNA/DEmiRNAs) were identified in READ. The negatively correlation of DEmiRNA-DEmRNAs and DNA methylation-DEmRNAs were obtained. DEmRNAs expression was validated through quantitative real-time polymerase chain reaction (qRT-PCR) and microarray expression profiling analyses. Results 1192 dysregulated DEmRNAs, 27 dysregulated DEmiRNAs and 6403 aberrant methylation CpG sites were screened in READ compared to normal controls. 1987 negative interaction pairs among 27 DEmiRNAs and 668 DEmRNAs were predicted. 446 genes with aberrant methylation were annotated. Eventually, 50 DEmRNAs (39 down- and 11 up-regulated DEmRNAs) with hypermethylation, synchronously negatively targeted by DEmiRNAs, were identified through the correlation analysis among 446 genes with aberrant methylation and 668 DEmRNAs. 50 DEmRNAs were significantly enriched in cAMP signaling pathway, circadian entrainment and glutamatergic synapse. The validation results of expression levels of DEmRNAs through qRT-PCR and microarray analyses were compatible with our study. Conclusion 7 genes of SORCS1, PDZRN4, LONRF2, CNGA3, HAND2, RSPO2 and GNAO1 with hypermethylation and negatively regulation by DEmiRNAs might contribute to the tumorigenesis of READ. Our work might provide valuable foundation for the READ in mechanism elucidation, early diagnosis and therapeutic target identification. PMID:28350845

  3. Differential expression of IGF-1 mRNA isoforms in colorectal carcinoma and normal colon tissue.

    PubMed

    Kasprzak, Aldona; Szaflarski, Witold; Szmeja, Jacek; Andrzejewska, Małgorzata; Przybyszewska, Wiesława; Kaczmarek, Elżbieta; Koczorowska, Maria; Kościński, Tomasz; Zabel, Maciej; Drews, Michał

    2013-01-01

    The insulin-like growth factor (IGF)-1 gene consists of 6 exons resulting in the expression of 6 variant forms of mRNA (IA, IB, IC, IIA, IIB and IIC) due to an alternative splicing. The mechanisms of IGF-1 gene splicing and the role of local expression manifested by IGF-1 mRNA variants in colorectal carcinoma (CRC) have not been extensively investigated. Therefore, the aim of our study was to analyse the expression of IGF-1 mRNA isoforms [A, B, C, P1 (class I) and P2 (class II)], as well as the protein expression in CRC and control samples isolated from 28 patients. The expression of Ki-67 was also analysed and clinical data were obtained. For this purpose, we used quantitative real-time PCR (qPCR) and immunocytochemistry. The expression of mRNAs coding for all splicing isoforms of IGF-1 was observed in every tissue sample studied, with a significantly lower expression noted in the CRC as compared to the control samples. The cytoplasmic expression of IGF-1 protein was found in 50% of the CRC and in ~40% of the non-tumor tissues; however, no significant quantitative inter-group differences were observed. The expression of the IGF-1 gene in the 2 groups of tissues was controlled by the P1 and P2 promoters in a similar manner. No significant differences were detected in the expression of the IGF-1 A and B isoforms; however, their expression was significantly higher compared to that of isoform C. No significant differences were observed between the expression of Ki-67 mRNA in the CRC and control tissue even though the expression of the Ki-67 protein was higher in the CRC compared to the control samples. Ki-67 protein expression was associated with the macroscopic and microscopic aspects of CRC. A significant positive correlation was found between the local production of total mRNA and isoform A and the expression of Ki-67 mRNA, although only in the non-tumor tissues. In CRC samples, the local expression of the total IGF-1 mRNA and all splicing isoforms of IGF-1 mRNA

  4. The QKI-5 and QKI-6 RNA binding proteins regulate the expression of microRNA 7 in glial cells.

    PubMed

    Wang, Yunling; Vogel, Gillian; Yu, Zhenbao; Richard, Stéphane

    2013-03-01

    The quaking (qkI) gene encodes 3 major alternatively spliced isoforms that contain unique sequences at their C termini dictating their cellular localization. QKI-5 is predominantly nuclear, whereas QKI-6 is distributed throughout the cell and QKI-7 is cytoplasmic. The QKI isoforms are sequence-specific RNA binding proteins expressed mainly in glial cells modulating RNA splicing, export, and stability. Herein, we identify a new role for the QKI proteins in the regulation of microRNA (miRNA) processing. We observed that small interfering RNA (siRNA)-mediated QKI depletion of U343 glioblastoma cells leads to a robust increase in miR-7 expression. The processing from primary to mature miR-7 was inhibited in the presence QKI-5 and QKI-6 but not QKI-7, suggesting that the nuclear localization plays an important role in the regulation of miR-7 expression. The primary miR-7-1 was bound by the QKI isoforms in a QKI response element (QRE)-specific manner. We observed that the pri-miR-7-1 RNA was tightly bound to Drosha in the presence of the QKI isoforms, and this association was not observed in siRNA-mediated QKI or Drosha-depleted U343 glioblastoma cells. Moreover, the presence of the QKI isoforms led to an increase presence of pri-miR-7 in nuclear foci, suggesting that pri-miR-7-1 is retained in the nucleus by the QKI isoforms. miR-7 is known to target the epidermal growth factor (EGF) receptor (EGFR) 3' untranslated region (3'-UTR), and indeed, QKI-deficient U343 cells had reduced EGFR expression and decreased ERK activation in response to EGF. Elevated levels of miR-7 are associated with cell cycle arrest, and it was observed that QKI-deficient U343 that harbor elevated levels of miR-7 exhibited defects in cell proliferation that were partially rescued by the addition of a miR-7 inhibitor. These findings suggest that the QKI isoforms regulate glial cell function and proliferation by regulating the processing of certain miRNAs.

  5. MicroRNA evolution, expression, and function during short germband development in Tribolium castaneum.

    PubMed

    Ninova, Maria; Ronshaugen, Matthew; Griffiths-Jones, Sam

    2016-01-01

    MicroRNAs are well-established players in the development of multicellular animals. Most of our understanding of microRNA function in arthropod development comes from studies in Drosophila. Despite their advantages as model systems, the long germband embryogenesis of fruit flies is an evolutionary derived state restricted to several holometabolous insect lineages. MicroRNA evolution and expression across development in animals exhibiting the ancestral and more widespread short germband mode of embryogenesis has not been characterized. We sequenced small RNA libraries of oocytes and successive intervals covering the embryonic development of the short germband model organism, Tribolium castaneum. We analyzed the evolution and temporal expression of the microRNA complement and sequenced libraries of total RNA to investigate the relationships with microRNA target expression. We show microRNA maternal loading and sequence-specific 3' end nontemplate oligoadenylation of maternally deposited microRNAs that is conserved between Tribolium and Drosophila. We further uncover large clusters encoding multiple paralogs from several Tribolium-specific microRNA families expressed during a narrow interval of time immediately after the activation of zygotic transcription. These novel microRNAs, together with several early expressed conserved microRNAs, target a significant number of maternally deposited transcripts. Comparison with Drosophila shows that microRNA-mediated maternal transcript targeting is a conserved process in insects, but the number and sequences of microRNAs involved have diverged. The expression of fast-evolving and species-specific microRNAs in the early blastoderm of T. castaneum is consistent with previous findings in Drosophila and shows that the unique permissiveness for microRNA innovation at this stage is a conserved phenomenon.

  6. Efficient shRNA-Mediated Inhibition of Gene Expression in Zebrafish

    PubMed Central

    De Rienzo, Gianluca; Gutzman, Jennifer H.

    2012-01-01

    Abstract Despite the broad repertoire of loss of function (LOF) tools available for use in the zebrafish, there remains a need for a simple and rapid method that can inhibit expression of genes at later stages. RNAi would fulfill that role, and a previous report (Dong et al. 2009) provided encouraging data. The goal of this study was to further address the ability of expressed shRNAs to inhibit gene expression. This included quantifying RNA knockdown, testing specificity of shRNA effects, and determining whether tissue-specific LOF could be achieved. Using an F0 transgenic approach, this report demonstrates that for two genes, wnt5b and zDisc1, each with described mutant and morphant phenotypes, shRNAs efficiently decrease endogenous RNA levels. Phenotypes elicited by shRNA resemble those of mutants and morphants, and are reversed by expression of cognate RNA, further demonstrating specificity. Tissue-specific expression of zDisc1 shRNAs in F0 transgenics demonstrates that conditional LOF can be readily obtained. These results suggest that shRNA expression presents a viable approach for rapid inhibition of zebrafish gene expression. PMID:22788660

  7. RNA-seq analysis of placental gene expression: Effect of maternal obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rat placentation site is organized into distinct zones: the labyrinth (L), junctional (J), and metrial gland (MG) compartments. We utilized massively parallel sequencing (RNA-seq) to assess mRNA expression profiles for each zone of the late-gestation rat placenta (dpc18.5). In addition, we eluci...

  8. [Selection of microRNA for providing tumor specificity of transgene expression in cancer gene therapy].

    PubMed

    Shepelev, M V; Kalinichenko, S V; Vikhreva, P N; Korobko, I V

    2016-01-01

    The use of tumor-specific microRNA loss to inhibit transgene expression in normal cells is considered as a way to increase the specificity of gene-therapeutic antitumor drugs. This method assumes the introduction of recognition sites of suppressed in tumor cells microRNAs into transgene transcipt. In the presented work, the efficiency of the strategy for providing the tumor specificity of transgene expression depending on parameters of microRNA expression in normal and tumor cells was studied. It was established that microRNA suppression in tumor cells and the determination of absolute microRNA levels in tumor and normal cells are not sufficient for the adequate estimation of the possibility of specific microRNA usage in the scheme of cancer gene therapy, and particularly do not allow to exclude a significant decrease in the efficiency of the gene-therapeutic drug upon the introduction of microRNA recognition sites. These parameters are only suitable for the preliminary selection of microRNA. The effect of introduction of microRNA recognition sites on transgene expression level in target tumor cells should be validated experimentally. It is suggested that this should be done directly in the cancer gene therapy scheme with monitoring of the therapeutic transgene activity.

  9. Myocardial Delivery of Lipidoid Nanoparticle Carrying modRNA Induces Rapid and Transient Expression

    PubMed Central

    Turnbull, Irene C; Eltoukhy, Ahmed A; Fish, Kenneth M; Nonnenmacher, Mathieu; Ishikawa, Kiyotake; Chen, Jiqiu; Hajjar, Roger J; Anderson, Daniel G; Costa, Kevin D

    2016-01-01

    Nanoparticle-based delivery of nucleotides offers an alternative to viral vectors for gene therapy. We report highly efficient in vivo delivery of modified mRNA (modRNA) to rat and pig myocardium using formulated lipidoid nanoparticles (FLNP). Direct myocardial injection of FLNP containing 1–10 μg eGFPmodRNA in the rat (n = 3 per group) showed dose-dependent enhanced green fluorescent protein (eGFP) mRNA levels in heart tissue 20 hours after injection, over 60-fold higher than for naked modRNA. Off-target expression, including lung, liver, and spleen, was <10% of that in heart. Expression kinetics after injecting 5 μg FLNP/eGFPmodRNA showed robust expression at 6 hours that reduced by half at 48 hours and was barely detectable at 2 weeks. Intracoronary administration of 10 μg FLNP/eGFPmodRNA also proved successful, although cardiac expression of eGFP mRNA at 20 hours was lower than direct injection, and off-target expression was correspondingly higher. Findings were confirmed in a pilot study in pigs using direct myocardial injection as well as percutaneous intracoronary delivery, in healthy and myocardial infarction models, achieving expression throughout the ventricular wall. Fluorescence microscopy revealed GFP-positive cardiomyocytes in treated hearts. This nanoparticle-enabled approach for highly efficient, rapid and short-term mRNA expression in the heart offers new opportunities to optimize gene therapies for enhancing cardiac function and regeneration. PMID:26471463

  10. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    SciTech Connect

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M. )

    1990-08-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures.

  11. SPERM RNA AMPLIFICATION FOR GENE EXPRESSION PROFILING BY DNA MICROARRAY TECHNOLOGY

    EPA Science Inventory

    Sperm RNA Amplification for Gene Expression Profiling by DNA Microarray Technology
    Hongzu Ren, Kary E. Thompson, Judith E. Schmid and David J. Dix, Reproductive Toxicology Division, NHEERL, Office of Research and Development, US Environmental Protection Agency, Research Triang...

  12. Accurate Estimation of Expression Levels of Homologous Genes in RNA-seq Experiments

    NASA Astrophysics Data System (ADS)

    Paşaniuc, Bogdan; Zaitlen, Noah; Halperin, Eran

    Next generation high throughput sequencing (NGS) is poised to replace array based technologies as the experiment of choice for measuring RNA expression levels. Several groups have demonstrated the power of this new approach (RNA-seq), making significant and novel contributions and simultaneously proposing methodologies for the analysis of RNA-seq data. In a typical experiment, millions of short sequences (reads) are sampled from RNA extracts and mapped back to a reference genome. The number of reads mapping to each gene is used as proxy for its corresponding RNA concentration. A significant challenge in analyzing RNA expression of homologous genes is the large fraction of the reads that map to multiple locations in the reference genome. Currently, these reads are either dropped from the analysis, or a naïve algorithm is used to estimate their underlying distribution. In this work, we present a rigorous alternative for handling the reads generated in an RNA-seq experiment within a probabilistic model for RNA-seq data; we develop maximum likelihood based methods for estimating the model parameters. In contrast to previous methods, our model takes into account the fact that the DNA of the sequenced individual is not a perfect copy of the reference sequence. We show with both simulated and real RNA-seq data that our new method improves the accuracy and power of RNA-seq experiments.

  13. Accurate estimation of expression levels of homologous genes in RNA-seq experiments.

    PubMed

    Paşaniuc, Bogdan; Zaitlen, Noah; Halperin, Eran

    2011-03-01

    Abstract Next generation high-throughput sequencing (NGS) is poised to replace array-based technologies as the experiment of choice for measuring RNA expression levels. Several groups have demonstrated the power of this new approach (RNA-seq), making significant and novel contributions and simultaneously proposing methodologies for the analysis of RNA-seq data. In a typical experiment, millions of short sequences (reads) are sampled from RNA extracts and mapped back to a reference genome. The number of reads mapping to each gene is used as proxy for its corresponding RNA concentration. A significant challenge in analyzing RNA expression of homologous genes is the large fraction of the reads that map to multiple locations in the reference genome. Currently, these reads are either dropped from the analysis, or a naive algorithm is used to estimate their underlying distribution. In this work, we present a rigorous alternative for handling the reads generated in an RNA-seq experiment within a probabilistic model for RNA-seq data; we develop maximum likelihood-based methods for estimating the model parameters. In contrast to previous methods, our model takes into account the fact that the DNA of the sequenced individual is not a perfect copy of the reference sequence. We show with both simulated and real RNA-seq data that our new method improves the accuracy and power of RNA-seq experiments.

  14. Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme.

    PubMed Central

    Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L

    1994-01-01

    We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151

  15. The peculiarities of piRNA expression upon heat shock exposure in Drosophila melanogaster

    PubMed Central

    Funikov, S Yu; Ryazansky, SS; Zelentsova, ES; Popenko, VI; Leonova, OG; Garbuz, DG; Evgen'ev, MB; Zatsepina, OG

    2015-01-01

    Different types of stress including heat shock may induce genomic instability, due to the derepression and amplification of mobile elements (MEs). It remains unclear, however, whether piRNA-machinery regulating ME expression functions normally under stressful conditions. The aim of this study was to explore the features of piRNA expression after heat shock (HS) exposure in Drosophila melanogaster. We also evaluated functioning of piRNA-machinery in the absence of major stress protein Hsp70 in this species. We analyzed the deep sequence data of piRNA expression after HS treatment and demonstrated that it modulates the expression of certain double-stranded germinal piRNA-clusters. Notable, we demonstrated significant changes in piRNA levels targeting a group of MEs after HS only in the strain containing normal set of hsp70 genes. Surprisingly, we failed to detect any correlation between the levels of piRNAs and the transcription of complementary MEs in the studied strains. We propose that modulation of certain piRNA-clusters expression upon HS exposure in D. melanogaster occurs due to HS-induced altering of chromatin state at certain chromosome regions. PMID:26904377

  16. Micro RNA expression pattern of undifferentiated and differentiated human embryonic stem cells

    PubMed Central

    Lakshmipathy, Uma; Love, Brad; Goff, Loyal A.; Jörnsten, Rebecka; Graichen, Ralph; Hart, Ronald P.; Chesnut, Jonathan D.

    2009-01-01

    Many of the currently established human embryonic stem cell lines have been characterized extensively in terms of their gene expression profiles and genetic stability in culture. Recent studies have indicated that miRNA, a class of non-coding small RNA that participate in the regulation of gene expression, may play a key role in stem cell self renewal and differentiation. Using both microarrays and quantitative PCR, we report here the differences in miRNA expression between undifferentiated human embryonic stem cells (hESC) and their corresponding differentiated cells that underwent differentiation in vitro over a period of two weeks. Our results confirm the identity of a signature miRNA profile in pluripotent cells, comprising a small subset of differentially expressed miRNAs in hESCs. Examining both mRNA and miRNA profiles under multiple conditions using cross-correlation, we find clusters of miRNAs grouped with specific, biologically-interpretable mRNAs. We identify patterns of expression in the progression from hESC to differentiated cells that suggest a role for selected miRNAs in maintenance of the undifferentiated, pluripotent state. Profiling of the hESC “miRNA-ome” provides an insight into molecules that control cellular differentiation and maintenance of the pluripotent state, findings that have broad implications in development, homeostasis and human disease states. PMID:18004940

  17. Silent no more: Endogenous small RNA pathways promote gene expression.

    PubMed

    Wedeles, Christopher J; Wu, Monica Z; Claycomb, Julie M

    2014-01-01

    Endogenous small RNA pathways related to RNA interference (RNAi) play a well-documented role in protecting host genomes from the invasion of foreign nucleic acids. In C. elegans, the PIWI type Argonaute, PRG-1, through an association with 21U-RNAs, mediates a genome surveillance process by constantly scanning the genome for potentially deleterious invading elements. Upon recognition of foreign nucleic acids, PRG-1 initiates a cascade of cytoplasmic and nuclear events that results in heritable epigenetic silencing of these transcripts and their coding genomic loci. If the PRG-1/21U-RNA genome surveillance pathway has the capacity to target most of the C. elegans transcriptome, what mechanisms exist to protect endogenous transcripts from being silenced by this pathway? In this commentary, we discuss three recent publications that implicate the CSR-1 small RNA pathway in the heritable activation of germline transcripts, propose a model as to why not all epialleles behave similarly, and touch on the practical implications of these findings.

  18. Microarray analysis reveals altered circulating microRNA expression in mice infected with Coxsackievirus B3

    PubMed Central

    Sun, Chaoyu; Tong, Lei; Zhao, Wenran; Wang, Yan; Meng, Yuan; Lin, Lexun; Liu, Bingchen; Zhai, Yujia; Zhong, Zhaohua; Li, Xueqi

    2016-01-01

    Coxsackievirus B3 (CVB3) is a common causative agent in the development of inflammatory cardiomyopathy. However, whether the expression of peripheral blood microRNAs (miRNAs) is altered in this process is unknown. The present study investigated changes to miRNA expression in the peripheral blood of CVB3-infected mice. Utilizing miRNA microarray technology, differential miRNA expression was examined between normal and CVB3-infected mice. The present results suggest that specific miRNAs were differentially expressed in the peripheral blood of mice infected with CVB3, varying with infection duration. Using miRNA microarray analysis, a total of 96 and 89 differentially expressed miRNAs were identified in the peripheral blood of mice infected with CVB3 for 3 and 6 days, respectively. Quantitative polymerase chain reaction was used to validate differentially expressed miRNAs, revealing a consistency of these results with the miRNA microarray analysis results. The biological functions of the differentially expressed miRNAs were then predicted by bioinformatics analysis. The potential biological roles of differentially expressed miRNAs included hypertrophic cardiomyopathy, dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. These results may provide important insights into the mechanisms responsible for the progression of CVB3 infection. PMID:27698715

  19. A Systematic Analysis on mRNA and MicroRNA Expression in Runting and Stunting Chickens.

    PubMed

    Zhang, Li; Li, Ying; Xie, Xiujuan; Xu, Haiping; Xu, Zhenqiang; Ma, Jinge; Li, Bixiao; Lin, Shudai; Nie, Qinghua; Luo, Qingbin; Zhang, Xiquan

    2015-01-01

    Runting and stunting syndrome (RSS), which is characterized by lower body weight, widely occurs in broilers. Some RSS chickens simply exhibit slow growth without pathological changes. An increasing number of studies indicate that broiler strains differ in susceptibility to infectious diseases, most likely due to their genetic differences. The objective of this study was to detect the differentially expressed miRNAs and mRNAs in RSS and normal chickens. By integrating miRNA with mRNA expression profiling, potential molecular mechanisms involved in RSS could be further explored. Twenty-two known miRNAs and 1,159 genes were differentially expressed in RSS chickens compared with normal chickens (P < 0.05). qPCR validation results displayed similar patterns. The differentially expressed genes were primarily involved in energy metabolism pathways. The antisense transcripts were extensively expressed in chicken liver albeit with reduced abundance. Dual-luciferase reporter assay indicated that gga-miR-30b/c directly target CARS through binding to its 3'UTR. The miR-30b/c: CARS regulation mainly occurred in liver. In thigh muscle and the hypothalamus, miR-30b/c are expressed at higher levels in RSS chickens compared with normal chickens from 2 to 6 w of age, and notably significant differences are observed at 4 w of age.

  20. MicroRNA Expression Signature Is Altered in the Cardiac Remodeling Induced by High Fat Diets.

    PubMed

    Guedes, Elaine Castilho; França, Gustavo Starvaggi; Lino, Caroline Antunes; Koyama, Fernanda Christtanini; Moreira, Luana do Nascimento; Alexandre, Juliana Gomes; Barreto-Chaves, Maria Luiza M; Galante, Pedro Alexandre Favoretto; Diniz, Gabriela Placoná

    2016-08-01

    Recent studies have revealed the involvement of microRNAs (miRNAs) in the control of cardiac hypertrophy and myocardial function. In addition, several reports have demonstrated that high fat (HF) diet induces cardiac hypertrophy and remodeling. In the current study, we investigated the effect of diets containing different percentages of fat on the cardiac miRNA expression signature. To address this question, male C57Bl/6 mice were fed with a low fat (LF) diet or two HF diets, containing 45 kcal% fat (HF45%) and 60 kcal% fat (HF60%) for 10 and 20 weeks. HF60% diet promoted an increase on body weight, fasting glycemia, insulin, leptin, total cholesterol, triglycerides, and induced glucose intolerance. HF feeding promoted cardiac remodeling, as evidenced by increased cardiomyocyte transverse diameter and interstitial fibrosis. RNA sequencing analysis demonstrated that HF feeding induced distinct miRNA expression patterns in the heart. HF45% diet for 10 and 20 weeks changed the abundance of 64 and 26 miRNAs in the heart, respectively. On the other hand, HF60% diet for 10 and 20 weeks altered the abundance of 27 and 88 miRNAs in the heart, respectively. Bioinformatics analysis indicated that insulin signaling pathway was overrepresented in response to HF diet. An inverse correlation was observed between cardiac levels of GLUT4 and miRNA-29c. Similarly, we found an inverse correlation between expression of GSK3β and the expression of miRNA-21a-3p, miRNA-29c-3p, miRNA-144-3p, and miRNA-195a-3p. In addition, miRNA-1 overexpression prevented cardiomyocyte hypertrophy. Taken together, our results revealed differentially expressed miRNA signatures in the heart in response to different HF diets. J. Cell. Physiol. 231: 1771-1783, 2016. © 2015 Wiley Periodicals, Inc.

  1. RNA sequencing reveals small RNAs differentially expressed between incipient Japanese threespine sticklebacks

    PubMed Central

    2013-01-01

    Background Non-coding small RNAs, ranging from 20 to 30 nucleotides in length, mediate the regulation of gene expression and play important roles in many biological processes. One class of small RNAs, microRNAs (miRNAs), are highly conserved across taxa and mediate the regulation of the chromatin state and the post-transcriptional regulation of messenger RNA (mRNA). Another class of small RNAs is the Piwi-interacting RNAs, which play important roles in the silencing of transposons and other functional genes. Although the biological functions of the different small RNAs have been elucidated in several laboratory animals, little is known regarding naturally occurring variation in small RNA transcriptomes among closely related species. Results We employed next-generation sequencing technology to compare the expression profiles of brain small RNAs between sympatric species of the Japanese threespine stickleback (Gasterosteus aculeatus). We identified several small RNAs that were differentially expressed between sympatric Pacific Ocean and Japan Sea sticklebacks. Potential targets of several small RNAs were identified as repetitive sequences. Female-biased miRNA expression from the old X chromosome was also observed, and it was attributed to the degeneration of the Y chromosome. Conclusions Our results suggest that expression patterns of small RNA can differ between incipient species and may be a potential mechanism underlying differential mRNA expression and transposon activity. PMID:23547919

  2. Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister.

    PubMed

    Martin, Michael; Fehsenfeld, Sandra; Sourial, Mary M; Weihrauch, Dirk

    2011-10-01

    In the present study of the marine Dungeness crabs Metacarcinus magister, the long term effects of high environmental ammonia (HEA) on hemolymph ammonia and urea concentrations, branchial ammonia excretion rates and mRNA expression levels of the crustacean Rh-like ammonia transporter (RhMM), H(+)-ATPase (subunit B), Na(+)/K(+)-ATPase (α-subunit) and Na(+)/H(+)-exchanger (NHE) were investigated. Under control conditions, the crabs' hemolymph exhibited a total ammonia concentration of 179.3±14.5μmol L(-1), while urea accounted for 467.2±33.5μmol L(-1), respectively. Both anterior and posterior gills were capable of excreting ammonia against a 16-fold inwardly directed gradient. Under control conditions, mRNA expression levels of RhMM were high in the gills in contrast to very low expression levels in all other tissues investigated, including the antennal gland, hepatopancreas, and skeletal muscle. After exposure to 1mmol L(-1) NH(4)Cl, hemolymph ammonia increased within the first 12h to ca. 500µmol L(-1) and crabs were able the keep this hemolymph ammonia level for at least 4 days. During this initial period, branchial RhMM and H(+)-ATPase (subunit B) mRNA expression levels roughly doubled. After 14 days of HEA exposure, hemolymph ammonia raised up to environmental levels, whereas urea levels increased by ca. 30%. At the same time, whole animal ammonia and urea excretion vanished. Additionally, branchial RhMM, H(+)-ATPase, Na(+)/K(+)-ATPase and NHE mRNA levels decreased significantly after long term HEA exposure, whereas expression levels of RhMM in the internal tissues increased substantially. Interestingly, crabs acclimated to HEA showed no mortality even after 4 weeks of HEA exposure. This suggests that M. magister possesses a highly adaptive mechanism to cope with elevated ammonia concentrations in its body fluids, including an up-regulation of an Rh-like ammonia transporter in the internal tissues and excretion or storage of waste nitrogen in a so far

  3. Molecular characterization and mRNA expression of carbamoyl phosphate synthetase III in the liver of the African lungfish, Protopterus annectens, during aestivation or exposure to ammonia.

    PubMed

    Loong, A M; Chng, Y R; Chew, S F; Wong, W P; Ip, Y K

    2012-04-01

    This study aimed to obtain the full sequence of carbamoyl phosphate synthetase III (cps III) from, and to determine the mRNA expression of cps III in, the liver of P. annectens during aestivation in air, hypoxia or mud, or exposure to environmental ammonia (100 mmol l(-1) NH(4)Cl). The complete coding cDNA sequence of cps III from the liver of P. annectens consisted of 4530 bp, which coded for 1,510 amino acids with an estimated molecular mass of 166.1 kDa. The Cps III of P. annectens consisted of a mitochondrial targeting sequence of 44 amino acid residues, a GAT domain spanning from tyrosine 45 to isoleucine 414, and a methylglyoxal synthase-like domain spanning from valine 433 to arginine 1513. Two cysteine residues (cysteine 1337 and cysteine 1347) that are characteristic of N-acetylglutamate dependency were also present. The critical Cys-His-Glu catalytic triad (cysteine 301, histidine 385 and glutamate 387) together with methionine 302 and glutamine 305 affirmed that P. annectens expressed Cps III and not Cps I. A comparison of the translated amino acid sequence of Cps III from P. annectens with CPS sequences from other animals revealed that it shared the highest similarity with elasmobranch Cps III. A phylogenetic analysis indicates that P. annectens CPS III could have evolved from Cps III of elasmobranchs. Indeed, Cps III from P. annectens used mainly glutamine as the substrate, and its activity decreased significantly when glutamine and ammonia were included together in the assay system. There were significant increases (9- to 12-fold) in the mRNA expression of cps III in the liver of fish during the induction phase (days 3 and 6) of aestivation in air. Aestivation in hypoxia or in mud had a delayed effect on the increase in the mRNA expression of cps III, which extended beyond the induction phase of aestivation, reiterating the importance of differentiating effects that are intrinsic to aestivation from those intrinsic to hypoxia. Furthermore, results

  4. Genetic and epigenetic regulation of human lincRNA gene expression.

    PubMed

    Popadin, Konstantin; Gutierrez-Arcelus, Maria; Dermitzakis, Emmanouil T; Antonarakis, Stylianos E

    2013-12-05

    Large intergenic noncoding RNAs (lincRNAs) are still poorly functionally characterized. We analyzed the genetic and epigenetic regulation of human lincRNA expression in the GenCord collection by using three cell types from 195 unrelated European individuals. We detected a considerable number of cis expression quantitative trait loci (cis-eQTLs) and demonstrated that the genetic regulation of lincRNA expression is independent of the regulation of neighboring protein-coding genes. lincRNAs have relatively more cis-eQTLs than do equally expressed protein-coding genes with the same exon number. lincRNA cis-eQTLs are located closer to transcription start sites (TSSs) and their effect sizes are higher than cis-eQTLs found for protein-coding genes, suggesting that lincRNA expression levels are less constrained than that of protein-coding genes. Additionally, lincRNA cis-eQTLs can influence the expression level of nearby protein-coding genes and thus could be considered as QTLs for enhancer activity. Enrichment of expressed lincRNA promoters in enhancer marks provides an additional argument for the involvement of lincRNAs in the regulation of transcription in cis. By investigating the epigenetic regulation of lincRNAs, we observed both positive and negative correlations between DNA methylation and gene expression (expression quantitative trait methylation [eQTMs]), as expected, and found that the landscapes of passive and active roles of DNA methylation in gene regulation are similar to protein-coding genes. However, lincRNA eQTMs are located closer to TSSs than are protein-coding gene eQTMs. These similarities and differences in genetic and epigenetic regulation between lincRNAs and protein-coding genes contribute to the elucidation of potential functions of lincRNAs.

  5. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences.

    PubMed

    Seyhan, Attila A

    2016-01-01

    Knockdown of single or multiple gene targets by RNA interference (RNAi) is necessary to overcome escape mutants or isoform redundancy. It is also necessary to use multiple RNAi reagents to knockdown multiple targets. It is also desirable to express a transgene or positive regulatory elements and inhibit a target gene in a coordinated fashion. This study reports a flexible multiplexed RNAi and transgene platform using endogenous intronic primary microRNAs (pri-miRNAs) as a scaffold located in the green fluorescent protein (GFP) as a model for any functional transgene. The multiplexed intronic miRNA - GFP transgene platform was designed to co-express multiple small RNAs within the polycistronic cluster from a Pol II promoter at more moderate levels to reduce potential vector toxicity. The native intronic miRNAs are co-transcribed with a precursor GFP mRNA as a single transcript and presumably cleaved out of the precursor-(pre) mRNA by the RNA splicing machinery, spliceosome. The spliced intron with miRNA hairpins will be further processed into mature miRNAs or small interfering RNAs (siRNAs) capable of triggering RNAi effects, while the ligated exons become a mature messenger RNA for the translation of the functional GFP protein. Data show that this approach led to robust RNAi-mediated silencing of multiple Renilla Luciferase (R-Luc)-tagged target genes and coordinated expression of functional GFP from a single transcript in transiently transfected HeLa cells. The results demonstrated that this design facilitates the coordinated expression of all mature miRNAs either as individual miRNAs or as multiple miRNAs and the associated protein. The data suggest that, it is possible to simultaneously deliver multiple negative (miRNA or shRNA) and positive (transgene) regulatory elements. Because many cellular processes require simultaneous repression and activation of downstream pathways, this approach offers a platform technology to achieve that dual manipulation efficiently

  6. Integrating miRNA and mRNA Expression Profiling Uncovers miRNAs Underlying Fat Deposition in Sheep

    PubMed Central

    Zhou, Guangxian; Wang, Xiaolong; Yuan, Chao; Kang, Danju; Xu, Xiaochun; Zhou, Jiping; Geng, Rongqing; Yang, Yuxin; Yang, Zhaoxia

    2017-01-01

    MicroRNAs (miRNAs) are endogenous, noncoding RNAs that regulate various biological processes including adipogenesis and fat metabolism. Here, we adopted a deep sequencing approach to determine the identity and abundance of miRNAs involved in fat deposition in adipose tissues from fat-tailed (Kazakhstan sheep, KS) and thin-tailed (Tibetan sheep, TS) sheep breeds. By comparing HiSeq data of these two breeds, 539 miRNAs were shared in both breeds, whereas 179 and 97 miRNAs were uniquely expressed in KS and TS, respectively. We also identified 35 miRNAs that are considered to be putative novel miRNAs. The integration of miRNA-mRNA analysis revealed that miRNA-associated targets were mainly involved in the gene ontology (GO) biological processes concerning cellular process and metabolic process, and miRNAs play critical roles in fat deposition through their ability to regulate fundamental pathways. These pathways included the MAPK signaling pathway, FoxO and Wnt signaling pathway, and focal adhesion. Taken together, our results define miRNA expression signatures that may contribute to fat deposition and lipid metabolism in sheep. PMID:28293627

  7. The Cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline

    PubMed Central

    Pane, Attilio; Jiang, Peng; Zhao, Dorothy Yanling; Singh, Mona; Schüpbach, Trudi

    2011-01-01

    In a broad range of organisms, Piwi-interacting RNAs (piRNAs) have emerged as core components of a surveillance system that protects the genome by silencing transposable and repetitive elements. A vast proportion of piRNAs is produced from discrete genomic loci, termed piRNA clusters, which are generally embedded in heterochromatic regions. The molecular mechanisms and the factors that govern their expression are largely unknown. Here, we show that Cutoff (Cuff), a Drosophila protein related to the yeast transcription termination factor Rai1, is essential for piRNA production in germline tissues. Cuff accumulates at centromeric/pericentromeric positions in germ-cell nuclei and strongly colocalizes with the major heterochromatic domains. Remarkably, we show that Cuff is enriched at the dual-strand piRNA cluster 1/42AB and is likely to be involved in regulation of transcript levels of similar loci dispersed in the genome. Consistent with this observation, Cuff physically interacts with the Heterochromatin Protein 1 (HP1) variant Rhino (Rhi). Our results unveil a link between Cuff activity, heterochromatin assembly and piRNA cluster expression, which is critical for stem-cell and germ-cell development in Drosophila. PMID:21952049

  8. Integrating miRNA and mRNA Expression Profiling Uncovers miRNAs Underlying Fat Deposition in Sheep.

    PubMed

    Zhou, Guangxian; Wang, Xiaolong; Yuan, Chao; Kang, Danju; Xu, Xiaochun; Zhou, Jiping; Geng, Rongqing; Yang, Yuxin; Yang, Zhaoxia; Chen, Yulin

    2017-01-01

    MicroRNAs (miRNAs) are endogenous, noncoding RNAs that regulate various biological processes including adipogenesis and fat metabolism. Here, we adopted a deep sequencing approach to determine the identity and abundance of miRNAs involved in fat deposition in adipose tissues from fat-tailed (Kazakhstan sheep, KS) and thin-tailed (Tibetan sheep, TS) sheep breeds. By comparing HiSeq data of these two breeds, 539 miRNAs were shared in both breeds, whereas 179 and 97 miRNAs were uniquely expressed in KS and TS, respectively. We also identified 35 miRNAs that are considered to be putative novel miRNAs. The integration of miRNA-mRNA analysis revealed that miRNA-associated targets were mainly involved in the gene ontology (GO) biological processes concerning cellular process and metabolic process, and miRNAs play critical roles in fat deposition through their ability to regulate fundamental pathways. These pathways included the MAPK signaling pathway, FoxO and Wnt signaling pathway, and focal adhesion. Taken together, our results define miRNA expression signatures that may contribute to fat deposition and lipid metabolism in sheep.

  9. Long Noncoding RNA and mRNA Expression Profiles in the Thyroid Gland of Two Phenotypically Extreme Pig Breeds Using Ribo-Zero RNA Sequencing

    PubMed Central

    Shen, Yifei; Mao, Haiguang; Huang, Minjie; Chen, Lixing; Chen, Jiucheng; Cai, Zhaowei; Wang, Ying; Xu, Ningying

    2016-01-01

    The thyroid gland is an important endocrine organ modulating development, growth, and metabolism, mainly by controlling the synthesis and secretion of thyroid hormones (THs). However, little is known about the pig thyroid transcriptome. Long non-coding RNAs (lncRNAs) regulate gene expression and play critical roles in many cellular processes. Yorkshire pigs have a higher growth rate but lower fat deposition than that of Jinhua pigs, and thus, these species are ideal models for studying growth and lipid metabolism. This study revealed higher levels of THs in the serum of Yorkshire pigs than in the serum of Jinhua pigs. By using Ribo-zero RNA sequencing—which can capture both polyA and non-polyA transcripts—the thyroid transcriptome of both breeds were analyzed and 22,435 known mRNAs were found to be expressed in the pig thyroid. In addition, 1189 novel mRNAs and 1018 candidate lncRNA transcripts were detected. Multiple TH-synthesis-related genes were identified among the 455 differentially-expressed known mRNAs, 37 novel mRNAs, and 52 lncRNA transcripts. Bioinformatics analysis revealed that differentially-expressed genes were enriched in the microtubule-based process, which contributes to THs secretion. Moreover, integrating analysis predicted 13 potential lncRNA-mRNA gene pairs. These data expanded the repertoire of porcine lncRNAs and mRNAs and contribute to understanding the possible molecular mechanisms involved in animal growth and lipid metabolism. PMID:27409639

  10. Profiles of oxidative stress-related microRNA and mRNA expression in auditory cells.

    PubMed

    Wang, Zhi; Liu, Yimin; Han, Ning; Chen, Xuemei; Yu, Wei; Zhang, Weisen; Zou, Fei

    2010-07-30

    Oxidative stress and high levels of reactive oxygen species (ROS) are risk factors of auditory cell injury and hearing impairment. MicroRNAs (miRNAs) are critical for the post-transcriptional regulation of gene expression and cell proliferation and survival. However, little is known about the impact of oxidative stress on the expression of miRNAs and their targeted mRNAs in auditory cells. We employed a cell model of oxidative stress by treatment of House Ear Institute-Organ of Corti 1 (HEI-OC1) cells with different concentrations of tert-butyl hydroperoxide (t-BHP) to examine the t-BHP-induced production of ROS and to determine the impact of t-BHP treatment on the relative levels of miRNA and mRNA transcripts in HEI-OC1 cells. We found that treatment with different concentrations of t-BHP promoted the production of ROS, but inhibited the proliferation of HEI-OC1 cells in a dose- and time-dependent manner. Furthermore, treatment with t-BHP induced HEI-OC1 cell apoptosis. Further microarray analyses revealed that treatment with t-BHP increased the transcription of 35 miRNAs, but decreased the expression of 40 miRNAs. In addition, treatment with t-BHP up-regulated the transcription of 2076 mRNAs, but down-regulated the levels of 580 mRNA transcripts. Notably, the up-regulated (or down-regulated) miRNAs were associated with the decreased (or increased) expression of predicted targeted mRNAs. Importantly, these differentially expressed mRNAs belonged to different functional categories, forming a network participating in the oxidative stress-related process in HEI-OC1 cells. Therefore, our findings may provide new insights into understanding the regulation of miRNAs on the oxidative stress-related gene expression and function in auditory cells.

  11. Investigating the Expression of Oncogenic and Tumor Suppressive MicroRNA in DLBCL.

    PubMed

    Handal, Brian; Enlow, Rossanna; Lara, Daniel; Bailey, Mark; Vega, Francisco; Hu, Peter; Lennon, Alan

    2013-01-01

    Diffuse Large B-cell Lymphoma (DLBCL) is the most common form of lymphoma, accounting for 40 percent of newly diagnosed cases each year. DLBCL is an aggressive abnormal growth of tissue characterized by the accumulation of abnormal B-lymphocytes in the lymphatics of affected individuals. The goal of this study was to analyze microRNA (miRNA) as an alternative method of diagnosis and treatment for patients affected with the observed cancer. MiRNAs are small, non-coding, endogenous RNA that control gene expression at the post-transcriptional level. Emerging evidence suggests that miRNA-mediated gene regulation has a functional role in cancer and could prove to be crucial targets for therapeutic intervention. Here, we provide a quantitative study on the expression of a diverse class of oncogenic and tumor suppressive miRNA that have shown to regulate oncoproteins involved in differentiation, proliferation, and/or apoptosis.

  12. A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference.

    PubMed

    Samakoglu, Selda; Lisowski, Leszek; Budak-Alpdogan, Tulin; Usachenko, Yelena; Acuto, Santina; Di Marzo, Rosalba; Maggio, Aurelio; Zhu, Ping; Tisdale, John F; Rivière, Isabelle; Sadelain, Michel

    2006-01-01

    The application of RNA interference (RNAi) to stem cell-based therapies will require highly specific and lineage-restricted gene silencing. Here we show the feasibility and therapeutic potential of coregulating transgene expression and RNAi in hematopoietic stem cells. We encoded promoterless small-hairpin RNA (shRNA) within the intron of a recombinant gamma-globin gene. Expression of both gamma-globin and the lariat-embedded small interfering RNA (siRNA) was induced upon erythroid differentiation, specifically downregulating the targeted gene in tissue- and differentiation stage-specific fashion. The position of the shRNA within the intron was critical to concurrently achieve high-level transgene expression, effective siRNA generation and minimal interferon induction. Lentiviral transduction of CD34(+) cells from patients with sickle cell anemia led to erythroid-specific expression of the gamma-globin transgene and concomitant reduction of endogenous beta(S) transcripts, thus providing proof of principle for therapeutic strategies that require synergistic gene addition and gene silencing in stem cell progeny.

  13. The conditional inhibition of gene expression in cultured Drosophila cells by antisense RNA.

    PubMed Central

    Bunch, T A; Goldstein, L S

    1989-01-01

    Genes producing antisense RNA are becoming important tools for the selective inhibition of gene expression. Experiments in different biological systems, targeting different mRNAs have yielded diverse results with respect to the success of the technique and its mechanism of action. We have examined the potential of three antisense genes, whose transcription is driven by a Drosophila metallothionein promoter, to inhibit the expression of alcohol dehydrogenase (ADH) or a microtubule associated protein (205K MAP) in cultured Drosophila cells. Expression of ADH was significantly reduced upon induction of the anti-ADH genes. The ADH mRNA does not appear to be destabilized by the presence of antisense RNA but rather exists at similar levels in hybrid form. Hybrids are detected with both spliced and unspliced ADH RNA. In contrast to these results, antisense genes producing antisense RNA in great excess to 205K MAP mRNA, which is itself far less abundant than the ADH mRNA, failed to show any inhibition of 205K MAP expression. Images PMID:2481266

  14. Identification of a polyomavirus microRNA highly expressed in tumors.

    PubMed

    Chen, Chun Jung; Cox, Jennifer E; Azarm, Kristopher D; Wylie, Karen N; Woolard, Kevin D; Pesavento, Patricia A; Sullivan, Christopher S

    2015-02-01

    Polyomaviruses (PyVs) are associated with tumors including Merkel cell carcinoma (MCC). Several PyVs encode microRNAs (miRNAs) but to date no abundant PyV miRNAs have been reported in tumors. To better understand the function of the Merkel cell PyV (MCPyV) miRNA, we examined phylogenetically-related viruses for miRNA expression. We show that two primate PyVs and the more distantly-related raccoon PyV (RacPyV) encode miRNAs that share genomic position and partial sequence identity with MCPyV miRNAs. Unlike MCPyV miRNA in MCC, RacPyV miRNA is highly abundant in raccoon tumors. RacPyV miRNA negatively regulates reporters of early viral (T antigen) transcripts, yet robust viral miRNA expression is tolerated in tumors. We also identify raccoon miRNAs expressed in RacPyV-associated neuroglial brain tumors, including several likely oncogenic miRNAs (oncomiRs). This work describes the first PyV miRNA abundantly expressed in tumors and is consistent with a possible role for both host and viral miRNAs in RacPyV-associated tumors.

  15. Selecting Reliable mRNA Expression Measurements Across Platforms Improves Downstream Analysis

    PubMed Central

    Tong, Pan; Diao, Lixia; Shen, Li; Li, Lerong; Heymach, John Victor; Girard, Luc; Minna, John D.; Coombes, Kevin R.; Byers, Lauren Averett; Wang, Jing

    2016-01-01

    With increasing use of publicly available gene expression data sets, the quality of the expression data is a critical issue for downstream analysis, gene signature development, and cross-validation of data sets. Thus, identifying reliable expression measurements by leveraging multiple mRNA expression platforms is an important analytical task. In this study, we propose a statistical framework for selecting reliable measurements between platforms by modeling the correlations of mRNA expression levels using a beta-mixture model. The model-based selection provides an effective and objective way to separate good probes from probes with low quality, thereby improving the efficiency and accuracy of the analysis. The proposed method can be used to compare two microarray technologies or microarray and RNA sequencing measurements. We tested the approach in two matched profiling data sets, using microarray gene expression measurements from the same samples profiled on both Affymetrix and Illumina platforms. We also applied the algorithm to mRNA expression data to compare Affymetrix microarray data with RNA sequencing measurements. The algorithm successfully identified probes/genes with reliable measurements. Removing the unreliable measurements resulted in significant improvements for gene signature development and functional annotations. PMID:27199546

  16. Multiple shRNA expressions in a single plasmid vector improve RNAi against the XPA gene

    SciTech Connect

    Nagao, Akihiro; Zhao, Xia; Takegami, Tsutomu; Nakagawa, Hideaki; Matsui, Shinobu; Matsunaga, Tsukasa; Ishigaki, Yasuhito

    2008-05-30

    To improve the efficiency of stable knockdown with short hairpin RNA (shRNA), we inserted multiple shRNA expression sequences into a single plasmid vector. In this study, the DNA repair factor XPA was selected as a target gene since it is not essential for cell viability and it is easy to check the functional knockdown of this gene. The efficiency of knockdown was compared among single and triple expression vectors. The single shRNA-expressing vector caused limited knockdown of the target protein in stable transfectants, however, the multiple expression vectors apparently increased the frequency of knockdown transfectants. There were correlations between the knockdown level and marker expression in multiple-expressing transfectants, whereas poorer correlations were observed in single vector transfectants. Multiple-transfectants exhibited reduced efficiency of repair of UV-induced DNA damage and an increased sensitivity to ultraviolet light-irradiation. We propose that multiple shRNA expression vectors might be a useful strategy for establishing knockdown cells.

  17. Epigenetic Regulation of Dopamine Transporter mRNA Expression in Human Neuroblastoma Cells

    PubMed Central

    Green, Ashley L.; Hossain, Muhammad M.; Tee, Siew C.; Zarbl, Helmut; Guo, Grace L.; Richardson, Jason R.

    2016-01-01

    The dopamine transporter (DAT) is a key regulator of dopaminergic neurotransmission. As such, proper regulation of DAT expression is important to maintain homeostasis, and disruption of DAT expression can lead to neurobehavioral dysfunction. Based on genomic features within the promoter of the DAT gene, there is potential for DAT expression to be regulated through epigenetic mechanisms, including DNA methylation and histone acetylation. However, the relative contribution of these mechanisms to DAT expression has not been empirically determined. Using pharmacologic and genetic approaches, we demonstrate that inhibition of DNA methyltransferase (DNMT) activity increased DAT mRNA approximately 1.5–2 fold. This effect was confirmed by siRNA knockdown of DNMT1. Likewise, the histone deacetylase (HDAC) inhibitors valproate and butyrate also increased DAT mRNA expression, but the response was much more robust with expression increasing over tenfold. Genetic knockdown of HDAC1 by siRNA also increased DAT expression, but not to the extent seen with pharmacological inhibition, suggesting additional isoforms of HDAC or other targets may contribute to the observed effect. Together, these data identify the relative contribution of DNMTs and HDACs in regulating expression. These finding may aid in understanding the mechanistic basis for changes in DAT expression in normal and pathophysiological states. PMID:25963949

  18. Racial differences in microRNA and gene expression in hypertensive women

    PubMed Central

    Dluzen, Douglas F.; Noren Hooten, Nicole; Zhang, Yongqing; Kim, Yoonseo; Glover, Frank E.; Tajuddin, Salman M.; Jacob, Kimberly D.; Zonderman, Alan B.; Evans, Michele K.

    2016-01-01

    Systemic arterial hypertension is an important cause of cardiovascular disease morbidity and mortality. African Americans are disproportionately affected by hypertension, in fact the incidence, prevalence, and severity of hypertension is highest among African American (AA) women. Previous data suggests that differential gene expression influences individual susceptibility to selected diseases and we hypothesized that this phenomena may affect health disparities in hypertension. Transcriptional profiling of peripheral blood mononuclear cells from AA or white, normotensive or hypertensive females identified thousands of mRNAs differentially-expressed by race and/or hypertension. Predominant gene expression differences were observed in AA hypertensive females compared to AA normotensives or white hypertensives. Since microRNAs play important roles in regulating gene expression, we profiled global microRNA expression and observed differentially-expressed microRNAs by race and/or hypertension. We identified novel mRNA-microRNA pairs potentially involved in hypertension-related pathways and differently-expressed, including MCL1/miR-20a-5p, APOL3/miR-4763-5p, PLD1/miR-4717-3p, and PLD1/miR-4709-3p. We validated gene expression levels via RT-qPCR and microRNA target validation was performed in primary endothelial cells. Altogether, we identified significant gene expression differences between AA and white female hypertensives and pinpointed novel mRNA-microRNA pairs differentially-expressed by hypertension and race. These differences may contribute to the known disparities in hypertension and may be potential targets for intervention. PMID:27779208

  19. Effects of Modeled Microgravity on Expression Profiles of Micro RNA in Human Lymphoblastoid Cells

    NASA Technical Reports Server (NTRS)

    Mangala, Lingegowda S.; Emami, Kamal; Story, Michael; Ramesh, Govindarajan; Rohde, Larry; Wu, Honglu

    2010-01-01

    Among space radiation and other environmental factors, microgravity or an altered gravity is undoubtedly the most significant stress experienced by living organisms during flight. In comparison to the static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. Micro RNA (miRNA) has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. miRNA represents a class of single-stranded noncoding regulatory RNA molecules ( 22 nt) that control gene expressions by inhibiting the translation of mRNA to proteins. However, very little is known on the effect of altered gravity on miRNA expression. We hypothesized that the miRNA expression profile will be altered in zero gravity resulting in regulation of the gene expression and functional changes of the cells. To test this hypothesis, we cultured TK6 human lymphoblastoid cells in Synthecon s Rotary cell culture system (bioreactors) for 72 h either in the rotating (10 rpm) to model the microgravity in space or in the static condition. The cell viability was determined before and after culturing the cells in the bioreactor using both trypan blue and guava via count. Expressions of a panel of 352 human miRNA were analyzed using the miRNA PCRarray. Out of 352 miRNAs, expressions of 75 were significantly altered by a change of greater than 1.5 folds and seven miRNAs were altered by a fold change greater than 2 under the rotating culture condition. Among these seven, miR-545 and miR-517a were down regulated by 2 folds, whereas miR-150, miR-302a, miR-139-3p, miR-515-3p and miR-564 were up regulated by 2 to 8 folds. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA Illumina Microarray Analysis and validated the related genes using q-RT PCR.

  20. Kaposi's sarcoma-associated herpesvirus microRNA single-nucleotide polymorphisms identified in clinical samples can affect microRNA processing, level of expression, and silencing activity.

    PubMed

    Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf; Whitby, Denise

    2013-11-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645-659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies.

  1. Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Single-Nucleotide Polymorphisms Identified in Clinical Samples Can Affect MicroRNA Processing, Level of Expression, and Silencing Activity

    PubMed Central

    Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645–659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies. PMID:24006441

  2. Computational methods and evaluation of RNA stabilization reagents for genome-wide expression studies.

    PubMed

    Bhagwat, Arvind A; Phadke, Ravindra P; Wheeler, David; Kalantre, Sagar; Gudipati, Mohanram; Bhagwat, Medha

    2003-11-01

    Gene expression studies require high quality messenger RNA (mRNA) in addition to other factors such as efficient primers and labeling reagents. To prevent RNA degradation and to improve the quality of gene array expression data, several commercial reagents have become available. We examined a conventional hot-phenol lysis method and RNA stabilization reagents, and generated comparative gene expression profiles from Escherichia coli cells grown on minimal medium. Our data indicate that certain RNA stabilization reagents induce stress responses and proper caution must be exercised during their use. We observed that the laboratory reagent (phenol/EtOH, 5:95, v/v) worked efficiently in isolating high quality mRNA and reproducibility was such that reliable gene expression profiles were generated. To assist in the analysis of gene expression data, we wrote a number of macros that use the most recent gene annotation and process data in accordance with gene function. Scripts were also written to examine the occurrence of artifacts, based on GC content, length of the individual open reading frame (ORF), its distribution on plus and minus DNA strands, and the distance from the replication origin.

  3. Aberrant Expression Profile of Long Noncoding RNA in Human Sinonasal Squamous Cell Carcinoma by Microarray Analysis

    PubMed Central

    Meng, Ling-zhao; Sun, Jing-wu; Yang, Fan

    2016-01-01

    Objectives. This study aimed to identify aberrantly expressed long noncoding RNAs (lncRNAs) profile of sinonasal squamous cell carcinoma (SSCC) and explore their potential functions. Methods. We investigated lncRNA and mRNA expression in SSCC and paired adjacent noncancerous tissues obtained from 6 patients with microarrays. Gene ontology (GO) analysis and pathway analysis were utilized to investigate the gene function. Gene signal-network and lncRNA-mRNA network were depicted. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to validate 5 lncRNAs in a second set of paired SSCC and adjacent noncancerous tissues obtained from 22 additional patients. Results. We identified significantly differentially expressed lncRNAs (n = 3146) and mRNAs (n = 2208) in SSCC relative to noncancerous tissues. The GO annotation indicated that there are some core gene products that may be attributed to the progress of SSCC. The pathway analysis identified many pathways associated with cancer. The results of lncRNA-mRNA network and gene signal-network implied some core lncRNAs/mRNAs might play important roles in SSCC pathogenesis. The results of qRT-PCR showed that all of the 5 lncRNAs were differentially expressed and consistent with the microarray results. Conclusion. Our study is the first screening and analysis of lncRNAs expression profile in SSCC and may offer new insights into pathogenesis of this disease. PMID:28044124

  4. Identification of differentially expressed microRNAs involved in non-traumatic osteonecrosis through microRNA expression profiling.

    PubMed

    Wu, Xingjing; Zhang, Yongtao; Guo, Xiong; Xu, Hongguang; Xu, Zhujun; Duan, Dapeng; Wang, Kunzheng

    2015-07-01

    Accumulating evidence has recently indicated a vital role of microRNAs (miRNAs) in the development of various bone diseases. However, the biological role of miRNAs in the pathogenesis of non-traumatic osteonecrosis of femoral head (ONFH) has not yet been investigated. The present study aimed to profile the differential miRNA expression between non-traumatic ONFH and femoral neck fracture and to develop further understanding of the molecular mechanisms involved in the pathogenesis of non-traumatic ONFH. Femoral heads from 4 patients with non-traumatic ONFH and 4 with femoral neck fracture were used to analyze the miRNA expression profiles in bone tissue using the Exiqon miRCURY™ LNA Array (v.18.0). The results of miRNA microarray analysis were further confirmed by real-time quantitative polymerase chain reaction (qPCR). The differentially expressed miRNA target genes and signaling pathways involved were predicted by bioinformatics analysis. MiRNA microarray chip analysis revealed that 22 miRNAs were significantly up-regulated and 17 were significantly down-regulated in the non-traumatic ONFH samples compared with the femoral neck fracture samples. The real-time qPCR also confirmed the microarray data. Bioinformatics analysis demonstrated that toll-like receptor (TLR), neurotrophin and NOD-like receptor signaling pathway were most likely to be regulated by these differential miRNAs. This miRNA microarray study reveals significant differences in miRNA expression between patients with non-traumatic ONFH and those with femoral neck fracture. Our data also manifests that the signaling pathways regulated by these differentially expressed miRNAs might be important in the pathogenesis of non-traumatic ONFH.

  5. Interleukin 21 Controls mRNA and MicroRNA Expression in CD40-Activated Chronic Lymphocytic Leukemia Cells.

    PubMed

    De Cecco, Loris; Capaia, Matteo; Zupo, Simona; Cutrona, Giovanna; Matis, Serena; Brizzolara, Antonella; Orengo, Anna Maria; Croce, Michela; Marchesi, Edoardo; Ferrarini, Manlio; Canevari, Silvana; Ferrini, Silvano

    2015-01-01

    Several factors support CLL cell survival in the microenvironment. Under different experimental conditions, IL21 can either induce apoptosis or promote CLL cell survival. To investigate mechanisms involved in the effects of IL21, we studied the ability of IL21 to modulate gene and miRNA expressions in CD40-activated CLL cells. IL21 was a major regulator of chemokine production in CLL cells and it modulated the expression of genes involved in cell movement, metabolism, survival and apoptosis. In particular, IL21 down-regulated the expression of the chemokine genes CCL4, CCL3, CCL3L1, CCL17, and CCL2, while it up-regulated the Th1-related CXCL9 and CXCL10. In addition, IL21 down-regulated the expression of genes encoding signaling molecules, such as CD40, DDR1 and PIK3CD. IL21 modulated a similar set of genes in CLL and normal B-cells (e.g. chemokine genes), whereas other genes, including MYC, TNF, E2F1, EGR2 and GAS-6, were regulated only in CLL cells. An integrated analysis of the miRNome and gene expression indicated that several miRNAs were under IL21 control and these could, in turn, influence the expression of potential target genes. We focused on hsa-miR-663b predicted to down-regulate several relevant genes. Transfection of hsa-miR-663b or its specific antagonist showed that this miRNA regulated CCL17, DDR1, PIK3CD and CD40 gene expression. Our data indicated that IL21 modulates the expression of genes mediating the crosstalk between CLL cells and their microenvironment and miRNAs may take part in this process.

  6. Interleukin 21 Controls mRNA and MicroRNA Expression in CD40-Activated Chronic Lymphocytic Leukemia Cells

    PubMed Central

    De Cecco, Loris; Capaia, Matteo; Zupo, Simona; Cutrona, Giovanna; Matis, Serena; Brizzolara, Antonella; Orengo, Anna Maria; Croce, Michela; Marchesi, Edoardo; Ferrarini, Manlio; Canevari, Silvana; Ferrini, Silvano

    2015-01-01

    Several factors support CLL cell survival in the microenvironment. Under different experimental conditions, IL21 can either induce apoptosis or promote CLL cell survival. To investigate mechanisms involved in the effects of IL21, we studied the ability of IL21 to modulate gene and miRNA expressions in CD40-activated CLL cells. IL21 was a major regulator of chemokine production in CLL cells and it modulated the expression of genes involved in cell movement, metabolism, survival and apoptosis. In particular, IL21 down-regulated the expression of the chemokine genes CCL4, CCL3, CCL3L1, CCL17, and CCL2, while it up-regulated the Th1-related CXCL9 and CXCL10. In addition, IL21 down-regulated the expression of genes encoding signaling molecules, such as CD40, DDR1 and PIK3CD. IL21 modulated a similar set of genes in CLL and normal B-cells (e.g. chemokine genes), whereas other genes, including MYC, TNF, E2F1, EGR2 and GAS-6, were regulated only in CLL cells. An integrated analysis of the miRNome and gene expression indicated that several miRNAs were under IL21 control and these could, in turn, influence the expression of potential target genes. We focused on hsa-miR-663b predicted to down-regulate several relevant genes. Transfection of hsa-miR-663b or its specific antagonist showed that this miRNA regulated CCL17, DDR1, PIK3CD and CD40 gene expression. Our data indicated that IL21 modulates the expression of genes mediating the crosstalk between CLL cells and their microenvironment and miRNAs may take part in this process. PMID:26305332

  7. RNA.

    ERIC Educational Resources Information Center

    Darnell, James E., Jr.

    1985-01-01

    Ribonucleic acid (RNA) converts genetic information into protein and usually must be processed to serve its function. RNA types, chemical structure, protein synthesis, translation, manufacture, and processing are discussed. Concludes that the first genes might have been spliced RNA and that humans might be closer than bacteria to primitive…

  8. Analysis of Serum microRNA Expression Profiles and Comparison with Small Intestinal microRNA Expression Profiles in Weaned Piglets

    PubMed Central

    Tao, Xin; Xu, Ziwei; Men, Xiaoming

    2016-01-01

    Weaning stress induces tissue injuries and impairs health and growth in piglets, especially during the first week post-weaning. MicroRNAs (miRNAs) play vital roles in regulating stresses and diseases. Our previous study found multiple differentially expressed miRNAs in small intestine of piglets at four days post-weaning. To better understand the roles of miRNAs during weaning stress, we analyzed the serum miRNA expressional profile in weaned piglets (at four days post-weaning) and in suckling piglets (control) of the same age using miRNA microarray technology. We detected a total of 300 expressed miRNAs, 179 miRNAs of which were differentially expressed between the two groups. The miRNA microarray results were validated by RT-qPCR. The biological functions of these differentially expressed miRNAs were predicted by GO terms and KEGG pathway annotations. We identified 10 highly expressed miRNAs in weaned piglets including miR-31, miR-205, and miR-21 (upregulated) and miR-144, miR-30c-5p, miR-363, miR-194a, miR-186, miR-150, and miR-194b-5p (downregulated). Additionally, miR-194b-5p expression was significantly downregulated in serum and small intestine of weaned piglets. Our results suggest that weaning stress affects serum miRNA profiles in piglets. And serum miR-194b-5p levels can reflect its expressional changes in small intestine of piglets by weaning stress. PMID:27632531

  9. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells

    PubMed Central

    Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana

    2016-01-01

    The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein. PMID:27827994

  10. Distinct microRNA expression signatures in human right atrial and ventricular myocardium.

    PubMed

    Zhang, Yangyang; Wang, Xiaowei; Xu, Xiaohan; Wang, Jun; Liu, Xiang; Chen, Yijiang

    2012-12-01

    Human atrial and ventricular myocardium has distinct structure and physiology. MicroRNAs (miRNAs) are the central players in the regulation of gene expression, participating in many physiological processes. A comprehensive knowledge of miRNA expression in the human heart is essential for the understanding of myocardial function. The aim of this study was to compare the miRNA signature in human right atrial and ventricular myocardium. Agilent human miRNA arrays were used to indicate the miRNA expression signatures of the right atrial (n = 8) and ventricular (n = 9) myocardium of healthy individuals. Quantitative reverse transcription-polymerase chain reactions (qRT-PCRs) were used to validate the array results. DIANA-mirPath was used to incorporate the miRNAs into pathways. MiRNA arrays showed that 169 miRNAs were expressed at different levels in human right atrial and ventricular myocardium. The unsupervised hierarchical clustering analysis based on the 169 dysregulated miRNAs showed that miRNA expression categorized two well-defined clusters that corresponded to human right atrial and ventricular myocardium. The qRT-PCR results correlated well with the microarray data. Bioinformatic analysis indicated the potential miRNA targets and molecular pathways. This study indicates that distinct miRNA expression signatures in human right atrial and ventricular myocardium. The findings provide a novel understanding of the molecular differences between human atrial and ventricular myocardium and may establish a framework for an anatomically detailed evaluation of cardiac function regulation.

  11. Gene microarray analysis of lncRNA and mRNA expression profiles in patients with hypopharyngeal squamous cell carcinoma

    PubMed Central

    Zhou, Jieyu; Li, Wenming; Jin, Tong; Xiang, Xuan; Li, Maocai; Wang, Juan; Li, Guojun; Pan, Xinliang; Lei, Dapeng

    2015-01-01

    Background: Studies have shown that long noncoding RNAs (lncRNAs) are involved in the development and progression of many types of cancer. However, the mechanisms by which lncRNAs influence development and progression of hypopharyngeal squamous cell carcinoma (HSCC) are unclear. Method: We investigated differences in lncRNA and mRNA expression profiles between 3 pairs of HSCC tissues and adjacent nontumor tissues by microarray analysis. Results: In HSCC tissues, 1299 lncRNAs were significantly upregulated (n=669) or downregulated (n=630) compared to levels in adjacent nontumor tissues. Moreover, 1432 mRNAs were significantly upregulated (n=684) or downregulated (n=748) in HSCC tissues. We randomly selected 2 differentially expressed lncRNAs (AB209630, AB019562) and 2 differentially expressed mRNAs (SPP1, TJP2) for confirmation of microarray results using qRT-PCR. The qRT-PCR results matched well with the microarray data. The differentially expressed lncRNAs and mRNAs were distributed on each of the chromosomes, including the X and Y chromosomes. Pathway analysis indicated that the biological functions of differentially expressed mRNAs were related to 48 cellular pathways that may be associated with HSCC development. GO analysis revealed that 593 mRNAs involved in biological processes, 50 mRNAs involved in cellular components, and 46 mRNAs involved in molecular functions were upregulated in the carcinomas; 280 mRNAs involved in biological processes, 58 mRNAs involved in cellular components, and 71 mRNAs involved in molecular functions were downregulated in the carcinomas. In addition, 8 enhancer-like lncRNAs and 21 intergenic lncRNAs with their adjacent mRNA pairs were identified as coregulated transcripts. Conclusion: These findings provide insight into the mechanisms underlying HSCC tumorigenesis and will facilitate identification of new therapeutic targets and diagnostic biomarkers for this disease. PMID:26131061

  12. A systems biology approach for miRNA-mRNA expression patterns analysis in non-small cell lung cancer.

    PubMed

    Najafi, Ali; Tavallaei, Mahmood; Hosseini, Sayed Mostafa

    2016-01-01

    Non-small cell lung cancers (NSCLCs) is a prevalent and heterogeneous subtype of lung cancer accounting for 85 percent of patients. MicroRNAs (miRNAs), a class of small endogenous non-coding RNAs, incorporate into regulation of gene expression post-transcriptionally. Therefore, deregulation of miRNAs' expression has provided further layers of complexity to the molecular etiology and pathogenesis of different diseases and malignancies. Although, until now considerable number of studies has been carried out to illuminate this complexity in NSCLC, they have remained less effective in their goal due to lack of a holistic and integrative systems biology approach which considers all natural elaborations of miRNAs' function. It is able to reliably nominate most affected signaling pathways and therapeutic target genes by deregulated miRNAs during a particular pathological condition. Herein, we utilized a holistic systems biology approach, based on appropriate re-analyses of microarray datasets followed by reliable data filtering, to analyze integrative and combinatorial deregulated miRNA-mRNA interaction network in NSCLC, aiming to ascertain miRNA-dysregulated signaling pathway and potential therapeutic miRNAs and mRNAs which represent a lion' share during various aspects of NSCLC's pathogenesis. Our systems biology approach introduced and nominated 1) important deregulated miRNAs in NSCLCs compared with normal tissue 2) significant and confident deregulated mRNAs which were anti-correlatively targeted by deregulated miRNA in NSCLCs and 3) dysregulated signaling pathways in association with deregulated miRNA-mRNAs interactions in NSCLCs. These results introduce possible mechanism of function of deregulated miRNAs and mRNAs in NSCLC that could be used as potential therapeutic targets.

  13. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System.

    PubMed

    Bhagwat, Basdeo; Chi, Ming; Han, Dianwei; Tang, Haifeng; Tang, Guiliang; Xiang, Yu

    2016-01-01

    Artificial microRNA (amiRNA) technology utilizes microRNA (miRNA) biogenesis pathway to produce artificially selected small RNAs using miRNA gene backbone. It provides a feasible strategy for inducing loss of gene function, and has been applied in functional genomics study, improvement of crop quality and plant virus disease resistance. A big challenge in amiRNA applications is the unpredictability of silencing efficacy of the designed amiRNAs and not all constructed amiRNA candidates would be expressed effectively in plant cells. We and others found that high efficiency and specificity in RNA silencing can be achieved by designing amiRNAs with perfect or almost perfect sequence complementarity to their targets. In addition, we recently demonstrated that Agrobacterium-mediated transient expression system can be used to validate amiRNA constructs, which provides a simple, rapid and effective method to select highly expressible amiRNA candidates for stable genetic transformation. Here, we describe the methods for design of amiRNA candidates with perfect or almost perfect base-pairing to the target gene or gene groups, incorporation of amiRNA candidates in miR168a gene backbone by one step inverse PCR amplification, construction of plant amiRNA expression vectors, and assay of transient expression of amiRNAs in Nicotiana benthamiana through agro-infiltration, small RNA extraction, and amiRNA Northern blot.

  14. Effect of taurine on mRNA expression of thioredoxin interacting protein in Caco-2 cells.

    PubMed

    Gondo, Yusuke; Satsu, Hideo; Ishimoto, Yoko; Iwamoto, Taku; Shimizu, Makoto

    2012-09-28

    Taurine (2-aminoethanesulfonic acid), a sulfur-containing β-amino acid, plays an important role in several essential biological processes; although, the underlying mechanisms for these regulatory functions remain to be elucidated, especially at the genetic level. We investigated the effects of taurine on the gene expression profile in Caco-2 cells using DNA microarray. Taurine increased the mRNA expression of thioredoxin interacting protein (TXNIP), which is involved in various metabolisms and diseases. β-Alanine or γ-aminobutyric acid (GABA), which are structurally or functionally related to taurine, did not increase TXNIP mRNA expression. These suggest the expression of TXNIP mRNA is induced specifically by taurine. β-Alanine is also known to be a substrate of taurine transporter (TAUT) and competitively inhibits taurine uptake. Inhibition of taurine uptake by β-alanine eliminated the up-regulation of TXNIP, which suggests TAUT is involved in inducing TXNIP mRNA expression. The up-regulation of TXNIP mRNA expression by taurine was also observed at the protein level. Furthermore, taurine significantly increased TXNIP promoter activity. Our present study demonstrated the taurine-specific phenomenon of TXNIP up-regulation, which sheds light on the physiological function of taurine.

  15. An accelerated miRNA-based screen implicates Atf-3 in Drosophila odorant receptor expression

    PubMed Central

    Bhat, Shreelatha; Jones, Walton D.

    2016-01-01

    The Drosophila olfactory system is highly stereotyped in form and function; olfactory sensory neurons (OSNs) expressing a specific odorant receptor (OR) always appear in the same antennal location and the axons of OSNs expressing the same OR converge on the same antennal lobe glomeruli. Although some transcription factors have been implicated in a combinatorial code specifying OR expression and OSN identity, it is clear other players remain unidentified. In hopes of mitigating the challenges of genome-wide screening, we examined the feasibility of a two-tiered approach comprising a primary “pooling” screen for miRNAs whose tissue-specific over-expression causes a phenotype of interest followed by a focused secondary screen using gene-specific RNAi. Since miRNAs down-regulate their targets, miRNA over-expression phenotypes should be attributable to target loss-of-function. It is the sequence-dependence of miRNA-target pairing that suggests candidates for the secondary screen. Since miRNAs are short, however, miRNA misexpression will likely uncover non-biological miRNA-target relationships. Rather than focusing on miRNA function itself where these non-biological relationships could be misleading, we propose using miRNAs as tools to focus a more traditional RNAi-based screen. Here we describe such a screen that uncovers a role for Atf3 in the expression of the odorant receptor Or47b. PMID:26848073

  16. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  17. Effects of β4 integrin expression on microRNA patterns in breast cancer.

    PubMed

    Gerson, Kristin D; Maddula, V S R Krishna; Seligmann, Bruce E; Shearstone, Jeffrey R; Khan, Ashraf; Mercurio, Arthur M

    2012-07-15

    The integrin α6β4 is defined as an adhesion receptor for laminins. Referred to as 'β4', this integrin plays a key role in the progression of various carcinomas through its ability to orchestrate key signal transduction events and promote cell motility. To identify novel downstream effectors of β4 function in breast cancer, microRNAs (miRNAs) were examined because of their extensive links to tumorigenesis and their ability to regulate gene expression globally. Two breast carcinoma cell lines and a collection of invasive breast carcinomas with varying β4 expression were used to assess the effect of this integrin on miRNA expression. A novel miRNA microarray analysis termed quantitative Nuclease Protection Assay (qNPA) revealed that β4 expression can significantly alter miRNA expression and identified two miRNA families, miR-25/32/92abc/363/363-3p/367 and miR-99ab/100, that are consistently downregulated by expression of this integrin. Analysis of published Affymetrix GeneChip data identified 54 common targets of miR-92ab and miR-99ab/100 within the subset of β4-regulated mRNAs, revealing several genes known to be key components of β4-regulated signaling cascades and effectors of cell motility. Gene ontology classification identified an enrichment in genes associated with cell migration within this population. Finally, gene set enrichment analysis of all β4-regulated mRNAs revealed an enrichment in targets belonging to distinct miRNA families, including miR-92ab and others identified by our initial array analyses. The results obtained in this study provide the first example of an integrin globally impacting miRNA expression and provide evidence that select miRNA families collectively target genes important in executing β4-mediated cell motility.

  18. MicroRNA Expression Profiles in Cultured Human Fibroblasts in Space

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Jeevarajan, John; Rohde, Larry; Zhang, Ye

    2014-01-01

    Microgravity, or an altered gravity environment from the static 1g, has been shown to influence global gene expression patterns and protein levels in living organisms. However, it is unclear how these changes in gene and protein expressions are related to each other or are related to other factors regulating such changes. A different class of RNA, the small non-coding microRNA (miRNA), can have a broad effect on gene expression networks by mainly inhibiting the translation process. Previously, we investigated changes in the expression of miRNA and related genes under simulated microgravity conditions on the ground using the NASA invented bioreactor. In comparison to static 1 g, simulated microgravity altered a number of miRNAs in human lymphoblastoid cells. Pathway analysis with the altered miRNAs and RNA expressions revealed differential involvement of cell communication and catalytic activity, as well as immune response signaling and NGF activation of NF-kB pathways under simulated microgravity condition. The network analysis also identified several projected networks with c- Rel, ETS1 and Ubiquitin C as key factors. In a flight experiment on the International Space Station (ISS), we will investigate the effects of actual spaceflight on miRNA expressions in nondividing human fibroblast cells in mostly G1 phase of the cell cycle. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. In addition to miRNA expressions, we will investigate the effects of spaceflight on the cellular response to DNA damages from bleomycin treatment.

  19. The Integrative Analysis of microRNA and mRNA Expression in Mouse Uterus under Delayed Implantation and Activation

    PubMed Central

    Liu, Ji-Long; Zhang, Zhi-Rong; Jia, Bo; Feng, Xu-Hui; Ren, Gang; Hu, Shi-Jun; Yang, Zeng-Ming

    2010-01-01

    Background Delayed implantation is a developmental arrest at the blastocyst stage and a good model for embryo implantation. MicroRNAs (miRNAs) have been shown to be involved in mouse embryo implantation through regulating uterine gene expression. This study was to have an integrative analysis on global miRNA and mRNA expression in mouse uterus under delayed implantation and activation through Illumina sequencing. Methodology/Principal Findings By deep sequencing and analysis, we found that there are 20 miRNAs up-regulated and 42 miRNAs down-regulated at least 1.2 folds, and 268 genes up-regulated and 295 genes down-regulated at least 2 folds under activation compared to delayed implantation, respectively. Many different forms of editing in mature miRNAs are detected. The percentage of editing at positions 4 and 5 of mature miRNAs is significantly higher under delayed implantation than under activation. Although the number of miR-21 reference sequence under activation is slightly lower than that under delayed implantation, the total level of miR-21 under activation is higher than that under delayed implantation. Six novel miRNAs are predicted and confirmed. The target genes of significantly up-regulated miRNAs under activation are significantly enriched. Conclusions miRNA and mRNA expression patterns are closely related. The target genes of up-regulated miRNAs are significantly enriched. A high level of editing at positions 4 and 5 of mature miRNAs is detected under delayed implantation than under activation. Our data should be valuable for future study on delayed implantation. PMID:21124741

  20. Joint MiRNA/mRNA expression profiling reveals changes consistent with development of dysfunctional corpus luteum after weight gain.

    PubMed

    Bradford, Andrew P; Jones, Kenneth; Kechris, Katerina; Chosich, Justin; Montague, Michael; Warren, Wesley C; May, Margaret C; Al-Safi, Zain; Kuokkanen, Satu; Appt, Susan E; Polotsky, Alex J

    2015-01-01

    Obese women exhibit decreased fertility, high miscarriage rates and dysfunctional corpus luteum (CL), but molecular mechanisms are poorly defined. We hypothesized that weight gain induces alterations in CL gene expression. RNA sequencing was used to identify changes in the CL transcriptome in the vervet monkey (Chlorocebus aethiops) during weight gain. 10 months of high-fat, high-fructose diet (HFHF) resulted in a 20% weight gain for HFHF animals vs. 2% for controls (p = 0.03) and a 66% increase in percent fat mass for HFHF group. Ovulation was confirmed at baseline and after intervention in all animals. CL were collected on luteal day 7-9 based on follicular phase estradiol peak. 432 mRNAs and 9 miRNAs were differentially expressed in response to HFHF diet. Specifically, miR-28, miR-26, and let-7b previously shown to inhibit sex steroid production in human granulosa cells, were up-regulated. Using integrated miRNA and gene expression analysis, we demonstrated changes in 52 coordinately regulated mRNA targets corresponding to opposite changes in miRNA. Specifically, 2 targets of miR-28 and 10 targets of miR-26 were down-regulated, including genes linked to follicular development, steroidogenesis, granulosa cell proliferation and survival. To the best of our knowledge, this is the first report of dietary-induced responses of the ovulating ovary to developing adiposity. The observed HFHF diet-induced changes were consistent with development of a dysfunctional CL and provide new mechanistic insights for decreased sex steroid production characteristic of obese women. MiRNAs may represent novel biomarkers of obesity-related subfertility and potential new avenues for therapeutic intervention.

  1. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen

    PubMed Central

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli (Brassica oleracea var. italica) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development. PMID:28392797

  2. Joint MiRNA/mRNA Expression Profiling Reveals Changes Consistent with Development of Dysfunctional Corpus Luteum after Weight Gain

    PubMed Central

    Bradford, Andrew P.; Jones, Kenneth; Kechris, Katerina; Chosich, Justin; Montague, Michael; Warren, Wesley C.; May, Margaret C.; Al-Safi, Zain; Kuokkanen, Satu

    2015-01-01

    Obese women exhibit decreased fertility, high miscarriage rates and dysfunctional corpus luteum (CL), but molecular mechanisms are poorly defined. We hypothesized that weight gain induces alterations in CL gene expression. RNA sequencing was used to identify changes in the CL transcriptome in the vervet monkey (Chlorocebus aethiops) during weight gain. 10 months of high-fat, high-fructose diet (HFHF) resulted in a 20% weight gain for HFHF animals vs. 2% for controls (p = 0.03) and a 66% increase in percent fat mass for HFHF group. Ovulation was confirmed at baseline and after intervention in all animals. CL were collected on luteal day 7–9 based on follicular phase estradiol peak. 432 mRNAs and 9 miRNAs were differentially expressed in response to HFHF diet. Specifically, miR-28, miR-26, and let-7b previously shown to inhibit sex steroid production in human granulosa cells, were up-regulated. Using integrated miRNA and gene expression analysis, we demonstrated changes in 52 coordinately regulated mRNA targets corresponding to opposite changes in miRNA. Specifically, 2 targets of miR-28 and 10 targets of miR-26 were down-regulated, including genes linked to follicular development, steroidogenesis, granulosa cell proliferation and survival. To the best of our knowledge, this is the first report of dietary-induced responses of the ovulating ovary to developing adiposity. The observed HFHF diet-induced changes were consistent with development of a dysfunctional CL and provide new mechanistic insights for decreased sex steroid production characteristic of obese women. MiRNAs may represent novel biomarkers of obesity-related subfertility and potential new avenues for therapeutic intervention. PMID:26258540

  3. ALS Along the Axons - Expression of Coding and Noncoding RNA Differs in Axons of ALS models.

    PubMed

    Rotem, Nimrod; Magen, Iddo; Ionescu, Ariel; Gershoni-Emek, Noga; Altman, Topaz; Costa, Christopher J; Gradus, Tal; Pasmanik-Chor, Metsada; Willis, Dianna E; Ben-Dov, Iddo Z; Hornstein, Eran; Perlson, Eran

    2017-03-16

    Amyotrophic lateral sclerosis (ALS) is a multifactorial lethal motor neuron disease with no known treatment. Although the basic mechanism of its degenerative pathogenesis remains poorly understood, a subcellular spatial alteration in RNA metabolism is thought to play a key role. The nature of these RNAs remains elusive, and a comprehensive characterization of the axonal RNAs involved in maintaining neuronal health has yet to be described. Here, using cultured spinal cord (SC) neurons grown using a compartmented platform followed by next-generation sequencing (NGS) technology, we find that RNA expression differs between the somatic and axonal compartments of the neuron, for both mRNA and microRNA (miRNA). Further, the introduction of SOD1(G93A) and TDP43(A315T), established ALS-related mutations, changed the subcellular expression and localization of RNAs within the neurons, showing a spatial specificity to either the soma or the axon. Altogether, we provide here the first combined inclusive profile of mRNA and miRNA expression in two ALS models at the subcellular level. These data provide an important resource for studies on the roles of local protein synthesis and axon degeneration in ALS and can serve as a possible target pool for ALS treatment.

  4. ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins.

    PubMed

    Martirosyan, Araks; De Martino, Andrea; Pagnani, Andrea; Marinari, Enzo

    2017-03-07

    Gene expression is a noisy process and several mechanisms, both transcriptional and post-transcriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions.

  5. ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins

    PubMed Central

    Martirosyan, Araks; De Martino, Andrea; Pagnani, Andrea; Marinari, Enzo

    2017-01-01

    Gene expression is a noisy process and several mechanisms, both transcriptional and post-transcriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions. PMID:28266541

  6. Novel phenotype of RNA synthesis expressed by vesicular stomatitis virus isolated from persistent infection.

    PubMed Central

    Frey, T K; Youngner, J S

    1982-01-01

    Vesicular stomatitis virus (VSV) stocks isolated from two persistently infected mouse L-cell lines (designated VSV-PI stocks) express an altered phenotype of RNA synthesis. This phenotype is different from the RNA synthesis phenotype expressed by the viruses used to initiate the persistently infected lines, wild-type VSV and VSV ts-0-23 (a group III, ts-, RNA+ mutant). At 34 and 37 degrees C in L cells productively infected with VSV-PI stocks derived from the two cell lines, transcription of virus mRNA was significantly reduced, whereas replication of the 40S genomic RNA species was enhanced compared with wild-type VSV or ts-0-23. At 34 and 37 degrees C, both VSV-PI stocks replicated with equal or greater efficiency than wild-type VSV; 37 degrees C was the temperature at which the persistently infected cultures were maintained. At 40 degrees C, both VSV-PI stocks were temperature sensitive, and clonal VSV-PI isolates from both cell lines belong to complementation group I (RNA-). Standard ts- mutants (derived by mutagenesis of wild-type VSV) belonging to RNA- complementation groups I, II, and IV do not express the VSV-PI RNA synthesis phenotype at the permissive temperature, making this phenotype distinctive to persistent infection. Since the two VSV-PI populations from persistently infected cell lines initiated with different viruses both evolved this unique phenotype of RNA synthesis, the expression of this phenotype may play an important role in the maintenance of persistence. Images PMID:6292483

  7. Identification of aberrant tRNA-halves expression patterns in clear cell renal cell carcinoma

    PubMed Central

    Nientiedt, Malin; Deng, Mario; Schmidt, Doris; Perner, Sven; Müller, Stefan C.; Ellinger, Jörg

    2016-01-01

    Small non-coding RNAs (sncRNA; <200 nt) regulate various cellular processes and modify gene expression. Under nutritional, biological or physiochemical stress some mature sncRNAs (e.g. tRNAs) are cleaved into halves (30–50 nt) and smaller fragments (18–22 nt); the significance and functional role of these tRNA fragments is unknown, but their existence has been linked to carcinogenesis. We used small RNA sequencing to determine the expression of sncRNAs. Subsequently the findings were validated for miR-122-5p, miR-142-3p and 5'tRNA4-Val-AAC using qPCR. We identified differential expression of 132 miRNAs (upregulated: 61, downregulated: 71) and 32 tRNAs (upregulated: 13, downregulated: 19). Read length analysis showed that miRNAs mapped in the 20–24 nt fraction, whereas tRNA reads mapped in the 30–36 nt fraction instead the expected size of 73–95 nt thereby indicating cleavage of tRNAs. Overexpression of miR-122-5p and miR-142-3p as well as downregulation of 5'tRNA4-Val-AAC was validated in an independent cohort of 118 ccRCC and 74 normal renal tissues. Furthermore, staging and grading was inversely correlated with the 5'tRNA4-Val-AAC expression. Serum levels of miR-122-5p, miR-142-3p and 5'tRNA4-Val-AAC did not differ in ccRCC and control subjects. In conclusion, 5′ cleavage of tRNAs occurs in ccRCC, but the exact functional implication of tRNA-halve deregulation remains to be clarified. PMID:27883021

  8. A signature microRNA expression profile for the cellular response to thermal stress

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Roth, Caleb C.; Ketchum, Norma; Ibey, Bennett L.; Waterworth, Angela; Suarez, Maria; Roach, William P.

    2009-02-01

    Recently, an extensive layer of intra-cellular signals was discovered that was previously undetected by genetic radar. It is now known that this layer consists primarily of a class of short noncoding RNA species that are referred to as microRNAs (miRNAs). MiRNAs regulate protein synthesis at the post-transcriptional level, and studies have shown that they are involved in many fundamental cellular processes. In this study, we hypothesized that miRNAs may be involved in cellular stress response mechanisms, and that cells exposed to thermal stress may exhibit a signature miRNA expression profile indicative of their functional involvement in such mechanisms. To test our hypothesis, human dermal fibroblasts were exposed to an established hyperthermic protocol, and the ensuing miRNA expression levels were evaluated 4 hr post-exposure using microRNA microarray gene chips. The microarray data shows that 123 miRNAs were differentially expressed in cells exposed to thermal stress. We collectively refer to these miRNAs as thermalregulated microRNAs (TRMs). Since miRNA research is in its infancy, it is interesting to note that only 27 of the 123 TRMs are currently annotated in the Sanger miRNA registry. Prior to publication, we plan to submit the remaining novel 96 miRNA gene sequences for proper naming. Computational and thermodynamic modeling algorithms were employed to identify putative mRNA targets for the TRMs, and these studies predict that TRMs regulate the mRNA expression of various proteins that are involved in the cellular stress response. Future empirical studies will be conducted to validate these theoretical predictions, and to further examine the specific role that TRMs play in the cellular stress response.

  9. Focused ultrasound for targeted delivery of siRNA and efficient knockdown of Htt expression.

    PubMed

    Burgess, Alison; Huang, Yuexi; Querbes, William; Sah, Dinah W; Hynynen, Kullervo

    2012-10-28

    RNA interference is a promising strategy for the treatment of Huntington's disease (HD) as it can specifically decrease the expression of the mutant Huntingtin protein (Htt). However, siRNA does not cross the blood-brain barrier and therefore delivery to the brain is limited to direct CNS delivery. Non-invasive delivery of siRNA through the blood-brain barrier (BBB) would be a significant advantage for translating this therapy to HD patients. Focused ultrasound (FUS), combined with intravascular delivery of microbubble contrast agent, was used to locally and transiently disrupt the BBB in the right striatum of adult rats. 48h following treatment with siRNA, the right (treated) and the left (control) striatum were dissected and analyzed for Htt mRNA levels. We demonstrate that FUS can non-invasively deliver siRNA-Htt directly to the striatum leading to a significant reduction of Htt expression in a dose dependent manner. Furthermore, we show that reduction of Htt with siRNA-Htt was greater when the extent of BBB disruption was increased. This study demonstrates that siRNA treatment for knockdown of mutant Htt is feasible without the surgical intervention previously required for direct delivery to the brain.

  10. Localization and differential regulation of angiotensinogen mRNA expression in the vessel wall.

    PubMed Central

    Naftilan, A J; Zuo, W M; Inglefinger, J; Ryan, T J; Pratt, R E; Dzau, V J

    1991-01-01

    Recent data demonstrate the existence of a vascular renin angiotensin system. In this study we examine the localization of angiotensinogen mRNA in the blood vessel wall of two rat strains, the Wistar and Wistar Kyoto (WKY), as well as the regulation of vascular angiotensinogen mRNA expression by dietary sodium. Northern blot analysis and in situ hybridization histochemistry demonstrate that in both strains angiotensinogen mRNA is detected in the aortic medial smooth muscle layer as well as the periaortic fat. In WKY rats fed a 1.6% sodium diet, angiotensinogen mRNA concentration is 2.6-fold higher in the periaortic fat than in the smooth muscle, as analyzed by quantitative slot blot hybridization. Angiotensinogen mRNA expression in the medial smooth muscle layer is sodium regulated. After 5 d of a low (0.02%) sodium diet, smooth muscle angiotensinogen mRNA levels increase 3.2-fold (P less than 0.005) as compared with the 1.6% sodium diet. In contrast, angiotensinogen mRNA level in the periaortic fat is not influenced by sodium diet. In summary, our data demonstrate regional (smooth muscle vs. periaortic fat) differential regulation of angiotensinogen mRNA levels in the blood vessel wall by sodium. This regional differential regulation by sodium may have important physiological implications. Images PMID:2010543

  11. Four new chalcohalides, NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl: Syntheses, crystal structures and optical properties

    SciTech Connect

    Li, Chao; Feng, Kai; Tu, Heng; Yao, Jiyong; Wu, Yicheng

    2015-07-15

    Four new chalcohalides, namely NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br, and CsBa{sub 2}SnS{sub 4}Cl, have been synthesized by the conventional high temperature solid-state reactions. They crystallize in three different space groups: space group I4/mcm for NaBa{sub 2}SnS{sub 4}Cl and KBa{sub 2}SnS{sub 4}Cl, Pnma for KBa{sub 2}SnS{sub 4}Br, and P2{sub 1}/c for CsBa{sub 2}SnS{sub 4}Cl. In all four compounds, the X{sup −} halide anions are only connected to six alkali metal or Ba cations, and the Sn atoms are only tetrahedrally enjoined to four S atoms. However, the M–X–Ba pseudo layers and the SnS{sub 4} tetrahedra are arranged in different ways in the three structural types, which demonstrates the interesting effect of ionic radii on the crystal structures. UV–vis–NIR spectroscopy measurements indicate that NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br, and CsBa{sub 2}SnS{sub 4}Cl have band gaps of 2.28, 2.30, 1.95, and 2.06 eV, respectively. - Graphical abstract: A new series of chalcohalides, NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have been obtained. They present three different space groups: NaBa{sub 2}SnS{sub 4}Cl and KBa{sub 2}SnS{sub 4}Cl in space group I4/mcm, KBa{sub 2}SnS{sub 4}Br in Pnma and CsBa{sub 2}SnS{sub 4}Cl in space group P2{sub 1}/c. UV–vis–NIR spectroscopy measurements indicate that NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have band gaps of 2.28, 2.30 1.95, and 2.06 eV, respectively. - Highlights: • Four new chalcohalides, NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl were obtained. • They adopt three different structures owing to different ionic radii and elemental electronegativity. • NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have band gaps

  12. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.

    PubMed

    Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J

    2014-03-01

    Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.

  13. Developmental expression of parvalbumin mRNA in the cerebral cortex and hippocampus of the rat.

    PubMed

    de Lecea, L; del Río, J A; Soriano, E

    1995-08-01

    Parvalbumin (PARV) belongs to the family of calcium-binding proteins bearing the EF hand domain. Immunocytochemical studies in the cerebral cortex have demonstrated that neurons containing PARV include two types of GABAergic interneurons, namely, basket and axo-axonic chandelier cells. The present study examines the onset and pattern of PARV mRNA expression during the development of rat neocortex and hippocampus by means of 'in situ' hybridization with an oligonucleotide probe corresponding to rat PARV cDNA. In animals aged P0-P6 no signal was detected above background in neocortex or hippocampus. At P8, a few cortical cells displayed a number of silver grains just above background levels. By P10 PARV mRNA-expressing cells in the neocortex were detected almost exclusively in layer V of somatosensory, frontal and cingulate cortices. At P12 PARV mRNA was mainly detected in layers IV, V and VIa. By P14 there was a marked overall increase in the entire neocortex, including layer II-III, both in the number of cells and in their intensity of labelling. Further maturation in the pattern of PARV mRNA concentration was observed between P16 and P21. In the hippocampus low hybridization was observed at P10-P12. In subsequent stages both the number of positive cells and the intensity of labelling increased steadily. No clear-cut radial gradients for the expression of PARV mRNA were observed in the hippocampal region. Our results show that the developmental radial gradient followed by PARV mRNA expression in the neocortex does not follow an 'inside-out' gradient, consistent with previous immunocytochemical findings. Taken together, these data indicate that the developmental sequence followed by the PARV protein directly reflects mRNA abundance and suggest that PARV mRNA expression correlates with the functional maturation of cortical interneurons.

  14. Placental microRNA expression in pregnancies complicated by superimposed pre-eclampsia on chronic hypertension

    PubMed Central

    VASHUKOVA, ELENA S.; GLOTOV, ANDREY S.; FEDOTOV, PAVEL V.; EFIMOVA, OLGA A.; PAKIN, VLADIMIR S.; MOZGOVAYA, ELENA V.; PENDINA, ANNA A.; TIKHONOV, ANDREI V.; KOLTSOVA, ALLA S.; BARANOV, VLADISLAV S.

    2016-01-01

    Pre-eclampsia (PE) is a complication of pregnancy that affects 5–8% of women after 20 weeks of gestation. It is usually diagnosed based on the de novo onset of hypertension and proteinuria. Preexisting hypertension in women developing PE, also known as superimposed PE on chronic hypertension (SPE), leads to elevated risk of maternal and fetal mortality. PE is associated with an altered microRNA (miRNA) expression pattern in the placenta, suggesting that miRNA deregulation is involved in the pathogenesis of PE. Whether and how the miRNA expression pattern is changed in the SPE placenta remains unclear. The present study analyzed the placental miRNA expression profile in pregnancies complicated by SPE. miRNA expression profiles in SPE and normal placentas were investigated using an Ion Torrent sequencing system. Sequencing data were processed using a comprehensive analysis pipeline for deep miRNA sequencing (CAP-miRSeq). A total of 22 miRNAs were identified to be deregulated in placentas from patients with SPE. They included 16 miRNAs previously known to be associated with PE and 6 novel miRNAs. Among the 6 novel miRNAs, 4 were upregulated (miR-518a, miR-527, miR-518e and miR-4532) and 2 downregulated (miR-98 and miR-135b) in SPE placentas compared with controls. The present results suggest that SPE is associated with specific alterations in the placental miRNA expression pattern, which differ from alterations detected in PE placentas, and therefore, provide novel targets for further investigation of the molecular mechanisms underlying SPE pathogenesis. PMID:27176897

  15. Engineering and Validation of a Vector for Concomitant Expression of Rare Transfer RNA (tRNA) and HIV-1 nef Genes in Escherichia coli.

    PubMed

    Mualif, Siti Aisyah; Teow, Sin-Yeang; Omar, Tasyriq Che; Chew, Yik Wei; Yusoff, Narazah Mohd; Ali, Syed A

    2015-01-01

    Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW) rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef), HIV-1 p24 (ca), and HIV-1 vif in NiCo21(DE3) E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.

  16. Profiling status epilepticus-induced changes in hippocampal RNA expression using high-throughput RNA sequencing

    PubMed Central

    Hansen, Katelin F.; Sakamoto, Kensuke; Pelz, Carl; Impey, Soren; Obrietan, Karl

    2014-01-01

    Status epilepticus (SE) is a life-threatening condition that can give rise to a number of neurological disorders, including learning deficits, depression, and epilepsy. Many of the effects of SE appear to be mediated by alterations in gene expression. To gain deeper insight into how SE affects the transcriptome, we employed the pilocarpine SE model in mice and Illumina-based high-throughput sequencing to characterize alterations in gene expression from the induction of SE, to the development of spontaneous seizure activity. While some genes were upregulated over the entire course of the pathological progression, each of the three sequenced time points (12-hour, 10-days and 6-weeks post-SE) had a largely unique transcriptional profile. Hence, genes that regulate synaptic physiology and transcription were most prominently altered at 12-hours post-SE; at 10-days post-SE, marked changes in metabolic and homeostatic gene expression were detected; at 6-weeks, substantial changes in the expression of cell excitability and morphogenesis genes were detected. At the level of cell signaling, KEGG analysis revealed dynamic changes within the MAPK pathways, as well as in CREB-associated gene expression. Notably, the inducible expression of several noncoding transcripts was also detected. These findings offer potential new insights into the cellular events that shape SE-evoked pathology. PMID:25373493

  17. mRNA Distribution and Heterologous Expression of Orphan Cytochrome P450 20A1

    PubMed Central

    Stark, Katarina; Wu, Zhong-Liu; Bartleson, Cheryl J.; Guengerich, F. Peter

    2015-01-01

    Cytochrome P450 (P450) 20A1 is one of the so-called “orphan” P450s without assigned biological function. mRNA expression was detected in human liver and extrahepatic expression was noted in several human brain regions, including substantia nigra, hippocampus, and amygdala, using conventional polymerase chain reaction and RNA dot blot analysis. Adult human liver contained 3-fold higher overall mRNA levels than whole brain, although specific regions (i.e., hippocampus and substantia nigra) exhibited higher mRNA expression levels than liver. Orthologous full-length and truncated transcripts of P450 20A1 were transcribed and sequenced from rat liver, heart, and brain. In rat, the concentrations of full-length transcripts were 3–4 fold higher in brain and heart than liver. In situ hybridization of rat whole brain sections showed a similar mRNA expression pattern as observed for human P450 20A1, indicating expression in substantia nigra, hippocampus, and amygdala. A number of N-terminal modifications of the codon-optimized human P450 20A1 sequence were prepared and expressed in Escherichia coli, and two of the truncated derivatives showed characteristic P450 spectra (200–280 nmol P450/l). Although the recombinant enzyme system oxidized NADPH, no catalytic activity was observed with the heterologously expressed protein when a number of potential steroids and biogenic amines were surveyed as potential substrates. The function of P450 20A1 remains unknown; however, the sites of mRNA expression in human brain and the conservation among species may suggest possible neurophysiological function. PMID:18541694

  18. Radiation-Induced Micro-RNA Expression Changes in Peripheral Blood Cells of Radiotherapy Patients

    SciTech Connect

    Templin, Thomas; Paul, Sunirmal; Amundson, Sally A.; Young, Erik F.; Barker, Christopher A.; Wolden, Suzanne L.; Smilenov, Lubomir B.

    2011-06-01

    Purpose: MicroRNAs (miRNAs), a class of noncoding small RNAs that regulate gene expression, are involved in numerous physiologic processes in normal and malignant cells. Our in vivo study measured miRNA and gene expression changes in human blood cells in response to ionizing radiation, to develop miRNA signatures that can be used as biomarkers for radiation exposure. Methods and Materials: Blood from 8 radiotherapy patients in complete remission 1 or 2 was collected immediately before and 4 hours after total body irradiation with 1.25 Gy x-rays. Both miRNA and gene expression changes were measured by means of quantitative polymerase chain reaction and microarray hybridization, respectively. Hierarchic clustering, multidimensional scaling, class prediction, and gene ontology analysis were performed to investigate the potential of miRNAs to serve as radiation biomarkers and to elucidate their likely physiologic roles in the radiation response. Results: The expression levels of 45 miRNAs were statistically significantly upregulated 4 hours after irradiation with 1.25 Gy x-rays, 27 of them in every patient. Nonirradiated and irradiated samples form separate clusters in hierarchic clustering and multidimensional scaling. Out of 223 differentially expressed genes, 37 were both downregulated and predicted targets of the upregulated miRNAs. Paired and unpaired miRNA-based classifiers that we developed can predict the class membership of a sample with unknown irradiation status, with accuracies of 100% when all 45 upregulated miRNAs are included. Both miRNA control of and gene involvement in biologic processes such as hemopoiesis and the immune response are increased after irradiation, whereas metabolic processes are underrepresented among all differentially expressed genes and the genes controlled by miRNAs. Conclusions: Exposure to ionizing radiation leads to the upregulation of the expression of a considerable proportion of the human miRNAome of peripheral blood cells

  19. [The expression of human telomerase reverse transcriptase mRNA and its significance in acute leukemia].

    PubMed

    Meng, Xiao-Li; Lin, Mao-Fang; Jin, Jie

    2003-02-01

    To investigate the expression of hTERT mRNA in bone marrow mononuclear cells (MNCs) from acute leukemia patients, the method of semi-quntitative RT-PCR was used to examine the expression of hTERT mRNA in marrow MNCs, and the telomerase activity of marrow MNCs was determined with the method of TRAP-PCR-ELISA by using a commercial kit. The results indicated that the expression of hTERT mRNA of marrow MNCs in 30 untreated AL patients was markedly higher than that in 12 CR cases (0.71 +/- 0.34 vs 0.43 +/- 0.25, P < 0.05) and 6 normal volunteers (0.71 +/- 0.34 vs 0.22 +/- 0.21, P < 0.01), respectively. Telomerase activity of marrow MNCs in 30 untreated AL patients was significantly higher than that in 12 CR cases (0.235 +/- 0.395 vs 0.012 +/- 0.015, P = 0.007). Moreover, there was a positive correlation between the hTERT mRNA synthesis and telomerase activity in AL cells (r = 0.421, P < 0.01). The pencentage of blast cells in marrow smear of the untreated AL patients was positively correlated with both the expression of hTERT mRNA and the telomerase activity of bone marrow MNCs (r = 0.457, P < 0.05 and r = 0.411, P < 0.05), respectively. It is concluded that the expression of hTERT mRNA in bone marrow MNCs from untreated AL patients was correlated with their telomerase activity. It is suggested that the expression of hTERT mRNA leukemic cells indicates their higher proliferation ability.

  20. Integrative microRNA-gene expression network analysis in genetic hypercalciuric stone-forming rat kidney

    PubMed Central

    Lu, Yuchao; Qin, Baolong; Hu, Henglong; Zhang, Jiaqiao; Wang, Yufeng; Wang, Qing

    2016-01-01

    Background. MicroRNAs (miRNAs) influence a variety of biological functions by regulating gene expression post-transcriptionally. Aberrant miRNA expression has been associated with many human diseases. Urolithiasis is a common disease, and idiopathic hypercalciuria (IH) is an important risk factor for calcium urolithiasis. However, miRNA expression patterns and their biological functions in urolithiasis remain unknown. Methods and Results. A multi-step approach combining microarray miRNA and mRNA expression profile and bioinformatics analysis was adopted to analyze dysregulated miRNAs and genes in genetic hypercalciuric stone-forming (GHS) rat kidneys, using normal Sprague-Dawley (SD) rats as controls. We identified 2418 mRNAs and 19 miRNAs as significantly differentially expressed, over 700 gene ontology (GO) terms and 83 KEGG pathways that were significantly enriched in GHS rats. In addition, we constructed an miRNA-gene network that suggested that rno-miR-674-5p, rno-miR-672-5p, rno-miR-138-5p and rno-miR-21-3p may play important roles in the regulatory network. Furthermore, signal-net analysis suggested that NF-kappa B likely plays a crucial role in hypercalciuria urolithiasis. Conclusions. This study presents a global view of mRNA and miRNA expression in GHS rat kidneys, and suggests that miRNAs may be important in the regulation of hypercalciuria. The data provide valuable insights for future research, which should aim at validating the role of the genes featured here in the pathophysiology of hypercalciuria. PMID:27069814

  1. Invasion front-specific expression and prognostic significance of microRNA in colorectal liver metastases.

    PubMed

    Kahlert, Christoph; Klupp, Fee; Brand, Karsten; Lasitschka, Felix; Diederichs, Sven; Kirchberg, Johanna; Rahbari, Nuh; Dutta, Shamik; Bork, Ulrich; Fritzmann, Johannes; Reissfelder, Christoph; Koch, Moritz; Weitz, Juergen

    2011-10-01

    The tumor edge of colorectal cancer and its adjacent peritumoral tissue is characterized by an invasion front-specific expression of genes that contribute to angiogenesis or epithelial-to-mesenchymal transition. Dysregulation of these genes has a strong impact on the invasion behavior of tumor cells. However, the invasion front-specific expression of microRNA (miRNA) still remains unclear. Therefore, the aim of the present study was to investigate miRNA expression patterns at the invasion front of colorectal liver metastases. Laser microdissection of colorectal liver metastases was performed to obtain separate tissue compartments from the tumor center, tumor invasion front, liver invasion front and pure liver parenchyma. Microarray expression analysis revealed 23 miRNA downregulated in samples from the tumor invasion front with respect to the same miRNA in the liver, the liver invasion front or the tumor center. By comparing samples from the liver invasion front with samples from pure liver parenchyma, the tumor invasion front and the tumor center, 13 miRNA were downregulated. By quantitative RT-PCR, we validated the liver invasion front-specific downregulation of miR-19b, miR-194, let-7b and miR-1275 and the tumor invasion front-specific downregulation of miR-143, miR- 145, let-7b and miR-638. Univariate analysis demonstrated that enhanced expression of miR-19b and miR-194 at the liver invasion front, and decreased expression of let-7 at the tumor invasion front, is an adverse prognostic marker of tumor recurrence and overall survival. In conclusion, the present study suggests that invasion front-specific downregulation of miRNA in colorectal liver metastases plays a pivotal role in tumor progression.

  2. Primary Biliary Cirrhosis is Associated With Altered Hepatic microRNA Expression

    PubMed Central

    Padgett, Kerstien A.; Lan, Ruth Y.; Leung, Patrick C.; Lleo, Ana; Dawson, Kevin; Pfeiff, Janice; Mao, Tin K.; Coppel, Ross L.; Ansari, Aftab A.; Gershwin, M. Eric

    2009-01-01

    MicroRNAs (miRNAs) are small RNA molecules that negatively regulate protein coding gene expression and are thought to play a critical role in many biological processes. Aberrant levels of miRNAs have been associated with numerous diseases and cancers, and as such, miRNAs have gain much interests as diagnostic biomarkers, and as therapeutic targets. However, their role in autoimmunity is largely unknown. The aims of this study are to: (1) identify differentially expressed miRNAs in human primary biliary cirrhosis (PBC); (2) validate these independently; and (3) indentify potential targets of differentially expressed miRNAs. We compared the expression of 377 miRNAs in explanted livers form subjects with PBC versus controls with normal liver histology. A total of 35 independent miRNAs were found to be differentially expressed in PBC (p< 0.001). Quantitative PCR was employed to validate down-regulation of microRNA-122a (miR-122a) and miR-26a and the increased expression of miR-328 and miR-299-5p. The predicted targets of these miRNAs are known to affect cell proliferation, apoptosis, inflammation, oxidative stress, and metabolism. Our data are the first to demonstrate that PBC is characterized by altered expression of hepatic miRNA; however additional studies are required to demonstrate a causal link between those miRNA and the development of PBC. PMID:19345069

  3. Metalloprotease-disintegrin ADAM12 expression is regulated by Notch signaling via microRNA-29.

    PubMed

    Li, Hui; Solomon, Emilia; Duhachek Muggy, Sara; Sun, Danqiong; Zolkiewska, Anna

    2011-06-17

    Metalloprotease-disintegrin ADAM12 is overexpressed and frequently mutated in breast cancer. We report here that ADAM12 expression in cultured mammalian cells is up-regulated by Notch signals. Expression of a constitutively active form of Notch1 in murine fibroblasts, myoblasts, or mammary epithelial cells or activation of the endogenous Notch signaling by co-culture with ligand-expressing cells increases ADAM12 protein and mRNA levels. Up-regulation of ADAM12 expression by Notch requires new transcription, is activated in a CSL-dependent manner, and is abolished upon inhibition of IκB kinase. Expression of a constitutively active Notch1 in NIH3T3 cells increases the stability of Adam12 mRNA. We further show that the microRNA-29 family, which has a predicted conserved site in the 3'-untranslated region of mouse Adam12, plays a critical role in mediating the stimulatory effect of Notch on ADAM12 expression. In human cells, Notch up-regulates the expression of the long form, but not the short form, of ADAM12 containing a divergent 3'-untranslated mRNA region. These studies uncover a novel paradigm in Notch signaling and establish Adam12 as a Notch-related gene.

  4. Cytochrome P450IA mRNA expression in feral Hudson River tomcod

    SciTech Connect

    Kreamer, G.L.; Squibb, K.; Gioeli, D.; Garte, S.J.; Wirgin, I. )

    1991-06-01

    The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached by 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.

  5. Exercise does not influence myostatin and follistatin messenger RNA expression in young women.

    PubMed

    Jensky, Nicole E; Sims, Jennifer K; Dieli-Conwright, Christina M; Sattler, Fred R; Rice, Judd C; Schroeder, E Todd

    2010-02-01

    We evaluated changes in myostatin, follistatin, and MyoD messenger RNA (mRNA) gene expression using eccentric exercise (EE) and concentric exercise (CE) as probes to better understand the mechanisms of muscle hypertrophy in young women. Twelve women performed single-leg maximal eccentric (n = 6, 25 +/- 1 years, 59 +/- 7 kg) or concentric (n = 6, 24 +/- 1 years, 65 +/- 7 kg) isokinetic knee extension exercise for 7 sessions. Muscle biopsies were taken from the vastus lateralis at baseline, 8 hours after the first exercise session, and 8 hours after the seventh exercise session. In the EE group, there were no changes in myostatin and follistatin (p > or = 0.17); however, MyoD expression increased after 1 exercise bout (p = 0.02). In the CE group, there were no changes in myostatin, follistatin, or MyoD mRNA gene expression (p > or = 0.07). Differences between the EE and CE groups were not significant (p > or = 0.05). These data suggest that a single bout or multiple bouts of maximal EE or CE may not significantly alter myostatin or follistatin mRNA gene expression in young women. However, MyoD mRNA expression seems to increase only after EE.

  6. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects.

    PubMed

    Martínez-Pacheco, M; Hidalgo-Miranda, A; Romero-Córdoba, S; Valverde, M; Rojas, E

    2014-01-10

    Metals are a threat to human health by increasing disease risk. Experimental data have linked altered miRNA expression with exposure to some metals. MiRNAs comprise a large family of non-coding single-stranded molecules that primarily function to negatively regulate gene expression post-transcriptionally. Although several human populations are exposed to low concentrations of As, Cd and Pb as a mixture, most toxicology research focuses on the individual effects that these metals exert. Thus, this study aims to evaluate global miRNA and mRNA expression changes induced by a metal mixture containing NaAsO2, CdCl2, Pb(C2H3O2)2·3H2O and to predict possible metal-associated disease development under these conditions. Our results show that this metal mixture results in a miRNA expression profile that may be responsible for the mRNA expression changes observed under experimental conditions in which coding proteins are involved in cellular processes, including cell death, growth and proliferation related to the metal-associated inflammatory response and cancer.

  7. MiRNA expression profile of chronic lymphocytic leukemia patients with 13q deletion.

    PubMed

    Hernández-Sánchez, María; Rodríguez-Vicente, Ana E; Hernández, José-Ángel; Lumbreras, Eva; Sarasquete, María-Eugenia; Martín, Ana-África; Benito, Rocío; Vicente-Gutiérrez, Carlos; Robledo, Cristina; Heras, Natalia de Las; Rodríguez, Juan-Nicolás; Alcoceba, Miguel; Coca, Alfonso García de; Aguilar, Carlos; González, Marcos; Hernández-Rivas, Jesús-María

    2016-07-01

    Deletion 13q (13q-) is the most common cytogenetic aberration in chronic lymphocytic leukemia (CLL) and is associated with the most favorable prognosis as the sole cytogenetic abnormality. However, it is heterogeneous whereby CLL patients with higher percentages of 13q- cells (13q-H) have a more aggressive clinical course and a distinct gene expression profile. The microRNA (miRNA) expression profile of CLL gives additional biological and prognostic information, but its expression in 13q- CLL has not been examined in detail. The miRNA expression of clonal B cell lymphocytes (CD19+ cells) of 38 CLL patients and normal B cells of six healthy donors was analyzed. CLL patients with higher percentages of 13q- cells (≥80%) showed a different level of miRNA expression from patients with lower percentages (<80%). Interestingly, miR-143 was downregulated and miR-155 was overexpressed in 13q-H. This deregulation affected important validated target genes involved in apoptosis (BCL2, MDM2, TP53INP1) and proliferation (KRAS, PI3K-AKT signaling), that could lead to decreased apoptosis and increased proliferation in 13q-H patients. This study provides new evidence about the heterogeneity of the 13q deletion in CLL patients, showing that miRNA regulation could be involved in several significant pathways deregulated in CLL patients with a high number of losses in 13q.

  8. Eosinophil cationic protein mRNA expression in children with bronchial asthma.

    PubMed

    Yu, H Y; Li, X Y; Cai, Z F; Li, L; Shi, X Z; Song, H X; Liu, X J

    2015-11-13

    Studies have shown that eosinophils are closely related to pathogenesis of bronchial asthma. Eosinophils release eosinophil cationic protein (ECP), which plays an important role in infection and allergic reactions. Serum ECP mRNA expression in children with bronchial asthma has not been adequately investigated. We analyzed serum ECP mRNA expression in 63 children with bronchial asthma and 21 healthy children by using reverse-transcriptase polymerase chain reaction to understand the role of ECP in children with bronchial asthma. The children with bronchial asthma were segregated into acute-phase and stable-phase groups, based on the severity of the illness. Serum ECP mRNA expression in children with bronchial asthma (0.375 ± 0.04) was significantly higher than that in healthy controls (0.20 ± 0.02; P < 0.05). Additionally, children in the acute-phase group showed higher ECP mRNA expression level (0.44 ± 0.06) than those in the stable-phase (0.31 ± 0.03) and healthy control groups (0.20 ± 0.02; P < 0.05), while the level in the stable-phase (0.31 ± 0.03) was markedly higher than that in the healthy control group (0.20 ± 0.02; P < 0.05). Detection of serum ECP mRNA expression level has possible applications in the diagnosis and treatment of children with bronchial asthma.

  9. Mutant U2AF1 Expression Alters Hematopoiesis and Pre-mRNA Splicing In Vivo

    PubMed Central

    Shirai, Cara Lunn; Ley, James N.; White, Brian S.; Kim, Sanghyun; Tibbitts, Justin; Shao, Jin; Ndonwi, Matthew; Wadugu, Brian; Duncavage, Eric J.; Okeyo-Owuor, Theresa; Liu, Tuoen; Griffith, Malachi; McGrath, Sean; Magrini, Vincent; Fulton, Robert S.; Fronick, Catrina; O’Laughlin, Michelle; Graubert, Timothy A.; Walter, Matthew J.

    2015-01-01

    SUMMARY Heterozygous somatic mutations in the spliceosome gene U2AF1 occur in ~11% of patients with myelodysplastic syndromes (MDS), the most common adult myeloid malignancy. It is unclear how these mutations contribute to disease. We examined in vivo hematopoietic consequences of the most common U2AF1 mutation using a doxycycline-inducible transgenic mouse model. Mice expressing mutant U2AF1(S34F) display altered hematopoiesis and changes in pre-mRNA splicing in hematopoietic progenitor cells by whole transcriptome analysis (RNA-seq). Integration with human RNA-seq datasets determined that common mutant U2AF1-induced splicing alterations are enriched in RNA processing genes, ribosomal genes, and recurrently-mutated MDS and acute myeloid leukemia-associated genes. These findings support the hypothesis that mutant U2AF1 alters downstream gene isoform expression, thereby contributing to abnormal hematopoiesis in MDS patients. PMID:25965570

  10. Cyclooxygenase-2 and microRNA-155 expression are elevated in asthmatic airway smooth muscle cells.

    PubMed

    Comer, Brian S; Camoretti-Mercado, Blanca; Kogut, Paul C; Halayko, Andrew J; Solway, Julian; Gerthoffer, William T

    2015-04-01

    Cyclooxygenase-2 (COX-2) expression and PGE2 secretion from human airway smooth muscle cells (hASMCs) may contribute to β2-adrenoceptor hyporesponsiveness, a clinical feature observed in some patients with asthma. hASMCs from patients with asthma exhibit elevated expression of cytokine-responsive genes, and in some instances this is attributable to an altered histone code and/or microRNA expression. We hypothesized that COX-2 expression and PGE2 secretion might be elevated in asthmatic hASMCs in response to proinflammatory signals in part due to altered histone acetylation and/or microRNA expression. hASMCs obtained from nonasthmatic and asthmatic human subjects were treated with cytomix (IL-1β, TNF-α, and IFN-γ). A greater elevation of COX-2 mRNA, COX-2 protein, and PGE2 secretion was observed in the asthmatic cells. We investigated histone H3/H4-acetylation, transcription factor binding, mRNA stability, p38 mitogen-activated protein kinase signaling, and microRNA (miR)-155 expression as potential mechanisms responsible for the differential elevation of COX-2 expression. We found that histone H3/H4-acetylation and transcription factor binding to the COX-2 promoter were similar in both groups, and histone H3/H4-acetylation did not increase after cytomix treatment. Cytomix treatment elevated NF-κB and RNA polymerase II binding to similar levels in both groups. COX-2 mRNA stability was increased in asthmatic cells. MiR-155 expression was higher in cytomix-treated asthmatic cells, and we show it enhances COX-2 expression and PGE2 secretion in asthmatic and nonasthmatic hASMCs. Thus, miR-155 expression positively correlates with COX-2 expression in the asthmatic hASMCs and may contribute to the elevated expression observed in these cells. These findings may explain, at least in part, β2-adrenoceptor hyporesponsiveness in patients with asthma.

  11. T7 RNA polymerase-dependent expression of COXII in yeast mitochondria.

    PubMed Central

    Pinkham, J L; Dudley, A M; Mason, T L

    1994-01-01

    An in vivo expression system has been developed for controlling the transcription of individual genes in the mitochondrial genome of Saccharomyces cerevisiae. The bacteriophage T7 RNA polymerase (T7Pol), fused to the COXIV mitchondrial import peptide and expressed under the control of either the GAL1 or the ADH1 promoter, efficiently transcribes a target gene, T7-COX2, in the mitochondrial genome. Cells bearing the T7-COX2 gene, but lacking wild-type COX2, require T7Pol for respiration. Functional expression of T7-COX2 is completely dependent on the COX2-specific translational activator Pet111p, despite additional nucleotides at the 5' end of the T7-COX2 transcript. Expression of mitochondrion-targeted T7Pol at high levels from the GAL1 promoter has no detectable effect on mitochondrial function in rho+ cells lacking the T7-COX2 target gene, but in cells with T7-COX2 integrated into the mitochondrial genome, an equivalent level of T7Pol expression causes severe respiratory deficiency. In comparison with wild-type COX2 expression, steady-state levels of T7-COX2 mRNA increase fivefold when transcription is driven by T7Pol expressed from the ADH1 promoter, yet COXII protein levels and cellular respiration rates decrease by about 50%. This discoordinate expression of mRNA and protein provides additional evidence for posttranscriptional control of COX2 expression. Images PMID:8007968

  12. OPIATE EXPOSURE AND WITHDRAWAL DYNAMICALLY REGULATE mRNA EXPRESSION IN THE SEROTONERGIC DORSAL RAPHE NUCLEUS

    PubMed Central

    Lunden, Jason; Kirby, Lynn G.

    2013-01-01

    Previous results from our lab suggest that hypofunctioning of the serotonergic (5-HT) dorsal raphe nucleus (DRN) is involved in stress-induced opiate reinstatement. To further investigate the effects of morphine dependence and withdrawal on the 5-HT DRN system, we measured gene expression at the level of mRNA in the DRN during a model of morphine dependence, withdrawal and post withdrawal stress exposure in rats. Morphine pellets were implanted for 72h and then either removed or animals were injected with naloxone to produce spontaneous or precipitated withdrawal, respectively. Animals exposed to these conditions exhibited withdrawal symptoms including weight loss, wet dog shakes and jumping behavior. Gene expression for brain-derived neurotrophic factor (BDNF), TrkB, corticotrophin releasing-factor (CRF)-R1, CRF-R2, GABAA-α1, μ-opioid receptor (MOR), 5-HT1A, tryptophan hydroxylase2 and the 5-HT transporter was then measured using quantitative real-time PCR at multiple time-points across the model of morphine exposure, withdrawal and post withdrawal stress. Expression levels of BDNF, TrkB and CRF-R1 mRNA were decreased during both morphine exposure and following seven days of withdrawal. CRF-R2 mRNA expression was elevated after seven days of withdrawal. 5-HT1A receptor mRNA expression was decreased following 3 hours of morphine exposure, while TPH2 mRNA expression was decreased after seven days of withdrawal with swim stress. There were no changes in the expression of GABAA-α1, MOR or 5-HT transporter mRNA. Collectively these results suggest that alterations in neurotrophin support, CRF-dependent stress signaling, 5-HT synthesis and release may underlie 5-HT DRN hypofunction that can potentially lead to stress-induced opiate relapse. PMID:24055683

  13. Argonaute and the Nuclear RNAs: New Pathways for RNA-Mediated Control of Gene Expression

    PubMed Central

    Gagnon, Keith T.

    2012-01-01

    Small RNAs are a commonly used tool for gene silencing and a promising platform for nucleic acid drug development. They are almost exclusively used to silence gene expression post-transcriptionally through degradation of mRNA. Small RNAs, however, can have a broader range of function by binding to Argonaute proteins and associating with complementary RNA targets in the nucleus, including long noncoding RNAs (lncRNAs) and pre-mRNA. Argonaute–RNA complexes can regulate nuclear events like transcription, genome maintenance, and splicing. Thousands of lncRNAs and alternatively spliced pre-mRNA isoforms exist in humans, and these RNAs may serve as natural targets for regulation and therapeutic intervention. This review describes nuclear mechanisms for Argonaute proteins and small RNAs, new pathways for sequence-specific targeting, and the potential for therapeutic development of small RNAs with nuclear targets. PMID:22283730

  14. Down-regulation of survivin expression by small interfering RNA induces pancreatic cancer cell apoptosis and enhances its radiosensitivity

    PubMed Central

    Guan, Hai-Tao; Xue, Xing-Huan; Dai, Zhi-Jun; Wang, Xi-Jing; Li, Ang; Qin, Zhao-Yin

    2006-01-01

    AIM: To investigate the inhibitory effect of small interfering RNA (siRNA) on the expression of survivin in pancreatic cancer cell line PC-2 and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity. METHODS: A siRNA plasmid expression vector against survivin was constructed and transfected into PC-2 cells with LipofectamineTM 2000. The down regulation of survivin expression was detected by semi-quantitive RT-PCR and immunohistochemical SP method and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity was detected by flow cytometry. RESULTS: The sequence-specific siRNA efficiently and specifically down-regulated the expression of survivin at both mRNA and protein levels. The expression inhibition ratio was 81.25% at mRNA level detected by semi-quantitive RT-PCR and 74.24% at protein level detected by immunohistochemical method. Forty-eight hours after transfection,apoptosis was induced in 7.03% cells by siRNA and in 14.58% cells by siRNA combined with radiation. CONCLUSION: The siRNA plasmid expression vector against survivin can inhibit the expression of survivin in PC-2 cells efficiently and specifically. Inhibiting the expression of survivin can induce apoptosis of PC-2 cells and enhance its radiosensitivity significantly. RNAi against survivin is of potential value in gene therapy of pancreatic cancer. PMID:16718816

  15. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar.

    PubMed

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-04-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5' and 3' flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes.

  16. Cloud-scale RNA-sequencing differential expression analysis with Myrna

    PubMed Central

    2010-01-01

    As sequencing throughput approaches dozens of gigabases per day, there is a growing need for efficient software for analysis of transcriptome sequencing (RNA-Seq) data. Myrna is a cloud-computing pipeline for calculating differential gene expression in large RNA-Seq datasets. We apply Myrna to the analysis of publicly available data sets and assess the goodness of fit of standard statistical models. Myrna is available from http://bowtie-bio.sf.net/myrna. PMID:20701754

  17. Expression of a streptomycete leaderless mRNA encoding chloramphenicol acetyltransferase in Escherichia coli.

    PubMed Central

    Wu, C J; Janssen, G R

    1997-01-01

    The chloramphenicol acetyltransferase (cat) gene from Streptomyces acrimycini encodes a leaderless mRNA. Expression of the cat coding sequence as a leaderless mRNA from a modified lac promoter resulted in chloramphenicol resistance in Escherichia coli. Transcript mapping with nuclease S1 confirmed that the 5' end of the cat message initiated at the A of the AUG translational start codon. Site-directed mutagenesis of the lac promoter or the cat start codon abolished chloramphenicol resistance, indicating that E. coli initiated translation at the 5' terminal AUG of the cat leaderless mRNA. Addition of 5'-AUGC-3' to the 5' end of the cat mRNA resulted in translation occurring also from the reading frame defined by the added AUG triplet, suggesting that a 5'-terminal start codon is an important recognition feature for initiation and establishing reading frame during translation of leaderless mRNA. Addition of an untranslated leader and Shine-Dalgarno sequence to the cat coding sequence increased cat expression in a cat:lacZ fusion; however, the level of expression was significantly lower than when a fragment of the bacteriophage lambda cI gene, also encoding a leaderless mRNA, was fused to lacZ. These results indicate that in the absence of an untranslated leader and Shine-Dalgarno sequence, the streptomycete cat mRNA is translated by E. coli; however, the cat translation signals, or other features of the cat mRNA, provide for only a low level of expression in E. coli. PMID:9352935

  18. Neuropeptide Y mRNA expression levels following chronic olanzapine, clozapine and haloperidol administration in rats.

    PubMed

    Huang, X-F; Deng, Chao; Zavitsanou, Katerina

    2006-06-01

    Using quantitative in situ hybridization, this study examined regional changes in rat brain mRNA levels encoding neuropeptide Y (NPY) following olanzapine, clozapine and haloperidol administration (1.2, 1.5 and 2.0 mg/kg, oral) for 36 days. The NPY mRNA expression levels and patterns were examined after the last drug administration at both time points enabling the measurement of immediate effect at 2h and the effects after 48 h of drug administration. It was found that all these drugs had an immediate effect on NPY mRNA expression, while virtually all these changes normalized 48 h after the drug treatments. A similarity in altered NPY mRNA expression patterns was seen between the olanzapine and clozapine groups; however, haloperidol was very different. Olanzapine and clozapine administration decreased NPY mRNA levels in the nucleus accumbens, striatum and anterior cingulate cortex (from -60% to -77%, p<0.05). Haloperidol decreased NPY mRNA expression in the amygdala and hippocampus (-69%, -64%, p<0.05). In the lateral septal nucleus, NPY mRNA levels significantly decreased in the olanzapine group (-66%, p<0.05), a trend toward a decrease was observed in the clozapine group, and no change was found in the haloperidol treated group. These results suggest that the different effects of atypical and typical antipsychotics on NPY systems may reflect the neural chemical mechanisms responsible for the differences between these drugs in their effects in treating positive and negative symptoms of schizophrenia. The immediate decrease of NPY mRNA levels suggests an immediate reduction of NPY biosynthesis in response to these drugs.

  19. MicroRNA expression in canine mammary cancer.

    PubMed

    Boggs, R Michelle; Wright, Zachary M; Stickney, Mark J; Porter, Weston W; Murphy, Keith E

    2008-08-01

    MicroRNAs (miRNAs) are 18-22-nt noncoding RNAs that are involved in post-transcriptional regulation of genes. Oncomirs, a subclass of miRNAs, include genes whose expression, or lack thereof, are associated with cancers. Until the last decade, the domestic dog was an underused model for the study of various human diseases that have genetic components. The dog exhibits marked genetic and physiologic similarity to the human, thereby making it an excellent model for study and treatment of various hereditary diseases. Furthermore, because the dog presents with distinct, spontaneously occurring mammary tumors, it may serve as a model for genetic analysis and treatments of humans with malignant breast tumors. Because miRNAs have been found to act as both tumor suppressors and oncogenes in several different cancers, expression patterns of ten miRNAs (miR-15a, miR-16, miR-17-5p, miR-21, miR-29b, miR-125b, miR-145, miR-155, miR-181b, let-7f) known to be associated with human breast cancers were compared to malignant canine mammary tumors (n = 6) and normal canine mammary tissue (n = 10). Resulting data revealed miR-29b and miR-21 to have a statistically significant (p < 0.05 by MANOVA analysis) upregulation in cancerous samples. The ten canine miRNAs follow the same pattern of expression as in the human, except for miR-145 which does not show a difference in expression between the normal and cancerous canine samples. In addition, when analyzed according to specific cancer phenotypes, miR-15a and miR-16 show a significant downregulation in canine ductal carcinomas while miRsR-181b, -21, -29b, and let-7f show a significant upregulation in canine tubular papillary carcinomas.

  20. RNA/DNA ratio and LPL and MyoD mRNA expressions in muscle of Oreochromis niloticus fed with elevated levels of palm oil

    NASA Astrophysics Data System (ADS)

    Ayisi, Christian Larbi; Zhao, Jinliang

    2016-02-01

    Palm oil is of great potential as one of the sustainable alternatives to fish oil (FO) in aquafeeds. In this present study, five isonitrogenous diets (32% crude protein) with elevated palm oil levels of 0%, 2%, 4%, 6% and 8% were used during an 8-week feeding trial to evaluate its effects on RNA/DNA ratio and lipoprotein lipase (LPL) and MyoD mRNA expressions in muscle of Oreochromis niloticus. The results showed that RNA, DNA content as well as ratio of RNA to DNA were significantly affected ( P < 0.05), in each case the highest was recorded in fish group subjected to 6% palm oil level. There was a strong positive correlation between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and specific growth rate (SGR), protein efficiency ratio (PER), while a negative correlation existed between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and feed conversion ratio (FCR). The mRNA expressions of LPL and MyoD in muscle were not significantly affected by the different palm oil levels, although the highest expression was observed in fish fed with 6% palm oil level. There also existed a strong positive correlation between the mRNA expression of LPL, MyoD and SGR, PER, while their correlation with FCR was negative. In conclusion, elevated palm oil affected the RNA, DNA concentration as well as RNA/DNA ratio significantly, although the mRNA expression of LPL and MyoD were not affected significantly by elevated palm oil levels.

  1. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila

    PubMed Central

    Hur, Junho K.; Luo, Yicheng; Moon, Sungjin; Ninova, Maria; Marinov, Georgi K.; Chung, Yun D.; Aravin, Alexei A.

    2016-01-01

    The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis. PMID:27036967

  2. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila.

    PubMed

    Hur, Junho K; Luo, Yicheng; Moon, Sungjin; Ninova, Maria; Marinov, Georgi K; Chung, Yun D; Aravin, Alexei A

    2016-04-01

    The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis.

  3. Detailed analysis of the δ-crystallin mRNA-expressing region in early development of the chick pituitary gland.

    PubMed

    Inoue, Makiko; Shiina, Tomoya; Aizawa, Sayaka; Sakata, Ichiro; Takagi, Hiroyasu; Sakai, Takafumi

    2012-06-01

    Although δ-crystallin (δ-crys), also known as lens protein, is transiently expressed in Rathke's pouch (RP) of the chick embryo, detailed temporal and spatial expression patterns have been obscure. In this study, to understand the relationship between the δ-crys mRNA-expressing region and RP formation, we examined the embryonic expression pattern of δ-crys mRNA in the primordium of the adenohypophysis. δ-crys mRNA expression was initially found at stage 15 anterior to the foregut and posterior to the invaginated oral ectoderm. After RP formation, the δ-crys mRNA was expressed in the post-ventral region of RP and the anterior region of RP. δ-crys mRNA expression was then restricted to the cephalic lobe of the pituitary gland. From stage 20, the δ-crys and alpha-glycoprotein subunit (αGSU) mRNA-expressing regions were almost completely overlapping. The αGSU mRNA-expressing region is thought to be the primordium of the pars tuberalis, and these regions were overlapped with the Lhx3 mRNA-expressing region. The intensity of δ-crys mRNA expression gradually decreased with development and completely disappeared by stage 34. These results suggest that the embryonic chick pituitary gland consists of two different regions labeled with δ-crys and Lhx3.

  4. Microarray analysis of long noncoding RNA and mRNA expression profiles in human macrophages infected with Mycobacterium tuberculosis

    PubMed Central

    Yang, Xiaofan; Yang, Jiahui; Wang, Jinli; Wen, Qian; Wang, Hui; He, Jianchun; Hu, Shengfeng; He, Wenting; Du, Xialin; Liu, Sudong; Ma, Li

    2016-01-01

    Macrophages play a crucial role in the control and elimination of invading Mycobacterium tuberculosis (Mtb), and also serve as the major residence for Mtb. However, the interaction between macrophages and Mtb remains to be clearly determined. Although long noncoding RNAs (lncRNAs) have emerged as key regulators in many biological processes, their roles in anti-mycobacterial responses of macrophages remain to be elucidated. Here, we applied microarray analysis to examine lncRNA and mRNA expression profiles in human primary macrophages after 72 h of infection with H37Ra or H37Rv. Our results revealed that many lncRNAs were differentially expressed in macrophages after H37Ra or H37Rv infection, indicating a possible role for lncRNAs in immune responses induced by Mtb infection and providing important cues for further functional studies. Furthermore, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis of the differentially expressed mRNAs showed the potential functions and pathways related to the pathogenesis of Mtb infection. Finally, two lncRNAs, MIR3945HG V1 and MIR3945HG V2, were identified as novel candidate diagnostic markers for tuberculosis. Our results provide novel insight into the mechanisms of the pivotal Mtb-macrophage interactions, and reveal potential targets for diagnostics and the treatment of tuberculosis. PMID:27966580

  5. Predicting miRNA Targets by Integrating Gene Regulatory Knowledge with Expression Profiles

    PubMed Central

    Zhang, Weijia; Le, Thuc Duy; Liu, Lin; Zhou, Zhi-Hua; Li, Jiuyong

    2016-01-01

    Motivation microRNAs (miRNAs) play crucial roles in post-transcriptional gene regulation of both plants and mammals, and dysfunctions of miRNAs are often associated with tumorigenesis and development through the effects on their target messenger RNAs (mRNAs). Identifying miRNA functions is critical for understanding cancer mechanisms and determining the efficacy of drugs. Computational methods analyzing high-throughput data offer great assistance in understanding the diverse and complex relationships between miRNAs and mRNAs. However, most of the existing methods do not fully utilise the available knowledge in biology to reduce the uncertainty in the modeling process. Therefore it is desirable to develop a method that can seamlessly integrate existing biological knowledge and high-throughput data into the process of discovering miRNA regulation mechanisms. Results In this article we present an integrative framework, CIDER (Causal miRNA target Discovery with Expression profile and Regulatory knowledge), to predict miRNA targets. CIDER is able to utilise a variety of gene regulation knowledge, including transcriptional and post-transcriptional knowledge, and to exploit gene expression data for the discovery of miRNA-mRNA regulatory relationships. The benefits of our framework is demonstrated by both simulation study and the analysis of the epithelial-to-mesenchymal transition (EMT) and the breast cancer (BRCA) datasets. Our results reveal that even a limited amount of either Transcription Factor (TF)-miRNA or miRNA-mRNA regulatory knowledge improves the performance of miRNA target prediction, and the combination of the two types of knowledge enhances the improvement further. Another useful property of the framework is that its performance increases monotonically with the increase of regulatory knowledge. PMID:27064982

  6. Steroid hormone receptor gene expression in human breast cancer cells: inverse relationship between oestrogen and glucocorticoid receptor messenger RNA levels.

    PubMed

    Hall, R E; Lee, C S; Alexander, I E; Shine, J; Clarke, C L; Sutherland, R L

    1990-12-15

    The relative expression in human breast cancer cells of messenger ribonucleic acids (mRNA) encoding different steroid hormone receptors is unknown. Accordingly, mRNA levels in total RNA extracted from 13 human breast cancer cell lines were measured by Northern analysis employing complementary DNA probes for the human oestrogen (ER), progesterone (PR), androgen (AR), vitamin D3 (VDR) and glucocorticoid receptors (GR). The 7 ER+ lines expressed a single 6.4 kilobases (kb) ER mRNA. Interestingly, low concentrations of ER mRNA were detected in the ER- cell lines, MDA-MB-330 and BT 20. PR mRNA, predominantly a 13.5 kb species, was expressed in the 6 lines known to be ER+, PR+ by radioligand binding; however, one ER+ cell line, MDA-MB-134, failed to express PR mRNA. A 10.5 kb AR mRNA was expressed at significantly higher levels in ER+ than ER- cell lines. All cell lines expressed a single 4.6 kb mRNA for VDR and a single 7.4 kb mRNA for GR. ER and PR mRNA levels were positively correlated (p = 0.011) and each was positively correlated with androgen receptor (AR) mRNA levels (p less than or equal to 0.009). ER, PR and AR mRNAs were negatively associated with GR levels (p less than or equal to 0.012), while ER and AR mRNA levels were negatively correlated with mRNA for the epidermal growth factor receptor. In contrast, levels of VDR mRNA were unrelated to the concentration of any other steroid receptor mRNA. Our data demonstrate the coordinate expression of ER, PR and AR genes, and an inverse relationship between sex steroid hormone receptor and GR gene expression in human breast cancer cell lines.

  7. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles.

    PubMed

    Wu, N; Gaur, U; Zhu, Q; Chen, B; Xu, Z; Zhao, X; Yang, M; Li, D

    2016-10-26

    MicroRNA (miRNA) is a highly conserved class of small noncoding RNA about 19-24 nucleotides in length that function in a specific manner to post-transcriptionally regulate gene expression in organisms. Tissue miRNA expression studies have discovered a myriad of functions for miRNAs in various aspects, but a role for miRNAs in chicken ovarian tissue at 300 days of age has not hitherto been reported. In this study, we performed the first miRNA analysis of ovarian tissues in chickens with low and high rates of egg production using high-throughput sequencing. By comparing low rate of egg production chickens with high rate of egg production chickens, 17 significantly differentially expressed miRNAs were found (P < 0.05), including 11 known and six novel miRNAs. We found that all 11 known miRNAs were involved mainly in pathways of reproduction regulation, such as steroid hormone biosynthesis and dopaminergic synapse. Additionally, expression profiling of six randomly selected differentially regulated miRNAs were validated by quantitative real-time polymerase chain reaction (RT-qPCR). Some miRNAs, such as gga-miR-34b, gga-miR-34c and gga-miR-216b, were reported to regulate processes such as proliferation, cell cycle, apoptosis and metastasis and were expressed differentially in ovaries of chickens with high rates of egg production, suggesting that these miRNAs have an important role in ovary development and reproductive management of chicken. Furthermore, we uncovered that a significantly up-regulated miRNA-gga-miR-200a-3p-is ubiquitous in reproduction-regulation-related pathways. This miRNA may play a special central role in the reproductive management of chicken, and needs to be further studied for confirmation.

  8. Transcription Expression and Clinical Significance of Dishevelled-3 mRNA and δ-Catenin mRNA in Pleural Effusions from Patients with Lung Cancer

    PubMed Central

    Li, Xiao-Yan; Liu, Shu-Li; Cha, Na; Zhao, Yu-Jie; Wang, Shao-Cheng; Li, Wei-Nan; Wang, En-Hua; Wu, Guang-Ping

    2012-01-01

    Objective. To evaluate diagnostic utility of Dishevelled-3 (DVL-3) mRNA and δ-catenin mRNA expression in pleural effusions of patients with lung cancer. Methods. DVL-3 mRNA and δ-catenin mRNA levels were assessed by performing RT-PCR on pleural effusion specimens from patients with lung cancer (n = 75) and with lung benign disease (n = 51). Results. The expressions of DVL-3 mRNA and δ-catenin mRNA were significantly higher in malignant than in benign lung disease (P < 0.01) and were obviously higher than cytology in adenocarcinoma (P < 0.01). In single use, DVL-3 mRNA had the highest specificity (94.1%) and PPV (95.7%), whereas δ-catenin mRNA had the highest sensitivity (92.0%) and NPV (88.5%). When combinations of markers were evaluated together, DVL-3 mRNA and δ-catenin mRNA gave a high-diagnostic performance: sensitivity of 100.0%, NPV of 100.0%, and accuracy of 96.0%, respectively. Conclusion. As molecular markers of detecting pleural micrometastasis, DVL-3 mRNA and δ-catenin mRNA are helpful to diagnose the cancer cells in pleural effusions of patients with lung cancer. PMID:22461838

  9. Composition and Expression of Conserved MicroRNA Genes in Diploid Cotton (Gossypium) Species

    PubMed Central

    Gong, Lei; Kakrana, Atul; Arikit, Siwaret; Meyers, Blake C.; Wendel, Jonathan F.

    2013-01-01

    MicroRNAs are ubiquitous in plant genomes but vary greatly in their abundance within and conservation among plant lineages. To gain insight into the evolutionary birth/death dynamics of microRNA families, we sequenced small RNA and 5′-end PARE libraries generated from two closely related species of Gossypium. Here, we demonstrate that 33 microRNA families, with similar copy numbers and average evolutionary rates, are conserved in the two congeneric cottons. Analysis of the presence/absence of these microRNA families in other land plants sheds light on their depth of phylogenetic origin and lineage-specific loss/gain. Conserved microRNA families in Gossypium exhibit a striking interspecific asymmetry in expression, potentially connected to relative proximity to neighboring transposable elements. A complex correlated expression pattern of microRNA target genes with their controlling microRNAs indicates that possible functional divergence of conserved microRNA families can also exist even within a single plant genus. PMID:24281048

  10. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability

    PubMed Central

    Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina

    2016-01-01

    Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication. PMID:27265729

  11. Manipulating miRNA Expression: A Novel Approach for Colon Cancer Prevention and Chemotherapy

    PubMed Central

    Ramalingam, Satish; Subramaniam, Dharmalingam; Anant, Shrikant

    2015-01-01

    Small non-coding RNA has been implicated in the control of various cellular processes such as proliferation, apoptosis, and differentiation. About 50% of the miRNA genes are positioned in cancer-associated genomic regions. Several studies have shown that miRNA expression is deregulated in cancer and modulating their expression has reversed the cancer phenotype. Therefore, mechanisms to modulate microRNA (miRNA) activity have provided a novel opportunity for cancer prevention and therapy. In addition, a common cause for development of colorectal cancers is environmental and lifestyle factors. One such factor, diet has been shown to modulate miRNA expression in colorectal cancer patients. In this chapter, we will summarize the work demonstrating that miRNAs are novel promising drug targets for cancer chemoprevention and therapy. Improved delivery, increased stability and enhanced regulation of off-target effects will overcome the current challenges of this exciting approach in the field of cancer prevention and therapy. PMID:26029495

  12. Telomerase reverse transcriptase promotes cancer cell proliferation by augmenting tRNA expression

    PubMed Central

    Khattar, Ekta; Kumar, Pavanish; Liu, Chia Yi; Akıncılar, Semih Can; Raju, Anandhkumar; Lakshmanan, Manikandan; Maury, Julien Jean Pierre; Qiang, Yu; Li, Shang; Tan, Ern Yu; Hui, Kam M.; Loh, Yuin Han

    2016-01-01

    Transcriptional reactivation of telomerase reverse transcriptase (TERT) reconstitutes telomerase activity in the majority of human cancers. Here, we found that ectopic TERT expression increases cell proliferation, while acute reductions in TERT levels lead to a dramatic loss of proliferation without any change in telomere length, suggesting that the effects of TERT could be telomere independent. We observed that TERT determines the growth rate of cancer cells by directly regulating global protein synthesis independently of its catalytic activity. Genome-wide TERT binding across 5 cancer cell lines and 2 embryonic stem cell lines revealed that endogenous TERT, driven by mutant promoters or oncogenes, directly associates with the RNA polymerase III (pol III) subunit RPC32 and enhances its recruitment to chromatin, resulting in increased RNA pol III occupancy and tRNA expression in cancers. TERT-deficient mice displayed marked delays in polyomavirus middle T oncogene–induced (PyMT-induced) mammary tumorigenesis, increased survival, and reductions in tRNA levels. Ectopic expression of either RPC32 or TERT restored tRNA levels and proliferation defects in TERT-depleted cells. Finally, we determined that levels of TERT and tRNA correlated in breast and liver cancer samples. Together, these data suggest the existence of a unifying mechanism by which TERT enhances translation in cells to regulate cancer cell proliferation. PMID:27643433

  13. Aluminum triggers broad changes in microRNA expression in rice roots.

    PubMed

    Lima, J C; Arenhart, R A; Margis-Pinheiro, M; Margis, R

    2011-11-10

    MicroRNAs are small 21-nucleotide RNA molecules with regulatory roles in development and in response to stress. Expression of some plant miRNAs has been specifically associated with responses to abiotic stresses caused by cold, light, iron, and copper ions. In acid soils, aluminum solubility increases, thereby causing severe damage to plants. Although physiological aspects of aluminum toxicity in plants have been well characterized, the molecular mediators are not fully elucidated. There have been no reports about miRNA responses to aluminum stress. Modulation of miRNA expression may constitute a key element to explain the mechanisms implicated in aluminum toxicity and tolerance. We examined the expression of at least one miRNA member from each miRNA family in rice roots of Oryza sativa spp indica cv. Embrapa Taim and Oryza sativa spp japonica cv. Nipponbare under high concentrations of aluminum. Forty-six miRNA families were effectively detected by quantitative PCR. Among these, 13 were down-regulated and six were up-regulated in roots of the Nipponbare cultivar after 8 h of aluminum treatment. In roots of the Embrapa Taim cultivar, five miRNAs were down-regulated and three were up-regulated. Analyses of their putative targets suggest that these rice miRNAs are involved in the regulation of various metabolic pathways in response to high concentrations of aluminum.

  14. Expression and localization of lactotransferrin messenger RNA in the cortex of Alzheimer's disease.

    PubMed

    An, Li; Sato, Haruhisha; Konishi, Yoshihiro; Walker, Douglas G; Beach, Thomas G; Rogers, Joseph; Tooyama, Ikuo

    2009-03-20

    We and others have previously reported that lactotransferrin (LF), acting both as an iron-binding protein and inflammatory modulator, is greatly up-regulated in the brain of patients with Alzheimer's disease (AD). However, it remains unknown which type of cells express LF in the brain of AD. In this study, therefore, we investigated the expression and localization of LF messenger RNA (mRNA) in the cerebral cortex of AD and control cases using real-time polymerase chain reaction (PCR) and in situ hybridization histochemistry. Real-time PCR demonstrated that LF mRNA expression in the cortex of AD cases was significantly greater than that in control cases. LF mRNA-positive granules were observed in the cortex by in situ hybridization histochemistry, and the number of positive granules was increased in AD cases compared to controls. The double staining technique of LF mRNA in situ hybridisation and D-related human leukocyte antigen (HLA-DR) immunohistochemistry revealed that positive granules were localized in a subpopulation of HLA-DR-positive reactive microglia. In addition, LF mRNA-positive granules were observed in some cells that were negative for HLA-DR. These cells were also negative for CD4 and CD8 but positive for leukocyte common antigen (CD45RB), suggesting they were monocytes/macrophages. These results indicate that reactive microglia in the cerebral cortex and monocytes/macrophages infiltrating from the circulation might be responsible for synthesizing LF in AD brain.

  15. Designing and using synthetic RNA thermometers for temperature-controlled gene expression in bacteria.

    PubMed

    Neupert, Juliane; Bock, Ralph

    2009-01-01

    Many techniques have been developed for studying inducible gene expression, but all of them are multicomponent systems consisting of cis-acting elements at the DNA or RNA level, trans-acting regulator proteins and/or small molecules as inducers. RNA thermometers are the only known single-component regulators of gene expression. They consist of a temperature-sensitive secondary structure in the 5' untranslated region of the mRNA, which contains the ribosome-binding site. The ribosome-binding site can be masked or unmasked by a simple temperature shift, thereby repressing or inducing translation. Recently, we and others have designed synthetic RNA thermometers that are considerably simpler than naturally occurring thermometers and can be exploited as convenient on/off switches of gene expression. In this protocol, we describe the construction and use of synthetic RNA thermometers. We provide guidelines for the in silico design of thermometer-controlled mRNA leaders and for their experimental testing and optimization; the entire procedure can be completed in 2-3 weeks.

  16. LncRNA Expression Discriminates Karyotype and Predicts Survival in B-lymphoblastic Leukemia

    PubMed Central

    Fernando, Thilini R.; Rodriguez-Malave, Norma I.; Waters, Ella V.; Yan, Weihong; Casero, David; Basso, Giuseppe; Pigazzi, Martina; Rao, Dinesh S.

    2015-01-01

    Long non-coding RNAs (lncRNAs) have been found to play a role in gene regulation with dysregulated expression in various cancers. The precise role that lncRNA expression plays in the pathogenesis of B-acute lymphoblastic leukemia (B-ALL) is unknown. Therefore, unbiased microarray profiling was performed on human B-ALL specimens and it was determined that lncRNA expression correlates with cytogenetic abnormalities, which was confirmed by RT-qPCR in a large set of B-ALL cases. Importantly, high expression of BALR-2 correlated with poor overall survival and diminished response to prednisone treatment. In line with a function for this lncRNA in regulating cell survival, BALR-2 knockdown led to reduced proliferation, increased apoptosis, and increased sensitivity to prednisolone treatment. Conversely, overexpression of BALR-2 led to increased cell growth and resistance to prednisone treatment. Interestingly, BALR-2 expression was repressed by prednisolone treatment and its knockdown led to upregulation of the glucocorticoid response pathway in both human and mouse B-cells. Together, these findings indicate that BALR-2 plays a functional role in the pathogenesis and/or clinical responsiveness of B-ALL and that altering the levels of particular lncRNAs may provide a future direction for therapeutic development. Implications lncRNA expression has the potential to segregate the common subtypes of B-ALL, predict the cytogenetic subtype, and indicate prognosis. PMID:25681502

  17. Androgen receptor regulates SRC expression through microRNA-203

    PubMed Central

    Tsai, Hong-Yuan; Yeh, Hsiu-Lien; Yin, Juan Juan; Liu, Shih-Yang; Liu, Yen-Nien

    2016-01-01

    The SRC kinase has pivotal roles in multiple developmental processes and in tumor progression. An inverse relationship has been observed between androgen receptor (AR) activity and SRC signaling in advanced prostate cancer (PCa); however, the modulation of AR/SRC crosstalk that leads to metastatic PCa is unclear. Here, we showed that patients with high SRC levels displayed correspondingly low canonical AR gene signatures. Our results demonstrated that activated AR induced miR-203 and reduced SRC levels in PCa model systems. miR-203 directly binds to the 3′ UTR of SRC and regulates the stability of SRC mRNA upon AR activation. Moreover, we found that progressive PCa cell migration and growth were associated with a decrease in AR-regulated miR-203 and an increase in SRC. Relationships among AR, miR-203, and SRC were also confirmed in clinical datasets and specimens. We suggest that the induction of SRC results in increased PCa metastasis that is linked to the dysregulation of the AR signaling pathway through the inactivation of miR-203. PMID:27028864

  18. mRNA expression profiling of neonatal rats after 16-day spaceflight

    NASA Astrophysics Data System (ADS)

    Miyake, M.; Ijiri, K.

    Some studies pointed out that postnatal development is the key to realize generation change of mammalians in space. For example, functional changes and hypoplasia in some organs after spaceflight during postnatal development were reported. Though profiling mRNA expression is useful to evaluate what happened in animals, these studies after spaceflight are limited to specific organs for understanding the relationship between phenotype and gene. The organ-wide analysis of mRNA expression is important to evaluate the condition of each animal, and it can find new phenomenon and help precise understanding for effect induced by spaceflight. In this experiment, we analyzed mRNA expression of liver, spleen and intestine in neonatal rats after 16-day spaceflight by Space Shuttle Columbia (STS-90).

  19. MicroRNA expression profiling of the developing murine upper lip.

    PubMed

    Warner, Dennis R; Mukhopadhyay, Partha; Brock, Guy; Webb, Cindy L; Michele Pisano, M; Greene, Robert M

    2014-08-01

    Clefts of the lip and palate are thought to be caused by genetic and environmental insults but the role of epigenetic mechanisms underlying this common birth defect are unknown. We analyzed the expression of over 600 microRNAs in the murine medial nasal and maxillary processes isolated on GD10.0-GD11.5 to identify those expressed during development of the upper lip and analyzed spatial expression of a subset. A total of 142 microRNAs were differentially expressed across gestation days 10.0-11.5 in the medial nasal processes, and 66 in the maxillary processes of the first branchial arch with 45 common to both. Of the microRNAs exhibiting the largest percent increase in both facial processes were five members of the Let-7 family. Among those with the greatest decrease in expression from GD10.0 to GD11.5 were members of the microRNA-302/367 family that have been implicated in cellular reprogramming. The distribution of expression of microRNA-199a-3p and Let-7i was determined by in situ hybridization and revealed widespread expression in both medial nasal and maxillary facial process, while that for microRNA-203 was much more limited. MicroRNAs are dynamically expressed in the tissues that form the upper lip and several were identified that target mRNAs known to be important for its development, including those that regulate the two main isoforms of p63 (microRNA-203 and microRNA-302/367 family). Integration of these data with corresponding proteomic datasets will lead to a greater appreciation of epigenetic regulation of lip development and provide a better understanding of potential causes of cleft lip.

  20. RNA Sequencing Reveals that Kaposi Sarcoma-Associated Herpesvirus Infection Mimics Hypoxia Gene Expression Signature

    PubMed Central

    Viollet, Coralie; Davis, David A.; Tekeste, Shewit S.; Reczko, Martin; Pezzella, Francesco; Ragoussis, Jiannis

    2017-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) causes several tumors and hyperproliferative disorders. Hypoxia and hypoxia-inducible factors (HIFs) activate latent and lytic KSHV genes, and several KSHV proteins increase the cellular levels of HIF. Here, we used RNA sequencing, qRT-PCR, Taqman assays, and pathway analysis to explore the miRNA and mRNA response of uninfected and KSHV-infected cells to hypoxia, to compare this with the genetic changes seen in chronic latent KSHV infection, and to explore the degree to which hypoxia and KSHV infection interact in modulating mRNA and miRNA expression. We found that the gene expression signatures for KSHV infection and hypoxia have a 34% overlap. Moreover, there were considerable similarities between the genes up-regulated by hypoxia in uninfected (SLK) and in KSHV-infected (SLKK) cells. hsa-miR-210, a HIF-target known to have pro-angiogenic and anti-apoptotic properties, was significantly up-regulated by both KSHV infection and hypoxia using Taqman assays. Interestingly, expression of KSHV-encoded miRNAs was not affected by hypoxia. These results demonstrate that KSHV harnesses a part of the hypoxic cellular response and that a substantial portion of hypoxia-induced changes in cellular gene expression are induced by KSHV infection. Therefore, targeting hypoxic pathways may be a useful way to develop therapeutic strategies for KSHV-related diseases. PMID:28046107

  1. Detection of MDR1 mRNA expression with optimized gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Zhou, Qiumei; Qian, Zhiyu; Gu, Yueqing

    2016-03-01

    MDR1 (multidrug resistance gene) mRNA expression is a promising biomarker for the prediction of doxorubicin resistance in clinic. However, the traditional technical process in clinic is complicated and cannot perform the real-time detection mRNA in living single cells. In this study, the expression of MDR1 mRNA was analyzed based on optimized gold nanoparticle beacon in tumor cells. Firstly, gold nanoparticle (AuNP) was modified by thiol-PEG, and the MDR1 beacon sequence was screened and optimized using a BLAST bioinformatics strategy. Then, optimized MDR1 molecular beacons were characterized by transmission electron microscope, UV-vis and fluorescence spectroscopies. The cytotoxicity of MDR1 molecular beacon on L-02, K562 and K562/Adr cells were investigated by MTT assay, suggesting that MDR1 molecular beacon was low inherent cytotoxicity. Dark field microscope was used to investigate the cellular uptake of hDAuNP beacon assisted with ultrasound. Finally, laser scanning confocal microscope images showed that there was a significant difference in MDR1 mRNA expression in K562 and K562/Adr cells, which was consistent with the results of q-PCR measurement. In summary, optimized MDR1 molecular beacon designed in this study is a reliable strategy for detection MDR1 mRNA expression in living tumor cells, and will be a promising strategy for in guiding patient treatment and management in individualized medication.

  2. Inhibition of pds gene expression via the RNA interference approach in Dunaliella salina (Chlorophyta).

    PubMed

    Sun, Guohua; Zhang, Xuecheng; Sui, Zhenghong; Mao, Yunxiang

    2008-01-01

    To investigate the potential of double-stranded RNA interferencing with gene expression in Dunaliella salina, a plasmid pBIRNAI-Dsa was constructed to express hairpin RNA (hpRNA) containing sequences homologous to phytoene desaturase gene (pds), a key gene in carotenoid biosynthesis, and transformed into D. salina by electroporation. The relative transcription level of pds in pBIRNAI-Dsa-treated cells to nontreated cells was quantitated and the gene silencing efficiency by RNAi was evaluated via real-time polymerase chain reaction (PCR). The transcriptions of pds of the pBIRNAI-Dsa-treated group changed compared to those of the control group, and the 2(-delta deltaC)(T) was lowest on the 7th day, corresponding to 0.281265-fold of the relative pds control transcript; a relatively strong gene inhibition effect was therefore deduced. The transcript of pds may be modulated in a wide range, and a reduced transcription even to 28% of the normal level may be tolerated for its survival. This study shows that dsRNA-mediated genetic interference can induce sequence-specific inhibition of gene expression and pBIRNAI-Dsa can be used for transient suppression of gene expression in D. salina. The aim of this study was to exploit dsRNA-mediated gene silencing and to provide a foundation for gene function research in D. salina.

  3. RNA Sequencing Reveals that Kaposi Sarcoma-Associated Herpesvirus Infection Mimics Hypoxia Gene Expression Signature.

    PubMed

    Viollet, Coralie; Davis, David A; Tekeste, Shewit S; Reczko, Martin; Ziegelbauer, Joseph M; Pezzella, Francesco; Ragoussis, Jiannis; Yarchoan, Robert

    2017-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) causes several tumors and hyperproliferative disorders. Hypoxia and hypoxia-inducible factors (HIFs) activate latent and lytic KSHV genes, and several KSHV proteins increase the cellular levels of HIF. Here, we used RNA sequencing, qRT-PCR, Taqman assays, and pathway analysis to explore the miRNA and mRNA response of uninfected and KSHV-infected cells to hypoxia, to compare this with the genetic changes seen in chronic latent KSHV infection, and to explore the degree to which hypoxia and KSHV infection interact in modulating mRNA and miRNA expression. We found that the gene expression signatures for KSHV infection and hypoxia have a 34% overlap. Moreover, there were considerable similarities between the genes up-regulated by hypoxia in uninfected (SLK) and in KSHV-infected (SLKK) cells. hsa-miR-210, a HIF-target known to have pro-angiogenic and anti-apoptotic properties, was significantly up-regulated by both KSHV infection and hypoxia using Taqman assays. Interestingly, expression of KSHV-encoded miRNAs was not affected by hypoxia. These results demonstrate that KSHV harnesses a part of the hypoxic cellular response and that a substantial portion of hypoxia-induced changes in cellular gene expression are induced by KSHV infection. Therefore, targeting hypoxic pathways may be a useful way to develop therapeutic strategies for KSHV-related diseases.

  4. Expression and clinicopathological significance of the lncRNA HOXA11-AS in colorectal cancer

    PubMed Central

    Li, Tong; Xu, Chengfei; Cai, Bin; Zhang, Meng; Gao, Feng; Gan, Jialiang

    2016-01-01

    HOXA11 antisense RNA (HOXA11-AS) is a long non-coding RNA (lncRNA) that is important in determining cancer progression. HOXA11-AS was recently identified as a novel biomarker in lung cancer progression. However, its role in colorectal cancer (CRC) remains poorly understood. The present study aimed to analyze lncRNA HOXA11-AS expression in CRC and investigate a possible association between HOXA11-AS and clinicopathological factors. HOXA11-AS expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in 84 CRC tissues and adjacent non-cancerous tissues, in addition to 3 CRC cell lines and 1 human normal colorectal cell line. The results demonstrated that HOXA11-AS expression was decreased in the CRC tissues and cell lines compared with that of the controls (P<0.05). Clinicopathological analysis indicated that low HOXA11-AS expression was significantly correlated with tumor size, advanced tumor-node-metastasis stage, lymph node metastasis and carcinoembryonic antigen level of patients with CRC (P<0.05). Furthermore, the areas under the curve (AUC) were 0.613 and 0.628 for HOXA11-AS, indicating that the lncRNA is able to distinguish CRC tissue from non-cancerous tissue, and CRC tissue with lymph node metastasis from CRC without lymph node metastasis. Therefore, HOXA11-AS may function as a potential biomarker and target for novel therapeutic strategies to treat CRC. PMID:27895785

  5. Tissue-specific mRNA expression profiling in grape berry tissues

    PubMed Central

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  6. Caenorhabditis elegans period homolog lin-42 regulates the timing of heterochronic miRNA expression.

    PubMed

    McCulloch, Katherine A; Rougvie, Ann E

    2014-10-28

    MicroRNAs (miRNAs) are small RNAs that regulate gene expression posttranscriptionally via the 3' UTR of target mRNAs and were first identified in the Caenorhabditis elegans heterochronic pathway. miRNAs have since been found in many organisms and have broad functions, including control of differentiation and pluripotency in humans. lin-4 and let-7-family miRNAs regulate developmental timing in C. elegans, and their proper temporal expression ensures cell lineage patterns are correctly timed and sequentially executed. Although much is known about miRNA biogenesis, less is understood about how miRNA expression is timed and regulated. lin-42, the worm homolog of the circadian rhythm gene period of flies and mammals, is another core component of the heterochronic gene pathway. lin-42 mutants have a precocious phenotype, in which later-stage programs are executed too early, but the placement of lin-42 in the timing pathway is unclear. Here, we demonstrate that lin-42 negatively regulates heterochronic miRNA transcription. let-7 and the related miRNA miR-48 accumulate precociously in lin-42 mutants. This defect reflects transcriptional misregulation because enhanced expression of both primary miRNA transcripts (pri-miRNAs) and a let-7 promoter::gfp fusion are observed. The pri-miRNA levels oscillate during larval development, in a pattern reminiscent of lin-42 expression. Importantly, we show that lin-42 is not required for this cycling; instead, peak amplitude is increased. Genetic analyses further confirm that lin-42 acts through let-7 family miRNAs. Taken together, these data show that a key function of lin-42 in developmental timing is to dampen pri-miRNAs levels, preventing their premature expression as mature miRNAs.

  7. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in space

    NASA Astrophysics Data System (ADS)

    Wu, Honglu; Story, Michael; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao

    2016-07-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NFkB and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for αa-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  8. Placental microRNA Expression Is Not Altered by Maternal Obesity and Fetal Overgrowth

    PubMed Central

    Ghaffari, Neda; Parry, Samuel; Elovitz, Michal A.; Durnwald, Celeste P.

    2016-01-01

    Objective The epigenetic mechanisms underlying fetal metabolic programming are poorly understood. We studied whether obesity is associated with alterations in placental miRNA expression. Study Design A cross-sectional study was performed, including (1) normal-weight women (BMI 20–24.9 kg/m2) and normal-birth-weight (BW) infants (2,700–3,500 g) (n = 20), (2) normal-weight and macrosomic infants (BW ≥ 4,000 g) (n = 10), (3) obese (BMI ≥ 35 kg/m2) and normal BW infants (n = 16), and (4) obese and macrosomic infants (n = 10). All had term deliveries (37–41 weeks) and normal glucose tolerance (1 hour GCT < 7.2 mmol/L [130 mg/dL]). The expression of 5,639 placental miRNAs was assessed using miRNA microarray. Differential miRNA expression was determined using two-way ANOVA and pairwise contrasts, with the Benjamini-Hochberg (BH) correction. MiRNAs with Z-scores ≥ 2 and false discovery rate (FDR) < 20% were considered significant. Results Principal components analysis demonstrated similar global miRNA expression profiles among groups. Of 5,639 miRNAs, only 5 were significantly different between obese and controls, which were not validated by quantitative polymerase reaction. Conclusion There was no difference in placental miRNA expression associated with obesity or overgrowth. Aberrant placental miRNA expression is an unlikely mechanism underlying fetal metabolic programming related to maternal obesity. PMID:28050331

  9. Sodium regulation of angiotensinogen mRNA expression in rat kidney cortex and medulla.

    PubMed Central

    Ingelfinger, J R; Pratt, R E; Ellison, K; Dzau, V J

    1986-01-01

    Rat liver angiotensinogen cDNA (pRang 3) and mouse renin cDNA (pDD-1D2) were used to identify angiotensinogen and renin mRNA sequences in rat kidney cortex and medulla in rats on high and low salt diet. Angiotensinogen mRNA sequences were present in renal cortex and medulla in apparently equal proportions, whereas renin mRNA sequences were found primarily in renal cortex. Average relative signal of rat liver to whole kidney angiotensinogen mRNA was 100:3. Densitometric analysis of Northern blots demonstrated that renal cortical angiotensinogen mRNA concentrations increased 3.5-fold (P less than 0.001) and medulla, 1.5-fold (P less than 0.005) on low sodium compared with high sodium diet, whereas renal cortex renin mRNA levels increased 6.8-fold (P less than 0.0005). Dietary sodium did not significantly influence liver angiotensinogen mRNA levels. These findings provide evidence for sodium regulation of renal renin and angiotensinogen mRNA expressions, which supports potential existence of an intrarenally regulated RAS and suggest that different factors regulate renal and hepatic angiotensinogen. Images PMID:3533999

  10. MicroRNA Expression Signatures During Malignant Progression From Barrett's Esophagus.

    PubMed

    Bansal, Ajay; Gupta, Vijayalaxmi; Wang, Kenneth

    2016-06-01

    The rapid increase and poor survival of esophageal adenocarcinoma (EAC) have led to significant efforts to promote early detection. Given that the premalignant lesion of Barrett's esophagus (BE) is the major known risk factor for EAC, multiple investigators have studied biomarker signatures that can predict malignant progression of BE to EAC. MicroRNAs, a novel class of gene regulators, are small non-coding RNAs and have been associated with carcinogenesis. MicroRNAs are ideal biomarkers because of their remarkable stability in fixed tissues, a common method for collection of clinical specimens, and in blood either within exosomes or as microRNA-protein complexes. Multiple studies show potential of microRNAs as tissue and blood biomarkers for diagnosis and prognosis of EAC but the results need confirmation in prospective studies. Although head-to-head comparisons are lacking, microRNA panels require less genes than messenger RNA panels for diagnosis of EAC in BE. MicroRNA diagnostic panels will need to be compared for accuracy against global measures of genome instability that were recently shown to be good predictors of progression but require sophisticated analytic techniques. Early studies on blood microRNA panels are promising but have found microRNA markers to be inconsistent among studies. MicroRNA expression in blood is different between various microRNA sub-compartments such as exosomes and microRNA-protein complexes and could affect blood microRNA measurements. Further standardization is needed to yield consistent results. We have summarized the current understanding of the tissue and blood microRNA signatures that may predict the development and progression of EAC.

  11. MicroRNA-941 Expression in Polymorphonuclear Granulocytes Is Not Related to Granulomatosis with Polyangiitis

    PubMed Central

    Svendsen, Jesper Brink; Baslund, Bo; Cramer, Elisabeth Præstekjær; Rapin, Nicolas; Borregaard, Niels

    2016-01-01

    Jumonji Domain-Containing Protein 3 (JMJD3)/lysine demethylase 6B (KDM6B) is an epigenetic modulator that removes repressive histone marks on genes. Expression of KDM6B mRNA is elevated in leukocytes from patients with ANCA-associated vasculitis (AAV) and has been suggested to be the reason for higher proteinase 3 (PR3) mRNA expression in these cells due to derepression of PRTN3 gene transcription. MicroRNA-941 (miR-941) has been shown to target KDM6B mRNA and inhibit JMJD3 production. We therefore investigated whether polymorphonuclear granulocytes (PMNs) from patients suffering from granulomatosis with polyangiitis (GPA) have lower expression of miR-941 than healthy control donors as a biological cause for higher JMJD3 levels. We found no significant difference in the degree of maturation of PMNs from GPA patients (n = 8) and healthy controls (n = 11) as determined from cell surface expression of the neutrophil maturation marker CD16 and gene expression profile of FCGR3B. The expression of PRTN3 and KDM6B mRNAs and miR-941 was not significantly different in GPA patients and healthy controls. Transfection of pre-miR-941 into the neutrophil promyelocyte cell line PLB-985 cells did not result in reduction of the KDM6B mRNA level as shown previously in a hepatocellular carcinoma cell line. The amount of PR3 in PMNs from GPA patients and healthy controls was comparable. In conclusion, we found that PRTN3 mRNA, KDM6B mRNA, and miR-941 expression levels in PMNs do not differ between GPA patients and healthy controls, and that miR-941 does not uniformly regulate KDM6B mRNA levels by inducing degradation of the transcript. Thus, decreased miR-941 expression in PMNs cannot be part of the pathogenesis of GPA. PMID:27755585

  12. Analysis options for high-throughput sequencing in miRNA expression profiling

    PubMed Central

    2014-01-01

    Background Recently high-throughput sequencing (HTS) using next generation sequencing techniques became useful in digital gene expression profiling. Our study introduces analysis options for HTS data based on mapping to miRBase or counting and grouping of identical sequence reads. Those approaches allow a hypothesis free detection of miRNA differential expression. Methods We compare our results to microarray and qPCR data from one set of RNA samples. We use Illumina platforms for microarray analysis and miRNA sequencing of 20 samples from benign follicular thyroid adenoma and malignant follicular thyroid carcinoma. Furthermore, we use three strategies for HTS data analysis to evaluate miRNA biomarkers for malignant versus benign follicular thyroid tumors. Results High correlation of qPCR and HTS data was observed for the proposed analysis methods. However, qPCR is limited in the differential detection of miRNA isoforms. Moreover, we illustrate a much broader dynamic range of HTS compared to microarrays for small RNA studies. Finally, our data confirm hsa-miR-197-3p, hsa-miR-221-3p, hsa-miR-222-3p and both hsa-miR-144-3p and hsa-miR-144-5p as potential follicular thyroid cancer biomarkers. Conclusions Compared to microarrays HTS provides a global profile of miRNA expression with higher specificity and in more detail. Summarizing of HTS reads as isoform groups (analysis pipeline B) or according to functional criteria (seed analysis pipeline C), which better correlates to results of qPCR are promising new options for HTS analysis. Finally, data opens future miRNA research perspectives for HTS and indicates that qPCR might be limited in validating HTS data in detail. PMID:24625073

  13. Integrated analysis miRNA and mRNA profiling in patients with severe oligozoospermia reveals miR-34c-3p downregulates PLCXD3 expression

    PubMed Central

    Li, Zhiming; Zheng, Zaozao; Ruan, Jun; Li, Zhi; Zhuang, Xuan; Tzeng, Chi-Meng

    2016-01-01

    Our previous research suggested that an integrated analysis of microRNA (miRNA) and messenger RNA (mRNA) expression is helpful to explore miRNA-mRNA interactions and to uncover the molecular mechanisms of male infertility. In this study, microarrays were used to compare the differences in the miRNA and mRNA expression profiles in the testicular tissues of severe oligozoospermia (SO) patients with obstructive azoospermia (OA) controls with normal spermatogenesis. Four miRNAs (miR-1246, miR-375, miR-410, and miR-758) and six mRNAs (SLC1A3, PRKAR2B, HYDIN, WDR65, PRDX1, and ADATMS5) were selected to validate the microarray data using quantitative real-time PCR. Using statistical calculations and bioinformatics predictions, we identified 33 differentially expressed miRNAs and 1,239 differentially expressed mRNAs, among which one potential miRNA-target gene pair, miR-34c-3p and PLCXD3 (Phosphatidylinositol-Specific Phospholipase C, X Domain Containing 3), was identified. Immunohistochemical analysis indicated that PLCXD3 was located within the germ cells of the mouse and human testis. Moreover, we found that miR-34c-3p was able to decrease PLCXD3 expression in mouse (GC-1 and TM4) and human (NCM460) cell lines, presumably indicating the possibility that miR-34c-3p acts as an intracellular mediator in germinal lineage differentiation. Notably, we reported the expression of the PLCXD3 protein in a man with normal spermatogenesis and the lack of the PLCXD3 protein in a man with SO. Therefore, the identified miRNA and mRNA may represent a potentially novel molecular regulatory network and therapeutic targets for the study or treatment of SO, which might provide a better understanding of the molecular basis of spermatogenesis dysfunction. PMID:27486773

  14. Isolation, expression and functional analysis of a putative RNA-dependent RNA polymerase gene from maize (Zea mays L.).

    PubMed

    He, Junguang; Dong, Zhigang; Jia, Zhiwei; Wang, Jianhua; Wang, Guoying

    2010-02-01

    RNA-dependent RNA polymerases (RdRPs) in plants have been reported to be involved in post-transcriptional gene silencing (PTGS) and antiviral defense. In this report, an RdRP gene from maize (ZmRdRP1) was obtained by rapid amplification of cDNA ends (RACE) and RT-PCR. The mRNA of ZmRdRP1 was composed of 3785 nucleotides, including a 167 nt 5' untranslated region (UTR), a 291 nt 3'UTR and a 3327 nt open reading frame (ORF), which encodes a putative protein of 1108 amino acids with an estimated molecular mass of 126.9 kDa and a predicated isoelectric point (pI) of 8.37. Real-time quantitative RT-PCR analysis showed that ZmRdRP1 was elicited by salicylic acid (SA) treatment, methyl jasmonate (MeJA) treatment and sugarcane mosaic virus (SCMV) infection. We silenced ZmRdRP1 by constitutively expressing an inverted-repeat fragment of ZmRdRP1 (ir-RdRP1) in transgenic maize plants. Further studies revealed that the ir-RdRP1 transgenic plants were more susceptible to SCMV infection than wild type plants. Virus-infected transgenic maize plants developed more serious disease symptoms and accumulated more virus than wild type plants. These findings suggested that ZmRdRP1 was involved in antiviral defense in maize.

  15. Investigation of Long Non-coding RNA Expression Profiles in the Substantia Nigra of Parkinson's Disease.

    PubMed

    Ni, Yaohui; Huang, Hua; Chen, Yaqin; Cao, Maohong; Zhou, Hongzhi; Zhang, Yuanyuan

    2017-03-01

    Genetics is considered as an important risk factor in the pathological changes of Parkinson's disease (PD). Substantia nigra (SN) is thought to be the most vulnerable area in this process. In recent decades, however, few related long non-coding RNAs (lncRNAs) in the SN of PD patients had been identified and the functions of those lncRNAs had been studied even less. In this study, we sought to investigate the lncRNA expression profiles and their potential functions in the SN of PD patients. We screened lncRNA expression profiles in the SN of PD patients using the lncRNA mining approach from the ArrayExpress database, which included GSE20295. The samples were from 11 of PD and 14 of normal tissue samples. We identified 87 lncRNAs that were altered significantly in the SN during the occurrence of PD. Among these lncRNAs, lncRNA AL049437 and lncRNA AK021630 varied most dramatically. AL049437 was up-regulated in the PD samples, while AK021630 was down-regulated. Based on the results, we focused on the potential roles of the two lncRNAs in the pathogenesis of PD by the knockdown of the expression of AL049437 or AK021630 in human neuroblastoma SH-SY5Y cell line. Results indicated that the reduction in AL049437 level increased cell viability, mitochondrial transmembrane potential (Δψm), mitochondrial mass, and tyrosine hydroxylase (TyrH) secretion. By contrast, the knockdown of AK021630 resulted in the opposite effect. Based on these results, we speculated that lncRNA AL049437 likely contributed to the risk of PD, while lncRNA AK021630 likely inhibited the occurrence of PD.

  16. An engineered small RNA-mediated genetic switch based on a ribozyme expression platform

    PubMed Central

    Klauser, Benedikt; Hartig, Jörg S.

    2013-01-01

    An important requirement for achieving many goals of synthetic biology is the availability of a large repertoire of reprogrammable genetic switches and appropriate transmitter molecules. In addition to engineering genetic switches, the interconnection of individual switches becomes increasingly important for the construction of more complex genetic networks. In particular, RNA-based switches of gene expression have become a powerful tool to post-transcriptionally program genetic circuits. RNAs used for regulatory purposes have the advantage to transmit, sense, process and execute information. We have recently used the hammerhead ribozyme to control translation initiation in a small molecule-dependent fashion. In addition, riboregulators have been constructed in which a small RNA acts as transmitter molecule to control translation of a target mRNA. In this study, we combine both concepts and redesign the hammerhead ribozyme to sense small trans-acting RNAs (taRNAs) as input molecules resulting in repression of translation initiation in Escherichia coli. Importantly, our ribozyme-based expression platform is compatible with previously reported artificial taRNAs, which were reported to act as inducers of gene expression. In addition, we provide several insights into key requirements of riboregulatory systems, including the influences of varying transcriptional induction of the taRNA and mRNA transcripts, 5′-processing of taRNAs, as well as altering the secondary structure of the taRNA. In conclusion, we introduce an RNA-responsive ribozyme-based expression system to the field of artificial riboregulators that can serve as reprogrammable platform for engineering higher-order genetic circuits. PMID:23585277

  17. Oxidative Stress Alters miRNA and Gene Expression Profiles in Villous First Trimester Trophoblasts

    PubMed Central

    Cross, Courtney E.; Tolba, Mai F.; Rondelli, Catherine M.; Xu, Meixiang; Abdel-Rahman, Sherif Z.

    2015-01-01

    The relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in preeclampsia (PE) is not fully elucidated. We investigated the impact of oxidative stress on miRNAs and mRNA expression profiles of genes associated with PE in villous 3A first trimester trophoblast cells exposed to H2O2 at 12 different concentrations (0-1 mM) for 0.5, 4, 24, and 48 h. Cytotoxicity, determined using the SRB assay, was used to calculate the IC50 of H2O2. RNA was extracted after 4 h exposure to H2O2 for miRNA and gene expression profiling. H2O2 exerted a concentration- and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50) significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluable miRNAs. Tool for annotations of microRNAs (TAM) analysis indicated that these altered miRNAs fall into 43 clusters and 34 families, with 41 functions identified. Exposure to H2O2 altered mRNA expression of 22 out of 84 key genes involved in dysregulation of placental development. In conclusion, short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile and expression of genes implicated in placental development. PMID:26339600

  18. Altered expression of selected microRNAs in melanoma: antiproliferative and proapoptotic activity of miRNA-155.

    PubMed

    Levati, Lauretta; Alvino, Ester; Pagani, Elena; Arcelli, Diego; Caporaso, Patrizia; Bondanza, Sergio; Di Leva, Gianpiero; Ferracin, Manuela; Volinia, Stefano; Bonmassar, Enzo; Croce, Carlo Maria; D'Atri, Stefania

    2009-08-01

    Altered expression of microRNAs (miRNAs) has been detected in cancer, suggesting that these small non-coding RNAs can act as oncogenes or tumor suppressor genes. In the present study, we investigated the expression of miRNA-17-5p, miRNA-18a, miRNA-20a, miRNA-92a, miRNA-146a, miRNA-146b and miRNA-155 by real-time quantitative RT-PCR in a panel of melanocyte cultures and melanoma cell lines and explored the possible role of miRNA-155 in melanoma cell proliferation and survival. The analyzed miRNAs were selected on the basis of previous studies strongly supporting their involvement in cancer development and/or progression. We found that miRNA-17-5p, miRNA-18a, miRNA-20a, and miRNA-92a were overexpressed, whereas miRNA-146a, miRNA-146b and miRNA-155 were down-regulated in the majority of melanoma cell lines with respect to melanocytes. Ectopic expression of miRNA-155 significantly inhibited proliferation in 12 of 13 melanoma cell lines with reduced levels of this miRNA and induced apoptosis in 4 out of 4 cell lines analyzed. In conclusion, our data further support the finding of altered miRNA expression in melanoma cells and establish for the first time that miRNA-155 is a negative regulator of melanoma cell proliferation and survival.

  19. Myxovirus Resistance Protein A mRNA Expression Kinetics in Multiple Sclerosis Patients Treated with IFNβ

    PubMed Central

    Libertinova, Jana; Meluzinova, Eva; Tomek, Ales; Horakova, Dana; Kovarova, Ivana; Matoska, Vaclav; Kumstyrova, Simona; Zajac, Miroslav; Hyncicova, Eva; Liskova, Petra; Houzvickova, Eva; Martinkovic, Lukas; Bojar, Martin; Havrdova, Eva; Marusic, Petr

    2017-01-01

    Introduction Interferon-β (IFNß) is the first-line treatment for relapsing-remitting multiple sclerosis. Myxovirus resistance protein A (MxA) is a marker of IFNß bioactivity, which may be reduced by neutralizing antibodies (NAbs) against IFNß. The aim of the study was to analyze the kinetics of MxA mRNA expression during long-term IFNβ treatment and assess its predictive value. Methods A prospective, observational, open-label, non-randomized study was designed in multiple sclerosis patients starting IFNß treatment. MxA mRNA was assessed prior to initiation of IFNß therapy and every three months subsequently. NAbs were assessed every six months. Assessment of relapses was scheduled every three months during 24 months of follow up. The disease activity was correlated to the pretreatment baseline MxA mRNA value. In NAb negative patients, clinical status was correlated to MxA mRNA values. Results 119 patients were consecutively enrolled and 107 were included in the final analysis. There was no correlation of MxA mRNA expression levels between baseline and month three. Using survival analysis, none of the selected baseline MxA mRNA cut off points allowed prediction of time to first relapse on the treatment. In NAb negative patients, mean MxA mRNA levels did not significantly differ in patients irrespective of relapse status. Conclusion Baseline MxA mRNA does not predict the response to IFNß treatment or the clinical status of the disease and the level of MxA mRNA does not correlate with disease activity in NAb negative patients. PMID:28081207

  20. Chemokines mRNA expression in relation to the Macrophage Migration Inhibitory Factor (MIF) mRNA and Vascular Endothelial Growth Factor (VEGF) mRNA expression in the microenvironment of endometrial cancer tissue and normal endometrium: a pilot study.

    PubMed

    Giannice, Raffaella; Erreni, Marco; Allavena, Paola; Buscaglia, Mauro; Tozzi, Roberto

    2013-11-01

    Tumor microenvironment inflammatory cells play a major role in cancer progression. Among these, the Tumor Associated Macrophages (TAMs) infiltration depends on the kind of chemokine, cytokines and growth factors secreted by the tumor cells and by the stroma in response to the cancer invasion. TAMs have been found to promote anti-tumor response in early stages and to stimulate neovascularization and metastases in advanced disease. In the microenvironment chemo-attractants of many human cancers, MIF and VEGF correlate with an increased TAMs recruitment. In addition, MIF enhances tumor cells metastases by modulating the immune responses and by promoting the angiogenesis related to VEGF. On the contrary the inhibition of MIF can lead to cell cycle arrest and apoptosis. Some chemokines (e.g. CXCL12, CXCL11, CXCL8) and their receptors, thanks to their ability to modulate migration and proliferation, are involved in the angiogenetic process. In this study we compared the expression of MIF mRNA with VEGF mRNA expression and with mRNA expression of other chemokines related to neo-angiogenesis, such as CXCL12, CXCL11, CXCL8 and CXCR4, in human endometrial cancer tissue (EC) and normal endometrium (NE). Fresh samples of EC tissue and NE were extracted from 15 patients with FIGO stage I-III undergoing primary surgery. Some of the tissue was sent for histology and part of it was treated with RNA later and stored at -80°C. Four patients dropped out. A significant up-regulation of MIF mRNA in EC tissue versus NE samples (P=0.01) was observed in all 11 patients. The MIF mRNA over-expression was coincident with a VEGF mRNA overexpression in 54% of patients (P=NS). MIF mRNA was inversely related to CXCL12 mRNA expression (P=0.01). MIF over-expression was significantly related to low grading G1-2 (P=0.01), endometrial type I (P=0.05), no lymphovascular spaces invasion (P=0.01) and 3years DFS (P=0.01). As reported in previous studies on patients with breast cancer, our data suggest

  1. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    PubMed

    Ke, Po-Yuan; Chen, Steve S-L

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  2. MicroRNA expression profiling of primary sheep testicular cells in response to bluetongue virus infection.

    PubMed

    Du, Junzheng; Gao, Shandian; Tian, Zhancheng; Xing, Shanshan; Huang, Dexuan; Zhang, Guorui; Zheng, Yadong; Liu, Guangyuan; Luo, Jianxun; Chang, Huiyun; Yin, Hong

    2017-04-01

    Bluetongue virus (BTV) is a member of the genus Orbivirus within the family Reoviridae and causes a non-contagious, insect-transmitted disease in domestic and wild ruminants, mainly in sheep and occasionally in cattle and some species of deer. Virus infection can trigger the changes of the cellular microRNA (miRNA) expression profile, which play important post-transcriptional regulatory roles in gene expression and can greatly influence viral replication and pathogenesis. Here, we employed deep sequencing technology to determine which cellular miRNAs were differentially expressed in primary sheep testicular (ST) cells infected with BTV. A total of 25 known miRNAs and 240 novel miRNA candidates that were differentially expressed in BTV-infected and uninfected ST cells were identified, and 251 and 8428 predicted target genes were annotated, respectively. Nine differentially expressed miRNAs and their mRNA targets were validated by quantitative reverse transcription-polymerase chain reaction. Targets prediction and functional analysis of these regulated miRNAs revealed significant enrichment for several signaling pathways including MAPK, PI3K-Akt, endocytosis, Hippo, NF-kB, viral carcinogenesis, FoxO, and JAK-STAT signaling pathways. This study provides a valuable basis for further investigation on the roles of miRNAs in BTV replication and pathogenesis.

  3. Age-related changes in microRNA expression and pharmacogenes in human liver

    PubMed Central

    Burgess, Kimberly S.; Philips, Santosh; Benson, Eric A.; Desta, Zeruesenay; Gaedigk, Andrea; Gaedigk, Roger; Segar, Matthew W.; Liu, Yunlong; Skaar, Todd C.

    2015-01-01

    Developmental changes in the liver can significantly impact drug disposition. Due to the emergence of microRNAs (miRNAs) as important regulators of drug disposition gene expression, we studied age-dependent changes in miRNA expression. Expression of 533 miRNAs was measured in 90 human liver tissues (fetal, pediatric (1-17 years), and adult (28-80 years); n=30 each). 114 miRNAs were upregulated and 72 were downregulated from fetal to pediatric, and 2 and 3, respectively, from pediatric to adult. Among the developmentally changing miRNAs, 99 miRNA-mRNA interactions were predicted or experimentally validated (e.g. hsamiR-125b-5p-CYP1A1; hsa-miR-34a-5p-HNF4A). In human liver samples (n=10 each), analyzed by RNA-sequencing, significant negative correlations were observed between the expression of >1000 miRNAs and mRNAs of drug disposition and regulatory genes. Our data suggest a mechanism for the marked changes in hepatic gene expression between the fetal and pediatric developmental periods, and support a role for these age-dependent miRNAs in regulating drug disposition. PMID:25968989

  4. Circadian RNA expression elicited by 3’-UTR IRAlu-paraspeckle associated elements

    PubMed Central

    Torres, Manon; Becquet, Denis; Blanchard, Marie-Pierre; Guillen, Séverine; Boyer, Bénédicte; Moreno, Mathias; Franc, Jean-Louis; François-Bellan, Anne-Marie

    2016-01-01

    Paraspeckles are nuclear bodies form around the long non-coding RNA, Neat1, and RNA-binding proteins. While their role is not fully understood, they are believed to control gene expression at a post-transcriptional level by means of the nuclear retention of mRNA containing in their 3’-UTR inverted repeats of Alu sequences (IRAlu). In this study, we found that, in pituitary cells, all components of paraspeckles including four major proteins and Neat1 displayed a circadian expression pattern. Furthermore the insertion of IRAlu at the 3’-UTR of the EGFP cDNA led to a rhythmic circadian nuclear retention of the egfp mRNA that was lost when paraspeckles were disrupted whereas insertion of a single antisense Alu had only a weak effect. Using real-time video-microscopy, these IRAlu were further shown to drive a circadian expression of EGFP protein. This study shows that paraspeckles, thanks to their circadian expression, control circadian gene expression at a post-transcriptional level. DOI: http://dx.doi.org/10.7554/eLife.14837.001 PMID:27441387

  5. Gene Rearrangement Attenuates Expression and Lethality of a Nonsegmented Negative Strand RNA Virus

    NASA Astrophysics Data System (ADS)

    Williams Wertz, Gail; Perepelitsa, Victoria P.; Ball, L. Andrew

    1998-03-01

    The nonsegmented negative strand RNA viruses comprise hundreds of human, animal, insect, and plant pathogens. Gene expression of these viruses is controlled by the highly conserved order of genes relative to the single transcriptional promoter. We utilized this regulatory mechanism to alter gene expression levels of vesicular stomatitis virus by rearranging the gene order. This report documents that gene expression levels and the viral phenotype can be manipulated in a predictable manner. Translocation of the promoter-proximal nucleocapsid protein gene N, whose product is required stoichiometrically for genome replication, to successive positions down the genome reduced N mRNA and protein expression in a stepwise manner. The reduction in N gene expression resulted in a stepwise decrease in genomic RNA replication. Translocation of the N gene also attenuated the viruses to increasing extents for replication in cultured cells and for lethality in mice, without compromising their ability to elicit protective immunity. Because monopartite negative strand RNA viruses have not been reported to undergo homologous recombination, gene rearrangement should be irreversible and may provide a rational strategy for developing stably attenuated live vaccines against this type of virus.

  6. Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes

    PubMed Central

    Adir, Idan; Dahan, Orna; Broday, Limor; Pilpel, Yitzhak; Rechavi, Oded

    2016-01-01

    Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal’s lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene’s promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species. PMID:27560950

  7. mirEX: a platform for comparative exploration of plant pri-miRNA expression data.

    PubMed

    Bielewicz, Dawid; Dolata, Jakub; Zielezinski, Andrzej; Alaba, Sylwia; Szarzynska, Bogna; Szczesniak, Michal W; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia; Karlowski, Wojciech M

    2012-01-01

    mirEX is a comprehensive platform for comparative analysis of primary microRNA expression data. RT-qPCR-based gene expression profiles are stored in a universal and expandable database scheme and wrapped by an intuitive user-friendly interface. A new way of accessing gene expression data in mirEX includes a simple mouse operated querying system and dynamic graphs for data mining analyses. In contrast to other publicly available databases, the mirEX interface allows a simultaneous comparison of expression levels between various microRNA genes in diverse organs and developmental stages. Currently, mirEX integrates information about the expression profile of 190 Arabidopsis thaliana pri-miRNAs in seven different developmental stages: seeds, seedlings and various organs of mature plants. Additionally, by providing RNA structural models, publicly available deep sequencing results, experimental procedure details and careful selection of auxiliary data in the form of web links, mirEX can function as a one-stop solution for Arabidopsis microRNA information. A web-based mirEX interface can be accessed at http://bioinfo.amu.edu.pl/mirex.

  8. Long noncoding RNA expression signature to predict platinum-based chemotherapeutic sensitivity of ovarian cancer patients.

    PubMed

    Liu, Rong; Zeng, Ying; Zhou, Cheng-Fang; Wang, Ying; Li, Xi; Liu, Zhao-Qian; Chen, Xiao-Ping; Zhang, Wei; Zhou, Hong-Hao

    2017-12-01

    Dysregulated long noncoding RNAs (lncRNAs) are potential markers of several tumor prognoses. This study aimed to develop a lncRNA expression signature that can predict chemotherapeutic sensitivity for patients with advanced stage and high-grade serous ovarian cancer (HGS-OvCa) treated with platinum-based chemotherapy. The lncRNA expression profiles of 258 HGS-OvCa patients from The Cancer Genome Atlas were analyzed. Results revealed that an eight-lncRNA signature was significantly associated with chemosensitivity in the multivariate logistic regression model, which can accurately predict the chemosensitivity of patients [Area under curve (AUC) = 0.83]. The association of a chemosensitivity predictor with molecular subtypes indicated the excellent prognosis performance of this marker in differentiated, mesenchymal, and immunoreactive subtypes (AUC > 0.8). The significant correlation between ZFAS1 expression and chemosensitivity was confirmed in 233 HGS-OvCa patients from the Gene Expression Omnibus datasets (GSE9891, GSE63885, and GSE51373). In vitro experiments demonstrated that the ZFAS1 expression was upregulated by cisplatin in A2008, HeyA8, and HeyC2 cell lines. This finding suggested that ZFAS1 may participate in platinum resistance. Therefore, the evaluation of the eight-lncRNA signature may be clinically implicated in the selection of platinum-resistant HGS-OvCa patients. The role of ZFAS1 in platinum resistance should be further investigated.

  9. Sprouty4 mRNA variants and protein expressions in breast and lung-derived cells

    PubMed Central

    Doriguzzi, Angelina; Salhi, Jihen; Sutterlüty-Fall, Hedwig

    2016-01-01

    Sprouty proteins are modulators of mitogen-induced signalling processes and are therefore hypothesized to affect malignant diseases. As a member of the Sprouty family, Sprouty4 has been previously shown to function as a tumour suppressor in lung and breast cancer. The present study analysed the expression of two known Sprouty4 splice variants in cells established from malignant and normal lung and breast tissues using semi-quantitative reverse transcription-polymerase chain reaction and immunoblotting. The results indicated that the expression of the two messenger RNA (mRNA) variants was reduced in the cells derived from malignant tissue in comparison to the normal counterparts. Although the expression of the two splice variants were associated in both tissue types, on average, the relative expression of the longer variant was slightly increased in malignant cells compared with normal tissues. Notably, the protein levels reflected the expression observed at the mRNA level only in breast-derived cells. Contrarily, with regards to the measured mRNA levels, Sprouty4 protein was disproportional augmented in lung cells known to harbour the mutated K-Ras gene. PMID:27895786

  10. Use of RNA-seq to determine variation in canine cytochrome P450 mRNA expression between blood, liver, lung, kidney and duodenum in healthy beagles.

    PubMed

    Visser, M; Weber, K; Rincon, G; Merritt, D

    2017-03-19

    RNA sequencing (RNA-seq) is a powerful tool for the evaluation and quantification of transcriptomes and expression patterns in animals, tissues, or pathological conditions. The purpose of this study was to determine the physiologic expression of cytochrome P450 (CYP) mRNA transcripts in whole blood, kidney, duodenum, liver, and lung in healthy, adult male (n = 4) and female (n = 4) beagles via RNA-seq. mRNA expression was above background (transcripts per million) for 45 canine CYPs, with liver, duodenum, and lung expressing a high number of xenobiotic metabolizing CYPs, while prominent endogenous metabolizing CYP expression was present in blood and kidney. The relative expression pattern of CYP2A13, 2B11, 2C21, 2D15, 2E1, 3A12, and 27A1 in liver, lung, and duodenum was verified through qPCR. This is the first global profiling of physiologic CYP mRNA expression in multiple canine tissues, providing a platform for further studies characterizing canine CYPs and changes in gene expression in disease states.

  11. Transient Gene and miRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lu, Tao; Wong, Michael; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Wang, Xiaoyu; Wu, Honglu

    2015-01-01

    Microgravity or an altered gravity environment from the static 1 gravitational constant has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of the cells. Whether non-dividing cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted on the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days for investigations of gene and miRNA (microRNA) expression profile changes in these cells. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly even though they were confluent, as measured by the expression of the protein Ki-67 positive cells, and the cells in space grew slightly faster. Gene and miRNA expression data indicated activation of NF(sub kappa)B (nuclear factor kappa-light-chain-enhancer of activated B cells) and other growth related pathways involving HGF and VEGF in the flown cells. On Day 14 when the cells were mostly non-dividing, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples in respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeleton changes by immunohistochemistry staining of the cells with antibodies for alpha-tubulin showed no difference between the flight and ground samples. Results of our study suggest that in true non-dividing human fibroblast cells, microgravity in

  12. Altered microRNA expression profiles in a rat model of spina bifida

    PubMed Central

    Qin, Pan; Li, Lin; Zhang, Da; Liu, Qiu-liang; Chen, Xin-rang; Yang, He-ying; Fan, Ying-zhong; Wang, Jia-xiang

    2016-01-01

    MicroRNAs (miRNAs) are dynamically regulated during neurodevelopment, yet few reports have examined their role in spina bifida. In this study, we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy. Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls. The miRNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an miRNA microarray assay. Compared with that in control fetuses, the expression of miRNA-9, miRNA-124a, and miRNA-138 was significantly decreased (> 2-fold), whereas the expression of miRNA-134 was significantly increased (> 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida. These results were validated using real-time quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis of the microarray data showed that these differentially expressed miRNAs could distinguish fetuses modeling spina bifida from control fetuses. Our bioinformatics analysis suggested that these differentially expressed miRNAs were associated with many cytological pathways, including a nervous system development signaling pathway. These findings indicate that further studies are warranted examining the role of miRNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida. Such studies may provide novel targets for the early diagnosis and treatment of spina bifida. PMID:27127493

  13. Altered microRNA expression profiles in a rat model of spina bifida.

    PubMed

    Qin, Pan; Li, Lin; Zhang, Da; Liu, Qiu-Liang; Chen, Xin-Rang; Yang, He-Ying; Fan, Ying-Zhong; Wang, Jia-Xiang

    2016-03-01

    MicroRNAs (miRNAs) are dynamically regulated during neurodevelopment, yet few reports have examined their role in spina bifida. In this study, we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy. Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls. The miRNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an miRNA microarray assay. Compared with that in control fetuses, the expression of miRNA-9, miRNA-124a, and miRNA-138 was significantly decreased (> 2-fold), whereas the expression of miRNA-134 was significantly increased (> 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida. These results were validated using real-time quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis of the microarray data showed that these differentially expressed miRNAs could distinguish fetuses modeling spina bifida from control fetuses. Our bioinformatics analysis suggested that these differentially expressed miRNAs were associated with many cytological pathways, including a nervous system development signaling pathway. These findings indicate that further studies are warranted examining the role of miRNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida. Such studies may provide novel targets for the early diagnosis and treatment of spina bifida.

  14. Mono-allelic VSG expression by RNA polymerase I in Trypanosoma brucei: expression site control from both ends?

    PubMed

    Günzl, Arthur; Kirkham, Justin K; Nguyen, Tu N; Badjatia, Nitika; Park, Sung Hee

    2015-02-01

    Trypanosoma brucei is a vector borne, lethal protistan parasite of humans and livestock in sub-Saharan Africa. Antigenic variation of its cell surface coat enables the parasite to evade adaptive immune responses and to live freely in the blood of its mammalian hosts. The coat consists of ten million copies of variant surface glycoprotein (VSG) that is expressed from a single VSG gene, drawn from a large repertoire and located near the telomere at one of fifteen so-called bloodstream expression sites (BESs). Thus, antigenic variation is achieved by switching to the expression of a different VSG gene. A BES is a tandem array of expression site-associated genes and a terminal VSG gene. It is polycistronically transcribed by a multifunctional RNA polymerase I (RNAPI) from a short promoter that is located 45-60 kb upstream of the VSG gene. The mechanism(s) restricting VSG expression to a single BES are not well understood. There is convincing evidence that epigenetic silencing and transcription attenuation play important roles. Furthermore, recent data indicated that there is regulation at the level of transcription initiation and that, surprisingly, the VSG mRNA appears to have a role in restricting VSG expression to a single gene. Here, we review BES expression regulation and propose a model in which telomere-directed, epigenetic BES silencing is opposed by BES promoter-directed, activated RNAPI transcription.

  15. MicroRNA expression profiles associated with pancreatic adenocarcinoma and ampullary adenocarcinoma.

    PubMed

    Schultz, Nicolai A; Werner, Jens; Willenbrock, Hanni; Roslind, Anne; Giese, Nathalia; Horn, Thomas; Wøjdemann, Morten; Johansen, Julia S

    2012-12-01

    MicroRNAs have potential as diagnostic cancer biomarkers. The aim of this study was (1) to define microRNA expression patterns in formalin-fixed parafin-embedded tissue from pancreatic ductal adenocarcinoma, ampullary adenocarcinoma, normal pancreas and chronic pancreatitis without using micro-dissection and (2) to discover new diagnostic microRNAs and combinations of microRNAs in cancer tissue. The expression of 664 microRNAs in tissue from 170 pancreatic adenocarcinomas and 107 ampullary adenocarcinomas were analyzed using a commercial microRNA assay. Results were compared with chronic pancreatitis, normal pancreas and duodenal adenocarcinoma. In all, 43 microRNAs had higher and 41 microRNAs reduced expression in pancreatic cancer compared with normal pancreas. In all, 32 microRNAs were differently expressed in pancreatic adenocarcinoma compared with chronic pancreatitis (17 higher; 15 reduced). Several of these microRNAs have not before been related to diagnosis of pancreatic cancer (eg, miR-492, miR-614, miR-622). MiR-614, miR-492, miR-622, miR-135b and miR-196 were most differently expressed. MicroRNA profiles of pancreatic and ampullary adenocarcinomas were correlated (0.990). MicroRNA expression profiles for pancreatic cancer described in the literature were consistent with our findings, and the microRNA profile for pancreatic adenocarcinoma (miR-196b-miR-217) was validated. We identified a more significant expression profile, the difference between miR-411 and miR-198 (P=2.06 × 10(-54)) and a diagnostic LASSO classifier using 19 microRNAs (sensitivity 98.5%; positive predictive value 97.8%; accuracy 97.0%). We also identified microRNA profiles to subclassify ampullary adenocarcinomas into pancreatobiliary or intestinal type. In conclusion, we found that combinations of two microRNAs could roughly separate neoplastic from non-neoplastic samples. A diagnostic 19 microRNA classifier was constructed which without micro-dissection could discriminate pancreatic

  16. AB266. Expression of long noncoding RNA lncRNA-n336928 is correlated with tumor stage and grade and overall survival in bladder cancer

    PubMed Central

    Chen, Tao; Wu, Changli; Hu, Hailong

    2016-01-01

    Background Long noncoding RNAs (lncRNAs) have been implicated playing important roles in human urologic cancers. Up to date, quite a few lncRNAs have been implicated as promising biomarkers for tumor early detection and prognosis monitoring. Methods In the present study, microarray analysis was initially performed to screen the differentially expressed lncRNAs between bladder cancer tissues and paired adjacent non-cancerous tissues (n=3).Subsequent qRT-PCR validation was conducted using tissue samples from 95 patients with bladder cancer. Results Results showed that the expression level of lncRNA-n336928 (noncode database ID: n336928) was significantly higher in bladder cancer tissues compared to that in adjacent noncancerous tissues (P<0.001). Chi-square test showed that expression of lncRNA-n336928 was positively correlated with bladder tumor stage and histological grade (P<0.001). Kaplan-Meier survival analysis revealed that patients with bladder cancer with high expression of lncRNA-n336928 had shorter overall survival time compared to patients with low expression of lncRNA-n336928. Multivariate analysis indicated that lncRNA-n336928 was an independent prognostic factor for overall survival for bladder cancer patients. Conclusions our study shows that high expression of lncRNA-n336928 is associated with the progression of bladder cancer, and that lncRNA-n336928 might serve as a biomarker for prognosis of bladder cancer

  17. RNA Helicase DDX5 Regulates MicroRNA Expression and Contributes to Cytoskeletal Reorganization in Basal Breast Cancer Cells

    SciTech Connect

    Wang, Daojing; Huang, Jing; Hu, Zhi

    2011-11-15

    RNA helicase DDX5 (also p68) is involved in all aspects of RNA metabolism and serves as a transcriptional co-regulator, but its functional role in breast cancer remains elusive. Here, we report an integrative biology study of DDX5 in breast cancer, encompassing quantitative proteomics, global MicroRNA profiling, and detailed biochemical characterization of cell lines and human tissues. We showed that protein expression of DDX5 increased progressively from the luminal to basal breast cancer cell lines, and correlated positively with that of CD44 in the basal subtypes. Through immunohistochemistry analyses of tissue microarrays containing over 200 invasive human ductal carcinomas, we observed that DDX5 was upregulated in the majority of malignant tissues, and its expression correlated strongly with those of Ki67 and EGFR in the triple-negative tumors. We demonstrated that DDX5 regulated a subset of MicroRNAs including miR-21 and miR-182 in basal breast cancer cells. Knockdown of DDX5 resulted in reorganization of actin cytoskeleton and reduction of cellular proliferation. The effects were accompanied by upregulation of tumor suppressor PDCD4 (a known miR-21 target); as well as upregulation of cofilin and profilin, two key proteins involved in actin polymerization and cytoskeleton maintenance, as a consequence of miR-182 downregulation. Treatment with miR-182 inhibitors resulted in morphologic phenotypes resembling those induced by DDX5 knockdown. Using bioinformatics tools for pathway and network analyses, we confirmed that the network for regulation of actin cytoskeleton was predominantly enriched for the predicted downstream targets of miR-182. Our results reveal a new functional role of DDX5 in breast cancer via the DDX5→miR-182→actin cytoskeleton pathway, and suggest the potential clinical utility of DDX5 and its downstream MicroRNAs in the theranostics of breast cancer.

  18. Cucumis melo microRNA expression profile during aphid herbivory in a resistant and susceptible interaction.

    PubMed

    Sattar, Sampurna; Song, Yan; Anstead, James A; Sunkar, Ramanjulu; Thompson, Gary A

    2012-06-01

    Aphis gossypii resistance in melon (Cucumis melo) is due to the presence of a single dominant virus aphid transmission (Vat) gene belonging to the nucleotide-binding site leucine-rich repeat family of resistance genes. Significant transcriptional reprogramming occurs in Vat(+) plants during aphid infestation as metabolism shifts to respond to this biotic stress. MicroRNAs (miRNAs) are involved in the regulation of many biotic stress responses. The role of miRNAs was investigated in response to aphid herbivory during both resistant and susceptible interactions. Small RNA (smRNA) libraries were constructed from bulked leaf tissues of a Vat(+) melon line following early and late aphid infestations. Sequence analysis indicated that the expression profiles of conserved and newly identified miRNAs were altered during different stages of aphid herbivory. These results were verified by quantitative polymerase chain reaction experiments in both resistant Vat(+) and susceptible Vat(-) interactions. The comparative analyses revealed that most of the conserved miRNA families were differentially regulated during the early stages of aphid infestation in the resistant and susceptible interactions. Along with the conserved miRNA families, 18 cucurbit-specific miRNAs were expressed during the different stages of aphid herbivory. The comparison of the miRNA profiles in the resistant and susceptible interactions provides insight into the miRNA-dependent post-transcriptional gene regulation in Vat-mediated resistance.

  19. rasiRNA pathway controls antisense expression of Drosophila telomeric retrotransposons in the nucleus

    PubMed Central

    Shpiz, Sergey; Kwon, Dmitry; Rozovsky, Yakov; Kalmykova, Alla

    2009-01-01

    Telomeres in Drosophila are maintained by the specialized telomeric retrotransposons HeT-A, TART and TAHRE. Sense transcripts of telomeric retroelements were shown to be the targets of a specialized RNA-interference mechanism, a repeat-associated short interfering (rasi)RNA-mediated system. Antisense rasiRNAs play a key role in this mechanism, highlighting the importance of antisense expression in retrotransposon silencing. Previously, bidirectional transcription was reported for the telomeric element TART. Here, we show that HeT-A is also bidirectionally transcribed, and HeT-A antisense transcription in ovaries is regulated by a promoter localized within its 3′ untranslated region. A remarkable feature of noncoding HeT-A antisense transcripts is the presence of multiple introns. We demonstrate that sense and antisense HeT-A-specific rasiRNAs are present in the same tissue, indicating that transcripts of both directions may be considered as natural targets of the rasiRNA pathway. We found that the expression of antisense transcripts of telomeric elements is regulated by the RNA silencing machinery, suggesting rasiRNA-mediated interplay between sense and antisense transcripts in the cell. Finally, this regulation occurs in the nucleus since disruption of the rasiRNA pathway leads to an accumulation of TART and HeT-A transcripts in germ cell nuclei. PMID:19036789

  20. CONCISE REVIEW Micro RNA Expression in Multipotent Mesenchymal Stromal Cells

    PubMed Central

    Lakshmipathy, Uma; Hart, Ronald P.

    2009-01-01

    Multipotent mesenchymal stromal cells (MSC) isolated from various adult tissue sources have the capacity to self-renew and to differentiate into multiple lineages. Both of these processes are tightly regulated by genetic and epigenetic mechanisms. Emerging evidence indicates that the class of single-stranded non-coding RNAs known as “microRNAs” also plays a critical role in this process. First described in nematodes and plants, microRNAs have been shown to modulate major regulatory mechanisms in eukaryotic cells involved in a broad array of cellular functions. Studies with various types of embryonic as well as adult stem cells indicate an intricate network of microRNAs regulating key transcription factors and other genes which in turn determine cell fate. In addition, expression of unique microRNAs in specific cell types serves as a useful diagnostic marker to define a particular cell type. MicroRNAs are also found to be regulated by extracellular signaling pathways that are important for differentiation into specific tissues, suggesting that they play a role in specifying tissue identity. In this review we describe the importance of microRNAs in stem cells focusing on our current understanding of microRNAs in MSC and their derivatives. PMID:17991914

  1. MicroRNA Expression Profiles as Biomarkers of Minor Salivary Gland Inflammation and Dysfunction in Sjögren's Syndrome

    PubMed Central

    Alevizos, Ilias; Alexander, Stefanie; Turner, R. James; Illei, Gabor G.

    2013-01-01

    Objective MicroRNA reflect physiologic and pathologic processes and may be used as biomarkers of concurrent pathophysiologic events in complex settings such as autoimmune diseases. We generated microRNA microarray profiles from the minor salivary glands of control subjects without Sjögren's syndrome (SS) and patients with SS who had low-grade or high-grade inflammation and impaired or normal saliva production, to identify microRNA patterns specific to salivary gland inflammation or dysfunction. Methods MicroRNA expression profiles were generated by Agilent microRNA arrays. We developed a novel method for data normalization by identifying housekeeping microRNA. MicroRNA profiles were compared by unsupervised mathematical methods to test how well they distinguish between control subjects and various subsets of patients with SS. Several bioinformatics methods were used to predict the messenger RNA targets of the differentially expressed microRNA. Results MicroRNA expression patterns accurately distinguished salivary glands from control subjects and patients with SS who had low-degree or high-degree inflammation. Using real-time quantitative polymerase chain reaction, we validated 2 microRNA as markers of inflammation in an independent cohort. Comparing microRNA from patients with preserved or low salivary flow identified a set of differentially expressed microRNA, most of which were up-regulated in the group with decreased salivary gland function, suggesting that the targets of microRNA may have a protective effect on epithelial cells. The predicted biologic targets of microRNA associated with inflammation or salivary gland dysfunction identified both overlapping and distinct biologic pathways and processes. Conclusion Distinct microRNA expression patterns are associated with salivary gland inflammation and dysfunction in patients with SS, and microRNA represent a novel group of potential biomarkers. PMID:21280008

  2. Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure

    PubMed Central

    Sanders, Alison P; Burris, Heather H; Just, Allan C; Motta, Valeria; Amarasiriwardena, Chitra; Svensson, Katherine; Oken, Emily; Solano-Gonzalez, Maritsa; Mercado-Garcia, Adriana; Pantic, Ivan; Schwartz, Joel; Tellez-Rojo, Martha M; Baccarelli, Andrea A; Wright, Robert O

    2015-01-01

    Aim: Toxic metals including lead and mercury are associated with adverse pregnancy outcomes. This study aimed to assess the association between miRNA expression in the cervix during pregnancy with lead and mercury levels. Materials & methods: We obtained cervical swabs from pregnant women (n = 60) and quantified cervical miRNA expression. Women's blood lead, bone lead and toenail mercury levels were analyzed. We performed linear regression to examine the association between metal levels and expression of 74 miRNAs adjusting for covariates. Results: Seventeen miRNAs were negatively associated with toenail mercury levels, and tibial bone lead levels were associated with decreased expression of miR-575 and miR-4286. Conclusion: The findings highlight miRNAs in the human cervix as novel responders to maternal chemical exposure during pregnancy. PMID:26418635

  3. The critical role of RNA processing and degradation in the control of gene expression.

    PubMed

    Arraiano, Cecília M; Andrade, José M; Domingues, Susana; Guinote, Inês B; Malecki, Michal; Matos, Rute G; Moreira, Ricardo N; Pobre, Vânia; Reis, Filipa P; Saramago, Margarida; Silva, Inês J; Viegas, Sandra C

    2010-09-01

    The continuous degradation and synthesis of prokaryotic mRNAs not only give rise to the metabolic changes that are required as cells grow and divide but also rapid adaptation to new environmental conditions. In bacteria, RNAs can be degraded by mechanisms that act independently, but in parallel, and that target different sites with different efficiencies. The accessibility of sites for degradation depends on several factors, including RNA higher-order structure, protection by translating ribosomes and polyadenylation status. Furthermore, RNA degradation mechanisms have shown to be determinant for the post-transcriptional control of gene expression. RNases mediate the processing, decay and quality control of RNA. RNases can be divided into endonucleases that cleave the RNA internally or exonucleases that cleave the RNA from one of the extremities. Just in Escherichia coli there are >20 different RNases. RNase E is a single-strand-specific endonuclease critical for mRNA decay in E. coli. The enzyme interacts with the exonuclease polynucleotide phosphorylase (PNPase), enolase and RNA helicase B (RhlB) to form the degradosome. However, in Bacillus subtilis, this enzyme is absent, but it has other main endonucleases such as RNase J1 and RNase III. RNase III cleaves double-stranded RNA and family members are involved in RNA interference in eukaryotes. RNase II family members are ubiquitous exonucleases, and in eukaryotes, they can act as the catalytic subunit of the exosome. RNases act in different pathways to execute the maturation of rRNAs and tRNAs, and intervene in the decay of many different mRNAs and small noncoding RNAs. In general, RNases act as a global regulatory network extremely important for the regulation of RNA levels.

  4. New insights into the expression and functions of the Kaposi's sarcoma-associated herpesvirus long noncoding PAN RNA.

    PubMed

    Conrad, Nicholas K

    2016-01-02

    The Kaposi's sarcoma-associated herpesvirus (KSHV) is a clinically relevant pathogen associated with several human diseases that primarily affect immunocompromised individuals. KSHV encodes a noncoding polyadenylated nuclear (PAN) RNA that is essential for viral propagation and viral gene expression. PAN RNA is the most abundant viral transcript produced during lytic replication. The accumulation of PAN RNA depends on high levels of transcription driven by the Rta protein, a KSHV transcription factor necessary and sufficient for latent-to-lytic phase transition. In addition, KSHV uses several posttranscriptional mechanisms to stabilize PAN RNA. A cis-acting element, called the ENE, prevents PAN RNA decay by forming a triple helix with its poly(A) tail. The viral ORF57 and the cellular PABPC1 proteins further contribute to PAN RNA stability during lytic phase. PAN RNA functions are only beginning to be uncovered, but PAN RNA has been proposed to control gene expression by several different mechanisms. PAN RNA associates with the KSHV genome and may regulate gene expression by recruiting chromatin-modifying factors. Moreover, PAN RNA binds the viral latency-associated nuclear antigen (LANA) protein and decreases its repressive activity by sequestering it from the viral genome. Surprisingly, PAN RNA was found to associate with translating ribosomes, so this noncoding RNA may be additionally used to produce viral peptides. In this review, I highlight the mechanisms of PAN RNA accumulation and describe recent insights into potential functions of PAN RNA.

  5. Nutritional control of mRNA isoform expression during developmental arrest and recovery in C. elegans.

    PubMed

    Maxwell, Colin S; Antoshechkin, Igor; Kurhanewicz, Nicole; Belsky, Jason A; Baugh, L Ryan

    2012-10-01

    Nutrient availability profoundly influences gene expression. Many animal genes encode multiple transcript isoforms, yet the effect of nutrient availability on transcript isoform expression has not been studied in genome-wide fashion. When Caenorhabditis elegans larvae hatch without food, they arrest development in the first larval stage (L1 arrest). Starved larvae can survive L1 arrest for weeks, but growth and post-embryonic development are rapidly initiated in response to feeding. We used RNA-seq to characterize the transcriptome during L1 arrest and over time after feeding. Twenty-seven percent of detectable protein-coding genes were differentially expressed during recovery from L1 arrest, with the majority of changes initiating within the first hour, demonstrating widespread, acute effects of nutrient availability on gene expression. We used two independent approaches to track expression of individual exons and mRNA isoforms, and we connected changes in expression to functional consequences by mining a variety of databases. These two approaches identified an overlapping set of genes with alternative isoform expression, and they converged on common functional patterns. Genes affecting mRNA splicing and translation are regulated by alternative isoform expression, revealing post-transcriptional consequences of nutrient availability on gene regulation. We also found that phosphorylation sites are often alternatively expressed, revealing a common mode by which alternative isoform expression modifies protein function and signal transduction. Our results detail rich changes in C. elegans gene expression as larvae initiate growth and post-embryonic development, and they provide an excellent resource for ongoing investigation of transcriptional regulation and developmental physiology.

  6. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression

    PubMed Central

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N6-methyladenosine (m6A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1–3) bind to m6A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1–3 proteins recognize m6A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4+ T-cells. We further mapped the YTHDF1–3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1–3 in cells had the opposite effects. Moreover, silencing the m6A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m6A erasers increased Gag expression. Our findings suggest an important role of m6A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. DOI: http://dx.doi.org/10.7554/eLife.15528.001 PMID:27371828

  7. Hormone and metabolic factors associated with leptin mRNA expression in pre- and postmenopausal women.

    PubMed

    Fajardo, Martha E; Malacara, Juan M; Martínez-Rodríguez, Herminia G; Barrera-Saldaña, Hugo A

    2004-06-01

    Recent information has extended leptin's action, beyond the control of appetite, to various sites of metabolic regulation. To better understand leptin's role we studied its production in subcutaneous and visceral fat compartments before and after menopause. During elective abdominal surgery, biopsies of subcutaneous and omental tissues were taken from 20 women at pre- (BMI 28.4 +/- 4.5 kg/m2) and 10 at postmenopause (BMI 30.6 +/- 7.7 kg/m2). In both groups serum leptin levels were similar, and highly correlated with BMI. In subcutaneous adipose tissue, leptin mRNA expression was significantly higher in pre- than in postmenopausal women (50.4 +/- 20.5 amol/microg total RNA versus 34.5 +/- 24.9 amol/microg total RNA, respectively). Leptin mRNA expression in subcutaneous tissue was independently correlated with fasting glucose (R = 0.89, P < 0.006) at premenopause, and with serum estradiol (R = 0.77, P < 0.04) at postmenopause. Leptin mRNA expression in visceral fat was correlated with DHEAS (R = 0.86, P < 0.001), at premenopause. These results indicate that in both compartments, leptin production is sensitive to different but overlapping stimuli, conveying information about energy availability to central and peripheral sites under different conditions of estrogen exposure.

  8. An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes

    PubMed Central

    Isidor, Marie S.; Winther, Sally; Basse, Astrid L.; Petersen, M. Christine H.; Cannon, Barbara; Nedergaard, Jan; Hansen, Jacob B.

    2016-01-01

    ABSTRACT Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes. We determined that a critical parameter was to deliver the siRNA to mature adipocytes by reverse transfection, i.e. transfection of non-adherent cells. Using this protocol, we effectively knocked down both high- and low-abundance transcripts in a model of mature brown adipocytes (WT-1) as well as in primary mature mouse brown adipocytes. A functional consequence of the knockdown was confirmed by an attenuated increase in uncoupled respiration (thermogenesis) in response to β-adrenergic stimulation of mature WT-1 brown adipocytes transfected with uncoupling protein 1 siRNA. Efficient gene silencing was also obtained in various mouse and human white adipocyte models (3T3-L1, primary mouse white adipocytes, hMADS) with the ability to undergo “browning.” In summary, we report an easy and versatile reverse siRNA transfection protocol to achieve specific silencing of gene expression in various models of mature brown and browning-competent white adipocytes, including primary cells. PMID:27386153

  9. Expression of a non-coding RNA in ectromelia virus is required for normal plaque formation.

    PubMed

    Esteban, David J; Upton, Chris; Bartow-McKenney, Casey; Buller, R Mark L; Chen, Nanhai G; Schriewer, Jill; Lefkowitz, Elliot J; Wang, Chunlin

    2014-02-01

    Poxviruses are dsDNA viruses with large genomes. Many genes in the genome remain uncharacterized, and recent studies have demonstrated that the poxvirus transcriptome includes numerous so-called anomalous transcripts not associated with open reading frames. Here, we characterize the expression and role of an apparently non-coding RNA in orthopoxviruses, which we call viral hairpin RNA (vhRNA). Using a bioinformatics approach, we predicted expression of a transcript not associated with an open reading frame that is likely to form a stem-loop structure due to the presence of a 21 nt palindromic sequence. Expression of the transcript as early as 2 h post-infection was confirmed by northern blot and analysis of publicly available vaccinia virus infected cell transcriptomes. The transcription start site was determined by RACE PCE and transcriptome analysis, and early and late promoter sequences were identified. Finally, to test the function of the transcript we generated an ectromelia virus knockout, which failed to form plaques in cell culture. The important role of the transcript in viral replication was further demonstrated using siRNA. Although the function of the transcript remains unknown, our work contributes to evidence of an increasingly complex poxvirus transcriptome, suggesting that transcripts such as vhRNA not associated with an annotated open reading frame can play an important role in viral replication.

  10. A color-tunable molecular beacon to sense miRNA-9 expression during neurogenesis.

    PubMed

    Ko, Hae Young; Lee, Jonghwan; Joo, Jin Young; Lee, Yong Seung; Heo, Hyejung; Ko, Jung Jae; Kim, Soonhag

    2014-04-09

    A typical molecular beacon (MB) composing of a fluorophore and a quencher has been used to sense various intracellular biomolecules including microRNAs (miRNA, miR). However, the on/off-tunable miRNA MB is difficult to distinguish whether the observed low fluorescence brightness results from low miRNA expression or low transfection of the miRNA MB. We developed a color-tunable miRNA-9 MB (ColoR9 MB) to sense miR-9 expression-dependent color change. The ColoR9 MB was synthesized by a partially double-stranded DNA oligonucleotide containing a miR-9 binding site and a reporter probe with Cy3/black hole quencher 1 (BHQ1) at one end and a reference probe with Cy5.5 at the other end. The ColoR9 MB visualized CHO and P19 cells with red color in the absence of miR-9 and yellow color in the presence of miR-9. In vivo imaging demonstrated that the green fluorescence recovery of the reporter probe from the ColoR9 MB increased gradually during neuronal differentiation of P19 cells, whereas red fluorescence activity of the reference probe remained constant. These results showed the great specificity of sensing miR-9 expression- and neurogenesis-dependent color change.

  11. Anesthesia for Euthanasia Influences mRNA Expression in Healthy Mice and after Traumatic Brain Injury

    PubMed Central

    Staib-Lasarzik, Irina; Kriege, Oliver; Timaru-Kast, Ralph; Pieter, Dana; Werner, Christian; Engelhard, Kristin

    2014-01-01

    Abstract Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10–11/group): no anesthesia (NA), 1 min of 4 vol% isoflurane in room air (ISO), 3 min of a combination of 5 mg/kg midazolam, 0.05 mg/kg fentanyl, and 0.5 mg/kg medetomidine intraperitoneally (COMB), or 3 min of 360 mg/kg chloral hydrate intraperitoneally (CH). mRNA expression of actin-1-related gene (Act1), FBJ murine osteosarcoma viral oncogene homolog B (FosB), tumor necrosis factor alpha (TNFα), heat shock protein beta-1 (HspB1), interleukin (IL)-6, tight junction protein 1 (ZO-1), IL-1ß, cyclophilin A, micro RNA 497 (miR497), and small cajal body-specific RNA 17 were determined by real-time polymerase chain reaction (PCR) in hippocampus samples. In naïve animals, Act1 expression was downregulated in the CH group compared with NA. FosB expression was downregulated in COMB and CH groups compared with NA. CCI reduced Act1 and FosB expression, whereas HspB1 and TNFα expression increased. After CCI, HspB1 expression was significantly higher in ISO, COMB, and CH groups, and TNFα expression was elevated in ISO and COMB groups. MiR497, IL-6, and IL-1ß were upregulated after CCI but not affected by anesthetics. Effects were independent of absolute mRNA copy numbers. The data demonstrate that a few minutes of anesthesia before tissue sampling are sufficient to induce immediate mRNA changes, which seem to predominate in the early-regulated gene cluster. Anesthesia-related effects on gene expression might explain limited

  12. Anesthesia for euthanasia influences mRNA expression in healthy mice and after traumatic brain injury.

    PubMed

    Staib-Lasarzik, Irina; Kriege, Oliver; Timaru-Kast, Ralph; Pieter, Dana; Werner, Christian; Engelhard, Kristin; Thal, Serge C

    2014-10-01

    Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10-11/group): no anesthesia (NA), 1 min of 4 vol% isoflurane in room air (ISO), 3 min of a combination of 5 mg/kg midazolam, 0.05 mg/kg fentanyl, and 0.5 mg/kg medetomidine intraperitoneally (COMB), or 3 min of 360 mg/kg chloral hydrate intraperitoneally (CH). mRNA expression of actin-1-related gene (Act1), FBJ murine osteosarcoma viral oncogene homolog B (FosB), tumor necrosis factor alpha (TNFα), heat shock protein beta-1 (HspB1), interleukin (IL)-6, tight junction protein 1 (ZO-1), IL-1ß, cyclophilin A, micro RNA 497 (miR497), and small cajal body-specific RNA 17 were determined by real-time polymerase chain reaction (PCR) in hippocampus samples. In naïve animals, Act1 expression was downregulated in the CH group compared with NA. FosB expression was downregulated in COMB and CH groups compared with NA. CCI reduced Act1 and FosB expression, whereas HspB1 and TNFα expression increased. After CCI, HspB1 expression was significantly higher in ISO, COMB, and CH groups, and TNFα expression was elevated in ISO and COMB groups. MiR497, IL-6, and IL-1ß were upregulated after CCI but not affected by anesthetics. Effects were independent of absolute mRNA copy numbers. The data demonstrate that a few minutes of anesthesia before tissue sampling are sufficient to induce immediate mRNA changes, which seem to predominate in the early-regulated gene cluster. Anesthesia-related effects on gene expression might explain limited reproduciblity of real

  13. Profiling analysis of circulating microRNA expression in cervical cancer.

    PubMed

    Nagamitsu, Yuzo; Nishi, Hirotaka; Sasaki, Toru; Takaesu, Yotaro; Terauchi, Fumitoshi; Isaka, Keiichi

    2016-07-01

    MicroRNA (miRNA) expression is altered in cancer cells and is associated with the development and progression of various types of cancer. Accordingly, miRNAs may serve as diagnostic or prognostic biomarkers in cancer patients. In this study, we attempted to analyze circulating exosomal miRNA in patients with cervical cancer. Total RNA was extracted from the serum of healthy subjects, subjects with cervical intraepithelial neoplasia (CIN) and patients with cervical cancer. We first investigated miRNA expression profiles in 6 serum samples from healthy subjects and patients with cervical cancer using the miRCURY LNA microRNA array. miRNAs with significant differences in expression were validated in a larger sample set by quantitative reverse transcription-polymerase chain reaction, using TaqMan gene expression assays. The results of the miRCURY LNA microRNA array indicated that 6 of 1,223 miRNAs found in serum samples from cervical cancer patients and normal controls exhibited a >3.0-fold change in expression level in subjects with cervical cancer, with a P-value of <0.01. In a validation set (n=131) that investigated the expression of 4 of the 6 miRNAs (miR-483-5p, miR-1246, miR-1275 and miR-1290), miR-1290 was found to have significantly higher expression levels in cervical cancer samples (n=45) compared with control samples (n=31). We also found that the median levels of these miRNAs were significantly higher in subjects with cervical cancer (n=45) compared with those in subjects with CIN (n=55). Circulating miRNAs were not correlated with clinicopathological parameters. However, receiver operating characteristic curve analysis suggested that these serum miRNAs may be useful diagnostic markers in cervical cancer. The expression of circulating miR-1290 was significantly higher in the blood of cervical cancer patients compared with that in controls and may thus serve as a useful biomarker in cervical cancer diagnosis. However, larger studies are required to fully

  14. Hypothalamic expression of NPY mRNA, vasopressin mRNA and CRF mRNA in response to food restriction and central administration of the orexigenic peptide GHRP-6.

    PubMed

    Johnstone, Louise E; Srisawat, Rungrudee; Kumarnsit, Ekkasit; Leng, Gareth

    2005-03-01

    In this study, we examined the effects of restricted feeding and of central administration of an orexigenic ghrelin agonist GHRP-6 on peptide mRNA expression in the hypothalamus. We compared rats fed ad libitum with rats that were allowed food for only 2?h every day, and treated with a continuous chronic i.c.v. infusion of GHRP-6 or vehicle. Ad libitum fed rats exposed to GHRP-6 increased their food intake and body weight over 6 days, but, at the end of this period, neuropeptide Y mRNA expression in the arcuate nucleus was not different to that in control rats. By contrast, expression of neuropeptide Y mRNA in the arcuate nucleus was elevated in food-restricted rats, consistent with the interpretation that increased expression reflects increased hunger. However, neuropeptide Y mRNA expression was no greater in food-restricted rats infused with GHRP-6 than in food-restricted rats infused with vehicle; thus if the drive to eat was stronger in rats infused with GHRP-6, this was not reflected by higher levels of neuropeptide Y mRNA expression. Expression of vasopressin mRNA and corticotrophin releasing factor (CRF) mRNA in the paraventricular nucleus (PVN) was not changed by food restriction. GHRP-6 infusion increased CRF mRNA expression in ad libitum rats only.

  15. The influence of eccentric exercise on mRNA expression of skeletal muscle regulators.

    PubMed

    Jensky, Nicole E; Sims, Jennifer K; Rice, Judd C; Dreyer, Hans C; Schroeder, E Todd

    2007-11-01

    To evaluate change in myostatin, follistatin, MyoD and SGT mRNA gene expression using eccentric exercise to study mechanisms of skeletal muscle hypertrophy. Young (28+/-5 years) and older (68+/-6 years) men participated in a bout of maximal single-leg eccentric knee extension on an isokinetic dynamometer at 60 degrees /s: six sets, 12-16 maximal eccentric repetitions. Muscle biopsies of the vastus lateralis were obtained from the dominant leg before exercise and 24 h after exercise. Paired t tests were used to compare change (pre versus post-exercise) for normalized gene expression in all variables. Independent t tests were performed to test group differences (young vs. older). A probability level of PRNA expression in young subjects 24 h after eccentric exercise. Similarly, we did not observe significant change in myostatin (-3.83+/-8.8; P=0.23), follistatin (-2.66+/-5.2; P=0.17), MyoD (-0.13+/-3.1; P=0.90), or SGT (-1.6+/-3.5; P=0.19) mRNA expression in older subjects. Furthermore, the non-significant changes in mRNA expression were not different between young and older subjects, P>0.23 for all variables. Our data suggests that a single bout of maximal eccentric exercise does not alter myostatin, follistatin, MyoD or SGT mRNA gene expression in young or older subjects.

  16. Differences in expression of retinal pigment epithelium mRNA between normal canines

    PubMed Central

    2004-01-01

    Abstract A reference database of differences in mRNA expression in normal healthy canine retinal pigment epithelium (RPE) has been established. This database identifies non-informative differences in mRNA expression that can be used in screening canine RPE for mutations associated with clinical effects on vision. Complementary DNA (cDNA) pools were prepared from mRNA harvested from RPE, amplified by PCR, and used in a subtractive hybridization protocol (representational differential analysis) to identify differences in RPE mRNA expression between canines. The effect of relatedness of the test canines on the frequency of occurrence of differences was evaluated by using 2 unrelated canines for comparison with 2 female sibling canines of blue heeler/bull terrier lineage. Differentially expressed cDNA species were cloned, sequenced, and identified by comparison to public database entries. The most frequently observed differentially expressed sequence from the unrelated canine comparison was cDNA with 21 base pairs (bp) identical to the human epithelial membrane protein 1 gene (present in 8 of 20 clones). Different clones from the same-sex sibling RPE contained repetitions of several short sequence motifs including the human epithelial membrane protein 1 (4 of 25 clones). Other prevalent differences between sibling RPE included sequences similar to a chicken genetic marker sequence motif (5 of 25), and 6 clones with homology to porcine major histocompatibility loci. In addition to identifying several repetitively occurring, noninformative, differentially expressed RPE mRNA species, the findings confirm that fewer differences occurred between siblings, highlighting the importance of using closely related subjects in representational difference analysis studies. PMID:15352545

  17. Does miRNA-155 Promote Cyclooxygenase-2 Expression in Cancer?

    PubMed

    Comer, Brian S

    2015-11-01

    Preclinical Research MicroRNA (miR)-155 and cyclooxygenase (COX)-2 are both elevated in numerous cancers including colorectal cancer. MiR-155 enhances COX-2 expression and is an established regulator of epithelial-mesenchymal transition and inflammation. Inhibition of miR-155 or COX-2 exhibit similar negative effects on tumorigenicity. Thus, it is hypothesized that miR-155 may be a promising target for antagonizing COX-2 expression in colorectal and other cancers.

  18. Control of Gene Expression by RNA Binding Protein Action on Alternative Translation Initiation Sites

    PubMed Central

    Re, Angela; Waldron, Levi; Quattrone, Alessandro

    2016-01-01

    Transcript levels do not faithfully predict protein levels, due to post-transcriptional regulation of gene expression mediated by RNA binding proteins (RBPs) and non-coding RNAs. We developed a multivariate linear regression model integrating RBP levels and predicted RBP-mRNA regulatory interactions from matched transcript and protein datasets. RBPs significantly improved the accuracy in predicting protein abundance of a portion of the total modeled mRNAs in three panels of tissues and cells and for different methods employed in the detection of mRNA and protein. The presence of upstream translation initiation sites (uTISs) at the mRNA 5’ untranslated regions was strongly associated with improvement in predictive accuracy. On the basis of these observations, we propose that the recently discovered widespread uTISs in the human genome can be a previously unappreciated substrate of translational control mediated by RBPs. PMID:27923063

  19. RIGulation of STING expression: at the crossroads of viral RNA and DNA sensing pathways

    PubMed Central

    Liu, Yiliu; Lin, Rongtuan; Olagnier, David

    2017-01-01

    The innate immune sensing of pathogens is important for host to mount defensive responses. STING has emerged in recent years as a critical signaling adaptor in the immune response to cytosolic DNA and RNA derived from pathogens. Liu et al. (2016) demonstrate that the RIG-I-dependent RNA sensing signaling induces STING expression via a TNF-α and IFN-α synergy. The up-regulation of STING is vital for 5′pppRNA restriction of HSV, a DNA virus that infects humans and causes herpes, in vitro and in vivo. This study provides new insights into the cross talk between DNA and RNA pathogen-sensing systems via the control of STING. PMID:28191486

  20. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness

    PubMed Central

    Manokaran, Gayathri; Finol, Esteban; Wang, Chunling; Gunaratne, Jayantha; Bahl, Justin; Ong, Eugenia Z.; Tan, Hwee Cheng; Sessions, October M.; Ward, Alex M.; Gubler, Duane J.; Harris, Eva; Garcia-Blanco, Mariano A.; Ooi, Eng Eong

    2016-01-01

    The global spread of dengue virus (DENV) infections has increased viral genetic diversity, some of which appears associated with greater epidemic potential. The mechanisms governing viral fitness in epidemiological settings, however, remain poorly defined. We identified a determinant of fitness in a foreign dominant (PR-2B) DENV serotype 2 (DENV-2) clade, which emerged during the 1994 epidemic in Puerto Rico and replaced an endemic (PR-1) DENV-2 clade. The PR-2B DENV-2 produced increased levels of subgenomic flavivirus RNA (sfRNA) relative to genomic RNA during replication. PR-2B sfRNA showed sequence-dependent binding to and prevention of tripartite motif 25 (TRIM25) deubiquitylation, which is critical for sustained and amplified retinoic acid–inducible gene 1 (RIG-I)–induced type I interferon expression. Our findings demonstrate a distinctive viral RNA–host protein interaction to evade the innate immune response for increased epidemiological fitness. PMID:26138103

  1. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation

    PubMed Central

    Yue, Yanan; Liu, Jianzhao; He, Chuan

    2015-01-01

    N6-methyladenosine (m6A) is the most prevalent and internal modification that occurs in the messenger RNAs (mRNA) of most eukaryotes, although its functional relevance remained a mystery for decades. This modification is installed by the m6A methylation “writers” and can be reversed by demethylases that serve as “erasers.” In this review, we mainly summarize recent progress in the study of the m6A mRNA methylation machineries across eukaryotes and discuss their newly uncovered biological functions. The broad roles of m6A in regulating cell fates and embryonic development highlight the existence of another layer of epigenetic regulation at the RNA level, where mRNA is subjected to chemical modifications that affect protein expression. PMID:26159994

  2. Temperature-sensitive viral RNA expression in Moloney murine sarcoma virus ts110-infected cells.

    PubMed Central

    Hamelin, R; Brizzard, B L; Nash, M A; Murphy, E C; Arlinghaus, R B

    1985-01-01

    We examined the mos-specific intracellular RNA species in 6m2 cells, an NRK cell line nonproductively infected with the ts110 mutant of Moloney murine sarcoma virus. These cells present a normal phenotype at 39 degrees C and a transformed phenotype at 28 or 33 degrees C, expressing two viral proteins, termed P85gag-mos and P58gag, at 28 to 33 degrees C, whereas only P58gag is expressed at 39 degrees C. It has been previously shown that 6m2 cells contain two virus-specific RNA species, a 4.0-kilobase (kb) RNA coding for P58gag and a 3.5-kb RNA coding for P85gag-mos. Using both Northern blot and S1 nuclease analyses, we show here that the 3.5-kb RNA is the predominant viral RNA species in 6m2 cells grown at 28 degrees C, whereas only the 4.0-kb RNA is detected at 39 degrees C. During temperature shift experiments, the 3.5-kb RNA species disappears after a shift from 28 to 39 degrees C and is detected again after a shift back from 39 to 28 degrees C. By Southern blot analysis, we have detected only one ts110 proviral DNA in the 6m2 genome. This observation, as well as previously published heteroduplex and S1 nuclease analyses which showed that the 3.5-kb RNA species lacks about 430 bases found at the gag gene-mos gene junction in the 4.0-kb RNA, suggests that the 3.5-kb RNA is a splicing product of the 4.0-kb RNA. The absence of the 3.5-kb RNA when 6m2 cells are grown at 39 degrees C indicates that the splicing reaction is thermosensitive. The splicing defect of the ts110 Moloney murine sarcoma virus viral RNA in 6m2 cells cannot be complemented by acute Moloney murine leukemia virus superinfection, since no 3.5-kb ts110 RNA was detected in acutely superinfected 6m2 cells maintained at 39 degrees C. The spliced Moloney murine leukemia virus env mRNA, however, is found in acutely infected cells maintained at 39 degrees C, suggesting that the lack of ts110 viral RNA splicing at 39 degrees C is not due to an obvious host defect. In sharp contrast, however, 6m2 cells

  3. Improvement of the crystallizability and expression of an RNA crystallization chaperone

    SciTech Connect

    Ravindran, P.; Heroux, A.; Ye, J.-D.

    2011-11-01

    Crystallizing RNA has been an imperative and challenging task in the world of RNA research. Assistive methods such as chaperone-assisted RNA crystallography (CARC), employing monoclonal antibody fragments (Fabs) as crystallization chaperones have enabled us to obtain RNA crystal structures by forming crystal contacts and providing initial phasing information. Despite the early successes, the crystallization of large RNA-Fab complex remains a challenge in practice. The possible reason for this difficulty is that the Fab scaffold has not been optimized for crystallization in complex with RNA. Here, we have used the surface entropy reduction (SER) technique for the optimization of {Delta}C209 P4-P6/Fab2 model system. Protruding lysine and glutamate residues were mutated to a set of alanines or serines to construct Fab2SMA or Fab2SMS. Expression with the shake flask approach was optimized to allow large scale production for crystallization. Crystal screening shows that significantly higher crystal-forming ratio was observed for the mutant complexes. As the chosen SER residues are far away from the CDR regions of the Fab, the same set of mutations can now be directly applied to other Fabs binding to a variety of ribozymes and riboswitches to improve the crystallizability of Fab-RNA complex.

  4. Inhibition of RNA transportation induces glioma cell apoptosis via downregulation of RanGAP1 expression.

    PubMed

    Lin, Tsung-Yao; Lee, Chin-Cheng; Chen, Ku-Chung; Lin, Chien-Ju; Shih, Chwen-Ming

    2015-05-05

    The prognosis of glioblastoma remains poor, even treatment with surgery, radiation, or chemotherapy. Therefore, it is still important to develop a new strategy for treatment of glioblastoma. Previous reports demonstrated that rRNA is produced at abnormally high levels in tumor cells. Nuclear export of all non-coding RNAs are known to depend on RanGTPase system. Hydrolyzation of RanGTP-RNA complex by RanGTPase activating protein 1 (RanGAP1) releases RNA from nucleus to cytoplasm. Therefore, inhibition of RNA transportation would be a useful strategy to affect cancer cell fate. In this study, 5-30 μM of oridonin, a natural diterpenoid compound isolated from the traditional Chinese medicine, Rabdosia rubescens, induced U87MG glioma cell apoptosis and RNA accumulation in nucleus at 12h-time point. Before U87MG cell apoptosis, the RanGAP1 protein amount decreased and RanGTP accumulated in nucleus as respectively determined by immunoprecipitation and immunofluorescence, suggesting that decrease of RanGAP1 may result in nuclear entrapment of RanGTP and RNA, and then induce U87MG cell death. In contrast, over-expression of the RanGAP1 protein reversed oridonin-induced U87MG cell apoptosis. Hence, we demonstrated that downregulation of the RanGAP1 protein level by oridonin may result in RNA accumulation in nucleus via nuclear entrapment of RanGTP which eventually led to the apoptosis of glioma cells.

  5. CYP1A mRNA expression in redeye mullets (Liza haematocheila) from Bohai Bay, China.

    PubMed

    An, Lihui; Hu, Jianying; Yang, Min; Zheng, Binghui; Wei, An; Shang, Jingjing; Zhao, Xingru

    2011-04-01

    Induction of cytochrome P4501A (CYP1A) has been used as a biomarker in fish for monitoring aromatic and organic contaminants. In this study, a partial of CYP1A gene in redeye mullet (Liza haematocheila) was isolated and sequenced, and then a real-time quantitative reverse-transcription polymerase chain reaction assay was developed for quantification of CYP1A mRNA normalized to β-actin. The developed method was applied to detect CYP1A mRNA expression in redeye mullets collected from Nandaihe (reference site) and Dashentang (impacted site) in Bohai Bay, China. CYP1A mRNA expression values were significantly elevated in redeye mullets from Dashentang compared to a reference site--Nandaihe, which was correlated with the contents of different environmentally relevant pollutants in tissues, particularly with PCBs and PBDEs.

  6. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    PubMed

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast.

  7. Dysregulation of microRNA expression in human cervical preneoplastic and neoplastic lesions.

    PubMed

    Galamb, Ádám; Benczik, Márta; Zinner, Balázs; Vígh, Eszter; Baghy, Kornélia; Jeney, Csaba; Kiss, András; Lendvai, Gábor; Sobel, Gábor

    2015-07-01

    Data discussed in recent reviews demonstrated that dysregulation of microRNA (miRNA) expression profiles occurs during cervical carcinogenesis and characteristic up- or downregulation of certain miRNAs might be used as biomarkers. The majority of altered miRNAs, however were found to be inconsistent upon comparison with cancerous and normal cervical epithelia in the discussed studies due to several reasons. The results obtained in this present review suggest the need for further investigations on miRNAs on larger sample sizes in order to indicate sensitivity and specificity by means of well defined, "unified" methods. In addition, obtaining further data on the clinical course and outcome of patients in comparison to the dysregulation of miRNA expression profile could turn miRNAs into prognostic and/or progression markers. Inhibition of overexpressed miRNAs, as suggested by some authors, might even serve as target for cancer therapy.

  8. Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults

    PubMed Central

    Yu, Hong-Ren; Hsu, Te-Yao; Huang, Hsin-Chun; Kuo, Ho-Chang; Li, Sung-Chou; Yang, Kuender D.; Hsieh, Kai-Sheng

    2016-01-01

    Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies. PMID:28066425

  9. Deregulated expression of VHL mRNA variants in papillary thyroid cancer.

    PubMed

    Baldini, Enke; Tuccilli, Chiara; Arlot-Bonnemains, Yannick; Chesnel, Frank; Sorrenti, Salvatore; De Vito, Corrado; Catania, Antonio; D'Armiento, Eleonora; Antonelli, Alessandro; Fallahi, Poupak; Watutantrige-Fernando, Sara; Tartaglia, Francesco; Barollo, Susi; Mian, Caterina; Bononi, Marco; Arceri, Stefano; Mascagni, Domenico; Vergine, Massimo; Pironi, Daniele; Monti, Massimo; Filippini, Angelo; Ulisse, Salvatore

    2017-03-05

    Recent findings demonstrated that a subset of papillary thyroid cancers (PTCs) is characterized by reduced expression of the von Hippel-Lindau (VHL) tumor suppressor gene, and that lowest levels associated with more aggressive PTCs. In the present study, the levels of the two VHL mRNA splicing variants, VHL-213 (V1) and VHL-172 (V2), were measured in a series of 96 PTC and corresponding normal matched tissues by means of quantitative RT-PCR. Variations in the mRNA levels were correlated with patients' clinicopathological parameters and disease-free interval (DFI). The analysis of VHL mRNA in tumor tissues, compared to normal matched tissues, revealed that its expression was either up- or down-regulated in the majority of PTC. In particular, V1 and V2 mRNA levels were altered, respectively, in 78 (81.3%) and 65 (67.7%) out of the 96 PTCs analyzed. A significant positive correlation between the two mRNA variants was observed (p < 0.001). Univariate analysis documented the lack of association between each variant and clinicopathological parameters such as age, tumor size, histology, TNM stage, lymph node metastases, and BRAF mutational status. However, a strong correlation was found between altered V1 or V2 mRNA levels and DFI. Multivariate regression analysis indicated higher V1 mRNA values, along with lymph node metastases at diagnosis, as independent prognostic factors predicting DFI. In conclusion, the data reported demonstrate that VHL gene expression is deregulated in the majority of PTC tissues. Of particular interest is the apparent protective role exerted by VHL transcripts against PTC recurrences.

  10. Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs.

    PubMed

    Tang, Zhonglin; Yang, Yalan; Wang, Zishuai; Zhao, Shuanping; Mu, Yulian; Li, Kui

    2015-10-26

    MicroRNAs (miRNAs) play a vital role in muscle development by binding to messenger RNAs (mRNAs). Based on prenatal skeletal muscle at 33, 65 and 90 days post-coitus (dpc) from Landrace, Tongcheng and Wuzhishan pigs, we carried out integrated analysis of miRNA and mRNA expression profiling. We identified 33, 18 and 67 differentially expressed miRNAs and 290, 91 and 502 mRNA targets in Landrace, Tongcheng and Wuzhishan pigs, respectively. Subsequently, 12 mRNAs and 3 miRNAs differentially expressed were validated using quantitative real-time PCR (qPCR), and 5 predicted miRNA targets were confirmed via dual luciferase reporter or western blot assays. We identified a set of miRNAs and mRNA genes differentially expressed in muscle development. Gene ontology (GO) enrichment analysis suggests that the miRNA targets are primarily involved in muscle contraction, muscle development and negative regulation of cell proliferation. Our data indicated that more mRNAs are regulated by miRNAs at earlier stages than at later stages of muscle development. Landrace and Tongcheng pigs also had longer phases of myoblast proliferation than Wuzhishan pigs. This study will be helpful to further explore miRNA-mRNA interactions in myogenesis and aid to uncover the molecular mechanisms of muscle development and phenotype variance in pigs.

  11. Identifying stably expressed genes from multiple RNA-Seq data sets

    PubMed Central

    Emerson, Sarah; Chang, Jeff H.; Di, Yanming

    2016-01-01

    We examined RNA-Seq data on 211 biological samples from 24 different Arabidopsis experiments carried out by different labs. We grouped the samples according to tissue types, and in each of the groups, we identified genes that are stably expressed across biological samples, treatment conditions, and experiments. We fit a Poisson log-linear mixed-effect model to the read counts for each gene and decomposed the total variance into between-sample, between-treatment and between-experiment variance components. Identifying stably expressed genes is useful for count normalization and differential expression analysis. The variance component analysis that we explore here is a first step towards understanding the sources and nature of the RNA-Seq count variation. When using a numerical measure to identify stably expressed genes, the outcome depends on multiple factors: the background sample set and the reference gene set used for count normalization, the technology used for measuring gene expression, and the specific numerical stability measure used. Since differential expression (DE) is measured by relative frequencies, we argue that DE is a relative concept. We advocate using an explicit reference gene set for count normalization to improve interpretability of DE results, and recommend using a common reference gene set when analyzing multiple RNA-Seq experiments to avoid potential inconsistent conclusions. PMID:28028467

  12. Moisturizers change the mRNA expression of enzymes synthesizing skin barrier lipids.

    PubMed

    Buraczewska, Izabela; Berne, Berit; Lindberg, Magnus; Lodén, Marie; Törmä, Hans

    2009-09-01

    In a previous study, 7-week treatment of normal human skin with two test moisturizers, Complex cream and Hydrocarbon cream, was shown to affect mRNA expression of certain genes involved in keratinocyte differentiation. Moreover, the treatment altered transepidermal water loss (TEWL) in opposite directions. In the present study, the mRNA expression of genes important for formation of barrier lipids, i.e., cholesterol, free fatty acids and ceramides, was examined. Treatment with Hydrocarbon cream, which increased TEWL, also elevated the gene expression of GBA, SPTLC2, SMPD1, ALOX12B, ALOXE3, and HMGCS1. In addition, the expression of PPARG was decreased. On the other hand, Complex cream, which decreased TEWL, induced only the expression of PPARG, although not confirmed at the protein level. Furthermore, in the untreated skin, a correlation between the mRNA expression of PPARG and ACACB, and TEWL was found, suggesting that these genes are important for the skin barrier homeostasis. The observed changes further demonstrate that long-term treatment with certain moisturizers may induce dysfunctional skin barrier, and as a consequence several signaling pathways are altered.

  13. Differential RNA Expression Profile of Skeletal Muscle Induced by Experimental Autoimmune Myasthenia Gravis in Rats

    PubMed Central

    Kaminski, Henry J.; Himuro, Keiichi; Alshaikh, Jumana; Gong, Bendi; Cheng, Georgiana; Kusner, Linda L.

    2016-01-01

    The differential susceptibility of skeletal muscle by myasthenia gravis (MG) is not well understood. We utilized RNA expression profiling of extraocular muscle (EOM), diaphragm (DIA), and extensor digitorum (EDL) of rats with experimental autoimmune MG (EAMG) to evaluate the hypothesis that muscles respond differentially to injury produced by EAMG. EAMG was induced in female Lewis rats by immunization with acetylcholine receptor purified from the electric organ of the Torpedo. Six weeks later after rats had developed weakness and serum antibodies directed against the AChR, animals underwent euthanasia and RNA profiling performed on DIA, EDL, and EOM. Profiling results were validated by qPCR. Across the three muscles between the experiment and control groups, 359 probes (1.16%) with greater than 2-fold changes in expression in 7 of 9 series pairwise comparisons from 31,090 probes were identified with approximately two-thirds being increased. The three muscles shared 16 genes with increased expression and 6 reduced expression. Functional annotation demonstrated that these common expression changes fell predominantly into categories of metabolism, stress response, and signaling. Evaluation of specific gene function indicated that EAMG led to a change to oxidative metabolism. Genes related to muscle regeneration and suppression of immune response were activated. Evidence of a differential immune response among muscles was not evident. Each muscle had a distinct RNA profile but with commonality in gene categories expressed that are focused on muscle repair, moderation of inflammation, and oxidative metabolism. PMID:27891095

  14. Correlation between hepatitis B virus protein and microRNA processor Drosha in cells expressing HBV.

    PubMed

    Ren, Min; Qin, Dongdong; Li, Kai; Qu, Jialin; Wang, Liying; Wang, Zengchan; Huang, Ailong; Tang, Hua

    2012-06-01

    Drosha regulates the biogenesis of microRNAs (miRNAs) and plays an essential role in the regulation of gene expression. Infection with hepatitis B virus (HBV) causes chronic hepatitis and liver cirrhosis. It is also a major risk factor for hepatocellular carcinoma. Emerging evidence suggests that HBV alters miRNA expression profiles, but the mechanisms underlying this process have not yet been fully elucidated. We therefore examined how HBV affected the production of miRNAs. We found that Drosha mRNA and protein expression were downregulated in cells expressing the HBV genome. This was associated with a reduction in the activity of the Drosha gene promoter. Gene silencing of HBx by RNA interference significantly restored the expression of Drosha. In conclusion, our data show that HBV could downregulate Drosha expression by inhibiting promoter activity, and the transcription factors SP1 and AP-2α may be involved in this process. This provides a new understanding of the mechanism of HBV-induced miRNAs dysregulation.

  15. Expression of cytokine mRNA in lentivirus-induced arthritis.

    PubMed Central

    Lechner, F.; Vogt, H. R.; Seow, H. F.; Bertoni, G.; Cheevers, W. P.; von Bodungen, U.; Zurbriggen, A.; Peterhans, E.

    1997-01-01

    Infection of goats with the lentivirus caprine arthritis encephalitis virus (CAEV) leads to persistent infection and development of chronic arthritis. We analyzed the expression of cytokines and viral RNA in the joints of goats at early time points after experimental infection with CAEV and in those of animals suffering from chronic arthritis as a result of natural infection. In situ hybridization experiments showed that the pattern of cytokine expression in caprine arthritis was similar to that found in rheumatoid arthritis (RA), with a few cells expressing the lymphocyte-derived cytokines interferon (IFN)-gamma and interleukin (IL)-2 and rather more cells expressing monocyte chemoattractant protein (MCP)-1, IL-6, and tumor necrosis factor (TNF)-alpha. IFN-gamma mRNA expression in experimentally infected joints peaked at day 12 and was mostly detected in areas containing viral RNA. At later time points, no IFN-gamma- or virus-expressing cells were found in inflamed joints but both were again detected in goats with severe arthritis. Interestingly, at the clinical stage of arthritis reflecting the chronic stage of infection, the inflammatory lesion was found to be immunologically compartmentalized. Humoral immune responses and cell-mediated immune responses appeared to concurrently occur in distinct areas of the synovial membrane. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9327739

  16. Effect of method of deduplication on estimation of differential gene expression using RNA-seq

    PubMed Central

    Chesnokov, Mikhail S.; Lazarevich, Natalia L.; Penin, Aleksey A.

    2017-01-01

    Background RNA-seq is a useful tool for analysis of gene expression. However, its robustness is greatly affected by a number of artifacts. One of them is the presence of duplicated reads. Results To infer the influence of different methods of removal of duplicated reads on estimation of gene expression in cancer genomics, we analyzed paired samples of hepatocellular carcinoma (HCC) and non-tumor liver tissue. Four protocols of data analysis were applied to each sample: processing without deduplication, deduplication using a method implemented in SAMtools, and deduplication based on one or two molecular indices (MI). We also analyzed the influence of sequencing layout (single read or paired end) and read length. We found that deduplication without MI greatly affects estimated expression values; this effect is the most pronounced for highly expressed genes. Conclusion The use of unique molecular identifiers greatly improves accuracy of RNA-seq analysis, especially for highly expressed genes. We developed a set of scripts that enable handling of MI and their incorporation into RNA-seq analysis pipelines. Deduplication without MI affects results of differential gene expression analysis, producing a high proportion of false negative results. The absence of duplicate read removal is biased towards false positives. In those cases where using MI is not possible, we recommend using paired-end sequencing layout. PMID:28321364

  17. Gastrointestinal hormone mRNA expression in human colonic adenocarcinomas, hepatic metastases and cell lines

    PubMed Central

    Monges, G; Biagini, P; Cantaloube, J F; De Micco, P; Parriaux, D; Seitz, J F; Delpero, J R; Hassoun, J

    1996-01-01

    Aims—(1) To investigate the expression of the four main hormones of the digestive tract by performing reverse transcription polymerase chain reaction (RT-PCR) on a series of samples, comprising tumoral and healthy colonic tissues, hepatic metastases and colonic cell line samples; and (2) to study the patterns of labelling obtained with serological and morphological markers. Methods—After extraction and reverse transcription, gastrin, somatostatin, cholecystokinin (CCK) and transforming growth factor α (TGFα) mRNAs were detected by PCR and nested PCR using specific primers. The corresponding proteins were detected by immunohistochemistry. Results—The cell lines expressed all four mRNAs. Gastrin mRNA was present in most tumoral and metastatic samples, while the somatostatin transcript was detected in all samples and was frequently overexpressed in the normal colon. TGFα mRNA was expressed systematically in tumours of the right and transverse colon, but not in those located in the left colon; the expression of CCK mRNA was systematically absent in the left colon. Conclusions—The data presented here shed some light on the transcriptional events involved in the production of the various hormones present in the gastrointestinal tract, in both healthy and tumoral tissues. The various mRNAs expressed in cell lines are therefore not systematically expressed in the human pathology. Images PMID:16696065

  18. Differential expression analysis of miRNA in peripheral blood mononuclear cells of patients with non-segmental vitiligo.

    PubMed

    Wang, Yi; Wang, Keyu; Liang, Jianhua; Yang, Hong; Dang, Ningning; Yang, Xi; Kong, Yi

    2015-02-01

    Vitiligo is a common depigmentary skin disease that may follow a pattern of multifactorial inheritance. The essential factors of its immunopathogenesis is thought to be the selective destruction of melanocytes. As a new class of microregulators of gene expression, miRNA have been reported to play vital roles in autoimmune diseases, metabolic diseases and cancer. This study sought to characterize the different miRNA expression pattern in the peripheral blood mononuclear cells (PBMC) of patients with non-segmental vitiligo (NSV) and healthy individuals and to examine their direct responses to thymosin α1 (Tα1) treatment. The miRNA expression profile in the PBMC of patients with NSV was analyzed using Exiqon's miRCURY LNA microRNA Array. The differentially expressed miRNA were validated by real-time quantitative polymerase chain reaction. We found that the expression levels of miR-224-3p and miR-4712-3p were upregulated, and miR-3940-5p was downregulated in the PBMC. The common clinical immune modulator Tα1 changed the miRNA expression profile. Our analysis showed that differentially expressed miRNA were associated with the mechanism of immune imbalance of vitiligo and that Tα1 could play an important role in changing the expression of these miRNA in the PBMC of patients with NSV. This study provided further evidence that miRNA may serve as novel drug targets for vitiligo therapeutic evaluation.

  19. The ATP-Dependent RNA Helicase DDX3X Modulates Herpes Simplex Virus 1 Gene Expression.

    PubMed

    Khadivjam, Bita; Stegen, Camille; Hogue-Racine, Marc-Aurèle; El Bilali, Nabil; Döhner, Katinka; Sodeik, Beate; Lippé, Roger

    2017-04-15

    The human protein DDX3X is a DEAD box ATP-dependent RNA helicase that regulates transcription, mRNA maturation, and mRNA export and translation. DDX3X concomitantly modulates the replication of several RNA viruses and promotes innate immunity. We previously showed that herpes simplex virus 1 (HSV-1), a human DNA virus, incorporates DDX3X into its mature particles and that DDX3X is required for optimal HSV-1 infectivity. Here, we show that viral gene expression, replication, and propagation depend on optimal DDX3X protein levels. Surprisingly, DDX3X from incoming viral particles was not required for the early stages of the HSV-1 infection, but, rather, the protein controlled the assembly of new viral particles. This was independent of the previously reported ability of DDX3X to stimulate interferon type I production. Instead, both the lack and overexpression of DDX3X disturbed viral gene transcription and thus subsequent genome replication. This suggests that in addition to its effect on RNA viruses, DDX3X impacts DNA viruses such as HSV-1 by an interferon-independent pathway.IMPORTANCE Viruses interact with a variety of cellular proteins to complete their life cycle. Among them is DDX3X, an RNA helicase that participates in most aspects of RNA biology, including transcription, splicing, nuclear export, and translation. Several RNA viruses and a limited number of DNA viruses are known to manipulate DDX3X for their own benefit. In contrast, DDX3X is also known to promote interferon production to limit viral propagation. Here, we show that DDX3X, which we previously identified in mature HSV-1 virions, stimulates HSV-1 gene expression and, consequently, virion assembly by a process that is independent of its ability to promote the interferon pathway.

  20. RNA-Eluting Surfaces for the Modulation of Gene Expression as A Novel Stent Concept

    PubMed Central

    Koenig, Olivia; Zengerle, Diane; Perle, Nadja; Hossfeld, Susanne; Neumann, Bernd; Behring, Andreas; Avci-Adali, Meltem; Walker, Tobias; Schlensak, Christian; Wendel, Hans Peter; Nolte, Andrea

    2017-01-01

    Presently, a new era of drug-eluting stents is continuing to improve late adverse effects such as thrombosis after coronary stent implantation in atherosclerotic vessels. The application of gene expression–modulating stents releasing specific small interfering RNAs (siRNAs) or messenger RNAs (mRNAs) to the vascular wall might have the potential to improve the regeneration of the vessel wall and to inhibit adverse effects as a new promising therapeutic strategy. Different poly (lactic-co-glycolic acid) (PLGA) resomers for their ability as an siRNA delivery carrier against intercellular adhesion molecule (ICAM)-1 with a depot effect were tested. Biodegradability, hemocompatibility, and high cell viability were found in all PLGAs. We generated PLGA coatings with incorporated siRNA that were able to transfect EA.hy926 and human vascular endothelial cells. Transfected EA.hy926 showed significant siICAM-1 knockdown. Furthermore, co-transfection of siRNA and enhanced green fluorescent protein (eGFP) mRNA led to the expression of eGFP as well as to the siRNA transfection. Using our PLGA and siRNA multilayers, we reached high transfection efficiencies in EA.hy926 cells until day six and long-lasting transfection until day 20. Our results indicate that siRNA and mRNA nanoparticles incorporated in PLGA films have the potential for the modulation of gene expression after stent implantation to achieve accelerated regeneration of endothelial cells and to reduce the risk of restenosis. PMID:28208634

  1. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis

    SciTech Connect

    Yamamoto, Miki L.; Clark, Tyson A.; Gee, Sherry L.; Kang, Jeong-Ah; Schweitzer, Anthony C.; Wickrema, Amittha; Conboy, John G.

    2009-02-03

    Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.

  2. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq.

    PubMed

    Fernandes, Andrew D; Macklaim, Jean M; Linn, Thomas G; Reid, Gregor; Gloor, Gregory B

    2013-01-01

    Experimental variance is a major challenge when dealing with high-throughput sequencing data. This variance has several sources: sampling replication, technical replication, variability within biological conditions, and variability between biological conditions. The high per-sample cost of RNA-Seq often precludes the large number of experiments needed to partition observed variance into these categories as per standard ANOVA models. We show that the partitioning of within-condition to between-condition variation cannot reasonably be ignored, whether in single-organism RNA-Seq or in Meta-RNA-Seq experiments, and further find that commonly-used RNA-Seq analysis tools, as described in the literature, do not enforce the constraint that the sum of relative expression levels must be one, and thus report expression levels that are systematically distorted. These two factors lead to misleading inferences if not properly accommodated. As it is usually only the biological between-condition and within-condition differences that are of interest, we developed ALDEx, an ANOVA-like differential expression procedure, to identify genes with greater between- to within-condition differences. We show that the presence of differential expression and the magnitude of these comparative differences can be reasonably estimated with even very small sample sizes.

  3. miRNA expression profiling of formalin-fixed paraffin-embedded (FFPE) hereditary breast tumors

    PubMed Central

    Tanić, Miljana; Yanowski, Kira; Andrés, Eduardo; Gómez-López, Gonzalo; Socorro, María Rodríguez-Pinilla; Pisano, David G.; Martinez-Delgado, Beatriz; Benítez, Javier

    2014-01-01

    Hereditary breast cancer constitutes only 5–10% of all breast cancer cases and is characterized by strong family history of breast and/or other associated cancer types. Only ~ 25% of hereditary breast cancer cases carry a mutation in BRCA1 or BRCA2 gene, while mutations in other rare high and moderate-risk genes and common low penetrance variants may account for additional 20% of the cases. Thus the majority of cases are still unaccounted for and designated as BRCAX tumors. MicroRNAs are small non-coding RNAs that play important roles as regulators of gene expression and are deregulated in cancer. To characterize hereditary breast tumors based on their miRNA expression profiles we performed global microarray miRNA expression profiling on a retrospective cohort of 80 FFPE breast tissues, including 66 hereditary breast tumors (13 BRCA1, 10 BRCA2 and 43 BRCAX), 10 sporadic breast carcinomas and 4 normal breast tissues, using Exiqon miRCURY LNA™ microRNA Array v.11.0. Here we describe in detail the miRNA microarray expression data and tumor samples used for the study of BRCAX tumor heterogeneity (Tanic et al., 2013) and biomarkers associated with positive BRCA1/2 mutation status (Tanic et al., 2014). Additionally, we provide the R code for data preprocessing and quality control. PMID:26484152

  4. Chromatin poises miRNA- and protein-coding genes for expression.

    PubMed

    Barski, Artem; Jothi, Raja; Cuddapah, Suresh; Cui, Kairong; Roh, Tae-Young; Schones, Dustin E; Zhao, Keji

    2009-10-01

    Chromatin modifications have been implicated in the regulation of gene expression. While association of certain modifications with expressed or silent genes has been established, it remains unclear how changes in chromatin environment relate to changes in gene expression. In this article, we used ChIP-seq (chromatin immunoprecipitation with massively parallel sequencing) to analyze the genome-wide changes in chromatin modifications during activation of total human CD4(+) T cells by T-cell receptor (TCR) signaling. Surprisingly, we found that the chromatin modification patterns at many induced and silenced genes are relatively stable during the short-term activation of resting T cells. Active chromatin modifications were already in place for a majority of inducible protein-coding genes, even while the genes were silent in resting cells. Similarly, genes that were silenced upon T-cell activation retained positive chromatin modifications even after being silenced. To investigate if these observations are also valid for miRNA-coding genes, we systematically identified promoters for known miRNA genes using epigenetic marks and profiled their expression patterns using deep sequencing. We found that chromatin modifications can poise miRNA-coding genes as well. Our data suggest that miRNA- and protein-coding genes share similar mechanisms of regulation by chromatin modifications, which poise inducible genes for activation in response to environmental stimuli.

  5. Hantaviruses induce cell type- and viral species-specific host microRNA expression signatures.

    PubMed

    Shin, Ok Sarah; Kumar, Mukesh; Yanagihara, Richard; Song, Jin-Won

    2013-11-01

    The mechanisms of hantavirus-induced modulation of host cellular immunity remain poorly understood. Recently, microRNAs (miRNAs) have emerged as a class of essential regulators of host immune response genes. To ascertain if differential host miRNA expression toward representative hantavirus species correlated with immune response genes, miRNA expression profiles were analyzed in human endothelial cells, macrophages and epithelial cells infected with pathogenic and nonpathogenic rodent- and shrew-borne hantaviruses. Distinct miRNA expression profiles were observed in a cell type- and viral species-specific pattern. A subset of miRNAs, including miR-151-5p and miR-1973, were differentially expressed between Hantaan virus and Prospect Hill virus. Pathway analyses confirmed that the targets of selected miRNAs were associated with inflammatory responses and innate immune receptor-mediated signaling pathways. Our data suggest that differential immune responses following hantavirus infection may be regulated in part by cellular miRNA through dysregulation of genes critical to the inflammatory process.

  6. MicroRNA Expression Profiling of Lactating Mammary Gland in Divergent Phenotype Swine Breeds

    PubMed Central

    Peng, Jing; Zhao, Jun-Sheng; Shen, Yi-Fei; Mao, Hai-Guang; Xu, Ning-Ying

    2015-01-01

    MicroRNA (miRNA) plays a key role in development and specific biological processes, such as cell proliferation, differentiation, and apoptosis. Extensive studies of mammary miRNAs have been performed in different species and tissues. However, little is known about porcine mammary gland miRNAs. In this study, we report the identification and characterization of miRNAs in the lactating mammary gland in two distinct pig breeds, Jinhua and Yorkshire. Many miRNAs were detected as significantly differentially expressed between the two libraries. Among the differentially expressed miRNAs, many are known to be related to mammary gland development and lactation by interacting with putative target genes in previous studies. These findings suggest that miRNA expression patterns may contribute significantly to target mRNA regulation and influence mammary gland development and peak lactation performance. The data we obtained provide useful information about the roles of miRNAs in the biological processes of lactation and the mechanisms of target gene expression and regulation. PMID:25580536

  7. MicroRNA expression signature and the therapeutic effect of the microRNA-21 antagomir in hypertrophic scarring

    PubMed Central

    Guo, Liang; Xu, Kai; Yan, Hongbo; Feng, Haifeng; Wang, Tao; Chai, Linlin; Xu, Guozheng

    2017-01-01

    Hypertrophic scars (HS) area fibroproliferative disorder of the skin, which causes aesthetic and functional impairment. However, the molecular pathogenesis of this disease remains largely unknown and currently no efficient treatment exists. MicroRNAs (miRNAs) are involved in a variety of pathophysiological processes, however the role of miRNAs in HS development remains unclear. To investigate the miRNA expression signature of HS, microarray analysis was performed and 152 miRNAs were observed to be differentially expressed in HS tissue compared with normal skin tissues. Of the miRNAs identified, miRNA-21 (miR-21) was significantly increased in HS tissues and hypertrophic scar fibroblasts (HSFBs) as determined by reverse transcription-quantitative polymerase chain reaction analysis. It was also observed that, when miR-21 in HSFBs was blocked through use of an antagomir, the phenotype of fibrotic fibroblasts in vitro was reversed, as demonstrated by growth inhibition, induction of apoptosis and suppressed expression of fibrosis-associated genes collagen type I α 1 chain (COL1A1), COL1A2 and fibronectin. Furthermore, miR-21 antagomir administration significantly reduced the severity of HS formation and decreased collagen deposition in a rabbit ear HS model. The total scar area and scar elevation index were calculated and were demonstrated to be significantly decreased in the treatment group compared with control rabbits. These results indicated that the miR-21 antagomir has a therapeutic effect on HS and suggests that targeting miRNAs may be a successful and novel therapeutic strategy in the treatment of fibrotic diseases that are difficult to treat with existing methods. PMID:28075443

  8. Environmental Contaminants and microRNA Regulation: Transcription Factors as Regulators of Toxicant-Altered microRNA Expression

    PubMed Central

    Sollome, James; Martin, Elizabeth; Sethupathy, Praveen; Fry, Rebecca C.

    2016-01-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA transcripts and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized in silico bioinformatic analysis to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n=847) were identified and promoter regions were defined as −1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n=128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. PMID:27292125

  9. Induction of Ski protein expression upon luteinization in rat granulosa cells without a change in its mRNA expression.

    PubMed

    Kim, Hyun; Yamanouchi, Keitaro; Matsuwaki, Takashi; Nishihara, Masugi

    2012-01-01

    The Ski protein is implicated in the proliferation/differentiation of a variety of cells. We previously reported that the Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. However, granulosa cells cannot only undergo apoptosis but can alternatively differentiate into luteal cells. It is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to determine the localization of the Ski protein in the rat ovary during luteinization to examine if Ski might play a role in this process. In order to examine the Ski protein expression during the progression of luteinization, follicular growth was induced in immature female rats by administration of equine chorionic gonadotropin, and luteinization was induced by human chorionic gonadotropin treatment to mimic the luteinizing hormone (LH) surge. While no Ski-positive granulosa cells were present in the preovulatory follicle, Ski protein expression was induced in response to the LH surge and was maintained after formation of the corpus luteum (CL). Although the Ski protein is absent from the granulosa cells of the preovulatory follicle, its mRNA (c-ski) was expressed, and the level of c-ski mRNA was unchanged even after the LH surge. The combined results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggested that its expression is regulated posttranscriptionally.

  10. Expression of MicroRNA-146 in Rheumatoid Arthritis Synovial Tissue

    PubMed Central

    Nakasa, Tomoyuki; Miyaki, Shigeru; Okubo, Atsuko; Hashimoto, Megumi; Nishida, Keiichiro; Ochi, Mitsuo; Asahara, Hiroshi

    2009-01-01

    Objective Several microRNA, which are ~22-nucleotide noncoding RNAs, exhibit tissue-specific or developmental stage–specific expression patterns and are associated with human diseases. The objective of this study was to identify the expression pattern of microRNA-146 (miR-146) in synovial tissue from patients with rheumatoid arthritis (RA). Methods The expression of miR-146 in synovial tissue from 5 patients with RA, 5 patients with osteoarthritis (OA), and 1 normal subject was analyzed by quantitative reverse transcription–polymerase chain reaction (RT-PCR) and by in situ hybridization and immunohistochemistry of tissue sections. Induction of miR-146 following stimulation with tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) of cultures of human rheumatoid arthritis synovial fibroblasts (RASFs) was examined by quantitative PCR and RT-PCR. Results Mature miR-146a and primary miR-146a/b were highly expressed in RA synovial tissue, which also expressed TNFα, but the 2 microRNA were less highly expressed in OA and normal synovial tissue. In situ hybridization showed primary miR-146a expression in cells of the superficial and sublining layers in synovial tissue from RA patients. Cells positive for miR-146a were primarily CD68+ macrophages, but included several CD3+ T cell subsets and CD79a+ B cells. Expression of miR-146a/b was markedly up-regulated in RASFs after stimulation with TNFα and IL-1β. Conclusion This study shows that miR-146 is expressed in RA synovial tissue and that its expression is induced by stimulation with TNFα and IL-1β. Further studies are required to elucidate the function of miR-146 in these tissues. PMID:18438844

  11. MicroRNA expression profiles in metastatic and non-metastatic giant cell tumor of bone.

    PubMed

    Mosakhani, Neda; Pazzaglia, Laura; Benassi, Maria Serena; Borze, Ioana; Quattrini, Irene; Picci, Piero; Knuutila, Sakari

    2013-05-01

    Giant cell tumor of bone (GCTB) is a skeletal neoplasm, a locally aggressive tumor that occasionally metastasizes to the lungs. To identify novel biomarkers associated with GCTB progression and metastasis, we performed a miRNA microarray on ten primary tumors of GCTB, of which five developed lung metastases and the rest remained metastasis-free. Between metastatic and non-metastatic GCTB, 12 miRNAs were differentially expressed (such as miR-136, miR-513a-5p, miR-494, miR-224, and miR-542-5p). A decreased level of miR-136 in metastatic versus non-metastatic GCTB was significantly confirmed by the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) (p=0.04). To identify potential target genes for the differentially expressed miRNAs, we used three target prediction databases. Then, to functionally validate the potential target genes of the differentially expressed miRNAs, we re-analyzed our previous gene expression data from the same ten patients. Eight genes such as NFIB, TNC, and FLRT2 were inversely expressed relative to their predicted miRNA regulators. NFIB expression correlated in metastatic GCTB with no or low expression of miR-136, and this gene was selected for further verification with qRT-PCR and immunohistochemistry. Verification of NFIB mRNA and protein by qRT-PCR showed elevated expression levels in metastatic GCTBs. Further, the protein expression level of NFIB was tested in an independent validation cohort of 74 primary archival GCTB specimens. In the primary tumors that developed metastases compared to the disease-free group, NFIB protein was moderately to strongly expressed at a higher frequency. Thus, in GCTB, miR-136 and NFIB may serve as prognostic makers.

  12. Detecting pan-cancer conserved microRNA modules from microRNA expression profiles across multiple cancers.

    PubMed

    Liu, Zhaowen; Zhang, Junying; Yuan, Xiguo; Liu, Baobao; Liu, Yajun; Li, Aimin; Zhang, Yuanyuan; Sun, Xiaohan; Tuo, Shouheng

    2015-08-01

    MicroRNAs (miRNAs) play an indispensable role in cancer initiation and progression. Different cancers have some common hallmarks in general. Analyzing miRNAs that consistently contribute to different cancers can help us to discover the relationship between miRNAs and traits shared by cancers. Most previous works focus on analyzing single miRNA. However, dysregulation of a single miRNA is generally not sufficient to contribute to complex cancer processes. In this study, we put emphasis on analyzing cooperation of miRNAs across cancers. We assume that miRNAs can cooperatively regulate oncogenic pathways and contribute to cancer hallmarks. Such a cooperation is modeled by a miRNA module referred to as a pan-cancer conserved miRNA module. The module consists of miRNAs which simultaneously regulate cancers and are significantly intra-correlated. A novel computational workflow for the module discovery is presented. Multiple modules are discovered from miRNA expression profiles using the method. The function of top two ranked modules are analyzed using the mRNAs which correlate to all the miRNAs in a module across cancers, inferring that the two modules function in regulating the cell cycle which relates to cancer hallmarks as self sufficiency in growth signals and insensitivity to antigrowth signals. Additionally, two novel miRNAs mir-590 and mir-629 are found to cooperate with well-known onco-miRNAs in the modules to contribute to cancers. We also found that PTEN, which is a well known tumor suppressor that regulates the cell cycle, is a common target of miRNAs in the top-one module and cooperative control of PTEN can be a reason for the miRNAs' cooperation. We believe that analyzing the cooperative mechanism of the miRNAs in modules rather than focusing on only single miRNAs may help us know more about the complicated relationship between miRNAs and cancers and develop more effective treatment strategies for cancers.

  13. Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2015-11-01

    Long noncoding RNAs (lncRNAs) are ≥200 nt long, abundant class of non-protein coding RNAs that are transcribed in complex, sense- and antisense patterns from the intergenic and intronic regions of mammalian genome. Mammalian central nervous system constitutes the largest repertoire of noncoding transcripts that are known to be expressed in developmentally regulated and cell-type specific manners. Although many lncRNAs, functioning in the brain development and diseases are known, none involved in brain aging has been reported so far. Here, we report involvement of a novel, repeat sequence (simple repeats and SINES)-containing, trans-spliced, long intergenic non-protein coding RNA (lincRNA), named as LINC-RBE (rat brain expressed transcript) involved in maturation and aging of mammalian brain. The LINC-RBE is strongly expressed in the rat brain and the upstream/downstream sequences of its DNA in the chromosome 5 contain binding sites for many cell growth, survival and development-specific transcriptional factors. Through RT-PCR and RNA in situ hybridization, LINC-RBE was found to be expressed in an age-dependent manner with significantly higher level of expression in the brain of adult (16 weeks) compared to both immature (4 weeks) and old (70 weeks) rats. Moreover, the expression pattern of the LINC-RBE showed distinct association with the specific neuro-anatomical regions, cell types and sub-cellular compartments of the rat brain in an age-related manner. Thus, its expression increased from immature stage to adulthood and declined further in old age. This is a first-time report of involvement of an intergenic repeat sequence-containing lncRNA in different regions of the rat brain in an age-dependent manner.

  14. Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2015-12-01

    Long noncoding RNAs (lncRNAs) are ≥ 200 nt long, abundant class of non-protein coding RNAs that are transcribed in complex, sense- and antisense patterns from the intergenic and intronic regions of mammalian genome. Mammalian central nervous system constitutes the largest repertoire of noncoding transcripts that are known to be expressed in developmentally regulated and cell-type specific manners. Although many lncRNAs, functioning in the brain development and diseases are known, none involved in brain aging has been reported so far. Here, we report involvement of a novel, repeat sequence (simple repeats and SINES)-containing, trans-spliced, long intergenic non-protein coding RNA (lincRNA), named as LINC-RBE (rat brain expressed transcript) involved in maturation and aging of mammalian brain. The LINC-RBE is strongly expressed in the rat brain and the upstream/downstream sequences of its DNA in the chromosome 5 contain binding sites for many cell growth, survival and development-specific transcriptional factors. Through RT-PCR and RNA in situ hybridization, LINC-RBE was found to be expressed in an age-dependent manner with significantly higher level of expression in the brain of adult (16 week) compared to both immature (4 week) and old (70 week) rats. Moreover, the expression pattern of the LINC-RBE showed distinct association with the specific neuro-anatomical regions, cell types and sub-cellular compartments of the rat brain in an age-related manner. Thus, its expression increased from immature stage to adulthood and declined further in old age. This is a first-time report of involvement of an intergenic repeat sequence-containing lncRNA in different regions of the rat brain in an age-dependent manner.

  15. Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients

    PubMed Central

    Kwak, Yong T; Koo, Min-Seong; Choi, Chul-Hee; Sunwoo, IN

    2001-01-01

    Background Though the dysfunction of central dopaminergic system has been proposed, the etiology or pathogenesis of schizophrenia is still uncertain partly due to limited accessibility to dopamine receptor. The purpose of this study was to define whether or not the easily accessible dopamine receptors of peripheral lymphocytes can be the peripheral markers of schizophrenia. Results 44 drug-medicated schizophrenics for more than 3 years, 28 drug-free schizophrenics for more than 3 months, 15 drug-naïve schizophrenic patients, and 31 healthy persons were enrolled. Sequential reverse transcription and quantitative polymerase chain reaction of the mRNA were used to investigate the expression of D3 and D5 dopamine receptors in peripheral lymphocytes. The gene expression of dopamine receptors was compared in each group. After taking antipsychotics in drug-free and drug-naïve patients, the dopamine receptors of peripheral lymphocytes were sequentially studied 2nd week and 8th week after medication. In drug-free schizophrenics, D3 dopamine receptor mRNA expression of peripheral lymphocytes significantly increased compared to that of controls and drug-medicated schizophrenics, and D5 dopamine receptor mRNA expression increased compared to that of drug-medicated schizophrenics. After taking antipsychotics, mRNA of dopamine receptors peaked at 2nd week, after which it decreases but the level was above baseline one at 8th week. Drug-free and drug-naïve patients were divided into two groups according to dopamine receptor expression before medications, and the group of patients with increased dopamine receptor expression had more severe psychiatric symptoms. Conclusions These results reveal that the molecular biologically-determined dopamine receptors of peripheral lymphocytes are reactive, and that increased expression of dopamine receptor in peripheral lymphocyte has possible clinical significance for subgrouping of schizophrenis. PMID:11252158

  16. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer.

    PubMed

    Heegaard, Niels H H; Schetter, Aaron J; Welsh, Judith A; Yoneda, Mitsuhiro; Bowman, Elise D; Harris, Curtis C

    2012-03-15

    Circulating micro-RNA (miR) profiles have been proposed as promising diagnostic and prognostic biomarkers for cancer, including lung cancer. We have developed methods to accurately and reproducibly measure micro-RNA levels in serum and plasma. Here, we study paired serum and plasma samples from 220 patients with early stage nonsmall cell lung cancer (NSCLC) and 220 matched controls. We use qRT-PCR to measure the circulating levels of 30 different miRs that have previously been reported to be differently expressed in lung cancer tissue. Duplicate RNA extractions were performed for 10% of all samples, and micro-RNA measurements were highly correlated among those duplicates. This demonstrates high reproducibility of our assay. The expressions of miR-146b, miR-221, let-7a, miR-155, miR-17-5p, miR-27a and miR-106a were significantly reduced in the serum of NSCLC cases, while miR-29c was significantly increased. No significant differences were observed in plasma of patients compared with controls. Overall, expression levels in serum did not correlate well with levels in plasma. In secondary analyses, reduced plasma expression of let-7b was modestly associated with worse cancer-specific mortality in all patients, and reduced serum expression of miR-223 was modestly associated with cancer-specific mortality in stage IA/B patients. MiR profiles also showed considerable differences comparing African American and European Americans. In summary, we found significant differences in miR expression when comparing cases and controls and find evidence that expression of let-7b is associated with prognosis in NSCLC.

  17. tRF2Cancer: A web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers

    PubMed Central

    Zheng, Ling-Ling; Xu, Wei-Lin; Liu, Shun; Sun, Wen-Ju; Li, Jun-Hao; Wu, Jie; Yang, Jian-Hua; Qu, Liang-Hu

    2016-01-01

    tRNA-derived small RNA fragments (tRFs) are one class of small non-coding RNAs derived from transfer RNAs (tRNAs). tRFs play important roles in cellular processes and are involved in multiple cancers. High-throughput small RNA (sRNA) sequencing experiments can detect all the cellular expressed sRNAs, including tRFs. However, distinguishing genuine tRFs from RNA fragments generated by random degradation remains a major challenge. In this study, we developed an integrated web-based computing system, tRF2Cancer, to accurately identify tRFs from sRNA deep-sequencing data and evaluate their expression in multiple cancers. The binomial test was introduced to evaluate whether reads from a small RNA-seq data set represent tRFs or degraded fragments. A classification method was then used to annotate the types of tRFs based on their sites of origin in pre-tRNA or mature tRNA. We applied the pipeline to analyze 10 991 data sets from 32 types of cancers and identified thousands of expressed tRFs. A tool called ‘tRFinCancer’ was developed to facilitate the users to inspect the expression of tRFs across different types of cancers. Another tool called ‘tRFBrowser’ shows both the sites of origin and the distribution of chemical modification sites in tRFs on their source tRNA. The tRF2Cancer web server is available at http://rna.sysu.edu.cn/tRFfinder/. PMID:27179031

  18. tRF2Cancer: A web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers.

    PubMed

    Zheng, Ling-Ling; Xu, Wei-Lin; Liu, Shun; Sun, Wen-Ju; Li, Jun-Hao; Wu, Jie; Yang, Jian-Hua; Qu, Liang-Hu

    2016-07-08

    tRNA-derived small RNA fragments (tRFs) are one class of small non-coding RNAs derived from transfer RNAs (tRNAs). tRFs play important roles in cellular processes and are involved in multiple cancers. High-throughput small RNA (sRNA) sequencing experiments can detect all the cellular expressed sRNAs, including tRFs. However, distinguishing genuine tRFs from RNA fragments generated by random degradation remains a major challenge. In this study, we developed an integrated web-based computing system, tRF2Cancer, to accurately identify tRFs from sRNA deep-sequencing data and evaluate their expression in multiple cancers. The binomial test was introduced to evaluate whether reads from a small RNA-seq data set represent tRFs or degraded fragments. A classification method was then used to annotate the types of tRFs based on their sites of origin in pre-tRNA or mature tRNA. We applied the pipeline to analyze 10 991 data sets from 32 types of cancers and identified thousands of expressed tRFs. A tool called 'tRFinCancer' was developed to facilitate the users to inspect the expression of tRFs across different types of cancers. Another tool called 'tRFBrowser' shows both the sites of origin and the distribution of chemical modification sites in tRFs on their source tRNA. The tRF2Cancer web server is available at http://rna.sysu.edu.cn/tRFfinder/.

  19. Spaceflight alters expression of microRNA during T-cell activation

    PubMed Central

    Hughes-Fulford, Millie; Chang, Tammy T.; Martinez, Emily M.; Li, Chai-Fei

    2015-01-01

    Altered immune function has been demonstrated in astronauts during spaceflights dating back to Apollo and Skylab; this could be a major barrier to long-term space exploration. We tested the hypothesis that spaceflight causes changes in microRNA (miRNA) expression. Human leukocytes were stimulated with mitogens on board the International Space Station using an onboard normal gravity control. Bioinformatics showed that miR-21 was significantly up-regulated 2-fold during early T-cell activation in normal gravity, and gene expression was suppressed under microgravity. This was confirmed using quantitative real-time PCR (n = 4). This is the first report that spaceflight regulates miRNA expression. Global microarray analysis showed significant (P < 0.05) suppression of 85 genes under microgravity conditions compared to normal gravity samples. EGR3, FASLG, BTG2, SPRY2, and TAGAP are biologically confirmed targets and are co-up-regulated with miR-21. These genes share common promoter regions with pre-mir-21; as the miR-21 matures and accumulates, it most likely will inhibit translation of its target genes and limit the immune response. These data suggest that gravity regulates T-cell activation not only by transcription promotion but also by blocking translation via noncoding RNA mechanisms. Moreover, this study suggests that T-cell activation itself may induce a sequence of gene expressions that is self-limited by miR-21.—Hughes-Fulford, M., Chang, T. T., Martinez, E. M., Li, C.-F. Spaceflight alters expression of microRNA during T-cell activation. PMID:26276131

  20. Expression of statherin mRNA and protein in nasal and vaginal secretions.

    PubMed

    Sakurada, Koichi; Akutsu, Tomoko; Watanabe, Ken; Fujinami, Yoshihito; Yoshino, Mineo

    2011-11-01

    Nasal secretion has been regarded as one of the most difficult body fluids to identify and is especially difficult to discriminate from vaginal secretions and saliva. At present, few specific markers are known for nasal secretions. The aim of this study is to find a new approach for the identification of nasal secretions. We examined expression levels of statherin and histatin, peptides which are commonly found in saliva, in nasal and vaginal secretions by real-time RT-PCR and ELISA assays. Statherin mRNA was highly expressed in all nasal samples (dCt value=-1.49±1.10, n=8) and was detected even in 1-day-old 0.1-μL stains. However, the stability of mRNA in nasal stains was significantly (P<0.01) lower than in saliva. Low levels of statherin mRNA were detected in 4 of the 17 vaginal samples (dCt value=11.65-14.72). Histatin mRNA was not detected in any nasal or vaginal samples, although it was highly expressed in all saliva samples. ELISA assays with anti-statherin goat polyclonal antibody showed that statherin peptide was detected in all nasal and saliva samples even after dilution of more than 1000-fold. The statherin peptide was not detected in any vaginal samples, including samples that expressed low levels of statherin mRNA. The amount of statherin peptide in vaginal samples might be less than the limit of detection of this assay. In the present study, statherin was highly expressed in nasal secretions, but histatin was not. These markers may be useful for discriminating nasal secretions from vaginal secretions and saliva. However, the usefulness of these markers in practical forensic case samples has not yet been examined. Therefore, further research is required to establish the utility of these assays for identification of nasal secretions.

  1. Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition.

    PubMed

    Tong, Xin; Van Dross, Rukiyah T; Abu-Yousif, Adnan; Morrison, Aubrey R; Pelling, Jill C

    2007-01-01

    Cyclooxygenase 2 (COX-2) is a key enzyme in the conversion of arachidonic acid to prostaglandins, and COX-2 overexpression plays an important role in carcinogenesis. Exposure to UVB strongly increased COX-2 protein expression in mouse 308 keratinocytes, and this induction was inhibited by apigenin, a nonmutagenic bioflavonoid that has been shown to prevent mouse skin carcinogenesis induced by both chemical carcinogens and UV exposure. Our previous study suggested that one pathway by which apigenin inhibits UV-induced and basal COX-2 expression is through modulation of USF transcriptional activity in the 5' upstream region of the COX-2 gene. Here, we found that apigenin treatment also increased COX-2 mRNA stability, and the inhibitory effect of apigenin on UVB-induced luciferase reporter gene activity was dependent on the AU-rich element of the COX-2 3'-untranslated region. Furthermore, we identified two RNA-binding proteins, HuR and the T-cell-restricted intracellular antigen 1-related protein (TIAR), which were associated with endogenous COX-2 mRNA in 308 keratinocytes, and apigenin treatment increased their localization to cell cytoplasm. More importantly, reduction of HuR levels by small interfering RNA inhibited apigenin-mediated stabilization of COX-2 mRNA. Cells expressing reduced TIAR showed marked resistance to apigenin's ability to inhibit UVB-induced COX-2 expression. Taken together, these results indicate that in addition to transcriptional regulation, another m