Science.gov

Sample records for 4d cardiac micro-ct

  1. Comparison of 4D-microSPECT and microCT for murine cardiac function

    PubMed Central

    Befera, Nicholas T.; Badea, Cristian T.; Johnson, G. Allan

    2014-01-01

    Purpose The objective of this study was to compare a new generation of four-dimensional (4D) microSPECT with microCT for quantitative in vivo assessment of murine cardiac function. Procedures 4D isotropic cardiac images were acquired from normal C57BL/6 mice with either microSPECT at 350-micron resolution (n=6) or microCT at 88-micron resolution (n=6). One additional mouse with myocardial infarction (MI) was scanned with both modalities. Prior to imaging, mice were injected with either 99mTc -tetrofosmin for microSPECT, or a liposomal blood pool contrast agent for microCT. Segmentation of the left ventricle (LV) was performed using Vitrea (Vital Images) software, to derive global and regional function. Results Measures of global LV function between microSPECT and microCT groups were comparable (e.g. ejection fraction=71±6%-microSPECT and 68±4%-microCT). Regional functional indices (wall motion, wall thickening, regional ejection fraction) were also similar for the two modalities. In the mouse with MI, microSPECT identified a large perfusion defect that was not evident with microCT. Conclusions Despite lower spatial resolution, microSPECT was comparable to microCT in the quantitative evaluation of cardiac function. MicroSPECT offers an advantage over microCT in the ability to evaluate myocardial perfusion radiotracer distribution and function simultaneously. MicroSPECT should be considered as an alternative to microCT and MR for preclinical cardiac imaging in the mouse. PMID:24037175

  2. Registration-based segmentation of murine 4D cardiac micro-CT data using symmetric normalization

    NASA Astrophysics Data System (ADS)

    Clark, Darin; Badea, Alexandra; Liu, Yilin; Johnson, G. Allan; Badea, Cristian T.

    2012-10-01

    Micro-CT can play an important role in preclinical studies of cardiovascular disease because of its high spatial and temporal resolution. Quantitative analysis of 4D cardiac images requires segmentation of the cardiac chambers at each time point, an extremely time consuming process if done manually. To improve throughput this study proposes a pipeline for registration-based segmentation and functional analysis of 4D cardiac micro-CT data in the mouse. Following optimization and validation using simulations, the pipeline was applied to in vivo cardiac micro-CT data corresponding to ten cardiac phases acquired in C57BL/6 mice (n = 5). After edge-preserving smoothing with a novel adaptation of 4D bilateral filtration, one phase within each cardiac sequence was manually segmented. Deformable registration was used to propagate these labels to all other cardiac phases for segmentation. The volumes of each cardiac chamber were calculated and used to derive stroke volume, ejection fraction, cardiac output, and cardiac index. Dice coefficients and volume accuracies were used to compare manual segmentations of two additional phases with their corresponding propagated labels. Both measures were, on average, >0.90 for the left ventricle and >0.80 for the myocardium, the right ventricle, and the right atrium, consistent with trends in inter- and intra-segmenter variability. Segmentation of the left atrium was less reliable. On average, the functional metrics of interest were underestimated by 6.76% or more due to systematic label propagation errors around atrioventricular valves; however, execution of the pipeline was 80% faster than performing analogous manual segmentation of each phase.

  3. 4D micro-CT for cardiac and perfusion applications with view under sampling

    NASA Astrophysics Data System (ADS)

    Badea, Cristian T.; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan

    2011-06-01

    Micro-CT is commonly used in preclinical studies to provide anatomical information. There is growing interest in obtaining functional measurements from 4D micro-CT. We report here strategies for 4D micro-CT with a focus on two applications: (i) cardiac imaging based on retrospective gating and (ii) pulmonary perfusion using multiple contrast injections/rotations paradigm. A dual source micro-CT system is used for image acquisition with a sampling rate of 20 projections per second. The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent. Fast scanning of free breathing mice is achieved using retrospective gating. The ECG and respiratory signals are used to sort projections into ten cardiac phases. The pulmonary perfusion protocol uses a conventional contrast agent (Isovue 370) delivered by a micro-injector in four injections separated by 2 min intervals to allow for clearance. Each injection is synchronized with the rotation of the animal, and each of the four rotations is started with an angular offset of 22.5 from the starting angle of the previous rotation. Both cardiac and perfusion protocols result in an irregular angular distribution of projections that causes significant streaking artifacts in reconstructions when using traditional filtered backprojection (FBP) algorithms. The reconstruction involves the use of the point spread function of the micro-CT system for each time point, and the analysis of the distribution of the reconstructed data in the Fourier domain. This enables us to correct for angular inconsistencies via deconvolution and identify regions where data is missing. The missing regions are filled with data from a high quality but temporally averaged prior image reconstructed with all available projections. Simulations indicate that deconvolution successfully removes the streaking artifacts while preserving temporal information. 4D cardiac micro-CT in a mouse was performed with adequate image quality at isotropic

  4. Assessing Cardiac Injury in Mice With Dual Energy-MicroCT, 4D-MicroCT, and MicroSPECT Imaging After Partial Heart Irradiation

    SciTech Connect

    Lee, Chang-Lung; Min, Hooney; Befera, Nicholas; Clark, Darin; Qi, Yi; Das, Shiva; Johnson, G. Allan; Badea, Cristian T.; Kirsch, David G.

    2014-03-01

    Purpose: To develop a mouse model of cardiac injury after partial heart irradiation (PHI) and to test whether dual energy (DE)-microCT and 4-dimensional (4D)-microCT can be used to assess cardiac injury after PHI to complement myocardial perfusion imaging using micro-single photon emission computed tomography (SPECT). Methods and Materials: To study cardiac injury from tangent field irradiation in mice, we used a small-field biological irradiator to deliver a single dose of 12 Gy x-rays to approximately one-third of the left ventricle (LV) of Tie2Cre; p53{sup FL/+} and Tie2Cre; p53{sup FL/−} mice, where 1 or both alleles of p53 are deleted in endothelial cells. Four and 8 weeks after irradiation, mice were injected with gold and iodinated nanoparticle-based contrast agents, and imaged with DE-microCT and 4D-microCT to evaluate myocardial vascular permeability and cardiac function, respectively. Additionally, the same mice were imaged with microSPECT to assess myocardial perfusion. Results: After PHI with tangent fields, DE-microCT scans showed a time-dependent increase in accumulation of gold nanoparticles (AuNp) in the myocardium of Tie2Cre; p53{sup FL/−} mice. In Tie2Cre; p53{sup FL/−} mice, extravasation of AuNp was observed within the irradiated LV, whereas in the myocardium of Tie2Cre; p53{sup FL/+} mice, AuNp were restricted to blood vessels. In addition, data from DE-microCT and microSPECT showed a linear correlation (R{sup 2} = 0.97) between the fraction of the LV that accumulated AuNp and the fraction of LV with a perfusion defect. Furthermore, 4D-microCT scans demonstrated that PHI caused a markedly decreased ejection fraction, and higher end-diastolic and end-systolic volumes, to develop in Tie2Cre; p53{sup FL/−} mice, which were associated with compensatory cardiac hypertrophy of the heart that was not irradiated. Conclusions: Our results show that DE-microCT and 4D-microCT with nanoparticle-based contrast agents are novel imaging approaches

  5. Denoising of 4D Cardiac Micro-CT Data Using Median-Centric Bilateral Filtration

    PubMed Central

    Clark, D.; Johnson, G.A.; Badea, C.T.

    2012-01-01

    Bilateral filtration has proven an effective tool for denoising CT data. The classic filter utilizes Gaussian domain and range weighting functions in 2D. More recently, other distributions have yielded more accurate results in specific applications, and the bilateral filtration framework has been extended to higher dimensions. In this study, brute-force optimization is employed to evaluate the use of several alternative distributions for both domain and range weighting: Andrew's Sine Wave, El Fallah Ford, Gaussian, Flat, Lorentzian, Huber's Minimax, Tukey's Bi-weight, and Cosine. Two variations on the classic bilateral filter which use median filtration to reduce bias in range weights are also investigated: median-centric and hybrid bilateral filtration. Using the 4D MOBY mouse phantom reconstructed with noise (stdev. ~ 65 HU), hybrid bilateral filtration, a combination of the classic and median-centric filters, with Flat domain and range weighting is shown to provide optimal denoising results (PSNRs: 31.69, classic; 31.58 median-centric; 32.25, hybrid). To validate these phantom studies, the optimal filters are also applied to in vivo, 4D cardiac micro-CT data acquired in the mouse. In a constant region of the left ventricle, hybrid bilateral filtration with Flat domain and range weighting is shown to provide optimal smoothing (stdev: original, 72.2 HU; classic, 20.3 HU; median-centric, 24.1 HU; hybrid, 15.9 HU). While the optimal results were obtained using 4D filtration, the 3D hybrid filter is ultimately recommended for denoising 4D cardiac micro-CT data because it is more computationally tractable and less prone to artifacts (MOBY PSNR: 32.05; left ventricle stdev: 20.5 HU). PMID:24386540

  6. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior

    NASA Astrophysics Data System (ADS)

    Ritschl, Ludwig; Sawall, Stefan; Knaup, Michael; Hess, Andreas; Kachelrieß, Marc

    2012-03-01

    Temporal-correlated image reconstruction, also known as 4D CT image reconstruction, is a big challenge in computed tomography. The reasons for incorporating the temporal domain into the reconstruction are motions of the scanned object, which would otherwise lead to motion artifacts. The standard method for 4D CT image reconstruction is extracting single motion phases and reconstructing them separately. These reconstructions can suffer from undersampling artifacts due to the low number of used projections in each phase. There are different iterative methods which try to incorporate some a priori knowledge to compensate for these artifacts. In this paper we want to follow this strategy. The cost function we use is a higher dimensional cost function which accounts for the sparseness of the measured signal in the spatial and temporal directions. This leads to the definition of a higher dimensional total variation. The method is validated using in vivo cardiac micro-CT mouse data. Additionally, we compare the results to phase-correlated reconstructions using the FDK algorithm and a total variation constrained reconstruction, where the total variation term is only defined in the spatial domain. The reconstructed datasets show strong improvements in terms of artifact reduction and low-contrast resolution compared to other methods. Thereby the temporal resolution of the reconstructed signal is not affected.

  7. 4D micro-CT using fast prospective gating

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  8. A multi-resolution approach to retrospectively-gated cardiac micro-CT reconstruction

    NASA Astrophysics Data System (ADS)

    Clark, D. P.; Johnson, G. A.; Badea, C. T.

    2014-03-01

    In preclinical research, micro-CT is commonly used to provide anatomical information; however, there is significant interest in using this technology to obtain functional information in cardiac studies. The fastest acquisition in 4D cardiac micro-CT imaging is achieved via retrospective gating, resulting in irregular angular projections after binning the projections into phases of the cardiac cycle. Under these conditions, analytical reconstruction algorithms, such as filtered back projection, suffer from streaking artifacts. Here, we propose a novel, multi-resolution, iterative reconstruction algorithm inspired by robust principal component analysis which prevents the introduction of streaking artifacts, while attempting to recover the highest temporal resolution supported by the projection data. The algorithm achieves these results through a unique combination of the split Bregman method and joint bilateral filtration. We illustrate the algorithm's performance using a contrast-enhanced, 2D slice through the MOBY mouse phantom and realistic projection acquisition and reconstruction parameters. Our results indicate that the algorithm is robust to under sampling levels of only 34 projections per cardiac phase and, therefore, has high potential in reducing both acquisition times and radiation dose. Another potential advantage of the multi-resolution scheme is the natural division of the reconstruction problem into a large number of independent sub-problems which can be solved in parallel. In future work, we will investigate the performance of this algorithm with retrospectively-gated, cardiac micro-CT data.

  9. Fast X-ray micro-CT for real-time 4D observation

    NASA Astrophysics Data System (ADS)

    Takano, H.; Yoshida, K.; Tsuji, T.; Koyama, T.; Tsusaka, Y.; Kagoshima, Y.

    2009-09-01

    Fast X-ray computed tomography (CT) system with sub-second order measurement for single CT acquisition has been developed. The system, consisting of a high-speed sample rotation stage and a high-speed X-ray camera, is constructed at synchrotron radiation beamline in order to utilize fully intense X-rays. A time-resolving CT movie (i.e. 4D CT) can be available by operating the fast CT system continuously. Real-time observation of water absorbing process of super-absorbent polymer (SAP) has been successfully performed with the 4D CT operation.

  10. Cardiac 4D Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    D'hooge, Jan

    Volumetric cardiac ultrasound imaging has steadily evolved over the last 20 years from an electrocardiography (ECC) gated imaging technique to a true real-time imaging modality. Although the clinical use of echocardiography is still to a large extent based on conventional 2D ultrasound imaging it can be anticipated that the further developments in image quality, data visualization and interaction and image quantification of three-dimensional cardiac ultrasound will gradually make volumetric ultrasound the modality of choice. In this chapter, an overview is given of the technological developments that allow for volumetric imaging of the beating heart by ultrasound.

  11. Monitoring in vivo (re)modeling: a computational approach using 4D microCT data to quantify bone surface movements.

    PubMed

    Birkhold, Annette I; Razi, Hajar; Weinkamer, Richard; Duda, Georg N; Checa, Sara; Willie, Bettina M

    2015-06-01

    Bone undergoes continual damage repair and structural adaptation to changing external loads with the aim of maintaining skeletal integrity throughout life. The ability to monitor bone (re)modeling would allow for a better understanding in how various pathologies and interventions affect bone turnover and subsequent bone strength. To date, however, current methods to monitor bone (re)modeling over time and in space are limited. We propose a novel method to visualize and quantify bone turnover, based on in vivo microCT imaging and a 4D computational approach. By in vivo tracking of spatially correlated formation and resorption sites over time it classifies bone restructuring into (re)modeling sequences, the spatially and temporally linked sequences of formation, resorption and quiescent periods on the bone surface. The microCT based method was validated using experimental data from an in vivo mouse tibial loading model and ex vivo data of the mouse tibia. In this application, the method allows the visualization of time-resolved cortical (re)modeling and the quantification of short-term and long-term modeling on the endocortical and periosteal surface at the mid-diaphysis of loaded and control mice tibiae. Both short-term and long-term modeling processes, independent formation and resorption events, could be monitored and modeling (spatially not correlated formation and resorption) and remodeling (resorption followed by new formation at the same site) could be distinguished on the bone surface. This novel method that combines in vivo microCT with a computational approach is a powerful tool to monitor bone turnover in animal models now and is waiting to be applied to human patients in the near future. PMID:25746796

  12. Taking geoscience to the IMAX: 3D and 4D insight into geological processes using micro-CT

    NASA Astrophysics Data System (ADS)

    Dobson, Katherine; Dingwell, Don; Hess, Kai-Uwe; Withers, Philip; Lee, Peter; Pistone, Mattia; Fife, Julie; Atwood, Robert

    2015-04-01

    Geology is inherently dynamic, and full understanding of any geological system can only be achieved by considering the processes by which change occurs. Analytical limitations mean understanding has largely developed from ex situ analyses of the products of geological change, rather than of the processes themselves. Most methods essentially utilise "snap shot" sampling: and from thin section petrography to high resolution crystal chemical stratigraphy and field volcanology, we capture an incomplete view of a spatially and temporally variable system. Even with detailed experimental work, we can usually only analyse samples before and after we perform an experiment, as routine analysis methods are destructive. Serial sectioning and quenched experiments stopped at different stages can give some insight into the third and fourth dimension, but the true scaling of the processes from the laboratory to the 4D (3D + time) geosphere is still poorly understood. Micro computed tomography (XMT) can visualise the internal structures and spatial associations within geological samples non-destructively. With image resolutions of between 200 microns and 50 nanometres, tomography has the ability to provide a detailed sample assessment in 3D, and quantification of mineral associations, porosity, grain orientations, fracture alignments and many other features. This allows better understanding of the role of the complex geometries and associations within the samples, but the challenge of capturing the processes that generate and modify these structures remains. To capture processes, recent work has focused on developing experimental capability for in situ experiments on geological materials. Data presented will showcase examples from recent experiments where high speed synchrotron x-ray tomography has been used to acquire each 3D image in under 2 seconds. We present a suite of studies that showcase how it is now possible to take quantification of many geological processed into 3D and

  13. Prospective-gated cardiac micro-CT imaging of free-breathing mice using carbon nanotube field emission x-ray

    SciTech Connect

    Cao Guohua; Burk, Laurel M.; Lee, Yueh Z.; Calderon-Colon, Xiomara; Sultana, Shabana; Lu Jianping; Zhou, Otto

    2010-10-15

    Purpose: Carbon nanotube (CNT) based field emission x-ray source technology has recently been investigated for diagnostic imaging applications because of its attractive characteristics including electronic programmability, fast switching, distributed source, and multiplexing. The purpose of this article is to demonstrate the potential of this technology for high-resolution prospective-gated cardiac micro-CT imaging. Methods: A dynamic cone-beam micro-CT scanner was constructed using a rotating gantry, a stationary mouse bed, a flat-panel detector, and a sealed CNT based microfocus x-ray source. The compact single-beam CNT x-ray source was operated at 50 KVp and 2 mA anode current with 100 {mu}mx100 {mu}m effective focal spot size. Using an intravenously administered iodinated blood-pool contrast agent, prospective cardiac and respiratory-gated micro-CT images of beating mouse hearts were obtained from ten anesthetized free-breathing mice in their natural position. Four-dimensional cardiac images were also obtained by gating the image acquisition to different phases in the cardiac cycle. Results: High-resolution CT images of beating mouse hearts were obtained at 15 ms temporal resolution and 6.2 lp/mm spatial resolution at 10% of system MTF. The images were reconstructed at 76 {mu}m isotropic voxel size. The data acquisition time for two cardiac phases was 44{+-}9 min. The CT values observed within the ventricles and the ventricle wall were 455{+-}49 and 120{+-}48 HU, respectively. The entrance dose for the acquisition of a single phase of the cardiac cycle was 0.10 Gy. Conclusions: A high-resolution dynamic micro-CT scanner was developed from a compact CNT microfocus x-ray source and its feasibility for prospective-gated cardiac micro-CT imaging of free-breathing mice under their natural position was demonstrated.

  14. Complete valvular heart apparatus model from 4D cardiac CT.

    PubMed

    Grbic, Sasa; Ionasec, Razvan; Vitanovski, Dime; Voigt, Ingmar; Wang, Yang; Georgescu, Bogdan; Navab, Nassir; Comaniciu, Dorin

    2012-07-01

    The cardiac valvular apparatus, composed of the aortic, mitral, pulmonary and tricuspid valves, is an essential part of the anatomical, functional and hemodynamic characteristics of the heart and the cardiovascular system as a whole. Valvular heart diseases often involve multiple dysfunctions and require joint assessment and therapy of the valves. In this paper, we propose a complete and modular patient-specific model of the cardiac valvular apparatus estimated from 4D cardiac CT data. A new constrained Multi-linear Shape Model (cMSM), conditioned by anatomical measurements, is introduced to represent the complex spatio-temporal variation of the heart valves. The cMSM is exploited within a learning-based framework to efficiently estimate the patient-specific valve parameters from cine images. Experiments on 64 4D cardiac CT studies demonstrate the performance and clinical potential of the proposed method. Our method enables automatic quantitative evaluation of the complete valvular apparatus based on non-invasive imaging techniques. In conjunction with existent patient-specific chamber models, the presented valvular model enables personalized computation modeling and realistic simulation of the entire cardiac system. PMID:22481023

  15. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure

    SciTech Connect

    Maier, Joscha; Sawall, Stefan; Kachelrieß, Marc

    2014-05-15

    Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the

  16. Anatomical and functional imaging of myocardial infarction in mice using micro-CT and eXIA 160 contrast agent

    PubMed Central

    Ashton, Jeffrey R.; Befera, Nicholas; Clark, Darin; Qi, Yi; Mao, Lan; Rockman, Howard A.; Johnson, G. Allan; Badea, Cristian T.

    2014-01-01

    Non-invasive small animal imaging techniques are essential for evaluation of cardiac disease and potential therapeutics. A novel preclinical iodinated contrast agent called eXIA 160 has recently been developed, which has been evaluated for micro-CT cardiac imaging. eXIA 160 creates strong contrast between blood and tissue immediately after its injection and is subsequently taken up by the myocardium and other metabolically active tissues over time. We focus on these properties of eXIA and show its use in imaging myocardial infarction in mice. Five C57BL/6 mice were imaged ~ 2 weeks after LAD coronary artery ligation. Six C57BL/6 mice were used as controls. Immediately after injection of eXIA 160, an enhancement difference between blood and myocardium of ~340 HU enabled cardiac function estimation via 4D micro-CT scanning with retrospective gating. Four hours post-injection, the healthy perfused myocardium had a contrast difference of ~140 HU relative to blood while the infarcted myocardium showed no enhancement. These differences allowed quantification of infarct size via dual energy micro-CT. In vivo micro-SPECT imaging and ex vivo TTC staining provided validation for the micro-CT findings. Root mean squared error of infarct measurements was 2.7% between micro-CT and SPECT, and 4.7% between micro-CT and TTC. Thus, micro-CT with eXIA 160 can be used to provide both morphological and functional data for preclinical studies evaluating myocardial infarction and potential therapies. Further studies are warranted to study the potential use of eXIA 160 as a CT molecular imaging tool for other metabolically active tissues in the mouse. PMID:24523061

  17. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT

    PubMed Central

    Badea, Cristian T.; Hedlund, Laurence W.; Johnson, G. Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging. PMID:27006920

  18. Imaging of cardiac perfusion of free-breathing small animals using dynamic phase-correlated micro-CT

    SciTech Connect

    Sawall, Stefan; Kuntz, Jan; Socher, Michaela; Knaup, Michael; Hess, Andreas; Bartling, Soenke; Kachelriess, Marc

    2012-12-15

    Purpose:Mouse models of cardiac diseases have proven to be a valuable tool in preclinical research. The high cardiac and respiratory rates of free breathing mice prohibit conventional in vivo cardiac perfusion studies using computed tomography even if gating methods are applied. This makes a sacrification of the animals unavoidable and only allows for the application of ex vivo methods. Methods: To overcome this issue the authors propose a low dose scan protocol and an associated reconstruction algorithm that allows for in vivo imaging of cardiac perfusion and associated processes that are retrospectively synchronized to the respiratory and cardiac motion of the animal. The scan protocol consists of repetitive injections of contrast media within several consecutive scans while the ECG, respiratory motion, and timestamp of contrast injection are recorded and synchronized to the acquired projections. The iterative reconstruction algorithm employs a six-dimensional edge-preserving filter to provide low-noise, motion artifact-free images of the animal examined using the authors' low dose scan protocol. Results: The reconstructions obtained show that the complete temporal bolus evolution can be visualized and quantified in any desired combination of cardiac and respiratory phase including reperfusion phases. The proposed reconstruction method thereby keeps the administered radiation dose at a minimum and thus reduces metabolic inference to the animal allowing for longitudinal studies. Conclusions: The authors' low dose scan protocol and phase-correlated dynamic reconstruction algorithm allow for an easy and effective way to visualize phase-correlated perfusion processes in routine laboratory studies using free-breathing mice.

  19. Quantitative micro-CT

    NASA Astrophysics Data System (ADS)

    Prevrhal, Sven

    2005-09-01

    Micro-CT for bone structural analysis has progressed from an in-vitro laboratory technique to devices for in-vivo assessment of small animals and the peripheral human skeleton. Currently, topological parameters of bone architecture are the primary goals of analysis. Additional measurement of the density or degree of mineralization (DMB) of trabecular and cortical bone at the microscopic level is desirable to study effects of disease and treatment progress. This information is not commonly extracted because of the challenges of accurate measurement and calibration at the tissue level. To assess the accuracy of micro-CT DMB measurements in a realistic but controlled situation, we prepared bone-mimicking watery solutions at concentrations of 100 to 600 mg/cm3 K2PO4H and scanned them with micro-CT, both in glass vials and microcapillary tubes with inner diameters of 50, 100 and 150 μm to simulate trabecular thickness. Values of the linear attenuation coefficients μ in the reconstructed image are commonly affected by beam hardening effects for larger samples and by partial volume effects for small volumes. We implemented an iterative reconstruction technique to reduce beam hardening. Partial voluming was sought to be reduced by excluding voxels near the tube wall. With these two measures, improvement on the constancy of the reconstructed voxel values and linearity with solution concentration could be observed to over 90% accuracy. However, since the expected change in real bone is small more measurements are needed to confirm that micro-CT can indeed be adapted to assess bone mineralization at the tissue level.

  20. Live 4D optical coherence tomography for early embryonic mouse cardiac phenotyping

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Larin, Kirill V.; Overbeek, Paul A.; Larina, Irina V.

    2016-03-01

    Studying embryonic mouse development is important for our understanding of normal human embryogenesis and the underlying causes of congenital defects. Our research focuses on imaging early development in the mouse embryo to specifically understand cardiovascular development using optical coherence tomography (OCT). We have previously developed imaging approaches that combine static embryo culture, OCT imaging and advanced image processing to visualize the whole live mouse embryos and obtain 4D (3D+time) cardiodynamic datasets with cellular resolution. Here, we present the study of using 4D OCT for dynamic imaging of early embryonic heart in live mouse embryos to assess mutant cardiac phenotypes during development, including a cardiac looping defect. Our results indicate that the live 4D OCT imaging approach is an efficient phenotyping tool that can reveal structural and functional cardiac defects at very early stages. Further studies integrating live embryonic cardiodynamic phenotyping with molecular and genetic approaches in mouse mutants will help to elucidate the underlying signaling defects.

  1. Robust segmentation of 4D cardiac MRI-tagged images via spatio-temporal propagation

    NASA Astrophysics Data System (ADS)

    Qian, Zhen; Huang, Xiaolei; Metaxas, Dimitris N.; Axel, Leon

    2005-04-01

    In this paper we present a robust method for segmenting and tracking cardiac contours and tags in 4D cardiac MRI tagged images via spatio-temporal propagation. Our method is based on two main techniques: the Metamorphs Segmentation for robust boundary estimation, and the tunable Gabor filter bank for tagging lines enhancement, removal and myocardium tracking. We have developed a prototype system based on the integration of these two techniques, and achieved efficient, robust segmentation and tracking with minimal human interaction.

  2. Improved Dynamic Cardiac Phantom Based on 4D NURBS and Tagged MRI.

    PubMed

    Segars, W Paul; Lalush, David S; Frey, Eric C; Manocha, Dinesh; King, Michael A; Tsui, Benjamin M W

    2009-10-01

    We previously developed a realistic phantom for the cardiac motion for use in medical imaging research. The phantom was based upon a gated magnetic resonance imaging (MRI) cardiac study and using 4D non-uniform rational b-splines (NURBS). Using the gated MRI study as the basis for the cardiac model had its limitations. From the MRI images, the change in the size and geometry of the heart structures could be obtained, but without markers to track the movement of points on or within the myocardium, no explicit time correspondence could be established for the structures. Also, only the inner and outer surfaces of the myocardium could be modeled. We enhance this phantom of the beating heart using 4D tagged MRI data. We utilize NURBS surfaces to analyze the full 3D motion of the heart from the tagged data. From this analysis, time-dependent 3D NURBS surfaces were created for the right (RV) and left ventricles (LV). Models for the atria were developed separately since the tagged data only covered the ventricles. A 4D NURBS surface was fit to the 3D surfaces of the heart creating time-continuous 4D NURBS models. Multiple 4D surfaces were created for the left ventricle (LV) spanning its entire volume. The multiple surfaces for the LV were spline-interpolated about an additional dimension, thickness, creating a 4D NURBS solid model for the LV with the ability to represent the motion of any point within the volume of the LV myocardium at any time during the cardiac cycle. Our analysis of the tagged data was found to produce accurate models for the RV and LV at each time frame. In a comparison with segmented structures from the tagged dataset, LV and RV surface predictions were found to vary by a maximum of 1.5 mm's and 3.4 mm's respectively. The errors can be attributed to the tag spacing in the data (7.97 mm's). The new cardiac model was incorporated into the 4D NURBS-based Cardiac-Torso (NCAT) phantom widely used in imaging research. With its enhanced abilities, the model

  3. Targeted disruption of the heat shock protein 20-phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy.

    PubMed

    Martin, Tamara P; Hortigon-Vinagre, Maria P; Findlay, Jane E; Elliott, Christina; Currie, Susan; Baillie, George S

    2014-01-01

    Phosphorylated heat shock protein 20 (HSP20) is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20-phosphodiesterase 4D (PDE4D) complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20-PDE4D interaction leads to attenuation of pathological cardiac remodelling. PMID:25426411

  4. Interactive volume rendering of multimodality 4D cardiac data with the use of consumer graphics hardware

    NASA Astrophysics Data System (ADS)

    Enders, Frank; Strengert, Magnus; Iserhardt-Bauer, Sabine; Aladl, Usaf E.; Slomka, Piotr J.

    2003-05-01

    Interactive multimodality 4D volume rendering of cardiac images is challenging due to several factors. Animated rendering of fused volumes with multiple lookup tables (LUT) and interactive adjustments of relative volume positions and orientations must be performed in real time. In addition it is difficult to visualize the myocardium separated from the surrounding tissue on some modalities, such as MRI. In this work we propose to use software techniques combined with hardware capabilities of modern consumer video cards for real-time visualization of time-varying multimodality fused cardiac volumes for diagnostic purposes.

  5. 4-D Cardiac MR Image Analysis: Left and Right Ventricular Morphology and Function

    PubMed Central

    Wahle, Andreas; Johnson, Ryan K.; Scholz, Thomas D.; Sonka, Milan

    2010-01-01

    In this study, a combination of active shape model (ASM) and active appearance model (AAM) was used to segment the left and right ventricles of normal and Tetralogy of Fallot (TOF) hearts on 4-D (3-D+time) MR images. For each ventricle, a 4-D model was first used to achieve robust preliminary segmentation on all cardiac phases simultaneously and a 3-D model was then applied to each phase to improve local accuracy while maintaining the overall robustness of the 4-D segmentation. On 25 normal and 25 TOF hearts, in comparison to the expert traced independent standard, our comprehensive performance assessment showed subvoxel segmentation accuracy, high overlap ratios, good ventricular volume correlations, and small percent volume differences. Following 4-D segmentation, novel quantitative shape and motion features were extracted using shape information, volume-time and dV/dt curves, analyzed and used for disease status classification. Automated discrimination between normal/TOF subjects achieved 90%–100% sensitivity and specificity. The features obtained from TOF hearts show higher variability compared to normal subjects, suggesting their potential use as disease progression indicators. The abnormal shape and motion variations of the TOF hearts were accurately captured by both the segmentation and feature characterization. PMID:19709962

  6. Segmentation of 4D cardiac images: investigation on statistical shape models.

    PubMed

    Renno, Markus S; Shang, Yan; Sweeney, James; Dossel, Olaf

    2006-01-01

    The purpose of this research was two-fold: (1) to investigate the properties of statistical shape models constructed from manually segmented cardiac ventricular chambers to confirm the validity of an automatic 4-dimensional (4D) segmentation model that uses gradient vector flow (GVF) images of the original data and (2) to develop software to further automate the steps necessary in active shape model (ASM) training. These goals were achieved by first constructing ASMs from manually segmented ventricular models by allowing the user to cite entire datasets for processing using a GVF-based landmarking procedure and principal component analysis (PCA) to construct the statistical shape model. The statistical shape model of one dataset was used to regulate the segmentation of another dataset according to its GVF, and these results were then analyzed and found to accurately represent the original cardiac data when compared to the manual segmentation results as the golden standard. PMID:17947007

  7. Dynamic real-time 4D cardiac MDCT image display using GPU-accelerated volume rendering.

    PubMed

    Zhang, Qi; Eagleson, Roy; Peters, Terry M

    2009-09-01

    Intraoperative cardiac monitoring, accurate preoperative diagnosis, and surgical planning are important components of minimally-invasive cardiac therapy. Retrospective, electrocardiographically (ECG) gated, multidetector computed tomographical (MDCT), four-dimensional (3D + time), real-time, cardiac image visualization is an important tool for the surgeon in such procedure, particularly if the dynamic volumetric image can be registered to, and fused with the actual patient anatomy. The addition of stereoscopic imaging provides a more intuitive environment by adding binocular vision and depth cues to structures within the beating heart. In this paper, we describe the design and implementation of a comprehensive stereoscopic 4D cardiac image visualization and manipulation platform, based on the opacity density radiation model, which exploits the power of modern graphics processing units (GPUs) in the rendering pipeline. In addition, we present a new algorithm to synchronize the phases of the dynamic heart to clinical ECG signals, and to calculate and compensate for latencies in the visualization pipeline. A dynamic multiresolution display is implemented to enable the interactive selection and emphasis of volume of interest (VOI) within the entire contextual cardiac volume and to enhance performance, and a novel color and opacity adjustment algorithm is designed to increase the uniformity of the rendered multiresolution image of heart. Our system provides a visualization environment superior to noninteractive software-based implementations, but with a rendering speed that is comparable to traditional, but inferior quality, volume rendering approaches based on texture mapping. This retrospective ECG-gated dynamic cardiac display system can provide real-time feedback regarding the suspected pathology, function, and structural defects, as well as anatomical information such as chamber volume and morphology. PMID:19467840

  8. Image-domain motion compensated time resolved 4D cardiac CT

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuyuki; Sun, Zhihui; Segars, W. Paul; Fishman, Elliot K.; Tsui, Benjamin M. W.

    2007-03-01

    Two major problems with the current electrocardiogram-gated cardiac computed tomography (CT) imaging technique are a large patient radiation dose (10-15 mSv) and insufficient temporal resolution (83-165 ms). Our long-term goal is to develop new time resolved and low dose cardiac CT imaging techniques that consist of image reconstruction algorithms and estimation methods of the time-dependent motion vector field (MVF) of the heart from the acquired CT data. Toward this goal, we developed a method that estimates the 2D components of the MVF from a sequence of cardiac CT images and used it to "reconstruct" cardiac images at rapidly moving phases. First, two sharp image frames per heart beat (cycle) obtained at slow motion phases (i.e., mid-diastole and end-systole) were chosen. Nodes were coarsely placed among images; and the temporal motion of each node was modeled by B-splines. Our cost function consisted of 3 terms: mean-squared-error with the block-matching, and smoothness constraints in space and time. The time-dependent MVF was estimated by minimizing the cost function. We then warped images at slow motion phases using the estimated vector fields to "reconstruct" images at rapidly moving phase. The warping algorithm was evaluated using true time-dependent motion vector fields and images both provided by the NCAT phantom program. Preliminary results from ongoing quantitative and qualitative evaluation using the 4D NCAT phantom and patient data are encouraging. Major motion artifact is much reduced. We conclude the new image-based motion estimation technique is an important step toward the development of the new cardiac CT imaging techniques.

  9. Segmentation of 4D cardiac computer tomography images using active shape models

    NASA Astrophysics Data System (ADS)

    Leiner, Barba-J.; Olveres, Jimena; Escalante-Ramírez, Boris; Arámbula, Fernando; Vallejo, Enrique

    2012-06-01

    This paper describes a segmentation method for time series of 3D cardiac images based on deformable models. The goal of this work is to extend active shape models (ASM) of tree-dimensional objects to the problem of 4D (3D + time) cardiac CT image modeling. The segmentation is achieved by constructing a point distribution model (PDM) that encodes the spatio-temporal variability of a training set, i.e., the principal modes of variation of the temporal shapes are computed using some statistical parameters. An active search is used in the segmentation process where an initial approximation of the spatio-temporal shape is given and the gray level information in the neighborhood of the landmarks is analyzed. The starting shape is able to deform so as to better fit the data, but in the range allowed by the point distribution model. Several time series consisting of eleven 3D images of cardiac CT are employed for the method validation. Results are compared with manual segmentation made by an expert. The proposed application can be used for clinical evaluation of the left ventricle mechanical function. Likewise, the results can be taken as the first step of processing for optic flow estimation algorithms.

  10. Effect of heart rate on CT angiography using the enhanced cardiac model of the 4D NCAT

    NASA Astrophysics Data System (ADS)

    Segars, W. P.; Taguchi, K.; Fung, G. S. K.; Fishman, E. K.; Tsui, B. M. W.

    2006-03-01

    We investigate the effect of heart rate on the quality and artifact generation in coronary artery images obtained using multi-slice computed tomography (MSCT) with the purpose of finding the optimal time resolution for data acquisition. To perform the study, we used the 4D NCAT phantom, a computer model of the normal human anatomy and cardiac and respiratory motions developed in our laboratory. Although capable of being far more realistic, the 4D NCAT cardiac model was originally designed for low-resolution imaging research, and lacked the anatomical detail to be applicable to high-resolution CT. In this work, we updated the cardiac model to include a more detailed anatomy and physiology based on high-resolution clinical gated MSCT data. To demonstrate its utility in high-resolution dynamic CT imaging research, the enhanced 4D NCAT was then used in a pilot simulation study to investigate the effect of heart rate on CT angiography. The 4D NCAT was used to simulate patients with different heart rates (60-120 beats/minute) and with various cardiac plaques of known size and location within the coronary arteries. For each simulated patient, MSCT projection data was generated with data acquisition windows ranging from 100 to 250 ms centered within the quiet phase (mid-diastole) of the heart using an analytical CT projection algorithm. CT images were reconstructed from the projection data, and the contrast of the plaques was then measured to assess the effect of heart rate and to determine the optimal time resolution required for each case. The 4D NCAT phantom with its realistic model for the cardiac motion was found to provide a valuable tool from which to optimize CT cardiac applications. Our results indicate the importance of optimizing the time resolution with regard to heart rate and plaque location for improved CT images at a reduced patient dose.

  11. Non-rigid dual respiratory and cardiac motion correction methods after, during, and before image reconstruction for 4D cardiac PET

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Wang, Jizhe; Fung, George; Tsui, Benjamin

    2016-01-01

    Respiratory motion (RM) and cardiac motion (CM) degrade the quality and resolution in cardiac PET scans. We have developed non-rigid motion estimation methods to estimate both RM and CM based on 4D cardiac gated PET data alone, and compensate the dual respiratory and cardiac (R&C) motions after (MCAR), during (MCDR), and before (MCBR) image reconstruction. In all three R&C motion correction methods, attenuation-activity mismatch effect was modeled by using transformed attenuation maps using the estimated RM. The difference of using activity preserving and non-activity preserving models in R&C correction was also studied. Realistic Monte Carlo simulated 4D cardiac PET data using the 4D XCAT phantom and accurate models of the scanner design parameters and performance characteristics at different noise levels were employed as the known truth and for method development and evaluation. Results from the simulation study suggested that all three dual R&C motion correction methods provide substantial improvement in the quality of 4D cardiac gated PET images as compared with no motion correction. Specifically, the MCDR method yields the best performance for all different noise levels compared with the MCAR and MCBR methods. While MCBR reduces computational time dramatically but the resultant 4D cardiac gated PET images has overall inferior image quality when compared to that from the MCAR and MCDR approaches in the ‘almost’ noise free case. Also, the MCBR method has better noise handling properties when compared with MCAR and provides better quantitative results in high noise cases. When the goal is to reduce scan time or patient radiation dose, MCDR and MCBR provide a good compromise between image quality and computational times.

  12. Micro-CT of rodents: state-of-the-art and future perspectives

    PubMed Central

    Clark, D. P.; Badea, C. T.

    2014-01-01

    Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality. PMID:24974176

  13. Joint multi-object registration and segmentation of left and right cardiac ventricles in 4D cine MRI

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Kepp, Timo; Schmidt-Richberg, Alexander; Handels, Heinz

    2014-03-01

    The diagnosis of cardiac function based on cine MRI requires the segmentation of cardiac structures in the images, but the problem of automatic cardiac segmentation is still open, due to the imaging characteristics of cardiac MR images and the anatomical variability of the heart. In this paper, we present a variational framework for joint segmentation and registration of multiple structures of the heart. To enable the simultaneous segmentation and registration of multiple objects, a shape prior term is introduced into a region competition approach for multi-object level set segmentation. The proposed algorithm is applied for simultaneous segmentation of the myocardium as well as the left and right ventricular blood pool in short axis cine MRI images. Two experiments are performed: first, intra-patient 4D segmentation with a given initial segmentation for one time-point in a 4D sequence, and second, a multi-atlas segmentation strategy is applied to unseen patient data. Evaluation of segmentation accuracy is done by overlap coefficients and surface distances. An evaluation based on clinical 4D cine MRI images of 25 patients shows the benefit of the combined approach compared to sole registration and sole segmentation.

  14. ECG and Navigator-Free 4D Whole-Heart Coronary MRA for Simultaneous Visualization of Cardiac Anatomy and Function

    PubMed Central

    Pang, Jianing; Sharif, Behzad; Fan, Zhaoyang; Bi, Xiaoming; Arsanjani, Reza; Berman, Daniel S.; Li, Debiao

    2014-01-01

    Purpose To develop a cardiac and respiratory self-gated 4D coronary MRA technique for simultaneous cardiac anatomy and function visualization. Methods A contrast-enhanced, ungated spoiled gradient echo sequence with self-gating (SG) and 3DPR trajectory was used for image acquisition. Data was retrospectively binned into different cardiac and respiratory phases based on information extracted from SG projections using principal component analysis. Each cardiac phase was reconstructed using a respiratory motion-corrected self-calibrating SENSE framework, and those belong to the quiescent period were retrospectively combined for coronary visualization. Healthy volunteer studies were conducted to evaluate the efficacy of the SG method, the accuracy of the left ventricle (LV) function parameters and the quality of coronary artery visualization. Results SG performed reliably for all subjects including one with poor ECG. The LV function parameters showed excellent agreement with those from a conventional cine protocol. For coronary imaging, the proposed method yielded comparable apparent SNR and coronary sharpness and lower apparent CNR on three subjects compared with an ECG and navigator-gated Cartesian protocol and an ECG-gated, respiratory motion-corrected 3DPR protocol. Conclusion A fully self-gated 4D whole-heart imaging technique was developed, potentially allowing cardiac anatomy and function assessment from a single measurement. PMID:25216287

  15. Automatic 4D Reconstruction of Patient-Specific Cardiac Mesh with 1-to-1 Vertex Correspondence from Segmented Contours Lines

    PubMed Central

    Lim, Chi Wan; Su, Yi; Yeo, Si Yong; Ng, Gillian Maria; Nguyen, Vinh Tan; Zhong, Liang; Tan, Ru San; Poh, Kian Keong; Chai, Ping

    2014-01-01

    We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI) data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial–temporal) model of the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream computational simulation activities. PMID:24743555

  16. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  17. Development of a Carbon Nanotube-Based Micro-CT and its Applications in Preclinical Research

    NASA Astrophysics Data System (ADS)

    Burk, Laurel May

    Due to the dependence of researchers on mouse models for the study of human disease, diagnostic tools available in the clinic must be modified for use on these much smaller subjects. In addition to high spatial resolution, cardiac and lung imaging of mice presents extreme temporal challenges, and physiological gating methods must be developed in order to image these organs without motion blur. Commercially available micro-CT imaging devices are equipped with conventional thermionic x-ray sources and have a limited temporal response and are not ideal for in vivo small animal studies. Recent development of a field-emission x-ray source with carbon nanotube (CNT) cathode in our lab presented the opportunity to create a micro-CT device well-suited for in vivo lung and cardiac imaging of murine models for human disease. The goal of this thesis work was to present such a device, to develop and refine protocols which allow high resolution in vivo imaging of free-breathing mice, and to demonstrate the use of this new imaging tool for the study many different disease models. In Chapter 1, I provide background information about x-rays, CT imaging, and small animal micro-CT. In Chapter 2, CNT-based x-ray sources are explained, and details of a micro-focus x-ray tube specialized for micro-CT imaging are presented. In Chapter 3, the first and second generation CNT micro-CT devices are characterized, and successful respiratory- and cardiac-gated live animal imaging on normal, wild-type mice is achieved. In Chapter 4, respiratory-gated imaging of mouse disease models is demonstrated, limitations to the method are discussed, and a new contactless respiration sensor is presented which addresses many of these limitations. In Chapter 5, cardiac-gated imaging of disease models is demonstrated, including studies of aortic calcification, left ventricular hypertrophy, and myocardial infarction. In Chapter 6, several methods for image and system improvement are explored, and radiation

  18. Pathological calcifications studied with micro-CT

    NASA Astrophysics Data System (ADS)

    Stock, Stuart R.; Rajamannan, Nalini M.; Brooks, Ellen R.; Langman, Craig B.; Pachman, Lauren M.

    2004-10-01

    The microstructure of pathological biomineral deposits has received relatively little attention, perhaps, in part because of the difficulty preparing samples for microscopy. MicroCT avoids these difficulties, and laboratory microCT results are reviewed for aortic valve calcification (human as well as a rabbit model), for human renal calculi (stones) and for calcinoses formed in juvenile dermatomyositis (JDM). In calcified aortic valves of rabbits, numerical analysis of the data shows statistically significant correlation with diet. In a large kidney stone the pattern of mineralization is clearly revealed and may provide a temporal blueprint for stone growth. In JDM calcified deposits, very different microstructures are observed and may be related to processes unique to this disease.

  19. Medipix-based Spectral Micro-CT

    PubMed Central

    Xu, Qiong; He, Peng; Bennett, James; Amir, Raja; Dobbs, Bruce; Mou, Xuanqin; Wei, Biao; Butler, Anthony; Butler, Phillip; Wang, Ge

    2013-01-01

    Since Hounsfield's Nobel Prize winning breakthrough decades ago, X-ray CT has been widely applied in the clinical and preclinical applications - producing a huge number of tomographic gray-scale images. However, these images are often insufficient to distinguish crucial differences needed for diagnosis. They have poor soft tissue contrast due to inherent photon-count issues, involving high radiation dose. By physics, the X-ray spectrum is polychromatic, and it is now feasible to obtain multi-energy, spectral, or true-color, CT images. Such spectral images promise powerful new diagnostic information. The emerging Medipix technology promises energy-sensitive, high-resolution, accurate and rapid X-ray detection. In this paper, we will review the recent progress of Medipix-based spectral micro-CT with the emphasis on the results obtained by our team. It includes the state- of-the-art Medipix detector, the system and method of a commercial MARS (Medipix All Resolution System) spectral micro-CT, and the design and color diffusion of a hybrid spectral micro-CT. PMID:24194631

  20. Medipix-based Spectral Micro-CT.

    PubMed

    Yu, Hengyong; Xu, Qiong; He, Peng; Bennett, James; Amir, Raja; Dobbs, Bruce; Mou, Xuanqin; Wei, Biao; Butler, Anthony; Butler, Phillip; Wang, Ge

    2012-12-01

    Since Hounsfield's Nobel Prize winning breakthrough decades ago, X-ray CT has been widely applied in the clinical and preclinical applications - producing a huge number of tomographic gray-scale images. However, these images are often insufficient to distinguish crucial differences needed for diagnosis. They have poor soft tissue contrast due to inherent photon-count issues, involving high radiation dose. By physics, the X-ray spectrum is polychromatic, and it is now feasible to obtain multi-energy, spectral, or true-color, CT images. Such spectral images promise powerful new diagnostic information. The emerging Medipix technology promises energy-sensitive, high-resolution, accurate and rapid X-ray detection. In this paper, we will review the recent progress of Medipix-based spectral micro-CT with the emphasis on the results obtained by our team. It includes the state- of-the-art Medipix detector, the system and method of a commercial MARS (Medipix All Resolution System) spectral micro-CT, and the design and color diffusion of a hybrid spectral micro-CT. PMID:24194631

  1. Temporal and spectral imaging with micro-CT

    SciTech Connect

    Johnston, Samuel M.; Johnson, G. Allan; Badea, Cristian T.

    2012-08-15

    Purpose: Micro-CT is widely used for small animal imaging in preclinical studies of cardiopulmonary disease, but further development is needed to improve spatial resolution, temporal resolution, and material contrast. We present a technique for visualizing the changing distribution of iodine in the cardiac cycle with dual source micro-CT. Methods: The approach entails a retrospectively gated dual energy scan with optimized filters and voltages, and a series of computational operations to reconstruct the data. Projection interpolation and five-dimensional bilateral filtration (three spatial dimensions + time + energy) are used to reduce noise and artifacts associated with retrospective gating. We reconstruct separate volumes corresponding to different cardiac phases and apply a linear transformation to decompose these volumes into components representing concentrations of water and iodine. Since the resulting material images are still compromised by noise, we improve their quality in an iterative process that minimizes the discrepancy between the original acquired projections and the projections predicted by the reconstructed volumes. The values in the voxels of each of the reconstructed volumes represent the coefficients of linear combinations of basis functions over time and energy. We have implemented the reconstruction algorithm on a graphics processing unit (GPU) with CUDA. We tested the utility of the technique in simulations and applied the technique in an in vivo scan of a C57BL/6 mouse injected with blood pool contrast agent at a dose of 0.01 ml/g body weight. Postreconstruction, at each cardiac phase in the iodine images, we segmented the left ventricle and computed its volume. Using the maximum and minimum volumes in the left ventricle, we calculated the stroke volume, the ejection fraction, and the cardiac output. Results: Our proposed method produces five-dimensional volumetric images that distinguish different materials at different points in time, and

  2. Implementation of interior micro-CT on a carbon nanotube dynamic micro-CT scanner for lower radiation dose

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Lu, Jianping; Zhou, Otto; Cao, Guohua

    2015-03-01

    Micro-CT is a high-resolution volumetric imaging tool that provides imaging evaluations for many preclinical applications. However, the relatively high cumulative radiation dose from micro-CT scans could lead to detrimental influence on the experimental outcomes or even the damages of specimens. Interior micro-computed tomography (micro- CT) produces exact tomographic images of an interior region-of-interest (ROI) embedded within an object from truncated projection data. It holds promises for many biomedical applications with significantly reduced radiation doses. Here, we present our first implementation of an interior micro-CT system using a carbon nanotube (CNT) field-emission microfocus x-ray source. The system has two modes - interior micro-CT mode and global micro-CT mode, which is realized with a detachable x-ray beam collimator at the source side. The interior mode has an effective field-of-view (FOV) of about 10mm in diameter, while for the global mode the FOV is about 40mm in diameter. We acquired CT data in these two modes from a mouse-sized phantom, and compared the reconstructed image qualities and the associated radiation exposures. Interior ROI reconstruction was achieved by using our in-house developed reconstruction algorithm. Overall, interior micro-CT demonstrated comparable image quality to the conventional global micro-CT. Radiation doses measured by an ion chamber show that interior micro-CT yielded significant dose reduction (up to 83%).

  3. Spectral optimization for micro-CT

    SciTech Connect

    Hupfer, Martin; Nowak, Tristan; Brauweiler, Robert; Eisa, Fabian; Kalender, Willi A.

    2012-06-15

    Purpose: To optimize micro-CT protocols with respect to x-ray spectra and thereby reduce radiation dose at unimpaired image quality. Methods: Simulations were performed to assess image contrast, noise, and radiation dose for different imaging tasks. The figure of merit used to determine the optimal spectrum was the dose-weighted contrast-to-noise ratio (CNRD). Both optimal photon energy and tube voltage were considered. Three different types of filtration were investigated for polychromatic x-ray spectra: 0.5 mm Al, 3.0 mm Al, and 0.2 mm Cu. Phantoms consisted of water cylinders of 20, 32, and 50 mm in diameter with a central insert of 9 mm which was filled with different contrast materials: an iodine-based contrast medium (CM) to mimic contrast-enhanced (CE) imaging, hydroxyapatite to mimic bone structures, and water with reduced density to mimic soft tissue contrast. Validation measurements were conducted on a commercially available micro-CT scanner using phantoms consisting of water-equivalent plastics. Measurements on a mouse cadaver were performed to assess potential artifacts like beam hardening and to further validate simulation results. Results: The optimal photon energy for CE imaging was found at 34 keV. For bone imaging, optimal energies were 17, 20, and 23 keV for the 20, 32, and 50 mm phantom, respectively. For density differences, optimal energies varied between 18 and 50 keV for the 20 and 50 mm phantom, respectively. For the 32 mm phantom and density differences, CNRD was found to be constant within 2.5% for the energy range of 21-60 keV. For polychromatic spectra and CMs, optimal settings were 50 kV with 0.2 mm Cu filtration, allowing for a dose reduction of 58% compared to the optimal setting for 0.5 mm Al filtration. For bone imaging, optimal tube voltages were below 35 kV. For soft tissue imaging, optimal tube settings strongly depended on phantom size. For 20 mm, low voltages were preferred. For 32 mm, CNRD was found to be almost independent of

  4. Classification of microcalcifications using micro-CT

    NASA Astrophysics Data System (ADS)

    Temmermans, Frederik; Jansen, Bart; Willekens, Inneke; Van de Casteele, Elke; Deklerck, Rudi; Schelkens, Peter; De Mey, Johan

    2013-09-01

    Microcalcifications are tiny spots of calcium deposit that often occur in female breasts. Microcalcifications are common in healthy woman, but they often are an early sign of breast cancer. On a mammogram; the current standard of care for breast screening; calcifications appear as tiny white dots. They may occur scattered throughout the breast or grouped in clusters. Radiologists determine the suspiciousness based upon several factors, including position, frequency, grouping, evolution compared to prior studies and shape. In this paper, we study micro-CT images of biopsy samples containing microcalcifications. The scanner delivers 3D images with a voxel size of 8.66 μm, i.e. ca. 8 times the spatial resolution of a contemporary digital mammogram. We propose an automated binary classification method of the samples, based upon shape analysis of the microcalcifications. The study is performed on a set of 50 benign and 50 malign samples preserved in paraffin. The ground truth of the classification is based upon anapathological investigation of the paraffin blocks. The results show a sensitivity, i.e. the percentage of correctly classified malign samples, of up to 98% with a specificity of 40%.

  5. Cardiac function and perfusion dynamics measured on a beat-by-beat basis in the live mouse using ultra-fast 4D optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.

  6. Estimation of Cardiac Respiratory-Motion by Semi-Automatic Segmentation and Registration of Non-Contrast-Enhanced 4D-CT Cardiac Datasets

    PubMed Central

    Dey, Joyoni; Pan, Tinsu; Choi, David J.; Robotis, Dennis; Smyczynski, Mark S.; Pretorius, P. Hendrik; King, Michael A.

    2010-01-01

    The goal of this work is to investigate, for a large set of patients, the motion of the heart with respiration during free-breathing supine medical imaging. For this purpose we analyzed the motion of the heart in 32 non-contrast enhanced respiratory-gated 4D-CT datasets acquired during quiet unconstrained breathing. The respiratory-gated CT images covered the cardiac region and were acquired at each of 10 stages of the respiratory cycle, with the first stage being end-inspiration. We devised a 3-D semi-automated segmentation algorithm that segments the heart in the 4D-CT datasets acquired without contrast enhancement for use in estimating respiratory motion of the heart. Our semi-automated segmentation results were compared against interactive hand segmentations of the coronal slices by a cardiologist and a radiologist. The pairwise difference in segmentation among the algorithm and the physicians was on the average 11% and 10% of the total average segmented volume across the patient, with a couple of patients as outliers above the 95% agreement limit. The mean difference among the two physicians was 8% with an outlier above the 95% agreement limit. The 3-D segmentation was an order of magnitude faster than the Physicians’ manual segmentation and represents significant reduction of Physicians’ time. The segmented first stages of respiration were used in 12 degree-of-freedom (DOF) affine registration to estimate the motion at each subsequent stage of respiration. The registration results from the 32 patients indicate that the translation in the superior-inferior direction was the largest component motion, with a maximum of 10.7 mm, mean of 6.4 mm, and standard deviation of 2.2 mm. Translation in the anterior-posterior direction was the next largest component of motion, with a maximum of 4.0 mm, mean of 1.7 mm, and standard deviation of 1.0 mm. Rotation about the right-left axis was on average the largest component of rotation observed, with a maximum of 4

  7. Current status of developments and applications of micro-CT.

    PubMed

    Ritman, Erik L

    2011-08-15

    Use of microscopic computed-tomography (micro-CT) scanning continues to grow in biomedical research. Laboratory-based micro-CT scanners, laboratory-based nano-CT scanners, and integrated micro-CT/SPECT and micro-CT/PET scanners are now manufactured for "turn-key" operation by a number of commercial vendors. In recent years a number of technical developments in X-ray sources and X-ray imaging arrays have broadened the utility of micro-CT. Of particular interest are photon-counting and energy-resolving detector arrays. These are being explored to maximize micro-CT image grayscale dynamic range and to further increase image contrast by utilizing the unique spectral attenuation characteristics of individual chemical elements. X-ray phase-shift images may increase contrast resolution and reduce radiation exposure. Although radiation exposure is becoming a concern with the drive for increased spatial and temporal resolution, especially for longitudinal studies, gated scans and limited scan-data-set reconstruction algorithms show great potential for keeping radiation exposure to a minimum. PMID:21756145

  8. Delayed contrast enhancement imaging of a murine model for ischemia reperfusion with carbon nanotube micro-CT.

    PubMed

    Burk, Laurel M; Wang, Ko-Han; Wait, John Matthew; Kang, Eunice; Willis, Monte; Lu, Jianping; Zhou, Otto; Lee, Yueh Z

    2015-01-01

    We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT) micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8-12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300 mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic event. We demonstrate

  9. Delayed Contrast Enhancement Imaging of a Murine Model for Ischemia Reperfusion with Carbon Nanotube Micro-CT

    PubMed Central

    Burk, Laurel M.; Wang, Ko-Han; Wait, John Matthew; Kang, Eunice; Willis, Monte; Lu, Jianping; Zhou, Otto; Lee, Yueh Z.

    2015-01-01

    We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT) micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8–12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic event. We demonstrate

  10. Interior micro-CT with an offset detector

    SciTech Connect

    Sharma, Kriti Sen; Gong, Hao; Ghasemalizadeh, Omid; Yu, Hengyong; Wang, Ge

    2014-06-15

    Purpose: The size of field-of-view (FOV) of a microcomputed tomography (CT) system can be increased by offsetting the detector. The increased FOV is beneficial in many applications. All prior investigations, however, have been focused to the case in which the increased FOV after offset-detector acquisition can cover the transaxial extent of an object fully. Here, the authors studied a new problem where the FOV of a micro-CT system, although increased after offset-detector acquisition, still covers an interior region-of-interest (ROI) within the object. Methods: An interior-ROI-oriented micro-CT scan with an offset detector poses a difficult reconstruction problem, which is caused by both detector offset and projection truncation. Using the projection completion techniques, the authors first extended three previous reconstruction methods from offset-detector micro-CT to offset-detector interior micro-CT. The authors then proposed a novel method which combines two of the extended methods using a frequency split technique. The authors tested the four methods with phantom simulations at 9.4%, 18.8%, 28.2%, and 37.6% detector offset. The authors also applied these methods to physical phantom datasets acquired at the same amounts of detector offset from a customized micro-CT system. Results: When the detector offset was small, all reconstruction methods showed good image quality. At large detector offset, the three extended methods gave either visible shading artifacts or high deviation of pixel value, while the authors’ proposed method demonstrated no visible artifacts and minimal deviation of pixel value in both the numerical simulations and physical experiments. Conclusions: For an interior micro-CT with an offset detector, the three extended reconstruction methods can perform well at a small detector offset but show strong artifacts at a large detector offset. When the detector offset is large, the authors’ proposed reconstruction method can outperform the three

  11. TLD assessment of mouse dosimetry during microCT imaging

    SciTech Connect

    Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.

    2008-09-15

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm{sup 3} CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0{+-}5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0{+-}6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0{+-}4.0 mGy and 97.0{+-}5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0{+-}5.0 mGy. The author's results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality.

  12. TLD assessment of mouse dosimetry during microCT imaging

    PubMed Central

    Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.

    2008-01-01

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm3 CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0±5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0±6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0±4.0 mGy and 97.0±5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0±5.0 mGy. The author’s results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality. PMID:18841837

  13. Bronchial circulation angiogenesis in the rat quantified with SPECT and micro-CT

    PubMed Central

    Wietholt, Christian; Roerig, David L.; Gordon, John B.; Haworth, Steven T.; Molthen, Robert C.; Clough, Anne V.

    2009-01-01

    Introduction As pulmonary artery obstruction results in proliferation of the bronchial circulation in a variety of species, we investigated this angiogenic response using single photon emission computed tomography (SPECT) and micro-CT. Materials and methods After surgical ligation of the left pulmonary artery of rats, they were imaged at 10, 20, or 40 days post-ligation. Before imaging, technetium-labeled macroaggregated albumin (99mTc MAA) was injected into the aortic arch (IA) labeling the systemic circulation. SPECT/micro-CT imaging was performed, the image volumes were registered, and activity in the left lung via the bronchial circulation was used as a marker of bronchial blood flow. To calibrate and to verify successful ligation, 99mTc MAA was subsequently injected into the left femoral vein (IV), resulting in accumulation within the pulmonary circulation. The rats were reimaged, and the ratio of the IA to the IV measurements reflected the fraction of cardiac output (CO) to the left lung via the bronchial circulation. Control and sham-operated rats were studied similarly. Results The left lung bronchial circulation of the control group was 2.5% of CO. The sham-operated rats showed no significant difference from the control. However, 20 and 40 days post-ligation, the bronchial circulation blood flow had increased to 7.9 and 13.9%, respectively, of CO. Excised lungs examined after barium filling of the systemic vasculature confirmed neovascularization as evidenced by tortuous vessels arising from the mediastinum and bronchial circulation. Conclusion Thus, we conclude that SPECT/micro-CT imaging is a valuable methodology for monitoring angiogenesis in the lung and, potentially, for evaluating the effects of pro- or anti-angiogenic treatments using a similar approach. PMID:18247028

  14. Scout-view assisted interior micro-CT

    NASA Astrophysics Data System (ADS)

    Sharma, Kriti Sen; Holzner, Christian; Vasilescu, Dragoş M.; Jin, Xin; Narayanan, Shree; Agah, Masoud; Hoffman, Eric A.; Yu, Hengyong; Wang, Ge

    2013-06-01

    Micro computed tomography (micro-CT) is a widely-used imaging technique. A challenge of micro-CT is to quantitatively reconstruct a sample larger than the field-of-view (FOV) of the detector. This scenario is characterized by truncated projections and associated image artifacts. However, for such truncated scans, a low resolution scout scan with an increased FOV is frequently acquired so as to position the sample properly. This study shows that the otherwise discarded scout scans can provide sufficient additional information to uniquely and stably reconstruct the interior region of interest. Two interior reconstruction methods are designed to utilize the multi-resolution data without significant computational overhead. While most previous studies used numerically truncated global projections as interior data, this study uses truly hybrid scans where global and interior scans were carried out at different resolutions. Additionally, owing to the lack of standard interior micro-CT phantoms, we designed and fabricated novel interior micro-CT phantoms for this study to provide means of validation for our algorithms. Finally, two characteristic samples from separate studies were scanned to show the effect of our reconstructions. The presented methods show significant improvements over existing reconstruction algorithms.

  15. Reconstruction algorithm improving the spatial resolution of Micro-CT

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Wei, Dongbo; Li, Bing; Zhang, Lei

    2008-03-01

    X-ray Micro computed tomography (Micro-CT) enables nondestructive visualization of the internal structure of objects with high-resolution images and plays an important role for industrial nondestructive testing, material evaluation and medical researches. Because the micro focus is much smaller than the ordinary focus, the geometry un-sharpness of Micro-CT projection is several decuples less than that of ordinary CT systems. So the scan conditions with high geometry magnification can be adopted to acquire the projection data with high sampling frequency. Based on this feature, a new filter back projection reconstruction algorithm is researched to improve the spatial resolution of Micro-CT. This algorithm permits the reconstruction center at any point on the line connecting the focus and the rotation center. It can reconstruct CT images with different geometry magnification by adjusting the position of the reconstruction center. So it can make the best of the above feature to improve the spatial resolution of Micro-CT. The computer simulation and the CT experiment of a special spatial resolution phantom are executed to check the validity of this method. The results demonstrate the effect of the new algorithm. Analysis shows that the spatial resolution can be improved 50%.

  16. Recent micro-CT scanner developments at UGCT

    NASA Astrophysics Data System (ADS)

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography (www.ugct.ugent.be) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  17. Automatic segmentation of 4D cardiac MR images for extraction of ventricular chambers using a spatio-temporal approach

    NASA Astrophysics Data System (ADS)

    Atehortúa, Angélica; Zuluaga, Maria A.; Ourselin, Sébastien; Giraldo, Diana; Romero, Eduardo

    2016-03-01

    An accurate ventricular function quantification is important to support evaluation, diagnosis and prognosis of several cardiac pathologies. However, expert heart delineation, specifically for the right ventricle, is a time consuming task with high inter-and-intra observer variability. A fully automatic 3D+time heart segmentation framework is herein proposed for short-axis-cardiac MRI sequences. This approach estimates the heart using exclusively information from the sequence itself without tuning any parameters. The proposed framework uses a coarse-to-fine approach, which starts by localizing the heart via spatio-temporal analysis, followed by a segmentation of the basal heart that is then propagated to the apex by using a non-rigid-registration strategy. The obtained volume is then refined by estimating the ventricular muscle by locally searching a prior endocardium- pericardium intensity pattern. The proposed framework was applied to 48 patients datasets supplied by the organizers of the MICCAI 2012 Right Ventricle segmentation challenge. Results show the robustness, efficiency and competitiveness of the proposed method both in terms of accuracy and computational load.

  18. Methods of in-vivo mouse lung micro-CT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  19. Phase-selective image reconstruction of the lungs in small animals using micro-CT

    NASA Astrophysics Data System (ADS)

    Johnston, S. M.; Perez, B. A.; Kirsch, D. G.; Badea, C. T.

    2010-04-01

    Gating in small animal imaging can compensate for artifacts due to physiological motion. This paper presents a strategy for sampling and image reconstruction in the rodent lung using micro-CT. The approach involves rapid sampling of freebreathing mice without any additional hardware to detect respiratory motion. The projection images are analyzed postacquisition to derive a respiratory signal, which is used to provide weighting factors for each projection that favor a selected phase of the respiration (e.g. end-inspiration or end-expiration) for the reconstruction. Since the sampling cycle and the respiratory cycle are uncorrelated, the sets of projections corresponding to any of the selected respiratory phases do not have a regular angular distribution. This drastically affects the image quality of reconstructions based on simple filtered backprojection. To address this problem, we use an iterative reconstruction algorithm that combines the Simultaneous Algebraic Reconstruction Technique with Total Variation minimization (SART-TV). At each SART-TV iteration, backprojection is performed with a set of weighting factors that favor the desired respiratory phase. To reduce reconstruction time, the algorithm is implemented on a graphics processing unit. The performance of the proposed approach was investigated in simulations and in vivo scans of mice with primary lung cancers imaged with our in-house developed dual tube/detector micro-CT system. We note that if the ECG signal is acquired during sampling, the same approach could be used for phase-selective cardiac imaging.

  20. Four-dimensional cardiac reconstruction from rotational x-ray sequences: first results for 4D coronary angiography

    NASA Astrophysics Data System (ADS)

    Hansis, Eberhard; Schomberg, Hermann; Erhard, Klaus; Dössel, Olaf; Grass, Michael

    2009-02-01

    The tomographic reconstruction of the beating heart requires dedicated methods. One possibility is gated reconstruction, where only data corresponding to a certain motion state are incorporated. Another one is motioncompensated reconstruction with a pre-computed motion vector field, which requires a preceding estimation of the motion. Here, results of a new approach are presented: simultaneous reconstruction of a three-dimensional object and its motion over time, yielding a fully four-dimensional representation. The object motion is modeled by a time-dependent elastic transformation. The reconstruction is carried out with an iterative gradient-descent algorithm which simultaneously optimizes the three-dimensional image and the motion parameters. The method was tested on a simulated rotational X-ray acquisition of a dynamic coronary artery phantom, acquired on a C-arm system with a slowly rotating C-arm. Accurate reconstruction of both absorption coefficient and motion could be achieved. First results from experiments on clinical rotational X-ray coronary angiography data are shown. The resulting reconstructions enable the analysis of both static properties, such as vessel geometry and cross-sectional areas, and dynamic properties, like magnitude, speed, and synchrony of motion during the cardiac cycle.

  1. Ring artifact correction for high-resolution micro CT.

    PubMed

    Kyriakou, Yiannis; Prell, Daniel; Kalender, Willi A

    2009-09-01

    In high-resolution micro CT using flat detectors (FD), imperfect or defect detector elements may cause concentric-ring artifacts due to their continuous over- or underestimation of attenuation values, which often disturb image quality. We here present a dedicated image-based ring artifact correction method for high-resolution micro CT, based on median filtering of the reconstructed image and working on a transformed version of the reconstructed images in polar coordinates. This post-processing method reduced ring artifacts in the reconstructed images and improved image quality for phantom and in in vivo scans. Noise and artifacts were reduced both in transversal and in multi-planar reformations along the longitudinal axis. PMID:19661571

  2. Newt limb regeneration studied with synchrotron micro-CT

    NASA Astrophysics Data System (ADS)

    Stock, Stuart R.; Ignatiev, Konstantin I.; Simon, Hans-Georg; De Carlo, Francesco

    2004-10-01

    Newts are the most developed vertebrates which retain the ability as adults to regenerate missing limbs; they are, therefore, of great interest in terms understanding how such regeneration could be triggered in mammals. In this study, synchrotron microCT was used to study bone microstructure in control forelimbs and in forelimbs regenerated for periods from 37 to 85 days. The bone microstructure in newts has been largely neglected, and interesting patterns within the original bone and in the regenerating arm and hand are described. Periosteal bone formation in the regenerating arm and finger bones, delayed ossification of carpal (but not metacarpal) bones and the complex microstructure of the original carpal bones are areas where microCT reveals detail of particular interest.

  3. Thermoluminescent Dosimetry: A Preliminary Study for microCT Applications

    SciTech Connect

    Montano Garcia, C.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.; Brandan, M. E.; Ruiz-Trejo, C.

    2006-09-08

    Preliminary measurements for microCT dosimetry are reported in this work, using TLD-100 crystals (1x1x1 mm3) within a solid water phantom specially designed with approximate dimensions of a mouse. A dose dependence as a function of radial distance and position along the axis of the phantom was found. Because of the smaller doses used in this work we can say that it is feasible to perform dosimetry measurements with high accuracy using TLD-100 microcubes.

  4. Simulation of trabecular mineralization measurements in micro-CT

    NASA Astrophysics Data System (ADS)

    Prevrhal, Sven

    2006-08-01

    Micro-CT for bone structural analysis has progressed from an in-vitro laboratory technique to devices for in-vivo assessment of small animals and the peripheral human skeleton. Currently, topological parameters of bone architecture are the primary goals of analysis. Additional measurement of the density or degree of mineralization (DMB) of trabecular and cortical bone at the microscopic level is desirable to study effects of disease and treatment progress. This information is not commonly extracted because of the challenges of accurate measurement and calibration at the tissue level. To assess the accuracy of micro-CT DMB measurements in a realistic but controlled situation, we prepared bone-mimicking watery solutions at concentrations of 100 to 600 mg/cm3 K2PO4H and scanned them with micro-CT, both in glass vials and microcapillary tubes with inner diameters of 50, 100 and 150 mm to simulate trabecular thickness. Values of the linear attenuation coefficients m in the reconstructed image are commonly affected by beam hardening effects for larger samples and by partial volume effects for small volumes. We implemented an iterative reconstruction technique to reduce beam hardening. Partial voluming was sought to be reduced by excluding voxels near the tube wall. With these two measures, improvement on the constancy of the reconstructed voxel values and linearity with solution concentration could be observed to over 90% accuracy. However, since the expected change in real bone is small more measurements are needed to confirm that micro-CT can indeed be adapted to assess bone mineralization at the tissue level.

  5. CT number variations in micro CT imaging systems

    NASA Astrophysics Data System (ADS)

    Tu, Shu-Ju; Hsieh, Hui-Ling; Chao, Tsi-Chian

    2008-03-01

    CT numbers can be directly computed from the linear attenuation coefficients in the reconstructed CT images and are correlated to the electron densities of the chemical elements with specific atomic numbers. However, the computed CT numbers can be varied when different imaging parameters are used. Phantoms composed of clinically relevant and tissue-equivalent materials (lung, bone, muscle, and adipose) were scanned with a commercial circular-scanning micro CT imager. This imaging system is composed with a micro-focused x-ray tube and charged-coupled device (CCD) camera as the detector. The mean CT numbers and the corresponding standard deviations in terms of Hounsfield units were then computed from a pre-defined region of interest located within the reconstructed volumetric images. The variations of CT number were then identified from a series of imaging parameters. Those parameters include imaging acquisition modes (e.g., the metal filter used in the x-ray tube), reconstruction methods (e.g., Feldkamp and iterative algorithm), and post-image processing techniques (e.g., ring artifact, beam-hardening artifact, and smoothing processing). These variations of CT numbers are useful and important in tissue characterization, quantitative bone structure analysis, bone marrow density evaluation, and Monte Carlo dose calculations for the pilot small animal study when micro CT imaging systems are employed. Also these variations can be used as the quantification for the performance of the micro CT imaging systems.

  6. Acoustic emissions in rock deformation experiments under micro-CT

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Goodfellow, Sebastian D.; Moulas, Evangelos; Di Toro, Giulio; Young, Paul; Grasselli, Giovanni

    2016-04-01

    The study of acoustic emissions (AE) generated by rocks undergoing deformation has become, in the last decades, one of the most powerful tools for boosting our understanding of the mechanisms which are responsible for rock failures. AE are elastic waves emitted by the local failure of micro- or milli-metric portions of the tested specimen. At the same time, X-ray micro computed tomography (micro-CT) has become an affordable, reliable and powerful tool for imaging the internal structure of rock samples. In particular, micro-CT coupled with a deformation apparatus offers the unique opportunity for observing, without perturbing, the sample while the deformation and the formation of internal structures, such as shear bands, is ongoing. Here we present some preliminary results gathered with an innovative apparatus formed by the X-ray transparent pressure vessel called ERDμ equipped with AE sensors, an AE acquisition system and a micro-CT apparatus available at the University of Toronto. The experiment was performed on a 12 mm diameter 36 mm long porous glass sample which was cut on a 60 deg inclined plane (i.e. saw-cut sample). Etna basaltic sand with size ~1 mm was placed between the two inclined faces forming an inclined fault zone with ~2 mm thickness. The sample assembly was jacketed with a polyefin shrink tube and two AE sensors were glued onto the glass samples above and below the fault zone. The sample was then enclosed in the pressure vessel and confined with compressed air up to 3 MPa. A third AE sensor was placed outside the vessel. The sample was saturated with water and AE were generated by varying the fluid and confining pressure or the vertical force, causing deformations concentrated in the fault zone. Mechanical data and AE traces were collected throughout the entire experiment which lasted ~24 hours. At the same time multiple micro-CT 3D datasets and 2D movie-radiographies were collected, allowing the 3D reconstruction of the deformed sample at

  7. Exploring miniature insect brains using micro-CT scanning techniques.

    PubMed

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  8. Exploring miniature insect brains using micro-CT scanning techniques

    PubMed Central

    Smith, Dylan B.; Bernhardt, Galina; Raine, Nigel E.; Abel, Richard L.; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J.

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  9. Micro-CT as a guide for clinical CT development

    NASA Astrophysics Data System (ADS)

    Ritman, Erik L.; Eaker, Diane R.; Jorgensen, Steven M.

    2006-08-01

    Micro-CT, with voxel size ~10 -5 mm 3, has a great advantage over traditional microscopic methods in its ability to generate detailed 3D images in relatively large, opaque, volumes such as an intact mouse femur, heart or kidney. In addition to providing new insights into tissue structure-to-function interrelationships, micro-CT can contribute to suggesting new applications of clinical CT imaging such as: A. The spatio-density-temporal resolution that is needed to: 1) Quantitate an organ's Basic Functional Unit (smallest collection of diverse cells that behaves like the organ), which requires voxels less than 10 -4 mm 3 in volume; 2) Quantitate new vessel growth which manifests as increased x-ray contrast enhancement in tissues during passage of a bolus of intravascular contrast agent; 3) Quantitate endothelial integrity by the movement of x-ray contrast agents across the endothelial inner lining of vessel walls. B. The use of x-ray scatter for providing the contrast amongst soft tissue components and/or their interfaces for enhanced discrimination of nerve and muscular/tendon fiber directions.

  10. Dental imaging using laminar optical tomography and micro CT

    NASA Astrophysics Data System (ADS)

    Long, Feixiao; Ozturk, Mehmet S.; Intes, Xavier; Kotha, Shiva

    2014-02-01

    Dental lesions located in the pulp are quite difficult to identify based on anatomical contrast, and, hence, to diagnose using traditional imaging methods such as dental CT. However, such lesions could lead to functional and/or molecular optical contrast. Herein, we report on the preliminary investigation of using Laminar Optical Tomography (LOT) to image the pulp and root canals in teeth. LOT is a non-contact, high resolution, molecular and functional mesoscopic optical imaging modality. To investigate the potential of LOT for dental imaging, we injected an optical dye into ex vivo teeth samples and imaged them using LOT and micro-CT simultaneously. A rigid image registration between the LOT and micro-CT reconstruction was obtained, validating the potential of LOT to image molecular optical contrast deep in the teeth with accuracy, non-invasively. We demonstrate that LOT can retrieve the 3D bio-distribution of molecular probes at depths up to 2mm with a resolution of several hundred microns in teeth.

  11. Trabecular scaffolds created using micro CT guided fused deposition modeling

    PubMed Central

    Tellis, B.C.; Szivek, J.A.; Bliss, C.L.; Margolis, D.S.; Vaidyanathan, R.K.; Calvert, P.

    2009-01-01

    Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffolds and four other scaffold groups of varying pore structures. The five scaffold groups were divided into subgroups (n=6) and compression tested at two load rates (49 N/s and 294 N/s). Two groups were soaked in a 25 °C saline solution for 7 days before compression testing. Micro CT was used to compare porosity, connectivity density, and trabecular separation of each scaffold type to a canine trabecular bone sample. At 49 N/s the dry trabecular scaffolds had a compressive stiffness of 4.94±1.19 MPa, similar to the simple linear small pore scaffolds and significantly more stiff (p<0.05) than either of the complex interconnected pore scaffolds. At 294 N/s, the compressive stiffness values for all five groups roughly doubled. Soaking in saline had an insignificant effect on stiffness. The trabecular scaffolds matched bone samples in porosity; however, achieving physiologic connectivity density and trabecular separation will require further refining of scaffold processing. PMID:21461176

  12. Computerized methodology for micro-CT and histological data inflation using an IVUS based translation map.

    PubMed

    Athanasiou, Lambros S; Rigas, George A; Sakellarios, Antonis I; Exarchos, Themis P; Siogkas, Panagiotis K; Naka, Katerina K; Panetta, Daniele; Pelosi, Gualtiero; Vozzi, Federico; Michalis, Lampros K; Parodi, Oberdan; Fotiadis, Dimitrios I

    2015-10-01

    A framework for the inflation of micro-CT and histology data using intravascular ultrasound (IVUS) images, is presented. The proposed methodology consists of three steps. In the first step the micro-CT/histological images are manually co-registered with IVUS by experts using fiducial points as landmarks. In the second step the lumen of both the micro-CT/histological images and IVUS images are automatically segmented. Finally, in the third step the micro-CT/histological images are inflated by applying a transformation method on each image. The transformation method is based on the IVUS and micro-CT/histological contour difference. In order to validate the proposed image inflation methodology, plaque areas in the inflated micro-CT and histological images are compared with the ones in the IVUS images. The proposed methodology for inflating micro-CT/histological images increases the sensitivity of plaque area matching between the inflated and the IVUS images (7% and 22% in histological and micro-CT images, respectively). PMID:25771781

  13. Visualization and quantitative analysis of lung microstructure using micro CT images

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuo; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Matsui, Eisuke; Ohamatsu, Hironobu; Moriyama, Noriyuki

    2004-04-01

    Micro CT system is developed for lung function analysis at a high resolution of the micrometer order (up to 5 μm in spatial resolution). This system reveals the lung distal structures such as interlobular septa, terminal bronchiole, respiratory bronchiole, alveolar duct, and alveolus. In order to visualize lung 3-D microstructures using micro CT images and to analyze them, this research presents a computerized approach. In this approach, the following things are performed: (1) extracting lung distal structures from micro CT images, (2) visualizing extracted lung microstructure in three dimensions, and (3) visualizing inside of lung distal area in three dimensions with fly-through. This approach is applied for to micro CT images of human lung tissue specimens that were obtained by surgical excision and were kept in the state of the inflated fixed lung. And this research succeeded in visualization of lung microstructures using micro CT images to reveal the lung distal structures from bronchiole up to alveolus.

  14. Visualization and quantitative analysis of lung microstructure using micro CT images

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuo; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Fujii, Masashi; Nakaya, Yoshihiro; Matsui, Eisuke; Ohmatsu, Hironobu; Moriyama, Noriyuki

    2005-04-01

    Micro CT system is developed for lung function analysis at a high resolution of the micrometer order (up to 5μm in spatial resolution). This system reveals the lung distal structures such as interlobular septa, terminal bronchiole, respiratory bronchiole, alveolar duct, and alveolus. In order to visualize lung 3-D microstructures using micro CT images and to analyze them, this research presents a computerized approach. This approach is applied for to micro CT images of human lung tissue specimens that were obtained by surgical excision and were kept in the state of the inflated fixed lung. This report states a wall area such as bronchus wall and alveolus wall about the extraction technique by using the surface thinning process to analyze the lung microstructures from micro CT images measured by the new-model micro CT system.

  15. Preliminary Experimental Results from a MARS Micro-CT System

    PubMed Central

    He, Peng; Yu, Hengyong; Thayer, Patrick; Jin, Xin; Xu, Qiong; Bennett, James; Tappenden, Rachael; Wei, Biao; Goldstein, Aaron; Renaud, Peter; Butler, Anthony; Butler, Phillip; Wang, Ge

    2013-01-01

    The Medipix All Resolution System (MARS) system is a commercial spectral/multi-energy micro-CT scanner designed and assembled by the MARS Bioimaging, Ltd. in New Zealand. This system utilizes the state-of-the-art Medipix photon-counting, energy-discriminating detector technology developed by a collaboration based at European Organization for Nuclear Research (CERN). In this paper, we report our preliminary experimental results using this system, including geometrical alignment, photon energy characterization, protocol optimization, and spectral image reconstruction. We produced our scan datasets with a multi-material phantom, and then applied ordered subset-simultaneous algebraic reconstruction technique (OS-SART) to reconstruct images in different energy ranges and principal component analysis (PCA) to evaluate spectral deviation between the energy ranges. PMID:22635175

  16. Lung imaging in rodents using dual energy micro-CT

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Guo, X.; Clark, D.; Johnston, S. M.; Marshall, C.; Piantadosi, C.

    2012-03-01

    Dual energy CT imaging is expected to play a major role in the diagnostic arena as it provides material decomposition on an elemental basis. The purpose of this work is to investigate the use of dual energy micro-CT for the estimation of vascular, tissue, and air fractions in rodent lungs using a post-reconstruction three-material decomposition method. We have tested our method using both simulations and experimental work. Using simulations, we have estimated the accuracy limits of the decomposition for realistic micro-CT noise levels. Next, we performed experiments involving ex vivo lung imaging in which intact lungs were carefully removed from the thorax, were injected with an iodine-based contrast agent and inflated with air at different volume levels. Finally, we performed in vivo imaging studies in (n=5) C57BL/6 mice using fast prospective respiratory gating in endinspiration and end-expiration for three different levels of positive end-expiratory pressure (PEEP). Prior to imaging, mice were injected with a liposomal blood pool contrast agent. The mean accuracy values were for Air (95.5%), Blood (96%), and Tissue (92.4%). The absolute accuracy in determining all fraction materials was 94.6%. The minimum difference that we could detect in material fractions was 15%. As expected, an increase in PEEP levels for the living mouse resulted in statistically significant increases in air fractions at end-expiration, but no significant changes in end-inspiration. Our method has applicability in preclinical pulmonary studies where various physiological changes can occur as a result of genetic changes, lung disease, or drug effects.

  17. MicroCT vs. Hg porosimetry: microporosity in commercial stones

    NASA Astrophysics Data System (ADS)

    Fusi, N.; Martinez-Martinez, J.; Barberini, V.; Galimberti, L.

    2009-04-01

    have been cut and scanned by means of a X ray microCT system before and after mercury saturation with Hg porosimeter. The microCT system used is a BIR Actis 130/150 with nominal resolution of 5 micron; for our samples resolution is of 25 microns. Generator and detector are fixed, while the sample rotates; the scanning plane is horizontal. Samples reduce the X rays energy passing through, as a function of its density and atomic number. X rays are then collected on a detector, which converts them into light radiations; a digital camera collects light radiations in raw data and send them to the computer, where they are processed as black/white images. The Hg porosimeter used is a Pascal 140/240 Thermo Fisher. Samples were first degassed and then intruded by Hg. Apparent density, bulk density, porosity and open pore size distribution (pore diameter between 3.7 and 58000 nm) of each sample have been computed using the PASCAL (Pressurization with Automatic Speed-up by Continuous Adjustametnt Logic) method and the Washburn equation; this equation assumes: cylindrical pores, a contact angle between mercury and sample of 140°, a surface tension of mercury vacuum of 0,480 N/m and mercury density equal to 13.5 g/cm³. MicroCT images and porosity data from Hg porosimeter have been compared by several authors both for rocks (Klobes et alii, 1997) and for artificial materials with medical applications (Lin-Gibson et alii, 2007) In samples with no density/composition differences microCT images are homogeneous and gives no information on the internal structure of the sample. This is the case of massive samples (such as BA, BT, GM and TB) and of samples without any significant density differences between clasts and matrix (A and BS) or rock and veins (RC). MicroCT images of the same sample after mercury saturation offer a detailed map of microporosity of the rock, due to the high density contrast between mercury (13.6 g/cm3) and the rock (2.71 g/cm3 for calcite and 2.86 g/cm3 for

  18. Functional phase-correlated micro-CT imaging of small rodents with low dose

    NASA Astrophysics Data System (ADS)

    Sawall, Stefan; Bergner, Frank; Hess, Andreas; Lapp, Robert; Mronz, Markus; Karolczak, Marek; Kachelriess, Marc

    2011-03-01

    Functional imaging of an animals thoracic region requires cardiac and respiratory gating. The information on respiratory motion and ECG required for double-gating are extracted from the rawdata and used to select the projections appropriate for a given motion phase. A conventional phase-correlated reconstruction (PC) therefore uses only a small amount of the total projections acquired. Thus the resulting images comprise a high noise level unless acquired with very high dose, and streak artifacts may occur due to the sparse angular sampling. Here, we are aiming at getting high fidelity images even for relatively low dose values. To overcome these issues we implemented an iterative reconstruction method encompassing a five-dimensional (spatial, cardiac-temporal, respiratory-temporal) edge-preserving filter. This new phase-correlated low-dose (LDPC) reconstruction method is evaluated using retrospectively-gated, contrast-enhanced micro CT data of mice. The scans performed comprise 7200 projections within 10 rotations over 5 minutes. A tube voltage of 65 kV was used resulting in an administered dose of about 500 mGy. 20 respiratory phases and 10 cardiac phases are reconstructed. Using LDPC reconstruction the image noise is typically reduced by a factor of about six and artifacts are almost removed. Reducing the number of projections available for reconstruction shows that we can get comparable image quality with only 200 mGy. LDPC enables high fidelity low-dose double-gated imaging of free breathing rodents without compromises in image quality. Compared to PC image noise is significantly reduced with LDPC and the administered dose can be reduced accordingly.

  19. MicroCT vs. Hg porosimetry: microporosity in commercial stones

    NASA Astrophysics Data System (ADS)

    Fusi, N.; Martinez-Martinez, J.; Barberini, V.; Galimberti, L.

    2009-04-01

    have been cut and scanned by means of a X ray microCT system before and after mercury saturation with Hg porosimeter. The microCT system used is a BIR Actis 130/150 with nominal resolution of 5 micron; for our samples resolution is of 25 microns. Generator and detector are fixed, while the sample rotates; the scanning plane is horizontal. Samples reduce the X rays energy passing through, as a function of its density and atomic number. X rays are then collected on a detector, which converts them into light radiations; a digital camera collects light radiations in raw data and send them to the computer, where they are processed as black/white images. The Hg porosimeter used is a Pascal 140/240 Thermo Fisher. Samples were first degassed and then intruded by Hg. Apparent density, bulk density, porosity and open pore size distribution (pore diameter between 3.7 and 58000 nm) of each sample have been computed using the PASCAL (Pressurization with Automatic Speed-up by Continuous Adjustametnt Logic) method and the Washburn equation; this equation assumes: cylindrical pores, a contact angle between mercury and sample of 140°, a surface tension of mercury vacuum of 0,480 N/m and mercury density equal to 13.5 g/cm³. MicroCT images and porosity data from Hg porosimeter have been compared by several authors both for rocks (Klobes et alii, 1997) and for artificial materials with medical applications (Lin-Gibson et alii, 2007) In samples with no density/composition differences microCT images are homogeneous and gives no information on the internal structure of the sample. This is the case of massive samples (such as BA, BT, GM and TB) and of samples without any significant density differences between clasts and matrix (A and BS) or rock and veins (RC). MicroCT images of the same sample after mercury saturation offer a detailed map of microporosity of the rock, due to the high density contrast between mercury (13.6 g/cm3) and the rock (2.71 g/cm3 for calcite and 2.86 g/cm3 for

  20. In Vivo Small Animal Imaging using Micro-CT and Digital Subtraction Angiography

    PubMed Central

    Badea, C.T.; Drangova, M.; Holdsworth, D.W.; Johnson, G.A.

    2009-01-01

    Small animal imaging has a critical role in phenotyping, drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo X-ray based small animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and digital subtraction angiography (DSA). We present the principles, technologies, image quality parameters and types of applications. We show that both methods can be used not only to provide morphological, but also functional information, such as cardiac function estimation or perfusion. Compared to other modalities, x-ray based imaging is usually regarded as being able to provide higher throughput at lower cost and adequate resolution. The limitations are usually associated with the relatively poor contrast mechanisms and potential radiation damage due to ionizing radiation, although the use of contrast agents and careful design of studies can address these limitations. We hope that the information will effectively address how x-ray based imaging can be exploited for successful in vivo preclinical imaging. PMID:18758005

  1. Reduction of ring artefacts in high resolution micro-CT reconstructions.

    PubMed

    Sijbers, Jan; Postnov, Andrei

    2004-07-21

    High resolution micro-CT images are often corrupted by ring artefacts, prohibiting quantitative analysis and hampering post processing. Removing or at least significantly reducing such artefacts is indispensable. However, since micro-CT systems are pushed to the extremes in the quest for the ultimate spatial resolution, ring artefacts can hardly be avoided. Moreover, as opposed to clinical CT systems, conventional correction schemes such as flat-field correction do not lead to satisfactory results. Therefore, in this note a simple but efficient and fast post processing method is proposed that effectively reduces ring artefacts in reconstructed micro-CT images. PMID:15357205

  2. Morphology of Major Stone Types, As Shown by Micro Computed Tomography (micro CT)

    SciTech Connect

    Jackson, Molly E.; Beuschel, Christian A.; McAteer, James A.; Williams, James C.

    2008-09-18

    Micro CT offers the possibility of providing a non-destructive method of stone analysis that allows visualization of 100% of the stone's volume. For the present study, micro CT analysis was completed on stones of known composition with isotropic voxel sizes of either 7 or 9.1 {mu}m. Each mineral type was distinctive, either by x-ray attenuation values or by morphology. Minor components, such as the presence of apatite in oxalate stones, were easily seen. The analysis of stones by micro CT opens up the possibility of exploring the stone as an encapsulated history of the patient's disease, showing changes in mineral deposition with time.

  3. MicroCT: Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    SciTech Connect

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to production work - for R and D there are two other semi-automated methods as given in [4, 5].

  4. MicroCT: Semi-Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    SciTech Connect

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to R and D work - for production applications, use [4].

  5. Dual-energy micro-CT imaging of pulmonary airway obstruction: correlation with micro-SPECT

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Befera, N.; Clark, D.; Qi, Y.; Johnson, G. A.

    2014-03-01

    To match recent clinical dual energy (DE) CT studies focusing on the lung, similar developments for DE micro-CT of the rodent lung are required. Our group has been actively engaged in designing pulmonary gating techniques for micro- CT, and has also introduced the first DE micro-CT imaging method of the rodent lung. The aim of this study was to assess the feasibility of DE micro-CT imaging for the evaluation of airway obstruction in mice, and to compare the method with micro single photon emission computed tomography (micro-SPECT) using technetium-99m labeled macroaggregated albumin (99mTc-MAA). The results suggest that the induced pulmonary airway obstruction causes either atelectasis, or air-trapping similar to asthma or chronic bronchitis. Atelectasis could only be detected at early time points in DE micro-CT images, and is associated with a large increase in blood fraction and decrease in air fraction. Air trapping had an opposite effect with larger air fraction and decreased blood fraction shown by DE micro-CT. The decrease in perfusion to the hypoventilated lung (hypoxic vasoconstriction) is also seen in micro-SPECT. The proposed DE micro-CT technique for imaging localized airway obstruction performed well in our evaluation, and provides a higher resolution compared to micro-SPECT. Both DE micro-CT and micro-SPECT provide critical, quantitative lung biomarkers for image-based anatomical and functional information in the small animal. The methods are readily linked to clinical methods allowing direct comparison of preclinical and clinical results.

  6. 4-D OCT in Developmental Cardiology

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  7. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    NASA Astrophysics Data System (ADS)

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  8. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    PubMed

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology. PMID:24211924

  9. Accurate Resolution Measurement for X-Ray Micro-CT Systems

    NASA Astrophysics Data System (ADS)

    Sharma, K. Sen; Seshadri, S.; Feser, M.; Wang, G.

    2011-09-01

    Accurate measurement of modulation transfer function (MTF), or alternatively point spread function, of an x-ray micro-CT system is essential for various purposes—to determine scanner resolution, to retrieve further information about a scanned object by image-processing, etc. In this paper, a new method for MTF measurement is proposed that can be used with any resolution pattern and is more adept at studying MTF spatial variation than the traditional method of using bar pattern analysis. A resolution target used to determine micro-CT resolution was scanned in a lab-based nano-CT system—the image from the nano-CT gave the `ground truth'. The ground truth was quantitavely compared with the micro-CT projection of same target to determine the point spread function of the system. Results matched well with bar pattern analysis, but the new method was able to study spatial variations while the bar pattern analysis failed.

  10. A comparison of sampling strategies for dual energy micro-CT

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolian; Johnston, Samuel M.; Johnson, G. Allan; Badea, Cristian T.

    2012-03-01

    Micro-CT has become a powerful tool for small animal research. Many micro-CT applications require exogenous contrast agents, which are most commonly based on iodine. Despite advancements in contrast agents, single-energy micro-CT is sometimes limited in the separation of two different materials that share similar grayscale intensity values as in the case of bone and iodine. Dual energy micro-CT offers a solution to this separation problem, while eliminating the need for pre-injection scanning. Various dual energy micro-CT sampling strategies are possible, including 1) single source sequential scanning, 2) simultaneous dual source acquisition, or 3) single source with kVp switching. But, no commercial micro-CT system exists in which all these sampling strategies have been implemented. This study reports on the implementation and comparison of these scanning techniques on the same small animal imaging system. Furthermore, we propose a new sampling strategy that combines dual source and kVp switching. Post-sampling and reconstruction, a simple two-material dual energy decomposition was applied to differentiate iodine from bone. The results indicate the time differences and the potential problems associated with each sampling strategy. Dual source scanning allows for the fastest acquisition, but is prone to errors in decomposition associated with scattering and imperfect geometric alignment of the two imaging chains. KVp switching prevents these types of artifacts, but requires more time for sampling. The novel combination between the dual source and kVp switching has the potential to reduce sampling time and provide better decomposition performance.

  11. NOTE: Reduction of ring artefacts in high resolution micro-CT reconstructions

    NASA Astrophysics Data System (ADS)

    Sijbers, Jan; Postnov, Andrei

    2004-07-01

    High resolution micro-CT images are often corrupted by ring artefacts, prohibiting quantitative analysis and hampering post processing. Removing or at least significantly reducing such artefacts is indispensable. However, since micro-CT systems are pushed to the extremes in the quest for the ultimate spatial resolution, ring artefacts can hardly be avoided. Moreover, as opposed to clinical CT systems, conventional correction schemes such as flat-field correction do not lead to satisfactory results. Therefore, in this note a simple but efficient and fast post processing method is proposed that effectively reduces ring artefacts in reconstructed mgr-CT images.

  12. Direct micro-CT observation confirms the induction of embolism upon xylem cutting under tension

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used two different Synchrotron-based micro-CT facilities (SLS: Swiss Light Source, Villigen, Switzerland, and ALS: Advanced Light Source, Berkeley, CA USA) to test the excision artifact described by Wheeler et al. (2013). Specifically, we examined the impact of cutting xylem under tension and und...

  13. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    NASA Astrophysics Data System (ADS)

    Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.

    2009-04-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  14. Investigation of pathogen infiltration into produce using Xradia Bio MicroCT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The internalization of human pathogens into plant tissues has received significant attention. Human pathogens can infiltrate plant tissue through stomata, cut edges, wounds on produce, or the plant vascular system. The nondestructive X-ray computed microtomography (MicroCT) technique is an X-ra...

  15. Reconstruction and exploration of virtual middle-ear models derived from micro-CT datasets

    PubMed Central

    Lee, Dong H.; Chan, Sonny; Salisbury, Curt; Kim, Namkeun; Salisbury, Kenneth; Puria, Sunil; Blevins, Nikolas H.

    2014-01-01

    Background Middle-ear anatomy is integrally linked to both its normal function and its response to disease processes. Micro-CT imaging provides an opportunity to capture high-resolution anatomical data in a relatively quick and non-destructive manner. However, to optimally extract functionally relevant details, an intuitive means of reconstructing and interacting with these data is needed. Materials and methods A micro-CT scanner was used to obtain high-resolution scans of freshly explanted human temporal bones. An advanced volume renderer was adapted to enable real-time reconstruction, display, and manipulation of these volumetric datasets. A custom-designed user interface provided for semi-automated threshold segmentation. A 6-degrees-of-freedom navigation device was designed and fabricated to enable exploration of the 3D space in a manner intuitive to those comfortable with the use of a surgical microscope. Standard haptic devices were also incorporated to assist in navigation and exploration. Results Our visualization workstation could be adapted to allow for the effective exploration of middle-ear micro-CT datasets. Functionally significant anatomical details could be recognized and objective data could be extracted. Conclusions We have developed an intuitive, rapid, and effective means of exploring otological micro-CT datasets. This system may provide a foundation for additional work based on middle-ear anatomical data. PMID:20100558

  16. Method for correction of rotation errors in Micro-CT System

    NASA Astrophysics Data System (ADS)

    Zhao, Jintao; Hu, Xiaodong; Zou, Jing; Zhao, Gengyan; Lv, Hanyu; Xu, Linyan; Xu, Ying; Hu, Xiaotang

    2016-04-01

    In Micro-CT (Computed Tomography) system, a series of projection data of sample are collected by the detector as the precision stage rotates step by step. However, the accuracy of projection images is limited by rotation errors during the acquisition process. Therefore, evaluating the performance of precision rotary stage and developing corresponding compensation method are necessary in Micro-CT system. In this paper, a metered system is designed which is composed of four precision capacitive sensors, a precision machined steel cylinder and four flexible hinges. Based on the metered system, a method to calibrate and correct the errors when the precision stage turns is proposed. Firstly, the theoretical analysis is proposed and the imperfect situations are considered. And then, the method has been applied to correct experimental data taken from a microscope type of Micro-CT system. Successful results are shown through evaluating MTF (Modulation Transfer Function) of Micro-CT system. Lastly, a sample of tungsten wire is scanned and the reconstructed images are compared before and after using the calibrated method.

  17. Dual energy micro CT SkyScan 1173 for the characterization of urinary stone

    NASA Astrophysics Data System (ADS)

    Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.

    2016-03-01

    Knowledge of the composition of urinary stones is an essential part to determine suitable treatments for patients. The aim of this research is to characterize the urinary stones by using dual energy micro CT SkyScan 11173. This technique combines high-energy and low- energy scanning during a single acquisition. Six human urinary stones were scanned in vitro using 80 kV and 120 kV micro CT SkyScan 1173. Projected images were produced by micro CT SkyScan 1173 and then reconstructed using NRecon (in-house software from SkyScan) to obtain a complete 3D image. The urinary stone images were analysed using CT analyser to obtain information of internal structure and Hounsfield Unit (HU) values to determine the information regarding the composition of the urinary stones, respectively. HU values obtained from some regions of interest in the same slice are compared to a reference HU. The analysis shows information of the composition of the six scanned stones obtained. The six stones consist of stone number 1 (calcium+cystine), number 2 (calcium+struvite), number 3 (calcium+cystine+struvite), number 4 (calcium), number 5 (calcium+cystine+struvite), and number 6 (calcium+uric acid). This shows that dual energy micro CT SkyScan 1173 was able to characterize the composition of the urinary stone.

  18. In vivo small animal micro-CT using nanoparticle contrast agents

    PubMed Central

    Ashton, Jeffrey R.; West, Jennifer L.; Badea, Cristian T.

    2015-01-01

    Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research. PMID:26581654

  19. Dosimetry concepts for scanner quality assurance and tissue dose assessment in micro-CT

    SciTech Connect

    Hupfer, Martin; Kolditz, Daniel; Nowak, Tristan; Eisa, Fabian; Brauweiler, Robert; Kalender, Willi A.

    2012-02-15

    Purpose: At present, no established methods exist for dosimetry in micro computed tomography (micro-CT). The purpose of this study was therefore to investigate practical concepts for both dosimetric scanner quality assurance and tissue dose assessment for micro-CT. Methods: The computed tomography dose index (CTDI) was adapted to micro-CT and measurements of the CTDI both free in air and in the center of cylindrical polymethyl methacrylate (PMMA) phantoms of 20 and 32 mm diameter were performed in a 6 month interval with a 100 mm pencil ionization chamber calibrated for low tube voltages. For tissue dose assessment, z-profile measurements using thermoluminescence dosimeters (TLDs) were performed and both profile and CTDI measurements were compared to Monte Carlo (MC) dose calculations to validate an existing MC tool for use in micro-CT. The consistency of MC calculations and TLD measurements was further investigated in two mice cadavers. Results: CTDI was found to be a reproducible quantity for constancy tests on the micro-CT system under study, showing a linear dependence on tube voltage and being by definition proportional to mAs setting and z-collimation. The CTDI measured free in air showed larger systematic deviations after the 6 month interval compared to the CTDI measured in PMMA phantoms. MC calculations were found to match CTDI measurements within 3% when using x-ray spectra measured at our micro-CT installation and better than 10% when using x-ray spectra calculated from semi-empirical models. Visual inspection revealed good agreement for all z-profiles. The consistency of MC calculations and TLD measurements in mice was found to be better than 10% with a mean deviation of 4.5%. Conclusions: Our results show the CTDI implemented for micro-CT to be a promising candidate for dosimetric quality assurance measurements as it linearly reflects changes in tube voltage, mAs setting, and collimation used during the scan, encouraging further studies on a variety of

  20. Enhanced X-ray absorption for micro-CT analysis of low density polymers.

    PubMed

    Crica, Livia Elena; Wengenroth, Jonas; Tiainen, Hanna; Ionita, Mariana; Haugen, Håvard Jostein

    2016-06-01

    X-ray microtomography (micro-CT), one of the most resourceful instruments for high resolution 3D analysis, can provide qualitative and quantitative accurate structural and compositional information for a broad range of materials. Yet its contribution to the field of biopolymeric materials science is often limited by low imaging contrast due to scarce X-ray attenuation features, particularly for sponges and foam-like structures. This limitation can be overcome to some extent by adjusting the working parameters of micro-CT equipment. However, such approach also facilitates noise and artefacts, and solving the signal-to-noise trade-off has been always problematic. Searching for alternatives turns one's attention towards the improvement of X-ray attenuation features. While several studies report the use of contrast agents for biological materials, studies to integrate multiple micro-CT approaches for biopolymers were not conducted so far. This method paper is thus aimed to serve as a platform for micro-CT analysis of low X-ray absorptive polymers. Here, several contrast enhancing artifices were developed and trialled on gelatin and poly(vinyl alcohol) biopolymer composites (GP). Accordingly, GP were modified with iodine, barium, silver-based chemicals and hexa(methyl disilazane) by two different methods, i.e. addition of high atomic number chemicals during materials synthesis and post-synthesis staining, respectively. Consequently, cross-sectional scanning electron microscopy emerged as complementary characterization, aimed to confirm the reproducibility of samples morphological features. The most versatile methods were barium chloride additive incorporation and iodine staining coupled with hexa(methyl disilazane) chemical drying. Both methods significantly improved the X-ray absorbance of our polymeric samples, providing better contrast of micro-CT tomograms. PMID:26863157

  1. Micro-CT Evaluation of Root Filling Removal after Three Stages of Retreatment Procedure.

    PubMed

    Rosa, Ricardo Abreu da; Santini, Manuela Favarin; Cavenago, Bruno Cavalini; Pereira, Jefferson Ricardo; Duarte, Marco Antônio Húngaro; Só, Marcus Vinícius Reis

    2015-12-01

    The aim of this study was to quantify the residual filling material after filling removal, re-preparation with rotary or reciprocating files and passive ultrasonic irrigation (PUI). Twenty maxillary molars were prepared using ProTaper instruments up to F1. The teeth were filled with AH Plus and ProTaper gutta-percha points using the single-cone technique. Thereafter, the specimens were scanned using a micro-computed tomography system (Micro-CT #1). Then, the root canal filling was removed using ProTaper Retreatment files, and a new scan was performed (Micro-CT #2). The specimens were divided into two groups according to the instrument used for re-preparation: ProTaper rotary or WaveOne reciprocating files (Micro-CT #3). Finally, PUI was performed, and a new micro-CT scan was performed (Micro-CT #4). Intragroup and intergroup analyses were performed using Friedman and Dunn's post hoc test and the Kruskal-Wallis and Dunn post hoc tests, respectively. Palatal canal presented the highest volume of residual filling material in all stages of endodontic retreatment (p<0.05). The main reduction of filling volume was achieved after using ProTaper Retreament (p<0.05). The amount of remaining filling material after using ProTaper Retreatment was similar to that achieved with rotary and reciprocating files and after PUI (p>0.05). Rotary and reciprocating files achieved similar removal of the root canal filling (p>0.05). The greatest reduction in filling material was achieved after using ProTaper Retreatment files. Rotary and reciprocating instruments and PUI did not improve the removal of root canal filling materials. PMID:26963205

  2. Integrated visualization of multi-angle bioluminescence imaging and micro CT

    NASA Astrophysics Data System (ADS)

    Kok, P.; Dijkstra, J.; Botha, C. P.; Post, F. H.; Kaijzel, E.; Que, I.; Löwik, C. W. G. M.; Reiber, J. H. C.; Lelieveldt, B. P. F.

    2007-03-01

    This paper explores new methods to visualize and fuse multi-2D bioluminescence imaging (BLI) data with structural imaging modalities such as micro CT and MR. A geometric, back-projection-based 3D reconstruction for superficial lesions from multi-2D BLI data is presented, enabling a coarse estimate of the 3D source envelopes from the multi-2D BLI data. Also, an intuitive 3D landmark selection is developed to enable fast BLI / CT registration. Three modes of fused BLI / CT visualization were developed: slice visualization, carousel visualization and 3D surface visualization. The added value of the fused visualization is demonstrated in three small-animal experiments, where the sensitivity of BLI to detect cell clusters is combined with anatomical detail from micro-CT imaging.

  3. Combined micro CT and histopathology for evaluation of skeletal metastasis in live animals

    PubMed Central

    Geffre, Christopher P; Pond, Erika; Pond, Gerald D; Sroka, Isis C; Gard, Jaime M; Skovan, Bethany A; Meek, William E; Landowski, Terry H; Nagle, Raymond B; Cress, Anne E

    2015-01-01

    Bone is a favored site for solid tumor metastasis, especially among patients with breast, lung or prostate carcinomas. Micro CT is a powerful and inexpensive tool that can be used to investigate tumor progression in xenograft models of human disease. Many previous studies have relied on terminal analysis of harvested bones to document metastatic tumor activity. The current protocol uses live animals and combines sequential micro CT evaluation of lesion development with matched histopathology at the end of the study. The approach allows for both rapid detection and evaluation of bone lesion progression in live animals. Bone resident tumors are established either by direct (intraosseous) or arterial (intracardiac) injection, and lesion development is evaluated for up to eight weeks. This protocol provides a clinically relevant method for investigating bone metastasis progression and the development of osteotropic therapeutic strategies for the treatment of bone metastases. PMID:25901201

  4. Processing of microCT implant-bone systems images using Fuzzy Mathematical Morphology

    NASA Astrophysics Data System (ADS)

    Bouchet, A.; Colabella, L.; Omar, S.; Ballarre, J.; Pastore, J.

    2016-04-01

    The relationship between a metallic implant and the existing bone in a surgical permanent prosthesis is of great importance since the fixation and osseointegration of the system leads to the failure or success of the surgery. Micro Computed Tomography is a technique that helps to visualize the structure of the bone. In this study, the microCT is used to analyze implant-bone systems images. However, one of the problems presented in the reconstruction of these images is the effect of the iron based implants, with a halo or fluorescence scattering distorting the micro CT image and leading to bad 3D reconstructions. In this work we introduce an automatic method for eliminate the effect of AISI 316L iron materials in the implant-bone system based on the application of Compensatory Fuzzy Mathematical Morphology for future investigate about the structural and mechanical properties of bone and cancellous materials.

  5. Micro-CT of Carotid Arteries: A Tool for Experimental Studies

    SciTech Connect

    Mohr, Andreas; Wenke, Ruediger; Roemer, Frank W.; Lynch, John A.; Gatzka, Christian; Priebe, Markus; Guermazi, Ali; Grigorian, Mikayel; Heller, Martin; Mueller-Huelsbeck, Stefan

    2004-11-15

    Micro-computed tomography (micro-CT) is a high-resolution, nondestructive tool for two- and three-dimensional imaging and quantification. The ability of this technique to assess atherosclerosis of the carotid artery was evaluated in three human cadaver samples based on the original axial acquisitions, multiplanar reconstructions and volume rendering techniques. Quantitative analysis included the calculation of: (1) the original lumen perimeter, original lumen area, plaque area, residual lumen area, calcified area and gross sectional area reduction of the vascular lumen from two-dimensional slices; (2) the total tissue volume, soft tissue volume and calcified tissue volume from the three-dimensional data set. This preliminary study demonstrates the potential of micro-CT as a supplementary method for the two- and three-dimensional ex vivo evaluation of carotid atherosclerosis.

  6. Experimental validation of a rapid Monte Carlo based micro-CT simulator.

    PubMed

    Colijn, A P; Zbijewski, W; Sasov, A; Beekman, F J

    2004-09-21

    We describe a newly developed, accelerated Monte Carlo simulator of a small animal micro-CT scanner. Transmission measurements using aluminium slabs are employed to estimate the spectrum of the x-ray source. The simulator incorporating this spectrum is validated with micro-CT scans of physical water phantoms of various diameters, some containing stainless steel and Teflon rods. Good agreement is found between simulated and real data: normalized error of simulated projections, as compared to the real ones, is typically smaller than 0.05. Also the reconstructions obtained from simulated and real data are found to be similar. Thereafter, effects of scatter are studied using a voxelized software phantom representing a rat body. It is shown that the scatter fraction can reach tens of per cents in specific areas of the body and therefore scatter can significantly affect quantitative accuracy in small animal CT imaging. PMID:15509068

  7. Recent Progress Validating the HADES Model of LLNL's HEAF MicroCT Measurements

    SciTech Connect

    White, W. T.; Bond, K. C.; Lennox, K. P.; Aufderheide, M. B.; Seetho, I. M.; Roberson, G. P.

    2014-07-17

    This report compares recent HADES calculations of x-ray linear attenuation coefficients to previous MicroCT measurements made at Lawrence Livermore National Laboratory’s High Energy Applications Facility (HEAF). The chief objective is to investigate what impact recent changes in HADES modeling have on validation results. We find that these changes have no obvious effect on the overall accuracy of the model. Detailed comparisons between recent and previous results are presented.

  8. Increased Echogenicity and Radiodense Foci on Echocardiogram and MicroCT in Murine Myocarditis

    PubMed Central

    Dalton, Nancy D.; Gu, Yusu; Chao, Chieh-Ju; Peterson, Kirk L.; Knowlton, Kirk U.

    2016-01-01

    Objectives To address the question as to whether echocardiographic and/or microcomputed tomography (microCT) analysis can be utilized to assess the extent of Coxsackie B virus (CVB) induced myocarditis in the absence of left ventricular dysfunction in the mouse. Background Viral myocarditis is a significant clinical problem with associated inflammation of the myocardium and myocardial injury. Murine models of myocarditis are commonly used to study the pathophysiology of the disease, but methods for imaging the mouse myocardium have been limited to echocardiographic assessment of ventricular dysfunction and, to a lesser extent, MRI imaging. Methods Using a murine model of myocarditis, we used both echocardiography and microCT to assess the extent of myocardial involvement in murine myocarditis using both wild-type mice and CVB cleavage-resistant dystrophin knock-in mice. Results Areas of increased echogenicity were only observed in the myocardium of Coxsackie B virus infected mice. These echocardiographic abnormalities correlated with the extent of von Kossa staining (a marker of membrane permeability), inflammation, and fibrosis. Given that calcium phosphate uptake as imaged by von Kossa staining might also be visualized using microCT, we utilized microCT imaging which allowed for high-resolution, 3-dimensional images of radiodensities that likely represent calcium phosphate uptake. As with echocardiography, only mice infected with Coxsackie B virus displayed abnormal accumulation of calcium within individual myocytes indicating increased membrane permeability only upon exposure to virus. Conclusions These studies demonstrate new, quantitative, and semi-quantitative imaging approaches for the assessment of myocardial involvement in the setting of viral myocarditis in the commonly utilized mouse model of viral myocarditis. PMID:27486657

  9. MicroCT Morphometry Analysis of Mouse Cancellous Bone: Intra- and Inter-system Reproducibility

    PubMed Central

    Verdelis, K.; Lukashova, L.; Atti, E.; Mayer-Kuckuk, P.; Peterson, M.G.E.; Tetradis, S.; Boskey, A.L.; van der Meulen, M.C.H.

    2012-01-01

    The agreement between measurements and the relative performance reproducibility among different microcomputed tomography (microCT) systems, especially at voxel sizes close to the limit of the instruments, is not known. To compare this reproducibility 3D morphometric analyses of mouse cancellous bone from distal femoral epiphyses were performed using three different ex vivo microCT systems: GE eXplore Locus SP, Scanco μCT35 and Skyscan 1172. Scans were completed in triplicate at 12μm and 8μm voxel sizes and morphometry measurements, from which relative values and dependence on voxel size were examined. Global and individual visually assessed thresholds were compared. Variability from repeated scans at 12μm voxel size was also examined. Bone volume fraction and trabecular separation values were similar, while values for relative bone surface, trabecular thickness and number varied significantly across the three systems. The greatest differences were measured in trabecular thickness (up to 236%) and number (up to 218%). The relative dependence of measurements on voxel size was highly variable for the trabecular number (from 0% to 20% relative difference between measurements from 12μm and 8μm voxel size scans, depending on the system). The intra-system reproducibility of all trabecular measurements was also highly variable across the systems and improved for BV/TV in all the systems when a smaller voxel size was used. It improved using a smaller voxel size in all the other parameters examined for the Scanco system, but not consistently so for the GE or the Skyscan system. Our results indicate trabecular morphometry measurements should not be directly compared across microCT systems. In addition, the conditions, including voxel size, for trabecular morphometry studies in mouse bone should be chosen based on the specific microCT system and the measurements of main interest. PMID:21621659

  10. Automated segmentation of murine lung tumors in x-ray micro-CT images

    NASA Astrophysics Data System (ADS)

    Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis

    2014-03-01

    Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.

  11. A method to quantify and visualize femoral head intraosseous arteries by micro-CT.

    PubMed

    Qiu, Xing; Shi, Xiaotian; Ouyang, Jun; Xu, Dachuan; Zhao, Dewei

    2016-08-01

    We describe a technique for perfusing a barium sulphate suspension into the intraosseous artery. Following the perfusion of abarium sulphate suspension into 14 fresh lower limbs of Chinese cadavers, micro-CT scanning was applied to digitize, quantify and visualize the intraosseous arteries in the human femoral heads. Then, the femoral heads were removed and subjected to micro-CT scanning. The data were imported into the amira and mimics programs to reconstruct and quantify the intraosseous arteries. The femoral head intraosseous artery lengths, areas, volumes, and femoral head bone volumes were quantified. The artery densities and artery ratios were calculated and analysed with independent-samples t-tests. The intraosseous vasculature volume renderings were displayed as screenshots and videos made with amira. Many intraosseous artery study technologies were compared. The barium sulphate suspension was milky white in colour. The perfusion of the barium sulphate suspension followed by micro-CT scanning provided a good representation of the intraosseous artery. The femoral head intraosseous artery lengths, areas and volumes, and the femoral head bone volumes were displayed as the X¯±S . No differences were observed between the left and right femoral head intraosseous arteries in terms of the artery densities or artery ratios. The volume renderings and 3-D orthogonal projections displayed the overall distributions of the intraosseous arteries. The videos clearly demonstrated the entry sites of the nutrition-carrying arteries, their courses and branches, and the intraosseous arterial anastomoses. Our technique is the simplest and least time-consuming method of producing accurate vascular three-dimensional reconstructions. The perfusion of a barium sulphate suspension into intraosseous arteries combined with micro-CT scanning can deliver high-resolution 3-D digitized data and images of intraosseous arteries. This technique does not require bone decalcification or bone

  12. Vascular contrast enhanced micro-CT imaging of "radiators" in the Brazilian free-tailed bat (Tadarida brasiliensis).

    PubMed

    Reichard, Jonathan D; Kunz, Thomas H; Keller, Charles; Prajapati, Suresh I

    2012-04-01

    The Brazilian free-tailed bat (Tadarida brasiliensis) exhibits a highly vascularized, hairless thermal window (or "radiator") on the proximal ventral surfaces of extended wings and body. We identified this character using thermal infrared imaging and investigated the vasculature using barium sulfate enhanced microcomputed tomography (micro-CT). Micro-CT images revealed unique arrangements of arteries and veins in the region of the radiator positioned perpendicular to the axis of the body. Coupling micro-CT imaging with analysis of surface temperature profiles, we concluded that radiators aid in thermoregulation during flight in variable environments. This study represents the first application of contrast enhanced micro-CT to visualize vasculature of bats and thus exhibits a promising technique for further investigations of cardiovascular function and anatomy in bats. PMID:22282439

  13. Dual modality micro-SPECT and micro-CT for small animal imaging: technical advances and challenges

    NASA Astrophysics Data System (ADS)

    Izaguirre, Enrique W.; Sun, Mingshan; Carver, James; Thompson, Steve; Hasegawa, Bruce H.

    2005-09-01

    Small animal dual modality microSPECT-micro CT has seen many technological advances during recent years. The design of small animal dual modality scanners is a multidisciplinary field, where several interrelated technological problems must be integrated in a complex instrument. This article describes the general concepts that must be taken into consideration during the design process of dual modality microSPECT- microCT scanners. A description of the contemporary scanner technology is presented using the recently designed dual modality micro SPECT -microCT at the Physics Research Laboratory at UCSF. The technology is described with a simple approach to introduce the reader to the complex process of the dual modality scanner design. This article includes a discussion of current technological challenges that have potential to improve or expand the microSPECT-microCT performance and its applications.

  14. Adaptive region of interest method for analytical micro-CT reconstruction.

    PubMed

    Yang, Wanneng; Xu, Xiaochun; Bi, Kun; Zeng, Shaoqun; Liu, Qian; Chen, Shangbin

    2011-01-01

    The real-time imaging is important in automatic successive inspection with micro-computerized tomography (micro-CT). Generally, the size of the detector is chosen according to the most probable size of the measured object to acquire all the projection data. Given enough imaging area and imaging resolution of X-ray detector, the detector is larger than specimen projection area, which results in redundant data in the Sinogram. The process of real-time micro-CT is computation-intensive because of the large amounts of source and destination data. The speed of the reconstruction algorithm can't always meet the requirements of real-time applications. A preprocessing method called adaptive region of interest (AROI), which detects the object's boundaries automatically to focus the active Sinogram regions, is introduced into the analytical reconstruction algorithm in this paper. The AROI method reduces the volume of the reconstructing data and thus directly accelerates the reconstruction process. It has been further shown that image quality is not compromised when applying AROI, while the reconstruction speed is increased as the square of the ratio of the sizes of the detector and the specimen slice. In practice, the conch reconstruction experiment indicated that the process is accelerated by 5.2 times with AROI and the imaging quality is not degraded. Therefore, the AROI method improves the speed of analytical micro-CT reconstruction significantly. PMID:21422587

  15. Commissioning of a novel microCT/RT system for small animal conformal radiotherapy

    NASA Astrophysics Data System (ADS)

    Rodriguez, Manuel; Zhou, Hu; Keall, Paul; Graves, Edward

    2009-06-01

    The purpose of this work was to commission a 120 kVp photon beam produced by a micro-computed tomography (microCT) scanner for use in irradiating mice to therapeutic doses. A variable-aperture collimator has been integrated with a microCT scanner to allow the delivery of beams with pseudocircular profiles of arbitrary width between 0.1 and 6.0 cm. The dose rate at the isocenter of the system was measured using ion chamber and gafchromic EBT film as 1.56-2.13 Gy min-1 at the water surface for field diameters between 0.2 and 6.0 cm. The dose rate decreases approximately 10% per every 5 mm depth in water for field diameters between 0.5 and 1.0 cm. The flatness, symmetry and penumbra of the beam are 3.6%, 1.0% and 0.5 mm, respectively. These parameters are sufficient to accurately conform the radiation dose delivered to target organs on mice. The irradiated field size is affected principally by the divergence of the beam. In general, the beam has appropriate dosimetric characteristics to accurately deliver the dose to organs inside the mice's bodies. Using multiple beams delivered from a variety of angular directions, targets as small as 2 mm may be irradiated while sparing surrounding tissue. This microCT/RT system is a feasible tool to irradiate mice using treatment planning and delivery methods analogous to those applied to humans.

  16. Interpreting pathologies in extant and extinct archosaurs using micro-CT

    PubMed Central

    Garwood, Russell J.; Lowe, Tristan; Withers, Philip J.; Manning, Phillip L.

    2015-01-01

    Palaeopathology offers unique insight to the healing strategies of extinct organisms, permitting questions concerning bone physiology to be answered in greater depth. Unfortunately, most palaeopathological studies are confined to external morphological interpretations due to the destructive nature of traditional methods of study. This limits the degree of reliable diagnosis and interpretation possible. X-ray MicroTomography (micro-CT, XMT) provides a non-destructive means of analysing the internal three-dimensional structure of pathologies in both extant and extinct individuals, at higher resolutions than possible with medical scanners. In this study, we present external and internal descriptions of pathologies in extant and extinct archosaurs using XMT. This work demonstrates that the combination of external/internal diagnosis that X-ray microtomography facilitates is crucial when differentiating between pathological conditions. Furthermore, we show that the use of comparative species, both through direct analysis and from the literature, provides key information for diagnosing between vertebrate groups in the typical pathological conditions and physiological processes. Micro-CT imaging, combined with comparative observations of extant species, provides more detailed and reliable interpretation of palaeopathologies. Micro-CT is an increasingly accessible tool, which will provide key insights for correctly interpreting vertebrate pathologies in the future. PMID:26246971

  17. MicroCT detection of gunshot residue in fresh and decomposed firearm wounds.

    PubMed

    Cecchetto, Giovanni; Amagliani, Alessandro; Giraudo, Chiara; Fais, Paolo; Cavarzeran, Fabiano; Montisci, Massimo; Feltrin, Giampietro; Viel, Guido; Ferrara, Santo Davide

    2012-05-01

    Gunshot residue (GSR) evidence may be altered or obscured by after-death events such as putrefaction, autolysis, and/or damage by animals. The present study aimed at evaluating and comparing the amount and differential distribution of GSR utilizing microcomputed tomography (microCT) analysis of fresh and decomposed gunshot wounds. A total of 60 experimental shootings at three different firing distances (5, 15, and 30 cm) were performed on human calves surgically amputated for medical reasons. Thirty specimens (10 for each tested distance) were immediately formalin-fixed, while the other 30 specimens were enclosed in a cowshed for 15 days, before formalin fixation (air temperature ranging from 11°C to 38°C). MicroCT analysis with three-dimensional image reconstruction detected GSR particles in all the investigated entrance wounds. In fresh specimens, GSR was concentrated on the skin surface around the entrance hole and in the epidermis and dermis layers around the cavity, while in decomposed specimens, the high density particles were detected only in the dermis layer. No GSR was detected in exit wounds of both fresh and decomposed specimens regardless of the tested firing distance. Statistical analysis demonstrated that also in decomposed wounds the amount of GSR roughly correlated with the distance from which the gun was fired, exhibiting, however, a higher variability than in fresh samples. The obtained results suggest that microCT analysis can be a valid screening tool for differentiating decomposed entrance and exit gunshot wounds. PMID:22086714

  18. 4-D Photoacoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy. PMID:23346370

  19. 4-D Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  20. A Correlative Method for Imaging Identical Regions of Samples by Micro-CT, Light Microscopy, and Electron Microscopy

    PubMed Central

    Sengle, Gerhard; Tufa, Sara F.; Sakai, Lynn Y.; Zulliger, Martin A.

    2013-01-01

    We present a method in which a precise region of interest within an intact organism is spatially mapped in three dimensions by non-invasive micro-computed X-ray tomography (micro-CT), then further evaluated by light microscopy (LM) and transmission electron microscopy (TEM). Tissues are prepared as if for TEM including osmium fixation, which imparts soft tissue contrast in the micro-CT due to its strong X-ray attenuation. This method may therefore be applied to embedded, archived TEM samples. Upon selection of a two-dimensional (2-D) projection from a region of interest (ROI) within the three-dimensional volume, the epoxy-embedded sample is oriented for microtomy so that the sectioning plane is aligned with the micro-CT projection. Registration is verified by overlaying LM images with 2-D micro-CT projections. Structures that are poorly resolved in the micro-CT may be evaluated at TEM resolution by observing the next serial ultrathin section, thereby accessing the same ROI by all three imaging techniques. We compare white adipose tissue within the forelimbs of mice harboring a lipid-altering mutation with their littermate controls. We demonstrate that individual osmium-stained lipid droplets as small as 15 µm and separated by as little as 35 µm may be discerned as separate entities in the micro-CT, validating this to be a high-resolution, non-destructive technique for evaluation of fat content. PMID:23264636

  1. Local variations in bone mineral density: a comparison of OCT versus x-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Stevens-Smith, Jenna; Scutt, Andrew; Matcher, Stephen J.

    2008-02-01

    We describe variations in the degree of mineralisation within the subchondral bone plate of the equine metacarpophalangeal joint. A comparison of Optical Coherence Tomography, Micro CT, and SEM techniques was performed. These data are compared between sites on a healthy sample and at points on an osteoarthritically degenerated sample. No significant correlation was found between the optical scattering coefficient and the micro-CT derived BMD for comparisons between different sites on the bone surface. Also OCT demonstrated a larger regional variation in scattering coefficient than did micro CT for bone mineral density. This suggests that the optical scattering coefficient of bone is not related solely to the volume-density of calcium-phosphate. Patches of lower optical scattering coefficient were found in the bone structure that was related to the osteoarthritic lesion area on the overlying cartilage. Areas of microcracking, as revealed by both SEM and micro CT produced distinctive granularity in the OCT images. In further experiments, OCT was compared with micro CT and mechanical strength testing (3-point bending) in a small animal model of cardiovascular disease (cholesterol overload in mice). In the cardiovascular diseased mice, micro-CT of the trabecular bone did not demonstrate a significant change in trabecular bone mineral density before and after administration of the high cholesterol diet. However mechanical testing demonstrated a decrease in mechanical strength and OCT demonstrated a corresponding statistically significant decrease in optical scattering of the bone.

  2. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    SciTech Connect

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand; Ranouil, Julien; Morgand, Loïc; Raguin, Olivier; Walker, Paul; Brunotte, François

    2013-12-15

    Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 ± 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 ± 2.1 and 110.7 ± 3.0 mGy for the rat-like phantom and between 169.3 ± 4.6 and 203.6 ± 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse

  3. Combined Micro-PET/Micro-CT Imaging of Lung Tumours in SPC-raf and SPC-myc Transgenic Mice

    PubMed Central

    Rodt, Thomas; Luepke, Matthias; Boehm, Claudia; Hueper, Katja; Halter, Roman; Glage, Silke; Hoy, Ludwig; Wacker, Frank; Borlak, Juergen; von Falck, Christian

    2012-01-01

    Introduction SPC-raf and SPC-myc transgenic mice develop disseminated and circumscribed lung adenocarcinoma respectively, allowing for assessment of carcinogenesis and treatment strategies. The purpose of this study was to investigate the technical feasibility, the correlation of initial findings to histology and the administered radiation dose of combined micro-PET/micro-CT in these animal models. Material and Methods 14 C57BL/6 mice (4 nontransgenic, 4 SPC-raf transgenic, 6 SPC-myc transgenic) were examined using micro-CT and 18F-Fluoro-deoxyglucose micro-PET in-vivo. Micro-PET data was corrected for random events and scatter prior to reconstruction with a 3D-FORE/2D-OSEM iterative algorithm. Rigid micro-PET/micro-CT registration was performed. Tumour-to-non-tumour ratios were calculated for different lung regions and focal lesions. Diffuse tumour growth was quantified using a semiautomated micro-CT segmentation routine reported earlier. Regional histologic tumour load was assessed using a 4-point rating scale. Gamma radiation dose was determined using thermoluminescence dosimeters. Results Micro-CT allowed visualisation of diffuse and circumscribed tumours in SPC-raf and SPC-myc transgenic animals along with morphology, while micro-PET provided information on metabolism, but lacked morphologic detail. Mean tumour-to-non-tumour ratio was 2.47 for circumscribed lesions. No significant correlation could be shown between histological tumour load and tumour-to-nontumour ratio for diffuse tumours in SPC-raf transgenic animals. Calculation of the expected dose based on gamma dosimetry yielded approximately 140 mGy/micro-PET examination additional to approximately 200 mGy due to micro-CT. Conclusions Combined micro-PET/micro-CT imaging allows for in-vivo assessment of lung tumours in SPC-raf and SPC-myc transgenic mice. The technique has potential for the evaluation of carcinogenesis and treatment strategies in circumscribed lung tumours. PMID:23028537

  4. High-resolution 3D micro-CT imaging of breast microcalcifications: a preliminary analysis

    PubMed Central

    2014-01-01

    Background Detection of microcalcifications on mammograms indicates the presence of breast lesion, and the shapes of the microcalcifications as seen by conventional mammography correlates with the probability of malignancy. This preliminary study evaluated the 3D shape of breast microcalcifications using micro-computed tomography (micro-CT) and compared the findings with those obtained using anatomopathological analysis. Methods The study analyzed breast biopsy samples from 11 women with findings of suspicious microcalcifications on routine mammograms. The samples were imaged using a micro-CT (SkyScan 1076) at a resolution of 35 μm. Images were reconstructed using filtered back-projection and analyzed in 3D using surface rendering. The samples were subsequently analyzed by the pathology service. Reconstructed 3D images were compared with the corresponding histological slices. Results Anatomopathological analysis showed that 5 of 11 patients had ductal breast carcinoma in situ. One patient was diagnosed with invasive ductal carcinoma. Individual object analysis was performed on 597 microcalcifications. Malignant microcalcifications tended to be thinner and to have a smaller volume and surface area, while their surface area-to-volume ratio was greater than that of benign microcalcifications. The structure model index values were the same for malignant and benign microcalcifications. Conclusions This is the first study to use micro-CT for quantitative 3D analysis of microcalcifications. This high-resolution imaging technique will be valuable for gaining a greater understanding of the morphologic characteristics of malignant and benign microcalcifications. The presence of many small microcalcifications can be an indication of malignancy. For the larger microcalcifications, 3D parameters confirmed the more irregular shape of malignant microcalcifications. PMID:24393444

  5. Stress and strain distribution in demineralized enamel: A micro-CT based finite element study.

    PubMed

    Neves, Aline Almeida; Coutinho, Eduardo; Alves, Haimon Diniz Lopes; de Assis, Joaquim Teixeira

    2015-10-01

    Physiological oral mechanical forces may play a role on the progression of enamel carious lesions to cavitation. Thus, the aim of this study was to describe, by 3D finite element analysis, stress, and strain patterns in sound and carious enamel after a simulated occlusal load. Micro-CT based models were created and meshed with tetrahedral elements (based on an extracted third molar), namely: a sound (ST) and a carious tooth (CT). For the CT, enamel material properties were assigned according to the micro-CT gray values. Below the threshold corresponding to the enamel lesion (2.5 g/cm(3) ) lower and isotropic elastic modulus was assigned (E = 18 GPa against E1  = 80 GPa, E2  = E3  = 20 GPa for sound enamel). Both models were imported into a FE solver where boundary conditions were assigned and a pressure load (500 MPa) was applied at the occlusal surface. A linear static analysis was performed, considering anisotropy in sound enamel. ST showed a more efficient transfer of maximum principal stress from enamel to the dentin layer, while for the CT, enamel layer was subjected to higher and concentrated loads. Maximum principal strain distributions were seen at the carious enamel surface, especially at the central fossa, correlating to the enamel cavity seen at the original micro-CT model. It is possible to conclude that demineralized enamel compromises appropriate stress transfer from enamel to dentin, contributing to the odds of fracture and cavitation. Enamel fracture over a dentin lesion may happen as one of the normal pathways to caries progression and may act as a confounding factor during clinical diagnostic decisions. PMID:26240030

  6. A novel technique for the contrast-enhanced microCT imaging of murine intervertebral discs.

    PubMed

    Lin, Kevin H; Wu, Qi; Leib, Daniel J; Tang, Simon Y

    2016-10-01

    Disc degeneration is one of the leading factors that contribute to low back pain. Thus, the further understanding of the mechanisms contributing to degeneration of the intervertebral disc degeneration is critical for the development of therapies and strategies for treating low back pain. Rodent models are attractive for conducting mechanistic studies particularly because of the availability of genetically modified animals. However, current imaging technologies such as magnetic resonance imaging, do not have the ability to resolve spatial features at the tens- to single- micrometer scale. We propose here a contrast-enhanced microCT technique to conduct high-resolution imaging of the rodent intervertebral discs at 10µm spatial resolution. Based on the iodinated-hydrophilic contrast agent Ioversol, we are able to conduct high resolution imaging on rat and mouse intervertebral discs. Leveraging the hydrophilic characteristic of the contrast agent, we are able to discriminate the annulus fibrosus from the water-rich nucleus pulposus. Moreover, this technique allows for the quantitative measurement of disc morphologies and volumes, and we demonstrate the versatility of this technique on cultured live intervertebral discs. Coupled with our semi-automated segmentation technique, we are able to quantify the intervertebral disc volumes with a high degree of reproducibility. The contrast-enhanced microCT images were qualitatively and quantitatively indistinguishable from the traditional histological assessment of the same sample. Furthermore, stereological measures compared well between histology and microCT images. Taken together, the results reveal that rat and mouse intervertebral discs can be imaged longitudinally in vitro at high resolutions, with no adverse effects on viability and features of the intervertebral disc. PMID:27341292

  7. Micro-CT features of intermediate gunshot wounds severely damaged by fire.

    PubMed

    Fais, Paolo; Giraudo, Chiara; Boscolo-Berto, Rafael; Amagliani, Alessandro; Miotto, Diego; Feltrin, Giampietro; Viel, Guido; Ferrara, S Davide; Cecchetto, Giovanni

    2013-03-01

    Incineration or extensive burning of the body, causing changes in the content and distribution of fluids, fixation and shrinking processes of tissues, can alter the typical macroscopic and microscopic characteristics of firearm wounds, hampering or at least complicating the reconstruction of gunshot fatalities. The present study aims at evaluating the potential role of micro-computed tomography (micro-CT) for detecting and quantifying gunshot residue (GSR) particles in experimentally produced intermediate-range gunshot wounds severely damaged by fire. Eighteen experimental shootings were performed on 18 sections of human calves surgically amputated for medical reasons at three different firing distances (5, 15 and 30 cm). Six stab wounds produced with an ice pick were used as controls. Each calf section underwent a charring cycle, being placed in a wood-burning stove for 4 min at a temperature of 400 °C. At visual inspection, the charred entrance wounds could not be differentiated from the exit lesions and the stab wounds. On the contrary, micro-CT analysis showed the presence of GSR particles in all burnt entrance gunshot wounds, while GSR was absent in the exit and stab wounds. The GSR deposits of the firearm lesions inflicted at very close distance (5 cm) were mainly constituted of huge particles (diameter >150 μm) with an irregular shape and well-delineated edges; at greater distances (15 and 30 cm), agglomerates of tiny radiopaque particles scattered in the epidermis and dermis layers were evident. Statistical analysis demonstrated that also in charred firearm wounds the amount of GSR roughly correlates with the distance from which the gun was fired. The obtained results suggest that micro-CT analysis can be a valid screening tool for identifying entrance gunshot wounds and for differentiating firearm wounds from sharp-force injuries in bodies severely damaged by fire. PMID:23010908

  8. The Use of Micro-CT with Image Segmentation to Quantify Leakage in Dental Restorations

    PubMed Central

    Carrera, Carola A.; Lan, Caixia; Escobar-Sanabria, David; Li, Yuping; Rudney, Joel; Aparicio, Conrado; Fok, Alex

    2015-01-01

    Objective To develop a method for quantifying leakage in composite resin restorations after curing, using non-destructive X-ray micro-computed tomography (micro-CT) and image segmentation. Methods Class-I cavity preparations were made in 20 human third molars, which were divided into 2 groups. Group I was restored with Z100 and Group II with Filtek LS. Micro-CT scans were taken for both groups before and after they were submerged in silver nitrate solution (AgNO3 50%) to reveal any interfacial gap and leakage at the tooth restoration interface. Image segmentation was carried out by first performing image correlation to align the before- and after-treatment images and then by image subtraction to isolate the silver nitrate penetrant for precise volume calculation. Two-tailed Student’s t-test was used to analyze the results, with the level of significance set at p<0.05. Results All samples from Group I showed silver nitrate penetration with a mean volume of 1.3 ± 0.7 mm3. In Group II, only 2 out of the 10 restorations displayed infiltration along the interface, giving a mean volume of 0.3 ± 0.3 mm3. The difference between the two groups was statistically significant (p < 0.05). The infiltration showed non-uniform patterns within the interface. Significance We have developed a method to quantify the volume of leakage using non-destructive micro-CT, silver nitrate infiltration and image segmentation. Our results confirmed that substantial leakage could occur in composite restorations that have imperfections in the adhesive layer or interfacial debonding through polymerization shrinkage. For the restorative systems investigated in this study, this occurred mostly at the interface between the adhesive system and the tooth structure. PMID:25649496

  9. Development of a MicroCT-Based Image-Guided Conformal Radiotherapy System for Small Animals

    PubMed Central

    Zhou, Hu; Rodriguez, Manuel; van den Haak, Fred; Nelson, Geoffrey; Jogani, Rahil; Xu, Jiali; Zhu, Xinzhi; Xian, Yongjiang; Tran, Phuoc T.; Felsher, Dean W.; Keall, Paul J.; Graves, Edward E.

    2009-01-01

    Purpose The need for clinically-relevant radiation therapy technology for the treatment of preclinical models of disease has spurred the development of a variety of dedicated platforms for small animal irradiation. Our group has taken the approach of adding the ability to deliver conformal radiotherapy to an existing 120 kVp micro-computed tomography (microCT) scanner. Methods A GE eXplore RS120 microCT scanner was modified by the addition of a two-dimensional subject translation stage and a variable aperture collimator. Quality assurance protocols for these devices, including measurement of translation stage positioning accuracy, collimator aperture accuracy, and collimator alignment with the x-ray beam, were devised. Use of this system for image-guided radiotherapy was assessed by irradiation of a solid water phantom as well as of two mice bearing spontaneous MYC-induced lung tumors. Radiation damage was assessed ex vivo by immunohistochemical detection of γH2AX foci. Results The positioning error of the translation stage was found to be less than 0.05 mm, while after alignment of the collimator with the x-ray axis through adjustment of its displacement and rotation, the collimator aperture error was less than 0.1 mm measured at isocenter. CT image-guided treatment of a solid water phantom demonstrated target localization accuracy to within 0.1 mm. γH2AX foci were detected within irradiated lung tumors in mice, with contralateral lung tissue displaying background staining. Conclusions Addition of radiotherapy functionality to a microCT scanner is an effective means of introducing image-guided radiation treatments into the preclinical setting. This approach has been shown to facilitate small animal conformal radiotherapy while leveraging existing technology. PMID:20395069

  10. Micro-CT features of intermediate gunshot wounds covered by textiles.

    PubMed

    Giraudo, Chiara; Fais, Paolo; Pelletti, Guido; Viero, Alessia; Miotto, Diego; Boscolo-Berto, Rafael; Viel, Guido; Montisci, Massimo; Cecchetto, Giovanni; Ferrara, Santo Davide

    2016-09-01

    The analysis of gunshot residue (GSR) on the clothing and the underlying skin of the victim may play an important role in the reconstruction of the shooting incident. The aim of the present study was to test micro-computed tomography (micro-CT) for the analysis of firearm wounds experimentally produced on human skin covered by textiles. Firing trials were performed on 60 sections of human calves enveloped by a single layer of fabric (cotton or jeans or leather or nylon) and 15 controls consisting of bare calves. Experimental firings were conducted in a ballistic laboratory at three different muzzle-to-target distances (5, 15, and 30 cm), using a .32 ACP pistol (Beretta Mod. 81) loaded with full-jacketed bullets coming from the same production lot (7.65 × 17 mm, Browning SR). The visual inspection revealed the classic pattern of GSR distribution on the fabrics and the skin of control samples, while only a dark ring around the entrance lesion was identified on the skin beneath the fabrics. Micro-CT analysis showed the presence of radiopaque material on all entrance wounds, with a statistically significant difference between cases and controls. No differences were found among specimens covered by fabrics, with regard to the firing distance and the type of clothing. No GSR-like deposits were detected in exit wounds. Our results suggest that micro-CT analysis may be a useful screening tool for differentiating entry from exit gunshot wounds when the covering textiles are contaminated, damaged, or missing. PMID:27325255

  11. Investigating the effect of longitudinal micro-CT imaging on tumour growth in mice

    NASA Astrophysics Data System (ADS)

    Foster, W. Kyle; Ford, Nancy L.

    2011-01-01

    The aim of this study is to determine the impact of longitudinal micro-CT imaging on the growth of B16F1 tumours in C57BL/6 mice. Sixty mice received 2 × 105 B16F1 cells subcutaneously in the hind flank and were divided into control (no scan), 'low-dose' (80 kVp, 70 mA, 8 s, 0.07 Gy), 'medium-dose' (80 kVp, 50 mA, 30 s, 0.18 Gy) and 'high-dose' (80 kVp, 50 mA, 50 s, 0.30 Gy) groups. All imaging was performed on a fast volumetric micro-CT scanner (GE Locus Ultra, London, Canada). Each mouse was imaged on days 4, 8, 12 and 16. After the final imaging session, each tumour was excised, weighed on an electronic balance, imaged to obtain the final tumour volume and processed for histology. Final tumour volume was used to evaluate the impact of longitudinal micro-CT imaging on the tumour growth. An ANOVA indicated no statistically significant difference in tumour volume (p = 0.331, α = β = 0.1) when discriminating against a treatment-sized effect. Histological samples revealed no observable differences in apoptosis or cell proliferation. We conclude that four imaging sessions, using standard protocols, over the course of 16 days did not cause significant changes in final tumour volume for B16F1 tumours in female C57BL/6 mice (ANOVA, α = β = 0.1, p = 0.331).

  12. Evaluation of the adaptation of zirconia-based fixed partial dentures using micro-CT technology.

    PubMed

    Borba, Márcia; Miranda, Walter Gomes; Cesar, Paulo Francisco; Griggs, Jason Allan; Bona, Alvaro Della

    2013-01-01

    The objective of the study was to measure the marginal and internal fit of zirconia-based all-ceramic three-unit fixed partial dentures (FPDs) (Y-TZP - LAVA, 3M-ESPE), using a novel methodology based on micro-computed tomography (micro-CT) technology. Stainless steel models of prepared abutments were fabricated to design FPDs. Ten frameworks were produced with 9 mm2 connector cross-sections using a LAVATM CAD-CAM system. All FPDs were veneered with a compatible porcelain. Each FPD was seated on the original model and scanned using micro-CT. Files were processed using NRecon and CTAn software. Adobe Photoshop and Image J software were used to analyze the cross-sectional images. Five measuring points were selected, as follows: MG - marginal gap; CA - chamfer area; AW - axial wall; AOT - axio-occlusal transition area; OA - occlusal area. Results were statistically analyzed by Kruskall-Wallis and Tukey's post hoc test (α= 0.05). There were significant differences for the gap width between the measurement points evaluated. MG showed the smallest median gap width (42 µm). OA had the highest median gap dimension (125 µm), followed by the AOT point (105 µm). CA and AW gap width values were statistically similar, 66 and 65 µm respectively. Thus, it was possible to conclude that different levels of adaptation were observed within the FPD, at the different measuring points. In addition, the micro-CT technology seems to be a reliable tool to evaluate the fit of dental restorations. PMID:24036977

  13. Key components for artifact-free micro-CT and nano-CT instruments

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander; Pauwels, Bart; Liu, Xuan; Bruyndonckx, Peter

    2010-09-01

    Proper selection of modern key components allows eliminating most artifacts in micro-CT and nano-CT systems already during data acquisition. X-ray cameras with direct photon detection allow avoiding ring artifacts. Newly developed fully depleted CCD sensors show an energy response similar to traditional cameras with a thin scintillator, but without any geometrical distortions and flashes from x-ray photons penetrating through the fiber optics. Air-bearing rotation stages and piezo-positioning minimizes mechanical inaccuracies in acquiring angular projections. Beam hardening can be eliminated by energy-selective photon counting imaging.

  14. X-ray micro-CT scanner for small animal imaging based on Timepix detector technology

    NASA Astrophysics Data System (ADS)

    Dudak, Jan; Zemlicka, Jan; Krejci, Frantisek; Polansky, Stepan; Jakubek, Jan; Mrzilkova, Jana; Patzelt, Matej; Trnka, Jan

    2015-02-01

    We describe a newly developed compact micro-CT scanner with rotating gantry equipped with a Timepix Quad hybrid pixel semiconductor detector and a micro-focus X-ray tube providing spatial resolution down to 30 μm. The resolving power of the device in relation to soft tissue sensitivity is demonstrated using a tissue-equivalent phantom and different types of biological samples. The results demonstrate that the use of noiseless particle counting detectors is a promising way to achieve sufficient soft tissue contrast even without any contrast agents.

  15. High resolution X-ray micro-CT of ultra-thin wall space components

    NASA Astrophysics Data System (ADS)

    Roth, D. J.; Rauser, R. W.; Bowman, R. R.; Bonacuse, P. J.; Martin, R. E.; Locci, I. E.; Kelley, M.

    2013-01-01

    A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software.

  16. Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research

    PubMed Central

    Panta, Raj K.; Segars, Paul; Yin, Fang-Fang; Cai, Jing

    2015-01-01

    Aims To establish a framework to implement the 4D integrated extended cardiac torso (XCAT) digital phantom for 4D radiotherapy (RT) research. Materials and Methods A computer program was developed to facilitate the characterization and implementation of the 4D XCAT phantom. The program can (1) generate 4D XCAT images with customized parameter files; (2) review 4D XCAT images; (3) generate composite images from 4D XCAT images; (4) track motion of selected region-of-interested (ROI); (5) convert XCAT raw binary images into DICOM format; (6) analyse clinically acquired 4DCT images and real-time position management (RPM) respiratory signal. Motion tracking algorithm was validated by comparing with manual method. Major characteristics of the 4D XCAT phantom were studied. Results The comparison between motion tracking and manual measurements of lesion motion trajectory showed a small difference between them (mean difference in motion amplitude: 1.2 mm). The maximum lesion motion decreased nearly linearly (R2 = 0.97) as its distance to the diaphragm (DD) increased. At any given DD, lesion motion amplitude increased nearly linearly (R 2 range: 0.89 to 0.95) as the inputted diaphragm motion increased. For a given diaphragm motion, the lesion motion is independent of the lesion size at any given DD. The 4D XCAT phantom can closely reproduce irregular breathing profile. The end-to-end test showed that clinically comparable treatment plans can be generated successfully based on 4D XCAT images. Conclusions An integrated computer program has been developed to generate, review, analyse, process, and export the 4D XCAT images. A framework has been established to implement the 4D XCAT phantom for 4D RT research. PMID:23361276

  17. Extracting alveolar structure of human lung tissue specimens based on surface skeleton representation from 3D micro-CT images

    NASA Astrophysics Data System (ADS)

    Ishimori, Hiroyuki; Kawata, Yoshiki; Niki, Noboru; Nakaya, Yoshihiro; Ohmatsu, Hironobu; Matsui, Eisuke; Fujii, Masashi; Moriyama, Noriyuki

    2007-03-01

    We have developed a Micro CT system for understanding lung function at a high resolution of the micrometer order (up to 5µm in spatial resolution). Micro CT system enables the removal specimen of lungs to be observed at micro level, has expected a big contribution for micro internal organs morphology and the image diagnosis study. In this research, we develop system to visualize lung microstructures in three dimensions from micro CT images and analyze them. They characterize in that high CT value of the noise area is, and the difficulty of only using threshold processing to extract the alveolar wall of micro CT images. Thus, we are developing a method of extracting the alveolar wall with surface thinning algorithm. In this report, we propose the method which reduces the excessive degeneracy of figure which caused by surface thinning process. And, we apply this algorithm to the micro CT image of the actual pulmonary specimen. It is shown that the extraction of the alveolus wall becomes possible in the high precision.

  18. Detecting metastasis of gastric carcinoma using high-resolution micro-CT system: in vivo small animal study

    NASA Astrophysics Data System (ADS)

    Liu, Junting; Tian, Jie; Liang, Jimin; Li, Xiangsi; Yang, Xiang; Chen, Xiaofeng; Chen, Yi; Zhou, Yuanfang; Wang, Xiaorui

    2011-03-01

    Immunocytochemical and immunofluorescence staining are used for identifying the characteristics of metastasis in traditional ways. Micro-computed tomography (micro-CT) is a useful tool for monitoring and longitudinal imaging of tumor in small animal in vivo. In present study, we evaluated the feasibility of the detection for metastasis of gastric carcinoma by high-resolution micro-CT system with omnipaque accumulative enhancement method in the organs. Firstly, a high-resolution micro-CT ZKKS-MCT-sharp micro-CT was developed by our research group and Guangzhou Zhongke Kaisheng Medical Technology Co., Ltd. Secondly, several gastric carcinoma models were established through inoculating 2x106 BGC-823 gastric carcinoma cells subcutaneously. Thirdly, micro-CT scanning was performed after accumulative enhancement method of intraperitoneal injection of omnipaque contrast agent containing 360 mg iodine with a concentration of 350 mg I/ml. Finally, we obtained high-resolution anatomical information of the metastasis in vivo in a BALB/c NuNu nude mouse, the 3D tumor architecture is revealed in exquisite detail at about 35 μm spatial resolution. In addition, the accurate shape and volume of the micrometastasis as small as 0.78 mm3 can be calculated with our software. Overall, our data suggest that this imaging approach and system could be used to enhance the understanding of tumor proliferation, metastasis and could be the basis for evaluating anti-tumor therapies.

  19. Ex vivo micro-CT imaging of murine brain models using non-ionic iodinated contrast

    NASA Astrophysics Data System (ADS)

    Salas Bautista, N.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.; Murrieta-Rodríguez, T.; Manjarrez-Marmolejo, J.; Franco-Pérez, J.; Calvillo-Velasco, M. E.

    2014-11-01

    Preclinical investigation of brain tumors is frequently carried out by means of intracranial implantation of brain tumor xenografts or allografts, with subsequent analysis of tumor growth using conventional histopathology. However, very little has been reported on the use contrast-enhanced techniques in micro-CT imaging for the study of malignant brain tumors in small animal models. The aim of this study has been to test a protocol for ex vivo imaging of murine brain models of glioblastoma multiforme (GBM) after treatment with non-ionic iodinated solution, using an in-house developed laboratory micro-CT. We have found that the best compromise between acquisition time and image quality is obtained using a 50 kVp, 0.5 mAs, 1° angular step on a 360 degree orbit acquisition protocol, with 70 μm reconstructed voxel size using the Feldkamp algorithm. With this parameters up to 4 murine brains can be scanned in tandem in less than 15 minutes. Image segmentation and analysis of three sample brains allowed identifying tumor volumes as small as 0.4 mm3.

  20. MicroCT angiography detects vascular formation and regression in skin wound healing.

    PubMed

    Urao, Norifumi; Okonkwo, Uzoagu A; Fang, Milie M; Zhuang, Zhen W; Koh, Timothy J; DiPietro, Luisa A

    2016-07-01

    Properly regulated angiogenesis and arteriogenesis are essential for effective wound healing. Tissue injury induces robust new vessel formation and subsequent vessel maturation, which involves vessel regression and remodeling. Although formation of functional vasculature is essential for healing, alterations in vascular structure over the time course of skin wound healing are not well understood. Here, using high-resolution ex vivo X-ray micro-computed tomography (microCT), we describe the vascular network during healing of skin excisional wounds with highly detailed three-dimensional (3D) reconstructed images and associated quantitative analysis. We found that relative vessel volume, surface area and branching number are significantly decreased in wounds from day 7 to days 14 and 21. Segmentation and skeletonization analysis of selected branches from high-resolution images as small as 2.5μm voxel size show that branching orders are decreased in the wound vessels during healing. In histological analysis, we found that the contrast agent fills mainly arterioles, but not small capillaries nor large veins. In summary, high-resolution microCT revealed dynamic alterations of vessel structures during wound healing. This technique may be useful as a key tool in the study of the formation and regression of wound vessels. PMID:27009591

  1. A preliminary study on a dual-modality OPT/micro-CT system

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Di, Dong; Shi, Liangliang; Wang, Jun; Hui, Hui; Yang, Xin; Tian, Jie

    2015-03-01

    Optical projection tomography (OPT) is a mesoscopic scale optical imaging technique for specimens between 1mm and 10mm. Although OPT is widely used for in vivo and ex vivo imaging, its applications in high intensity tissues such as bone and thick samples are limited due to the strong absorption of the light. In contrast, X-ray micro-CT is suitable for high intensity tissue imaging but its contrast of soft tissue is poor. Therefore, imaging tools with both strong penetration and high contrast are in great demand. To address this issue, we develop a dual-modality system integrating both OPT and micro-CT. In this paper, this dual-modality system is applied to dynamic imaging of a clearing process of a mouse paw. The clearing process is essential in OPT when imaging thick or intensity tissues since it can make high intensity tissues optically transparent. In our experiment, we scan the mouse paw with our system - before, during and after optical clearing. Each time we scan CT first and then the OPT. After acquisition, 3-dimentional volumes of OPT and CT are reconstructed separately. Then we use a rigid image registration algorithm to register these volumes. Finally, the volumes are merged together. The experimental results show our bimodal system performs better than single OPT or CT system when processing tissues with both high intensity and soft parts.

  2. Micro-CT scouting for transmission electron microscopy of human tissue specimens.

    PubMed

    Morales, A G; Stempinski, E S; Xiao, X; Patel, A; Panna, A; Olivier, K N; McShane, P J; Robinson, C; George, A J; Donahue, D R; Chen, P; Wen, H

    2016-07-01

    Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. We describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 μm resolution was used to determine the location of patches of the mucous membrane in osmium-stained human nasal scraping samples. Once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. PMID:26854176

  3. Optimizing synchrotron microCT for high-throughput phenotyping of zebrafish

    NASA Astrophysics Data System (ADS)

    La Rivière, Patrick J.; Clark, Darin; Rojek, Alexandra; Vargas, Phillip; Xiao, Xianghui; DeCarlo, Francesco; Kindlmann, Gordon; Cheng, Keith

    2010-09-01

    We are creating a state-of-the-art 2D and 3D imaging atlas of zebrafish development. The atlas employs both 2D histology slides and 3D benchtop and synchrotron micro CT results. Through this atlas, we expect to document normal and abnormal organogenesis, to reveal new levels of structural detail, and to advance image informatics as a form of systems biology. The zebrafish has become a widely used model organism in biological and biomedical research for studies of vertebrate development and gene function. In this work, we will report on efforts to optimize synchrotron microCT imaging parameters for zebrafish at crucial developmental stages. The aim of these studies is to establish protocols for high-throughput phenotyping of normal, mutant and diseased zebrafish. We have developed staining and embedding protocols using different heavy metal stains (osmium tetroxide and uranyl acetate) and different embedding media (Embed 812 and glycol methacrylate). We have explored the use of edge subtraction and multi-energy techniques for contrast enhancement and we have examined the use of different sample-detector distances with unstained samples to explore and optimize phase-contrast enhancement effects. We will report principally on our efforts to optimize energy choice for single- and multi-energy studies as well as our efforts to optimize the degree of phase contrast enhancement.

  4. Microstructure Characterization by Means of X-ray Micro-CT and Nanoindentation Measurements

    NASA Astrophysics Data System (ADS)

    Rajczakowska, Magdalena; Stefaniuk, Damian; Łydżba, Dariusz

    2015-03-01

    The aim of this paper is to present an example of the material microstructure characterization with the use of X-ray micro-CT and nanoindentation measurements. Firstly, the current scope of application of the aforementioned techniques is provided within different fields of science. Then, background of each of the methods is presented. The methodology of X-ray micro-CT is described with the emphasis on the Beer's law formulation. In addition, the basics of the nanoindentation technique are outlined and major formulas for the hardness and Young's modulus calculation are given. Finally, example results for a concrete sample are presented. The microstructure of the selected material is firstly characterized in terms of geometry using the results from the microtomograhy measurements, e.g., porosity and attenuation profiles, pore and aggregate size distribution, shape factor of pores, etc. Next, the results of the nanoindentation tests are provided, namely the hardness and Young's modulus versus the height of the sample. The influence of the number of tests and statistical analysis on the final results is underlined.

  5. Angiogenesis in tissue-engineered nerves evaluated objectively using MICROFIL perfusion and micro-CT scanning

    PubMed Central

    Wang, Hong-kui; Wang, Ya-xian; Xue, Cheng-bin; Li, Zhen-mei-yu; Huang, Jing; Zhao, Ya-hong; Yang, Yu-min; Gu, Xiao-song

    2016-01-01

    Angiogenesis is a key process in regenerative medicine generally, as well as in the specific field of nerve regeneration. However, no convenient and objective method for evaluating the angiogenesis of tissue-engineered nerves has been reported. In this study, tissue-engineered nerves were constructed in vitro using Schwann cells differentiated from rat skin-derived precursors as supporting cells and chitosan nerve conduits combined with silk fibroin fibers as scaffolds to bridge 10-mm sciatic nerve defects in rats. Four weeks after surgery, three-dimensional blood vessel reconstructions were made through MICROFIL perfusion and micro-CT scanning, and parameter analysis of the tissue-engineered nerves was performed. New blood vessels grew into the tissue-engineered nerves from three main directions: the proximal end, the distal end, and the middle. The parameter analysis of the three-dimensional blood vessel images yielded several parameters, including the number, diameter, connection, and spatial distribution of blood vessels. The new blood vessels were mainly capillaries and microvessels, with diameters ranging from 9 to 301 μm. The blood vessels with diameters from 27 to 155 μm accounted for 82.84% of the new vessels. The microvessels in the tissue-engineered nerves implanted in vivo were relatively well-identified using the MICROFIL perfusion and micro-CT scanning method, which allows the evaluation and comparison of differences and changes of angiogenesis in tissue-engineered nerves implanted in vivo. PMID:26981108

  6. First X-ray Fluorescence MicroCT Results from Micrometeorites at SSRL

    NASA Astrophysics Data System (ADS)

    Ignatyev, Konstantin; Huwig, Kathy; Harvey, Ralph; Ishii, Hope; Bradley, John; Luening, Katharina; Brennan, Sean; Pianetta, Piero

    2007-01-01

    X-ray fluorescence microCT (computed tomography) is a novel technique that allows non-destructive determination of the 3D distribution of chemical elements inside a sample. This is especially important in samples for which sectioning is undesirable either due to the risk of contamination or the requirement for further analysis by different characterization techniques. Developments made by third generation synchrotron facilities and laboratory X-ray focusing systems have made these kinds of measurements more attractive by significantly reducing scan times and beam size. First results from the x-ray fluorescence microCT experiments performed at SSRL beamline 6-2 are reported here. Beamline 6-2 is a 54 pole wiggler that uses a two mirror optical system for focusing the x-rays onto a virtual source slit which is then reimaged with a set of KB mirrors to a (2 × 4) μm2 beam spot. An energy dispersive fluorescence detector is located in plane at 90 degrees to the incident beam to reduce the scattering contribution. A PIN diode located behind the sample simultaneously measures the x-ray attenuation in the sample. Several porous micrometeorite samples were measured and the reconstructed element density distribution including self-absorption correction is presented. Ultimately, this system will be used to analyze particles from the coma of comet Wild-2 and fresh interstellar dust particles both of which were collected during the NASA Stardust mission.

  7. First X-ray Fluorescence MicroCT Results from Micrometeorites at SSRL

    SciTech Connect

    Ignatyev, K; Huwig, K; Harvey, R; Ishii, H; Bradley, J; Luening, K; Brennan, S; Pianetta, P

    2006-08-23

    X-ray fluorescence microCT (computed tomography) is a novel technique that allows non-destructive determination of the 3D distribution of chemical elements inside a sample. This is especially important in samples for which sectioning is undesirable either due to the risk of contamination or the requirement for further analysis by different characterization techniques. Developments made by third generation synchrotron facilities and laboratory X-ray focusing systems have made these kinds of measurements more attractive by significantly reducing scan times and beam size. First results from the x-ray fluorescence microCT experiments performed at SSRL beamline 6-2 are reported here. Beamline 6-2 is a 54 pole wiggler that uses a two mirror optical system for focusing the x-rays onto a virtual source slit which is then reimaged with a set of KB mirrors to a (2 x 4) {micro}{sup 2} beam spot. An energy dispersive fluorescence detector is located in plane at 90 degrees to the incident beam to reduce the scattering contribution. A PIN diode located behind the sample simultaneously measures the x-ray attenuation in the sample. Several porous micrometeorite samples were measured and the reconstructed element density distribution including self-absorption correction is presented. Ultimately, this system will be used to analyze particles from the coma of comet Wild-2 and fresh interstellar dust particles both of which were collected during the NASA Stardust mission.

  8. First X-ray Fluorescence MicroCT Results from Micrometeorites at SSRL

    SciTech Connect

    Ignatyev, Konstantin; Luening, Katharina; Brennan, Sean; Pianetta, Piero; Huwig, Kathy; Harvey, Ralph; Ishii, Hope; Bradley, John

    2007-01-19

    X-ray fluorescence microCT (computed tomography) is a novel technique that allows non-destructive determination of the 3D distribution of chemical elements inside a sample. This is especially important in samples for which sectioning is undesirable either due to the risk of contamination or the requirement for further analysis by different characterization techniques. Developments made by third generation synchrotron facilities and laboratory X-ray focusing systems have made these kinds of measurements more attractive by significantly reducing scan times and beam size. First results from the x-ray fluorescence microCT experiments performed at SSRL beamline 6-2 are reported here. Beamline 6-2 is a 54 pole wiggler that uses a two mirror optical system for focusing the x-rays onto a virtual source slit which is then reimaged with a set of KB mirrors to a (2 x 4) {mu}m2 beam spot. An energy dispersive fluorescence detector is located in plane at 90 degrees to the incident beam to reduce the scattering contribution. A PIN diode located behind the sample simultaneously measures the x-ray attenuation in the sample. Several porous micrometeorite samples were measured and the reconstructed element density distribution including self-absorption correction is presented. Ultimately, this system will be used to analyze particles from the coma of comet Wild-2 and fresh interstellar dust particles both of which were collected during the NASA Stardust mission.

  9. A framework for modeling ocular drug transport and flow through the eye using micro-CT

    NASA Astrophysics Data System (ADS)

    Smith, Corey A.; Newson, Timothy A.; Leonard, Kevin C.; Barfett, Joseph; Holdsworth, David W.; Hutnik, Cindy M. L.; Hill, Kathleen A.

    2012-10-01

    This study uses micro-computed tomography (micro-CT) imaging for assessment of concentration and transport mechanisms of ocular drug surrogates following intravitreal injection. Injections of an iodinated contrast agent were administered to enucleated porcine eyes prior to scanning over 192 min. Image analysis was performed using signal profiles and regions of interest that corresponded to specific iodine concentrations. Diffusion coefficients of the injected iodine solutions were calculated using nonlinear regression analysis with a diffusion model. There was a predominantly diffusive component in the movement of the contrast to the back of the eye in the horizontal (sagittal & coronal) directions, with ultimate retinal fate observed after 120 min. The diffusion coefficients were found to have a mean of 4.87 × 10-4 mm2 s-1 and standard deviation of 8.39 × 10-5 mm2 s-1 for 150 mg ml-1 iodine concentration and 6.13 × 10-4 ± 1.83 × 10-4 mm2 s-1 for 37.5 mg ml-1 concentration. However, it should be noted that these coefficients were time dependent and were found to decay as the diffusion front interacted with the retinal wall. A real-time, accurate, non-invasive method of tracking a bolus and its concentration is achieved using a high spatial resolution and fast scanning speed micro-CT system.

  10. Submicrometer structure of sea urchin tooth via remote synchrotron microCT imaging

    NASA Astrophysics Data System (ADS)

    Stock, Stuart R.; Rack, Alexander

    2014-09-01

    Remote electron microscopy sessions are featured at a number of imaging centers. Similarly, many synchrotron light sources offer routine "mail-in" crystallography and powder diffractometry. At imaging beam lines, small numbers of (preliminary) scans are sometimes performed by staff, in the absence of the investigator, to demonstrate feasibility of the proposed study or as an industrial service. In the 1990s, one of us (SRS) participated in processing experiments where samples were couriered between Georgia Tech and SSRL and synchrotron microCT followed the spatial distribution of densification. Here, the authors report results of remote microCT experiments, i.e., where the investigator who knows the sample interacts via the web with the beam line scientist operating the apparatus and provides real-time feedback on where to scan based upon radiographs and on the most recent reconstructions. Local tomography imaged sea urchin teeth with 350 nm isotropic volume element (voxel) at beam line ID-19, ESRF. Sea urchin teeth form by growing parallel plates of high Mg calcite, each of which is 2-5 μm away from its neighbors, and very high Mg calcite columns later link the plates. The remote imaging session focused on tooth positions where the columns were just forming, and column shapes and dimensions were measured, something which has previously only been done with destructive sample preparation and scanning electron microscopy. The experiments were successful despite a separation of 4,400 miles and seven time zones.

  11. In Vivo MicroCT Monitoring of Osteomyelitis in a Rat Model

    PubMed Central

    Stadelmann, Vincent A.; Potapova, Inga; Camenisch, Karin; Nehrbass, Dirk; Richards, R. Geoff; Moriarty, T. Fintan

    2015-01-01

    Infection associated with orthopedic implants often results in bone loss and requires surgical removal of the implant. The aim of this study was to evaluate morphological changes of bone adjacent to a bacteria-colonized implant, with the aim of identifying temporal patterns that are characteristic of infection. In an in vivo study with rats, bone changes were assessed using in vivo microCT at 7 time points during a one-month postoperative period. The rats received either a sterile or Staphylococcus aureus-colonized polyetheretherketone screw in the tibia. Bone-implant contact, bone fraction, and bone changes (quiescent, resorbed, and new bone) were calculated from consecutive scans and validated against histomorphometry. The screw pullout strength was estimated from FE models and the results were validated against mechanical testing. In the sterile group, bone-implant contact, bone fraction, and mechanical fixation increased steadily until day 14 and then plateaued. In the infected group, they decreased rapidly. Bone formation was reduced while resorption was increased, with maximum effects observed within 6 days. In summary, the model presented is capable of evaluating the patterns of bone changes due to implant-related infections. The combined use of longitudinal in vivo microCT imaging and image-based finite element analysis provides characteristic signs of infection within 6 days. PMID:26064928

  12. Estimation of the firing distance through micro-CT analysis of gunshot wounds.

    PubMed

    Cecchetto, Giovanni; Giraudo, Chiara; Amagliani, Alessandro; Viel, Guido; Fais, Paolo; Cavarzeran, Fabiano; Feltrin, Giampietro; Ferrara, Santo Davide; Montisci, Massimo

    2011-03-01

    Estimation of the firing range is often critical for reconstructing gunshot fatalities, where the main measurable evidence is the gunshot residue (GSR). In the present study intermediate-range gunshot wounds have been analysed by means of a micro-computed tomography (micro-CT) coupled to an image analysis software in order to quantify the powder particles and to determine the firing distance. A total of 50 shootings were performed on skin sections obtained from human legs surgically amputated for medical reasons. For each tested distance (5, 15, 23, 30 and 40 cm), firing was carried out perpendicularly at the samples using a 7.65-mm pistol loaded with jacketed bullets. Uninjured skin sections were used as controls. By increasing the firing distance, micro-CT analysis demonstrated a clear decreasing trend in the mean GSR percentage, particularly for shots fired from more than 15 cm. For distances under 23 cm, the powder particles were concentrated on the epidermis and dermis around the hole, and inside the cavity; while, at greater distances, they were deposited only on the skin surface. Statistical analysis showed a nonlinear relationship between the amount of GSR deposits and the firing range, well explained by a Gaussian-like function. The proposed method allowed a good discrimination for all the tested distances, proving to be an objective, rapid and inexpensive tool for estimating the firing range in intermediate-range gunshot wounds. PMID:21120514

  13. In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model

    NASA Astrophysics Data System (ADS)

    Umoh, Joseph U.; Sampaio, Arthur V.; Welch, Ian; Pitelka, Vasek; Goldberg, Harvey A.; Underhill, T. Michael; Holdsworth, David W.

    2009-04-01

    The rodent calvarial defect model is commonly used to investigate bone regeneration and wound healing. This study presents a micro-computed tomography (micro-CT) methodology for measuring the bone mineral content (BMC) in a rat calvarial defect and validates it by estimating its precision error. Two defect models were implemented. A single 6 mm diameter defect was created in 20 rats, which were imaged in vivo for longitudinal experiments. Three 5 mm diameter defects were created in three additional rats, which were repeatedly imaged ex vivo to determine precision. Four control rats and four rats treated with bone morphogenetic protein were imaged at 3, 6, 9 and 12 weeks post-surgery. Scan parameters were 80 kVp, 0.45 mA and 180 mAs. Images were reconstructed with an isotropic resolution of 45 µm. At 6 weeks, the BMC in control animals (4.37 ± 0.66 mg) was significantly lower (p < 0.05) than that in treated rats (11.29 ± 1.01 mg). Linear regression between the BMC and bone fractional area, from 20 rats, showed a strong correlation (r2 = 0.70, p < 0.0001), indicating that the BMC can be used, in place of previous destructive analysis techniques, to characterize bone growth. The high precision (2.5%) of the micro-CT methodology indicates its utility in detecting small BMC changes in animals.

  14. Imaging Invasion: Micro-CT imaging of adamantinomatous craniopharyngioma highlights cell type specific spatial relationships of tissue invasion.

    PubMed

    Apps, John R; Hutchinson, J Ciaran; Arthurs, Owen J; Virasami, Alex; Joshi, Abhijit; Zeller-Plumhoff, Berit; Moulding, Dale; Jacques, Thomas S; Sebire, Neil J; Martinez-Barbera, Juan Pedro

    2016-01-01

    Tissue invasion and infiltration by brain tumours poses a clinical challenge, with destruction of structures leading to morbidity. We assessed whether micro-CT could be used to map tumour invasion in adamantinomatous craniopharyngioma (ACP), and whether it could delineate ACPs and their intrinsic components from surrounding tissue.Three anonymised archival frozen ACP samples were fixed, iodinated and imaged using a micro-CT scanner prior to the use of standard histological processing and immunohistochemical techniques.We demonstrate that micro-CT imaging can non-destructively give detailed 3D structural information of tumours in volumes with isotropic voxel sizes of 4-6 microns, which can be correlated with traditional histology and immunohistochemistry.Such information complements classical histology by facilitating virtual slicing of the tissue in any plane and providing unique detail of the three dimensional relationships of tissue compartments. PMID:27260197

  15. Prospective respiratory-gated micro-CT of free breathing rodents.

    PubMed

    Ford, Nancy L; Nikolov, Hristo N; Norley, Chris J D; Thornton, Michael M; Foster, Paula J; Drangova, Maria; Holdsworth, David W

    2005-09-01

    Microcomputed tomography (Micro-CT) has the potential to noninvasively image the structure of organs in rodent models with high spatial resolution and relatively short image acquisition times. However, motion artifacts associated with the normal respiratory motion of the animal may arise when imaging the abdomen or thorax. To reduce these artifacts and the accompanying loss of spatial resolution, we propose a prospective respiratory gating technique for use with anaesthetized, free-breathing rodents. A custom-made bed with an embedded pressure chamber was connected to a pressure transducer. Anaesthetized animals were placed in the prone position on the bed with their abdomens located over the chamber. During inspiration, the motion of the diaphragm caused an increase in the chamber pressure, which was converted into a voltage signal by the transducer. An output voltage was used to trigger image acquisition at any desired time point in the respiratory cycle. Digital radiographic images were acquired of anaesthetized, free-breathing rats with a digital radiographic system to correlate the respiratory wave form with respiration-induced organ motion. The respiratory wave form was monitored and recorded simultaneously with the x-ray radiation pulses, and an imaging window was defined, beginning at end expiration. Phantom experiments were performed to verify that the respiratory gating apparatus was triggering the micro-CT system. Attached to the distensible phantom were 100 microm diameter copper wires and the measured full width at half maximum was used to assess differences in image quality between respiratory-gated and ungated imaging protocols. This experiment allowed us to quantify the improvement in the spatial resolution, and the reduction of motion artifacts caused by moving structures, in the images resulting from respiratory-gated image acquisitions. The measured wire diameters were 0.135 mm for the stationary phantom image, 0.137 mm for the image gated at end

  16. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)

    SciTech Connect

    Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y.; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han

    2012-05-10

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.

  17. Micro-CT evaluation of murine fetal skeletal development yields greater morphometric precision over traditional clear-staining methods.

    PubMed

    Oest, Megan E; Jones, Jeryl C; Hatfield, Cindy; Prater, M Renee

    2008-12-01

    Traditional techniques for quantification of murine fetal skeletal development (gross measurements, clear-staining) are severely limited by specimen processing, soft tissue presence, diffuse staining, and unclear landmarks between which to make measurements. Nondestructive microcomputed tomography (micro-CT) imaging is a versatile, well-documented tool traditionally used to generate high-resolution 3-D images and quantify microarchitectural parameters of trabecular bone. Although previously described as a tool for phenotyping fetal murine specimens, micro-CT has not previously been used to directly measure individual fetal skeletal structures. Imaging murine fetal skeletons using micro-CT enables the researcher to nondestructively quantify fetal skeletal development parameters including limb length, total bone volume, and average bone mineral density, as well as identify skeletal malformations. Micro-CT measurement of fetal limb lengths correlates well with traditional clear-staining methods (83.98% agreement), decreases variability in measurements (average standard errors: 6.28% for micro-CT and 10.82% for clear-staining), decreases data acquisition time by eliminating the need for tissue processing, and preserves the intact fixed fetus for further analysis. Use of the rigorous micro-CT technique to generate 3-D images for digital measurement enables isolation of skeletal structures based on degree of mineralization (local radiodensity), eliminating the complications of blurred stain boundaries and soft tissue inclusion that accompany clear-staining and gross measurement techniques. Microcomputed tomography provides a facile, accurate, and nondestructive method for determining the developmental state of the fetal skeleton using not only limb lengths and identification of malformations, but total skeletal bone volume and average skeletal mineral density as well. PMID:19048632

  18. Measurement of endotracheal tube secretions volume by micro computed tomography (MicroCT) scan: an experimental and clinical study

    PubMed Central

    2014-01-01

    Background Biofilm accumulates within the endotracheal tube (ETT) early after intubation. Contaminated secretions in the ETT are associated with increased risk for microbial dissemination in the distal airways and increased resistance to airflow. We evaluated the effectiveness of micro computed tomography (MicroCT) for the quantification of ETT inner volume reduction in critically ill patients. Methods We injected a known amount of gel into unused ETT to simulate secretions. We calculated the volume of gel analyzing MicroCT scans for a length of 20 cm. We then collected eleven ETTs after extubation of critically ill patients, recording clinical and demographical data. We assessed the amount of secretions by MicroCT and obtained ETT microbiological cultures. Results Gel volumes assessed by MicroCT strongly correlated with injected gel volumes (p < 0.001, r2 = 0.999). MicroCT revealed the accumulation of secretions on all the ETTs (median 0.154, IQR:0.02-0.837 mL), corresponding to an average cross-sectional area reduction of 1.7%. The amount of secretions inversely correlated with patients’ age (p = 0.011, rho = −0.727) but not with days of intubation, SAPS2, PaO2/FiO2 assessed on admission. Accumulation of secretions was higher in the cuff region (p = 0.003). Microbial growth occurred in cultures from 9/11 ETTs, and did not correlate with secretions amount. In 7/11 cases the same microbes were identified also in tracheal aspirates. Conclusions MicroCT appears as a feasible and precise technique to measure volume of secretions within ETTs after extubation. In patients, secretions tend to accumulate in the cuff region, with high variability among patients. PMID:24678963

  19. SU-E-I-85: Absorbed Dose Estimation for a Commercially Available MicroCT Scanner

    SciTech Connect

    Lau, A; Ahmad, S; Chen, Y; Ren, L; Liu, H; Yang, K

    2015-06-15

    Purpose: To quantify the simulated absorbed dose delivered for a typical scan from a commercially available microCT scanner in order to aid in the dose estimation. Methods: The simulations were conducted using the Geant4 Monte Carlo Toolkit (version 10) with the standard electromagnetic classes. The Quantum FX microCT scanner (PerkinElmer, Waltham, MA) was modeled incorporating the energy fluence and angular distributions of generated photons, spatial dimensions of nominal source-to-object and source-to-detector distances. The energy distribution was measured using a spectrometer (X-123CdTe, Amptek Inc., Bedford, USA) with a 300 angular spread from the source for the 90 kVp X-ray beams with no additional filtration. The nominal distances from the source to object consisted of three setups: 154.0 mm, 104.0 mm, and 51.96 mm. Our simulations recorded the dose absorbed in a cylindrical phantom of PMMA with a fixed length of 2 cm and varying radii (10, 20, 30 and 40 mm) using 100 million incident photons. The averaged absorbed dose in the object was then quantified for all setups. An exposure measurement of 417 mR was taken using a Radcal 9095 system utilizing 10×9–180 ion chamber with the given technique of 90 kVp, 63 μA, and 12 s. The exposure rate was also simulated with same setup to calculate the conversion factor of the beam current and the number of incident photons. Results: For a typical cone-beam scan with non-filtered 90kVp, the dose coefficients (the absorbed dose per mAs) were 2.614, 2.549 and 2.467 μGy/mAs under source to object distance of 104 mm for the object diameters of 10 mm, 20 mm and 30 mm, respectively. Conclusion: A look-up table was developed where an investigator can estimate the delivered dose using this particular microCT given the scanning protocol (kVp and mAs) as well as the size of the scanned object.

  20. Visualization of 3D osteon morphology by synchrotron radiation micro-CT

    PubMed Central

    Cooper, D M L; Erickson, B; Peele, A G; Hannah, K; Thomas, C D L; Clement, J G

    2011-01-01

    Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-μm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the

  1. Image-Guided Radiotherapy Using a Modified Industrial Micro-CT for Preclinical Applications

    PubMed Central

    Felix, Manuela C.; Fleckenstein, Jens; Kirschner, Stefanie; Hartmann, Linda; Wenz, Frederik; Brockmann, Marc A.

    2015-01-01

    Purpose/Objective Although radiotherapy is a key component of cancer treatment, its implementation into pre-clinical in vivo models with relatively small target volumes is frequently omitted either due to technical complexity or expected side effects hampering long-term observational studies. We here demonstrate how an affordable industrial micro-CT can be converted into a small animal IGRT device at very low costs. We also demonstrate the proof of principle for the case of partial brain irradiation of mice carrying orthotopic glioblastoma implants. Methods/Materials A commercially available micro-CT originally designed for non-destructive material analysis was used. It consists of a CNC manipulator, a transmission X-ray tube (10–160 kV) and a flat-panel detector, which was used together with custom-made steel collimators (1–5 mm aperture size). For radiation field characterization, an ionization chamber, water-equivalent slab phantoms and radiochromic films were used. A treatment planning tool was implemented using a C++ application. For proof of principle, NOD/SCID/γc−/− mice were orthotopically implanted with U87MG high-grade glioma cells and irradiated using the novel setup. Results The overall symmetry of the radiation field at 150 kV was 1.04±0.02%. The flatness was 4.99±0.63% and the penumbra widths were between 0.14 mm and 0.51 mm. The full width at half maximum (FWHM) ranged from 1.97 to 9.99 mm depending on the collimator aperture size. The dose depth curve along the central axis followed a typical shape of keV photons. Dose rates measured were 10.7 mGy/s in 1 mm and 7.6 mGy/s in 5 mm depth (5 mm collimator aperture size). Treatment of mice with a single dose of 10 Gy was tolerated well and resulted in central tumor necrosis consistent with therapeutic efficacy. Conclusion A conventional industrial micro-CT can be easily modified to allow effective small animal IGRT even of critical target volumes such as the brain. PMID:25993010

  2. Implementation and commissioning of an integrated micro-CT/RT system with computerized independent jaw collimation

    SciTech Connect

    Jensen, Michael D.; Hrinivich, W. Thomas; Jung, Jongho A.; Holdsworth, David W.; Drangova, Maria; Chen, Jeff; Wong, Eugene

    2013-08-15

    Purpose: To design, construct, and commission a set of computer-controlled motorized jaws for a micro-CT/RT system to perform conformal image-guided small animal radiotherapy.Methods: The authors designed and evaluated a system of custom-built motorized orthogonal jaws, which allows the delivery of off-axis rectangular fields on a GE eXplore CT 120 preclinical imaging system. The jaws in the x direction are independently driven, while the y-direction jaws are symmetric. All motors have backup encoders, verifying jaw positions. Mechanical performance of the jaws was characterized. Square beam profiles ranging from 2 × 2 to 60 × 60 mm{sup 2} were measured using EBT2 film in the center of a 70 × 70 × 22 mm{sup 3} solid water block. Similarly, absolute depth dose was measured in a solid water and EBT2 film stack 50 × 50 × 50 mm{sup 3}. A calibrated Farmer ion chamber in a 70 × 70 × 20 mm{sup 3} solid water block was used to measure the output of three field sizes: 50 × 50, 40 × 40, and 30 × 30 mm{sup 2}. Elliptical target plans were delivered to films to assess overall system performance. Respiratory-gated treatment was implemented on the system and initially proved using a simple sinusoidal motion phantom. All films were scanned on a flatbed scanner (Epson 1000XL) and converted to dose using a fitted calibration curve. A Monte Carlo beam model of the micro-CT with the jaws has been created using BEAMnrc for comparison with the measurements. An example image-guided partial lung irradiation in a rat is demonstrated.Results: The averaged random error of positioning each jaw is less than 0.1 mm. Relative output factors measured with the ion chamber agree with Monte Carlo simulations within 2%. Beam profiles and absolute depth dose curves measured from the films agree with simulations within measurement uncertainty. Respiratory-gated treatments applied to a phantom moving with a peak-to-peak amplitude of 5 mm showed improved beam penumbra (80%–20%) from 3.9 to

  3. High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.

    2012-01-01

    A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection

  4. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT.

    PubMed

    Zhao, Jintao; Hu, Xiaodong; Zou, Jing; Hu, Xiaotang

    2015-01-01

    The quality of Computed Tomography (CT) images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB) phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration. PMID:26371008

  5. Volume rendering of the tympanic cavity from micro-CT data.

    PubMed

    Skrzat, Janusz; Kozerska, Magdalena; Wroński, Sebastian; Tarasiu, Jacek; Walocha, Jerzy

    2015-01-01

    The current study presents volumetric reconstruction of the tympanic cavity obtained from micro-CT scans which pixel size was 18 μm. Thanks to this, osseous components of the tympanic cavity were shown in high optical resolution, causing that their morphological appearance was clearly demonstrated. Particular attention was paid on imaging the medial wall of the tympanic cavity, because its structures are of clinical importance. In this respect we showed spatial relationship between the promontory, the oval window, the round window and other minute structures like the pyramidal eminence, subiculum and ponticulus. Hence, application of the microcomputed tomography allowed to visualize abnormal osseous formation located within the tympanic cavity, which potentially could interrupt normal movement of the auditory ossicles. PMID:26867122

  6. Energy-Discriminative Performance of a Spectral Micro-CT System

    PubMed Central

    He, Peng; Yu, Hengyong; Bennett, James; Ronaldson, Paul; Zainon, Rafidah; Butler, Anthony; Butler, Phil; Wei, Biao; Wang, Ge

    2013-01-01

    Experiments were performed to evaluate the energy-discriminative performance of a spectral (multi-energy) micro-CT system. The system, designed by MARS (Medipix All Resolution System) Bio-Imaging Ltd. (Christchurch, New Zealand), employs a photon-counting energy-discriminative detector technology developed by CERN (European Organization for Nuclear Research). We used the K-edge attenuation characteristic of some known materials to calibrate the detector’s photon energy discrimination. For tomographic analysis, we used the compressed sensing (CS) based ordered-subset simultaneous algebraic reconstruction techniques (OS-SART) to reconstruct sample images, which is effective to reduce noise and suppress artifacts. Unlike conventional CT, the principal component analysis (PCA) method can be applied to extract and quantify additional attenuation information from a spectral CT dataset. Our results show that the spectral CT has a good energy-discriminative performance and provides more attenuation information than the conventional CT. PMID:24004864

  7. First 3D reconstruction of the rhizocephalan root system using MicroCT

    NASA Astrophysics Data System (ADS)

    Noever, Christoph; Keiler, Jonas; Glenner, Henrik

    2016-07-01

    Parasitic barnacles (Cirripedia: Rhizocephala) are highly specialized parasites of crustaceans. Instead of an alimentary tract for feeding they utilize a system of roots, which infiltrates the body of their hosts to absorb nutrients. Using X-ray micro computer tomography (MicroCT) and computer-aided 3D-reconstruction, we document the spatial organization of this root system, the interna, inside the intact host and also demonstrate its use for morphological examinations of the parasites reproductive part, the externa. This is the first 3D visualization of the unique root system of the Rhizocephala in situ, showing how it is related to the inner organs of the host. We investigated the interna from different parasitic barnacles of the family Peltogastridae, which are parasitic on anomuran crustaceans. Rhizocephalan parasites of pagurid hermit crabs and lithodid crabs were analysed in this study.

  8. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    PubMed Central

    Zhao, Jintao; Hu, Xiaodong; Zou, Jing; Hu, Xiaotang

    2015-01-01

    The quality of Computed Tomography (CT) images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB) phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration. PMID:26371008

  9. Micro-CT imaging of reservoir condition CO2 during multi-phase flow in natural rock

    NASA Astrophysics Data System (ADS)

    Andrew, M. G.; Bijeljic, B.; Menke, H. P.; Blunt, M. J.

    2014-12-01

    Micron-resolution X-ray microtomography has allowed researchers to examine the processes controlling fluid flow behaviour at the pore scale, offering the promise of a transformation in our understanding of flow and transport in porous media. Until recently wettability has only been directly accessible in extremely simplified systems. A new method is presented for the measurement of the contact angle and capillary pressure of multiple immiscible fluids at the pore scale at reservoir conditions in the scCO2-brine-carbonate system. Contact angle is found by resampling the micro-CT data onto planes orthogonal to the contact lines, allowing for vectors to be traced along the grain surface and the scCO2 - brine interface. A distribution of contact angles ranging from 35o to 55o is observed. This distribution can be understood as the result of contact angle hysteresis and surface heterogeneity on a range of length scales. Ganglion capillary pressure for each ganglion was found by measuring the curvature of the CO2-brine interface, while the pore structure was parameterised using distance maps of the pore-space. The formation of the residual clusters by snap-off was examined by comparing the ganglion capillary pressure to local pore topography. The capillary pressure was found to be inversely proportional to the radius of the largest restriction (throat) surrounding the ganglion, which validates the imbibition mechanisms used in pore-network modelling. The potential mobilization of residual ganglia was assessed using a new formulation of both the capillary and Bond numbers, rigorously based on a balance of pore-scale forces, with the majority of ganglia remobilized at Ncmacro around 1. By the use of synchrotron tomography it is possible to create high quality 4D images of dynamic processes involving the flow of multiple fluid phases. We show how the drainage process take place as a series of discreet Haines jumps. Two different types of Haines jumps were seen, one where CO

  10. MicroCT and optical coherence tomography imagistic assessment of the dental roots adhesive

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda Lavinia; Nica, Luminita; Manescu, Adrian; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2015-03-01

    Several obturation methods are available today to study the 3D filling of the root canal. There are also several methods capable to evaluate the ability to seal apically the root canals. However, the common methods of investigation are invasive; they also lead to the destruction of the samples. If the sectioning differs slightly from the desired area, the investigation is non-conclusive regarding the micro-leakages. Also, although the use of Cone-Beam Micro Computer Tomography (CBCT) appears to be most promising for endodontic purposes, its effective radiation doses are higher than with conventional intra-oral and panoramic imaging. In contrast, enface (ef) Optical Coherence Tomography (OCT) proves to be efficient for the investigation of material defects of dental restorations, dental materials, and micro-leakage at the interfaces, where the penetration depth depends on the material. Therefore, ef OCT has been proposed in our studies as a potential tool for in vivo endodontic imaging. Twenty five recently extracted human maxillary molars were selected for the study for caries or periodontal reasons. The pulp chambers were completely opened, the dental pulp was removed, and the root canals were shaped. Silver nanoparticles were used in half of the samples in order to increase the scattering of the adhesive material in comparison with the dental roots walls. The sample teeth were then probed using Time Domain (TD) OCT working at 1300 nm. A synchrotron radiation X-Ray microCT experiment was also performed. The imagistic results pointed out the efficiency of the silver nanoparticle layer used in order to increase the scattering of the root canal adhesive scattering for the OCT non-invasive investigation. MicroCT allowed for obtaining qualitative data related to the depth penetration of the root canal adhesive into the dentin walls.

  11. Free-space fluorescence tomography with adaptive sampling based on anatomical information from microCT

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Badea, Cristian T.; Hood, Greg; Wetzel, Arthur W.; Stiles, Joel R.; Johnson, G. Allan

    2010-02-01

    Image reconstruction is one of the main challenges for fluorescence tomography. For in vivo experiments on small animals, in particular, the inhomogeneous optical properties and irregular surface of the animal make free-space image reconstruction challenging because of the difficulties in accurately modeling the forward problem and the finite dynamic range of the photodetector. These two factors are fundamentally limited by the currently available forward models and photonic technologies. Nonetheless, both limitations can be significantly eased using a signal processing approach. We have recently constructed a free-space panoramic fluorescence diffuse optical tomography system to take advantage of co-registered microCT data acquired from the same animal. In this article, we present a data processing strategy that adaptively selects the optical sampling points in the raw 2-D fluorescent CCD images. Specifically, the general sampling area and sampling density are initially specified to create a set of potential sampling points sufficient to cover the region of interest. Based on 3-D anatomical information from the microCT and the fluorescent CCD images, data points are excluded from the set when they are located in an area where either the forward model is known to be problematic (e.g., large wrinkles on the skin) or where the signal is unreliable (e.g., saturated or low signal-to-noise ratio). Parallel Monte Carlo software was implemented to compute the sensitivity function for image reconstruction. Animal experiments were conducted on a mouse cadaver with an artificial fluorescent inclusion. Compared to our previous results using a finite element method, the newly developed parallel Monte Carlo software and the adaptive sampling strategy produced favorable reconstruction results.

  12. Image quality assessment of a pre-clinical flat-panel volumetric micro-CT scanner

    NASA Astrophysics Data System (ADS)

    Du, Louise Y.; Lee, Ting-Yim; Holdsworth, David W.

    2006-03-01

    Small animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. Current micro-CT systems are capable of achieving spatial resolution on the order of 10 μm, giving highly detailed anatomical information. However, the speed of data acquisition of these systems is relatively slow, when compared with clinical CT systems. Dynamic CT perfusion imaging has proven to be a powerful tool clinically in detecting and diagnosing cancer, stroke, pulmonary and ischemic heart diseases. In order to perform this technique in mice and rats, quantitative CT images must be acquired at a rate of at least 1 Hz. Recently, a research pre-clinical CT scanner (eXplore Ultra, GE Healthcare) has been designed specifically for dynamic perfusion imaging in small animals. Using an amorphous silicon flat-panel detector and a clinical slip-ring gantry, this system is capable of acquiring volumetric image data at a rate of 1 Hz, with in-plane resolution of 150 μm, while covering the entire thoracic region of a mouse or whole organs of a rat. The purpose of this study was to evaluate the principal imaging performance of the micro-CT system, in terms of spatial resolution, image uniformity, linearity, dose and voxel noise for the feasibility of imaging mice and rats. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.7 line pairs per mm and noise of 42 HU, using an acquisition interval of 8 seconds at an entrance dose of 6.4 cGy.

  13. MicroCT with energy-resolved photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Wang, X.; Meier, D.; Mikkelsen, S.; Maehlum, G. E.; Wagenaar, D. J.; Tsui, B. M. W.; Patt, B. E.; Frey, E. C.

    2011-05-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.

  14. MicroCT with energy-resolved photon-counting detectors.

    PubMed

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C

    2011-05-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  15. Simultaneous imaging of multiple contrast agents using full-spectrum micro-CT

    NASA Astrophysics Data System (ADS)

    Clark, D. P.; Touch, M.; Barber, W.; Badea, C. T.

    2015-03-01

    One of the major challenges for in vivo, micro-computed tomography (CT) imaging is poor soft tissue contrast. To increase contrast, exogenous contrast agents can be used as imaging probes. Combining these probes with a photon counting x-ray detector (PCXD) allows energy-sensitive CT and probe material decomposition from a series of images associated with different x-ray energies. We have implemented full-spectrum micro-CT using a PCXD and 2 keV energy sampling. We then decomposed multiple k-edge contrast materials present in an object (iodine, barium, and gadolinium) from water. Since the energy bins were quite narrow, the projection data was very noisy. This noise and further spectral distortions amplify errors in post-reconstruction material decompositions. Here, we propose and demonstrate a novel post-reconstruction denoising scheme which jointly enforces local and global gradient sparsity constraints, improving the contrast-to-noise ratio in full-spectrum micro-CT data and resultant material decompositions. We performed experiments using both calibration phantoms and ex vivo mouse data. Denoising increased the material contrast-to-noise ratio by an average of 13 times relative to filtered backprojection reconstructions. The relative decomposition error after denoising was 21%. To further improve material decomposition accuracy in future work, we also developed a model of the spectral distortions caused by PCXD imaging using known spectra from radioactive isotopes (109Cd, 133Ba). In future work, we plan to combine this model with the proposed denoising algorithm, enabling material decomposition with higher sensitivity and accuracy.

  16. Bone regeneration assessment by optical coherence tomography and MicroCT synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Negrutiu, Meda L.; Sinescu, Cosmin; Canjau, Silvana; Manescu, Adrian; Topalá, Florin I.; Hoinoiu, Bogdan; Romînu, Mihai; Márcáuteanu, Corina; Duma, Virgil; Bradu, Adrian; Podoleanu, Adrian G.

    2013-06-01

    Bone grafting is a commonly performed surgical procedure to augment bone regeneration in a variety of orthopaedic and maxillofacial procedures, with autologous bone being considered as the "gold standard" bone-grafting material, as it combines all properties required in a bone-graft material: osteoinduction (bone morphogenetic proteins - BMPs - and other growth factors), osteogenesis (osteoprogenitor cells) and osteoconduction (scaffold). The problematic elements of bone regenerative materials are represented by their quality control methods, the adjustment of the initial bone regenerative material, the monitoring (noninvasive, if possible) during their osteoconduction and osteointegration period and biomedical evaluation of the new regenerated bone. One of the research directions was the interface investigation of the regenerative bone materials and their behavior at different time periods on the normal femoral rat bone. 12 rat femurs were used for this investigation. In each ones a 1 mm diameter hole were drilled and a bone grafting material was inserted in the artificial defect. The femurs were removed after one, three and six months. The defects repaired by bone grafting material were evaluated by optical coherence tomography working in Time Domain Mode at 1300 nm. Three dimensional reconstructions of the interfaces were generated. The validations of the results were evaluated by microCT. Synchrotron Radiation allows achieving high spatial resolution images to be generated with high signal-to-noise ratio. In addition, Synchrotron Radiation allows acquisition of volumes at different energies and volume subtraction to enhance contrast. Evaluation of the bone grafting material/bone interface with noninvasive methods such as optical coherence tomography could act as a valuable procedure that can be use in the future in the usual clinical techniques. The results were confirmed by microCT. Optical coherence tomography can be performed in vivo and can provide a

  17. Intramyocardial capillary blood volume estimated by whole-body CT: validation by micro-CT

    NASA Astrophysics Data System (ADS)

    Dong, Yue; Beighley, Patricia E.; Eaker, Diane R.; Zamir, Mair; Ritman, Erik L.

    2008-03-01

    Fast CT has shown that myocardial perfusion (F) is related to myocardial intramuscular blood volume (Bv) as Bv=A*F+B*F 1/2 where A,B are constant coefficients. The goal of this study was to estimate the range of diameters of the vessels that are represented by the A*F term. Pigs were placed in an Electron Beam CT (EBCT) scanner for a perfusion CT scan sequence over 40 seconds after an IV contrast agent injection. Intramyocardial blood volume (Bv) and flow (F) were calculated in a region of the myocardium perfused by the LAD. Coefficients A and B were estimated over the range of F=1-5ml/g/min. After the CT scan, the LAD was injected with Microfil (R) contrast agent following which the myocardium was scanned by micro-CT at 20μm, 4μm and 2.5 μm cubic voxel resolutions. The Bv of the intramyocardial vessels was calculated for diameter ranges d=0-5, 5-10, 10-15, 15-20μm, etc. EBCT-derived data were presented so that it could be directly compared the micro-CT data. The results indicated that the blood in vessels less than 10μm in lumen diameter occupied 0.27-0.42 of total intravascular blood volume, which is in good agreement with EBCT-based values 0.28-0.48 (R2 =0.96). We conclude that whole-body CT image data obtained during the passage of a bolus of IV contrast agent can provide a measure of the intramyocardial intracapillary blood volume.

  18. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    NASA Astrophysics Data System (ADS)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  19. Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone.

    PubMed

    Jaecques, S V N; Van Oosterwyck, H; Muraru, L; Van Cleynenbreugel, T; De Smet, E; Wevers, M; Naert, I; Vander Sloten, J

    2004-04-01

    Load-bearing tissues, like bone, can be replaced by engineered tissues or tissue constructs. For the success of this treatment, a profound understanding is needed of the mechanical properties of both the native bone tissue and the construct. Also, the interaction between mechanical loading and bone regeneration and adaptation should be well understood. This paper demonstrates that microfocus computer tomography (microCT) based finite element modelling (FEM) can have an important contribution to the field of functional bone engineering as a biomechanical analysis tool to quantify the stress and strain state in native bone tissue and in tissue constructs. Its value is illustrated by two cases: (1) in vivo microCT-based FEM for the analysis of peri-implant bone adaptation and (2) design of biomechanically optimised bone scaffolds. The first case involves a combined animal experimental and numerical study, in which the peri-implant bone adaptive response is monitored by means of in vivo microCT scanning. In the second case microCT-based finite element models were created of native trabecular bone and bone scaffolds and a mechanical analysis of both structures was performed. Procedures to optimise the mechanical properties of bone scaffolds, in relation to those of native trabecular bone are discussed. PMID:14697870

  20. Optimization of a retrospective technique for respiratory-gated high speed micro-CT of free-breathing rodents

    NASA Astrophysics Data System (ADS)

    Ford, Nancy L.; Wheatley, Andrew R.; Holdsworth, David W.; Drangova, Maria

    2007-09-01

    The objective of this study was to develop a technique for dynamic respiratory imaging using retrospectively gated high-speed micro-CT imaging of free-breathing mice. Free-breathing C57Bl6 mice were scanned using a dynamic micro-CT scanner, comprising a flat-panel detector mounted on a slip-ring gantry. Projection images were acquired over ten complete gantry rotations in 50 s, while monitoring the respiratory motion in synchrony with projection-image acquisition. Projection images belonging to a selected respiratory phase were retrospectively identified and used for 3D reconstruction. The effect of using fewer gantry rotations—which influences both image quality and the ability to quantify respiratory function—was evaluated. Images reconstructed using unique projections from six or more gantry rotations produced acceptable images for quantitative analysis of lung volume, CT density, functional residual capacity and tidal volume. The functional residual capacity (0.15 ± 0.03 mL) and tidal volumes (0.08 ± 0.03 mL) measured in this study agree with previously reported measurements made using prospectively gated micro-CT and at higher resolution (150 µm versus 90 µm voxel spacing). Retrospectively gated micro-CT imaging of free-breathing mice enables quantitative dynamic measurement of morphological and functional parameters in the mouse models of respiratory disease, with scan times as short as 30 s, based on the acquisition of projection images over six gantry rotations.

  1. Contrast Enhancement of MicroCT Scans to Aid 3D Modelling of Carbon Fibre Fabric Composites

    NASA Astrophysics Data System (ADS)

    Djukic, Luke P.; Pearce, Garth M.; Herszberg, Israel; Bannister, Michael K.; Mollenhauer, David H.

    2013-12-01

    This paper presents a methodology for volume capture and rendering of plain weave and multi-layer fabric meso-architectures within a consolidated, cured laminate. Micro X-ray Computed Tomography (MicroCT) is an excellent tool for the non-destructive visualisation of material microstructures however the contrast between tows and resin is poor for carbon fibre composites. Firstly, this paper demonstrates techniques to improve the contrast of the microCT images by introducing higher density materials such as gold, iodine and glass into the fabric. Two approaches were demonstrated to be effective for enhancing the differentiation between the tows in the reconstructed microCT visualisations. Secondly, a method of generating three-dimensional volume models of woven composites using microCT scan data is discussed. The process of generating a model is explained from initial manufacture with the aid of an example plain weave fabric. These methods are to be used in the finite element modelling of three-dimensional fabric preforms in future work.

  2. Micro-CT imaging: Developing criteria for examining fetal skeletons in regulatory developmental toxicology studies - A workshop report.

    PubMed

    Solomon, Howard M; Makris, Susan L; Alsaid, Hasan; Bermudez, Oscar; Beyer, Bruce K; Chen, Antong; Chen, Connie L; Chen, Zhou; Chmielewski, Gary; DeLise, Anthony M; de Schaepdrijver, Luc; Dogdas, Belma; French, Julian; Harrouk, Wafa; Helfgott, Jonathan; Henkelman, R Mark; Hesterman, Jacob; Hew, Kok-Wah; Hoberman, Alan; Lo, Cecilia W; McDougal, Andrew; Minck, Daniel R; Scott, Lelia; Stewart, Jane; Sutherland, Vicki; Tatiparthi, Arun K; Winkelmann, Christopher T; Wise, L David; Wood, Sandra L; Ying, Xiaoyou

    2016-06-01

    During the past two decades the use and refinements of imaging modalities have markedly increased making it possible to image embryos and fetuses used in pivotal nonclinical studies submitted to regulatory agencies. Implementing these technologies into the Good Laboratory Practice environment requires rigorous testing, validation, and documentation to ensure the reproducibility of data. A workshop on current practices and regulatory requirements was held with the goal of defining minimal criteria for the proper implementation of these technologies and subsequent submission to regulatory agencies. Micro-computed tomography (micro-CT) is especially well suited for high-throughput evaluations, and is gaining popularity to evaluate fetal skeletons to assess the potential developmental toxicity of test agents. This workshop was convened to help scientists in the developmental toxicology field understand and apply micro-CT technology to nonclinical toxicology studies and facilitate the regulatory acceptance of imaging data. Presentations and workshop discussions covered: (1) principles of micro-CT fetal imaging; (2) concordance of findings with conventional skeletal evaluations; and (3) regulatory requirements for validating the system. Establishing these requirements for micro-CT examination can provide a path forward for laboratories considering implementing this technology and provide regulatory agencies with a basis to consider the acceptability of data generated via this technology. PMID:26930635

  3. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness - A Case Study on Osteoporosis Rat Bone.

    PubMed

    Wu, Yuchin; Adeeb, Samer; Doschak, Michael R

    2015-01-01

    Micro-computed tomography (Micro-CT) images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone microarchitectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA) can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of Micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived grayscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two- and three-dimensional bone microarchitecture from sham and ovariectomized (OVX) rats (n = 10/group). A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA, because Micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three-dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation, and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading. PMID:26042089

  4. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness – A Case Study on Osteoporosis Rat Bone

    PubMed Central

    Wu, Yuchin; Adeeb, Samer; Doschak, Michael R.

    2015-01-01

    Micro-computed tomography (Micro-CT) images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone microarchitectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA) can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of Micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived grayscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two- and three-dimensional bone microarchitecture from sham and ovariectomized (OVX) rats (n = 10/group). A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA, because Micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three-dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation, and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading. PMID:26042089

  5. Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region

    NASA Astrophysics Data System (ADS)

    Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2016-03-01

    We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.

  6. Nondestructive Analysis of Astromaterials by Micro-CT and Micro-XRF Analysis for PET Examination

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Righter, K.; Allen, C. C.

    2013-01-01

    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of the PET is to characterize and classify returned samples and make this information available to the larger research community who then conduct more in-depth studies on the samples. The PET tries to minimize the impact their work has on the sample suite, which has in the past limited the PET work to largely visual, nonquantitative measurements (e.g., optical microscopy). More modern techniques can also be utilized by a PET to nondestructively characterize astromaterials in much more rigorous way. Here we discuss our recent investigations into the applications of micro-CT and micro-XRF analyses with Apollo samples and ANSMET meteorites and assess the usefulness of these techniques in future PET. Results: The application of micro computerized tomography (micro-CT) to astromaterials is not a new concept. The technique involves scanning samples with high-energy x-rays and constructing 3-dimensional images of the density of materials within the sample. The technique can routinely measure large samples (up to approx. 2700 cu cm) with a small individual voxel size (approx. 30 cu m), and has the sensitivity to distinguish the major rock forming minerals and identify clast populations within brecciated samples. We have recently run a test sample of a terrestrial breccia with a carbonate matrix and multiple igneous clast lithologies. The test results are promising and we will soon analyze a approx. 600 g piece of Apollo sample 14321 to map out the clast population within the sample. Benchtop micro x-ray fluorescence (micro-XRF) instruments can rapidly scan large areas (approx. 100 sq cm) with a small pixel size (approx. 25 microns) and measure the (semi) quantitative composition of largely unprepared surfaces for all elements between Be and U, often with sensitivity on the order of a approx. 100 ppm. Our recent

  7. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    NASA Astrophysics Data System (ADS)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  8. When a 520 million-year-old Chengjiang fossil meets a modern micro-CT – a case study

    PubMed Central

    Liu, Yu; Scholtz, Gerhard; Hou, Xianguang

    2015-01-01

    The 520 million-year-old Chengjiang biota of China (UNESCO World Heritage) presents the earliest known evidence of the so-called Cambrian Explosion. Studies, however, have mainly been limited to the information exposed on the surface of the slabs. Thus far, structures preserved inside the slabs were accessed by careful removal of the matrix, in many cases with the unfortunate sacrifice of some “less important” structures, which destroys elements of exceptionally preserved specimens. Here, we show for the first time that microtomography (micro-CT) can reveal structures situated inside a Chengjiang fossil slab without causing any damage. In the present study a trilobitomorph arthropod (Xandarella spectaculum) can be reliably identified only with the application of micro-CT. We propose that this technique is an important tool for studying three-dimensionally preserved Chengjiang fossils and, most likely, also those from other biota with a comparable type of preservation, specifically similar iron concentrations. PMID:26238773

  9. When a 520 million-year-old Chengjiang fossil meets a modern micro-CT--a case study.

    PubMed

    Liu, Yu; Scholtz, Gerhard; Hou, Xianguang

    2015-01-01

    The 520 million-year-old Chengjiang biota of China (UNESCO World Heritage) presents the earliest known evidence of the so-called Cambrian Explosion. Studies, however, have mainly been limited to the information exposed on the surface of the slabs. Thus far, structures preserved inside the slabs were accessed by careful removal of the matrix, in many cases with the unfortunate sacrifice of some "less important" structures, which destroys elements of exceptionally preserved specimens. Here, we show for the first time that microtomography (micro-CT) can reveal structures situated inside a Chengjiang fossil slab without causing any damage. In the present study a trilobitomorph arthropod (Xandarella spectaculum) can be reliably identified only with the application of micro-CT. We propose that this technique is an important tool for studying three-dimensionally preserved Chengjiang fossils and, most likely, also those from other biota with a comparable type of preservation, specifically similar iron concentrations. PMID:26238773

  10. When a 520 million-year-old Chengjiang fossil meets a modern micro-CT - a case study

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Scholtz, Gerhard; Hou, Xianguang

    2015-08-01

    The 520 million-year-old Chengjiang biota of China (UNESCO World Heritage) presents the earliest known evidence of the so-called Cambrian Explosion. Studies, however, have mainly been limited to the information exposed on the surface of the slabs. Thus far, structures preserved inside the slabs were accessed by careful removal of the matrix, in many cases with the unfortunate sacrifice of some “less important” structures, which destroys elements of exceptionally preserved specimens. Here, we show for the first time that microtomography (micro-CT) can reveal structures situated inside a Chengjiang fossil slab without causing any damage. In the present study a trilobitomorph arthropod (Xandarella spectaculum) can be reliably identified only with the application of micro-CT. We propose that this technique is an important tool for studying three-dimensionally preserved Chengjiang fossils and, most likely, also those from other biota with a comparable type of preservation, specifically similar iron concentrations.

  11. Taxonomy and nomenclature of some mainland SE-Asian Coeliccia species (Odonata, Platycnemididae) using micro-CT analysis.

    PubMed

    Steinhoff, Philip O M; Uhl, Gabriele

    2015-01-01

    The taxonomic status of some mainland Southeast Asian Coeliccia species is evaluated. The following synonymies are presented: C. acco is a junior synonym of C. pyriformis; C. tomokunii that of C. scutellum; C.onoi that of C. cyanomelas. C. scutellum hainanense is promoted to species level, C. hainanense. Redescriptions of the holotype of C. pyriformis and of the lectotypes of C. scutellum and C. hainanense are presented with illustrations. The male genital ligulae were examined by means of non-destructive X-ray micro-computed tomography (micro-CT) and subsequent 3D-reconstruction. The advantage of virtual types generated by micro-CT analysis, particularly for the examination of internal structures, is discussed. PMID:26701563

  12. Challenges in the segmentation and analysis of X-ray Micro-CT image data

    NASA Astrophysics Data System (ADS)

    Larsen, J. D.; Schaap, M. G.; Tuller, M.; Kulkarni, R.; Guber, A.

    2014-12-01

    Pore scale modeling of fluid flow is becoming increasing popular among scientific disciplines. With increased computational power, and technological advancements it is now possible to create realistic models of fluid flow through highly complex porous media by using a number of fluid dynamic techniques. One such technique that has gained popularity is lattice Boltzmann for its relative ease of programming and ability to capture and represent complex geometries with simple boundary conditions. In this study lattice Boltzmann fluid models are used on macro-porous silt loam soil imagery that was obtained using an industrial CT scanner. The soil imagery was segmented with six separate automated segmentation standards to reduce operator bias and provide distinction between phases. The permeability of the reconstructed samples was calculated, with Darcy's Law, from lattice Boltzmann simulations of fluid flow in the samples. We attempt to validate simulated permeability from differing segmentation algorithms to experimental findings. Limitations arise with X-ray micro-CT image data. Polychromatic X-ray CT has the potential to produce low image contrast and image artifacts. In this case, we find that the data is unsegmentable and unable to be modeled in a realistic and unbiased fashion.

  13. Pore-Scale X-ray Micro-CT Imaging and Analysis of Oil Shales

    NASA Astrophysics Data System (ADS)

    Saif, T.

    2015-12-01

    The pore structure and the connectivity of the pore space during the pyrolysis of oil shales are important characteristics which determine hydrocarbon flow behaviour and ultimate recovery. We study the effect of temperature on the evolution of pore space and subsequent permeability on five oil shale samples: (1) Vernal Utah United States, (2) El Lajjun Al Karak Jordan, (3) Gladstone Queensland Australia (4) Fushun China and (5) Kimmerdige United Kingdom. Oil Shale cores of 5mm in diameter were pyrolized at 300, 400 and 500 °C. 3D imaging of 5mm diameter core samples was performed at 1μm voxel resolution using X-ray micro computed tomography (CT) and the evolution of the pore structures were characterized. The experimental results indicate that the thermal decomposition of kerogen at high temperatures is a major factor causing micro-scale changes in the internal structure of oil shales. At the early stage of pyrolysis, micron-scale heterogeneous pores were formed and with a further increase in temperature, the pores expanded and became interconnected by fractures. Permeability for each oil shale sample at each temperature was computed by simulation directly on the image voxels and by pore network extraction and simulation. Future work will investigate different samples and pursue insitu micro-CT imaging of oil shale pyrolysis to characterize the time evolution of the pore space.

  14. Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system

    NASA Astrophysics Data System (ADS)

    Leblond, Frederic; Kepshire, Dax; O'Hara, Julia A.; Dehghani, Hamid; Srinivasan, Subha; Mincu, N.; Hutchins, M.; Khayat, M.; Pogue, B. W.

    2009-02-01

    Fluorescence molecular tomography (FMT) has the potential to become a powerful quantitative research tool for pre-clinical applications such as evaluating the efficacy of experimental drugs. In this paper, we show how a time-domain FMT/microCT instrument can in principle be used to monitor volumetric fluorescence intensity over time for low fluorophore concentration levels. The experimental results we present relate to Protoporphyrin IX which has a quantum efficiency as much as two orders of magnitude lower compared to more conventional extrinsic dyes used for molecular imaging (e.g., Alexa Fluor dyes, Cyanine dyes). Our results highlight the high sensitivity of the single photon counting technology on which the optical system we have built is based. In conjunction with this system we have developed a diffuse optical fluorescence reconstruction technique that is robust and shown here to perform adequately even in cases when the contribution of noise to the data is important. Related to this, we show that the regularization scheme we have developed is reliable even for low fluorophore concentration values and that no adjustment of the regularization parameter needs to be made for different levels of noise. This generic reconstruction approach insures that images reconstructed from data sets acquired at different times and for different fluorescence levels can be compared on an equal footing.

  15. Contrast Agents for Quantitative MicroCT of Lung Tumors in Mice

    PubMed Central

    Lalwani, Kush; Giddabasappa, Anand; Li, Danan; Olson, Peter; Simmons, Brett; Shojaei, Farbod; Arsdale, Todd Van; Christensen, James; Jackson-Fisher, Amy; Wong, Anthony; Lappin, Patrick B; Eswaraka, Jeetendra

    2013-01-01

    The identification and quantitative evaluation of lung tumors in mouse models is challenging and an unmet need in preclinical arena. In this study, we developed a noninvasive contrast-enhanced microCT (μCT) method to longitudinally evaluate and quantitate lung tumors in mice. Commercially available μCT contrast agents were compared to determine the optimal agent for visualization of thoracic blood vessels and lung tumors in naïve mice and in non-small-cell lung cancer models. Compared with the saline control, iopamidol and iodinated lipid agents provided only marginal increases in contrast resolution. The inorganic nanoparticulate agent provided the best contrast and visualization of thoracic vascular structures; the density contrast was highest at 15 min after injection and was stable for more than 4 h. Differential contrast of the tumors, vascular structures, and thoracic air space by the nanoparticulate agent enabled identification of tumor margins and accurate quantification. μCT data correlated closely with traditional histologic measurements (Pearson correlation coefficient, 0.995). Treatment of ELM4–ALK mice with crizotinib yielded 65% reduction in tumor size and thus demonstrated the utility of quantitative μCT in longitudinal preclinical trials. Overall and among the 3 agents we tested, the inorganic nanoparticulate product was the best commercially available contrast agent for visualization of thoracic blood vessels and lung tumors. Contrast-enhanced μCT imaging is an excellent noninvasive method for longitudinal evaluation during preclinical lung tumor studies. PMID:24326223

  16. Active investigation of material damage under load using micro-CT

    NASA Astrophysics Data System (ADS)

    Navalgund, Megha; Zunjarrao, Suraj; Mishra, Debasish; Manoharan, V.

    2015-03-01

    Due the growth of composite materials across multiple industries such as Aviation, Wind there is an increasing need to not just standardize and improve manufacturing processes but also to design these materials for the specific applications. One of the things that this translates to is understanding how failure initiates and grows in these materials and at what loads, especially around internal flaws such as voids or features such as ply drops. Traditional methods of investigating internal damage such as CT lack the resolution to resolve ply level damage in composites. Interrupted testing with layer removal can be used to investigate internal damage using microscopy; however this is a destructive method. Advanced techniques such as such as DIC are useful for in-situ damage detection, however are limited to surface information and would not enable interrogating the volume. Computed tomography has become a state of the art technique for metrology and complete volumetric investigation especially for metallic components. However, its application to the composite world is still nascent. This paper demonstrates micro-CT's capability as a gauge to quantitatively estimate the extent of damage & understand the propagation of damage in PMC composites while the component is under stress.

  17. Iterative reconstruction optimisations for high angle cone-beam micro-CT

    NASA Astrophysics Data System (ADS)

    Recur, B.; Fauconneau, M.; Kingston, A.; Myers, G.; Sheppard, A.

    2014-09-01

    We address several acquisition questions that have arisen for the high cone-angle helical-scanning micro-CT facility developed at the Australian National University. These challenges are generally known in medical and industrial cone-beam scanners but can be neglected in these systems. For our large datasets, with more than 20483 voxels, minimising the number of operations (or iterations) is crucial. Large cone-angles enable high signal-to-noise ratio imaging and a large helical pitch to be used. This introduces two challenges: (i) non-uniform resolution throughout the reconstruction, (ii) over-scan beyond the region-of-interest significantly increases re- quired reconstructed volume size. Challenge (i) can be addressed by using a double-helix or lower pitch helix but both solutions slow down iterations. Challenge (ii) can also be improved by using a lower pitch helix but results in more projections slowing down iterations. This may be overcome using less projections per revolution but leads to more iterations required. Here we assume a given total time for acquisition and a given reconstruction technique (SART) and seek to identify the optimal trajectory and number of projections per revolution in order to produce the best tomogram, minimise reconstruction time required, and minimise memory requirements.

  18. Development of a Beam Hardening Correction Method for a microCT Scanner Prototype

    SciTech Connect

    Kikushima, J.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.

    2010-12-07

    The radiographic projections acquired with a microCT were simulated and then corrected for beam hardening effects using the linearized signal to equivalent thickness (LSET) method. This procedure requires a calibration signal for each pixel obtained from a set of images with filters of increasing thickness. The projections are corrected by converting the signal to an equivalent thickness using interpolation over the calibration images. The method was validated using simulated projections of different phantoms. Two calibration sets were simulated using aluminum and water filters of thicknesses ranging from 0 to 5 mm and from 0 to 50 mm, respectively. A simulation of the phantoms' projections using a monoenergetic beam was also obtained to establish the relative intensity on the tomographic images when no cupping artifacts are present. Comparison between corrected and uncorrected tomographic images shows that the LSET method effectively corrects the cupping artifact. Streaking artifacts correction with the LSET method shows better results than with the traditional water correction method. Results are independent of the two calibration materials used.

  19. MicroCT scanner performance and considerations for vascular specimen imaging.

    PubMed

    Marxen, Michael; Thornton, Michael M; Chiarot, Cameron B; Klement, Giannoula; Koprivnikar, Janet; Sled, John G; Henkelman, R Mark

    2004-02-01

    Obtaining three-dimensional geometrical data of vascular systems is of major importance to a number of research areas in medicine and biology. Examples are the characterization of tumor vasculature, modeling blood flow, or genetic effects on vascular development. The performance of the General Electric Medical Systems MS8 microCT scanner is examined in the context of these applications. The system is designed to acquire high-resolution images of specimens up to 5 cm in diameter. A maximum resolution of 38 lp/mm at the 10% modulation transfer function level or 22 microm full width at half maximum of the plane spread function can be achieved with 8.5 microm voxels and a 17 mm field of view. Three different contrast agents are discussed and applied for imaging of small animal vasculature: corrosion casting material Batson's No. 17 with an added lead pigment, silicon rubber MICROFIL MV122, and a suspension of barium sulfate (Baritop) in gelatin. Contrast for all of these agents was highly variable in different vessels as well as within the same vessel. Imaging of PMMA tubing filled with MICROFIL shows that even vessels below 20 microm in diameter are detectable and that diameter estimation of vessels based on thresholding is possible with a precision of 2-3 pixels. PMID:15000616

  20. A dedicated micro-CT beamline for the Australian Synchrotron and the Remote-CT project

    NASA Astrophysics Data System (ADS)

    Mayo, S. C.; Gureyev, T. E.; Nesterets, Y. I.; Thompson, D. A.; Siu, K. K. W.; Wallwork, K.

    2013-10-01

    A dedicated micro-CT beamline is planned for the Australian Synchrotron which will extend the synchrotron's imaging and tomography capability down to the smaller scale, incorporating phase-contrast and absorption-contrast, and an additional focussing-based mode for high-resolution. The beamline will use multi-layer mirror monochromators for enhanced flux, and will focus particularly on dynamic and high throughput studies in both monochromatic and pink-beam mode. Together with the existing Imaging and Medical beamline, this beamline will produce numerous large datasets of 10 GB or more, providing a significant data-processing challenge. The Remote-CT project addresses this by combining the "MASSIVE" supercomputing GPU cluster with XLI / X-TRACT software, developed at CSIRO. This software has extensive functionality for both processing and simulation of absorption and phase-contrast tomography data and has now been modified for parallel operation on a GPU cluster to take maximum advantage of the speed-up this enables.

  1. Development of the 3D volumetric micro-CT scanner for preclinical animals

    NASA Astrophysics Data System (ADS)

    Kim, Kyong-Woo; Kim, Kyu-Gyeom; Kim, Jae-Hee; Min, Jong-Hwan; Lee, Hee-Sin; Lee, Joonwhoan

    2011-06-01

    A high resolution micro computed tomography (micro-CT) system for live small animal imaging has been developed. The system consists of an x-ray source with micro focus spot and high brightness, rotating gantry with a x-ray tube and flat panel detector pair and a stationary and a horizontally positioned small animal bed to achieve a conebeam mode scan. The system is optimized for in vivo small animal imaging and the capability of administering respiratory anesthesia during scanning. The Feldkamp algorithm was adopted in image reconstruction with graphic processing unit (GPU). We evaluated the spatial resolution, image contrast, and uniformity of system using phantom. As the result, the spatial resolution of the system was the 56lp/mm at 10% of the MTF curve, and the radiation dose to the sample was 98mGy. The minimal resolving contrast was found to be less than 46 CT numbers on low-contrast phantom. We present the image test results of the bone and lung, and heart of the live mice. [Figure not available: see fulltext.

  2. Compensation of mechanical inaccuracies in micro-CT and nano-CT

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander; Liu, Xuan; Salmon, Phil L.

    2008-08-01

    Micro-CT and especially nano-CT scanning requires very high mechanical precision and stability of object manipulator, which is difficult to reach. Several other problems, such as drift of emission point inside an X-ray source, thermal expansion in different parts of the scanner, mechanical vibrations, and object movement or shrinkage during long scans, can also contribute to geometrical inaccuracies. All these inaccuracies result in artifacts which reduce achievable spatial resolution. Linear distortions can be partially compensated by rigid X/Y shifts in projection images. More complicated object movement and shrinkage will require non-linear transforms. This paper investigates techniques to compensate geometrical inaccuracies by linear transformation only. We have developed two methods to estimate individual X/Y shifts in each measured projection. The first method aligns measured projections with forward-projected projections iteratively to reach an optimal X/Y shift estimation. It is more suitable for mechanical inaccuracies caused by random and jittery movement. The second method uses a very short reference scan acquired immediately after a main scan to obtain estimates of X/Y shifts. This method is rather effective for mechanical inaccuracies caused by slow and coherent mechanical drifts. Both methods have been implemented and evaluated on multiple scanners. Significant improvements in image quality have been observed.

  3. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    NASA Astrophysics Data System (ADS)

    Beck, L.; Cuif, J.-P.; Pichon, L.; Vaubaillon, S.; Dambricourt Malassé, A.; Abel, R. L.

    2012-02-01

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by 14C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon-Hydrogen-Nitrogen analyzer for measuring C and N before 14C dating.

  4. Direct composite fillings: an optical coherence tomography and microCT investigation

    NASA Astrophysics Data System (ADS)

    Negrutiu, Meda L.; Sinescu, Cosmin; Borlea, Mugurel V.; Manescu, Adrian; Duma, Virgil F.; Rominu, Mihai; Podoleanu, Adrian G.

    2015-03-01

    The treatment of carious lesions requires removal of affected dental tissue thus creating cavities that are to be filled with dedicated materials. There are several methods known which are used to assess the quality of direct dental restorations, but most of them are invasive. Optical tomographic techniques are of particular importance in the medical imaging field, because these techniques can provide non-invasive diagnostic images. Using an en-face version of OCT, we have recently demonstrated real time thorough evaluation of quality of dental fillings. The major aim of this study was to analyses the optical performance of adhesives modified with zirconia particles in different concentrations in order to improve the contrast of OCT imaging of the interface between the tooth structure, adhesive and composite resin. The OCT investigations were validated by micro CT using synchrotron radiation. The OCT Swept Source is a valuable investigation tool for the clinical evaluation of class II direct composite restorations. The unmodified adhesive layer shows poor contrast on regular OCT investigations. Adding zirconia particles to the adhesive layer provides a better scattering which allows a better characterization and quantification of direct restorations.

  5. Ultrafast micro-CT for in vivo small animal imaging and industrial applications

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander

    2004-10-01

    A new, ultra-fast microCT instrument with scanning+reconstruction cycle under 50 seconds for full 3D-volume has been created. The scanner based on the scanning geometry with static object and rotation of source-camera pair(s), which allows using it for industrial applications as well as for low-dose in-vivo imaging of small laboratory animals where rotation of the object is not acceptable. Acquisition part contains two pairs of x-ray sources and cameras for data collection from complementary directions simultaneously. Reconstruction engine (cone-beam reconstruction by modified Feldkamp algotithm) includes 1, 2 or 4 dual Intel-Xeon computers working in parallel under control of the host PC through local network. The instrument specifications are following: voxel size is 48 or 96 um for corresponding 1024x1024x1024 or 512x512x512 reconstruction array; scanning time with parallel reconstruction is 50 seconds for 96um resolution. X-ray sources peak energy can be adjusted in the range of 20-65kV. Typical scanning dose is 0.4Gy. The scanner itself is a compact desktop instrument, which contains all x-ray parts and necessary shielding for safe operations in the normal laboratory environments.

  6. Micro-CT evaluation of the marginal fit of CAD/CAM all ceramic crowns

    NASA Astrophysics Data System (ADS)

    Brenes, Christian

    Objectives: Evaluate the marginal fit of CAD/CAM all ceramic crowns made from lithium disilicate and zirconia using two different fabrication protocols (model and model-less). METHODS: Forty anterior all ceramic restorations (20 lithium disilicate, 20 zirconia) were fabricated using a CEREC Bluecam scanner. Two different fabrication methods were used: a full digital approach and a printed model. Completed crowns were cemented and marginal gap was evaluated using Micro-CT. Each specimen was analyzed in sagittal and trans-axial orientations, allowing a 360° evaluation of the vertical and horizontal fit. RESULTS: Vertical measurements in the lingual, distal and mesial views had and estimated marginal gap from 101.9 to 133.9 microns for E-max crowns and 126.4 to 165.4 microns for zirconia. No significant differences were found between model and model-less techniques. CONCLUSION: Lithium disilicate restorations exhibited a more accurate and consistent marginal adaptation when compared to zirconia crowns. No statistically significant differences were observed when comparing model or model-less approaches.

  7. MicroCT analysis of calcium/phosphorus ratio maps at different bone sites

    NASA Astrophysics Data System (ADS)

    Speller, R.; Pani, S.; Tzaphlidou, M.; Horrocks, J.

    2005-08-01

    The Ca/P ratio was measured in cortical bone samples from the femoral neck, front and rear tibia of rats, rabbits and lambs using synchrotron microCT. Use of a monoenergetic X-ray beam, as provided by the synchrotron facility, generates accurate 3-D maps of the linear attenuation coefficient within the sample and hence gives the ability to map different chemical components. Data were taken at 20 keV for each bone sample and calibration phantoms. From the 3-D data sets, multiple 2-D slices were reconstructed with a slice thickness of ˜28 μm and converted to Ca/P ratios using the calibration phantom results. Average values for each animal and bone site were estimated. Differences between the same bone sites from different animals are not significant (0.3< p<0.5) while those between different bone sites and different animals are highly significant ( p<10-3) demonstrating a dependence upon lifestyle and bone use. The spatial distribution of Ca/P was found to be non-uniform for some bones and some animals possibly indicating the structural mechanism for obtaining bone strength.

  8. Anatomy of hepatic arteriolo-portal venular shunts evaluated by 3D micro-CT imaging

    PubMed Central

    Kline, Timothy L; Knudsen, Bruce E; Anderson, Jill L; Vercnocke, Andrew J; Jorgensen, Steven M; Ritman, Erik L

    2014-01-01

    The liver differs from other organs in that two vascular systems deliver its blood – the hepatic artery and the portal vein. However, how the two systems interact is not fully understood. We therefore studied the microvascular geometry of rat liver hepatic artery and portal vein injected with the contrast polymer Microfil®. Intact isolated rat livers were imaged by micro-CT and anatomic evidence for hepatic arteriolo-portal venular shunts occurring between hepatic artery and portal vein branches was found. Simulations were performed to rule out the possibility of the observed shunts being artifacts resulting from image blurring. In addition, in the case of specimens where only the portal vein was injected, only the portal vein was opacified, whereas in hepatic artery injections, both the hepatic artery and portal vein were opacified. We conclude that mixing of the hepatic artery and portal vein blood can occur proximal to the sinusoidal level, and that the hepatic arteriolo-portal venular shunts may function as a one-way valve-like mechanism, allowing flow only from the hepatic artery to the portal vein (and not the other way around). PMID:24684343

  9. Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing

    PubMed Central

    Brandt, Joshua; Doig, Graham; Tsafnat, Naomi

    2015-01-01

    The aerodynamic features of a bio-realistic 3D fruit fly wing in steady state (snapshot) flight conditions were analyzed numerically. The wing geometry was created from high resolution micro-computed tomography (micro-CT) of the fruit fly Drosophila virilis. Computational fluid dynamics (CFD) analyses of the wing were conducted at ultra-low Reynolds numbers ranging from 71 to 200, and at angles of attack ranging from -10° to +30°. It was found that in the 3D bio-realistc model, the corrugations of the wing created localized circulation regions in the flow field, most notably at higher angles of attack near the wing tip. Analyses of a simplified flat wing geometry showed higher lift to drag performance values for any given angle of attack at these Reynolds numbers, though very similar performance is noted at -10°. Results have indicated that the simplified flat wing can successfully be used to approximate high-level properties such as aerodynamic coefficients and overall performance trends as well as large flow-field structures. However, local pressure peaks and near-wing flow features induced by the corrugations are unable to be replicated by the simple wing. We therefore recommend that accurate 3D bio-realistic geometries be used when modelling insect wings where such information is useful. PMID:25954946

  10. Comparison of fan-beam, cone-beam, and spiral scan reconstruction in x-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander

    2001-06-01

    We developed and tested reconstruction software packages for different algorithms: fan-beam, cone-beam (Feldkamp) and spiral (helical) scans. All algorithms were applied to different simulations as well as to the real datasets from the commercial micro-CT instruments. From the results of testing a number of strong and weak points at different approaches was found. Several examples from the different application areas (bone microstructure, industrial applications) show typical reconstruction artifacts with different algorithms.

  11. A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging.

    PubMed

    Lee, Sang Chul; Kim, Ho Kyung; Chun, In Kon; Cho, Myung Hye; Lee, Soo Yeol; Cho, Min Hyoung

    2003-12-21

    A dedicated small-animal x-ray micro computed tomography (micro-CT) system has been developed to screen laboratory small animals such as mice and rats. The micro-CT system consists of an indirect-detection flat-panel x-ray detector with a field-of-view of 120 x 120 mm2, a microfocus x-ray source, a rotational subject holder and a parallel data processing system. The flat-panel detector is based on a matrix-addressed photodiode array fabricated by a CMOS (complementary metal-oxide semiconductor) process coupled to a CsI:T1 (thallium-doped caesium iodide) scintillator as an x-ray-to-light converter. Principal imaging performances of the micro-CT system have been evaluated in terms of image uniformity, voxel noise and spatial resolution. It has been found that the image non-uniformity mainly comes from the structural non-uniform sensitivity pattern of the flat-panel detector and the voxel noise is about 48 CT numbers at the voxel size of 100 x 100 x 200 microm3 and the air kerma of 286 mGy. When the magnification ratio is 2, the spatial resolution of the micro-CT system is about 14 1p/mm (line pairs per millimetre) that is almost determined by the flat-panel detector showing about 7 1p/mm resolving power. Through low-contrast phantom imaging studies, the minimum resolvable contrast has been found to be less than 36 CT numbers at the air kerma of 95 mGy. Some laboratory rat imaging results are presented. PMID:14727760

  12. Micro-CT image-derived metrics quantify arterial wall distensibility reduction in a rat model of pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Haworth, Steven T.; Dawson, Christopher A.

    2000-04-01

    We developed methods to quantify arterial structural and mechanical properties in excised rat lungs and applied them to investigate the distensibility decrease accompanying chronic hypoxia-induced pulmonary hypertension. Lungs of control and hypertensive (three weeks 11% O2) animals were excised and a contrast agent introduced before micro-CT imaging with a special purpose scanner. For each lung, four 3D image data sets were obtained, each at a different intra-arterial contrast agent pressure. Vessel segment diameters and lengths were measured at all levels in the arterial tree hierarchy, and these data used to generate features sensitive to distensibility changes. Results indicate that measurements obtained from 3D micro-CT images can be used to quantify vessel biomechanical properties in this rat model of pulmonary hypertension and that distensibility is reduced by exposure to chronic hypoxia. Mechanical properties can be assessed in a localized fashion and quantified in a spatially-resolved way or as a single parameter describing the tree as a whole. Micro-CT is a nondestructive way to rapidly assess structural and mechanical properties of arteries in small animal organs maintained in a physiological state. Quantitative features measured by this method may provide valuable insights into the mechanisms causing the elevated pressures in pulmonary hypertension of differing etiologies and should become increasingly valuable tools in the study of complex phenotypes in small-animal models of important diseases such as hypertension.

  13. A comparison of the thresholding strategies of micro-CT for periodontal bone loss: a pilot study

    PubMed Central

    Chang, P-C; Liang, K; Lim, JC; Chung, M-C; Chien, L-Y

    2013-01-01

    Objectives: Micro-CT provides three-dimensional details and has been widely used for biomedical assessments. This study aimed to determine the most appropriate threshold method for quantitatively assessing the dynamics of periodontal destruction. Methods: Inflammation was induced by submerging a silk ligature in the sulcus of the maxillary second molars of rats, and the animals were killed prior to ligature placement and after 7 and 21 days. The maxillae were examined for the bone resorptive activities by micro-CT, histology and tartrate-resistant acid phosphatase staining. The imaging threshold was determined by CT phantom, global and local algorithms. A bone fraction measurement from each threshold-determining technique was compared with histomorphometry. The reliability and reproducibility were examined by the intraclass correlation coefficient (ICC) and the coefficient of variation. Results: Significant reduction of inflammatory infiltration (p < 0.01) and active osteoclastic resorption (p < 0.05) from Day 7 to Day 21 were noted. High inter- and intraexaminer agreement were demonstrated in both histomorphometric and micro-CT assessments (ICC > 0.98). The algorithm-based technique demonstrated stronger correlation to histomorphometry than phantom-based thresholds, and the highest agreement was presented by the local algorithm (ICC > 0.96). This, however, was considerably computationally expensive. Conclusions: The local threshold-determining algorithm is suggested for examining inflammation-induced bone loss. Further investigation will be aimed at enhancing computational efficiency. PMID:22842634

  14. Forensic microradiology: micro-computed tomography (Micro-CT) and analysis of patterned injuries inside of bone.

    PubMed

    Thali, Michael J; Taubenreuther, Ulrike; Karolczak, Marek; Braun, Marcel; Brueschweiler, Walter; Kalender, Willi A; Dirnhofer, Richard

    2003-11-01

    When a knife is stabbed in bone, it leaves an impression in the bone. The characteristics (shape, size, etc.) may indicate the type of tool used to produce the patterned injury in bone. Until now it has been impossible in forensic sciences to document such damage precisely and non-destructively. Micro-computed tomography (Micro-CT) offers an opportunity to analyze patterned injuries of tool marks made in bone. Using high-resolution Micro-CT and computer software, detailed analysis of three-dimensional (3D) architecture has recently become feasible and allows microstructural 3D bone information to be collected. With adequate viewing software, data from 2D slice of an arbitrary plane can be extracted from 3D datasets. Using such software as a "digital virtual knife," the examiner can interactively section and analyze the 3D sample. Analysis of the bone injury revealed that Micro-CT provides an opportunity to correlate a bone injury to an injury-causing instrument. Even broken knife tips can be graphically and non-destructively assigned to a suspect weapon. PMID:14640282

  15. A registration-based segmentation method with application to adiposity analysis of mice microCT images

    NASA Astrophysics Data System (ADS)

    Bai, Bing; Joshi, Anand; Brandhorst, Sebastian; Longo, Valter D.; Conti, Peter S.; Leahy, Richard M.

    2014-04-01

    Obesity is a global health problem, particularly in the U.S. where one third of adults are obese. A reliable and accurate method of quantifying obesity is necessary. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) are two measures of obesity that reflect different associated health risks, but accurate measurements in humans or rodent models are difficult. In this paper we present an automatic, registration-based segmentation method for mouse adiposity studies using microCT images. We co-register the subject CT image and a mouse CT atlas. Our method is based on surface matching of the microCT image and an atlas. Surface-based elastic volume warping is used to match the internal anatomy. We acquired a whole body scan of a C57BL6/J mouse injected with contrast agent using microCT and created a whole body mouse atlas by manually delineate the boundaries of the mouse and major organs. For method verification we scanned a C57BL6/J mouse from the base of the skull to the distal tibia. We registered the obtained mouse CT image to our atlas. Preliminary results show that we can warp the atlas image to match the posture and shape of the subject CT image, which has significant differences from the atlas. We plan to use this software tool in longitudinal obesity studies using mouse models.

  16. Wavelet based characterization of ex vivo vertebral trabecular bone structure with 3T MRI compared to microCT

    SciTech Connect

    Krug, R; Carballido-Gamio, J; Burghardt, A; Haase, S; Sedat, J W; Moss, W C; Majumdar, S

    2005-04-11

    Trabecular bone structure and bone density contribute to the strength of bone and are important in the study of osteoporosis. Wavelets are a powerful tool to characterize and quantify texture in an image. In this study the thickness of trabecular bone was analyzed in 8 cylindrical cores of the vertebral spine. Images were obtained from 3 Tesla (T) magnetic resonance imaging (MRI) and micro-computed tomography ({micro}CT). Results from the wavelet based analysis of trabecular bone were compared with standard two-dimensional structural parameters (analogous to bone histomorphometry) obtained using mean intercept length (MR images) and direct 3D distance transformation methods ({micro}CT images). Additionally, the bone volume fraction was determined from MR images. We conclude that the wavelet based analyses delivers comparable results to the established MR histomorphometric measurements. The average deviation in trabecular thickness was less than one pixel size between the wavelet and the standard approach for both MR and {micro}CT analysis. Since the wavelet based method is less sensitive to image noise, we see an advantage of wavelet analysis of trabecular bone for MR imaging when going to higher resolution.

  17. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    PubMed

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. PMID:27009182

  18. The application of micro-CT in monitoring bone alterations in tail-suspended rats in vivo

    NASA Astrophysics Data System (ADS)

    Luan, Hui-Qin; Sun, Lian-Wen; Huang, Yun-Fei; Wang, Ying; McClean, Colin J.; Fan, Yu-Bo

    2014-06-01

    Osteopenia is a pathological process that affects human skeletal health not only on earth but also in long-time spaceflight. Micro-computed tomography (micro-CT) is a nondestructive method for assessing both bone quantity and bone quality. To investigate the characteristics of micro-CT on evaluating the microgravity-induced osteopenia (e.g. early detection time and the sensitive parameters), the bone loss process of tail-suspended rats was monitored by micro-CT in this study. 8-Week-old female Sprague Dawley rats were divided into two groups: tail suspension (TS) and control (CON). Volumetric bone mineral density (vBMD) and microstructure of the femur and tibia were evaluated in vivo by micro-CT at 0, 7, 14, 22 days. Biomechanical properties of the femur and tibia were determined by three-point bending test. The ash weight of bone was also investigated. The results showed that (1) bone loss in the proximal tibia appeared earlier than in the distal femur. (2) On day 7, the percent bone volume (BV/TV) of the tibia 15.44% decreased significantly, and the trabecular separation (Tb.Sp) 30.29% increased significantly in TS group, both of which were detected earlier than other parameters. (3) Biomechanical properties (e.g. femur, -22.4% maximum load and -23.75% Young’s modulus vs. CON) and ash weight of the femur and tibia decreased significantly in the TS group in comparison to CON group. (4) vBMD of the femur and tibia were clearly related to bone ash and dry weight (r = 0.75-0.87, p < 0.05). (5) BV/TV of both femur and tibia were clearly related to maximum load and Young’s modulus (r = 0.66-0.87, p < 0.05). Similarly, trabecular vBMD and BV/TV of the femur and tibia were clearly related to Young’s modulus (r = 0.73-0.89, p < 0.05). These indicated that BV/TV and Tb.Sp were more sensitive than other parameters for evaluating bone loss induced by tail suspension, moreover, trabecular vBMD and other parameters might be used to evaluate bone strength. Therefore

  19. Monte Carlo simulations of the dose from imaging with GE eXplore 120 micro-CT using GATE

    SciTech Connect

    Bretin, Florian; Bahri, Mohamed Ali; Luxen, André; Phillips, Christophe; Plenevaux, Alain; Seret, Alain

    2015-10-15

    Purpose: Small animals are increasingly used as translational models in preclinical imaging studies involving microCT, during which the subjects can be exposed to large amounts of radiation. While the radiation levels are generally sublethal, studies have shown that low-level radiation can change physiological parameters in mice. In order to rule out any influence of radiation on the outcome of such experiments, or resulting deterministic effects in the subjects, the levels of radiation involved need to be addressed. The aim of this study was to investigate the radiation dose delivered by the GE eXplore 120 microCT non-invasively using Monte Carlo simulations in GATE and to compare results to previously obtained experimental values. Methods: Tungsten X-ray spectra were simulated at 70, 80, and 97 kVp using an analytical tool and their half-value layers were simulated for spectra validation against experimentally measured values of the physical X-ray tube. A Monte Carlo model of the microCT system was set up and four protocols that are regularly applied to live animal scanning were implemented. The computed tomography dose index (CTDI) inside a PMMA phantom was derived and multiple field of view acquisitions were simulated using the PMMA phantom, a representative mouse and rat. Results: Simulated half-value layers agreed with experimentally obtained results within a 7% error window. The CTDI ranged from 20 to 56 mGy and closely matched experimental values. Derived organ doses in mice reached 459 mGy in bones and up to 200 mGy in soft tissue organs using the highest energy protocol. Dose levels in rats were lower due to the increased mass of the animal compared to mice. The uncertainty of all dose simulations was below 14%. Conclusions: Monte Carlo simulations proved a valuable tool to investigate the 3D dose distribution in animals from microCT. Small animals, especially mice (due to their small volume), receive large amounts of radiation from the GE eXplore 120

  20. Characterization of operating parameters of an in vivo micro CT system

    NASA Astrophysics Data System (ADS)

    Ghani, Muhammad U.; Ren, Liqiang; Yang, Kai; Chen, Wei R.; Wu, Xizeng; Liu, Hong

    2016-03-01

    The objective of this study was to characterize the operating parameters of an in-vivo micro CT system. In-plane spatial resolution, noise, geometric accuracy, CT number uniformity and linearity, and phase effects were evaluated using various phantoms. The system employs a flat panel detector with a 127 μm pixel pitch, and a micro focus x-ray tube with a focal spot size ranging from 5-30 μm. The system accommodates three magnification sets of 1.72, 2.54 and 5.10. The in-plane cutoff frequencies (10% MTF) ranged from 2.31 lp/mm (60 mm FOV, M=1.72, 2×2 binning) to 13 lp/mm (10 mm FOV, M=5.10, 1×1 binning). The results were qualitatively validated by a resolution bar pattern phantom and the smallest visible lines were in 30-40 μm range. Noise power spectrum (NPS) curves revealed that the noise peaks exponentially increased as the geometric magnification (M) increased. True in-plane pixel spacing and slice thickness were within 2% of the system's specifications. The CT numbers in cone beam modality are greatly affected by scattering and thus they do not remain the same in the three magnifications. A high linear relationship (R2 > 0.999) was found between the measured CT numbers and Hydroxyapatite (HA) loadings of the rods of a water filled mouse phantom. Projection images of a laser cut acrylic edge acquired at a small focal spot size of 5 μm with 1.5 fps revealed that noticeable phase effects occur at M=5.10 in the form of overshooting at the boundary of air and acrylic. In order to make the CT numbers consistent across all the scan settings, scatter correction methods may be a valuable improvement for this system.

  1. Micro CT imaging assessment for spatial distribution of magnetic nanoparticles in an ex vivo thrombolysis model

    NASA Astrophysics Data System (ADS)

    Wang, Fu-Sheng; Chao, Tsi-Chian; Tu, Shu-Ju

    2012-03-01

    In recent nanotechnology development, iron-based magnetic nanoparticles (MNPs) have been used in several investigations on biomedical research for small animal experiments. Their important applications include targeted drug delivery for therapeutic purpose, contrast agent for magnetic resonance imaging, and hyperthermia treatment for tumors. These MNPs can be guided by an external magnetic field due to their physical characteristics of superparamagnetism. In a recent report, authors indicated that covalently bound recombinant tissue plasminogen activator (rtPA) to MNP (MNPrtPA) with preserved enzyme activity may be guided by a bar magnet and induce target thrombolysis in an embolic model in rats. Delivery of rtPA by binding the thrombolytic drug to MNPs will improve the possibility of the drug to be delivered under magnetic guidance and retained in a local targeted area in the circulation system. In this work, an ex vivo intravascular thrombolysis model was developed to study the impact of external magnetic field on the penetration of MNP-rtPA in the blood clot samples. The samples were then scanned by a micro CT system for quantification. Images of MNPs show strong contrast with their surrounding blood clot materials. The optimum drug loading was found when 0.5 mg/ml rtPA is conjugated with 10 mg SiO2-MNP where 98% drug was attached to the carrier with full retention of its thrombolytic activity. Effective thrombolysis with tPA bound to SiO2-MNP under magnetic guidance was demonstrated in our ex vivo model where substantial reduction in time for blood clot lysis was observed compared with control groups without magnetic field application.

  2. Contrast agent comparison for three-dimensional micro-CT angiography: A cadaveric study.

    PubMed

    Kingston, Mitchell J; Perriman, Diana M; Neeman, Teresa; Smith, Paul N; Webb, Alexandra L

    2016-07-01

    Barium sulfate and lead oxide contrast media are frequently used for cadaver-based angiography studies. These contrast media have not previously been compared to determine which is optimal for the visualisation and measurement of blood vessels. In this study, the lower limb vessels of 16 embalmed Wistar rats, and four sets of cannulae of known diameter, were injected with one of three different contrast agents (barium sulfate and resin, barium sulfate and gelatin, and lead oxide combined with milk powder). All were then scanned using micro-computed tomography (CT) angiography and 3-D reconstructions generated. The number of branching generations of the rat lower limb vessels were counted and compared between the contrast agents using ANOVA. The diameter of the contrast-filled cannulae, were measured and used to calculate the accuracy of the measurements by comparing the bias and variance of the estimates. Intra- and inter-observer reliability were calculated using intra-class correlation coefficients. There was no significant difference (mean difference [MD] 0.05; MD 95% confidence interval [CI] -0.83 to 0.93) between the number of branching generations for barium sulfate-resin and lead oxide-milk powder. Barium sulfate-resin demonstrated less bias and less variance of the estimates (MD 0.03; standard deviation [SD] 1.96 mm) compared to lead oxide-milk powder (MD 0.11; SD 1.96 mm) for measurements of contrast-filled cannulae scanned at high resolution. Barium sulfate-resin proved to be more accurate than lead oxide-milk powder for high resolution micro-CT scans and is preferred due to its non-toxicity. This technique could be applied to any embalmed specimen model. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27075920

  3. Enamel and dentin mineralization in familial hypophosphatemic rickets: a micro-CT study

    PubMed Central

    Costa, F W G; Soares, E C S; Williams, J R; Fonteles, C S R

    2015-01-01

    Objectives: The aim of the present study was to analyse the mineralization pattern of enamel and dentin in patients affected by X-linked hypophosphatemic rickets (XLHR) using micro-CT (µCT), and to associate enamel and dentin mineralization in primary and permanent teeth with tooth position, gender and the presence/absence of this disease. Methods: 19 teeth were collected from 5 individuals from the same family, 1 non-affected by XLHR and 4 affected by XLHR. Gender, age, tooth position (anterior/posterior) and tooth type (deciduous/permanent) were recorded for each patient. Following collection, teeth were placed in 0.1% thymol solution until µCT scan. Projection images were reconstructed and analysed. A plot profile describing the greyscale distance relationship in µCT images was achieved through a line bisecting each tooth in a region with the presence of enamel and dentin. The enamel and dentin mineralization densities were measured and compared. Univariate ANOVA and post hoc Tukey tests were used for all comparisons. Results: Teeth of all affected patients presented dentin with a different mineralization pattern compared with the teeth of healthy patients with dentin defects observed next to the pulp chambers. Highly significant differences were found for gray values between anterior and posterior teeth (p < 0.05), affected and non-affected (p < 0.05), as well as when position and disease status were considered (p < 0.05). Conclusions: In conclusion, the mineralization patterns of dentin differed when comparing teeth from patients with and without FHR, mainly next to pulp chambers where areas with porosity and consequently lower mineral density and dentin defects were found. PMID:25651274

  4. Enamel pearls in permanent dentition: case report and micro-CT evaluation

    PubMed Central

    Versiani, MA; Cristescu, RC; Pécora, JD; de Sousa-Neto, MD

    2013-01-01

    Objectives: To investigate the frequency, position, number and morphology of enamel pearls (EPs) using micro-CT (µCT) and to report a case of an EP mimicking an endodontic–periodontic lesion. Methods: Cone beam CT (CBCT) was performed in a patient to evaluate a radio-opaque nodule observed on the left maxillary first molar during the radiographic examination. Additionally, 23 EPs were evaluated regarding frequency, position, number and morphology by means of µCT. The results were statistically compared using the Student’s t-test for independent samples. Results: 1 pearl was presented in 13 specimens, while 5 specimens presented 2 pearls. The most frequent location of the EPs was the furcation between the disto-buccal and the palatal roots of the maxillary molars. Overall, the mean major diameter, volume and surface area were 1.98 ± 0.85 mm, 1.76 ± 1.36 mm3 and 11.40 ± 7.59 mm2, respectively, with no statistical difference between maxillary second and third molars (p > 0.05). In the case report, CBCT revealed an EP between the disto-buccal and the palatal roots of the maxillary first left molar associated with advanced localized periodontitis. The tooth was referred for extraction. Conclusions: EPs, located generally in the furcation area, were observed in 0.74% of the sample. The majority was an enamel–dentin pearl type and no difference was found in maxillary second and third molars regarding diameter, volume and surface area of the pearls. In this report, the EP mimicked an endodontic–periodontic lesion and was a secondary aetiological factor in the periodontal breakdown. PMID:23520396

  5. Assessment of the Impact of Zoledronic Acid on Ovariectomized Osteoporosis Model Using Micro-CT Scanning

    PubMed Central

    Shuai, Bo; Shen, Lin; Yang, Yanping; Ma, Chen; Zhu, Rui; Xu, Xiaojuan

    2015-01-01

    Purpose/Objective Prompted by preliminary findings, this study was conducted to investigate the impact of zoledronic acid on the cancellous bone microstructure and its effect on the level of β-catenin in a mouse model of postmenopausal osteoporosis. Methods and Materials 96 8-week-old specific-pathogen-free C57BL/6 mice were randomly divided into 4 groups (24 per group): a sham group, an ovariectomized osteoporosis model group, an estradiol-treated group, and a zoledronic acid-treated group. Five months after surgery, the third lumbar vertebra and left femur of the animals were dissected and scanned using micro-computed tomography (micro-CT) to acquire three-dimensional imagery of their cancellous bone microstructure. The impact of ovariectomy, the effect of estradiol, and the effect of zoledronic acid intervention on cancellous bone microstructure, as well as on the expression of β-catenin, were evaluated. Results The estradiol-treated and the zoledronic acid-treated group exhibited a significant increase in the bone volume fraction, trabecular number, trabecular thickness, bone surface to bone volume ratio (BS/BV), and β-catenin expression, when compared with those of the control group (P <0.01). In contrast, the structure model index, trabecular separation, and BS/BV were significantly lower compared with those of the model group (P <0.01). No differences were observed in the above parameters between animals of the zoledronic acid-treated and the estradiol-treated group. Conclusion These results suggest that increased β-catenin expression may be the mechanism underlying zoledronic acid-related improvement in the cancellous bone microstructure in ovariectomized mice. Our findings provide a scientific rationale for using zoledronic acid as a therapeutic intervention to prevent bone loss in post-menopausal women. PMID:26148020

  6. HECTOR: A 240kV micro-CT setup optimized for research

    NASA Astrophysics Data System (ADS)

    Masschaele, Bert; Dierick, Manuel; Van Loo, Denis; Boone, Matthieu N.; Brabant, Loes; Pauwels, Elin; Cnudde, Veerle; Van Hoorebeke, Luc

    2013-10-01

    X-ray micro-CT has become a very powerful and common tool for non-destructive three-dimensional (3D) visualization and analysis of objects. Many systems are commercially available, but they are typically limited in terms of operational freedom both from a mechanical point of view as well as for acquisition routines. HECTOR is the latest system developed by the Ghent University Centre for X-ray Tomography (http://www.ugct.ugent.be) in collaboration with X-Ray Engineering (XRE bvba, Ghent, Belgium). It consists of a mechanical setup with nine motorized axes and a modular acquisition software package and combines a microfocus directional target X-ray source up to 240 kV with a large flat-panel detector. Provisions are made to install a line-detector for a maximal operational range. The system can accommodate samples up to 80 kg, 1 m long and 80 cm in diameter while it is also suited for high resolution (down to 4 μm) tomography. The bi-directional detector tiling is suited for large samples while the variable source-detector distance optimizes the signal to noise ratio (SNR) for every type of sample, even with peripheral equipment such as compression stages or climate chambers. The large vertical travel of 1 m can be used for helical scanning and a vertical detector rotation axis allows laminography experiments. The setup is installed in a large concrete bunker to allow accommodation of peripheral equipment such as pumps, chillers, etc., which can be integrated in the modular acquisition software to obtain a maximal correlation between the environmental control and the CT data taken. The acquisition software does not only allow good coupling with the peripheral equipment but its scripting feature is also particularly interesting for testing new and exotic acquisition routines.

  7. Micro-CT Imaging of Denatured Chitin by Silver to Explore Honey Bee and Insect Pathologies

    PubMed Central

    Butzloff, Peter R.

    2011-01-01

    Background Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term “denatured chitin” calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. Methodology/Principal Findings A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT). Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi), at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. Conclusions/Significance The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may provide an

  8. Pore-scale simulation of carbonate dissolution in micro-CT images

    NASA Astrophysics Data System (ADS)

    Pereira Nunes, J. P.; Blunt, M. J.; Bijeljic, B.

    2016-02-01

    We present a particle-based method to simulate carbonate dissolution at the pore scale directly on the voxels of three-dimensional micro-CT images. The flow field is computed on the images by solving the incompressible Navier-Stokes equations. Rock-fluid interaction is modeled using a three-step approach: solute advection, diffusion, and reaction. Advection is simulated with a semianalytical pore-scale streamline tracing algorithm, diffusion by random walk is superimposed, while the reaction rate is defined by the flux of particles through the pore-solid interface. We derive a relationship between the local particle flux and the independently measured batch calcite dissolution rate. We validate our method against a dynamic imaging experiment where a Ketton oolite is imaged during CO2-saturated brine injection at reservoir conditions. The image-calculated increases in porosity and permeability are predicted accurately, and the spatial distribution of the dissolution front is correctly replicated. The experiments and simulations are performed at a high flow rate, in the uniform dissolution regime - Pe ≫ 1 and PeDa ≪ 1—thus extending the reaction throughout the sample. Transport is advection dominated, and dissolution is limited to regions with significant inflow of solute. We show that the sample-averaged reaction rate is 1 order of magnitude lower than that measured in batch reactors. This decrease is the result of restrictions imposed on the flux of solute to the solid surface by the heterogeneous flow field, at the millimeter scale.

  9. Airway and pulmonary vascular measurements using contrast-enhanced micro-CT in rodents.

    PubMed

    Counter, W B; Wang, I Q; Farncombe, T H; Labiris, N R

    2013-06-15

    Preclinical imaging allows pulmonary researchers to study lung disease and pulmonary drug delivery noninvasively and longitudinally in small animals. However, anatomically localizing a pathology or drug deposition to a particular lung region is not easily done. Thus, a detailed knowledge of the anatomical structure of small animal lungs is necessary for understanding disease progression and in addition would facilitate the analysis of the imaging data, mapping drug deposition and relating function to structure. In this study, contrast-enhanced micro-computed tomography (CT) of the lung produced high-resolution images that allowed for the characterization of the rodent airway and pulmonary vasculature. Contrast-enhanced micro-CT was used to visualize the airways and pulmonary vasculature in Sprague-Dawley rats (200-225 g) and BALB/c mice (20-25 g) postmortem. Segmented volumes from these images were processed to yield automated measurements of the airways and pulmonary vasculature. The diameters, lengths, and branching angles of the airway, arterial, and venous trees were measured and analyzed as a function of generation number and vessel diameter to establish rules that could be applied at all levels of tree hierarchy. In the rat, airway, arterial, and venous tress were measured down to the 20th, 16th, and 14th generation, respectively. In the mouse, airway, arterial, and venous trees were measured down to the 16th, 8th, and 7th generation, respectively. This structural information, catalogued in a rodent database, will increase our understanding of lung structure and will aid in future studies of the relationship between structure and function in animal models of disease. PMID:23564512

  10. MicroCT and microMRI imaging of a prenatal mouse model of increased brain size

    NASA Astrophysics Data System (ADS)

    López, Elisabeth K. N.; Stock, Stuart R.; Taketo, Makoto M.; Chenn, Anjen; Ravosa, Matthew J.

    2008-08-01

    There are surprisingly few experimental models of neural growth and cranial integration. This and the dearth of information regarding fetal brain development detract from a mechanistic understanding of cranial integration and its relevance to the patterning of skull form, specifically the role of encephalization on basicranial flexion. To address this shortcoming, our research uses transgenic mice expressing a stabilized form of β-catenin to isolate the effects of relative brain size on craniofacial development. These mice develop highly enlarged brains due to an increase in neural precursors, and differences between transgenic and wild-type mice are predicted to result solely from variation in brain size. Comparisons of wild-type and transgenic mice at several prenatal ages were performed using microCT (Scanco Medical MicroCT 40) and microMRI (Avance 600 WB MR spectrometer). Statistical analyses show that the larger brain of the transgenic mice is associated with a larger neurocranium and an altered basicranial morphology. However, body size and postcranial ossification do not seem to be affected by the transgene. Comparisons of the rate of postcranial and cranial ossification using microCT also point to an unexpected effect of neural growth on skull development: increased fetal encephalization may result in a compensatory decrease in the level of cranial ossification. Therefore, if other life history factors are held constant, the ontogeny of a metabolically costly structure such as a brain may occur at the expense of other cranial structures. These analyses indicate the benefits of a multifactorial approach to cranial integration using a mouse model.

  11. Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto

    2011-03-01

    Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.

  12. Serial CT Findings of Paragonimus Infested Dogs and the Micro-CT Findings of the Worm Cysts

    PubMed Central

    Lee, Chang Hyun; Goo, Jin Mo; Lee, Hyun Ju; Hong, Sung-Tae; Shen, Cheng Hua; Chung, Doo Hyun; Son, Kyu Ri; Chang, Jung Min; Eo, Hong

    2007-01-01

    Objective To investigate the serial CT findings of Paragonimus westermani infected dogs and the microscopic structures of the worm cysts using Micro-CT. Materials and Methods This study was approved by the committee on animal research at our institution. Fifteen dogs infected with P. westermani underwent serial contrast-enhanced CT scans at pre-infection, after 10 days of infection, and monthly thereafter until six months for determining the radiologic-pathologic correlation. Three dogs (one dog each time) were sacrificed at 1, 3 and 6 months, respectively. After fixation of the lungs, both multi-detector CT and Micro-CT were performed for examining the worm cysts. Results The initial findings were pleural effusion and/or subpleural ground-glass opacities or linear opacities at day 10. At day 30, subpleural and peribronchial nodules appeared with hydropneumothorax and abdominal or chest wall air bubbles. Cavitary change and bronchial dilatation began to be seen on CT scan at day 30 and this was mostly seen together with mediastinal lymphadenopathy at day 60. Thereafter, subpleural ground-glass opacities and nodules with or without cavitary changes were persistently observed until day 180. After cavitary change of the nodules, the migratory features of the subpleural or peribronchial nodules were seen on all the serial CT scans. Micro-CT showed that the cyst wall contained dilated interconnected tubular structures, which had communications with the cavity and the adjacent distal bronchus. Conclusion The CT findings of paragonimiasis depend on the migratory stage of the worms. The worm cyst can have numerous interconnected tubular channels within its own wall and these channels have connections with the cavity and the adjacent distal bronchus. PMID:17923779

  13. Characterization of regional deformation and material properties of the intact explanted vein by microCT and computational analysis

    PubMed Central

    Gomez, Arnold David; Zou, Huashan; Shiu, Yan-Ting; Hsu, Edward W.

    2014-01-01

    Purpose Detailed mechanical information of the vein is important to better understand remodeling of the vessel in disease states, but has been difficult to obtain due to its thinness, unique geometry, and limitations of mechanical testing. This study presents a novel method for characterizing deformation of the intact explanted vein under physiological loads and determining its material properties by combining high-resolution imaging and computational analysis. Methods High-resolution CT (microCT) was used to image an iodine-stained, excised porcine internal jugular vein sample under extension to 100% and 120% of in situ length, and inflation and 2, 10, 20 mmHg of pressure, inside a microCT-compatible hydrostatic loading chamber. Regional strains were measured with the finite element (FE) image registration method known as Hyperelastic Warping. Material properties were approximated with inverse FE characterization by optimizing stiffness-related coefficients so to match simulated strains to the experimental measurements. Results The observed morphology and regional strain of the vein were found to be relatively heterogeneous. The regional variability in the measured strain was primarily driven by geometry. Although iodine treatment may result in tissue stiffening, which requires additional investigation, it is effective in allowing detailed detection of vein geometry. Conclusions The feasibility and utility of using microCT and computational analysis to characterize mechanical responses and material properties of the vein were demonstrated. The presented method is a promising alternative or addition to mechanical testing for characterizing veins or other similarly delicate vessels in their native anatomical configuration under a wide range of realistic or simulated environmental and loading conditions. PMID:25541587

  14. Internal morphology of the nonsyndromic prematurely fused sagittal suture in the human skull--A preliminary micro-CT study.

    PubMed

    Nowaczewska, W; Ziółkowski, G; Dybała, B

    2015-10-01

    Although nonsyndromic craniosynostosis (NSC) of the sagittal suture is a well-known type of craniosynostosis, little is currently known about the internal morphology of this prematurely fused suture in modern humans. Recently, micro-computed tomography (micro-CT) has been applied as a new tool for the quantitative evaluation of cranial suture morphology. However, so far there are only a small number of reports concerning studies of the internal morphology of prematurely fused sagittal suture in humans using micro-CT. The primary aim of this study was to examine the internal morphology of a completely obliterated sagittal suture in NSC. Two modern human skulls were used in this study: a skull of a child (aged 10 ± 2.5 years) displaying NSC of the sagittal suture and a skull of an adult showing non-prematurely completely obliterated sagittal suture. Quantitative variables of the sagittal sutures were assessed using method proposed by the authors. Porosity, and relative thickness of three bone layers in two examined skulls (inner cortical, diploë and outer cortical) were analysed using micro-CT in three equal sections of the sagittal suture. In the case of the prematurely fused suture, there were statistically significant differences mainly in the mean values of the porosity, thickness and relative thickness of the diploë between the anterior part and the two other parts (central and posterior) of this suture. Significant differences were also observed in some of the analysed variables between the sections of the sagittal suture of the skull with NSC and the normal skull. PMID:26122169

  15. Micro CT Analysis of Spine Architecture in a Mouse Model of Scoliosis

    PubMed Central

    Gao, Chan; Chen, Brian P.; Sullivan, Michael B.; Hui, Jasmine; Ouellet, Jean A.; Henderson, Janet E.; Saran, Neil

    2015-01-01

    Objective: Mice homozygous for targeted deletion of the gene encoding fibroblast growth factor receptor 3 (FGFR3−/−) develop kyphoscoliosis by 2 months of age. The first objective of this study was to use high resolution X-ray to characterize curve progression in vivo and micro CT to quantify spine architecture ex vivo in FGFR3−/− mice. The second objective was to determine if slow release of the bone anabolic peptide parathyroid hormone related protein (PTHrP-1-34) from a pellet placed adjacent to the thoracic spine could inhibit progressive kyphoscoliosis. Materials and methods: Pellets loaded with placebo or PTHrP-1-34 were implanted adjacent to the thoracic spine of 1-month-old FGFR3−/− mice obtained from in house breeding. X rays were captured at monthly intervals up to 4 months to quantify curve progression using the Cobb method. High resolution post-mortem scans of FGFR3−/− and FGFR3+/+ spines, from C5/6 to L4/5, were captured to evaluate the 3D structure, rotation, and micro-architecture of the affected vertebrae. Un-decalcified and decalcified histology were performed on the apical and adjacent vertebrae of FGFR3−/− spines, and the corresponding vertebrae from FGFR3+/+ spines. Results: The mean Cobb angle was significantly greater at all ages in FGFR3−/− mice compared with wild type mice and appeared to stabilize around skeletal maturity at 4 months. 3D reconstructions of the thoracic spine of 4-month-old FGFR3−/− mice treated with PTHrP-1-34 revealed correction of left/right asymmetry, vertebral rotation, and lateral displacement compared with mice treated with placebo. Histologic analysis of the apical vertebrae confirmed correction of the asymmetry in PTHrP-1-34 treated mice, in the absence of any change in bone volume, and a significant reduction in the wedging of intervertebral disks (IVD) seen in placebo treated mice. Conclusion: Local treatment of the thoracic spine of juvenile FGFR3−/− mice with a bone anabolic

  16. Rotational micro-CT using a clinical C-arm angiography gantry

    SciTech Connect

    Patel, V.; Hoffmann, K. R.; Ionita, C. N.; Keleshis, C.; Bednarek, D. R.; Rudin, S.

    2008-10-15

    Rotational angiography (RA) gantries are used routinely to acquire sequences of projection images of patients from which 3D renderings of vascular structures are generated using Feldkamp cone-beam reconstruction algorithms. However, these systems have limited resolution (<4 lp/mm). Micro-computed tomography (micro-CT) systems have better resolution (>10 lp/mm) but to date have relied either on rotating object imaging or small bore geometry for small animal imaging, and thus are not used for clinical imaging. The authors report here the development and use of a 3D rotational micro-angiography (RMA) system created by mounting a micro-angiographic fluoroscope (MAF) [35 {mu}m pixel, resolution >10 lp/mm, field of view (FOV)=3.6 cm] on a standard clinical FPD-based RA gantry (Infinix, Model RTP12303J-G9E, Toshiba Medical Systems Corp., Tustin, CA). RA image sequences are obtained using the MAF and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to MAF acquisition) full-FOV (FFOV) FPD RA sequences (194 {mu}m pixel, FOV=20 cm) were also obtained to complete the missing data. The RA gantry was calibrated using a helical bead phantom. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF were aligned spatially with the lower-dose FPD images, and the pixel values in the FPD image data were scaled to match those of the MAF. Images of a rabbit with a coronary stent placed in an artery in the Circle of Willis were obtained and reconstructed. The MAF images appear well aligned with the FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97, respectively) Greater details without any visible truncation artifacts are seen in 3D RMA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 {mu}m diameter) are approximately 192{+-}21 and 313{+-}38 {mu}m for the 3D RMA and FPD data, respectively. In addition, for the dual-acquisition 3D RMA

  17. Self-calibration of a cone-beam micro-CT system

    SciTech Connect

    Patel, V.; Chityala, R. N.; Hoffmann, K. R.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2009-01-15

    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CB{mu}CT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CB{mu}CT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 {mu}m in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only obviates

  18. Conversion of a Micro-CT Scanned Rock Fracture Into a Useful Model

    SciTech Connect

    Crandall, Dustin; Bromhal, Grant; Smith, Duane

    2009-01-01

    is currently available from micro-CT scanning equipment can compound this problem. This study evaluates several methods of obtaining rational CFD meshes from a complex physical geometry, and discusses the benefits and disadvantages of the different procedures as they pertain to flow through a natural fracture in rock.

  19. Postcranial skeletal pneumaticity: a case study in the use of quantitative microCT to assess vertebral structure in birds.

    PubMed

    Fajardo, R J; Hernandez, E; O'Connor, P M

    2007-07-01

    Limb elements in birds have been characterized as exhibiting a reduction in trabecular bone, thinner cortices and decreased bending strength when pneumatized, yet it is unclear if these characteristics generalize to the axial skeleton. Thin section techniques, the traditional gold standard for bone structure studies, have most commonly been applied to the study of avian bone. This destructive technique, however, makes it subsequently impossible to use the same samples in experimental testing systems that allow researchers to correlate structure with the mechanical properties of the bone. Micro-computed tomography (microCT), a non-destructive X-ray imaging technique, can be used to assess the effect of pneumatization on vertebral cortical and trabecular bone through virtual extraction and structural quantification of each tissue type. We conducted a preliminary investigation of the application of microCT methods to the study of cortical and trabecular bone structure in a small sample of pneumatic and apneumatic thoracic vertebrae. The sample consisted of two similar-sized anatids, Aix sponsa (n = 7) and Oxyura jamaicensis (n = 5). Volumes of interest were created that contoured (outlined) the boundaries of the ventral cortical bone shell, the trabecular compartment and the whole centrum (cortical bone + trabecular bone), and allowed independent structural analysis of each volume of interest. Results indicated that bone volume fraction of the whole centrum was significantly higher in the apneumatic O. jamaicensis than in the pneumatized A. sponsa (A. sponsa = 36%, O. jamaicensis = 48%, P < 0.05). In contrast, trabecular bone volume fraction was similar between the two species. The ventral cortical bone shell was approximately 23% thinner (P < 0.05) in A. sponsa (0.133 mm) compared with apneumatic O. jamaicensis (0.172 mm). This case study demonstrates that microCT is a powerful non-destructive imaging technique that may be applied to the three-dimensional study of

  20. R4D on Ramp

    NASA Technical Reports Server (NTRS)

    1956-01-01

    This Photograph taken in 1956 shows the first of three R4D Skytrain aircraft on the ramp behind the NACA High-Speed Flight Station. Note the designation 'United States NACA' on the side of the aircraft. NACA stood for the National Advisory Committee for Aeronautics, which evolved into the National Aeronautics and Space Administration (NASA) in 1958. The R4D Skytrain was one of the early workhorses for NACA and NASA at Edwards Air Force Base, California, from 1952 to 1984. Designated the R4D by the U.S. Navy, the aircraft was called the C-47 by the U.S. Army and U.S. Air Force and the DC-3 by its builder, Douglas Aircraft. Nearly everyone called it the 'Gooney Bird.' In 1962, Congress consolidated the military-service designations and called all of them the C-47. After that date, the R4D at NASA's Flight Research Center (itself redesignated the Dryden Flight Research Center in 1976) was properly called a C-47. Over the 32 years it was used at Edwards, three different R4D/C-47s were used to shuttle personnel and equipment between NACA/NASA Centers and test locations throughout the country and for other purposes. One purpose was landing on 'dry' lakebeds used as alternate landing sites for the X-15, to determine whether their surfaces were hard (dry) enough for the X-15 to land on in case an emergency occurred after its launch and before it could reach Rogers Dry Lake at Edwards Air Force Base. The R4D/C-47 served a variety of needs, including serving as the first air-tow vehicle for the M2-F1 lifting body (which was built of mahogany plywood). The C-47 (as it was then called) was used for 77 tows before the M2-F1 was retired for more advanced lifting bodies that were dropped from the NASA B-52 'Mothership.' The R4D also served as a research aircraft. It was used to conduct early research on wing-tip-vortex flow visualization as well as checking out the NASA Uplink Control System. The first Gooney Bird was at the NACA High-Speed Flight Research Station (now the Dryden

  1. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning1

    PubMed Central

    Gee, Carole T.

    2013-01-01

    • Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction. PMID:25202495

  2. Micro-CT Sections and Histological Sections of Mouse Skull Defects Implanted with Cartilage Grown in a Rotating Bioreactor

    NASA Astrophysics Data System (ADS)

    Duke, P. J.; Montufar-Solis, D.; Nguyen, H. C.; Cody, D. D.

    2008-06-01

    Using cartilage to replace/repair bone is advantageous as no scaffolding is required to form the implant which disappears as bone is formed during the endochondral process. Previously, we demonstrated that cartilage spheroids, grown in a rotating bioreactor, (Synthecon, Inc.) and implanted into a 2 mm skull defect, contributed to healing of the defect. In this report, skulls with or without implants were subjected to microCT scans, and sections from these scans were compared to histological sections of the defect region of demineralized skulls from the same experiment. The area of the defect staining for bone in histological sections of demineralized skulls was the same region shown as mineralized in CT sections. Defects without implants were shown in serial CT sections and histological sections, to be incompletely healed. This study demonstrates that microCT scans are an important corollary to histological studies evaluating the use of implants in healing of bony defects. Supported in part by NIH/NIDCR Training Grant T35 DE07252 and by Cancer Center Support Grant (CA-16672).

  3. Computer-aided analysis of airway trees in micro-CT scans of ex vivo porcine lung tissue.

    PubMed

    Bauer, Christian; Adam, Ryan; Stoltz, David A; Beichel, Reinhard R

    2012-12-01

    We present a highly automated approach to obtain detailed structural models of airway trees from ex vivo porcine lung tissue imaged with a high resolution micro-CT scanner. Such information is an important prerequisite to systematically study models of lung disease that affect airway morphology. The method initially identifies all tubular airway-like structures in the lung. In a second processing step, these structures are grouped into a connected airway tree by utilizing prior knowledge about the airway trees branching pattern. The method was evaluated on 12 micro-CT scans from four tracheal lobes of piglets imaged at three different inflation levels. For this study, two control piglets and two cystic fibrosis piglets were used. For systematic validation of our approach, an airway nomenclature was developed for the pig airway tree. Out of more than 3500 airway tree segments assessed during evaluation, 88.45% were correctly identified by the method. No false positive airway branches were found. A detailed performance analysis for different airway tree hierarchy levels, lung inflation levels and piglets with/without cystic fibrosis is presented in the paper. PMID:22959430

  4. Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT

    NASA Astrophysics Data System (ADS)

    Artaechevarria, X.; Pérez-Martín, D.; Ceresa, M.; de Biurrun, G.; Blanco, D.; Montuenga, L. M.; van Ginneken, B.; Ortiz-de-Solorzano, C.; Muñoz-Barrutia, A.

    2009-11-01

    Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.

  5. Quantitative 3D shape description of dust particles from treated seeds by means of X-ray micro-CT.

    PubMed

    Devarrewaere, Wouter; Foqué, Dieter; Heimbach, Udo; Cantre, Dennis; Nicolai, Bart; Nuyttens, David; Verboven, Pieter

    2015-06-16

    Crop seeds are often treated with pesticides before planting. Pesticide-laden dust particles can be abraded from the seed coating during planting and expelled into the environment, damaging nontarget organisms. Drift of these dust particles depends on their size, shape and density. In this work, we used X-ray micro-CT to examine the size, shape (sphericity) and porosity of dust particles from treated seeds of various crops. The dust properties quantified in this work were very variable in different crops. This variability may be a result of seed morphology, seed batch, treatment composition, treatment technology, seed cleaning or an interaction of these factors. The intraparticle porosity of seed treatment dust particles varied from 0.02 to 0.51 according to the crop and generally increased with particle size. Calculated settling velocities demonstrated that accounting for particle shape and porosity is important in drift studies. For example, the settling velocity of dust particles with an equivalent diameter of 200 μm may vary between 0.1 and 1.2 m s(-1), depending on their shape and density. Our analysis shows that in a wind velocity of 5 m s(-1), such particles ejected at 1 m height may travel between 4 and 50 m from the source before settling. Although micro-CT is a valuable tool to characterize dust particles, the current image processing methodology limits the number of particles that can be analyzed. PMID:26023822

  6. Volume of sealer in the apical region of teeth filled by different techniques: a micro-CT analysis.

    PubMed

    Araújo, Vanessa Lessa; Souza-Gabriel, Aline Evangelista; Cruz Filho, Antônio Miranda da; Pécora, Jesus Djalma; Silva, Ricardo Gariba

    2016-01-01

    The volume of sealer in the apical 1 mm of teeth filled using different techniques was evaluated by micro-commuted tomography (micro-CT). Sixty-four maxillary central incisors were prepared using NiTi rotary instruments. Teeth were randomly distributed into four groups according to root canal sealers (AH Plus, Endofill, Sealapex, and Sealer 26) and subdivided into two subgroups according to the filling techniques (active and passive lateral condensation; n = 8 each). Subsequently, teeth were examined using the 1174 SkyScan micro-CT device. Images were reconstructed using the NRecon software, and the sealer volume (mm3) in the apical region was analyzed using the two-way ANOVA and post-hoc Student-Newman-Keuls test (α = 0.05). The lowest volume of sealer was observed in teeth filled with Sealapex (0.100 ± 0.009) and Endofill (0.103 ± 0.010). The highest volume was observed in teeth filled with AH Plus (0.112 ± 0.008) and Sealer 26 (0.109 ± 0.018) (p > 0.05). Regarding the filling technique, a lower sealer volume was observed using the active lateral condensation technique compared with that using the passive lateral condensation technique (0.100 ± 0.010 vs. 0.111 ± 0.012) (p < 0.05). Therefore, the lowest volume of sealer was observed in teeth filled with Sealapex and Endofill using the active lateral condensation technique. PMID:27050936

  7. Investigation of signal thresholding to reduce the effects of instrument noise of an EMCCD based micro-CT system

    NASA Astrophysics Data System (ADS)

    Podgorsak, Alexander R.; Bysani Krishnakumar, Sumukh; Setlur Nagesh, S. V.; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2016-03-01

    This project investigated the signal thresholding effectiveness at reducing the instrument noise of an electron multiplying charged coupled device (EMCCD) based micro-CT system at low x-ray exposure levels. Scans of a mouse spine and an iodine phantom were taken using an EMCCD detector coupled with a micro-CT system. An iodine filter of 4 mg/cm2 area density was placed in the beam. The output signal was thresholded using some multiple of the inherent background noise. For each threshold, 100, 200, and 300 frames were summed for each projection to evaluate the effect on the reconstructed image. The projection images from the scans were compared using line profiles and their SNR. Our results indicate that, as the threshold was increased, the line profiles of the projection images showed less statistical variation, but also lower signal levels, so that the SNR of the projection images decreased as the threshold increased. When the line profile of a projection image obtained using a signal threshold is compared with one obtained using energy integrating mode, the profile obtained using thresholding had less variation than that obtained using energy integration, which indicates less instrument noise. The SNR at the edges of the scan object is higher in the thresholded images when compared with the energy integrated projection images. We conclude that thresholding the output signal from an EMCCD detector at low x-ray exposure levels is an effective method to reduce the instrument noise of an EMCCD detector.

  8. Fast 4D segmentation of large datasets using graph cuts

    NASA Astrophysics Data System (ADS)

    Lombaert, Herve; Sun, Yiyong; Cheriet, Farida

    2011-03-01

    In this paper, we propose to use 4D graph cuts for the segmentation of large spatio-temporal (4D) datasets. Indeed, as 4D datasets grow in popularity in many clinical areas, so will the demand for efficient general segmentation algorithms. The graph cuts method1 has become a leading method for complex 2D and 3D image segmentation in many applications. Despite a few attempts2-5 in 4D, the use of graph cuts on typical medical volume quickly exceeds today's computer capacities. Among all existing graph cuts based methods6-10 the multilevel banded graph cuts9 is the fastest and uses the least amount of memory. Nevertheless, this method has its limitation. Memory becomes an issue when using large 4D volume sequences, and small structures become hardly recoverable when using narrow bands. We thus improve the boundary refinement efficiency by using a 4D competitive region growing. First, we construct a coarse graph at a low resolution with strong temporal links to prevent the shrink bias inherent to the graph cuts method. Second, we use a competitive region growing using a priority queue to capture all fine details. Leaks are prevented by constraining the competitive region growing within a banded region and by adding a viscosity term. This strategy yields results comparable to the multilevel banded graph cuts but is faster and allows its application to large 4D datasets. We applied our method on both cardiac 4D MRI and 4D CT datasets with promising results.

  9. From the sample preparation to the volume rendering images of small animals: A step by step example of a procedure to carry out the micro-CT study of the leafhopper insect Homalodisca vitripennis (Hemiptera: Cicadellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pictures of structures inside of the body. Combining micro-CT with Digital Video Library systems, and linking this to Big Data, will change the way researchers, entomologist, and the public search and use anato...

  10. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner

    SciTech Connect

    Kim, Haksoo; Welford, Scott; Fabien, Jeffrey; Zheng, Yiran; Yuan, Jake; Brindle, James; Yao, Min; Lo, Simon; Wessels, Barry; Machtay, Mitchell; Sohn, Jason W.; Sloan, Andrew

    2014-02-15

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, with radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A

  11. Nondestructive Analysis of Apollo Samples by Micro-CT and Micro-XRF Analysis: A PET Style Examination

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan A.

    2014-01-01

    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of a PET is to characterize and classify the returned samples, making this information available to the general research community who can then conduct more in-depth studies on the samples. A PET strives to minimize the impact their work has on the sample suite, which often limits the PET work to largely visual measurements and observations like optical microscopy. More modern techniques can also be utilized by future PET to nondestructively characterize astromaterials in a more rigorous way. Here we present our recent analyses of Apollo samples 14321 and 14305 by micro-CT and micro-XRF (respectively), assess the potential for discovery of "new" Apollo samples for scientific study, and evaluate the usefulness of these techniques in future PET efforts.

  12. Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images

    NASA Astrophysics Data System (ADS)

    Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2015-09-01

    We study capillary trapping in porous media using direct pore-scale simulation of two-phase flow on micro-CT images of a Berea sandstone and a sandpack. The trapped non-wetting phase saturations are predicted by solving the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework to simulate primary drainage followed by water injection. Using these simulations, we analyse the effects of initial non-wetting-phase saturation, capillary number and flow direction on the residual saturation. The predictions from our numerical method are in agreement with published experimental measurements of capillary trapping curves. This shows that our direct simulation method can be used to elucidate the effect of pore structure and flow pattern of capillary trapping and provides a platform to study the physics of multiphase flow at the pore scale.

  13. Local plate/rod descriptors of 3D trabecular bone micro-CT images from medial axis topologic analysis

    SciTech Connect

    Peyrin, Francoise; Attali, Dominique; Chappard, Christine; Benhamou, Claude Laurent

    2010-08-15

    Purpose: Trabecular bone microarchitecture is made of a complex network of plate and rod structures evolving with age and disease. The purpose of this article is to propose a new 3D local analysis method for the quantitative assessment of parameters related to the geometry of trabecular bone microarchitecture. Methods: The method is based on the topologic classification of the medial axis of the 3D image into branches, rods, and plates. Thanks to the reversibility of the medial axis, the classification is next extended to the whole 3D image. Finally, the percentages of rods and plates as well as their mean thicknesses are calculated. The method was applied both to simulated test images and 3D micro-CT images of human trabecular bone. Results: The classification of simulated phantoms made of plates and rods shows that the maximum error in the quantitative percentages of plate and rods is less than 6% and smaller than with the structure model index (SMI). Micro-CT images of human femoral bone taken in osteoporosis and early or advanced osteoarthritis were analyzed. Despite the large physiological variability, the present method avoids the underestimation of rods observed with other local methods. The relative percentages of rods and plates were not significantly different between osteoarthritis and osteoporotic groups, whereas their absolute percentages were in relation to an increase of rod and plate thicknesses in advanced osteoarthritis with also higher relative and absolute number of nodes. Conclusions: The proposed method is model-independent, robust to surface irregularities, and enables geometrical characterization of not only skeletal structures but entire 3D images. Its application provided more accurate results than the standard SMI on simple simulated phantoms, but the discrepancy observed on the advanced osteoarthritis group raises questions that will require further investigations. The systematic use of such a local method in the characterization of

  14. Analyzing the human liver vascular architecture by combining vascular corrosion casting and micro-CT scanning: a feasibility study

    PubMed Central

    Debbaut, Charlotte; Segers, Patrick; Cornillie, Pieter; Casteleyn, Christophe; Dierick, Manuel; Laleman, Wim; Monbaliu, Diethard

    2014-01-01

    Although a full understanding of the hepatic circulation is one of the keys to successfully perform liver surgery and to elucidate liver pathology, relatively little is known about the functional organization of the liver vasculature. Therefore, we materialized and visualized the human hepatic vasculature at different scales, and performed a morphological analysis by combining vascular corrosion casting with novel micro-computer tomography (CT) and image analysis techniques. A human liver vascular corrosion cast was obtained by simultaneous resin injection in the hepatic artery (HA) and portal vein (PV). A high resolution (110 μm) micro-CT scan of the total cast allowed gathering detailed macrovascular data. Subsequently, a mesocirculation sample (starting at generation 5; 88 × 68 × 80 mm³) and a microcirculation sample (terminal vessels including sinusoids; 2.0 × 1.5 × 1.7 mm³) were dissected and imaged at a 71-μm and 2.6-μm resolution, respectively. Segmentations and 3D reconstructions allowed quantifying the macro-and mesoscale branching topology, and geometrical features of HA, PV and hepatic venous trees up to 13 generations (radii ranging from 13.2 mm to 80 μm; lengths from 74.4 mm to 0.74 mm), as well as microvascular characteristics (mean sinusoidal radius of 6.63 μm). Combining corrosion casting and micro-CT imaging allows quantifying the branching topology and geometrical features of hepatic trees using a multiscale approach from the macro-down to the microcirculation. This may lead to novel insights into liver circulation, such as internal blood flow distributions and anatomical consequences of pathologies (e.g. cirrhosis). PMID:24433401

  15. Human pulmonary acinar airspace segmentation from three-dimensional synchrotron radiation micro CT images of secondary pulmonary lobule

    NASA Astrophysics Data System (ADS)

    Kawata, Y.; Hosokawa, T.; Niki, N.; Umetani, K.; Nakano, Y.; Ohmatsu, H.; Moriyama, N.; Itoh, H.

    2011-03-01

    The recognition of abnormalities relative to the lobular anatomy has become increasingly important in the diagnosis and differential diagnosis of lung abnormalities at clinical routines of CT examinations. This paper aims for a 3-D microstructural analysis of the pulmonary acinus with isotropic spatial resolution in the range of several micrometers by using micro CT. Previously, we demonstrated the ability of synchrotron radiation micro CT (SRμCT) using offset scan mode in microstructural analysis of the whole part of the secondary pulmonary lobule. In this paper, we present a semi-automatic method to segment the acinar and subacinar airspaces from the secondary pulmonary lobule imaged by the SRμCT. The method began with a segmentation of the tissues such as pleural surface, interlobular septa, alveola wall, or vessel using threshold technique and 3-D connected component analysis. Follow-on stages then constructed 3-D air space separated by tissues and represented branching patterns of airways and airspaces distal to the terminal bronchiole. Finally, a graph-partitioning approach isolated acini whose stems were interactively defined as the terminal bronchiole in the secondary pulmonary lobule. Additionally, the isolated acinar airspace was segmented into subacini in which the airway was considered as the stem using the graph-partitioning approach. Results demonstrate that the proposed method can extract several acinar airspaces from the 3-D SRμCT image of secondary pulmonary lobule and that the extracted acinar airspace enable an accurate quantitative description of the anatomy of the human acinus for interpretation of the basic unit of pulmonary structure and function.

  16. Evaluation of the marginal fit of full ceramic crowns by the microcomputed tomography (micro-CT) technique

    PubMed Central

    Demir, Necla; Ozturk, Atiye Nilgun; Malkoc, Meral Arslan

    2014-01-01

    Objective: To evaluate the marginal gap (MG) and absolute marginal discrepancy (MD) of full ceramic crowns with two finish line designs, shoulder and chamfer, using microcomputed tomography (micro-CT) before and after cementation. Materials and Methods: Sixty extracted human maxillary premolar teeth were divided into two groups based on the finish line design: Group I: 90° shoulder and Group II: 135° chamfer. The specimens were further grouped based on the type of full ceramic crown they received: Group A: Feldspathic Cerec inLab ceramic system, Group B: Cerec inLab aluminum oxide ceramic system and Group C: Lithium disilicate press ceramic system. Before cementation, five crowns from each group were scanned using micro-CT in two sections, sagittal and coronal, to determine the MG and MD values for four regions of the crown (sagittal buccal, sagittal lingual, coronal mesial and coronal distal). After cementation and thermal cycling, the scanning was repeated. Measurements were obtained from 10 points for each region, 80 points totally, to evaluate the MG and MD values. Files were processed using NRecon and CTAn software. Results were statistically analyzed using one- and two-way ANOVA and Tukey HSD tests (P = 0.05). Results: Full ceramic systems showed clinically acceptable marginal adaptation values. The Feldspathic Cerec inLab ceramic system generally presented the lowest variance, except in the MG values of the coronal mesial region. The MG and MD values of all ceramics increased significantly after cementation, except in the shoulder preparation design (sagittal buccal region) for MG and in the chamfer preparation design (sagittal lingual region) for MD values. Conclusions: Full-ceramic crowns showed clinically acceptable marginal adaptation values. The Feldspathic Cerec inLab ceramic system (Vitablocs Mark II) generally presented the lowest variance when compared with the other ceramics, except for the MG values on the mesial surface of the coronal section

  17. Evaluating the dose effects of a longitudinal micro-CT study on pulmonary tissue in C57BL/6 mice

    NASA Astrophysics Data System (ADS)

    Detombe, Sarah A.; Dunmore-Buyze, Joy; Petrov, Ivailo E.; Drangova, Maria

    2012-03-01

    Background: Micro-computed tomography offers numerous advantages for small animal imaging, including the ability to monitor the same animals throughout a longitudinal study. However, concerns are often raised regarding the effects of x-ray dose accumulated over the course of the experiment. In this study, we scan C57BL/6 mice multiple times per week for six weeks, to determine the effect of the cumulative dose on pulmonary tissue at the end of the study. Methods/Results: C57BL/6 male mice were split into two groups (irradiated group=10, control group=10). The irradiated group was scanned (80kVp/50mA) each week for 6 weeks; the weekly scan session had three scans. This resulted in a weekly dose of 0.84 Gy, and a total study dose of 5.04 Gy. The control group was scanned on the final week. Scans from weeks 1 and 6 were reconstructed and analyzed: overall, there was no significant difference in lung volume or lung density between the control group and the irradiated group. Similarly, there were no significant differences between the week 1 and week 6 scans in the irradiated group. Histological samples taken from excised lung tissue also showed no evidence of inflammation or fibrosis in the irradiated group. Conclusion: This study demonstrates that a 5 Gy x-ray dose accumulated over six weeks during a longitudinal micro-CT study has no significant effects on the pulmonary tissue of C57BL/6 mice. As a result, the many advantages of micro- CT imaging, including rapid acquisition of high-resolution, isotropic images in free-breathing mice, can be taken advantage of in longitudinal studies without concern for negative dose-related effects.

  18. Investigation of the effect of tube voltage and imaging geometry on phase contrast imaging for a micro-CT system

    NASA Astrophysics Data System (ADS)

    Gui, Jianbao; Zou, Jing; Rong, Junyan; Hu, Zhanli; Zhang, Qiyang; Zheng, Hairong; Xia, Dan

    2012-03-01

    Based upon a bench-top micro-CT system, propagation-based phase-contrast imaging has been investigated using insects and a thin plastic sheet. The system mainly includes a micro-focus source with focal spot size of 13-20 μm and a cooled X-ray CCD detector with pixel size of 24 μm. The edge-enhancement effect can be found clearly in the acquired images. With a 0.5 mm thickness plastic edge phantom, the effects of X-ray tube voltage and imaging geometry on the phase-contrast imaging were investigated, and quantitative index, edge-enhancement index (EEI), were also calculated. In our study, an interesting phenomenon was observed that the phase-contrast effect becomes more pronounced as the tube voltage increases from 20 kVp to 90 kVp. Further investigation indicates that smaller focal spot size resulting from the reduction of tube current at higher tube voltage, has caused the unexpected phenomenon. Inferred from our results, phase-contrast effect is insensitive to the tube voltage in the range of 20-90 kVp (widely used in medical diagnosis); however, it is sensitive to the focal spot size. In addition, for the investigation of the effect of imaging geometry, an optimal geometric magnification range of 2.5-4.5 is suggested to get a good phase-contrast imaging for a micro-CT system with source-to-detector distance of 720 mm.

  19. Volume shrinkage of bone, brain and muscle tissue in sample preparation for micro-CT and light sheet fluorescence microscopy (LSFM).

    PubMed

    Buytaert, Jan; Goyens, Jana; De Greef, Daniel; Aerts, Peter; Dirckx, Joris

    2014-08-01

    Two methods are especially suited for tomographic imaging with histological detail of macroscopic samples that consist of multiple tissue types (bone, muscle, nerve or fat): Light sheet (based) fluorescence microscopy (LSFM) and micro-computed tomography (micro-CT). Micro-CT requires staining with heavy chemical elements (and thus fixation and sometimes dehydration) in order to make soft tissue imageable when measured alongside denser structures. LSMF requires fixation, decalcification, dehydration, clearing and staining with a fluorescent dye. The specimen preparation of both imaging methods is prone to shrinkage, which is often not mentioned, let alone quantified. In this paper the presence and degree of shrinkage are quantitatively identified for the selected preparation methods/stains. LSFM delivers a volume shrinkage of 17% for bone, 56% for muscle and 62% for brain tissue. The three most popular micro-CT stains (phosphotungstic acid, iodine with potassium iodide, and iodine in absolute ethanol) deliver a volume shrinkage ranging from 10 to 56% for muscle and 27-66% for brain, while bone does not shrink in micro-CT preparation. PMID:24963987

  20. Longitudinal in vivo evaluation of bone regeneration by combined measurement of multi-pinhole SPECT and micro-CT for tissue engineering

    NASA Astrophysics Data System (ADS)

    Lienemann, Philipp S.; Metzger, Stéphanie; Kiveliö, Anna-Sofia; Blanc, Alain; Papageorgiou, Panagiota; Astolfo, Alberto; Pinzer, Bernd R.; Cinelli, Paolo; Weber, Franz E.; Schibli, Roger; Béhé, Martin; Ehrbar, Martin

    2015-05-01

    Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.

  1. In Vivo Quantitative Assessment of Myocardial Structure, Function, Perfusion and Viability Using Cardiac Micro-computed Tomography

    PubMed Central

    van Deel, Elza; Ridwan, Yanto; van Vliet, J. Nicole; Belenkov, Sasha; Essers, Jeroen

    2016-01-01

    The use of Micro-Computed Tomography (MicroCT) for in vivo studies of small animals as models of human disease has risen tremendously due to the fact that MicroCT provides quantitative high-resolution three-dimensional (3D) anatomical data non-destructively and longitudinally. Most importantly, with the development of a novel preclinical iodinated contrast agent called eXIA160, functional and metabolic assessment of the heart became possible. However, prior to the advent of commercial MicroCT scanners equipped with X-ray flat-panel detector technology and easy-to-use cardio-respiratory gating, preclinical studies of cardiovascular disease (CVD) in small animals required a MicroCT technologist with advanced skills, and thus were impractical for widespread implementation. The goal of this work is to provide a practical guide to the use of the high-speed Quantum FX MicroCT system for comprehensive determination of myocardial global and regional function along with assessment of myocardial perfusion, metabolism and viability in healthy mice and in a cardiac ischemia mouse model induced by permanent occlusion of the left anterior descending coronary artery (LAD). PMID:26967592

  2. In Vivo Quantitative Assessment of Myocardial Structure, Function, Perfusion and Viability Using Cardiac Micro-computed Tomography.

    PubMed

    van Deel, Elza; Ridwan, Yanto; van Vliet, J Nicole; Belenkov, Sasha; Essers, Jeroen

    2016-01-01

    The use of Micro-Computed Tomography (MicroCT) for in vivo studies of small animals as models of human disease has risen tremendously due to the fact that MicroCT provides quantitative high-resolution three-dimensional (3D) anatomical data non-destructively and longitudinally. Most importantly, with the development of a novel preclinical iodinated contrast agent called eXIA160, functional and metabolic assessment of the heart became possible. However, prior to the advent of commercial MicroCT scanners equipped with X-ray flat-panel detector technology and easy-to-use cardio-respiratory gating, preclinical studies of cardiovascular disease (CVD) in small animals required a MicroCT technologist with advanced skills, and thus were impractical for widespread implementation. The goal of this work is to provide a practical guide to the use of the high-speed Quantum FX MicroCT system for comprehensive determination of myocardial global and regional function along with assessment of myocardial perfusion, metabolism and viability in healthy mice and in a cardiac ischemia mouse model induced by permanent occlusion of the left anterior descending coronary artery (LAD). PMID:26967592

  3. SU-E-I-84: Accuracy Comparison of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using In-Air Micro-CT Image Volume

    SciTech Connect

    Lee, Y; Fullerton, G; Goins, B

    2015-06-15

    Purpose: Tumor volume is considered as a better predictor for therapy response monitoring and tumor staging over Response Evaluation Criteria In Solid Tumors (RECIST) or World Health Organization (WHO) criteria. In this study, the accuracy of subcutaneous rodent tumor volumes using preclinical magnetic resonance imaging (MRI), micro-computed tomography (micro-CT) and ultrasound (US) equipment and with an external caliper was compared using in-air micro-CT image volume of excised tumors determined as reference tumor volume in our prior study. Methods: MR, US and micro-CT images of subcutaneous SCC4 head and neck tumor xenografts were acquired 4, 6, 9, 11 and 13 days after tumor cell inoculation. Before MR and US scans, caliper measurements were made. After tumors were excised, in-air micro-CT imaging and ex vivo caliper measurements were performed. Tumor volumes were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three image modalities and caliper, and compared with reference tumor volume by linear regression analysis as well as Bland-Altman plots. A one-way Analysis of Variance (ANOVA) test was also performed to compare volumes among caliper measurements. Results: The correlation coefficients (R2) of the regression lines for tumor volumes measured by the three imaging modalities and caliper were 0.9939, 0.9669, 0.9806, 0.9274, 0.9619 and 0.9819 for MRI, US and micro-CT, caliperbeforeMRI, caliperbeforeUS and ex vivo caliper respectively. In Bland-Altman plots, the average of tumor volume difference from reference tumor volume (bias) was significant for caliper and micro- CT, but not for MRI and US. Comparison of caliper measurements showed a significant difference (p < 0.05). Conclusion: Using the in-air micro-CT image volume, tumor volume measured by MRI was the most accurate among the three imaging modalities. In vivo caliper volume measurements showed unreliability while ex

  4. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues

    PubMed Central

    Metscher, Brian D

    2009-01-01

    Background Comparative, functional, and developmental studies of animal morphology require accurate visualization of three-dimensional structures, but few widely applicable methods exist for non-destructive whole-volume imaging of animal tissues. Quantitative studies in particular require accurately aligned and calibrated volume images of animal structures. X-ray microtomography (microCT) has the potential to produce quantitative 3D images of small biological samples, but its widespread use for non-mineralized tissues has been limited by the low x-ray contrast of soft tissues. Although osmium staining and a few other techniques have been used for contrast enhancement, generally useful methods for microCT imaging for comparative morphology are still lacking. Results Several very simple and versatile staining methods are presented for microCT imaging of animal soft tissues, along with advice on tissue fixation and sample preparation. The stains, based on inorganic iodine and phosphotungstic acid, are easier to handle and much less toxic than osmium, and they produce high-contrast x-ray images of a wide variety of soft tissues. The breadth of possible applications is illustrated with a few microCT images of model and non-model animals, including volume and section images of vertebrates, embryos, insects, and other invertebrates. Each image dataset contains x-ray absorbance values for every point in the imaged volume, and objects as small as individual muscle fibers and single blood cells can be resolved in their original locations and orientations within the sample. Conclusion With very simple contrast staining, microCT imaging can produce quantitative, high-resolution, high-contrast volume images of animal soft tissues, without destroying the specimens and with possibilities of combining with other preparation and imaging methods. Such images are expected to be useful in comparative, developmental, functional, and quantitative studies of morphology. PMID:19545439

  5. 4D flow imaging: current status to future clinical applications.

    PubMed

    Markl, Michael; Schnell, Susanne; Barker, Alex J

    2014-05-01

    4D flow MRI permits a comprehensive in-vivo assessment of three-directional blood flow within 3-dimensional vascular structures throughout the cardiac cycle. Given the large coverage permitted from a 4D flow acquisition, the distribution of vessel wall and flow parameters along an entire vessel of interest can thus be derived from a single measurement without being dependent on multiple predefined 2D acquisitions. In addition to qualitative 3D visualizations of complex cardiac and vascular flow patterns, quantitative flow analysis can be performed and is complemented by the ability to compute sophisticated hemodynamic parameters, such as wall shear stress or 3D pressure difference maps. These metrics can provide information previously unavailable with conventional modalities regarding the impact of cardiovascular disease or therapy on global and regional changes in hemodynamics. This review provides an introduction to the methodological aspects of 4D flow MRI to assess vascular hemodynamics and describes its potential for the assessment and understanding of altered hemodynamics in the presence of cardiovascular disease. PMID:24700368

  6. A Preliminary Study on Sinus Fungus Ball with MicroCT and X-Ray Fluorescence Technique

    PubMed Central

    Jiang, Zidong; Zhang, Kai; Huang, Wanxia; Yuan, Qingxi

    2016-01-01

    Background Sinus fungus ball, an accumulation of fungal dense concretions, is a common disease in practice, and might cause fatal complications or lead to death once converted into invasive type. Early preoperative diagnosis of this disease can lead to appropriate treatment for patients and prevent multiple surgical procedures. Up to now, the diagnostic criteria of sinus fungus ball have been defined and computed tomography (CT) scan was considered as a valuable preoperative diagnostic tool. However, the sensitivity of clinical CT is only about 62%. Thus, investigating the factors which influence sensitivity is necessary for clinical CT to be a more valuable preoperative diagnosis tool. Furthermore, CT scan usually presents micro-calcifications or spots with metallic density in sinus fungus ball. Previous literatures show that there are some metallic elements such as calcium and zinc in fungus ball, and they concluded that endodontic treatment has a strong correlation with the development of maxillary sinus fungus ball and zinc ion was an exogenous risk factor. But the pathogenesis of sinus fungus ball still remains unclear because fungus ball can also develop in other non-maxillary sinuses or the maxillary sinus without root canal treatment. Is zinc ion the endogenous factor? Study on this point might be also helpful for investigating the pathogenesis of sinus fungus ball. In this paper, we tried to investigate the factors which influence the sensitivity of clinical CT by imaging sinus fungus ball with microCT. The origin of zinc ion was also studied through elements test for different fungal ball samples using x-ray fluorescence technique. Methods Specimens including fungal ball material and sinus mucosa from patients confirmed by pathological findings were extracted after surgery. All fungal ball specimens came from sphenoid sinus, ethmoidal sinus and maxillary sinus with or without previous endodontic treatment respectively. All of them were imaged by microCT

  7. Identification of New Lithic Clasts in Lunar Breccia 14305 by Micro-CT and Micro-XRF Analysis

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan A.; Carpenter, Paul K.; Jolliff, Bradley L.

    2014-01-01

    From 1969 to 1972, Apollo astronauts collected 382 kg of rocks, soils, and core samples from six locations on the surface of the Moon. The samples were initially characterized, largely by binocular examination, in a custom-built facility at Johnson Space Center (JSC), and the samples have been curated at JSC ever since. Despite over 40 years of study, demand for samples remains high (500 subsamples per year are allocated to scientists around the world), particularly for plutonic (e.g., anorthosites, norites, etc.) and evolved (e.g., granites, KREEP basalts) lithologies. The reason for the prolonged interest is that as new scientists and new techniques examine the samples, our understanding of how the Moon, Earth, and other inner Solar System bodies formed and evolved continues to grow. Scientists continually clamor for new samples to test their emerging hypotheses. Although all of the large Apollo samples that are igneous rocks have been classified, many Apollo samples are complex polymict breccias that have previously yielded large (cm-sized) igneous clasts. In this work we present the initial efforts to use the non-destructive techniques of micro-computed tomography (micro-CT) and micro x-ray fluorescence (micro-XRF) to identify large lithic clasts in Apollo 14 polymict breccia sample 14305. The sample in this study is 14305,483, a 150 g slab of regolith breccia 14305 measuring 10x6x2 cm (Figure 1a). The sample was scanned at the University of Texas High-Resolution X-ray CT Facility on an Xradia MicroXCT scanner. Two adjacent overlapping volumes were acquired at 49.2 micrometer resolution and stitched together, resulting in 1766 slices. Each volume was acquired at 100 kV accelerating voltage and 98 mA beam current with a 1 mm CaF2 filter, with 2161 views gathered over 360deg at 3 seconds acquisition time per view. Micro-XRF analyses were done at Washington University in St. Louis, Missouri on an EDAX Orbis PC micro-XRF instrument. Multiple scans were made at 40 k

  8. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    SciTech Connect

    Pyka, Grzegorz; Kerckhofs, Greet

    2014-01-15

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

  9. Concentration-dependent specimen shrinkage in iodine-enhanced microCT

    PubMed Central

    Vickerton, Paula; Jarvis, Jonathan; Jeffery, Nathan

    2013-01-01

    Iodine potassium iodide (I2KI) solution can be employed as a contrast agent for the visualisation of soft tissue structures in micro-computed tomography studies. This technique provides high resolution images of soft tissue non-destructively but initial studies suggest that the stain can cause substantial specimen shrinkage. The degree of specimen shrinkage, and potential deformation, is an important consideration when using the data for morphological studies. Here we quantify the macroscopic volume changes in mouse skeletal muscle, cardiac muscle and cerebellum as a result of immersion in the common fixatives 10% phosphate-buffered formal saline, 70% ethanol and 3% glutaraldehyde, compared with I2KI staining solution at concentrations of 2, 6, 10 and 20%. Immersion in the I2KI solution resulted in dramatic changes of tissue volume, which were far larger than the shrinkage from formalin fixation alone. The degree of macroscopic change was most dependent upon the I2KI concentration, with severe shrinkage of 70% seen in solutions of 20% I2KI after 14 days' incubation. When using this technique care needs to be taken to use the lowest concentration that will give adequate contrast to minimise artefacts due to shrinkage. PMID:23721431

  10. Variation in osteocyte lacunar morphology and density in the human femur - a synchrotron radiation micro-CT study

    SciTech Connect

    Carter, Yasmin; Thomas, C David L.; Clement, John G; Peele, Andrew G; Hannah, Kevin; Cooper, David M.L.

    2013-04-09

    In recent years there has been growing interest in the spatial properties of osteocytes (including density and morphology) and how these potentially relate to adaptation, disease and aging. This interest has, in part, arisen from the availability of increasingly high-resolution 3D imaging modalities such as synchrotron radiation (SR) micro-CT. As resolution increases, field of view generally decreases. Thus, while increasingly detailed spatial information is obtained, it is unclear how representative this information is of the skeleton or even the isolated bone. The purpose of this research was to describe the variation in osteocyte lacunar density, morphology and orientation within the femur from a healthy young male human. Multiple anterior, posterior, medial and lateral blocks (2 mm × 2 mm) were prepared from the proximal femoral shaft and SR micro-CT imaged at the Advanced Photon Source. Average lacunar densities (± standard deviation) from the anterior, posterior, medial and lateral regions were 27,169 ± 1935, 26,3643 ± 1262, 37,521 ± 6416 and 33,972 ± 2513 lacunae per mm3 of bone tissue, respectively. These values were significantly different between the medial and both the anterior and posterior regions (p < 0.05). The density of the combined anterior and posterior regions was also significantly lower (p = 0.001) than the density of the combined medial and lateral regions. Although no difference was found in predominant orientation, shape differences were found; with the combined anterior and posterior regions having more elongated (p = 0.004) and flattened (p = 0.045) lacunae, than those of the medial and lateral regions. This study reveals variation in osteocyte lacunar density and morphology within the cross-section of a single bone and that this variation can be considerable (up to 30% difference in density between regions). The underlying functional significance of the observed variation in lacunar density likely relates to localized

  11. 4D microvascular imaging based on ultrafast Doppler tomography.

    PubMed

    Demené, Charlie; Tiran, Elodie; Sieu, Lim-Anna; Bergel, Antoine; Gennisson, Jean Luc; Pernot, Mathieu; Deffieux, Thomas; Cohen, Ivan; Tanter, Mickael

    2016-02-15

    4D ultrasound microvascular imaging was demonstrated by applying ultrafast Doppler tomography (UFD-T) to the imaging of brain hemodynamics in rodents. In vivo real-time imaging of the rat brain was performed using ultrasonic plane wave transmissions at very high frame rates (18,000 frames per second). Such ultrafast frame rates allow for highly sensitive and wide-field-of-view 2D Doppler imaging of blood vessels far beyond conventional ultrasonography. Voxel anisotropy (100 μm × 100 μm × 500 μm) was corrected for by using a tomographic approach, which consisted of ultrafast acquisitions repeated for different imaging plane orientations over multiple cardiac cycles. UFT-D allows for 4D dynamic microvascular imaging of deep-seated vasculature (up to 20 mm) with a very high 4D resolution (respectively 100 μm × 100 μm × 100 μm and 10 ms) and high sensitivity to flow in small vessels (>1 mm/s) for a whole-brain imaging technique without requiring any contrast agent. 4D ultrasound microvascular imaging in vivo could become a valuable tool for the study of brain hemodynamics, such as cerebral flow autoregulation or vascular remodeling after ischemic stroke recovery, and, more generally, tumor vasculature response to therapeutic treatment. PMID:26555279

  12. Permeability estimation of porous media by using an improved capillary bundle model based on micro-CT derived pore geometries

    NASA Astrophysics Data System (ADS)

    Jiang, Lanlan; Liu, Yu; Teng, Ying; Zhao, Jiafei; Zhang, Yi; Yang, Mingjun; Song, Yongchen

    2016-03-01

    The purpose of this work is to develop a permeability estimation method for porous media. This method is based on an improved capillary bundle model by introducing some pore geometries. We firstly carried out micro-CT scans to extract the 3D digital model of porous media. Then we applied a maximum ball extraction method to the digital model to obtain the topological and geometrical pore parameters such as the pore radius, the throat radius and length and the average coordination number. We also applied a random walker method to calculate the tortuosity factors of porous media. We improved the capillary bundle model by introducing the pore geometries and tortuosity factors. Finally, we calculated the absolute permeabilities of four kinds of porous media formed of glass beads and compared the results with experiments and several other models to verify the improved model. We found that the calculated permeabilities using this improved capillary bundle model show better agreement with the measured permeabilities than the other methods.

  13. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT

    SciTech Connect

    Hu, Jianzhong; Cao, Yong; Wu, Tianding; Li, Dongzhe; Lu, Hongbin

    2014-10-15

    Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord was clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.

  14. Sulfate attack monitored by microCT and EDXRD: Influence of cement type, water-to-cement ratio, and aggregate

    SciTech Connect

    Naik, N.N.; Jupe, A.C.; Stock, S.R.; Wilkinson, A.P.; Lee, P.L.; Kurtis, K.E. . E-mail: kkurtis@ce.gatech.edu

    2006-01-15

    X-ray microtomography (microCT) and spatially resolved energy dispersive X-ray diffraction (EDXRD) were used in combination to non-destructively monitor the physical and chemical manifestations of damage in Portland cement paste samples subjected to severe sodium sulfate attack. Additional measurements of expansion and compressive strength were made on complementary mortar and cement paste specimens. Specifically, the influences of cement type (ASTM Types I and V), water-to-cement ratio (0.485 and 0.435), and the presence of aggregate on the rate and forms of damage were examined. As expected, Type V cement samples exhibited less cracking and expansion than the Type I cement samples. EDXRD indicated an anticorrelation between ettringite and gypsum in the near-surface region for Type V samples, which may be associated with crack formation. An unanticipated result for Type I cement pastes was that cracking was apparent at earlier exposure times and progressed more rapidly for samples with w/c of 0.435, than for those with w/c of 0.485. Possible mechanisms for this behavior are proposed. The presence of aggregate particles resulted in a more rapid rate of cracking, as compared to the corresponding cement paste sample.

  15. Micro-CT evaluation of in vivo osteogenesis at implants processed by wire-type electric discharge machining.

    PubMed

    Yamaki, Koichi; Kataoka, Yu; Ohtsuka, Fukunaga; Miyazaki, Takashi

    2012-01-01

    Titanium surfaces processed by wire-type electric discharge machining (EDM) are microfabricated surfaces with an irregular morphology, and they exhibited excellent in vitro bone biocompatibility. In this study, the efficiency of in vivo osteogenesis on EDM surfaces was investigated by surgically placing screw-shaped EDM-processed and machined-surface implants into the femurs of four Japanese white rabbits. The volume and process of new bone formation were evaluated by an X-ray micro-CT scanner, coupled with histopathological observations at 1, 2, and 4 weeks post-implantation. Before surgical implantation, the surface topography and contact angle of each implant surface were examined. Bone formation increased over time on both implant surfaces, with both implant types yielding statistically equivalent bone volume at 4 weeks post-implementation. However, at 1 week post-implantation, amount of new bone at EDM-processed implant was markedly greater than that at machined-surface implant. Moreover, new bone appeared to initiate directly from the EDM surfaces, while new bone appeared to generate from pre-existing host bone to the machined surfaces. Thus, EDM seemed to be a promising method for surface modification of titanium implants to support enhanced osteogenesis. PMID:22673455

  16. Impact of micronutrients supplementation on bone repair around implants: microCT and counter-torque analysis in rats

    PubMed Central

    Pimentel, Suzana Peres; Casarin, Renato Correa; Ribeiro, Fernanda Vieira; Cirano, Fabiano Ribeiro; Rovaris, Karla; Haiter, Francisco; Casati, Marcio Zaffalon

    2016-01-01

    ABSTRACT The use of natural substances and micronutritional approaches has been suggested as a therapeutic alternative to benefit the bone healing associated with no side effects. Nevertheless, the influence of micronutritional interventions with therapeutic proprieties on the bone repair has yet to be intensely evaluated, and no evidence is available exploring the impact of micronutrient supplementation on the peri-implant bone healing. Objective This study investigated the effect of micronutrients supplementation on the bone repair around implants. Material and Methods One screw-shaped titanium implant was inserted in each tibia of each rat, which were assigned to: daily administration, for 30 d, of the placebo solution (Placebo group-n:18) or micronutrients supplementation (Micronutrients group-n:18), based on calcium, magnesium, zinc, and vitamin D3 intake. After, the animals were sacrificed. One of the implants was removed by applying a counter-torque force to evaluate the force to rupture the bone-implant interface. The other implant was evaluated by microcomputed tomography (CT) examination to determine the bone-to-implant contact (BIC) and the bone volume (BV/TV). Results No statistically significant differences were observed between the groups for both counter-torque values and microCT parameters (p>0.05). Conclusion Within the limits of this study, micronutrients supplementation did not provide additional benefits to the bone healing around dental implants. PMID:27008256

  17. A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast

    PubMed Central

    Anderson, Ryan; Maga, A. Murat

    2015-01-01

    High-resolution Magnetic Resonance Imaging (MRI) has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT), especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v) iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine. PMID:26571123

  18. Micro-CT Imaging Reveals Mekk3 Heterozygosity Prevents Cerebral Cavernous Malformations in Ccm2-Deficient Mice

    PubMed Central

    Choi, Jaesung P.; Foley, Matthew; Zhou, Zinan; Wong, Weng-Yew; Gokoolparsadh, Naveena; Arthur, J. Simon C.; Li, Dean Y.; Zheng, Xiangjian

    2016-01-01

    Mutations in CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation in humans. Mouse models of CCM disease have been established by deleting Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. However, the full value of these animal models is limited by the lack of an accurate and quantitative method to assess lesion burden and progression. In the present study we have established a refined and detailed contrast enhanced X-ray micro-CT method to measure CCM lesion burden in mouse brains. As this study utilized a voxel dimension of 9.5μm (leading to a minimum feature size of approximately 25μm), it is therefore sufficient to measure CCM lesion volume and number globally and accurately, and provide high-resolution 3-D mapping of CCM lesions in mouse brains. Using this method, we found loss of Ccm1 or Ccm2 in neonatal endothelium confers CCM lesions in the mouse hindbrain with similar total volume and number. This quantitative approach also demonstrated a rescue of CCM lesions with simultaneous deletion of one allele of Mekk3. This method would enhance the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases. PMID:27513872

  19. Impact of micronutrients supplementation on bone repair around implants: microCT and counter-torque analysis in rats.

    PubMed

    Pimentel, Suzana Peres; Casarin, Renato Correa; Ribeiro, Fernanda Vieira; Cirano, Fabiano Ribeiro; Rovaris, Karla; Haiter Neto, Francisco; Casati, Marcio Zaffalon

    2016-02-01

    The use of natural substances and micronutritional approaches has been suggested as a therapeutic alternative to benefit the bone healing associated with no side effects. Nevertheless, the influence of micronutritional interventions with therapeutic proprieties on the bone repair has yet to be intensely evaluated, and no evidence is available exploring the impact of micronutrient supplementation on the peri-implant bone healing. Objective This study investigated the effect of micronutrients supplementation on the bone repair around implants. Material and Methods One screw-shaped titanium implant was inserted in each tibia of each rat, which were assigned to: daily administration, for 30 d, of the placebo solution (Placebo group-n:18) or micronutrients supplementation (Micronutrients group-n:18), based on calcium, magnesium, zinc, and vitamin D3 intake. After, the animals were sacrificed. One of the implants was removed by applying a counter-torque force to evaluate the force to rupture the bone-implant interface. The other implant was evaluated by microcomputed tomography (CT) examination to determine the bone-to-implant contact (BIC) and the bone volume (BV/TV). Results No statistically significant differences were observed between the groups for both counter-torque values and microCT parameters (p>0.05). Conclusion Within the limits of this study, micronutrients supplementation did not provide additional benefits to the bone healing around dental implants. PMID:27008256

  20. Construct damage and loosening around glenoid implants: A longitudinal micro-CT study of five cadaver specimens.

    PubMed

    Lewis, Gregory S; Brenza, Jacob B; Paul, Emmanuel M; Armstrong, April D

    2016-06-01

    The evolution of failure of bone and cement leading to loosening of glenoid components following shoulder arthroplasty is not well understood. The purpose of this study was to identify and visualize potential mechanisms of mechanical failure within cadavers, cemented with two types of components, and subject to cyclic loading. Five glenoid cadaver bones were implanted with either a three-pegged polyethylene component, or prototype posteriorly augmented component which addresses posterior bone loss. Specimens were loaded by constant glenohumeral compression combined with cyclic anterior-posterior displacement of the humeral head relative to the glenoid. At six time points across 100,000 cycles, implant loosening micromotions were optically measured, and specimens were imaged by micro-computed tomography. Scans were 3D registered and inspected for crack initiation and progression, and micro-CT based time-lapse movies were created. Cement cracking initiated at stress concentrations and progressed with additional cyclic loading. Failure planes within trabecular bone and the bone-cement interface were identified in four of the five specimens. Implant subsidence increased to greater than 1.0 mm in two specimens. Cemented glenoid structural failure can occur within the cement, along planes of trabecular bone, or at the bone cement interface. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1053-1060, 2016. PMID:26630205

  1. Distributional Variations in Trabecular Architecture of the Mandibular Bone: An In Vivo Micro-CT Analysis in Rats

    PubMed Central

    Liu, Zhongshuang; Yan, Chengwei; kang, Chen; Zhang, Bin; Li, Ying

    2015-01-01

    Purpose To evaluate the effect of trabecular thickness and trabecular separation on modulating the trabecular architecture of the mandibular bone in ovariectomized rats. Materials and Methods Fourteen 12-week-old adult female Wistar rats were divided into an ovariectomy group (OVX) and a sham-ovariectomy group (sham). Five months after the surgery, the mandibles from 14 rats (seven OVX and seven sham) were analyzed by micro-CT. Images of inter-radicular alveolar bone of the mandibular first molars underwent three-dimensional reconstruction and were analyzed. Results Compared to the sham group, trabecular thickness in OVX alveolar bone decreased by 27% (P = 0.012), but trabecular separation in OVX alveolar bone increased by 59% (P = 0.005). A thickness and separation map showed that trabeculae of less than 100μm increased by 46%, whereas trabeculae of more than 200μm decreased by more than 40% in the OVX group compared to those in the sham group. Furthermore, the OVX separation of those trabecular of more than 200μm was 65% higher compared to the sham group. Bone mineral density (P = 0.028) and bone volume fraction (p = 0.001) were also significantly decreased in the OVX group compared to the sham group. Conclusions Ovariectomy-induced bone loss in mandibular bone may be related to the distributional variations in trabecular thickness and separation which profoundly impact the modulation of the trabecular architecture. PMID:25625431

  2. Imaging the Aqueous Humor Outflow Pathway in Human Eyes by Three-dimensional Micro-computed Tomography (3D micro-CT)

    SciTech Connect

    C Hann; M Bentley; A Vercnocke; E Ritman; M Fautsch

    2011-12-31

    The site of outflow resistance leading to elevated intraocular pressure in primary open-angle glaucoma is believed to be located in the region of Schlemm's canal inner wall endothelium, its basement membrane and the adjacent juxtacanalicular tissue. Evidence also suggests collector channels and intrascleral vessels may have a role in intraocular pressure in both normal and glaucoma eyes. Traditional imaging modalities limit the ability to view both proximal and distal portions of the trabecular outflow pathway as a single unit. In this study, we examined the effectiveness of three-dimensional micro-computed tomography (3D micro-CT) as a potential method to view the trabecular outflow pathway. Two normal human eyes were used: one immersion fixed in 4% paraformaldehyde and one with anterior chamber perfusion at 10 mmHg followed by perfusion fixation in 4% paraformaldehyde/2% glutaraldehyde. Both eyes were postfixed in 1% osmium tetroxide and scanned with 3D micro-CT at 2 {mu}m or 5 {mu}m voxel resolution. In the immersion fixed eye, 24 collector channels were identified with an average orifice size of 27.5 {+-} 5 {mu}m. In comparison, the perfusion fixed eye had 29 collector channels with a mean orifice size of 40.5 {+-} 13 {mu}m. Collector channels were not evenly dispersed around the circumference of the eye. There was no significant difference in the length of Schlemm's canal in the immersed versus the perfused eye (33.2 versus 35.1 mm). Structures, locations and size measurements identified by 3D micro-CT were confirmed by correlative light microscopy. These findings confirm 3D micro-CT can be used effectively for the non-invasive examination of the trabecular meshwork, Schlemm's canal, collector channels and intrascleral vasculature that comprise the distal outflow pathway. This imaging modality will be useful for non-invasive study of the role of the trabecular outflow pathway as a whole unit.

  3. Observation of the evolution of fault gauge under micro-CT

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Tisato, Nicola; Grasselli, Giovanni

    2015-04-01

    fractures develop, and gauge particles form, roll, translate, collide, comminute. In this contribution, we present a new X-ray transparent vessel which can perform rotary shear tests inside the X-ray computed tomography apparatus (μCT) installed at the University of Toronto. This setup can perform rotary shear tests on 12 mm diameter samples and image the slipping surfaces and the forming gauge without disturbing the specimens. We conduct rotary shear tests at sub-seismic slip rates (i.e. from 0.15 to 6 mm/s) and for incremental short slip distances (e.g. 60 steps of 0.3 mm for one revolution cycle) in order to reconstruct the 4D evolution of the slipping surfaces and the gauge layer. While rotating the specimen, normal stress, displacement, and torque information are acquired with a sampling rate of 2 kHz. The samples can be confined up to 10 MPa and saturated with liquids by means of a hydraulic circuit. These work may lead to a much more detailed observation of the physical interaction on the earthquake fault. Together with the other laboratory and field observations, we can enrich the understanding of the powder lubrication mechanism.

  4. Synchrotron X-ray Studies of the Keel of the Short-Spined Sea Urchin Lytechinus variegatus: Absorption Microtomography (microCT) and Small Beam Diffraction Mapping

    SciTech Connect

    Stock, S. R.; Barss, J.; Dahl, T.; Veis, A.; Almer, J. D.; De Carlo, F.

    2003-05-01

    In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.

  5. Three-Dimensional Quantification of Calcium Salt-Composite Resorption (CSC) In Vitro by Micro-computed Tomography (Micro-CT)

    NASA Astrophysics Data System (ADS)

    Winkler, T.; Dai, X. Y.; Mielke, G.; Vogt, S.; Buechner, H.; Schantz, J. T.; Harder, Y.; Machens, H. G.; Morlock, M. M.; Schilling, A. F.

    2014-04-01

    The commonly applied cell-based, two-dimensional (2D) in vitro resorption assays for biomaterials are limited in a variety of cases, including high initial roughness of material surface, uncontrollable solubilization (or resorption) of the entire material surface, or complex three-dimensional (3D) structure of the bioactive material itself. All these make the accurate assessment and successful selection of the optimal bone substitute material difficult. In vivo, micro-computed tomography (micro-CT) has been widely applied for the analysis of bone physiology and pathology, as well as for the 3D analysis of scaffolds for bone tissue engineering. In this study, we show that micro-CT can also be applied for the in vitro analysis of osteoclast-mediated resorption of biomaterials. For our experiments, we chose a calcium salt-composite (composite of calcium sulphate (CSC), calcium carbonate, glycerin-1,2,3-tripalmiate), which evades common 2D in vitro resorption analysis as a result of its high surface roughness and material composition. Human osteoclasts were differentiated from precursor cells on the surface of the material for 28 days. Cells were analyzed for expression of tartrate-resistant acid phosphatase 5b (TRAP5b), multinuclearity, and size. Volumetric analysis of resorption was performed by micro-CT. Multinucleated osteoclasts developed on the surface of the material. TRAP5b expression of the cells on CSC was comparable with TRAP5b expression of cells cultivated on dentin for the first 3 weeks of culture. At day 28, TRAP5b expression, cell number, and size of the TRAP+ cells were reduced on the CSC when compared with cells on dentin. Volumetric anaylsis by micro-CT showed a strong cellular effect on resorption of CSC. We consider micro-CT to be a promising technique for 3D quantification of cell-based resorption that will allow the study of cellular resorption of materials in vitro, which were up to now confined to animal experimental analysis.

  6. Fault-related structural permeability: Qualitative insights of the damage-zone from micro-CT analysis.

    NASA Astrophysics Data System (ADS)

    Gomila, Rodrigo; Arancibia, Gloria; Nehler, Mathias; Bracke, Rolf; Stöckhert, Ferdinand

    2016-04-01

    Fault zones and their related structural permeability play a leading role in the migration of fluids through the continental crust. A first approximation to understanding the structural permeability conditions, and the estimation of its hydraulic properties (i.e. palaeopermeability and fracture porosity conditions) of the fault-related fracture mesh is the 2D analysis of its veinlets, usually made in thin-section. Those estimations are based in the geometrical parameters of the veinlets, such as average fracture density, length and aperture, which can be statistically modelled assuming penny-shaped fractures of constant radius and aperture within an anisotropic fracture system. Thus, this model is related to fracture connectivity, its length and to the cube of the fracture apertures. In this way, the estimated values presents their own inaccuracies owing to the method used. Therefore, the study of the real spatial distribution of the veinlets of the fault-related fracture mesh (3D), feasible with the use of micro-CT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, together with the validation of previous estimations made in 2D analyses in thin-sections. This early contribution shows the preliminary results of a fault-related fracture mesh and its 3D spatial distribution in the damage zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of the drilling of vertically oriented plugs of 5 mm in diameter located at different distances from the JF core - damage zone boundary. Each specimen was, then, scanned with an x-ray micro-CT scanner (ProCon X-Ray CTalpha) in order to assess the fracture mesh. X-rays were generated in a transmission target x-ray tube with acceleration voltages ranging from 90

  7. Dynamic Micro-CT Study of Fracture-Matrix Flow During Capillary Imbibition in Layered Berea Sandstone

    NASA Astrophysics Data System (ADS)

    Karpyn, Z. T.; Halleck, P. M.; Grader, A. S.; Elsworth, D.

    2004-12-01

    Studies concerning flow in fractured rocks have important applications in hydrocarbon recovery, hydrogeology, and environmental remediation of subsurface spills, such as DNAPLs. To properly design immiscible flow processes in those systems, it is crucial to understand fracture-matrix transfer mechanisms. The goal of this work is to provide a mechanistic description of capillary-driven imbibition in fractured media and the effects of fluid occupancy in the fracture and of matrix heterogeneity on saturation distribution. Capillary imbibition experiments where performed in a layered Berea sample, 4.75 cm long and 2.54 cm in diameter, with a single longitudinal fracture. The artificially created fracture was oriented perpendicular to the natural bedding of the rock. The sample was initially vacuum saturated with non-wetting phase. Small amounts of a wetting phase were introduced into the bottom of the fracture, allowing it to imbibe and exchange places with the resident non-wetting phase through the fracture-matrix interface. Progress of the imbibition process was monitored after each injection using high-resolution Micro Computed Tomography (CT). Micro-CT also provided non-destructive means to characterize the fracture structure and rock properties. A series of simulation scenarios were also tested using a commercially available package developed by the Computer Modeling Group (CMG). Experimental observations combined with simulation results indicate that the fracture itself exhibits a strong capillary behavior. Its rough-walled nature, leads to a two-phase flow similar to that in porous media. Experimental observations also show a strong correspondence between fluid invasion in the matrix and variations in porosity in the rock's bedding planes. Our results suggest that different porosities correspond to different permeabilities and capillary pressure curves. Fluid accessibility in the fracture space is also an important factor governing imbibition in fractured media

  8. Numerical simulation of airflow and microparticle deposition in a synchrotron micro-CT-based pulmonary acinus model.

    PubMed

    Sera, Toshihiro; Uesugi, Kentaro; Yagi, Naoto; Yokota, Hideo

    2015-01-01

    The acinus consists of complex, branched alveolar ducts and numerous surrounding alveoli, and so in this study, we hypothesized that the particle deposition can be much influenced by the complex acinar geometry, and simulated the airflow and particle deposition (density = 1.0 g/cm(3), diameter = 1 and 3 μm) numerically in a pulmonary acinar model based on synchrotron micro-CT of the mammalian lung. We assumed that the fluid-structure interaction was neglected and that alveolar flow was induced by the expansion and contraction of the acinar model with the volume changing sinusoidally with time as the moving boundary conditions. The alveolar flow was dominated by radial flows, and a weak recirculating flow was observed at the proximal side of alveoli during the entire respiratory cycle, despite the maximum Reynolds number at the inlet being 0.029. Under zero gravity, the particle deposition rate after single breathing was less than 0.01, although the particles were transported deeply into the acinus after inspiration. Under a gravitational field, the deposition rate and map were influenced strongly by gravity orientation. In the case of a particle diameter of 1 μm, the rate increased dramatically and mostly non-deposited particles remained in the model, indicating that the rate would increase further after repeated breathing. At a particle diameter of 3 μm, the rate was 1.0 and all particles were deposited during single breathing. Our results show that the particle deposition rate in realistic pulmonary acinar model is higher than in an idealized model. PMID:24821393

  9. Analysis of image sharpness reproducibility on a novel engineered micro-CT scanner with variable geometry and embedded recalibration software.

    PubMed

    Panetta, D; Belcari, N; Del Guerra, A; Bartolomei, A; Salvadori, P A

    2012-04-01

    This study investigates the reproducibility of the reconstructed image sharpness, after modifications of the geometry setup, for a variable magnification micro-CT (μCT) scanner. All the measurements were performed on a novel engineered μCT scanner for in vivo imaging of small animals (Xalt), which has been recently built at the Institute of Clinical Physiology of the National Research Council (IFC-CNR, Pisa, Italy), in partnership with the University of Pisa. The Xalt scanner is equipped with an integrated software for on-line geometric recalibration, which will be used throughout the experiments. In order to evaluate the losses of image quality due to modifications of the geometry setup, we have made 22 consecutive acquisitions by changing alternatively the system geometry between two different setups (Large FoV - LF, and High Resolution - HR). For each acquisition, the tomographic images have been reconstructed before and after the on-line geometric recalibration. For each reconstruction, the image sharpness was evaluated using two different figures of merit: (i) the percentage contrast on a small bar pattern of fixed frequency (f = 5.5 lp/mm for the LF setup and f = 10 lp/mm for the HR setup) and (ii) the image entropy. We have found that, due to the small-scale mechanical uncertainty (in the order of the voxel size), a recalibration is necessary for each geometric setup after repositioning of the system's components; the resolution losses due to the lack of recalibration are worse for the HR setup (voxel size = 18.4 μm). The integrated on-line recalibration algorithm of the Xalt scanner allowed to perform the recalibration quickly, by restoring the spatial resolution of the system to the reference resolution obtained after the initial (off-line) calibration. PMID:21501966

  10. A Combined Micro-CT Imaging/Microfluidic Approach for Understating Methane Recovery in Coal Seam Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Mostaghimi, P.; Armstrong, R. T.; Gerami, A.; Lamei Ramandi, H.; Ebrahimi Warkiani, M.

    2015-12-01

    Coal seam methane is a form of natural gas stored in coal beds and is one of the most important unconventional resources of energy. The flow and transport in coal beds occur in a well-developed system of natural fractures that are also known as cleats. We use micro-Computed Tomography (CT) imaging at both dry and wet conditions to resolve the cleats below the resolution of the image. Scanning Electron Microscopy (SEM) is used for calibration of micro-CT data. Using soft lithography technique, the cleat system is duplicated on a silicon mould. We fabricate a microfluidic chip using Polydimethylsiloxane (PDMS) to study both imbibition and drainage in generated coal structures for understating gas and water transport in coal seam reservoirs. First, we use simple patterns observed on coal images to analyse the effects of wettability, cleat size and distribution on flow behaviour. Then, we study transport in a coal by injecting both distilled water and decane with a rate of 1 microliter/ min into the fabricated cleat structure (Figure 1), initially saturated with air. We repeat the experiment for different contact angles by plasma treating the microfluidic chip, and results show significant effects of wettability on the displacement efficiency. The breakthrough time in the imbibition setup is significantly longer than in the drainage. Using rapid video capturing, and high resolution microscopy, we measure the saturation of displacing fluid with respect to time. By measuring gas and liquid recovery in the outlet at different saturation, we predict relative permeability of coal. This work has important applications for optimising gas recovery and our results can serve as a benchmark in the verification of multiphase numerical models used in coal seam gas industry.

  11. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development.

    PubMed

    Ho, Thach-Vu; Iwata, Junichi; Ho, Hoang Anh; Grimes, Weston C; Park, Shery; Sanchez-Lara, Pedro A; Chai, Yang

    2015-04-15

    Growth factor signaling regulates tissue-tissue interactions to control organogenesis and tissue homeostasis. Specifically, transforming growth factor beta (TGFβ) signaling plays a crucial role in the development of cranial neural crest (CNC) cell-derived bone, and loss of Tgfbr2 in CNC cells results in craniofacial skeletal malformations. Our recent studies indicate that non-canonical TGFβ signaling is activated whereas canonical TGFβ signaling is compromised in the absence of Tgfbr2 (in Tgfbr2(fl/fl);Wnt1-Cre mice). A haploinsufficiency of Tgfbr1 (aka Alk5) (Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)) largely rescues craniofacial deformities in Tgfbr2 mutant mice by reducing ectopic non-canonical TGFβ signaling. However, the relative involvement of canonical and non-canonical TGFβ signaling in regulating specific craniofacial bone formation remains unclear. We compared the size and volume of CNC-derived craniofacial bones (frontal bone, premaxilla, maxilla, palatine bone, and mandible) from E18.5 control, Tgfbr2(fl/fl);Wnt1-Cre, and Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)mice. By analyzing three dimensional (3D) micro-computed tomography (microCT) images, we found that different craniofacial bones were restored to different degrees in Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+) mice. Our study provides comprehensive information on anatomical landmarks and the size and volume of each craniofacial bone, as well as insights into the extent that canonical and non-canonical TGFβ signaling cascades contribute to the formation of each CNC-derived bone. Our data will serve as an important resource for developmental biologists who are interested in craniofacial morphogenesis. PMID:25722190

  12. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    NASA Astrophysics Data System (ADS)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  13. Differential effects of fibromodulin deficiency on mouse mandibular bones and teeth: a micro-CT time course study.

    PubMed

    Goldberg, Michel; Marchadier, Arnaud; Vidal, Catherine; Harichane, Yassine; Kamoun-Goldrat, Agnès; Kellermann, Odile; Kilts, Tina; Young, Marian

    2011-01-01

    Fibromodulin (Fmod) is a keratan sulfate small leucine-rich proteoglycan which is enriched in bones and teeth. In order to determine its functions on bone and tooth mineralization we characterized the phenotype of Fmod-deficient (Fmod-KO) mice using a new-generation microfocus computerized tomography system (micro-CT) and software allowing advanced visualization of 3-D data. Three-week-old and 10- week-old Fmod-KO mandibles and teeth were compared with those of age-matched wild-type (WT) mice. In both young and mature mice the Fmod-KO mandibles were hypomineralized, especially the posterior (proximal) part of the mandible as it appeared to be the main target of the molecule deficiency whereas less extensive alterations were found in the alveolar bone. In transverse sections, larger marrow spaces were observed in the Fmod-KO mice compared with age-matched young or mature WT mice. Quantitative evaluation of the pulp volume of the first molar and 3-D reconstructions suggested that dentinogenesis was diminished in 3-week-old Fmod-KO teeth. In contrast, increased dentin formation was found in 10-week-old Fmod-KO mice and it was accompanied by a reduced pulp volume. Thus, the differential effects of Fmod deficiency on bones and teeth appear to diverge in adult mice. This may result from the previously reported differences in the molecular weight of Fmod in the 2 tissues or from compensatory mechanisms due to the overexpression of DSP and DMP-1 in the dental pulp of Fmod-KO. It is also possible that a single molecule plays diverging roles in a tissue-specific or region-specific manner. PMID:21597266

  14. Caries-removal effectiveness of a papain-based chemo-mechanical agent: A quantitative micro-CT study.

    PubMed

    Neves, Aline A; Lourenço, Roseane A; Alves, Haimon D; Lopes, Ricardo T; Primo, Laura G

    2015-01-01

    The aim of this study was to access the effectiveness and specificity of a papain-based chemo-mechanical caries-removal agent in providing minimum residual caries after cavity preparation. In order to do it, extracted carious molars were selected and scanned in a micro-CT before and after caries-removal procedures with the papain-based gel. Similar parameters for acquisition and reconstruction of the image stacks were used between the scans. After classification of the dentin substrate based on mineral density intervals and establishment of a carious tissue threshold, volumetric parameters related to effectiveness (mineral density of removed dentin volume and residual dentin tissue) and specificity (relation between carious dentin in removed volume and initial caries) of this caries-removal agent were obtained. In general, removed dentin volume was similar or higher than the initial carious volume, indicating that the method was able to effectively remove dentin tissue. Samples with an almost perfect accuracy in carious dentin removal also showed an increased removal of caries-affected tissue. On the contrary, less or no affected dentin was removed in samples where some carious tissue was left in residual dentin. Mineral density values in residual dentin were always higher or similar to the threshold for mineral density values in carious dentin. In conclusion, the papain-based gel was effective in removing carious dentin up to a conservative in vitro threshold. Lesion characteristics, such as activity and morphology of enamel lesion, may also influence caries-removal properties of the method. PMID:25809787

  15. 4D XCAT phantom for multimodality imaging research

    SciTech Connect

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-09-15

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ''Basic anatomical and physiological data for use in radiological protection: reference values,'' ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  16. 4D XCAT phantom for multimodality imaging research

    PubMed Central

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-01-01

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ‘‘Basic anatomical and physiological data for use in radiological protection: reference values,” ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  17. 4D-Flow validation, numerical and experimental framework

    NASA Astrophysics Data System (ADS)

    Sansom, Kurt; Liu, Haining; Canton, Gador; Aliseda, Alberto; Yuan, Chun

    2015-11-01

    This work presents a group of assessment metrics of new 4D MRI flow sequences, an imaging modality that allows for visualization of three-dimensional pulsatile flow in the cardiovascular anatomy through time-resolved three-dimensional blood velocity measurements from cardiac-cycle synchronized MRI acquisition. This is a promising tool for clinical assessment but lacks a robust validation framework. First, 4D-MRI flow in a subject's stenotic carotid bifurcation is compared with a patient-specific CFD model using two different boundary condition methods. Second, Particle Image Velocimetry in a patient-specific phantom is used as a benchmark to compare the 4D-MRI in vivo measurements and CFD simulations under the same conditions. Comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, Lagrangian particle residence time, will be discussed, with justification for their biomechanics relevance and the insights they can provide on the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new sequence to provide a quantitative assessment. A parametric analysis on the carotid bifurcation pulsatile flow conditions will be presented and an accuracy assessment provided.

  18. Application of Micro-Computed Tomography with Iodine Staining to Cardiac Imaging, Segmentation and Computational Model Development

    PubMed Central

    Aslanidi, OV; Nikolaidou, T; Zhao, J; Smaill, BH; Gilbert, SH; Holden, AV; Lowe, T; Withers, PJ; Jarvis, JC; Stephenson, RS; Hart, G; Hancox, JC; Boyett, MR; Zhang, H

    2012-01-01

    Micro-computed tomography (micro-CT) has been widely used to generate high-resolution 3D tissue images from small animals non-destructively, especially for mineralized skeletal tissues. However, its application to the analysis of soft cardiovascular tissues has been limited by poor inter-tissue contrast. Recent ex vivo studies have shown that contrast between muscular and connective tissue in micro-CT images can be enhanced by staining with iodine. In the present study, we apply this novel technique for imaging of cardiovascular structures in canine hearts. We optimize the method to obtain high resolution X-ray micro-CT images of the canine atria and its distinctive regions - including the Bachmann’s bundle, atrioventricular node, pulmonary arteries and veins - with clear inter-tissue contrast. The imaging results are used to reconstruct and segment the detailed 3D geometry of the atria. Structure tensor analysis shows that the arrangement of atrial fibres can also be characterised using the enhanced micro-CT images, as iodine preferentially accumulates within the muscular fibres rather than in connective tissues. This novel technique can be particularly useful in non-destructive imaging of 3D cardiac architectures from large animals and humans, due to the combination of relatively high speed (~1 hour/scan of a large canine heart) and high voxel resolution (36 μm) provided. In summary, contrast micro-CT facilitates fast and non-destructive imaging and segmenting of detailed 3D cardiovascular geometries, as well as measuring fibre orientation, which are crucial in constructing biophysically detailed computational cardiac models. PMID:22829390

  19. Estimating Myocardial Motion by 4D Image Warping

    PubMed Central

    Sundar, Hari; Litt, Harold; Shen, Dinggang

    2009-01-01

    A method for spatio-temporally smooth and consistent estimation of cardiac motion from MR cine sequences is proposed. Myocardial motion is estimated within a 4-dimensional (4D) registration framework, in which all 3D images obtained at different cardiac phases are simultaneously registered. This facilitates spatio-temporally consistent estimation of motion as opposed to other registration-based algorithms which estimate the motion by sequentially registering one frame to another. To facilitate image matching, an attribute vector (AV) is constructed for each point in the image, and is intended to serve as a “morphological signature” of that point. The AV includes intensity, boundary, and geometric moment invariants (GMIs). Hierarchical registration of two image sequences is achieved by using the most distinctive points for initial registration of two sequences and gradually adding less-distinctive points to refine the registration. Experimental results on real data demonstrate good performance of the proposed method for cardiac image registration and motion estimation. The motion estimation is validated via comparisons with motion estimates obtained from MR images with myocardial tagging. PMID:20379351

  20. Los Alamos National Laboratory 4D Database

    SciTech Connect

    Atencio, Julian J.

    2014-05-02

    4D is an integrated development platform - a single product comprised of the components you need to create and distribute professional applications. You get a graphical design environment, SQL database, a programming language, integrated PHP execution, HTTP server, application server, executable generator, and much more. 4D offers multi-platform development and deployment, meaning whatever you create on a Mac can be used on Windows, and vice-versa. Beyond productive development, 4D is renowned for its great flexibility in maintenance and modification of existing applications, and its extreme ease of implementation in its numerous deployment options. Your professional application can be put into production more quickly, at a lower cost, and will always be instantly scalable. 4D makes it easy, whether you're looking to create a classic desktop application, a client-server system, a distributed solution for Web or mobile clients - or all of the above!

  1. Computing Myocardial Motion in 4D Echocardiography

    PubMed Central

    Mukherjee, Ryan; Sprouse, Chad; Pinheiro, Aurélio; Abraham, Theodore; Burlina, Philippe

    2012-01-01

    4D (3D spatial+time) echocardiography is gaining widespread acceptance at clinical institutions for its high temporal resolution and relatively low cost. We describe a novel method for computing dense 3D myocardial motion with high accuracy. The method is based on a classical variational optical flow technique, but exploits modern developments in optical flow research to utilize the full capabilities of 4D echocardiography. Using a variety of metrics, we present an in-depth performance evaluation of the method on synthetic, phantom, and intraoperative 4D Transesophageal Echocardiographic (TEE) data. When compared with state-of-the-art optical flow and speckle tracking techniques currently found in 4D echocardiography, the method we present shows notable improvements in error. We believe the performance improvements shown can have a positive impact when the method is used as input for various applications, such as strain computation, biomechanical modeling, or automated diagnostics. PMID:22677256

  2. On "new massive" 4D gravity

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric A.; Fernández-Melgarejo, J. J.; Rosseel, Jan; Townsend, Paul K.

    2012-04-01

    We construct a four-dimensional (4D) gauge theory that propagates, unitarily, the five polarization modes of a massive spin-2 particle. These modes are described by a "dual" graviton gauge potential and the Lagrangian is 4th-order in derivatives. As the construction mimics that of 3D "new massive gravity", we call this 4D model (linearized) "new massive dual gravity". We analyse its massless limit, and discuss similarities to the Eddington-Schrödinger model.

  3. Helical 4D CT and Comparison with Cine 4D CT

    NASA Astrophysics Data System (ADS)

    Pan, Tinsu

    4D CT was one of the most important developments in radiation oncology in the last decade. Its early development in single slice CT and commercialization in multi-slice CT has radically changed our practice in radiation treatment of lung cancer, and has enabled the stereotactic radiosurgery of early stage lung cancer. In this chapter, we will document the history of 4D CT development, detail the data sufficiency condition governing the 4D CT data collection; present the design of the commercial helical 4D CTs from Philips and Siemens; compare the differences between the helical 4D CT and the GE cine 4D CT in data acquisition, slice thickness, acquisition time and work flow; review the respiratory monitoring devices; and understand the causes of image artifacts in 4D CT.

  4. Three dimensional imaging of porosity and tracer concentration distributions in a dolostone sample during diffusion experiments using X-ray micro-CT.

    PubMed

    Agbogun, H M D; Al, Tom A; Hussein, Esam M A

    2013-02-01

    X-ray micro-computed tomography (micro-CT) techniques for measuring the three-dimensional (3-D) distributions of diffusion-accessible porosity (φ(d)) and temporal tracer-concentrations (C(t)) within a dolostone sample subjected to solute diffusion are developed and tested in this work. The φ(d) and C(t) measurements are based on spatially resolved changes in X-ray attenuation coefficients in sequentially acquired 3-D micro-CT datasets using two (calibration and relative) analytical approaches. The measured changes in X-ray attenuation coefficient values are a function of the mass of X-ray absorbing potassium-iodide tracer present in voxels. Mean φ(d) values of 3.8% and 6.5% were obtained with the calibration and the relative approaches, respectively. The detection limits for φ(d) measurements at individual voxel locations are 20% and 36% with the calibration and the relative methods, respectively. The detection limit for C(t) are 0.12 M and 0.22 M with the calibration and the relative approaches, respectively. Results from the calibration method are affected by a beam-hardening artifact and although results from the relative approach are not affected by the artifact, they are subject to high detection limits. This work presents a quantitative assessment of micro-CT data for studies of solute transport. Despite limitations in precision and accuracy, the method provides quantitative 3-D distributions of φ(d) and C(t) that reflect solute diffusion in heterogeneous porous geologic media. PMID:23298531

  5. Three-dimensional parametric mapping in quantitative micro-CT imaging of post-surgery femoral head-neck samples: preliminary results

    PubMed Central

    Giannotti, Stefano; Bottai, Vanna; Panetta, Daniele; De Paola, Gaia; Tripodi, Maria; Citarelli, Carmine; Dell’Osso, Giacomo; Lazzerini, Ilaria; Salvadori, Piero Antonio; Guido, Giulio

    2015-01-01

    Summary Osteoporosis and pathological increased occurrence of fractures are an important public health problem. They may affect patients’ quality of life and even increase mortality of osteoporotic patients, and consequently represent a heavy economic burden for national healthcare systems. The adoption of simple and inexpensive methods for mass screening of population at risk may be the key for an effective prevention. The current clinical standards of diagnosing osteoporosis and assessing the risk of an osteoporotic bone fracture include dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) for the measurement of bone mineral density (BMD). Micro-computed tomography (micro-CT) is a tomographic imaging technique with very high resolution allowing direct quantification of cancellous bone microarchitecture. The Authors performed micro-CT analysis of the femoral heads harvested from 8 patients who have undergone surgery for hip replacement for primary and secondary degenerative disease to identify possible new morphometric parameters based on the analysis of the distribution of intra-subject microarchitectural parameters through the creation of parametric images. Our results show that the micro-architectural metrics commonly used may not be sufficient for the realistic assessment of bone microarchitecture of the femoral head in patients with hip osteoarthritis. The innovative micro-CT approach considers the entire femoral head in its physiological shape with all its components like cartilage, cortical layer and trabecular region. The future use of these methods for a more detailed study of the reaction of trabecular bone for the internal fixation or prostheses would be desirable. PMID:26811703

  6. Three dimensional imaging of porosity and tracer concentration distributions in a dolostone sample during diffusion experiments using X-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Agbogun, H. M. D.; Al, Tom A.; Hussein, Esam M. A.

    2013-02-01

    X-ray micro-computed tomography (micro-CT) techniques for measuring the three-dimensional (3-D) distributions of diffusion-accessible porosity (φd) and temporal tracer-concentrations (C(t)) within a dolostone sample subjected to solute diffusion are developed and tested in this work. The φd and C(t) measurements are based on spatially resolved changes in X-ray attenuation coefficients in sequentially acquired 3-D micro-CT datasets using two (calibration and relative) analytical approaches. The measured changes in X-ray attenuation coefficient values are a function of the mass of X-ray absorbing potassium-iodide tracer present in voxels. Mean φd values of 3.8% and 6.5% were obtained with the calibration and the relative approaches, respectively. The detection limits for φd measurements at individual voxel locations are 20% and 36% with the calibration and the relative methods, respectively. The detection limit for C(t) are 0.12 M and 0.22 M with the calibration and the relative approaches, respectively. Results from the calibration method are affected by a beam-hardening artifact and although results from the relative approach are not affected by the artifact, they are subject to high detection limits. This work presents a quantitative assessment of micro-CT data for studies of solute transport. Despite limitations in precision and accuracy, the method provides quantitative 3-D distributions of φd and C(t) that reflect solute diffusion in heterogeneous porous geologic media.

  7. The utility of microCT and MRI in the assessment of longitudinal growth of liver metastases in a preclinical model of colon carcinoma

    PubMed Central

    Pandit, Prachi; Johnston, Samuel M.; Qi, Yi; Story, Jennifer; Nelson, Rendon; Johnson, G. Allan

    2012-01-01

    Rationale and Objectives Liver is a common site for distal metastases in colon and rectal cancer. Numerous clinical studies have analyzed the relative merits of different imaging modalities for detection of liver metastases. A number of exciting new therapies are being investigated in preclinical models. But, technical challenges in preclinical imaging make it difficult to translate conclusions from clinical studies to the preclinical environment. This study addresses the technical challenges of preclinical MR and micro-CT to enable comparison of state-of-the-art methods for following metastatic liver disease. Materials and Methods We optimized two promising preclinical protocols to enable a parallel longitudinal study tracking metastatic human colon carcinoma growth in a mouse model: T2-weighted MRI using 2-shot PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction), and contrast-enhanced micro-CT using a liposomal contrast agent. Both methods were tailored for high throughput with attention to animal support and anesthesia to limit biological stress. Results and Conclusions Each modality has its strengths. Micro-CT permitted more rapid acquisition (<10 minutes) with the highest spatial resolution (88-micron isotropic resolution). But detection of metastatic lesions requires the use of a blood pool contrast agent, which could introduce a confound in the evaluation of new therapies. MR imaging was slower (30 minutes) and had lower anisotropic spatial resolution. But MR eliminates the need for a contrast agent and the contrast-to-noise between tumor and normal parenchyma was higher, making earlier detection of small lesions possible. Both methods supported a relatively high-throughput, longitudinal study of the development of metastatic lesions. PMID:23498983

  8. Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner

    PubMed Central

    Hadsell, Mike; Cao, Guohua; Zhang, Jian; Burk, Laurel; Schreiber, Torsten; Schreiber, Eric; Chang, Sha; Lu, Jianping; Zhou, Otto

    2014-01-01

    Purpose: Microbeam radiation therapy (MRT) is defined as the use of parallel, microplanar x-ray beams with an energy spectrum between 50 and 300 keV for cancer treatment and brain radiosurgery. Up until now, the possibilities of MRT have mainly been studied using synchrotron sources due to their high flux (100s Gy/s) and approximately parallel x-ray paths. The authors have proposed a compact x-ray based MRT system capable of delivering MRT dose distributions at a high dose rate. This system would employ carbon nanotube (CNT) field emission technology to create an x-ray source array that surrounds the target of irradiation. Using such a geometry, multiple collimators would shape the irradiation from this array into multiple microbeams that would then overlap or interlace in the target region. This pilot study demonstrates the feasibility of attaining a high dose rate and parallel microbeam beams using such a system. Methods: The microbeam dose distribution was generated by our CNT micro-CT scanner (100 μm focal spot) and a custom-made microbeam collimator. An alignment assembly was fabricated and attached to the scanner in order to collimate and superimpose beams coming from different gantry positions. The MRT dose distribution was measured using two orthogonal radiochromic films embedded inside a cylindrical phantom. This target was irradiated with microbeams incident from 44 different gantry angles to simulate an array of x-ray sources as in the proposed compact CNT-based MRT system. Finally, phantom translation in a direction perpendicular to the microplanar beams was used to simulate the use of multiple parallel microbeams. Results: Microbeams delivered from 44 gantry angles were superimposed to form a single microbeam dose distribution in the phantom with a FWHM of 300 μm (calculated value was 290 μm). Also, during the multiple beam simulation, a peak to valley dose ratio of ∼10 was found when the phantom translation distance was roughly 4x the beam width

  9. Performance evaluation of the General Electric eXplore CT 120 micro-CT using the vmCT phantom

    NASA Astrophysics Data System (ADS)

    Bahri, M. A.; Warnock, G.; Plenevaux, A.; Choquet, P.; Constantinesco, A.; Salmon, E.; Luxen, A.; Seret, A.

    2011-08-01

    The eXplore CT 120 is the latest generation micro-CT from General Electric. It is equipped with a high-power tube and a flat-panel detector. It allows high resolution and high contrast fast CT scanning of small animals. The aim of this study was to compare the performance of the eXplore CT 120 with that of the eXplore Ultra, its predecessor for which the methodology using the vmCT phantom has already been described [1].The phantom was imaged using typical a rat (fast scan or F) or mouse (in vivo bone scan or H) scanning protocols. With the slanted edge method, a 10% modulation transfer function (MTF) was observed at 4.4 (F) and 3.9-4.4 (H) mm-1 corresponding to 114 μm resolution. A fairly larger MTF was obtained by the coil method with the MTF for the thinnest coil (3.3 mm-1) equal to 0.32 (F) and 0.34 (H). The geometric accuracy was better than 0.3%. There was a highly linear (R2>0.999) relationship between measured and expected CT numbers for both the CT number accuracy and linearity sections of the phantom. A cupping effect was clearly seen on the uniform slices and the uniformity-to-noise ratio ranged from 0.52 (F) to 0.89 (H). The air CT number depended on the amount of polycarbonate surrounding the area where it was measured; a difference as high as approximately 200 HU was observed. This hindered the calibration of this scanner in HU. This is likely due to the absence of corrections for beam hardening and scatter in the reconstruction software. However in view of the high linearity of the system, the implementation of these corrections would allow a good quality calibration of the scanner in HU. In conclusion, the eXplore CT 120 achieved a better spatial resolution than the eXplore Ultra (based on previously reported specifications) and future software developments will include beam hardening and scatter corrections that will make the new generation CT scanner even more promising.

  10. Imaging of pore networks and related interfaces in soil systems by using high resolution X-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Zacher, Gerhard; Eickhorst, Thilo; Schmidt, Hannes; Halisch, Matthias

    2016-04-01

    Today's high-resolution X-ray CT with its powerful tubes and great detail detectability lends itself naturally to geological and pedological applications. Those include the non-destructive interior examination and textural analysis of rock and soil samples and their permeability and porosity - to name only a few. Especially spatial distribution and geometry of pores, mineral phases and fractures are important for the evaluation of hydrologic and aeration properties in soils as well as for root development in the soil matrix. The possibility to visualize a whole soil aggregate or root tissue in a non-destructive way is undoubtedly the most valuable feature of this type of analysis and is a new area for routine application of high resolution X-ray micro-CT. The paper outlines recent developments in hard- and software requirements for high resolution CT. It highlights several pedological applications which were performed with the phoenix nanotom m, the first 180 kV nanofocus CT system tailored specifically for extremely high-resolution scans of variable sized samples with voxel-resolutions down to < 300 nm. In addition very good contrast resolution can be obtained as well which is necessary to distinguish biogenic material in soil aggregates amongst others. We will address visualization and quantification of porous networks in 3D in different environmental samples ranging from clastic sedimentary rock to soil cores and individual soil aggregates. As several processes and habitat functions are related to various pore sizes imaging of the intact soil matrix will be presented on different scales of interest - from the mm-scale representing the connectivity of macro-pores down to the micro-scale representing the space of microbial habitats. Therefore, soils were impregnated with resin and scanned via X-ray CT. Scans at higher resolution were obtained from sub-volumes cut from the entire resin impregnated block and from crop roots surrounded by rhizosphere soil. Within the

  11. Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner

    SciTech Connect

    Hadsell, Mike Cao, Guohua; Zhang, Jian; Burk, Laurel; Schreiber, Torsten; Lu, Jianping; Zhou, Otto; Schreiber, Eric; Chang, Sha

    2014-06-15

    Purpose: Microbeam radiation therapy (MRT) is defined as the use of parallel, microplanar x-ray beams with an energy spectrum between 50 and 300 keV for cancer treatment and brain radiosurgery. Up until now, the possibilities of MRT have mainly been studied using synchrotron sources due to their high flux (100s Gy/s) and approximately parallel x-ray paths. The authors have proposed a compact x-ray based MRT system capable of delivering MRT dose distributions at a high dose rate. This system would employ carbon nanotube (CNT) field emission technology to create an x-ray source array that surrounds the target of irradiation. Using such a geometry, multiple collimators would shape the irradiation from this array into multiple microbeams that would then overlap or interlace in the target region. This pilot study demonstrates the feasibility of attaining a high dose rate and parallel microbeam beams using such a system. Methods: The microbeam dose distribution was generated by our CNT micro-CT scanner (100μm focal spot) and a custom-made microbeam collimator. An alignment assembly was fabricated and attached to the scanner in order to collimate and superimpose beams coming from different gantry positions. The MRT dose distribution was measured using two orthogonal radiochromic films embedded inside a cylindrical phantom. This target was irradiated with microbeams incident from 44 different gantry angles to simulate an array of x-ray sources as in the proposed compact CNT-based MRT system. Finally, phantom translation in a direction perpendicular to the microplanar beams was used to simulate the use of multiple parallel microbeams. Results: Microbeams delivered from 44 gantry angles were superimposed to form a single microbeam dose distribution in the phantom with a FWHM of 300μm (calculated value was 290 μm). Also, during the multiple beam simulation, a peak to valley dose ratio of ∼10 was found when the phantom translation distance was roughly 4x the beam width

  12. From histology to micro-CT: Measuring and modeling resorption cavities and their relation to bone competence

    PubMed Central

    Vanderoost, Jef; van Lenthe, G Harry

    2014-01-01

    The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure. Osteoclasts are one of the three main bone cell types that play a crucial role in the bone remodelling cycle. At the microstructural level, osteoclasts create bone deficits by eroding resorption cavities. Understanding how these cavities impair the mechanical quality of the bone is not only relevant in quantifying the impact of resorption cavities in healthy bone and normal aging, but maybe even more so in quantifying their role in metabolic bone diseases. Metabolic bone diseases and their treatment are both known to affect the bone remodelling cycle; hence, the bone mechanical competence can and will be affected. However, the current knowledge of the precise dimensions of these cavities and their effect on bone competence is rather limited. This is not surprising considering the difficulties in deriving three-dimensional (3D) properties from two-dimensional (2D) histological sections. The measurement difficulties are reflected in the evaluation of how resorption cavities affect bone competence. Although detailed 3D models are generally being used to quantify the mechanical impact of the cavities, the representation of the cavities themselves has basically been limited to simplified shapes and averaged cavity properties. Qualitatively, these models indicate that cavity size and location are important, and that the effect of cavities is larger than can be expected from simple bone loss. In summary, the dimensions of osteoclast resorption cavities were until recently estimated from 2D measures; hence, a careful interpretation of resorption cavity dimensions is necessary. More effort needs to go into correctly quantifying resorption cavities using modern 3D imaging techniques like micro-computed tomography (micro-CT) and synchrotron radiation CT. Osteoclast resorption cavities affect bone competence. The structure-function relationships

  13. Design and characterization of a multi-beam micro-CT scanner based on carbon nanotube field emission x-ray technology

    NASA Astrophysics Data System (ADS)

    Peng, Rui

    In this dissertation, I will present the results for my Ph.D. research for the past five years. My project mainly focuses on advanced imaging applications with a multi-beam x-ray source array based on carbon nanotube field emission technology. In the past few years, research in carbon nanotubes gradually changed from the raw material science to its application. Field emission x-ray application is one of the hottest research areas for carbon nanotube. Compared to traditional thermionic x-ray sources, the carbon nanotube field emission x-ray source has some natural advantages over traditional thermionic x-ray sources such as instantaneous x-ray generation, programmability and miniaturization. For the past few years, the research and development of carbon nanotube field emission x-ray has shifted from single x-ray beam applications to spatially distributed multi-beam x-ray sources. Previously in Zhou group, we have already built a gated micro-CT system with single beam micro-focus x-ray tube for higher spatial and temporal resolution as required in live animal imaging and a multi-beam tomosynthesis system targeting for faster and more stable breast imaging. Now my project mainly focused on the design, characterization and optimization of a multi-beam micro-CT imaging system. With the increase of gantry rotation speed approaching the mechanical limit, it is getting more and more difficult to further speed up the CT scanning. My new system promises a potential solution for the problem, and it serves as a great test platform for truly stationary micro-CT geometry. The potential capabilities it showed during the characterization and imaging measurements was promising. The dissertation is composed of five chapters. In Chapter 1, I will generally review the physics principles of x-ray generation and interaction with matter. Then the discovery of carbon nanotube and its great potential to serve as an excellent field emission electron source will be introduced in the second

  14. 4D Bioprinting for Biomedical Applications.

    PubMed

    Gao, Bin; Yang, Qingzhen; Zhao, Xin; Jin, Guorui; Ma, Yufei; Xu, Feng

    2016-09-01

    3D bioprinting has been developed to effectively and rapidly pattern living cells and biomaterials, aiming to create complex bioconstructs. However, placing biocompatible materials or cells into direct contact via bioprinting is necessary but insufficient for creating these constructs. Therefore, '4D bioprinting' has emerged recently, where 'time' is integrated with 3D bioprinting as the fourth dimension, and the printed objects can change their shapes or functionalities when an external stimulus is imposed or when cell fusion or postprinting self-assembly occurs. In this review, we highlight recent developments in 4D bioprinting technology. Additionally, we review the uses of 4D bioprinting in tissue engineering and drug delivery. Finally, we discuss the major roadblocks to this approach, together with possible solutions, to provide future perspectives on this technology. PMID:27056447

  15. Fundamentals and recent advances in X-ray micro computed tomography (microCT) applied on thermal-fluid dynamics and multiphase flows

    NASA Astrophysics Data System (ADS)

    Santini, Maurizio

    2015-11-01

    X-ray computed tomography (CT) is a well-known technique nowadays, since its first practical application by Sir. G. Hounsfield (Nobel price for medicine 1979) has continually benefited from optimising improvements, especially in medical applications. Indeed, also application of CT in various engineering research fields provides fundamental informations on a wide range of applications, considering that the technique is not destructive, allowing 3D visualization without perturbation of the analysed material. Nowadays, it is technologically possible to design and realize an equipment that achieve a micrometric resolution and even improve the sensibility in revealing differences in materials having very radiotransparency, allowing i.e. to distinguish between different fluids (with different density) or states of matter (like with two-phase flows). At the University of Bergamo, a prototype of an X-ray microCT system was developed since 2008, so being fully operative from 2012, with specific customizations for investigations in thermal-fluid dynamics and multiphase flow researches. A technical session held at the UIT International Conference in L'Aquila (Italy), at which this paper is referring, has presented some microCT fundamentals, to allow the audience to gain basics to follow the “fil-rouge” that links all the instrumentation developments, till the recent applications. Hereinafter are reported some applications currently developed at Bergamo University at the X-ray computed micro-tomography laboratory.

  16. Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry

    PubMed Central

    Kim, Jia; Song, Young-Sang; Min, Kyung-San; Kim, Sun-Hun; Koh, Jeong-Tae

    2016-01-01

    Objectives The purpose of this study was to assess the ability of two new calcium silicate-based pulp-capping materials (Biodentine and BioAggregate) to induce healing in a rat pulp injury model and to compare them with mineral trioxide aggregate (MTA). Materials and Methods Eighteen rats were anesthetized, cavities were prepared and the pulp was capped with either of ProRoot MTA, Biodentine, or BioAggregate. The specimens were scanned using a high-resolution micro-computed tomography (micro-CT) system and were prepared and evaluated histologically and immunohistochemically using dentin sialoprotein (DSP). Results On micro-CT analysis, the ProRoot MTA and Biodentine groups showed significantly thicker hard tissue formation (p < 0.05). On H&E staining, ProRoot MTA showed complete dentin bridge formation with normal pulpal histology. In the Biodentine and BioAggregate groups, a thick, homogeneous hard tissue barrier was observed. The ProRoot MTA specimens showed strong immunopositive reaction for DSP. Conclusions Our results suggest that calcium silicate-based pulp-capping materials induce favorable effects on reparative processes during vital pulp therapy and that both Biodentine and BioAggregate could be considered as alternatives to ProRoot MTA. PMID:26877988

  17. Statistical Analysis of Yarn Feature Parameters in C/Epoxy Plain-Weave Composite Using Micro CT with High-Resolution Lens-Coupled Detector

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wang, Zhong-wei

    2016-08-01

    C/Epoxy plain-weave composite is difficult to clear imaging in Micro CT with flat panel detector due to the similar atomic numbers of component materials. To solve this problem, a new Micro CT equipment with high-resolution lens-coupled detector is used to reconstruct 3D images of C/Epoxy. Slice data correction with ellipse projection is used to acquire real yarn normal cross-section information. A reference period method suitable for plain-weave composite is then detailed to evaluate statistical properties of yarn feature parameters. In the process of determination of real extreme slices, dislocation phenomenon existed in the laminated composite is discovered. Several possible reasons caused this phenomenon are discussed. Systematic trends, standard deviations and correlation lengths of stochastic deviations with original and corrected data are evaluated respectively by the application of reference period method. The statistical results show that mean out-of-plane yarn waviness, semi-axes, cross-section area and aspect ratio exhibit periodic characteristics, and the maximum effect of slice data correction on all statistical properties of feature parameters is twist angle.

  18. Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces

    NASA Astrophysics Data System (ADS)

    Raeini, Ali Q.; Blunt, Martin J.; Bijeljic, Branko

    2014-12-01

    Pore-scale forces have a significant effect on the macroscopic behaviour of multiphase flow through porous media. This paper studies the effect of these forces using a new volume-of-fluid based finite volume method developed for simulating two-phase flow directly on micro-CT images of porous media. An analytical analysis of the relationship between the pore-scale forces and the Darcy-scale pressure drops is presented. We use this analysis to propose unambiguous definitions of Darcy-scale viscous pressure drops as the rate of energy dissipation per unit flow rate of each phase, and then use them to obtain the relative permeability curves. We show that this definition is consistent with conventional laboratory/field measurements by comparing our predictions with experimental relative permeability. We present single and two-phase flow simulations for primary oil injection followed by water injection on a sandpack and a Berea sandstone. The two-phase flow simulations are presented at different capillary numbers which cover the transition from capillary fingering at low capillary numbers to a more viscous fingering displacement pattern at higher capillary numbers, and the effect of capillary number on the relative permeability curves is investigated. Overall, this paper presents a new finite volume-based methodology for the detailed analysis of two-phase flow directly on micro-CT images of porous media and upscaling of the results to the Darcy scale.

  19. Reduced dental calcium expression and dental mass in chronic sleep deprived rats: Combined EDS, TOF-SIMS, and micro-CT analysis

    NASA Astrophysics Data System (ADS)

    Kuo, Yi-Jie; Huang, Yung-Kai; Chou, Hsiu-Chu; Pai, Man-Hui; Lee, Ai-Wei; Mai, Fu-Der; Chang, Hung-Ming

    2015-08-01

    Teeth are the hardest tissue in the body. The growth of teeth is closely regulated by circadian rhythmicity. Considering that sleep deprivation (SD) is a severe condition that disrupts normal circadian rhythmicity, this study was conducted to determine whether calcium expression (the major element participating in teeth constitution), and dental mass would be significantly impaired following SD. Adolescent rats subjected to 3 weeks of SD were processed for energy dispersive spectrum (EDS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and micro-computed tomography (micro-CT) analyses. The EDS and TOF-SIMS results indicated that high calcium intensity was detected in both the upper and lower incisors of untreated rats. Micro-CT analysis corresponded closely with spectral data in which an enhanced dental mass was calculated in intact animals. However, following SD, both calcium expression and the dental mass were remarkably decreased to nearly half those of the untreated values. Because SD plays a detrimental role in impairing dental structure, establishing satisfactory sleep behavior would therefore serve as a crucial strategy for preventing or improving prevalent dental dysfunctions.

  20. Statistical Analysis of Yarn Feature Parameters in C/Epoxy Plain-Weave Composite Using Micro CT with High-Resolution Lens-Coupled Detector

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wang, Zhong-wei

    2016-02-01

    C/Epoxy plain-weave composite is difficult to clear imaging in Micro CT with flat panel detector due to the similar atomic numbers of component materials. To solve this problem, a new Micro CT equipment with high-resolution lens-coupled detector is used to reconstruct 3D images of C/Epoxy. Slice data correction with ellipse projection is used to acquire real yarn normal cross-section information. A reference period method suitable for plain-weave composite is then detailed to evaluate statistical properties of yarn feature parameters. In the process of determination of real extreme slices, dislocation phenomenon existed in the laminated composite is discovered. Several possible reasons caused this phenomenon are discussed. Systematic trends, standard deviations and correlation lengths of stochastic deviations with original and corrected data are evaluated respectively by the application of reference period method. The statistical results show that mean out-of-plane yarn waviness, semi-axes, cross-section area and aspect ratio exhibit periodic characteristics, and the maximum effect of slice data correction on all statistical properties of feature parameters is twist angle.

  1. Hemodynamic Changes Caused by Flow Diverters in Rabbit Aneurysm Models: Comparison of Virtual and Realistic FD Deployments Based on Micro-CT Reconstruction

    PubMed Central

    Fang, Yibin; Yu, Ying; Cheng, Jiyong; Wang, Shengzhang; Wang, Kuizhong; Liu, Jian-Min; Huang, Qinghai

    2013-01-01

    Adjusting hemodynamics via flow diverter (FD) implantation is emerging as a novel method of treating cerebral aneurysms. However, most previous FD-related hemodynamic studies were based on virtual FD deployment, which may produce different hemodynamic outcomes than realistic (in vivo) FD deployment. We compared hemodynamics between virtual FD and realistic FD deployments in rabbit aneurysm models using computational fluid dynamics (CFD) simulations. FDs were implanted for aneurysms in 14 rabbits. Vascular models based on rabbit-specific angiograms were reconstructed for CFD studies. Real FD configurations were reconstructed based on micro-CT scans after sacrifice, while virtual FD configurations were constructed with SolidWorks software. Hemodynamic parameters before and after FD deployment were analyzed. According to the metal coverage (MC) of implanted FDs calculated based on micro-CT reconstruction, 14 rabbits were divided into two groups (A, MC >35%; B, MC <35%). Normalized mean wall shear stress (WSS), relative residence time (RRT), inflow velocity, and inflow volume in Group A were significantly different (P<0.05) from virtual FD deployment, but pressure was not (P>0.05). The normalized mean WSS in Group A after realistic FD implantation was significantly lower than that of Group B. All parameters in Group B exhibited no significant difference between realistic and virtual FDs. This study confirmed MC-correlated differences in hemodynamic parameters between realistic and virtual FD deployment. PMID:23823503

  2. Assessing the three-dimensional collagen network in soft tissues using contrast agents and high resolution micro-CT: Application to porcine iliac veins.

    PubMed

    Nierenberger, Mathieu; Rémond, Yves; Ahzi, Saïd; Choquet, Philippe

    2015-07-01

    The assessment of the three-dimensional architecture of collagen fibers inside vessel walls constitutes one of the bases for building structural models for the description of the mechanical behavior of these tissues. Multiphoton microscopy allows for such observations, but is limited to volumes of around a thousand of microns. In the present work, we propose to observe the collagenous network of vascular tissues using micro-CT. To get a contrast, three staining solutions (phosphotungstic acid, phosphomolybdic acid and iodine potassium iodide) were tested. Two of these stains were showed to lead to similar results and to a satisfactory contrast within the tissue. A detailed observation of a small porcine iliac vein sample allowed assessing the collagen fibers orientations within the medial and adventitial layers of the vein. The vasa vasorum network, which is present inside the adventitia of the vein, was also observed. Finally, the demonstrated micro-CT staining technique for the three-dimensional observation of thin soft tissues samples, like vein walls, contributes to the assessment of their structure at different scales while keeping a global overview of the tissue. PMID:26033495

  3. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit.

    PubMed

    Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A

    2016-02-01

    SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. PMID:26722834

  4. Micro-CT Analysis of Bone Healing in Rabbit Calvarial Critical-Sized Defects with Solid Bioactive Glass, Tricalcium Phosphate Granules or Autogenous Bone

    PubMed Central

    Karhula, Sakari S.; Haapea, Marianne; Kauppinen, Sami; Finnilä, Mikko; Saarakkala, Simo; Serlo, Willy; Sándor, George K.

    2016-01-01

    ABSTRACT Objectives The purpose of the present study was to evaluate bone healing in rabbit critical-sized calvarial defects using two different synthetic scaffold materials, solid biodegradable bioactive glass and tricalcium phosphate granules alongside solid and particulated autogenous bone grafts. Material and Methods Bilateral full thickness critical-sized calvarial defects were created in 15 New Zealand white adult male rabbits. Ten defects were filled with solid scaffolds made of bioactive glass or with porous tricalcium phosphate granules. The healing of the biomaterial-filled defects was compared at the 6 week time point to the healing of autologous bone grafted defects filled with a solid cranial bone block in 5 defects and with particulated bone combined with fibrin glue in 10 defects. In 5 animals one defect was left unfilled as a negative control. Micro-computed tomography (micro-CT) was used to analyze healing of the defects. Results Micro-CT analysis revealed that defects filled with tricalcium phosphate granules showed new bone formation in the order of 3.89 (SD 1.17)% whereas defects treated with solid bioactive glass scaffolds showed 0.21 (SD 0.16)%, new bone formation. In the empty negative control defects there was an average new bone formation of 21.8 (SD 23.7)%. Conclusions According to findings in this study, tricalcium phosphate granules have osteogenic potential superior to bioactive glass, though both particulated bone with fibrin glue and solid bone block were superior defect filling materials. PMID:27489608

  5. 4D-Var Developement at GMAO

    NASA Technical Reports Server (NTRS)

    Pelc, Joanna S.; Todling, Ricardo; Akkraoui, Amal El

    2014-01-01

    The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.

  6. Constrained reconstructions for 4D intervention guidance

    NASA Astrophysics Data System (ADS)

    Kuntz, J.; Flach, B.; Kueres, R.; Semmler, W.; Kachelrieß, M.; Bartling, S.

    2013-05-01

    Image-guided interventions are an increasingly important part of clinical minimally invasive procedures. However, up to now they cannot be performed under 4D (3D + time) guidance due to the exceedingly high x-ray dose. In this work we investigate the applicability of compressed sensing reconstructions for highly undersampled CT datasets combined with the incorporation of prior images in order to yield low dose 4D intervention guidance. We present a new reconstruction scheme prior image dynamic interventional CT (PrIDICT) that accounts for specific image features in intervention guidance and compare it to PICCS and ASD-POCS. The optimal parameters for the dose per projection and the numbers of projections per reconstruction are determined in phantom simulations and measurements. In vivo experiments in six pigs are performed in a cone-beam CT; measured doses are compared to current gold-standard intervention guidance represented by a clinical fluoroscopy system. Phantom studies show maximum image quality for identical overall doses in the range of 14 to 21 projections per reconstruction. In vivo studies reveal that interventional materials can be followed in 4D visualization and that PrIDICT, compared to PICCS and ASD-POCS, shows superior reconstruction results and fewer artifacts in the periphery with dose in the order of biplane fluoroscopy. These results suggest that 4D intervention guidance can be realized with today’s flat detector and gantry systems using the herein presented reconstruction scheme.

  7. Geostatistical analysis of 3D microCT images of porous media for stochastic upscaling of spatially variable reactive surfaces

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kühn, Michael

    2015-04-01

    The 3D imaging of porous media through micro tomography allows the characterization of porous space and mineral abundances with unprecedented resolution. Such images can be used to perform computational determination of permeability and to obtain a realistic measure of the mineral surfaces exposed to fluid flow and thus to chemical interactions. However, the volume of the plugs that can be analysed with such detail is in the order of 1 cm3, so that their representativity at a larger scale, i.e. as needed for reactive transport modelling at Darcy scale, is questionable at best. In fact, the fine scale heterogeneity (from plug to plug at few cm distance within the same core) would originate substantially different readings of the investigated properties. Therefore, a comprehensive approach including the spatial variability and heterogeneity at the micro- and plug scale needs to be adopted to gain full advantage from the high resolution images in view of the upscaling to Darcy scale. In the framework of the collaborative project H2STORE, micro-CT imaging of different core samples from potential H2-storage sites has been performed by partners at TU Clausthal and Jena University before and after treatment with H2/CO2 mixtures in pressurized autoclaves. We present here the workflow which has been implemented to extract the relevant features from the available data concerning the heterogeneity of the medium at the microscopic and plug scale and to correlate the observed chemical reactions and changes in the porous structure with the geometrical features of the medium. First, a multivariate indicator-based geostatistical model for the microscopic structure of the plugs has been built and fitted to the available images. This involved the implementation of exploratory analysis algorithms such as experimental indicator variograms and cross-variograms. The implemented methods are able to efficiently deal with images in the order of 10003 voxels making use of parallelization

  8. R4D Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1956-01-01

    This Photograph taken in 1956 shows the first of three R4D Skytrain aircraft on the ramp behind the NACA High-Speed Flight Station. NACA stood for the National Advisory Committee for Aeronautics, which evolved into the National Aeronautics and Space Administration (NASA) in 1958. The R4D Skytrain was one of the early workhorses for NACA and NASA at Edwards Air Force Base, California, from 1952 to 1984. Designated the R4D by the U.S. Navy, the aircraft was called the C-47 by the U.S. Army and U.S. Air Force and the DC-3 by its builder, Douglas Aircraft. Nearly everyone called it the 'Gooney Bird.' In 1962, Congress consolidated the military-service designations and called all of them the C-47. After that date, the R4D at NASA's Flight Research Center (itself redesignated the Dryden Flight Research Center in 1976) was properly called a C-47. Over the 32 years it was used at Edwards, three different R4D/C-47s were used to shuttle personnel and equipment between NACA/NASA Centers and test locations throughout the country and for other purposes. One purpose was landing on 'dry' lakebeds used as alternate landing sites for the X-15, to determine whether their surfaces were hard (dry) enough for the X-15 to land on in case an emergency occurred after its launch and before it could reach Rogers Dry Lake at Edwards Air Force Base. The R4D/C-47 served a variety of needs, including serving as the first air-tow vehicle for the M2-F1 lifting body (which was built of mahogany plywood). The C-47 (as it was then called) was used for 77 tows before the M2-F1 was retired for more advanced lifting bodies that were dropped from the NASA B-52 'Mothership.' The R4D also served as a research aircraft. It was used to conduct early research on wing-tip-vortex flow visualization as well as checking out the NASA Uplink Control System. The first Gooney Bird was at the NACA High-Speed Flight Research Station (now the Dryden Flight Research Center) from 1952 to 1956 and flew at least one cross

  9. Interactive animation of 4D performance capture.

    PubMed

    Casas, Dan; Tejera, Margara; Guillemaut, Jean-Yves; Hilton, Adrian

    2013-05-01

    A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple mesh sequences of related motions. A real-time mesh sequence blending approach is introduced, which combines the realistic deformation of previous nonlinear solutions with efficient online computation. Transitions between different parametric motion spaces are evaluated in real time based on surface shape and motion similarity. Four-dimensional parametric motion graphs allow real-time interactive character animation while preserving the natural dynamics of the captured performance. PMID:23492379

  10. Nondipole Effects in Xe 4d Photoemission

    SciTech Connect

    Hemmers, O; Guillemin, R; Wolska, A; Lindle, D W; Rolles, D; Cheng, K T; Johnson, W R; Zhou, H L; Manson, S T

    2004-07-14

    We measured the nondipole parameters for the spin-orbit doublets Xe 4d{sub 5/2} and Xe 4d{sub 3/2} over a photon-energy range from 100 eV to 250 eV at beamline 8.0.1.3 of the Advanced Light Source at the Lawrence Berkeley National Laboratory. Significant nondipole effects are found at relatively low energies as a result of Cooper minima in dipole channels and interchannel coupling in quadrupole channels. Most importantly, sharp disagreement between experiment and theory, when otherwise excellent agreement was expected, has provided the first evidence of satellite two-electron quadrupole photoionization transitions, along with their crucial importance for a quantitatively accurate theory.

  11. 4D image reconstruction for emission tomography

    NASA Astrophysics Data System (ADS)

    Reader, Andrew J.; Verhaeghe, Jeroen

    2014-11-01

    An overview of the theory of 4D image reconstruction for emission tomography is given along with a review of the current state of the art, covering both positron emission tomography and single photon emission computed tomography (SPECT). By viewing 4D image reconstruction as a matter of either linear or non-linear parameter estimation for a set of spatiotemporal functions chosen to approximately represent the radiotracer distribution, the areas of so-called ‘fully 4D’ image reconstruction and ‘direct kinetic parameter estimation’ are unified within a common framework. Many choices of linear and non-linear parameterization of these functions are considered (including the important case where the parameters have direct biological meaning), along with a review of the algorithms which are able to estimate these often non-linear parameters from emission tomography data. The other crucial components to image reconstruction (the objective function, the system model and the raw data format) are also covered, but in less detail due to the relatively straightforward extension from their corresponding components in conventional 3D image reconstruction. The key unifying concept is that maximum likelihood or maximum a posteriori (MAP) estimation of either linear or non-linear model parameters can be achieved in image space after carrying out a conventional expectation maximization (EM) update of the dynamic image series, using a Kullback-Leibler distance metric (comparing the modeled image values with the EM image values), to optimize the desired parameters. For MAP, an image-space penalty for regularization purposes is required. The benefits of 4D and direct reconstruction reported in the literature are reviewed, and furthermore demonstrated with simple simulation examples. It is clear that the future of reconstructing dynamic or functional emission tomography images, which often exhibit high levels of spatially correlated noise, should ideally exploit these 4D

  12. 4D motion animation of coronary arteries from rotational angiography

    NASA Astrophysics Data System (ADS)

    Holub, Wolfgang; Rohkohl, Christopher; Schuldhaus, Dominik; Prümmer, Marcus; Lauritsch, Günter; Hornegger, Joachim

    2011-03-01

    Time-resolved 3-D imaging of the heart is a major research topic in the medical imaging community. Recent advances in the interventional cardiac 3-D imaging from rotational angiography (C-arm CT) are now also making 4-D imaging feasible during procedures in the catheter laboratory. State-of-the-art reconstruction algorithms try to estimate the cardiac motion and utilize the motion field to enhance the reconstruction of a stable cardiac phase (diastole). The available data offers a handful of opportunities during interventional procedures, e.g. the ECG-synchronized dynamic roadmapping or the computation and analysis of functional parameters. In this paper we will demonstrate that the motion vector field (MVF) that is output by motion compensated image reconstruction algorithms is in general not directly usable for animation and motion analysis. Dependent on the algorithm different defects are investigated. A primary issue is that the MVF needs to be inverted, i.e. the wrong direction of motion is provided. A second major issue is the non-periodicity of cardiac motion. In algorithms which compute a non-periodic motion field from a single rotation the in depth motion information along viewing direction is missing, since this cannot be measured in the projections. As a result, while the MVF improves reconstruction quality, it is insufficient for motion animation and analysis. We propose an algorithm to solve both problems, i.e. inversion and missing in-depth information in a unified framework. A periodic version of the MVF is approximated. The task is formulated as a linear optimization problem where a parametric smooth motion model based on B-splines is estimated from the MVF. It is shown that the problem can be solved using a sparse QR factorization within a clinical feasible time of less than one minute. In a phantom experiment using the publicly available CAVAREV platform, the average quality of a non-periodic animation could be increased by 39% by applying the

  13. Abdominal and pancreatic motion correlation using 4D CT, 4D transponders, and a gating belt.

    PubMed

    Betancourt, Ricardo; Zou, Wei; Plastaras, John P; Metz, James M; Teo, Boon-Keng; Kassaee, Alireza

    2013-01-01

    The correlation between the pancreatic and external abdominal motion due to respiration was investigated on two patients. These studies utilized four dimensional computer tomography (4D CT), a four dimensional (4D) electromagnetic transponder system, and a gating belt system. One 4D CT study was performed during simulation to quantify the pancreatic motion using computer tomography images at eight breathing phases. The motion under free breathing and breath-hold were analyzed for the 4D electromagnetic transponder system and the gating belt system during treatment. A linear curve was fitted for all data sets and correlation factors were evaluated between the 4D electromagnetic transponder system and the gating belt system data. The 4D CT study demonstrated a modest correlation between the external marker and the pancreatic motion with R-square values larger than 0.8 for the inferior-superior (inf-sup). Then, the relative pressure from the belt gating system correlated well with the 4D electromagnetic transponder system's motion in the anterior-posterior (ant-post) and the inf-post directions. These directions have a correlation value of -0.93 and 0.76, while the lateral only had a 0.03 correlation coefficient. Based on our limited study, external surrogates can be used as predictors of the pancreatic motion in the inf-sup and the ant-post directions. Although there is a low correlation on the lateral direction, its motion is significantly shorter. In conclusion, an appropriate treatment delivery can be used for pancreatic cancer when an internal tracking system, such as the 4D electromagnetic transponder system, is unavailable. PMID:23652242

  14. Eupolybothrus cavernicolus Komerički & Stoev sp. n. (Chilopoda: Lithobiomorpha: Lithobiidae): the first eukaryotic species description combining transcriptomic, DNA barcoding and micro-CT imaging data

    PubMed Central

    2013-01-01

    Abstract We demonstrate how a classical taxonomic description of a new species can be enhanced by applying new generation molecular methods, and novel computing and imaging technologies. A cave-dwelling centipede, Eupolybothrus cavernicolus Komerički & Stoev sp. n. (Chilopoda: Lithobiomorpha: Lithobiidae), found in a remote karst region in Knin, Croatia, is the first eukaryotic species for which, in addition to the traditional morphological description, we provide a fully sequenced transcriptome, a DNA barcode, detailed anatomical X-ray microtomography (micro-CT) scans, and a movie of the living specimen to document important traits of its ex-situ behaviour. By employing micro-CT scanning in a new species for the first time, we create a high-resolution morphological and anatomical dataset that allows virtual reconstructions of the specimen and subsequent interactive manipulation to test the recently introduced ‘cybertype’ notion. In addition, the transcriptome was recorded with a total of 67,785 scaffolds, having an average length of 812 bp and N50 of 1,448 bp (see GigaDB). Subsequent annotation of 22,866 scaffolds was conducted by tracing homologs against current available databases, including Nr, SwissProt and COG. This pilot project illustrates a workflow of producing, storing, publishing and disseminating large data sets associated with a description of a new taxon. All data have been deposited in publicly accessible repositories, such as GigaScience GigaDB, NCBI, BOLD, Morphbank and Morphosource, and the respective open licenses used ensure their accessibility and re-usability. PMID:24723752

  15. Computer modelling integrated with micro-CT and material testing provides additional insight to evaluate bone treatments: Application to a beta-glycan derived whey protein mice model.

    PubMed

    Sreenivasan, D; Tu, P T; Dickinson, M; Watson, M; Blais, A; Das, R; Cornish, J; Fernandez, J

    2016-01-01

    The primary aim of this study was to evaluate the influence of a whey protein diet on computationally predicted mechanical strength of murine bones in both trabecular and cortical regions of the femur. There was no significant influence on mechanical strength in cortical bone observed with increasing whey protein treatment, consistent with cortical tissue mineral density (TMD) and bone volume changes observed. Trabecular bone showed a significant decline in strength with increasing whey protein treatment when nanoindentation derived Young׳s moduli were used in the model. When microindentation, micro-CT phantom density or normalised Young׳s moduli were included in the model a non-significant decline in strength was exhibited. These results for trabecular bone were consistent with both trabecular bone mineral density (BMD) and micro-CT indices obtained independently. The secondary aim of this study was to characterise the influence of different sources of Young׳s moduli on computational prediction. This study aimed to quantify the predicted mechanical strength in 3D from these sources and evaluate if trends and conclusions remained consistent. For cortical bone, predicted mechanical strength behaviour was consistent across all sources of Young׳s moduli. There was no difference in treatment trend observed when Young׳s moduli were normalised. In contrast, trabecular strength due to whey protein treatment significantly reduced when material properties from nanoindentation were introduced. Other material property sources were not significant but emphasised the strength trend over normalised material properties. This shows strength at the trabecular level was attributed to both changes in bone architecture and material properties. PMID:26599826

  16. In vivo micro-CT imaging of the murine lung via a computer controlled intermittent iso-pressure breath hold (IIBH) technique

    NASA Astrophysics Data System (ADS)

    Namati, Eman; Chon, Deokiee; Thiesse, Jacqueline; McLennan, Geoffrey; Sieren, Jered; Ross, Alan; Hoffman, Eric A.

    2006-03-01

    Micro-CT, a technique for imaging small objects at high resolution using micro focused x-rays, is becoming widely available for small animal imaging. With the growing number of mouse models of pulmonary pathology, there is great interest in following disease progression and evaluating the alteration in longitudinal studies. Along with the high resolution associated with micro CT comes increased scanning times, and hence minimization of motion artifacts is required. We propose a new technique for imaging mouse lungs in vivo by inducing an intermittent iso-pressure breath hold (IIBH) with a fixed level of positive airway pressure during image acquisition, to decrease motion artifacts and increase image resolution and quality. Mechanical ventilation of the respiratory system for such a setup consists of three phases, 1) tidal breathing (hyperventilated), 2) a breath hold during a fixed level of applied positive airway pressure, 3) periodic deep sighs. Image acquisition is triggered over the stable segment of the IIBH period. Comparison of images acquired from the same mouse lung using three imaging techniques (normal breathing / no gating, normal breathing with gating at End Inspiration (EI) and finally the IIBH technique) demonstrated substantial improvements in resolution and quality when using the IIBH gating. Using IIBH triggering the total image acquisition time increased from 15 minutes to 35 minutes, although total x-ray exposure time and hence animal dosage remains the same. This technique is an important step in providing high quality lung imaging of the mouse in vivo, and will provide a good foundation for future longitudinal studies.

  17. High-Resolution Micro-CT for Morphologic and Quantitative Assessment of the Sinusoid in Human Cavernous Hemangioma of the Liver

    PubMed Central

    Duan, Jinghao; Hu, Chunhong; Chen, Hua

    2013-01-01

    Hepatic sinusoid plays a vital role in human cavernous hemangioma of the liver (CHL), and its morphologic investigation facilitates the understanding of microcirculation mechanism and pathological change of CHL. However, precise anatomical view of the hepatic sinusoid has been limited by the resolution and contrast available from existing imaging techniques. While liver biopsy has traditionally been the reliable method for the assessment of hepatic sinusoids, the invasiveness and sampling error are its inherent limitations. In this study, imaging of CHL samples was performed using in-line phase-contrast imaging (ILPCI) technique with synchrotron radiation. ILPCI allowed clear visualization of soft tissues and revealed structural details that were invisible to conventional radiography. Combining the computed tomography (CT) technique, ILPCI-CT was used to acquire the high-resolution micro-CT images of CHL, and three dimensional (3D) microstructures of hepatic sinusoids were provided for the morphologic depiction and quantitative assessment. Our study demonstrated that ILPCI-CT could substantially improve the radiographic contrast of CHL tissues in vitro with no contrast agent. ILPCI-CT yielded high-resolution micro-CT image of CHL sample at the micron scale, corresponding to information on actual structures revealed at histological section. The 3D visualization provided an excellent view of the hepatic sinusoid. The accurate view of individual hepatic sinusoid was achieved. The valuable morphological parameters of hepatic sinusoids, such as thrombi, diameters, surface areas and volumes, were measured. These parameters were of great importance in the evaluation of CHL, and they provided quantitative descriptors that characterized anatomical properties and pathological features of hepatic sinusoids. The results highlight the high degree of sensitivity of the ILPCI-CT technique and demonstrate the feasibility of accurate visualization of hepatic sinusoids. Moreover

  18. Micro-CT analysis and mechanical properties of Ti spherical and polyhedral void composites made with saccharose as a space holder material

    SciTech Connect

    Jakubowicz, J.; Adamek, G.; Pałka, K.; Andrzejewski, D.

    2015-02-15

    The paper describes the formation, morphology and mechanical properties of Ti void composites. The Ti void composites were made using 100 and 325 mesh Ti powder for solid scaffold formation. The spherical and polyhedral voids (pores) were formed using saccharose particles (table sugar) of different shapes. The Ti void composite morphology was investigated by microcomputed tomography and scanning electron microscopy. The Ti void composites of designed porosity of 50–70% were made. Compression test was applied for mechanical properties estimation. It has been found, that Ti void composites made from 100 mesh Ti and those having spherical pores have a higher strength and elastic modulus, i.e. for the designed porosity of 50% for 100 and 325 mesh Ti void composites, a compressive strength was 32.32 and 20.13 MPa, respectively. It has been shown that this is related to better sintering of the 100 mesh Ti powders compared with the 325 mesh Ti powders. A correlation between microcomputed tomography data and mechanical properties has also been shown. The Ti void composites, made with the use of saccharose as a space holder, described in this work should be a promising material for biomedical applications, where interconnected pores and good mechanical properties are required. - Highlights: • Ti scaffolds of the porosity of 50–70% were made. • Saccharose particles as space holder were applied. • The voids in the scaffolds were designed with spherical and polyhedral shape. • The scaffold structure was investigated by SEM and micro-CT. • Micro-CT data and mechanical properties of the Ti scaffold have been correlated.

  19. Synchrotron radiation micro-CT at the micrometer scale for the analysis of the three-dimensional morphology of microcracks in human trabecular bone.

    PubMed

    Larrue, Aymeric; Rattner, Aline; Peter, Zsolt-Andrei; Olivier, Cécile; Laroche, Norbert; Vico, Laurence; Peyrin, Françoise

    2011-01-01

    Bone quality is an important concept to explain bone fragility in addition to bone mass. Among bone quality factors, microdamage which appears in daily life is thought to have a marked impact on bone strength and plays a major role in the repair process. The starting point for all studies designed to further our understanding of how bone microdamage initiate or dissipate energy, or to investigate the impact of age, gender or disease, remains reliable observation and measurement of microdamage. In this study, 3D Synchrotron Radiation (SR) micro-CT at the micrometric scale was coupled to image analysis for the three-dimensional characterization of bone microdamage in human trabecular bone specimens taken from femoral heads. Specimens were imaged by 3D SR micro-CT with a voxel size of 1.4 µm. A new tailored 3D image analysis technique was developed to segment and quantify microcracks. Microcracks from human trabecular bone were observed in different tomographic sections as well as from 3D renderings. New 3D quantitative measurements on the microcrack density and morphology are reported on five specimens. The 3D microcrack density was found between 3.1 and 9.4/mm3 corresponding to a 2D density between 0.55 and 0.76 /mm2. The microcrack length and width measured in 3D on five selected microcrack ranged respectively from 164 µm to 209 µm and 100 µm to 120 µm. This is the first time that various microcracks in unloaded human trabecular bone--from the simplest linear crack to more complex cross-hatch cracks--have been examined and quantified by 3D imaging at this scale. The suspected complex morphology of microcracks is here considerably more evident than in the 2D observations. In conclusion, this technique opens new perspective for the 3D investigation of microcracks and the impact of age, disease or treatment. PMID:21750707

  20. In Vivo Diagnostic Imaging Using Micro-CT: Sequential and Comparative Evaluation of Rodent Models for Hepatic/Brain Ischemia and Stroke

    PubMed Central

    Hayasaka, Naoto; Nagai, Nobuo; Kawao, Naoyuki; Niwa, Atsuko; Yoshioka, Yoshichika; Mori, Yuki; Shigeta, Hiroshi; Kashiwagi, Nobuo; Miyazawa, Masaaki; Satou, Takao; Higashino, Hideaki; Matsuo, Osamu; Murakami, Takamichi

    2012-01-01

    Background There is an increasing need for animal disease models for pathophysiological research and efficient drug screening. However, one of the technical barriers to the effective use of the models is the difficulty of non-invasive and sequential monitoring of the same animals. Micro-CT is a powerful tool for serial diagnostic imaging of animal models. However, soft tissue contrast resolution, particularly in the brain, is insufficient for detailed analysis, unlike the current applications of CT in the clinical arena. We address the soft tissue contrast resolution issue in this report. Methodology We performed contrast-enhanced CT (CECT) on mouse models of experimental cerebral infarction and hepatic ischemia. Pathological changes in each lesion were quantified for two weeks by measuring the lesion volume or the ratio of high attenuation area (%HAA), indicative of increased vascular permeability. We also compared brain images of stroke rats and ischemic mice acquired with micro-CT to those acquired with 11.7-T micro-MRI. Histopathological analysis was performed to confirm the diagnosis by CECT. Principal Findings In the models of cerebral infarction, vascular permeability was increased from three days through one week after surgical initiation, which was also confirmed by Evans blue dye leakage. Measurement of volume and %HAA of the liver lesions demonstrated differences in the recovery process between mice with distinct genetic backgrounds. Comparison of CT and MR images acquired from the same stroke rats or ischemic mice indicated that accuracy of volumetric measurement, as well as spatial and contrast resolutions of CT images, was comparable to that obtained with MRI. The imaging results were also consistent with the histological data. Conclusions This study demonstrates that the CECT scanning method is useful in rodents for both quantitative and qualitative evaluations of pathologic lesions in tissues/organs including the brain, and is also suitable for

  1. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    SciTech Connect

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Samei, E.; Williams, Cameron H.; Frush, D.; Feng Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.

    2013-04-15

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore, serve

  2. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    PubMed Central

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Williams, Cameron H.; Feng, Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.; Frush, D.; Samei, E.

    2013-01-01

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest–abdomen–pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore

  3. Active origami by 4D printing

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  4. Cardiac Rehabilitation

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Cardiac Rehabilitation? Cardiac rehabilitation (rehab) is a medically supervised program ... be designed to meet your needs. The Cardiac Rehabilitation Team Cardiac rehab involves a long-term commitment ...

  5. Soft Route to 4D Tomography

    NASA Astrophysics Data System (ADS)

    Taillandier-Thomas, Thibault; Roux, Stéphane; Hild, François

    2016-07-01

    Based on the assumption that the time evolution of a sample observed by computed tomography requires many less parameters than the definition of the microstructure itself, it is proposed to reconstruct these changes based on the initial state (using computed tomography) and very few radiographs acquired at fixed intervals of time. This Letter presents a proof of concept that for a fatigue cracked sample its kinematics can be tracked from no more than two radiographs in situations where a complete 3D view would require several hundreds of radiographs. This 2 order of magnitude gain opens the way to a "computed" 4D tomography, which complements the recent progress achieved in fast or ultrafast computed tomography, which is based on beam brightness, detector sensitivity, and signal acquisition technologies.

  6. ICT4D: A Computer Science Perspective

    NASA Astrophysics Data System (ADS)

    Sutinen, Erkki; Tedre, Matti

    The term ICT4D refers to the opportunities of Information and Communication Technology (ICT) as an agent of development. Research in that field is often focused on evaluating the feasibility of existing technologies, mostly of Western or Far East Asian origin, in the context of developing regions. A computer science perspective is complementary to that agenda. The computer science perspective focuses on exploring the resources, or inputs, of a particular context and on basing the design of a technical intervention on the available resources, so that the output makes a difference in the development context. The modus operandi of computer science, construction, interacts with evaluation and exploration practices. An analysis of a contextualized information technology curriculum of Tumaini University in southern Tanzania shows the potential of the computer science perspective for designing meaningful information and communication technology for a developing region.

  7. Controlled Source 4D Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Morency, C.; Tromp, J.

    2009-12-01

    Earth's material properties may change after significant tectonic events, e.g., volcanic eruptions, earthquake ruptures, landslides, and hydrocarbon migration. While many studies focus on how to interpret observations in terms of changes in wavespeeds and attenuation, the oil industry is more interested in how we can identify and locate such temporal changes using seismic waves generated by controlled sources. 4D seismic analysis is indeed an important tool to monitor fluid movement in hydrocarbon reservoirs during production, improving fields management. Classic 4D seismic imaging involves comparing images obtained from two subsequent seismic surveys. Differences between the two images tell us where temporal changes occurred. However, when the temporal changes are small, it may be quite hard to reliably identify and characterize the differences between the two images. We propose to back-project residual seismograms between two subsequent surveys using adjoint methods, which results in images highlighting temporal changes. We use the SEG/EAGE salt dome model to illustrate our approach. In two subsequent surveys, the wavespeeds and density within a target region are changed, mimicking possible fluid migration. Due to changes in material properties induced by fluid migration, seismograms recorded in the two surveys differ. By back propagating these residuals, the adjoint images identify the location of the affected region. An important issue involves the nature of model. For instance, are we characterizing only changes in wavespeed, or do we also consider density and attenuation? How many model parameters characterize the model, e.g., is our model isotropic or anisotropic? Is acoustic wave propagation accurate enough or do we need to consider elastic or poroelastic effects? We will investigate how imaging strategies based upon acoustic, elastic and poroelastic simulations affect our imaging capabilities.

  8. Opening the Black Box of ICT4D: Advancing Our Understanding of ICT4D Partnerships

    ERIC Educational Resources Information Center

    Park, Sung Jin

    2013-01-01

    The term, Information and Communication Technologies for Development (ICT4D), pertains to programs or projects that strategically use ICTs (e.g. mobile phones, computers, and the internet) as a means toward the socio-economic betterment for the poor in developing contexts. Gaining the political and financial support of the international community…

  9. 3D Assessment of Cortical Bone Porosity and Tissue Mineral Density Using High-Resolution Micro-CT: Effects of Resolution and Threshold Method

    PubMed Central

    Palacio-Mancheno, Paolo E.; Larriera, Adriana I.; Doty, Stephen B.; Cardoso, Luis; Fritton, Susannah P.

    2013-01-01

    Current micro-CT systems allow scanning bone at resolutions capable of three-dimensional characterization of intracortical vascular porosity and osteocyte lacunae. However, the scanning and reconstruction parameters along with the image segmentation method affect the accuracy of the measurements. In this study, the effects of scanning resolution and image threshold method in quantifying small features of cortical bone (vascular porosity, vascular canal diameter and separation, lacunar porosity and density, and tissue mineral density) were analyzed. Cortical bone from the tibia of Sprague-Dawley rats was scanned at 1-µm and 4-µm resolutions, reconstructions were density-calibrated, and volumes of interest were segmented using approaches based on edge-detection or histogram analysis. With 1-µm resolution scans, the osteocyte lacunar spaces could be visualized, and it was possible to separate the lacunar porosity from the vascular porosity. At 4-µm resolution, the vascular porosity and vascular canal diameter were underestimated, and osteocyte lacunae were not effectively detected, whereas the vascular canal separation and tissue mineral density were overestimated compared to 1-µm resolution. Resolution had a much greater effect on the measurements than did threshold method, with partial volume effects at resolutions coarser than 2 µm demonstrated in two separate analyses, one of which assessed the effect of resolution on an object of known size with similar architecture to a vascular pore. Although there was little difference when using the edge-detection versus histogram-based threshold approaches, edge-detection was somewhat more effective in delineating canal architecture at finer resolutions (1 – 2 µm). In addition, use of a high-resolution (1-µm) density-based threshold on lower resolution (4-µm) density-calibrated images was not effective in improving the lower-resolution measurements. In conclusion, if measuring cortical vascular microarchitecture

  10. A New Osteophyte Segmentation Algorithm Using the Partial Shape Model and Its Applications to Rabbit Femur Anterior Cruciate Ligament Transection via Micro-CT Imaging

    PubMed Central

    Liang, G.; Elkins, J. M.; Coimbra, A.; Duong, L. T.; Williams, D. S.; Sonka, M.

    2015-01-01

    Osteophyte is an additional bony growth on a normal bone surface limiting or stopping motion at a deteriorating joint. Detection and quantification of osteophytes from computed tomography (CT) images is helpful in assessing disease status as well as treatment and surgery planning. However, it is difficult to distinguish between osteophytes and healthy bones using simple thresholding or edge/texture features due to the similarity of their material composition. In this paper, we present a new method primarily based on the active shape model (ASM) to solve this problem and evaluate its application to the anterior cruciate ligament transaction (ACLT) rabbit femur model via micro-CT imaging. The common idea behind most ASM-based segmentation methods is to first build a parametric shape model from a training dataset and then apply the model to find a shape instance in a target image. A common challenge with such approaches is that a diseased bone shape is significantly altered at regions with osteophyte deposition misguiding an ASM method and eventually leading to suboptimum segmentations. This difficulty is overcome using a new partial-ASM method that uses bone shape over healthy regions and extrapolates it over the diseased region according to the underlying shape model. Finally, osteophytes are segmented by subtracting partial-ASM-derived shape from the overall diseased shape. Also, a new semiautomatic method is presented in this paper for efficiently building a 3-D shape model for an anatomic region using manual reference of a few anatomically defined fiducial landmarks that are highly reproducible on individuals. Accuracy of the method has been examined on simulated phantoms while reproducibility and sensitivity have been evaluated on micro-CT images of 2-, 4- and 8-week post-ACLT and sham-treated rabbit femurs. Experimental results have shown that the method is highly accurate (R2 = 0.99), reproducible (ICC = 0.97), and sensitive in detecting disease progression (p

  11. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  12. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  13. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  14. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2011 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  15. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2014 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  16. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2011 CFR

    2005-04-01

    ... 17 Commodity and Securities Exchanges 3 2005-04-01 2005-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  17. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2014 CFR

    2000-04-01

    ... 17 Commodity and Securities Exchanges 3 2000-04-01 2000-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a) Each application for an order under section 304(d)...

  18. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2010 CFR

    2015-04-01

    ... 17 Commodity and Securities Exchanges 4 2015-04-01 2015-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  19. ProTaper and WaveOne systems three-dimensional comparison of device parameters after the shaping technique. A micro-CT study on simulated root canals

    PubMed Central

    Dioguardi, Mario; Troiano, Giuseppe; Laino, Luigi; Russo, Lucio Lo; Giannatempo, Giovanni; Lauritano, Floriana; Cicciù, Marco; Muzio, Lorenzo Lo

    2015-01-01

    Aim: The aim of this study is to highlights possible differences in the volume of shaping and canal surface area after the using of common endodontic devices ProTaper Universal and WaveOne systems. Methods: Forty ISO 15, 0.02 taper, S-shaped endo-training Blocks (Dentsply, Maillefer) were assigned in two groups (n = 20 for each group). For each block the initial working length (WL) was evaluated with a 10 K-files (Dentsply Maillefer), so the glide path was created with PathFile 1, 2 and 3 (Dentsply Maillefer) at the WL. After that, simulated canals in the group 1 were shaped with S1, S2, F1 and F2 at WL; while in group 2 it was used single-file WaveOne primary in reciprocating motion. After shaping, the resin blocks were analysed with Skyscan 1172 scanner (Skyscan, Kontich, Belgium) and then volumetrically at a source voltage of 65 kV and a source current of 153 uA. Results: No statistically differences (P > 0.05) have been found in terms of volume and surface area after the use of ProTaper Universal and WaveOne systems. Conclusions: Although, results from micro-CT analysis revealed that Wave One result in a decrease of volume and surface area of shaping than ProTaper Universal, differences are not statistically significant. PMID:26770376

  20. Automatic classification of squamosal abnormality in micro-CT images for the evaluation of rabbit fetal skull defects using active shape models

    NASA Astrophysics Data System (ADS)

    Chen, Antong; Dogdas, Belma; Mehta, Saurin; Bagchi, Ansuman; Wise, L. David; Winkelmann, Christopher

    2014-03-01

    High-throughput micro-CT imaging has been used in our laboratory to evaluate fetal skeletal morphology in developmental toxicology studies. Currently, the volume-rendered skeletal images are visually inspected and observed abnormalities are reported for compounds in development. To improve the efficiency and reduce human error of the evaluation, we implemented a framework to automate the evaluation process. The framework starts by dividing the skull into regions of interest and then measuring various geometrical characteristics. Normal/abnormal classification on the bone segments is performed based on identifying statistical outliers. In pilot experiments using rabbit fetal skulls, the majority of the skeletal abnormalities can be detected successfully in this manner. However, there are shape-based abnormalities that are relatively subtle and thereby difficult to identify using the geometrical features. To address this problem, we introduced a model-based approach and applied this strategy on the squamosal bone. We will provide details on this active shape model (ASM) strategy for the identification of squamosal abnormalities and show that this method improved the sensitivity of detecting squamosal-related abnormalities from 0.48 to 0.92.

  1. Tooth periodontal ligament: Direct 3D microCT visualization of the collagen network and how the network changes when the tooth is loaded.

    PubMed

    Naveh, Gili R S; Brumfeld, Vlad; Shahar, Ron; Weiner, Steve

    2013-02-01

    The periodontal ligament (PDL), a soft tissue connecting the tooth and the bone, is essential for tooth movement, bone remodeling and force dissipation. A collagenous network that connects the tooth root surface to the alveolar jaw bone is one of the major components of the PDL. The organization of the collagenous component and how it changes under load is still poorly understood. Here using a state-of-the-art custom-made loading apparatus and a humidified environment inside a microCT, we visualize the PDL collagenous network of a fresh rat molar in 3D at 1 μm voxel size without any fixation or contrasting agents. We demonstrate that the PDL collagen network is organized in sheets. The spaces between sheets vary thus creating dense and sparse networks. Upon vertical loading, the sheets in both networks are stretched into well aligned arrays. The sparse network is located mainly in areas which undergo compressive loading as the tooth moves towards the bone, whereas the dense network functions mostly in tension as the tooth moves further from the bone. This new visualization method can be used to study other non-mineralized or partially mineralized tissues, and in particular those that are subjected to mechanical loads. The method will also be valuable for characterizing diseased tissues, as well as better understanding the phenotypic expressions of genetic mutants. PMID:23110851

  2. Beam hardening and smoothing correction effects on performance of micro-ct SkyScan 1173 for imaging low contrast density materials

    SciTech Connect

    Sriwayu, Wa Ode; Haryanto, Freddy; Khotimah, Siti Nurul; Latief, Fourier Dzar Eljabbar

    2015-04-16

    We have designed and fabricated phantom mimicking breast cancer composition known as a region that has low contrast density. The used compositions are a microcalcifications, fatty tissues and tumor mass by using Al{sub 2}O{sub 3}, C{sub 27}H{sub 46}O, and hard nylon materials. Besides, phantom also has a part to calculate low cost criteria /CNR (Contrast to Noise Ratio). Uniformity will be measured at water distillation medium located in a part of phantom scale contrast. Phantom will be imaged by using micro ct-sky scan 1173 high energy type, and then also can be quantified CT number to examine SkyScan 1173 performance in imaging low contrast density materials. Evaluation of CT number is done at technique configuration parameter using voltage of 30 kV, exposure 0.160 mAs, and camera resolution 560x560 pixel, the effect of image quality to reconstruction process is evaluated by varying image processing parameters in the form of beam hardening corrections with amount of 25%, 66% and100% with each smoothing level S10,S2 and S7. To obtain the better high quality image, the adjustment of beam hardening correction should be 66% and smoothing level reach maximal value at level 10.

  3. Beam hardening and smoothing correction effects on performance of micro-ct SkyScan 1173 for imaging low contrast density materials

    NASA Astrophysics Data System (ADS)

    Sriwayu, Wa Ode; Haryanto, Freddy; Khotimah, Siti Nurul; Latief, Fourier Dzar Eljabbar

    2015-04-01

    We have designed and fabricated phantom mimicking breast cancer composition known as a region that has low contrast density. The used compositions are a microcalcifications, fatty tissues and tumor mass by using Al2O3, C27H46O, and hard nylon materials. Besides, phantom also has a part to calculate low cost criteria /CNR (Contrast to Noise Ratio). Uniformity will be measured at water distillation medium located in a part of phantom scale contrast. Phantom will be imaged by using micro ct-sky scan 1173 high energy type, and then also can be quantified CT number to examine SkyScan 1173 performance in imaging low contrast density materials. Evaluation of CT number is done at technique configuration parameter using voltage of 30 kV, exposure 0.160 mAs, and camera resolution 560x560 pixel, the effect of image quality to reconstruction process is evaluated by varying image processing parameters in the form of beam hardening corrections with amount of 25%, 66% and100% with each smoothing level S10,S2 and S7. To obtain the better high quality image, the adjustment of beam hardening correction should be 66% and smoothing level reach maximal value at level 10.

  4. 4D subject-specific inverse modeling of the chick embryonic heart outflow tract hemodynamics.

    PubMed

    Goenezen, Sevan; Chivukula, Venkat Keshav; Midgett, Madeline; Phan, Ly; Rugonyi, Sandra

    2016-06-01

    Blood flow plays a critical role in regulating embryonic cardiac growth and development, with altered flow leading to congenital heart disease. Progress in the field, however, is hindered by a lack of quantification of hemodynamic conditions in the developing heart. In this study, we present a methodology to quantify blood flow dynamics in the embryonic heart using subject-specific computational fluid dynamics (CFD) models. While the methodology is general, we focused on a model of the chick embryonic heart outflow tract (OFT), which distally connects the heart to the arterial system, and is the region of origin of many congenital cardiac defects. Using structural and Doppler velocity data collected from optical coherence tomography, we generated 4D ([Formula: see text]) embryo-specific CFD models of the heart OFT. To replicate the blood flow dynamics over time during the cardiac cycle, we developed an iterative inverse-method optimization algorithm, which determines the CFD model boundary conditions such that differences between computed velocities and measured velocities at one point within the OFT lumen are minimized. Results from our developed CFD model agree with previously measured hemodynamics in the OFT. Further, computed velocities and measured velocities differ by [Formula: see text]15 % at locations that were not used in the optimization, validating the model. The presented methodology can be used in quantifications of embryonic cardiac hemodynamics under normal and altered blood flow conditions, enabling an in-depth quantitative study of how blood flow influences cardiac development. PMID:26361767

  5. Development of a model of the coronary arterial tree for the 4D XCAT phantom

    NASA Astrophysics Data System (ADS)

    Fung, George S. K.; Segars, W. Paul; Gullberg, Grant T.; Tsui, Benjamin M. W.

    2011-09-01

    A detailed three-dimensional (3D) model of the coronary artery tree with cardiac motion has great potential for applications in a wide variety of medical imaging research areas. In this work, we first developed a computer-generated 3D model of the coronary arterial tree for the heart in the extended cardiac-torso (XCAT) phantom, thereby creating a realistic computer model of the human anatomy. The coronary arterial tree model was based on two datasets: (1) a gated cardiac dual-source computed tomography (CT) angiographic dataset obtained from a normal human subject and (2) statistical morphometric data of porcine hearts. The initial proximal segments of the vasculature and the anatomical details of the boundaries of the ventricles were defined by segmenting the CT data. An iterative rule-based generation method was developed and applied to extend the coronary arterial tree beyond the initial proximal segments. The algorithm was governed by three factors: (1) statistical morphometric measurements of the connectivity, lengths and diameters of the arterial segments; (2) avoidance forces from other vessel segments and the boundaries of the myocardium, and (3) optimality principles which minimize the drag force at the bifurcations of the generated tree. Using this algorithm, the 3D computational model of the largest six orders of the coronary arterial tree was generated, which spread across the myocardium of the left and right ventricles. The 3D coronary arterial tree model was then extended to 4D to simulate different cardiac phases by deforming the original 3D model according to the motion vector map of the 4D cardiac model of the XCAT phantom at the corresponding phases. As a result, a detailed and realistic 4D model of the coronary arterial tree was developed for the XCAT phantom by imposing constraints of anatomical and physiological characteristics of the coronary vasculature. This new 4D coronary artery tree model provides a unique simulation tool that can be

  6. Cardiac Catheterization

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Cardiac Catheterization? Cardiac catheterization (KATH-eh-ter-ih-ZA-shun) is a ... disease. Doctors also can use ultrasound during cardiac catheterization to see blockages in the coronary arteries. Ultrasound ...

  7. Motion4D-library extended

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2011-06-01

    The new version of the Motion4D-library now also includes the integration of a Sachs basis and the Jacobi equation to determine gravitational lensing of pointlike sources for arbitrary spacetimes.New version program summaryProgram title: Motion4D-libraryCatalogue identifier: AEEX_v3_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v3_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 219 441No. of bytes in distributed program, including test data, etc.: 6 968 223Distribution format: tar.gzProgramming language: C++Computer: All platforms with a C++ compilerOperating system: Linux, WindowsRAM: 61 MbytesClassification: 1.5External routines: Gnu Scientic Library (GSL) (http://www.gnu.org/software/gsl/)Catalogue identifier of previous version: AEEX_v2_0Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 703Does the new version supersede the previous version?: YesNature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes. Determine gravitational lensing by integration of Jacobi equation and parallel transport of Sachs basis.Solution method: Integration of ordinary differential equations.Reasons for new version: The main novelty of the current version is the extension to integrate the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. In combination, the change of the cross section of a light bundle and thus the gravitational lensing effect of a spacetime can be determined. Furthermore, we have implemented several new metrics.Summary of revisions: The main novelty of the current version is the integration of the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. The corresponding set of equations readd2xμdλ2=-Γρ

  8. Digital volume correlation and micro-CT: An in-vitro technique for measuring full-field interface micromotion around polyethylene implants.

    PubMed

    Sukjamsri, Chamaiporn; Geraldes, Diogo M; Gregory, Thomas; Ahmed, Farah; Hollis, David; Schenk, Samuel; Amis, Andrew; Emery, Roger; Hansen, Ulrich

    2015-09-18

    Micromotion around implants is commonly measured using displacement-sensor techniques. Due to the limitations of these techniques, an alternative approach (DVC-μCT) using digital volume correlation (DVC) and micro-CT (μCT) was developed in this study. The validation consisted of evaluating DVC-μCT based micromotion against known micromotions (40, 100 and 150 μm) in a simplified experiment. Subsequently, a more clinically realistic experiment in which a glenoid component was implanted into a porcine scapula was carried out and the DVC-μCT measurements during a single load cycle (duration 20 min due to scanning time) was correlated with the manual tracking of micromotion at 12 discrete points across the implant interface. In this same experiment the full-field DVC-μCT micromotion was compared to the full-field micromotion predicted by a parallel finite element analysis (FEA). It was found that DVC-μCT micromotion matched the known micromotion of the simplified experiment (average/peak error=1.4/1.7 μm, regression line slope=0.999) and correlated with the micromotion at the 12 points tracked manually during the realistic experiment (R(2)=0.96). The DVC-μCT full-field micromotion matched the pattern of the full-field FEA predicted micromotion. This study showed that the DVC-μCT technique provides sensible estimates of micromotion. The main advantages of this technique are that it does not damage important parts of the specimen to gain access to the bone-implant interface, and it provides a full-field evaluation of micromotion as opposed to the micromotion at just a few discrete points. In conclusion the DVC-μCT technique provides a useful tool for investigations of micromotion around plastic implants. PMID:26113290

  9. Correlative 3D-imaging of Pipistrellus penis micromorphology: Validating quantitative microCT images with undecalcified serial ground section histomorphology.

    PubMed

    Herdina, Anna Nele; Plenk, Hanns; Benda, Petr; Lina, Peter H C; Herzig-Straschil, Barbara; Hilgers, Helge; Metscher, Brian D

    2015-06-01

    Detailed knowledge of histomorphology is a prerequisite for the understanding of function, variation, and development. In bats, as in other mammals, penis and baculum morphology are important in species discrimination and phylogenetic studies. In this study, nondestructive 3D-microtomographic (microCT, µCT) images of bacula and iodine-stained penes of Pipistrellus pipistrellus were correlated with light microscopic images from undecalcified surface-stained ground sections of three of these penes of P. pipistrellus (1 juvenile). The results were then compared with µCT-images of bacula of P. pygmaeus, P. hanaki, and P. nathusii. The Y-shaped baculum in all studied Pipistrellus species has a proximal base with two club-shaped branches, a long slender shaft, and a forked distal tip. The branches contain a medullary cavity of variable size, which tapers into a central canal of variable length in the proximal baculum shaft. Both are surrounded by a lamellar and a woven bone layer and contain fatty marrow and blood vessels. The distal shaft consists of woven bone only, without a vascular canal. The proximal ends of the branches are connected with the tunica albuginea of the corpora cavernosa via entheses. In the penis shaft, the corpus spongiosum-surrounded urethra lies in a ventral grove of the corpora cavernosa, and continues in the glans under the baculum. The glans penis predominantly comprises an enlarged corpus spongiosum, which surrounds urethra and baculum. In the 12 studied juvenile and subadult P. pipistrellus specimens the proximal branches of the baculum were shorter and without marrow cavity, while shaft and distal tip appeared already fully developed. The present combination with light microscopic images from one species enabled a more reliable interpretation of histomorphological structures in the µCT-images from all four Pipistrellus species. PMID:25703625

  10. 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging

    SciTech Connect

    Boone, M.A.; De Kock, T.; Bultreys, T.; De Schutter, G.; Vontobel, P.; Van Hoorebeke, L.; Cnudde, V.

    2014-11-15

    Determining the distribution of fluids in porous sedimentary rocks is of great importance in many geological fields. However, this is not straightforward, especially in the case of complex sedimentary rocks like limestone, where a multidisciplinary approach is often needed to capture its broad, multimodal pore size distribution and complex pore geometries. This paper focuses on the porosity and fluid distribution in two varieties of Massangis limestone, a widely used natural building stone from the southeast part of the Paris basin (France). The Massangis limestone shows locally varying post-depositional alterations, resulting in different types of pore networks and very different water distributions within the limestone. Traditional techniques for characterizing the porosity and pore size distribution are compared with state-of-the-art neutron radiography and X-ray computed microtomography to visualize the distribution of water inside the limestone at different imbibition conditions. X-ray computed microtomography images have the great advantage to non-destructively visualize and analyze the pore space inside of a rock, but are often limited to the larger macropores in the rock due to resolution limitations. In this paper, differential imaging is successfully applied to the X-ray computed microtomography images to obtain sub-resolution information about fluid occupancy and to map the fluid distribution in three dimensions inside the scanned limestone samples. The detailed study of the pore space with differential imaging allows understanding the difference in the water uptake behavior of the limestone, a primary factor that affects the weathering of the rock. - Highlights: • The water distribution in a limestone was visualized in 3D with micro-CT. • Differential imaging allowed to map both macro and microporous zones in the rock. • The 3D study of the pore space clarified the difference in water uptake behavior. • Trapped air is visualized in the moldic

  11. Iodine-enhanced micro-CT imaging: methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates.

    PubMed

    Gignac, Paul M; Kley, Nathan J

    2014-05-01

    The now widespread use of non-destructive X-ray computed tomography (CT) and micro-CT (µCT) has greatly augmented our ability to comprehensively detail and quantify the internal hard-tissue anatomy of vertebrates. However, the utility of X-ray imaging for gaining similar insights into vertebrate soft-tissue anatomy has yet to be fully realized due to the naturally low X-ray absorption of non-mineralized tissues. In this study, we show how a wide diversity of soft-tissue structures within the vertebrate head-including muscles, glands, fat deposits, perichondria, dural venous sinuses, white and gray matter of the brain, as well as cranial nerves and associated ganglia-can be rapidly visualized in their natural relationships with extraordinary levels of detail using iodine-enhanced (i-e) µCT imaging. To date, Lugol's iodine solution (I2 KI) has been used as a contrast agent for µCT imaging of small invertebrates, vertebrate embryos, and certain isolated parts of larger, post-embryonic vertebrates. These previous studies have all yielded promising results, but visualization of soft tissues in smaller invertebrate and embryonic vertebrate specimens has generally been more complete than that for larger, post-embryonic vertebrates. Our research builds on these previous studies by using high-energy µCT together with more highly concentrated I2 KI solutions and longer staining times to optimize the imaging and differentiation of soft tissues within the heads of post-embryonic archosaurs (Alligator mississippiensis and Dromaius novaehollandiae). We systematically quantify the intensities of tissue staining, demonstrate the range of anatomical structures that can be visualized, and generate a partial three-dimensional reconstruction of alligator cephalic soft-tissue anatomy. PMID:24482316

  12. 3D micro-CT analysis of void formations and push-out bonding strength of resin cements used for fiber post cementation

    PubMed Central

    2016-01-01

    PURPOSE To investigate the void parameters within the resin cements used for fiber post cementation by micro-CT (µCT) and regional push-out bonding strength. MATERIALS AND METHODS Twenty-one, single and round shaped roots were enlarged with a low-speed drill following by endodontic treatment. The roots were divided into three groups (n=7) and fiber posts were cemented with Maxcem Elite, Multilink N and Superbond C&B resin cements. Specimens were scanned using µCT scanner at resolution of 13.7 µm. The number, area, and volume of voids between dentin and post were evaluated. A method of analysis based on the post segmentation was used, and coronal, middle and apical thirds considered separately. After the µCT analysis, roots were embedded in epoxy resin and sectioned into 2 mm thick slices (63 sections in total). Push-out testing was performed with universal testing device at 0.5 mm/min cross-head speed. Data were analyzed with Kruskal–Wallis and Mann–Whitney U tests (α=.05). RESULTS Overall, significant differences between the resin cements and the post level were observed in the void number, area, and volume (P<.05). Super-Bond C&B showed the most void formation (44.86 ± 22.71). Multilink N showed the least void surface (3.51 ± 2.24 mm2) and volume (0.01 ± 0.01 mm3). Regional push-out bond strength of the cements was not different (P>.05). CONCLUSION µCT proved to be a powerful non-destructive 3D analysis tool for visualizing the void parameters. Multilink N had the lowest void parameters. When efficiency of all cements was evaluated, direct relationship between the post region and push-out bonding strength was not observed. PMID:27141253

  13. Reviewing the morphology of the jaw-closing musculature in squirrels, rats, and guinea pigs with contrast-enhanced microCT.

    PubMed

    Cox, Philip G; Jeffery, Nathan

    2011-06-01

    Rodents are defined by their unique masticatory apparatus and are frequently separated into three nonmonophyletic groups--sciuromorphs, hystricomorphs, and myomorphs--based on the morphology of their masticatory muscles. Despite several comprehensive dissections in previous work, inconsistencies persist as to the exact morphology of the rodent jaw-closing musculature, particularly, the masseter. Here, we review the literature and document for the first time the muscle architecture noninvasively and in 3D by using iodine-enhanced microCT. Observations and measurements were recorded with reference to images of three individuals, each belonging to one of the three muscle morphotypes (squirrel, guinea pig, and rat). Results revealed an enlarged superficial masseter muscle in the guinea pig compared with the rat and squirrel, but a reduced deep masseter (possibly indicating reduced efficiency at the incisors). The deep masseter had expanded forward to take an origin on the rostrum and was also separated into anterior and posterior parts in the rat and squirrel. The zygomaticomandibularis muscle was split into anterior and posterior parts in all the three specimens by the masseteric nerve, and in the rat and guinea pig had an additional rostral expansion through the infraorbital foramen. The temporalis muscle was found to be considerably larger in the rat, and its separation into anterior and posterior parts was only evident in the rat and squirrel. The pterygoid muscles were broadly similar in all three specimens, although the internal pterygoid was somewhat enlarged in the guinea pig implying greater lateral movement of the mandible during chewing in this species. PMID:21538924

  14. Micro-channels in the mastoid anatomy. Indications of a separate blood supply of the air cell system mucosa by micro-CT scanning.

    PubMed

    Cros, Olivier; Borga, Magnus; Pauwels, Elin; Dirckx, Joris J J; Gaihede, Michael

    2013-07-01

    The mastoid air cell system has traditionally been considered to have a passive role in gas exchange and pressure regulation of the middle ear possibly with some acoustic function. However, more evidence has focused on the mucosa of the mastoid, which may play a more active role in regulation of middle ear pressure. In this study we have applied micro-CT scanning on a series of three human temporal bones. This approach greatly enhances the resolution (40-60 μm), so that we have discovered anatomical details, which has not been reported earlier. Thus, qualitative analysis using volume rendering has demonstrated notable micro-channels connecting the surface of the compact bone directly to the mastoid air cells as well as forming a network of connections between the air cells. Quantitative analysis on 2D slices was employed to determine the average diameter of these micro-channels (158 μm; range = 40-440 μm) as well as their density at a localized area (average = 75 cm(-2); range = 64-97 cm(-2)). These channels are hypothesized to contain a separate vascular supply for the mastoid mucosa. However, future studies of the histological structure of the micro-channels are warranted to confirm the hypothesis. Studies on the mastoid mucosa and its blood supply may improve our knowledge of its physiological properties, which may have important implications for our understanding of the pressure regulation of the middle ear. This article is part of a special issue entitled "MEMRO 2012". PMID:23518400

  15. Investigation of noise and contrast sensitivity of an electron multiplying charge-coupled device (EMCCD) based cone beam micro-CT system

    NASA Astrophysics Data System (ADS)

    Bysani Krishnakumar, Sumukh; Podgorsak, Alexander R.; Setlur Nagesh, S. V.; Jain, Amit; Rudin, Stephen; Bednarek, Daniel R.; Ionita, Ciprian N.

    2016-03-01

    A small animal micro-CT system was built using an EMCCD detectors having complex pre-digitization amplification technology, high-resolution, high-sensitivity and low-noise. Noise in CBCT reconstructed images when using predigitization amplification behaves differently than commonly used detectors and warrants a detailed investigation. In this study, noise power and contrast sensitivity were estimated for the newly built system. Noise analysis was performed by scanning a water phantom. Tube voltage was lowered to minimum delivered by the tube (20 kVp and 0.5 mA) and detector gain was varied. Contrast sensitivity was analyzed by using a phantom containing different iodine contrast solutions (20% to 70%) filled in six different tubes. First, we scanned the phantom using various x-ray exposures at 40 kVp while changing the gain to maintain the background air value of the projection images constant. Next, the exposure was varied while the detector gain was maintained constant. Radial NPS plots show that noise power level increases as gain increases. Contrast sensitivity was analyzed by calculating ratio of signal-to-noise ratios (SNR) for increased gain with those of low constant gain at each exposure. The SNR value at low constant gain was always lower than SNR of high detector gain at all x-ray settings and iodine contrast. The largest increase of SNR approached 1.3 for low contrast feature for an iodine concentration of 20%. Despite an increase in noise level as gain increases, the SNR improvement shows that signal level also increases because of the unique on-chip gain of the detector.

  16. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2011 CFR

    1998-04-01

    ... 17 Commodity and Securities Exchanges 3 1998-04-01 1998-04-01 false Content. 260.4d-8 Section 260.4d-8 GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a) Each application for an order under section 304(d) of the Act (15 U.S.C. 77ddd(d))...

  17. The 4D-TECS integration for NASA TSRV airplane

    NASA Technical Reports Server (NTRS)

    Kaminer, I.; Oshaughnessy, P. R.

    1989-01-01

    The integration of the Total Energy Control System (TECS) concept with 4D navigation is described. This integration was made to increase the operational capacity of modern aircraft and encourage incorporation of this increased capability with the evolving National Airspace System (NAS). Described herein is: 4D smoothing, the basic concepts of TECS, the spoiler integration concept, an algorithm for nulling out time error, speed and altitude profile modes, manual spoiler implementation, 4D logic, and the results of linear and nonlinear analysis.

  18. Killing Weeds with 2,4-D. Extension Bulletin 389.

    ERIC Educational Resources Information Center

    Lee, Oliver C.

    Discussed is the use of the herbicide 2,4-D. Though written for farmers and agricultural workers, the pamphlet considers turf weed control and use of 2,4-D near ornamental plants. Aspects of the use of this herbicide covered are: (1) the common forms of 2,4-D; (2) plant responses and tolerances to the herbicide; (3) dilution and concentration of…

  19. Pros and cons for C4d as a biomarker.

    PubMed

    Cohen, Danielle; Colvin, Robert B; Daha, Mohamed R; Drachenberg, Cinthia B; Haas, Mark; Nickeleit, Volker; Salmon, Jane E; Sis, Banu; Zhao, Ming-Hui; Bruijn, Jan A; Bajema, Ingeborg M

    2012-04-01

    The introduction of C4d in daily clinical practice in the late nineties aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. As a marker of classical complement activation, C4d made it possible to visualize the direct link between anti-donor antibodies and tissue injury at sites of antibody binding in a graft. With the expanding use of C4d worldwide several limitations of C4d were identified. For instance, in ABO-incompatible transplantations C4d is present in the majority of grafts but this seems to point at 'graft accommodation' rather than antibody-mediated rejection. C4d is now increasingly recognized as a potential biomarker in other fields where antibodies can cause tissue damage, such as systemic autoimmune diseases and pregnancy. In all these fields, C4d holds promise to detect patients at risk for the consequences of antibody-mediated disease. Moreover, the emergence of new therapeutics that block complement activation makes C4d a marker with potential to identify patients who may possibly benefit from these drugs. This review provides an overview of the past, present, and future perspectives of C4d as a biomarker, focusing on its use in solid organ transplantation and discussing its possible new roles in autoimmunity and pregnancy. PMID:22297669

  20. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  1. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT.

    PubMed

    Lee, Taek-Soo; Frey, Eric C; Tsui, Benjamin M W

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of (99m)Tc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman's rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  2. Phosphodiesterase 4D Inhibitors Limit Prostate Cancer Growth Potential

    PubMed Central

    Powers, Ginny L.; Hammer, Kimberly D.P.; Domenech, Maribella; Frantskevich, Katsiaryna; Malinowski, Rita L.; Bushman, Wade; Beebe, David J.; Marker, Paul C.

    2014-01-01

    Phosphodiesterase 4D (PDE4D) has recently been implicated as a proliferation-promoting factor in prostate cancer and is over-expressed in human prostate carcinoma. However, the effects of PDE4D inhibition using pharmacological inhibitors have not been examined in prostate cancer. These studies examined the effects of selective PDE4D inhibitors, NVP-ABE171 and cilomilast, as anti-prostate cancer therapies in both in vitro and in vivo models. The effects of PDE4D inhibitors on pathways that are critical in prostate cancer and/or downstream of cyclic AMP (cAMP) were examined. Both NVP-ABE171 and cilomilast decreased cell growth. In vitro, PDE4D inhibitors lead to decreased signaling of the sonic hedgehog (SHH), Androgen Receptor (AR), and MAPK pathways, but growth inhibition was best correlated to the sonic hedgehog pathway. PDE4D inhibition also reduced proliferation of epithelial cells induced by paracrine signaling from co-cultured stromal cells that had activated hedgehog signaling. In addition, PDE4D inhibitors decreased the weight of the prostate in wild-type mice. Prostate cancer xenografts grown in nude mice that were treated with cilomilast or NVP-ABE171 had decreased wet weight and increased apoptosis compared to vehicle treated controls. These studies suggest the pharmacological inhibition of PDE4D using small molecule inhibitors is an effective option for prostate cancer therapy. Implications PDE4D inhibitors decrease the growth of prostate cancer cells in vivo and in vitro, and PDE4D inhibition has therapeutic potential in prostate cancer. PMID:25149359

  3. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  4. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  5. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  6. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  7. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  8. 4D motion modeling of the coronary arteries from CT images for robotic assisted minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Zhang, Dong Ping; Edwards, Eddie; Mei, Lin; Rueckert, Daniel

    2009-02-01

    In this paper, we present a novel approach for coronary artery motion modeling from cardiac Computed Tomography( CT) images. The aim of this work is to develop a 4D motion model of the coronaries for image guidance in robotic-assisted totally endoscopic coronary artery bypass (TECAB) surgery. To utilize the pre-operative cardiac images to guide the minimally invasive surgery, it is essential to have a 4D cardiac motion model to be registered with the stereo endoscopic images acquired intraoperatively using the da Vinci robotic system. In this paper, we are investigating the extraction of the coronary arteries and the modelling of their motion from a dynamic sequence of cardiac CT. We use a multi-scale vesselness filter to enhance vessels in the cardiac CT images. The centerlines of the arteries are extracted using a ridge traversal algorithm. Using this method the coronaries can be extracted in near real-time as only local information is used in vessel tracking. To compute the deformation of the coronaries due to cardiac motion, the motion is extracted from a dynamic sequence of cardiac CT. Each timeframe in this sequence is registered to the end-diastole timeframe of the sequence using a non-rigid registration algorithm based on free-form deformations. Once the images have been registered a dynamic motion model of the coronaries can be obtained by applying the computed free-form deformations to the extracted coronary arteries. To validate the accuracy of the motion model we compare the actual position of the coronaries in each time frame with the predicted position of the coronaries as estimated from the non-rigid registration. We expect that this motion model of coronaries can facilitate the planning of TECAB surgery, and through the registration with real-time endoscopic video images it can reduce the conversion rate from TECAB to conventional procedures.

  9. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume

    PubMed Central

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J.

    2016-01-01

    ABSTRACT In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of

  10. 3D Porous Architecture of Stacks of β-TCP Granules Compared with That of Trabecular Bone: A microCT, Vector Analysis, and Compression Study

    PubMed Central

    Chappard, Daniel; Terranova, Lisa; Mallet, Romain; Mercier, Philippe

    2015-01-01

    The 3D arrangement of porous granular biomaterials usable to fill bone defects has received little study. Granular biomaterials occupy 3D space when packed together in a manner that creates a porosity suitable for the invasion of vascular and bone cells. Granules of beta-tricalcium phosphate (β-TCP) were prepared with either 12.5 or 25 g of β-TCP powder in the same volume of slurry. When the granules were placed in a test tube, this produced 3D stacks with a high (HP) or low porosity (LP), respectively. Stacks of granules mimic the filling of a bone defect by a surgeon. The aim of this study was to compare the porosity of stacks of β-TCP granules with that of cores of trabecular bone. Biomechanical compression tests were done on the granules stacks. Bone cylinders were prepared from calf tibia plateau, constituted high-density (HD) blocks. Low-density (LD) blocks were harvested from aged cadaver tibias. Microcomputed tomography was used on the β-TCP granule stacks and the trabecular bone cores to determine porosity and specific surface. A vector-projection algorithm was used to image porosity employing a frontal plane image, which was constructed line by line from all images of a microCT stack. Stacks of HP granules had porosity (75.3 ± 0.4%) and fractal lacunarity (0.043 ± 0.007) intermediate between that of HD (respectively 69.1 ± 6.4%, p < 0.05 and 0.087 ± 0.045, p < 0.05) and LD bones (respectively 88.8 ± 1.57% and 0.037 ± 0.014), but exhibited a higher surface density (5.56 ± 0.11 mm2/mm3 vs. 2.06 ± 0.26 for LD, p < 0.05). LP granular arrangements created large pores coexisting with dense areas of material. Frontal plane analysis evidenced a more regular arrangement of β-TCP granules than bone trabecule. Stacks of HP granules represent a scaffold that resembles trabecular bone in its porous microarchitecture. PMID:26528240

  11. Coupling multiscale X-ray physics and micromechanics for bone tissue composition and elasticity determination from micro-CT data, by example of femora from OVX and sham rats

    NASA Astrophysics Data System (ADS)

    Hasslinger, Patricia; Vass, Viktoria; Dejaco, Alexander; Blanchard, Romane; Örlygsson, Gissur; Gargiulo, Paolo; Hellmich, Christian

    2016-05-01

    Due to its high resolution, micro-CT (Computed Tomograph) scanning is the key to assess bone quality of sham and OVX (ovariectomized) rats. Combination of basic X-ray physics, such as the energy- and chemistry-dependence of attenuation coefficients, with results from ashing tests on rat bones, delivers mineral, organic, and water volume fractions within the voxels. Additional use of a microelastic model for bone provides voxel-specific elastic properties. The new method delivers realistic bone mass densities, and reveals that OVX protocols may indeed induce some bone mass loss, while the average composition of the bone tissue remains largely unaltered.

  12. Development of a 4D numerical chest phantom with customizable breathing.

    PubMed

    Leni, Pierre-Emmanuel; Laurent, Rémy; Salomon, Michel; Gschwind, Régine; Makovicka, Libor; Henriet, Julien

    2016-06-01

    Respiratory movement information is useful for radiation therapy, and is generally obtained using 4D scanners (4DCT). In the interest of patient safety, reducing the use of 4DCT could be a significant step in reducing radiation exposure, the effects of which are not well documented. The authors propose a customized 4D numerical phantom representing the organ contours. Firstly, breathing movement can be simulated and customized according to the patient's anthroporadiametric data. Using learning sets constituted by 4D scanners, artificial neural networks can be trained to interpolate the lung contours corresponding to an unknown patient, and then to simulate its respiration. Lung movement during the breathing cycle is modeled by predicting the lung contours at any respiratory phases. The interpolation is validated comparing the obtained lung contours with 4DCT via Dice coefficient. Secondly, a preliminary study of cardiac and œsophageal motion is also presented to demonstrate the flexibility of this approach. The application may simulate the position and volume of the lungs, the œsophagus and the heart at every phase of the respiratory cycle with a good accuracy: the validation of the lung modeling gives a Dice index greater than 0.93 with 4DCT over a breath cycle. PMID:27184332

  13. Learning distance function for regression-based 4D pulmonary trunk model reconstruction estimated from sparse MRI data

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Tsymbal, Alexey; Ionasec, Razvan; Georgescu, Bogdan; Zhou, Shaohua K.; Hornegger, Joachim; Comaniciu, Dorin

    2011-03-01

    Congenital heart defect (CHD) is the most common birth defect and a frequent cause of death for children. Tetralogy of Fallot (ToF) is the most often occurring CHD which affects in particular the pulmonary valve and trunk. Emerging interventional methods enable percutaneous pulmonary valve implantation, which constitute an alternative to open heart surgery. While minimal invasive methods become common practice, imaging and non-invasive assessment tools become crucial components in the clinical setting. Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (cMRI) are techniques with complementary properties and ability to acquire multiple non-invasive and accurate scans required for advance evaluation and therapy planning. In contrary to CT which covers the full 4D information over the cardiac cycle, cMRI often acquires partial information, for example only one 3D scan of the whole heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. The data acquired in this way is called sparse cMRI. In this paper, we propose a regression-based approach for the reconstruction of the full 4D pulmonary trunk model from sparse MRI. The reconstruction approach is based on learning a distance function between the sparse MRI which needs to be completed and the 4D CT data with the full information used as the training set. The distance is based on the intrinsic Random Forest similarity which is learnt for the corresponding regression problem of predicting coordinates of unseen mesh points. Extensive experiments performed on 80 cardiac CT and MR sequences demonstrated the average speed of 10 seconds and accuracy of 0.1053mm mean absolute error for the proposed approach. Using the case retrieval workflow and local nearest neighbour regression with the learnt distance function appears to be competitive with respect to "black box" regression with immediate prediction of coordinates, while providing transparency to the

  14. 4D-Var or Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Kalnay, E.; Li, H.; Yang, S.; Miyoshi, T.; Ballabrera, J.

    2007-05-01

    We consider the relative advantages of two advanced data assimilation systems, 4D-Var and ensemble Kalman filter (EnKF), currently in use or considered for operational implementation. We explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4D-Var, the variance inflation in EnKF, and the effect of model errors and reduced observation coverage in both systems. For short assimilation windows EnKF gives more accurate analyses. Both systems reach similar levels of accuracy if long windows are used for 4D-Var, and for infrequent observations, when ensemble perturbations grow nonlinearly and become non-Gaussian, 4D-Var attains lower errors than EnKF. Results obtained with variations of EnKF using operational models and both simulated and real observations are reviewed. A table summarizes the pros and cons of the two methods.

  15. Model-driven physiological assessment of the mitral valve from 4D TEE

    NASA Astrophysics Data System (ADS)

    Voigt, Ingmar; Ionasec, Razvan Ioan; Georgescu, Bogdan; Houle, Helene; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2009-02-01

    Disorders of the mitral valve are second most frequent, cumulating 14 percent of total number of deaths caused by Valvular Heart Disease each year in the United States and require elaborate clinical management. Visual and quantitative evaluation of the valve is an important step in the clinical workflow according to experts as knowledge about mitral morphology and dynamics is crucial for interventional planning. Traditionally this involves examination and metric analysis of 2D images comprising potential errors being intrinsic to the method. Recent commercial solutions are limited to specific anatomic components, pathologies and a single phase of cardiac 4D acquisitions only. This paper introduces a novel approach for morphological and functional quantification of the mitral valve based on a 4D model estimated from ultrasound data. A physiological model of the mitral valve, covering the complete anatomy and eventual shape variations, is generated utilizing parametric spline surfaces constrained by topological and geometrical prior knowledge. The 4D model's parameters are estimated for each patient using the latest discriminative learning and incremental searching techniques. Precise evaluation of the anatomy using model-based dynamic measurements and advanced visualization are enabled through the proposed approach in a reliable, repeatable and reproducible manner. The efficiency and accuracy of the method is demonstrated through experiments and an initial validation based on clinical research results. To the best of our knowledge this is the first time such a patient specific 4D mitral valve model is proposed, covering all of the relevant anatomies and enabling to model the common pathologies at once.

  16. 4-D-Var or ensemble Kalman filter?

    NASA Astrophysics Data System (ADS)

    Kalnay, Eugenia; Li, Hong; Miyoshi, Takemasa; Yang, Shu-Chih; Ballabrera-Poy, Joaquim

    2007-10-01

    We consider the relative advantages of two advanced data assimilation systems, 4-D-Var and ensemble Kalman filter (EnKF), currently in use or under consideration for operational implementation. With the Lorenz model, we explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4-D-Var, variance inflation in EnKF, and the effect of model errors and reduced observation coverage. For short assimilation windows EnKF gives more accurate analyses. Both systems reach similar levels of accuracy if long windows are used for 4-D-Var. For infrequent observations, when ensemble perturbations grow non-linearly and become non-Gaussian, 4-D-Var attains lower errors than EnKF. If the model is imperfect, the 4-D-Var with long windows requires weak constraint. Similar results are obtained with a quasi-geostrophic channel model. EnKF experiments made with the primitive equations SPEEDY model provide comparisons with 3-D-Var and guidance on model error and `observation localization'. Results obtained using operational models and both simulated and real observations indicate that currently EnKF is becoming competitive with 4-D-Var, and that the experience acquired with each of these methods can be used to improve the other. A table summarizes the pros and cons of the two methods.

  17. Substitutional 4d and 5d impurities in graphene.

    PubMed

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2016-08-21

    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The adsorption energies and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which are also well-known characteristics of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar adsorption energies, distances and magnetic moments to the 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3 μB for manganese is reduced to 1 μB for technetium and rhenium. We find that compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree of hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different if 4d or 5d impurities are used instead of 3d impurities. PMID:27439363

  18. Robust spatio-temporal registration of 4D cardiac ultrasound sequences

    NASA Astrophysics Data System (ADS)

    Bersvendsen, Jørn; Toews, Matthew; Danudibroto, Adriyana; Wells, William M.; Urheim, Stig; Estépar, Raúl San José; Samset, Eigil

    2016-04-01

    Registration of multiple 3D ultrasound sectors in order to provide an extended field of view is important for the appreciation of larger anatomical structures at high spatial and temporal resolution. In this paper, we present a method for fully automatic spatio-temporal registration between two partially overlapping 3D ultrasound sequences. The temporal alignment is solved by aligning the normalized cross correlation-over-time curves of the sequences. For the spatial alignment, corresponding 3D Scale Invariant Feature Transform (SIFT) features are extracted from all frames of both sequences independently of the temporal alignment. A rigid transform is then calculated by least squares minimization in combination with random sample consensus. The method is applied to 16 echocardiographic sequences of the left and right ventricles and evaluated against manually annotated temporal events and spatial anatomical landmarks. The mean distances between manually identified landmarks in the left and right ventricles after automatic registration were (mean+/-SD) 4.3+/-1.2 mm compared to a reference error of 2.8 +/- 0.6 mm with manual registration. For the temporal alignment, the absolute errors in valvular event times were 14.4 +/- 11.6 ms for Aortic Valve (AV) opening, 18.6 +/- 16.0 ms for AV closing, and 34.6 +/- 26.4 ms for mitral valve opening, compared to a mean inter-frame time of 29 ms.

  19. A set of 4D pediatric XCAT reference phantoms for multimodality research

    SciTech Connect

    Norris, Hannah Zhang, Yakun; Bond, Jason; Sturgeon, Gregory M.; Samei, E.; Segars, W. P.; Minhas, Anum; Frush, D.; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.

    2014-03-15

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models

  20. A set of 4D pediatric XCAT reference phantoms for multimodality research

    PubMed Central

    Norris, Hannah; Zhang, Yakun; Bond, Jason; Sturgeon, Gregory M.; Minhas, Anum; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.; Frush, D.; Samei, E.; Segars, W. P.

    2014-01-01

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models

  1. Soil matrix and macropore biodegradation of 2,4-D

    SciTech Connect

    Pivetz, B.E.; Steenhuis, T.S.

    1995-07-01

    Preferential flow of pesticides in macropores can lead to decreased travel times through the vadose zone and increased groundwater contamination. Macropores, however, may present a favorable environment for biodegradation because of greater oxygen, nutrient, and substrate supply, and higher microbial populations in earthworm burrows, compared to the soil matrix. The biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was measured in macropores and soil matrix of packed soil columns (7.0-cm diam., 10-cm length) and undisturbed cores contained as well-defined artificial macropore and the undisturbed cores contained earthworm-burrow macropores. A 50 {mu}g/L 2,4-D solution was continuously applied to the unsaturated soil surface and breakthrough curves (BTCs) indicating pesticide loss in the effluent were obtained from the soil matrix and macropore flow paths. Biodegradation rates were calculated separately for each flow path by comparing the BTCs to BTCs representing abiotic conditions, and dividing the 2,4-D loss by the travel time through each flow path. The biodegradation rates increased with time in both flow paths, and the final biodegradation rate in the macropore region surpassed that of the matrix, presumably because of increased microbial populations in the macropore. Complete loss of the 2,4-D in both flow paths was observed after continuous application of 2,4-D for 400 h, with maximum column-averaged 2,4-D loss rates of 0.879 {mu}g/(L h) in the matrix and 1.073 {mu}g/(L h) in the macropore. Biodegradation of 2,4-D was also observed in the macropore and matrix regions of the undisturbed soil cores. 19 refs., 7 figs., 2 tabs.

  2. Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer

    PubMed Central

    Yang, Ying-Hua; Buhamrah, Asma; Schneider, Abraham; Lin, Yi-Ling; Zhou, Hua; Bugshan, Amr; Basile, John R.

    2016-01-01

    Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects. PMID:26910109

  3. New C4D Sensor with a Simulated Inductor

    PubMed Central

    Lyu, Yingchao; Ji, Haifeng; Yang, Shijie; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2016-01-01

    A new capacitively coupled contactless conductivity detection (C4D) sensor with an improved simulated inductor is developed in this work. The improved simulated inductor is designed on the basis of the Riordan-type floating simulated inductor. With the improved simulated inductor, the negative influence of the coupling capacitances is overcome and the conductivity measurement is implemented by the series resonance principle. The conductivity measurement experiments are carried out in three pipes with different inner diameters of 3.0 mm, 4.6 mm and 6.4 mm, respectively. The experimental results show that the designs of the new C4D sensor and the improved simulated inductor are successful. The maximum relative error of the conductivity measurement is less than 5%. Compared with the C4D sensors using practical inductors, the measurement accuracy of the new C4D sensor is comparable. The research results also indicate that the adjustability of a simulated inductor can reduce the requirement for the AC source and guarantee the interchangeableness. Meanwhile, it is recommended that making the potential of one terminal of a simulated inductor stable is beneficial to the running stability. Furthermore, this work indirectly verifies the possibility and feasibility of the miniaturization of the C4D sensor by using the simulated inductor technique and lays a good foundation for future research work. PMID:26828493

  4. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: A digital phantom study

    SciTech Connect

    Bernatowicz, K. Knopf, A.; Lomax, A.; Keall, P.; Kipritidis, J.; Mishra, P.

    2015-01-15

    Purpose: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CT can significantly reduce lung imaging artifacts. Methods: Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) “conventional” 4D CT that uses a constant imaging and couch-shift frequency, (ii) “beam paused” 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) “respiratory-gated” 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm{sup 3} spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Results

  5. Relative charge transfer cross section from Rb (4d)

    NASA Astrophysics Data System (ADS)

    Shah, M. H.; Camp, H. A.; Trachy, M. L.; Fléchard, X.; Gearba, M. A.; Nguyen, H.; Brédy, R.; Lundeen, S. R.; Depaola, B. D.

    2005-08-01

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7keV Na+ is reported. The specific channels reported are Na++Rb(4d5/2)→Na(nl)+Rb+ , where the dominant transfer cross sections channels were nl=3d and 4s . Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na++Rb(5s,5p) systems at the same collision energy.

  6. Relative charge transfer cross section from Rb(4d)

    SciTech Connect

    Shah, M.H.; Camp, H.A.; Trachy, M.L.; De Paola, B.D.; Flechard, X.; Gearba, M.A.; Nguyen, H.; Bredy, R.; Lundeen, S.R.

    2005-08-15

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7 keV Na{sup +} is reported. The specific channels reported are Na{sup +}+Rb(4d{sub 5/2}){yields}Na(nl)+Rb{sup +}, where the dominant transfer cross sections channels were nl=3d and 4s. Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na{sup +}+Rb(5s,5p) systems at the same collision energy.

  7. The 4-D approach to visual control of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dickmanns, Ernst D.

    1994-01-01

    Development of a 4-D approach to dynamic machine vision is described. Core elements of this method are spatio-temporal models oriented towards objects and laws of perspective projection in a foward mode. Integration of multi-sensory measurement data was achieved through spatio-temporal models as invariants for object recognition. Situation assessment and long term predictions were allowed through maintenance of a symbolic 4-D image of processes involving objects. Behavioral capabilities were easily realized by state feedback and feed-foward control.

  8. Emerging Applications of Abdominal 4D Flow MRI

    PubMed Central

    Roldán-Alzate, Alejandro; Francois, Christopher J.; Wieben, Oliver; Reeder, Scott B.

    2016-01-01

    OBJECTIVE Comprehensive assessment of abdominal hemodynamics is crucial for many clinical diagnoses but is challenged by a tremendous complexity of anatomy, normal physiology, and a wide variety of pathologic abnormalities. This article introduces 4D flow MRI as a powerful technique for noninvasive assessment of the hemodynamics of abdominal vascular territories. CONCLUSION Four-dimensional flow MRI provides clinicians with a more extensive and straightforward approach to evaluate disorders that affect blood flow in the abdomen. This review presents a series of clinical cases to illustrate the utility of 4D flow MRI in the comprehensive assessment of the abdominal circulation. PMID:27187681

  9. Cardiac metastases

    PubMed Central

    Bussani, R; De‐Giorgio, F; Abbate, A; Silvestri, F

    2007-01-01

    Tumours metastatic to the heart (cardiac metastases) are among the least known and highly debated issues in oncology, and few systematic studies are devoted to this topic. Although primary cardiac tumours are extremely uncommon (various postmortem studies report rates between 0.001% and 0.28%), secondary tumours are not, and at least in theory, the heart can be metastasised by any malignant neoplasm able to spread to distant sites. In general, cardiac metastases are considered to be rare; however, when sought for, the incidence seems to be not as low as expected, ranging from 2.3% and 18.3%. Although no malignant tumours are known that diffuse preferentially to the heart, some do involve the heart more often than others—for example, melanoma and mediastinal primary tumours. This paper attempts to review the pathophysiology of cardiac metastatic disease, epidemiology and clinical presentation of cardiac metastases, and pathological characterisation of the lesions. PMID:17098886

  10. 2,4-Dichlorophenoxyacetic acid (2,4-D)

    Integrated Risk Information System (IRIS)

    2,4 - Dichlorophenoxyacetic acid ( 2,4 - D ) ; CASRN 94 - 75 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asses

  11. Using 4D Cardiovascular Magnetic Resonance Imaging to Validate Computational Fluid Dynamics: A Case Study

    PubMed Central

    Biglino, Giovanni; Cosentino, Daria; Steeden, Jennifer A.; De Nova, Lorenzo; Castelli, Matteo; Ntsinjana, Hopewell; Pennati, Giancarlo; Taylor, Andrew M.; Schievano, Silvia

    2015-01-01

    Computational fluid dynamics (CFD) can have a complementary predictive role alongside the exquisite visualization capabilities of 4D cardiovascular magnetic resonance (CMR) imaging. In order to exploit these capabilities (e.g., for decision-making), it is necessary to validate computational models against real world data. In this study, we sought to acquire 4D CMR flow data in a controllable, experimental setup and use these data to validate a corresponding computational model. We applied this paradigm to a case of congenital heart disease, namely, transposition of the great arteries (TGA) repaired with arterial switch operation. For this purpose, a mock circulatory loop compatible with the CMR environment was constructed and two detailed aortic 3D models (i.e., one TGA case and one normal aortic anatomy) were tested under realistic hemodynamic conditions, acquiring 4D CMR flow. The same 3D domains were used for multi-scale CFD simulations, whereby the remainder of the mock circulatory system was appropriately summarized with a lumped parameter network. Boundary conditions of the simulations mirrored those measured in vitro. Results showed a very good quantitative agreement between experimental and computational models in terms of pressure (overall maximum % error = 4.4% aortic pressure in the control anatomy) and flow distribution data (overall maximum % error = 3.6% at the subclavian artery outlet of the TGA model). Very good qualitative agreement could also be appreciated in terms of streamlines, throughout the cardiac cycle. Additionally, velocity vectors in the ascending aorta revealed less symmetrical flow in the TGA model, which also exhibited higher wall shear stress in the anterior ascending aorta. PMID:26697416

  12. Using 4D Cardiovascular Magnetic Resonance Imaging to Validate Computational Fluid Dynamics: A Case Study.

    PubMed

    Biglino, Giovanni; Cosentino, Daria; Steeden, Jennifer A; De Nova, Lorenzo; Castelli, Matteo; Ntsinjana, Hopewell; Pennati, Giancarlo; Taylor, Andrew M; Schievano, Silvia

    2015-01-01

    Computational fluid dynamics (CFD) can have a complementary predictive role alongside the exquisite visualization capabilities of 4D cardiovascular magnetic resonance (CMR) imaging. In order to exploit these capabilities (e.g., for decision-making), it is necessary to validate computational models against real world data. In this study, we sought to acquire 4D CMR flow data in a controllable, experimental setup and use these data to validate a corresponding computational model. We applied this paradigm to a case of congenital heart disease, namely, transposition of the great arteries (TGA) repaired with arterial switch operation. For this purpose, a mock circulatory loop compatible with the CMR environment was constructed and two detailed aortic 3D models (i.e., one TGA case and one normal aortic anatomy) were tested under realistic hemodynamic conditions, acquiring 4D CMR flow. The same 3D domains were used for multi-scale CFD simulations, whereby the remainder of the mock circulatory system was appropriately summarized with a lumped parameter network. Boundary conditions of the simulations mirrored those measured in vitro. Results showed a very good quantitative agreement between experimental and computational models in terms of pressure (overall maximum % error = 4.4% aortic pressure in the control anatomy) and flow distribution data (overall maximum % error = 3.6% at the subclavian artery outlet of the TGA model). Very good qualitative agreement could also be appreciated in terms of streamlines, throughout the cardiac cycle. Additionally, velocity vectors in the ascending aorta revealed less symmetrical flow in the TGA model, which also exhibited higher wall shear stress in the anterior ascending aorta. PMID:26697416

  13. 4D flow mri post-processing strategies for neuropathologies

    NASA Astrophysics Data System (ADS)

    Schrauben, Eric Mathew

    4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a

  14. 4D MR imaging using robust internal respiratory signal

    NASA Astrophysics Data System (ADS)

    Hui, CheukKai; Wen, Zhifei; Stemkens, Bjorn; Tijssen, R. H. N.; van den Berg, C. A. T.; Hwang, Ken-Pin; Beddar, Sam

    2016-05-01

    The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D.

  15. SU-E-J-192: Verification of 4D-MRI Internal Target Volume Using Cine MRI

    SciTech Connect

    Lafata, K; Czito, B; Palta, M; Bashir, M; Yin, F; Cai, J

    2014-06-01

    Purpose: To investigate the accuracy of 4D-MRI in determining the Internal Target Volume (ITV) used in radiation oncology treatment planning of liver cancers. Cine MRI is used as the standard baseline in establishing the feasibility and accuracy of 4D-MRI tumor motion within the liver. Methods: IRB approval was obtained for this retrospective study. Analysis was performed on MR images from four patients receiving external beam radiation therapy for liver cancer at our institution. Eligible patients received both Cine and 4D-MRI scans before treatment. Cine images were acquired sagittally in real time at a slice bisecting the tumor, while 4D images were acquired volumetrically. Cine MR DICOM headers were manipulated such that each respiratory frame was assigned a unique slice location. This approach permitted the treatment planning system (Eclipse, Varian Medical Systems) to recognize a complete respiratory cycle as a “volume”, where the gross tumor was contoured temporally. Software was developed to calculate the union of all frame contours in the structure set, resulting in the corresponding plane of the ITV projecting through the middle of the tumor, defined as the Internal Target Area (ITA). This was repeated for 4D-MRI, at the corresponding slice location, allowing a direct comparison of ITAs obtained from each modality. Results: Four patients have been analyzed. ITAs contoured from 4D-MRI correlate with contours from Cine MRI. The mean error of 4D values relative to Cine values is 7.67 +/− 2.55 %. No single ITA contoured from 4D-MRI demonstrated more than 10.5 % error compared to its Cine MRI counterpart. Conclusion: Motion management is a significant aspect of treatment planning within dynamic environments such as the liver, where diaphragmatic and cardiac activity influence plan accuracy. This small pilot study suggests that 4D-MRI based ITA measurements agree with Cine MRI based measurements, an important step towards clinical implementation. NIH 1R21

  16. MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research

    PubMed Central

    Paul Segars, W.; Tsui, Benjamin M. W.

    2012-01-01

    Recent work in the development of computerized phantoms has focused on the creation of ideal “hybrid” models that seek to combine the realism of a patient-based voxelized phantom with the flexibility of a mathematical or stylized phantom. We have been leading the development of such computerized phantoms for use in medical imaging research. This paper will summarize our developments dating from the original four-dimensional (4-D) Mathematical Cardiac-Torso (MCAT) phantom, a stylized model based on geometric primitives, to the current 4-D extended Cardiac-Torso (XCAT) and Mouse Whole-Body (MOBY) phantoms, hybrid models of the human and laboratory mouse based on state-of-the-art computer graphics techniques. This paper illustrates the evolution of computerized phantoms toward more accurate models of anatomy and physiology. This evolution was catalyzed through the introduction of nonuniform rational b-spline (NURBS) and subdivision (SD) surfaces, tools widely used in computer graphics, as modeling primitives to define a more ideal hybrid phantom. With NURBS and SD surfaces as a basis, we progressed from a simple geometrically based model of the male torso (MCAT) containing only a handful of structures to detailed, whole-body models of the male and female (XCAT) anatomies (at different ages from newborn to adult), each containing more than 9000 structures. The techniques we applied for modeling the human body were similarly used in the creation of the 4-D MOBY phantom, a whole-body model for the mouse designed for small animal imaging research. From our work, we have found the NURBS and SD surface modeling techniques to be an efficient and flexible way to describe the anatomy and physiology for realistic phantoms. Based on imaging data, the surfaces can accurately model the complex organs and structures in the body, providing a level of realism comparable to that of a voxelized phantom. In addition, they are very flexible. Like stylized models, they can easily be

  17. Micro-CT and histological analysis of Ti6Al7Nb custom made implants with hydroxyapatite and SiO2-TiO2 coatings in a rabbit model

    PubMed Central

    ARMENCEA, GABRIEL; BERCE, CRISTIAN; ROTARU, HORATIU; BRAN, SIMION; LEORDEAN, DAN; COADA, CAMELIA; TODEA, MILICA; JULA, CAMELIA AUGUSTA; GHEBAN, DAN; BACIUT, GRIGORE; BACIUT, MIHAELA; CAMPIAN, RADU SEPTIMIU

    2015-01-01

    Background and aim Bone defect reconstruction in the maxillofacial area comes as a necessity after traumatic, oncological or congenital pathology. Custom made implant manufacturing, such as selective laser melting (SLM), is very helpful when bone reconstruction is needed. In the present study we assessed the osseointegration of custom made implants made of Ti6Al7Nb with two different coatings: SiO2-TiO2 and hydroxyapatite, by comparing the bone mineral density (BMD) measured on micro-CT and the histological mineralized bone surrounding the implants. Methods Custom made – cylindrical type – implants were produced by selective laser melting, coated with SiO2-TiO2 and hydroxyapatite and implanted in the rabbit femur. The animals (divided into 3 groups) were sacrificed at 1, 3 and 6 months and the implants were removed together with the surrounding bone. Bone mineral density and histological examination of the bone-implant surface was performed for each group. Results BMD and histological examination of the samples determined the quantity of mineralized bone at the implant site, showing a good percentage of mineralized bone for the coated implants at 1, 3 and 6 months. The measurements for the implants without coating showed a significant lower quantity of mineralized bone at 3 months compared with the implants with coating, and a good quantity of mineralized bone at 6 months, showing a process of demineralization followed by remineralization in the last month. The measurements of BMD showed similar results with the histological examination. Conclusions The use of micro-CT and the measurement of BMD are a reliable, minimally invasive and a quick method of osseointegration assessment. PMID:26609278

  18. The Use of Light/Chemically Hardened Polymethylmethacrylate, Polyhydroxylethylmethacrylate, and Calcium Hydroxide Graft Material in Combination With Polyanhydride Around Implants and Extraction Sockets in Minipigs: Part II: Histologic and Micro-CT Evaluations

    PubMed Central

    Hasturk, Hatice; Kantarci, Alpdogan; Ghattas, Mazen; Dangaria, Smit J.; Abdallah, Rima; Morgan, Elise F.; Diekwisch, Thomas G.H.; Ashman, Arthur; Van Dyke, Thomas

    2015-01-01

    Background This report is the second part of the previously published study on the impact of light/chemical hardening technology and a newly formulated composite graft material for crestal augmentation during immediate implant placement. Methods A total of 48 implants were placed into the sockets of the mesial roots of freshly extracted mandibular premolar teeth in three minipigs. Crestal areas and intrabony spaces were randomly augmented with light-hardened graft materials including a composite graft consisting of polymethylmethacrylate, polyhydroxylethylmethacrylate, and calcium hydroxide (PPCH) plus polyanhydride (PA); PPCH graft; and PA graft, or left untreated. Distal sockets not receiving implants and the sockets of first molars (n = 60) were randomly treated with one of the graft materials or left empty. In addition, two molar sockets were treated with the original PPCH graft material. Quantitative microcomputed tomography (micro-CT) was used to assess alveolar bone structure and tissue compositions. Histologic evaluations included descriptive histology to assess the peri-implant wound healing, as well as histomorphometric measurements to determine bone-to-implant contact (BIC). Results Both trabecular and cortical bone measurements by micro-CT did not reveal any significant differences among the groups. Sites augmented with PPCH+PA resulted in significantly greater BIC surface than PPCH alone and no-graft-treated implants (P <0.05) histologically. Stained ground sections showed complete bone formation between bone and implant surface in the PPCH+PA group, whereas sites without augmentation showed large gaps between bone and implant surfaces, indicating a slower bone apposition and less BIC surface compared to all other groups. Similar to implant sections, all materials showed positive outcome on trabecular and cortical bone formation in extraction sockets with an intact crestal cortical bone. Conclusion Histologic evaluations supported the previous findings

  19. High-resolution 3D analyses of the shape and internal constituents of small volcanic ash particles: The contribution of SEM micro-computed tomography (SEM micro-CT)

    NASA Astrophysics Data System (ADS)

    Vonlanthen, Pierre; Rausch, Juanita; Ketcham, Richard A.; Putlitz, Benita; Baumgartner, Lukas P.; Grobéty, Bernard

    2015-02-01

    The morphology of small volcanic ash particles is fundamental to our understanding of magma fragmentation, and in transport modeling of volcanic plumes and clouds. Until recently, the analysis of 3D features in small objects (< 250 μm) was either restricted to extrapolations from 2D approaches, partial stereo-imaging, or CT methods having limited spatial resolution and/or accessibility. In this study, an X-ray computed-tomography technique known as SEM micro-CT, also called 3D X-ray ultramicroscopy (3D XuM), was used to investigate the 3D morphology of small volcanic ash particles (125-250 μm sieve fraction), as well as their vesicle and microcrystal distribution. The samples were selected from four stratigraphically well-established tephra layers of the Meerfelder Maar (West Eifel Volcanic Field, Germany). Resolution tests performed on a Beametr v1 pattern sample along with Monte Carlo simulations of X-ray emission volumes indicated that a spatial resolution of 0.65 μm was obtained for X-ray shadow projections using a standard thermionic SEM and a bulk brass target as X-ray source. Analysis of a smaller volcanic ash particle (64-125 μm sieve fraction) showed that features with volumes > 20 μm3 (~ 3.5 μm in diameter) can be successfully reconstructed and quantified. In addition, new functionalities of the Blob3D software were developed to allow the particle shape factors frequently used as input parameters in ash transport and dispersion models to be calculated. This study indicates that SEM micro-CT is very well suited to quantify the various aspects of shape in fine volcanic ash, and potentially also to investigate the 3D morphology and internal structure of any object < 0.1 mm3.

  20. Cardiac Lymphoma.

    PubMed

    Jeudy, Jean; Burke, Allen P; Frazier, Aletta Ann

    2016-07-01

    Lymphoma of the heart and pericardium may develop in up to 25% of patients with disseminated nodal disease, but primary cardiac lymphoma is rare. The majority are diffuse large B-cell lymphomas, which arise in immunocompetent older individuals, men twice as often as women. Subsets are found in immunocompromised patients, including those with HIV-AIDS or allograft recipients. Cardiac lymphomas tend to arise in the wall of the right heart, especially right atrium, with contiguous infiltration of epicardium and pericardium. Pericardial implants and effusions are common. The disease is often multifocal in the heart, but cardiac valves are usually spared. PMID:27265603

  1. Impact of incorporating visual biofeedback in 4D MRI.

    PubMed

    To, David T; Kim, Joshua P; Price, Ryan G; Chetty, Indrin J; Glide-Hurst, Carri K

    2016-01-01

    Precise radiation therapy (RT) for abdominal lesions is complicated by respiratory motion and suboptimal soft tissue contrast in 4D CT. 4D MRI offers improved con-trast although long scan times and irregular breathing patterns can be limiting. To address this, visual biofeedback (VBF) was introduced into 4D MRI. Ten volunteers were consented to an IRB-approved protocol. Prospective respiratory-triggered, T2-weighted, coronal 4D MRIs were acquired on an open 1.0T MR-SIM. VBF was integrated using an MR-compatible interactive breath-hold control system. Subjects visually monitored their breathing patterns to stay within predetermined tolerances. 4D MRIs were acquired with and without VBF for 2- and 8-phase acquisitions. Normalized respiratory waveforms were evaluated for scan time, duty cycle (programmed/acquisition time), breathing period, and breathing regularity (end-inhale coefficient of variation, EI-COV). Three reviewers performed image quality assessment to compare artifacts with and without VBF. Respiration-induced liver motion was calculated via centroid difference analysis of end-exhale (EE) and EI liver contours. Incorporating VBF reduced 2-phase acquisition time (4.7 ± 1.0 and 5.4 ± 1.5 min with and without VBF, respectively) while reducing EI-COV by 43.8% ± 16.6%. For 8-phase acquisitions, VBF reduced acquisition time by 1.9 ± 1.6 min and EI-COVs by 38.8% ± 25.7% despite breathing rate remaining similar (11.1 ± 3.8 breaths/min with vs. 10.5 ± 2.9 without). Using VBF yielded higher duty cycles than unguided free breathing (34.4% ± 5.8% vs. 28.1% ± 6.6%, respectively). Image grading showed that out of 40 paired evaluations, 20 cases had equivalent and 17 had improved image quality scores with VBF, particularly for mid-exhale and EI. Increased liver excursion was observed with VBF, where superior-inferior, anterior-posterior, and left-right EE-EI displacements were 14.1± 5.8, 4.9 ± 2.1, and 1.5 ± 1.0 mm, respectively, with VBF compared to 11.9

  2. Edge preserving smoothing and segmentation of 4-D images via transversely isotropic scale-space processing and fingerprint analysis

    SciTech Connect

    Reutter, Bryan W.; Algazi, V. Ralph; Gullberg, Grant T; Huesman, Ronald H.

    2004-01-19

    Enhancements are described for an approach that unifies edge preserving smoothing with segmentation of time sequences of volumetric images, based on differential edge detection at multiple spatial and temporal scales. Potential applications of these 4-D methods include segmentation of respiratory gated positron emission tomography (PET) transmission images to improve accuracy of attenuation correction for imaging heart and lung lesions, and segmentation of dynamic cardiac single photon emission computed tomography (SPECT) images to facilitate unbiased estimation of time-activity curves and kinetic parameters for left ventricular volumes of interest. Improved segmentation of lung surfaces in simulated respiratory gated cardiac PET transmission images is achieved with a 4-D edge detection operator composed of edge preserving 1-D operators applied in various spatial and temporal directions. Smoothing along the axis of a 1-D operator is driven by structure separation seen in the scale-space fingerprint, rather than by image contrast. Spurious noise structures are reduced with use of small-scale isotropic smoothing in directions transverse to the 1-D operator axis. Analytic expressions are obtained for directional derivatives of the smoothed, edge preserved image, and the expressions are used to compose a 4-D operator that detects edges as zero-crossings in the second derivative in the direction of the image intensity gradient. Additional improvement in segmentation is anticipated with use of multiscale transversely isotropic smoothing and a novel interpolation method that improves the behavior of the directional derivatives. The interpolation method is demonstrated on a simulated 1-D edge and incorporation of the method into the 4-D algorithm is described.

  3. Intelligent Vehicle Systems: A 4D/RCS Approach

    SciTech Connect

    Madhavan, Raj

    2007-04-01

    This book presents new research on autonomous mobility capabilities and shows how technological advances can be anticipated in the coming two decades. An in-depth description is presented on the theoretical foundations and engineering approaches that enable these capabilities. Chapter 1 provides a brief introduction to the 4D/RCS reference model architecture and design methodology that has proven successful in guiding the development of autonomous mobility systems. Chapters 2 through 7 provide more detailed descriptions of research that has been conducted and algorithms that have been developed to implement the various aspects of the 4D/RCS reference model architecture and design methodology. Chapters 8 and 9 discuss applications, performance measures, and standards. Chapter 10 provides a history of Army and DARPA research in autonomous ground mobility. Chapter 11 provides a perspective on the potential future developments in autonomous mobility.

  4. Quantication and analysis of respiratory motion from 4D MRI

    NASA Astrophysics Data System (ADS)

    Aizzuddin Abd Rahni, Ashrani; Lewis, Emma; Wells, Kevin

    2014-11-01

    It is well known that respiratory motion affects image acquisition and also external beam radiotherapy (EBRT) treatment planning and delivery. However often the existing approaches for respiratory motion management are based on a generic view of respiratory motion such as the general movement of organ, tissue or fiducials. This paper thus aims to present a more in depth analysis of respiratory motion based on 4D MRI for further integration into motion correction in image acquisition or image based EBRT. Internal and external motion was first analysed separately, on a per-organ basis for internal motion. Principal component analysis (PCA) was then performed on the internal and external motion vectors separately and the relationship between the two PCA spaces was analysed. The motion extracted from 4D MRI on general was found to be consistent with what has been reported in literature.

  5. Exome sequencing identifies PDE4D mutations in acrodysostosis.

    PubMed

    Lee, Hane; Graham, John M; Rimoin, David L; Lachman, Ralph S; Krejci, Pavel; Tompson, Stuart W; Nelson, Stanley F; Krakow, Deborah; Cohn, Daniel H

    2012-04-01

    Acrodysostosis is a dominantly-inherited, multisystem disorder characterized by skeletal, endocrine, and neurological abnormalities. To identify the molecular basis of acrodysostosis, we performed exome sequencing on five genetically independent cases. Three different missense mutations in PDE4D, which encodes cyclic AMP (cAMP)-specific phosphodiesterase 4D, were found to be heterozygous in three of the cases. Two of the mutations were demonstrated to have occurred de novo, providing strong genetic evidence of causation. Two additional cases were heterozygous for de novo missense mutations in PRKAR1A, which encodes the cAMP-dependent regulatory subunit of protein kinase A and which has been recently reported to be the cause of a form of acrodysostosis resistant to multiple hormones. These findings demonstrate that acrodysostosis is genetically heterogeneous and underscore the exquisite sensitivity of many tissues to alterations in cAMP homeostasis. PMID:22464252

  6. 4D, Script N = 1 supersymmetry genomics (I)

    NASA Astrophysics Data System (ADS)

    Gates, S. James, Jr.; Gonzales, James; MacGregor, Boanne; Parker, James; Polo-Sherk, Ruben; Rodgers, Vincent G. J.; Wassink, Luke

    2009-12-01

    Presented in this paper the nature of the supersymmetrical representation theory behind 4D, Script N = 1 theories, as described by component fields, is investigated using the tools of Adinkras and Garden Algebras. A survey of familiar matter multiplets using these techniques reveals they are described by two fundamental valise Adinkras that are given the names of the cis-Valise (c-V) and the trans-Valise (t-V). A conjecture is made that all off-shell 4D, Script N = 1 component descriptions of supermultiplets are associated with two integers (nc, nt) — the numbers of c-V and t-V Adinkras that occur in the representation.

  7. Brain tissue segmentation in 4D CT using voxel classification

    NASA Astrophysics Data System (ADS)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  8. Cardiac arrest

    MedlinePlus

    ... treatment for cardiac arrest. It is a medical device that gives an electrical shock to the heart. The shock can get the heart beating normally again. Small, portable defibrillators are often available in public areas for ...

  9. Cardiac amyloidosis

    MedlinePlus

    ... the way electrical signals move through the heart (conduction system). This can lead to abnormal heart beats ( ... due to medication) Sick sinus syndrome Symptomatic cardiac conduction system disease (arrhythmias related to abnormal conduction of ...

  10. Cardiac rehabilitation

    MedlinePlus

    ... 123-210. Thomas PD. Exercise-Based, Comprehensive Cardiac Rehabilitation. In: Bonow RO, Mann DL, Zipes DP, Libby P, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine . 9th ed. Philadelphia, PA: Saunders Elsevier; 2011: ...

  11. Cardiac rehabilitation

    MedlinePlus

    ... goal of cardiac rehab is to: Improve your cardiovascular function Improve your overall health and quality of ... E, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, PA: Elsevier Saunders; 2015: ...

  12. Cardiac Sarcoidosis

    MedlinePlus

    ... is Cardiac Sarcoidosis? Sarcoidosis is a poorly understood disease that commonly affects the lungs. It can also involve the lymph nodes, liver, spleen, eyes, skin, bones, salivary glands and heart. ...

  13. 4D numerical observer for lesion detection in respiratory-gated PET

    SciTech Connect

    Lorsakul, Auranuch; Li, Quanzheng; Ouyang, Jinsong; El Fakhri, Georges; Trott, Cathryn M.; Hoog, Christopher; Petibon, Yoann; Laine, Andrew F.

    2014-10-15

    Purpose: Respiratory-gated positron emission tomography (PET)/computed tomography protocols reduce lesion smearing and improve lesion detection through a synchronized acquisition of emission data. However, an objective assessment of image quality of the improvement gained from respiratory-gated PET is mainly limited to a three-dimensional (3D) approach. This work proposes a 4D numerical observer that incorporates both spatial and temporal informations for detection tasks in pulmonary oncology. Methods: The authors propose a 4D numerical observer constructed with a 3D channelized Hotelling observer for the spatial domain followed by a Hotelling observer for the temporal domain. Realistic {sup 18}F-fluorodeoxyglucose activity distributions were simulated using a 4D extended cardiac torso anthropomorphic phantom including 12 spherical lesions at different anatomical locations (lower, upper, anterior, and posterior) within the lungs. Simulated data based on Monte Carlo simulation were obtained using GEANT4 application for tomographic emission (GATE). Fifty noise realizations of six respiratory-gated PET frames were simulated by GATE using a model of the Siemens Biograph mMR scanner geometry. PET sinograms of the thorax background and pulmonary lesions that were simulated separately were merged to generate different conditions of the lesions to the background (e.g., lesion contrast and motion). A conventional ordered subset expectation maximization (OSEM) reconstruction (5 iterations and 6 subsets) was used to obtain: (1) gated, (2) nongated, and (3) motion-corrected image volumes (a total of 3200 subimage volumes: 2400 gated, 400 nongated, and 400 motion-corrected). Lesion-detection signal-to-noise ratios (SNRs) were measured in different lesion-to-background contrast levels (3.5, 8.0, 9.0, and 20.0), lesion diameters (10.0, 13.0, and 16.0 mm), and respiratory motion displacements (17.6–31.3 mm). The proposed 4D numerical observer applied on multiple-gated images was

  14. 4D numerical observer for lesion detection in respiratory-gated PET

    PubMed Central

    Lorsakul, Auranuch; Li, Quanzheng; Trott, Cathryn M.; Hoog, Christopher; Petibon, Yoann; Ouyang, Jinsong; Laine, Andrew F.; El Fakhri, Georges

    2014-01-01

    Purpose: Respiratory-gated positron emission tomography (PET)/computed tomography protocols reduce lesion smearing and improve lesion detection through a synchronized acquisition of emission data. However, an objective assessment of image quality of the improvement gained from respiratory-gated PET is mainly limited to a three-dimensional (3D) approach. This work proposes a 4D numerical observer that incorporates both spatial and temporal informations for detection tasks in pulmonary oncology. Methods: The authors propose a 4D numerical observer constructed with a 3D channelized Hotelling observer for the spatial domain followed by a Hotelling observer for the temporal domain. Realistic 18F-fluorodeoxyglucose activity distributions were simulated using a 4D extended cardiac torso anthropomorphic phantom including 12 spherical lesions at different anatomical locations (lower, upper, anterior, and posterior) within the lungs. Simulated data based on Monte Carlo simulation were obtained using geant4 application for tomographic emission (GATE). Fifty noise realizations of six respiratory-gated PET frames were simulated by GATE using a model of the Siemens Biograph mMR scanner geometry. PET sinograms of the thorax background and pulmonary lesions that were simulated separately were merged to generate different conditions of the lesions to the background (e.g., lesion contrast and motion). A conventional ordered subset expectation maximization (OSEM) reconstruction (5 iterations and 6 subsets) was used to obtain: (1) gated, (2) nongated, and (3) motion-corrected image volumes (a total of 3200 subimage volumes: 2400 gated, 400 nongated, and 400 motion-corrected). Lesion-detection signal-to-noise ratios (SNRs) were measured in different lesion-to-background contrast levels (3.5, 8.0, 9.0, and 20.0), lesion diameters (10.0, 13.0, and 16.0 mm), and respiratory motion displacements (17.6–31.3 mm). The proposed 4D numerical observer applied on multiple-gated images was

  15. Phosphodiesterase 4D gene polymorphisms in sudden sensorineural hearing loss.

    PubMed

    Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wang, Hsun-Mo; Wu, Ming-Tsang; Ho, Kuen-Yao

    2016-09-01

    The phosphodiesterase 4D (PDE4D) gene has been reported as a risk gene for ischemic stroke. The vascular factors are between the hypothesized etiologies of sudden sensorineural hearing loss (SSNHL), and this genetic effect might be attributed for its role in SSNHL. We hypothesized that genetic variants of the PDE4D gene are associated with susceptibility to SSNHL. We conducted a case-control study with 362 SSNHL cases and 209 controls. Three single nucleotide polymorphisms (SNPs) were selected. The genotypes were determined using TaqMan technology. Hardy-Weinberg equilibrium (HWE) was tested for each SNP, and genetic effects were evaluated according to three inheritance modes. We carried out sex-specific analysis to analyze the overall data. All three SNPs were in HWE. When subjects were stratified by sex, the genetic effect was only evident in females but not in males. The TT genotype of rs702553 exhibited an adjusted odds ratio (OR) of 3.83 (95 % confidence interval = 1.46-11.18) (p = 0.006) in female SSNHL. The TT genotype of SNP rs702553 was associated with female SSNHL under the recessive model (p = 0.004, OR 3.70). In multivariate logistic regression analysis, TT genotype of rs702553 was significantly associated with female SSNHL (p = 0.0043, OR 3.70). These results suggest that PDE4D gene polymorphisms influence the susceptibility for the development of SSNHL in the southern Taiwanese female population. PMID:26521189

  16. 4D remote sensing image coding with JPEG2000

    NASA Astrophysics Data System (ADS)

    Muñoz-Gómez, Juan; Bartrina-Rapesta, Joan; Blanes, Ian; Jiménez-Rodríguez, Leandro; Aulí-Llinàs, Francesc; Serra-Sagristà, Joan

    2010-08-01

    Multicomponent data have become popular in several scientific fields such as forest monitoring, environmental studies, or sea water temperature detection. Nowadays, this multicomponent data can be collected more than one time per year for the same region. This generates different instances in time of multicomponent data, also called 4D-Data (1D Temporal + 1D Spectral + 2D Spatial). For multicomponent data, it is important to take into account inter-band redundancy to produce a more compact representation of the image by packing the energy into fewer number of bands, thus enabling a higher compression performance. The principal decorrelators used to compact the inter-band correlation redundancy are the Karhunen Loeve Transform (KLT) and Discrete Wavelet Transform (DWT). Because of the Temporal Dimension added, the inter-band redundancy among different multicomponent images is increased. In this paper we analyze the influence of the Temporal Dimension (TD) and the Spectral Dimension (SD) in 4D-Data in terms of coding performance for JPEG2000, because it has support to apply different decorrelation stages and transforms to the components through the different dimensions. We evaluate the influence to perform different decorrelators techniques to the different dimensions. Also we will assess the performance of the two main decorrelation techniques, KLT and DWT. Experimental results are provided, showing rate-distortion performances encoding 4D-Data using KLT and WT techniques to the different dimensions TD and SD.

  17. A 4D Hyperspherical Interpretation of q-Space

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Bendlin, Barbara B.; Alexander, Andrew L.

    2015-01-01

    3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 4D hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently modeling the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal basis, we derive several well-established q-space indices and numerically estimate the diffusion orientation distribution function (dODF). We also derive the integral transform describing the relationship between the diffusion signal and propagator on a hypersphere. Most importantly, we will demonstrate that for hybrid diffusion imaging (HYDI) acquisitions low order linear expansion of the HSH basis is sufficient to characterize diffusion in neural tissue. In fact, the HSH basis achieves comparable signal and better dODF reconstructions than other well-established methods, such as Bessel Fourier orientation reconstruction (BFOR), using fewer fitting parameters. All in all, this work provides a new way of looking at q-space. PMID:25624043

  18. 2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil.

    PubMed

    Gonod, Laure Vieublé; Martin-Laurent, Fabrice; Chenu, Claire

    2006-12-01

    The key role of telluric microorganisms in pesticide degradation is well recognized but the possible relationships between the biodiversity of soil microbial communities and their functions still remain poorly documented. If microorganisms influence the fate of pesticides, pesticide application may reciprocally affect soil microorganisms. The objective of our work was to estimate the impact of 2,4-D application on the genetic structure of bacterial communities and the 2,4-D-degrading genetic potential in relation to 2,4-D mineralization. Experiments combined isotope measurements with molecular analyses. The impact of 2,4-D on soil bacterial populations was followed with ribosomal intergenic spacer analysis. The 2,4-D degrading genetic potential was estimated by real-time PCR targeted on tfdA sequences coding an enzyme specifically involved in 2,4-D mineralization. The genetic structure of bacterial communities was significantly modified in response to 2,4-D application, but only during the intense phase of 2,4-D biodegradation. This effect disappeared 7 days after the treatment. The 2,4-D degrading genetic potential increased rapidly following 2,4-D application. There was a concomitant increase between the tfdA copy number and the 14C microbial biomass. The maximum of tfdA sequences corresponded to the maximum rate of 2,4-D mineralization. In this soil, 2,4-D degrading microbial communities seem preferentially to use the tfd pathway to degrade 2,4-D. PMID:17117994

  19. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections

    SciTech Connect

    Zhang, You; Yin, Fang-Fang; Ren, Lei; Segars, W. Paul

    2013-12-15

    Purpose: To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy.Methods: Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes to the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and “ground-truth” onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy.Results: For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)/COMS (±S.D.) between lesions in prior images and “ground-truth” onboard images were 136.11% (±42.76%)/15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD/COMS between the lesion

  20. Non-spherical particle generation from 4D optofluidic fabrication.

    PubMed

    Paulsen, Kevin S; Chung, Aram J

    2016-08-01

    Particles with non-spherical shapes can exhibit properties which are not available from spherical shaped particles. Complex shaped particles can provide unique benefits for areas such as drug delivery, tissue engineering, structural materials, and self-assembly building blocks. Current methods of creating complex shaped particles such as 3D printing, photolithography, and imprint lithography are limited by either slow speeds, shape limitations, or expensive processes. Previously, we presented a novel microfluidic flow lithography fabrication scheme combined with fluid inertia called optofluidic fabrication for the creation of complex shaped three-dimensional (3D) particles. This process was able to address the aforementioned limits and overcome two-dimensional shape limitations faced by traditional flow lithography methods; however, all of the created 3D particle shapes displayed top-down symmetry. Here, by introducing the time dimension into our existing optofluidic fabrication process, we break this top-down symmetry, generating fully asymmetric 3D particles where we termed the process: four-dimensional (4D) optofluidic fabrication. This 4D optofluidic fabrication is comprised of three sequential procedures. First, density mismatched precursor fluids flow past pillars within fluidic channels to manipulate the flow cross sections via fluid inertia. Next, the time dimension is incorporated by stopping the flow and allowing the denser fluids to settle by gravity to create asymmetric flow cross sections. Finally, the fluids are exposed to patterned ultraviolet (UV) light in order to polymerize fully asymmetric 3D-shaped particles. By varying inertial flow shaping, gravity-induced flow shaping, and UV light patterns, 4D optofluidic fabrication can create an infinite set of complex shaped asymmetric particles. PMID:27092661

  1. 4D Proton treatment planning strategy for mobile lung tumors

    SciTech Connect

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei . E-mail: ldong@mdanderson.org

    2007-03-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE{sub R}IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE{sub R}IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE{sub R}IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors.

  2. Phase and amplitude binning for 4D-CT imaging.

    PubMed

    Abdelnour, A F; Nehmeh, S A; Pan, T; Humm, J L; Vernon, P; Schöder, H; Rosenzweig, K E; Mageras, G S; Yorke, E; Larson, S M; Erdi, Y E

    2007-06-21

    We compare the consistency and accuracy of two image binning approaches used in 4D-CT imaging. One approach, phase binning (PB), assigns each breathing cycle 2pi rad, within which the images are grouped. In amplitude binning (AB), the images are assigned bins according to the breathing signal's full amplitude. To quantitate both approaches we used a NEMA NU2-2001 IEC phantom oscillating in the axial direction and at random frequencies and amplitudes, approximately simulating a patient's breathing. 4D-CT images were obtained using a four-slice GE Lightspeed CT scanner operating in cine mode. We define consistency error as a measure of ability to correctly bin over repeated cycles in the same field of view. Average consistency error mue+/-sigmae in PB ranged from 18%+/-20% to 30%+/-35%, while in AB the error ranged from 11%+/-14% to 20%+/-24%. In PB nearly all bins contained sphere slices. AB was more accurate, revealing empty bins where no sphere slices existed. As a proof of principle, we present examples of two non-small cell lung carcinoma patients' 4D-CT lung images binned by both approaches. While AB can lead to gaps in the coronal images, depending on the patient's breathing pattern, PB exhibits no gaps but suffers visible artifacts due to misbinning, yielding images that cover a relatively large amplitude range. AB was more consistent, though often resulted in gaps when no data existed due to patients' breathing pattern. We conclude AB is more accurate than PB. This has important consequences to treatment planning and diagnosis. PMID:17664557

  3. Localization of 4D gravity on pure geometrical thick branes

    SciTech Connect

    Barbosa-Cendejas, Nandinii; Herrera-Aguilar, Alfredo

    2006-04-15

    We consider the generation of thick brane configurations in a pure geometric Weyl integrable 5D spacetime which constitutes a non-Riemannian generalization of Kaluza-Klein (KK) theory. In this framework, we show how 4D gravity can be localized on a scalar thick brane which does not necessarily respect reflection symmetry, generalizing in this way several previous models based on the Randall-Sundrum (RS) system and avoiding both, the restriction to orbifold geometries and the introduction of the branes in the action by hand. We first obtain a thick brane solution that preserves 4D Poincare invariance and breaks Z{sub 2}-symmetry along the extra dimension which, indeed, can be either compact or extended, and supplements brane solutions previously found by other authors. In the noncompact case, this field configuration represents a thick brane with positive energy density centered at y=c{sub 2}, whereas pairs of thick branes arise in the compact case. Remarkably, the Weylian scalar curvature is nonsingular along the fifth dimension in the noncompact case, in contraposition to the RS thin brane system. We also recast the wave equations of the transverse traceless modes of the linear fluctuations of the classical background into a Schroedinger's equation form with a volcano potential of finite bottom in both the compact and the extended cases. We solve Schroedinger equation for the massless zero mode m{sup 2}=0 and obtain a single bound wave function which represents a stable 4D graviton. We also get a continuum gapless spectrum of KK states with m{sup 2}>0 that are suppressed at y=c{sub 2} and turn asymptotically into plane waves.

  4. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets

    PubMed Central

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y.; Du, Shengwang; Loy, M. M. T.

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel (‘non-diffracting’) light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  5. Oblique sounding using the DPS-4D stations in Europe

    NASA Astrophysics Data System (ADS)

    Mosna, Zbysek; Kouba, Daniel; Koucka Knizova, Petra; Arikan, Feza; Arikan, Orhan; Gok, Gokhan; Rejfek, Lubos

    2016-07-01

    The DPS-4D Digisondes are capable of detection of echoes from neighbouring European stations. Currently, a campaign with high-temporal resolution of 5 min is being run. Further, ionograms from regular vertical sounding with 15 min resolution provide us with oblique reflections together with vertical reflections. We analyzed profiles of electron concentration and basic ionospheric parameters derived from the ionograms. We compared results derived from reflections from the ionosphere above the stations (vertical sounding) with information derived from oblique reflections between the stations. This study is supported by the Joint TUBITAK 114E092 and AS CR 14/001 projects.

  6. All the supersymmetric configurations of N=4, d=4 supergravity

    NASA Astrophysics Data System (ADS)

    Bellorín, Jorge; Ortín, Tomás

    2005-10-01

    All the supersymmetric configurations of pure, ungauged, N=4, d=4 supergravity are classified in a formalism that keeps manifest the S and T dualities of the theory. We also find simple equations that need to be satisfied by the configurations to be classical solutions of the theory. While the solutions associated to null Killing vectors were essentially classified by Tod (a classification that we refine), we find new configurations and solutions associated to timelike Killing vectors that do not satisfy Tod's rigidity hypothesis (hence, they have a nontrivial U(1) connection) and whose supersymmetry projector is associated to 1-dimensional objects (strings), although they have a trivial axion field.

  7. Multielectron Spectroscopy: The Xenon 4d Hole Double Auger Decay

    SciTech Connect

    Penent, F.; Palaudoux, J.; Lablanquie, P.; Andric, L.; Feifel, R.; Eland, J.H.D.

    2005-08-19

    A magnetic bottle spectrometer of the type recently developed by Eland et al. [Phys. Rev. Lett. 90, 053003 (2003).] has been implemented for use with synchrotron radiation, allowing multidimensional electron spectroscopy. Its application to the Xe 4d double Auger decay reveals all the energy pathways involved. The dominant path is a cascade process with a rapid (6 fs) ejection of a first Auger electron followed by the slower (>23 fs) emission of a second Auger electron. Weaker processes implying 3 electron processes are also revealed, namely, direct double Auger and associated Rydberg series.

  8. Founding Gravitation in 4D Euclidean Space-Time Geometry

    SciTech Connect

    Winkler, Franz-Guenter

    2010-11-24

    The Euclidean interpretation of special relativity which has been suggested by the author is a formulation of special relativity in ordinary 4D Euclidean space-time geometry. The natural and geometrically intuitive generalization of this view involves variations of the speed of light (depending on location and direction) and a Euclidean principle of general covariance. In this article, a gravitation model by Jan Broekaert, which implements a view of relativity theory in the spirit of Lorentz and Poincare, is reconstructed and shown to fulfill the principles of the Euclidean approach after an appropriate reinterpretation.

  9. Actively triggered 4d cone-beam CT acquisition

    SciTech Connect

    Fast, Martin F.; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  10. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets.

    PubMed

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y; Du, Shengwang; Loy, M M T

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel ('non-diffracting') light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  11. Cardiac Sarcoidosis.

    PubMed

    Birnie, David H; Nery, Pablo B; Ha, Andrew C; Beanlands, Rob S B

    2016-07-26

    Clinically manifest cardiac involvement occurs in perhaps 5% of patients with sarcoidosis. The 3 principal manifestations of cardiac sarcoidosis (CS) are conduction abnormalities, ventricular arrhythmias, and heart failure. An estimated 20% to 25% of patients with pulmonary/systemic sarcoidosis have asymptomatic cardiac involvement (clinically silent disease). In 2014, the first international guideline for the diagnosis and management of CS was published. In patients with clinically manifest CS, the extent of left ventricular dysfunction seems to be the most important predictor of prognosis. There is controversy in published reports as to the outcome of patients with clinically silent CS. Despite a paucity of data, immunosuppression therapy (primarily with corticosteroids) has been advocated for the treatment of clinically manifest CS. Device therapy, primarily with implantable cardioverter-defibrillators, is often recommended for patients with clinically manifest disease. PMID:27443438

  12. Cardiac sarcoidosis

    PubMed Central

    Smedema, J.P.; Zondervan, P.E.; van Hagen, P.; ten Cate, F.J.; Bresser, P.; Doubell, A.F.; Pattynama, P.; Hoogsteden, H.C.; Balk, A.H.M.M.

    2002-01-01

    Sarcoidosis is a multi-system granulomatous disorder of unknown aetiology. Symptomatic cardiac involvement occurs in approximately 5% of patients. The prevalence of sarcoidosis in the Netherlands is unknown, but estimated to be approximately 20 per 100,000 population (3200 patients). We report on five patients who presented with different manifestations of cardiac sarcoidosis, and give a brief review on the current management of this condition. Magnetic Resonance Imaging (MRI) can be of great help in diagnosing this condition as well as in the follow-up of the response to therapy. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:25696121

  13. Functional organization of the human 4D Nucleome

    PubMed Central

    Chen, Haiming; Chen, Jie; Muir, Lindsey A.; Ronquist, Scott; Meixner, Walter; Ljungman, Mats; Ried, Thomas; Smale, Stephen; Rajapakse, Indika

    2015-01-01

    The 4D organization of the interphase nucleus, or the 4D Nucleome (4DN), reflects a dynamical interaction between 3D genome structure and function and its relationship to phenotype. We present initial analyses of the human 4DN, capturing genome-wide structure using chromosome conformation capture and 3D imaging, and function using RNA-sequencing. We introduce a quantitative index that measures underlying topological stability of a genomic region. Our results show that structural features of genomic regions correlate with function with surprising persistence over time. Furthermore, constructing genome-wide gene-level contact maps aided in identifying gene pairs with high potential for coregulation and colocalization in a manner consistent with expression via transcription factories. We additionally use 2D phase planes to visualize patterns in 4DN data. Finally, we evaluated gene pairs within a circadian gene module using 3D imaging, and found periodicity in the movement of clock circadian regulator and period circadian clock 2 relative to each other that followed a circadian rhythm and entrained with their expression. PMID:26080430

  14. Perspective: 4D ultrafast electron microscopy--Evolutions and revolutions.

    PubMed

    Shorokhov, Dmitry; Zewail, Ahmed H

    2016-02-28

    In this Perspective, the evolutionary and revolutionary developments of ultrafast electron imaging are overviewed with focus on the "single-electron concept" for probing methodology. From the first electron microscope of Knoll and Ruska [Z. Phys. 78, 318 (1932)], constructed in the 1930s, to aberration-corrected instruments and on, to four-dimensional ultrafast electron microscopy (4D UEM), the developments over eight decades have transformed humans' scope of visualization. The changes in the length and time scales involved are unimaginable, beginning with the micrometer and second domains, and now reaching the space and time dimensions of atoms in matter. With these advances, it has become possible to follow the elementary structural dynamics as it unfolds in real time and to provide the means for visualizing materials behavior and biological functions. The aim is to understand emergent phenomena in complex systems, and 4D UEM is now central for the visualization of elementary processes involved, as illustrated here with examples from past achievements and future outlook. PMID:26931672

  15. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    SciTech Connect

    Phifer, M.

    2014-11-17

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  16. Perspective: 4D ultrafast electron microscopy—Evolutions and revolutions

    NASA Astrophysics Data System (ADS)

    Shorokhov, Dmitry; Zewail, Ahmed H.

    2016-02-01

    In this Perspective, the evolutionary and revolutionary developments of ultrafast electron imaging are overviewed with focus on the "single-electron concept" for probing methodology. From the first electron microscope of Knoll and Ruska [Z. Phys. 78, 318 (1932)], constructed in the 1930s, to aberration-corrected instruments and on, to four-dimensional ultrafast electron microscopy (4D UEM), the developments over eight decades have transformed humans' scope of visualization. The changes in the length and time scales involved are unimaginable, beginning with the micrometer and second domains, and now reaching the space and time dimensions of atoms in matter. With these advances, it has become possible to follow the elementary structural dynamics as it unfolds in real time and to provide the means for visualizing materials behavior and biological functions. The aim is to understand emergent phenomena in complex systems, and 4D UEM is now central for the visualization of elementary processes involved, as illustrated here with examples from past achievements and future outlook.

  17. 4D Dynamic Required Navigation Performance Final Report

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  18. Positive Energy Conditions in 4D Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    Farnsworth, Kara; Luty, Markus; Prilepina, Valentina

    2016-03-01

    We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality avgT00 >= - C /L4 , where L is the size of the smearing region, and C is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the ``conformal collider'' constraints of Hofman and Maldacena. We speculate that there may be theories that violate the Hofman-Maldacena bounds, but satisfy our bounds. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarkably simple functions of momenta, and may be of interest in their own right.

  19. Abdominal organ motion measured using 4D CT

    SciTech Connect

    Brandner, Edward D.; Wu, Andrew . E-mail: andrew.wu@jefferson.edu; Chen, Hungcheng; Heron, Dwight; Kalnicki, Shalom; Komanduri, Krishna; Gerszten, Kristina; Burton, Steve; Ahmed, Irfan; Shou, Zhenyu

    2006-06-01

    Purpose: To measure respiration-induced abdominal organ motion using four-dimensional computed tomography (4D CT) scanning and to examine the organ paths. Methods and Materials: During 4D CT scanning, consecutive CT images are acquired of the patient at each couch position. Simultaneously, the patient's respiratory pattern is recorded using an external marker block taped to the patient's abdomen. This pattern is used to retrospectively organize the CT images into multiple three-dimensional images, each representing one breathing phase. These images are analyzed to measure organ motion between each phase. The displacement from end expiration is compared to a displacement limit that represents acceptable dosimetric results (5 mm). Results: The organs measured in 13 patients were the liver, spleen, and left and right kidneys. Their average superior to inferior absolute displacements were 1.3 cm for the liver, 1.3 cm for the spleen, 1.1 cm for the left kidney, and 1.3 cm for the right kidney. Although the organ paths varied among patients, 5 mm of superior to inferior displacement from end expiration resulted in less than 5 mm of displacement in the other directions for 41 of 43 organs measured. Conclusions: Four-dimensional CT scanning can accurately measure abdominal organ motion throughout respiration. This information may result in greater organ sparing and planning target volume coverage.

  20. Functional organization of the human 4D Nucleome.

    PubMed

    Chen, Haiming; Chen, Jie; Muir, Lindsey A; Ronquist, Scott; Meixner, Walter; Ljungman, Mats; Ried, Thomas; Smale, Stephen; Rajapakse, Indika

    2015-06-30

    The 4D organization of the interphase nucleus, or the 4D Nucleome (4DN), reflects a dynamical interaction between 3D genome structure and function and its relationship to phenotype. We present initial analyses of the human 4DN, capturing genome-wide structure using chromosome conformation capture and 3D imaging, and function using RNA-sequencing. We introduce a quantitative index that measures underlying topological stability of a genomic region. Our results show that structural features of genomic regions correlate with function with surprising persistence over time. Furthermore, constructing genome-wide gene-level contact maps aided in identifying gene pairs with high potential for coregulation and colocalization in a manner consistent with expression via transcription factories. We additionally use 2D phase planes to visualize patterns in 4DN data. Finally, we evaluated gene pairs within a circadian gene module using 3D imaging, and found periodicity in the movement of clock circadian regulator and period circadian clock 2 relative to each other that followed a circadian rhythm and entrained with their expression. PMID:26080430

  1. 4-D XRD for strain in many grains using triangulation

    SciTech Connect

    Bale, Hrishikesh A.; Hanan, Jay C.; Tamura, Nobumichi

    2006-12-31

    Determination of the strains in a polycrystalline materialusing 4-D XRD reveals sub-grain and grain-to-grain behavior as a functionof stress. Here 4-D XRD involves an experimental procedure usingpolychromatic micro-beam X-radiation (micro-Laue) to characterizepolycrystalline materials in spatial location as well as with increasingstress. The in-situ tensile loading experiment measured strain in a modelaluminum-sapphire metal matrix composite using the Advanced Light Source,Beam-line 7.3.3. Micro-Laue resolves individual grains in thepolycrystalline matrix. Results obtained from a list of grains sorted bycrystallographic orientation depict the strain states within and amongindividual grains. Locating the grain positions in the planeperpendicular to the incident beam is trivial. However, determining theexact location of grains within a 3-D space is challenging. Determiningthe depth of the grains within the matrix (along the beam direction)involved a triangulation method tracing individual rays that producespots on the CCD back to the point of origin. Triangulation wasexperimentally implemented by simulating a 3-D detector capturingmultiple diffraction images while increasing the camera to sampledistance. Hence by observing the intersection of rays from multiple spotsbelonging to the corresponding grain, depth is calculated. Depthresolution is a function of the number of images collected, grain to beamsize ratio, and the pixel resolution of the CCD. The 4DXRD methodprovides grain morphologies, strain behavior of each grain, andinteractions of the matrix grains with each other and the centrallylocated single crystal fiber.

  2. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    PubMed Central

    Wang, Mengjiao; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-01-01

    Tumor motion caused by respiration is an important issue in image guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and streak free 3DCBCT volume are combined to improve the image quality of the DRRs. Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and 1-minute and 2-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. Diaphragm matching accuracy was 1.88±1.35mm in the isocenter plane, the 2D tumor tracking accuracy was 2.13±1.26mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purpose. PMID:24710793

  3. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    NASA Astrophysics Data System (ADS)

    Wang, Mengjiao; Sharp, Gregory C.; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-05-01

    Tumor motion caused by respiration is an important issue in image-guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and a streak-free 3DCBCT volume are combined to improve the image quality of the digitally reconstructed radiographs (DRRs). Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and one-minute and two-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. The diaphragm matching accuracy was 1.88 ± 1.35 mm in the isocenter plane and the 2D tumor tracking accuracy was 2.13 ± 1.26 mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purposes.

  4. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  5. Task-Based Evaluation of a 4D MAP-RBI-EM Image Reconstruction Method for Gated Myocardial Perfusion SPECT using a Human Observer Study

    PubMed Central

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-01-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  6. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study.

    PubMed

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M; Tsui, Benjamin M W

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-f