Science.gov

Sample records for 4d dose distributions

  1. A dose error evaluation study for 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  2. Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: A technical feasibility study

    SciTech Connect

    Boye, Dirk; Lomax, Tony; Knopf, Antje

    2013-06-15

    Purpose: Target sites affected by organ motion require a time resolved (4D) dose calculation. Typical 4D dose calculations use 4D-CT as a basis. Unfortunately, 4D-CT images have the disadvantage of being a 'snap-shot' of the motion during acquisition and of assuming regularity of breathing. In addition, 4D-CT acquisitions involve a substantial additional dose burden to the patient making many, repeated 4D-CT acquisitions undesirable. Here the authors test the feasibility of an alternative approach to generate patient specific 4D-CT data sets. Methods: In this approach motion information is extracted from 4D-MRI. Simulated 4D-CT data sets [which the authors call 4D-CT(MRI)] are created by warping extracted deformation fields to a static 3D-CT data set. The employment of 4D-MRI sequences for this has the advantage that no assumptions on breathing regularity are made, irregularities in breathing can be studied and, if necessary, many repeat imaging studies (and consequently simulated 4D-CT data sets) can be performed on patients and/or volunteers. The accuracy of 4D-CT(MRI)s has been validated by 4D proton dose calculations. Our 4D dose algorithm takes into account displacements as well as deformations on the originating 4D-CT/4D-CT(MRI) by calculating the dose of each pencil beam based on an individual time stamp of when that pencil beam is applied. According to corresponding displacement and density-variation-maps the position and the water equivalent range of the dose grid points is adjusted at each time instance. Results: 4D dose distributions, using 4D-CT(MRI) data sets as input were compared to results based on a reference conventional 4D-CT data set capturing similar motion characteristics. Almost identical 4D dose distributions could be achieved, even though scanned proton beams are very sensitive to small differences in the patient geometry. In addition, 4D dose calculations have been performed on the same patient, but using 4D-CT(MRI) data sets based on

  3. VMAT QA: Measurement-guided 4D dose reconstruction on a patient

    SciTech Connect

    Nelms, Benjamin E.; Opp, Daniel; Robinson, Joshua; Wolf, Theresa K.; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir

    2012-07-15

    Purpose: To develop and validate a volume-modulated arc therapy (VMAT) quality assurance (QA) tool that takes as input a time-resolved, low-density ({approx}10 mm) cylindrical surface dose map from a commercial helical diode array, and outputs a high density, volumetric, time-resolved dose matrix on an arbitrary patient dataset. This first validation study is limited to a homogeneous 'patient.'Methods: A VMAT treatment is delivered to a diode array phantom (ARCCHECK, Sun Nuclear Corp., Melbourne, FL). 3DVH software (Sun Nuclear) derives the high-density volumetric dose using measurement-guided dose reconstruction (MGDR). MGDR cylindrical phantom results are then used to perturb the three-dimensional (3D) treatment planning dose on the patient dataset, producing a semiempirical volumetric dose grid. Four-dimensional (4D) dose reconstruction on the patient is also possible by morphing individual sub-beam doses instead of the composite. For conventional (3D) dose comparison two methods were developed, using the four plans (Multi-Target, C-shape, Mock Prostate, and Head and Neck), including their structures and objectives, from the AAPM TG-119 report. First, 3DVH and treatment planning system (TPS) cumulative point doses were compared to ion chamber in a cube water-equivalent phantom ('patient'). The shape of the phantom is different from the ARCCHECK and furthermore the targets were placed asymmetrically. Second, coronal and sagittal absolute film dose distributions in the cube were compared with 3DVH and TPS. For time-resolved (4D) comparisons, three tests were performed. First, volumetric dose differences were calculated between the 3D MGDR and cumulative time-resolved patient (4D MGDR) dose at the end of delivery, where they ideally should be identical. Second, time-resolved (10 Hz sampling rate) ion chamber doses were compared to cumulative point dose vs time curves from 4D MGDR. Finally, accelerator output was varied to assess the linearity of the 4D MGDR with

  4. A design of a DICOM-RT-based tool box for nonrigid 4D dose calculation.

    PubMed

    Wong, Victy Y W; Baker, Colin R; Leung, T W; Tung, Stewart Y

    2016-01-01

    The study was aimed to introduce a design of a DICOM-RT-based tool box to facilitate 4D dose calculation based on deformable voxel-dose registration. The computational structure and the calculation algorithm of the tool box were explicitly discussed in the study. The tool box was written in MATLAB in conjunction with CERR. It consists of five main functions which allow a) importation of DICOM-RT-based 3D dose plan, b) deformable image registration, c) tracking voxel doses along breathing cycle, d) presentation of temporal dose distribution at different time phase, and e) derivation of 4D dose. The efficacy of using the tool box for clinical application had been verified with nine clinical cases on retrospective-study basis. The logistic and the robustness of the tool box were tested with 27 applications and the results were shown successful with no computational errors encountered. In the study, the accumulated dose coverage as a function of planning CT taken at end-inhale, end-exhale, and mean tumor position were assessed. The results indicated that the majority of the cases (67%) achieved maximum target coverage, while the planning CT was taken at the temporal mean tumor position and 56% at the end-exhale position. The comparable results to the literature imply that the studied tool box can be reliable for 4D dose calculation. The authors suggest that, with proper application, 4D dose calculation using deformable registration can provide better dose evaluation for treatment with moving target. PMID:27074476

  5. New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation.

    PubMed

    Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W

    2015-02-21

    In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient's 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry. PMID:25615567

  6. Development of phantom and methodology for 3D and 4D dose intercomparisons for advanced lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Caloz, Misael; Kafrouni, Marilyne; Leturgie, Quentin; Corde, Stéphanie; Downes, Simon; Lehmann, Joerg; Thwaites, David

    2015-01-01

    There are few reported intercomparisons or audits of combinations of advanced radiotherapy methods, particularly for 4D treatments. As part of an evaluation of the implementation of advanced radiotherapy technology, a phantom and associated methods, initially developed for in-house commissioning and QA of 4D lung treatments, has been developed further with the aim of using it for end-to-end dose intercomparison of 4D treatment planning and delivery. The respiratory thorax phantom can house moving inserts with variable speed (breathing rate) and motion amplitude. In one set-up mode it contains a small ion chamber for point dose measurements, or alternatively it can hold strips of radiochromic film to measure dose distributions. Initial pilot and feasibility measurements have been carried out in one hospital to thoroughly test the methods and procedures before using it more widely across a range of hospitals and treatment systems. Overall, the results show good agreement between measured and calculated doses and distributions, supporting the use of the phantom and methodology for multi-centre intercomparisons. However, before wider use, refinements of the method and analysis are currently underway particularly for the film measurements.

  7. TU-F-17A-08: The Relative Accuracy of 4D Dose Accumulation for Lung Radiotherapy Using Rigid Dose Projection Versus Dose Recalculation On Every Breathing Phase

    SciTech Connect

    Lamb, J; Lee, C; Tee, S; Lee, P; Iwamoto, K; Low, D; Valdes, G; Robinson, C

    2014-06-15

    Purpose: To investigate the accuracy of 4D dose accumulation using projection of dose calculated on the end-exhalation, mid-ventilation, or average intensity breathing phase CT scan, versus dose accumulation performed using full Monte Carlo dose recalculation on every breathing phase. Methods: Radiotherapy plans were analyzed for 10 patients with stage I-II lung cancer planned using 4D-CT. SBRT plans were optimized using the dose calculated by a commercially-available Monte Carlo algorithm on the end-exhalation 4D-CT phase. 4D dose accumulations using deformable registration were performed with a commercially available tool that projected the planned dose onto every breathing phase without recalculation, as well as with a Monte Carlo recalculation of the dose on all breathing phases. The 3D planned dose (3D-EX), the 3D dose calculated on the average intensity image (3D-AVE), and the 4D accumulations of the dose calculated on the end-exhalation phase CT (4D-PR-EX), the mid-ventilation phase CT (4D-PR-MID), and the average intensity image (4D-PR-AVE), respectively, were compared against the accumulation of the Monte Carlo dose recalculated on every phase. Plan evaluation metrics relating to target volumes and critical structures relevant for lung SBRT were analyzed. Results: Plan evaluation metrics tabulated using 4D-PR-EX, 4D-PR-MID, and 4D-PR-AVE differed from those tabulated using Monte Carlo recalculation on every phase by an average of 0.14±0.70 Gy, - 0.11±0.51 Gy, and 0.00±0.62 Gy, respectively. Deviations of between 8 and 13 Gy were observed between the 4D-MC calculations and both 3D methods for the proximal bronchial trees of 3 patients. Conclusions: 4D dose accumulation using projection without re-calculation may be sufficiently accurate compared to 4D dose accumulated from Monte Carlo recalculation on every phase, depending on institutional protocols. Use of 4D dose accumulation should be considered when evaluating normal tissue complication

  8. An energy transfer method for 4D Monte Carlo dose calculation

    PubMed Central

    Siebers, Jeffrey V.; Zhong, Hualiang

    2008-01-01

    This article presents a new method for four-dimensional Monte Carlo dose calculations which properly addresses dose mapping for deforming anatomy. The method, called the energy transfer method (ETM), separates the particle transport and particle scoring geometries: Particle transport takes place in the typical rectilinear coordinate system of the source image, while energy deposition scoring takes place in a desired reference image via use of deformable image registration. Dose is the energy deposited per unit mass in the reference image. ETM has been implemented into DOSXYZnrc and compared with a conventional dose interpolation method (DIM) on deformable phantoms. For voxels whose contents merge in the deforming phantom, the doses calculated by ETM are exactly the same as an analytical solution, contrasting to the DIM which has an average 1.1% dose discrepancy in the beam direction with a maximum error of 24.9% found in the penumbra of a 6 MV beam. The DIM error observed persists even if voxel subdivision is used. The ETM is computationally efficient and will be useful for 4D dose addition and benchmarking alternative 4D dose addition algorithms. PMID:18841862

  9. An energy transfer method for 4D Monte Carlo dose calculation.

    PubMed

    Siebers, Jeffrey V; Zhong, Hualiang

    2008-09-01

    This article presents a new method for four-dimensional Monte Carlo dose calculations which properly addresses dose mapping for deforming anatomy. The method, called the energy transfer method (ETM), separates the particle transport and particle scoring geometries: Particle transport takes place in the typical rectilinear coordinate system of the source image, while energy deposition scoring takes place in a desired reference image via use of deformable image registration. Dose is the energy deposited per unit mass in the reference image. ETM has been implemented into DOSXYZnrc and compared with a conventional dose interpolation method (DIM) on deformable phantoms. For voxels whose contents merge in the deforming phantom, the doses calculated by ETM are exactly the same as an analytical solution, contrasting to the DIM which has an average 1.1% dose discrepancy in the beam direction with a maximum error of 24.9% found in the penumbra of a 6 MV beam. The DIM error observed persists even if voxel subdivision is used. The ETM is computationally efficient and will be useful for 4D dose addition and benchmarking alternative 4D dose addition algorithms. PMID:18841862

  10. SU-E-J-200: A Dosimetric Analysis of 3D Versus 4D Image-Based Dose Calculation for Stereotactic Body Radiation Therapy in Lung Tumors

    SciTech Connect

    Ma, M; Rouabhi, O; Flynn, R; Xia, J; Bayouth, J

    2014-06-01

    Purpose: To evaluate the dosimetric difference between 3D and 4Dweighted dose calculation using patient specific respiratory trace and deformable image registration for stereotactic body radiation therapy in lung tumors. Methods: Two dose calculation techniques, 3D and 4D-weighed dose calculation, were used for dosimetric comparison for 9 lung cancer patients. The magnitude of the tumor motion varied from 3 mm to 23 mm. Breath-hold exhale CT was used for 3D dose calculation with ITV generated from the motion observed from 4D-CT. For 4D-weighted calculation, dose of each binned CT image from the ten breathing amplitudes was first recomputed using the same planning parameters as those used in the 3D calculation. The dose distribution of each binned CT was mapped to the breath-hold CT using deformable image registration. The 4D-weighted dose was computed by summing the deformed doses with the temporal probabilities calculated from their corresponding respiratory traces. Dosimetric evaluation criteria includes lung V20, mean lung dose, and mean tumor dose. Results: Comparing with 3D calculation, lung V20, mean lung dose, and mean tumor dose using 4D-weighted dose calculation were changed by −0.67% ± 2.13%, −4.11% ± 6.94% (−0.36 Gy ± 0.87 Gy), −1.16% ± 1.36%(−0.73 Gy ± 0.85 Gy) accordingly. Conclusion: This work demonstrates that conventional 3D dose calculation method may overestimate the lung V20, MLD, and MTD. The absolute difference between 3D and 4D-weighted dose calculation in lung tumor may not be clinically significant. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates.

  11. Dose-Response Relationship for Image-Guided Stereotactic Body Radiotherapy of Pulmonary Tumors: Relevance of 4D Dose Calculation

    SciTech Connect

    Guckenberger, Matthias Wulf, Joern; Mueller, Gerd; Krieger, Thomas; Baier, Kurt; Gabor, Manuela; Richter, Anne; Wilbert, Juergen; Flentje, Michael

    2009-05-01

    Purpose: To evaluate outcome after image-guided stereotactic body radiotherapy (SBRT) for early-stage non-small-cell lung cancer (NSCLC) and pulmonary metastases. Methods and Materials: A total of 124 patients with 159 pulmonary lesions (metastases n = 118; NSCLC, n = 41; Stage IA, n = 13; Stage IB, n = 19; T3N0, n = 9) were treated with SBRT. Patients were treated with hypofractionated schemata (one to eight fractions of 6-26 Gy); biologic effective doses (BED) to the clinical target volume (CTV) were calculated based on four-dimensional (4D) dose calculation. The position of the pulmonary target was verified using volume imaging before all treatments. Results: With mean/median follow-up of 18/14 months, actuarial local control was 83% at 36 months with no difference between NSCLC and metastases. The dose to the CTV based on 4D dose calculation was closely correlated with local control: local control rates were 89% and 62% at 36 months for >100 Gy and <100 Gy BED (p = 0.0001), respectively. Actuarial freedom from regional and systemic progression was 34% at 36 months for primary NSCLC group; crude rate of regional failure was 15%. Three-year overall survival was 37% for primary NSCLC and 16% for metastases; no dose-response relationship for survival was observed. Exacerbation of comorbidities was the most frequent cause of death for primary NSCLC. Conclusions: Doses of >100 Gy BED to the CTV based on 4D dose calculation resulted in excellent local control rates. This cutoff dose is not specific to the treatment technique and protocol of our study and may serve as a general recommendation.

  12. Dosimetric quality assurance of highly conformal external beam treatments: from 2D phantom comparisons to 4D patient dose reconstruction

    NASA Astrophysics Data System (ADS)

    Feygelman, V.; Nelms, B.

    2013-06-01

    As IMRT technology continues to evolve, so do the dosimetric QA methods. A historical review of those is presented, starting with longstanding techniques such as film and ion chamber in a phantom and progressing towards 3D and 4D dose reconstruction in the patient. Regarding patient-specific QA, we envision that the currently prevalent limited comparison of dose distributions in the phantom by γ-analysis will be eventually replaced by clinically meaningful patient dose analyses with improved sensitivity and specificity. In a larger sense, we envision a future of QA built upon lessons from the rich history of "quality" as a science and philosophy. This future will aim to improve quality (and ultimately reduce cost) via advanced commissioning processes that succeed in detecting and rooting out systematic errors upstream of patient treatment, thus reducing our reliance on, and the resource burden associated with, per-beam/per-plan inspection.

  13. A novel method for 4D measurement-guided planned dose perturbation to estimate patient dose/DVH changes due to interplay

    NASA Astrophysics Data System (ADS)

    Nelms, B.; Feygelman, V.

    2013-06-01

    As IMRT/VMAT technology continues to evolve, so do the dosimetric QA methods. We present the theoretical framework for the novel planned dose perturbation algorithm. It allows not only to reconstruct the 3D volumetric doe on a patient from a measurement in a cylindrical phantom, but also to incorporate the effects of the interplay between the intrafractional organ motion and dynamic delivery. Unlike in our previous work, this 4D dose reconstruction does not require the knowledge of the TPS dose for each control point of the plan, making the method much more practical. Motion is viewed as just another source of error, accounted for by perturbing (morphing) the planned dose distribution based on the limited empirical dose from the phantom measurement. The strategy for empirical verification of the algorithm is presented as the necessary next step.

  14. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment

    NASA Astrophysics Data System (ADS)

    Cai, Weixing; Dhou, Salam; Cifter, Fulya; Myronakis, Marios; Hurwitz, Martina H.; Williams, Christopher L.; Berbeco, Ross I.; Seco, Joao; Lewis, John H.

    2016-01-01

    The purpose of this research is to develop a 4DCBCT-based dose assessment method for calculating actual delivered dose for patients with significant respiratory motion or anatomical changes during the course of SBRT. To address the limitation of 4DCT-based dose assessment, we propose to calculate the delivered dose using time-varying (‘fluoroscopic’) 3D patient images generated from a 4DCBCT-based motion model. The method includes four steps: (1) before each treatment, 4DCBCT data is acquired with the patient in treatment position, based on which a patient-specific motion model is created using a principal components analysis algorithm. (2) During treatment, 2D time-varying kV projection images are continuously acquired, from which time-varying ‘fluoroscopic’ 3D images of the patient are reconstructed using the motion model. (3) Lateral truncation artifacts are corrected using planning 4DCT images. (4) The 3D dose distribution is computed for each timepoint in the set of 3D fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach is validated using six modified XCAT phantoms with lung tumors and different respiratory motions derived from patient data. The estimated doses are compared to that calculated using ground-truth XCAT phantoms. For each XCAT phantom, the calculated delivered tumor dose values generally follow the same trend as that of the ground truth and at most timepoints the difference is less than 5%. For the overall delivered dose, the normalized error of calculated 3D dose distribution is generally less than 3% and the tumor D95 error is less than 1.5%. XCAT phantom studies indicate the potential of the proposed method to accurately estimate 3D tumor dose distributions for SBRT lung treatment based on 4DCBCT imaging and motion modeling. Further research is necessary to investigate its performance for clinical patient data.

  15. Feasibility of reduced-dose 3D/4D-DSA using a weighted edge preserving filter

    NASA Astrophysics Data System (ADS)

    Oberstar, Erick L.; Speidel, Michael A.; Davis, Brian J.; Strother, Charles; Mistretta, Charles

    2016-03-01

    A conventional 3D/4D digital subtraction angiogram (DSA) requires two rotational acquisitions (mask and fill) to compute the log-subtracted projections that are used to reconstruct a 3D/4D volume. Since all of the vascular information is contained in the fill acquisition, it is hypothesized that it is possible to reduce the x-ray dose of the mask acquisition substantially and still obtain subtracted projections adequate to reconstruct a 3D/4D volume with noise level comparable to a full dose acquisition. A full dose mask and fill acquisition were acquired from a clinical study to provide a known full dose reference reconstruction. Gaussian noise was added to the mask acquisition to simulate a mask acquisition acquired at 10% relative dose. Noise in the low-dose mask projections was reduced with a weighted edge preserving (WEP) filter designed to preserve bony edges while suppressing noise. 2D log-subtracted projections were computed from the filtered low-dose mask and full-dose fill projections, and then 3D/4D-DSA reconstruction algorithms were applied. Additional bilateral filtering was applied to the 3D volumes. The signal-to-noise ratio measured in the filtered 3D/4D-DSA volumes was compared to the full dose case. The average ratio of filtered low-dose SNR to full-dose SNR was 1.07 for the 3D-DSA and 1.05 for the 4D-DSA, indicating the method is a feasible approach to restoring SNR in DSA scans acquired with a low-dose mask. The method was also tested in a phantom study with full dose fill and 22% dose mask.

  16. SU-C-BRF-04: Delivered 4D Dose Calculation for Lung-VMAT Patients Using In- Treatment CBCT and LINAC Log Data

    SciTech Connect

    Saotome, N; Haga, A; Imae, T; Kida, S; Nakano, M; Yamashita, H; Nakagawa, K; Ohtomo, K

    2014-06-15

    Purpose: To verify the delivered four-dimensional (4D) dose distribution for the lung VMAT using in-treatment 4D cone-beam CT (CBCT) and LINAC log data. Methods: Three patients for lung stereotactic radiotherapy (SRT) were treated by single-arc volumetric modulated arc therapy (VMAT) created by SmartArc in Pinnacle v9.2 (Philips, USA).Kilovoltage (kV) projection images were acquired during VMAT delivery using the x-ray volumetric imager, XVI (Elekta, UK). LINAC log data were also recorded via iCom interface (Elekta, UK). Subsequently, the iCom data format was converted to Pinnacle data format, thereby allowing Pinnacle to read actual MLC positions, jaw positions, gantry angles and MUs. These parameters were categorized into four groups according to patient's respiratory phase. The patient respiratory phase was determined from kV-projection images by in-house phase recognizing software. By exporting these data back to Pinnacle, in-treatment dose distributions for each respiratory phase were obtained by combining calculated dose having a particular phase. The 4D CBCT were reconstructed by in-house program. The density in the structures on the CBCT was overridden by the average density in the corresponding structures on the planning CT for the dose calculation. The dose indexes, such as maximum, minimum, mean dose in the target were compared among the plan, in-treatment 3D calculation, and in-treatment 4D calculation. Results: The day-to-day variation of the delivered dose was observed for all three patients. The maximum difference was 5.9% for the minimum dose in the target. Difference for the mean dose was found to be small (1.1% at maximum). Conclusion: We have obtained in-treatment dose distribution for each of the different respiratory phases using in-treatment 4D CBCT and LINAC log data during lung VMAT delivery. Our result indicate a small but significant dose difference between the 3D and 4D calculations for the case of large target traveling.

  17. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences

    NASA Astrophysics Data System (ADS)

    Li, Haisen S.; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S.; Chetty, Indrin J.

    2014-01-01

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  18. Uniform distribution of projection data for improved reconstruction quality of 4D EPR imaging

    PubMed Central

    Ahmad, Rizwan; Vikram, Deepti S.; Clymer, Bradley; Potter, Lee C.; Deng, Yuanmu; Srinivasan, Parthasarathy; Zweier, Jay L.; Kuppusamy, Periannan

    2008-01-01

    In continuous wave (CW) electron paramagnetic resonance imaging (EPRI), high quality of reconstruction in a limited acquisition time is a high priority. It has been shown for the case of 3D EPRI, that a uniform distribution of the projection data generally enhances reconstruction quality. In this work, we have suggested two data acquisition techniques for which the gradient orientations are more evenly distributed over the 4D acquisition space as compared to the existing methods. The first sampling technique is based on equal solid angle partitioning of 4D space, while the second technique is based on Fekete points estimation in 4D to generate a more uniform distribution of data. After acquisition, filtered backprojection (FBP) is applied to carryout the reconstruction in a single stage. The single-stage reconstruction improves the spatial resolution by eliminating the necessity of data interpolation in multi-stage reconstructions. For the proposed data distributions, the simulations and experimental results indicate a higher fidelity to the true object configuration. Using the uniform distribution, we expect about 50% reduction in the acquisition time over the traditional method of equal linear angle acquisition. PMID:17562375

  19. Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D-CT data and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Flampouri, Stella; Jiang, Steve B.; Sharp, Greg C.; Wolfgang, John; Patel, Abhijit A.; Choi, Noah C.

    2006-06-01

    The purpose of this study is to accurately estimate the difference between the planned and the delivered dose due to respiratory motion and free breathing helical CT artefacts for lung IMRT treatments, and to estimate the impact of this difference on clinical outcome. Six patients with representative tumour motion, size and position were selected for this retrospective study. For each patient, we had acquired both a free breathing helical CT and a ten-phase 4D-CT scan. A commercial treatment planning system was used to create four IMRT plans for each patient. The first two plans were based on the GTV as contoured on the free breathing helical CT set, with a GTV to PTV expansion of 1.5 cm and 2.0 cm, respectively. The third plan was based on the ITV, a composite volume formed by the union of the CTV volumes contoured on free breathing helical CT, end-of-inhale (EOI) and end-of-exhale (EOE) 4D-CT. The fourth plan was based on GTV contoured on the EOE 4D-CT. The prescribed dose was 60 Gy for all four plans. Fluence maps and beam setup parameters of the IMRT plans were used by the Monte Carlo dose calculation engine MCSIM for absolute dose calculation on both the free breathing CT and 4D-CT data. CT deformable registration between the breathing phases was performed to estimate the motion trajectory for both the tumour and healthy tissue. Then, a composite dose distribution over the whole breathing cycle was calculated as a final estimate of the delivered dose. EUD values were computed on the basis of the composite dose for all four plans. For the patient with the largest motion effect, the difference in the EUD of CTV between the planed and the delivered doses was 33, 11, 1 and 0 Gy for the first, second, third and fourth plan, respectively. The number of breathing phases required for accurate dose prediction was also investigated. With the advent of 4D-CT, deformable registration and Monte Carlo simulations, it is feasible to perform an accurate calculation of the

  20. Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D-CT data and Monte Carlo simulations.

    PubMed

    Flampouri, Stella; Jiang, Steve B; Sharp, Greg C; Wolfgang, John; Patel, Abhijit A; Choi, Noah C

    2006-06-01

    The purpose of this study is to accurately estimate the difference between the planned and the delivered dose due to respiratory motion and free breathing helical CT artefacts for lung IMRT treatments, and to estimate the impact of this difference on clinical outcome. Six patients with representative tumour motion, size and position were selected for this retrospective study. For each patient, we had acquired both a free breathing helical CT and a ten-phase 4D-CT scan. A commercial treatment planning system was used to create four IMRT plans for each patient. The first two plans were based on the GTV as contoured on the free breathing helical CT set, with a GTV to PTV expansion of 1.5 cm and 2.0 cm, respectively. The third plan was based on the ITV, a composite volume formed by the union of the CTV volumes contoured on free breathing helical CT, end-of-inhale (EOI) and end-of-exhale (EOE) 4D-CT. The fourth plan was based on GTV contoured on the EOE 4D-CT. The prescribed dose was 60 Gy for all four plans. Fluence maps and beam setup parameters of the IMRT plans were used by the Monte Carlo dose calculation engine MCSIM for absolute dose calculation on both the free breathing CT and 4D-CT data. CT deformable registration between the breathing phases was performed to estimate the motion trajectory for both the tumour and healthy tissue. Then, a composite dose distribution over the whole breathing cycle was calculated as a final estimate of the delivered dose. EUD values were computed on the basis of the composite dose for all four plans. For the patient with the largest motion effect, the difference in the EUD of CTV between the planed and the delivered doses was 33, 11, 1 and 0 Gy for the first, second, third and fourth plan, respectively. The number of breathing phases required for accurate dose prediction was also investigated. With the advent of 4D-CT, deformable registration and Monte Carlo simulations, it is feasible to perform an accurate calculation of the

  1. Reconstruction of a 4D Particle Distribution Using UnderdeterminedPhase-Space Data

    SciTech Connect

    Rostamizadeh, Afshin

    2005-08-10

    A well defined 4D distribution that describes the transverse spatial coordinates (x,y) and momenta (x',y') of the particles that make up an intense ion beam is of great value to theorists in the field of particle beam physics. If such a distribution truthfully captures the characteristic of the actual beam, it can be used to initialize an extensive simulation, and can yield insight into the processes that affect beam quality. Creating a proper representative distribution of particles is a challenge because the problem is, in general, quite underdetermined. Data is collected through a pair of ''optical slit'' diagnostics which provide two 3D distributions, f(x,y,x') and f(x,y,y'); the challenge is to coalesce these into a full 4D distribution f(x,y,x',y'). Further difficulties are introduced because the data is collected at different longitudinal planes and must be ''remapped'' to a common plane, taking into account the convergence or divergence of the beam as well as any off-centering. This challenge was met by developing a suitable algorithm and implementing it as a ''plug-in'' for the popular scientific image analysis program ImageJ, written entirely in the Java programming language. The algorithm accomplishes the desired remapping and synthesizes a 4D particle distribution, using Monte-Carlo techniques. Preliminary results show that this reconstructed distribution is consistent with actual data that was gathered from the same experiment using a different diagnostic. Also, ''forward'' particle-in-cell (PIC) simulations, that use the reconstructed distribution, match actual data gathered downstream in the experiment. Both these results give us some indication that the reconstruction is being done correctly. In addition to the multi-particle synthesis, the plug-in allows for the easy loading of digital data and the output of various plots that are useful to both experimenters and theorists. It also provides a framework by which its applicability can be extended to

  2. A 4D dose computation method to investigate motion interplay effects in scanned ion beam prostate therapy

    NASA Astrophysics Data System (ADS)

    Ammazzalorso, F.; Jelen, U.

    2014-06-01

    In particle therapy, the interplay between beam scanning and target motion during treatment delivery may result in dose deterioration. Interplay effects have been studied for targets exhibiting periodic respiratory motion, however, they are not well understood for irregular motion patterns, such as those exhibited by the prostate. In this note, we propose and validate a 4D dose computation method, which enables estimation of effective dose delivered to the prostate by scanning ion beams in presence of intrafraction motion, as well as facilitates investigation of various motion interplay countermeasures.

  3. A study on quantitative analysis of field size and dose by using gating system in 4D conformal radiation treatment

    NASA Astrophysics Data System (ADS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Chung, Woon-Kwan; Cho, Jae-Hwan; Lee, Hae-Kag

    2012-10-01

    This study evaluated the gating-based 4-D conformal radiation therapy (4D-CT) treatment planning by a comparison with the common 3-D conformal radiation therapy (3D-CT) treatment planning and examined the change in treatment field size and dose to the tumors and adjacent normal tissues because an unnecessary dose is also included in the 3-D treatment planning for the radiation treatment of tumors in the chest and abdomen. The 3D-CT and gating-based 4D-CT images were obtained from patients who had undergone radiation treatment for chest and abdomen tumors in the oncology department. After establishing a treatment plan, the CT treatment and planning system were used to measure the change in field size for analysis. A dose volume histogram (DVH) was used to calculate the appropriate dose to planning target volume (PTV) tumors and adjacent normal tissue. The difference in the treatment volume of the chest was 0.6 and 0.83 cm on the X- and Y-axis, respectively, for the gross tumor volume (GTV). Accordingly, the values in the 4D-CT treatment planning were smaller and the dose was more concentrated by 2.7% and 0.9% on the GTV and clinical target volume (CTV), respectively. The normal tissues in the surrounding normal tissues were reduced by 3.0%, 7.2%, 0.4%, 1.7%, 2.6% and 0.2% in the bronchus, chest wall, esophagus, heart, lung and spinal cord, respectively. The difference in the treatment volume of the abdomen was 0.72 cm on the X-axis and 0.51 cm on the Y-axis for the GTV; and 1.06 cm on the X-axis and 1.85 cm on the Y-axis for the PTV. Therefore, the values in the 4D-CT treatment planning were smaller. The dose was concentrated by 6.8% and 4.3% on the GTV and PTV, respectively, whereas the adjacent normal tissues in the cord, Lt. kidney, Rt. kidney, small bowels and whole liver were reduced by 3.2%, 4.2%, 1.5%, 6.2% and 12.7%, respectively. The treatment field size was smaller in volume in the case of the 4D-CT treatment planning. In the DVH, the 4D-CT treatment

  4. Use of Projectional Phase Space Data to Infer a 4D Particle Distribution

    SciTech Connect

    Friedman, A; Grote, D P; Celata, C M; Staples, J W

    2002-05-15

    We consider beams which are described by a 4D transverse distribution f(x, y, x', y'), where x' {triple_bond} p{sub x}/p{sub z} and z is the axial coordinate. A two-slit scanner is commonly employed to measure, over a sequence of shots, a 2D projection of such a beam's phase space, e.g., f(x, x'). Another scanner might yield f(y, y') or, using crossed slits, f(x, y). A small set of such 2D scans does not uniquely specify f(x, y, x', y'). We have developed ''tomographic'' techniques to synthesize a ''reasonable'' set of particles in a 4D phase space having 2D densities consistent with the experimental data. These techniques are described in a separate document [A. Friedman, et. al., submitted to Phys. Rev. ST-AB, 2002]. Here we briefly summarize one method and describe progress in validating it, using simulations of the High Current Experiment at Lawrence Berkeley National Laboratory.

  5. Poster — Thur Eve — 30: 4D VMAT dose calculation methodology to investigate the interplay effect: experimental validation using TrueBeam Developer Mode and Gafchromic film

    SciTech Connect

    Teke, T; Milette, MP; Huang, V; Thomas, SD

    2014-08-15

    The interplay effect between the tumor motion and the radiation beam modulation during a VMAT treatment delivery alters the delivered dose distribution from the planned one. This work present and validate a method to accurately calculate the dose distribution in 4D taking into account the tumor motion, the field modulation and the treatment starting phase. A QUASAR™ respiratory motion phantom was 4D scanned with motion amplitude of 3 cm and with a 3 second period. A static scan was also acquired with the lung insert and the tumor contained in it centered. A VMAT plan with a 6XFFF beam was created on the averaged CT and delivered on a Varian TrueBeam and the trajectory log file was saved. From the trajectory log file 10 VMAT plans (one for each breathing phase) and a developer mode XML file were created. For the 10 VMAT plans, the tumor motion was modeled by moving the isocentre on the static scan, the plans were re-calculated and summed in the treatment planning system. In the developer mode, the tumor motion was simulated by moving the couch dynamically during the treatment. Gafchromic films were placed in the QUASAR phantom static and irradiated using the developer mode. Different treatment starting phase were investigated (no phase shift, maximum inhalation and maximum exhalation). Calculated and measured isodose lines and profiles are in very good agreement. For each starting phase, the dose distribution exhibit significant differences but are accurately calculated with the methodology presented in this work.

  6. Quantifying the image quality and dose reduction of respiratory triggered 4D cone-beam computed tomography with patient-measured breathing

    NASA Astrophysics Data System (ADS)

    Cooper, Benjamin J.; O'Brien, Ricky T.; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J.

    2015-12-01

    Respiratory triggered four dimensional cone-beam computed tomography (RT 4D CBCT) is a novel technique that uses a patient’s respiratory signal to drive the image acquisition with the goal of imaging dose reduction without degrading image quality. This work investigates image quality and dose using patient-measured respiratory signals for RT 4D CBCT simulations. Studies were performed that simulate a 4D CBCT image acquisition using both the novel RT 4D CBCT technique and a conventional 4D CBCT technique. A set containing 111 free breathing lung cancer patient respiratory signal files was used to create 111 pairs of RT 4D CBCT and conventional 4D CBCT image sets from realistic simulations of a 4D CBCT system using a Rando phantom and the digital phantom, XCAT. Each of these image sets were compared to a ground truth dataset from which a mean absolute pixel difference (MAPD) metric was calculated to quantify the degradation of image quality. The number of projections used in each simulation was counted and was assumed as a surrogate for imaging dose. Based on 111 breathing traces, when comparing RT 4D CBCT with conventional 4D CBCT, the average image quality was reduced by 7.6% (Rando study) and 11.1% (XCAT study). However, the average imaging dose reduction was 53% based on needing fewer projections (617 on average) than conventional 4D CBCT (1320 projections). The simulation studies have demonstrated that the RT 4D CBCT method can potentially offer a 53% saving in imaging dose on average compared to conventional 4D CBCT in simulation studies using a wide range of patient-measured breathing traces with a minimal impact on image quality.

  7. SU-E-J-183: Quantifying the Image Quality and Dose Reduction of Respiratory Triggered 4D Cone-Beam Computed Tomography with Patient- Measured Breathing

    SciTech Connect

    Cooper, B; OBrien, R; Kipritidis, J; Keall, P

    2014-06-01

    Purpose: Respiratory triggered four dimensional cone-beam computed tomography (RT 4D CBCT) is a novel technique that uses a patient's respiratory signal to drive the image acquisition with the goal of imaging dose reduction without degrading image quality. This work investigates image quality and dose using patient-measured respiratory signals for RT 4D CBCT simulations instead of synthetic sinusoidal signals used in previous work. Methods: Studies were performed that simulate a 4D CBCT image acquisition using both the novel RT 4D CBCT technique and a conventional 4D CBCT technique from a database of oversampled Rando phantom CBCT projections. A database containing 111 free breathing lung cancer patient respiratory signal files was used to create 111 RT 4D CBCT and 111 conventional 4D CBCT image datasets from realistic simulations of a 4D RT CBCT system. Each of these image datasets were compared to a ground truth dataset from which a root mean square error (RMSE) metric was calculated to quantify the degradation of image quality. The number of projections used in each simulation is counted and was assumed as a surrogate for imaging dose. Results: Based on 111 breathing traces, when comparing RT 4D CBCT with conventional 4D CBCT the average image quality was reduced by 7.6%. However, the average imaging dose reduction was 53% based on needing fewer projections (617 on average) than conventional 4D CBCT (1320 projections). Conclusion: The simulation studies using a wide range of patient breathing traces have demonstrated that the RT 4D CBCT method can potentially offer a substantial saving of imaging dose of 53% on average compared to conventional 4D CBCT in simulation studies with a minimal impact on image quality. A patent application (PCT/US2012/048693) has been filed which is related to this work.

  8. Low dose tomographic fluoroscopy: 4D intervention guidance with running prior

    SciTech Connect

    Flach, Barbara; Kuntz, Jan; Brehm, Marcus; Kachelrieß, Marc; Kueres, Rolf; Bartling, Sönke

    2013-10-15

    Purpose: Today's standard imaging technique in interventional radiology is the single- or biplane x-ray fluoroscopy which delivers 2D projection images as a function of time (2D+T). This state-of-the-art technology, however, suffers from its projective nature and is limited by the superposition of the patient's anatomy. Temporally resolved tomographic volumes (3D+T) would significantly improve the visualization of complex structures. A continuous tomographic data acquisition, if carried out with today's technology, would yield an excessive patient dose. Recently the authors proposed a method that enables tomographic fluoroscopy at the same dose level as projective fluoroscopy which means that if scanning time of an intervention guided by projective fluoroscopy is the same as that of an intervention guided by tomographic fluoroscopy, almost the same dose is administered to the patient. The purpose of this work is to extend authors' previous work and allow for patient motion during the intervention.Methods: The authors propose the running prior technique for adaptation of a prior image. This adaptation is realized by a combination of registration and projection replacement. In a first step the prior is deformed to the current position via affine and deformable registration. Then the information from outdated projections is replaced by newly acquired projections using forward and backprojection steps. The thus adapted volume is the running prior. The proposed method is validated by simulated as well as measured data. To investigate motion during intervention a moving head phantom was simulated. Real in vivo data of a pig are acquired by a prototype CT system consisting of a flat detector and a continuously rotating clinical gantry.Results: With the running prior technique it is possible to correct for motion without additional dose. For an application in intervention guidance both steps of the running prior technique, registration and replacement, are necessary

  9. Tumor control probability and the utility of 4D vs 3D dose calculations for stereotactic body radiotherapy for lung cancer

    SciTech Connect

    Valdes, Gilmer; Robinson, Clifford; Lee, Percy; Morel, Delphine; Low, Daniel; Iwamoto, Keisuke S.; Lamb, James M.

    2015-04-01

    Four-dimensional (4D) dose calculations for lung cancer radiotherapy have been technically feasible for a number of years but have not become standard clinical practice. The purpose of this study was to determine if clinically significant differences in tumor control probability (TCP) exist between 3D and 4D dose calculations so as to inform the decision whether 4D dose calculations should be used routinely for treatment planning. Radiotherapy plans for Stage I-II lung cancer were created for 8 patients. Clinically acceptable treatment plans were created with dose calculated on the end-exhale 4D computed tomography (CT) phase using a Monte Carlo algorithm. Dose was then projected onto the remaining 9 phases of 4D-CT using the Monte Carlo algorithm and accumulated onto the end-exhale phase using commercially available deformable registration software. The resulting dose-volume histograms (DVH) of the gross tumor volume (GTV), planning tumor volume (PTV), and PTV{sub setup} were compared according to target coverage and dose. The PTV{sub setup} was defined as a volume including the GTV and a margin for setup uncertainties but not for respiratory motion. TCPs resulting from these DVHs were estimated using a wide range of alphas, betas, and tumor cell densities. Differences of up to 5 Gy were observed between 3D and 4D calculations for a PTV with highly irregular shape. When the TCP was calculated using the resulting DVHs for fractionation schedules typically used in stereotactic body radiation therapy (SBRT), the TCP differed at most by 5% between 4D and 3D cases, and in most cases, it was by less than 1%. We conclude that 4D dose calculations are not necessary for most cases treated with SBRT, but they might be valuable for irregularly shaped target volumes. If 4D calculations are used, 4D DVHs should be evaluated on volumes that include margin for setup uncertainty but not respiratory motion.

  10. Dynamical Relativistic Effects in Photoionization: Spin-Orbit-Resolved Angular Distributions of Xenon 4d Photoelectrons near the Cooper Minimum

    SciTech Connect

    Wang, H.; Snell, G.; Hemmers, O.; Sant'Anna, M. M.; Sellin, I.; Berrah, N.; Lindle, D. W.; Deshmukh, P. C.; Haque, N.; Manson, S. T.

    2001-09-17

    Two decades ago, it was predicted [Y.S.Kim et al., Phys.Rev.Lett.46, 1326 (1981)] that relativistic effects should alter the dynamics of the photoionization process in the vicinity of Cooper minima. The present experimental and theoretical study of the angular distributions of Xe 4d{sub 3/2} and 4d{sub 5/2} photoelectrons demonstrates this effect for the first time. The results clearly imply that relativistic effects are likely to be important for intermediate-Z atoms at most energies.

  11. Poster — Thur Eve — 23: Dose and Position Quality Assurance using the RADPOS System for 4D Radiotherapy with CyberKnife

    SciTech Connect

    Marants, R; Vandervoort, E; Cygler, J E

    2014-08-15

    Introduction: RADPOS 4D dosimetry system consists of a microMOSFET dosimeter combined with an electromagnetic positioning sensor, which allows for performing real-time dose and position measurements simultaneously. In this report the use of RADPOS as an independent quality assurance (QA) tool during CyberKnife 4D radiotherapy treatment is described. In addition to RADPOS, GAFCHROMIC® films were used for simultaneous dose measurement. Methods: RADPOS and films were calibrated in a Solid Water® phantom at 1.5 cm depth, SAD= 80 cm, using 60 mm cone. CT based treatment plan was created for a Solid Water® breast phantom containing metal fiducials and RADPOS probe. Dose calculations were performed using iPlan pencil beam algorithm. Before the treatment delivery, GAFCHROMIC® film was inserted inside the breast phantom, next to the RADPOS probe. Then the phantom was positioned on the chest platform of the QUASAR, to which Synchrony LED optical markers were also attached. Position logging began for RADPOS and the Synchrony tracking system, the QUASAR motion was initiated and the treatment was delivered. Results: RADPOS position measurements very closely matched the LED marker positions recorded by the Synchrony camera tracking system. The RADPOS measured dose was 2.5% higher than the average film measured dose, which is within the experimental uncertainties. Treatment plan calculated dose was 4.1 and 1.6% lower than measured by RADPOS and film, respectively. This is most likely due to the inferior nature of the dose calculation algorithm. Conclusions: Our study demonstrates that RADPOS system is a useful tool for independent QA of CyberKnife treatments.

  12. Life-Stage-, Sex-, and Dose-Dependent Dietary Toxicokinetics and Relationship to Toxicity of 2,4-Dichlorophenoxyacetic Acid (2,4-D) in Rats: Implications for Toxicity Test Dose Selection, Design, and Interpretation

    PubMed Central

    Marty, Mary S.

    2013-01-01

    Life-stage-dependent toxicity and dose-dependent toxicokinetics (TK) were evaluated in Sprague Dawley rats following dietary exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D renal clearance is impacted by dose-dependent saturation of the renal organic anion transporter; thus, this study focused on identifying inflection points of onset of dietary nonlinear TK to inform dose selection decisions for toxicity studies. Male and female rats were fed 2,4-D-fortified diets at doses to 1600 ppm for 4-weeks premating, <2 weeks during mating, and to test day (TD) 71 to parental (P1) males and to P1 females through gestation/lactation to TD 96. F1 offspring were exposed via milk with continuing diet exposure until postnatal day (PND) 35. As assessed by plasma area under the curve for the time-course plasma concentration, nonlinear TK was observed ≥1200 ppm (63mg/kg/day) for P1 males and between 200 and 400 ppm (14–27mg/kg/day) for P1 females. Dam milk and pup plasma levels were higher on lactation day (LD) 14 than LD 4. Relative to P1 adults, 2,4-D levels were higher in dams during late gestation/lactation and postweaning pups (PND 21–35) and coincided with elevated intake of diet/kg body weight. Using conventional maximum tolerated dose (MTD) criteria based on body weight changes for dose selection would have resulted in excessive top doses approximately 2-fold higher than those identified incorporating critical TK data. These data indicate that demonstration of nonlinear TK, if present at dose levels substantially above real-world human exposures, is a key dose selection consideration for improving the human relevance of toxicity studies compared with studies employing conventional MTD dose selection strategies. PMID:24105888

  13. Determination of the 4D-Tropospheric Water Vapor Distribution by GPS for the Assimilation into Numerical Weather Prediction Models

    NASA Astrophysics Data System (ADS)

    Perler, D.; Geiger, A.; Rothacher, M.

    2011-12-01

    Water vapor is involved in many atmospheric processes and is therefore a crucial quantity in numerical weather prediction (NWP). Recent flood events in Switzerland have pointed out several deficiencies in planning and prediction methods used for flood risk mitigation. Investigations have shown that one of the limiting factors to forecast such events with NWP models is the insufficient knowledge of the water vapor distribution in the atmosphere. Global Navigation Satellite System (GNSS) ground-based tomography is a technique to monitor the 4D distribution of water vapor in the troposphere and has the potential to considerably improve the initial water vapor field used in NWP. We developed a GNSS tomography software called AWATOS-2 which is based on the Kalman filter technique and provides different parameterizations of the tropospheric wet refractivity field (Perler et al., 2010; Perler et al., 2011). The software can be used for the assimilation of different observations such as GNSS zero-differences, GNSS double-differences and any kind of point observations (e.g. balloons, aircrafts). In this talk, we present the results of a long-term study where GPS double-difference delays have been processed. The tomographic solutions have been investigated in view of their assimilation into local NWP models. The data set comprises observations from 46 GPS stations collected during 1 year. The core area of the investigation is located in Central Europe. We analyzed the performance of different voxel parameterizations used in the tomographic reconstruction of the troposphere and developed a new bias correction model which minimizes systematic differences. The correction model reduces the root-mean-square error (RMSE) with respected to the NWP model from 4.6 ppm to 3.0 ppm. After bias correction, high-elevation stations still show high RMSEs. In the presentation, we will discuss the treatment of such stations in terms of assimilation into NWP models and will show how

  14. Distribution of 2,4-D in air and on surfaces inside residences after lawn applications: comparing exposure estimates from various media for young children.

    PubMed Central

    Nishioka, M G; Lewis, R G; Brinkman, M C; Burkholder, H M; Hines, C E; Menkedick, J R

    2001-01-01

    We collected indoor air, surface wipes (floors, table tops, and window sills), and floor dust samples at multiple locations within 11 occupied and two unoccupied homes both before and after lawn application of the herbicide 2,4-D. We measured residues 1 week before and after application. We used collected samples to determine transport routes of 2,4-D from the lawn into the homes, its subsequent distribution between the indoor surfaces, and air concentration as a function of airborne particle size. We used residue measurements to estimate potential exposures within these homes. After lawn application, 2,4-D was detected in indoor air and on all surfaces throughout all homes. Track-in by an active dog and by the homeowner applicator were the most significant factors for intrusion. Resuspension of floor dust was the major source of 2,4-D in indoor air, with highest levels of 2,4-D found in the particle size range of 2.5-10 microm. Resuspended floor dust was also a major source of 2,4-D on tables and window sills. Estimated postapplication indoor exposure levels for young children from nondietary ingestion may be 1-10 microg/day from contact with floors, and 0.2-30 microg/day from contact with table tops. These are estimated to be about 10 times higher than the preapplication exposures. By comparison, dietary ingestion of 2,4-D is approximately 1.3 microg/day. PMID:11713005

  15. Multicriteria optimization of the spatial dose distribution

    SciTech Connect

    Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph

    2013-12-15

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution.

  16. Implications of free breathing motion assessed by 4D-computed tomography on the delivered dose in radiotherapy for esophageal cancer.

    PubMed

    Duma, Marciana Nona; Berndt, Johannes; Rondak, Ina-Christine; Devecka, Michal; Wilkens, Jan J; Geinitz, Hans; Combs, Stephanie Elisabeth; Oechsner, Markus

    2015-01-01

    The aim of this study was to assess the effect of breathing motion on the delivered dose in esophageal cancer 3-dimensional (3D)-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT). We assessed 16 patients with esophageal cancer. All patients underwent 4D-computed tomography (4D-CT) for treatment planning. For each of the analyzed patients, 1 3D-CRT, 1 IMRT, and 1 VMAT (RapidArc-RA) plan were calculated. Each of the 3 initial plans was recalculated on the 4D-CT (for the maximum free inspiration and maximum free expiration) to assess the effect of breathing motion. We assessed the minimum dose (Dmin) and mean dose (Dmean) to the esophagus within the planning target volume, the volume changes of the lungs, the Dmean and the total lung volume receiving at least 40Gy (V40), and the V30, V20, V10, and V5. For the heart we assessed the Dmean and the V25. Over all techniques and all patients the change in Dmean as compared with the planned Dmean (planning CT [PCT]) to the esophagus was 0.48% in maximum free inspiration (CT_insp) and 0.55% in maximum free expiration (CT_exp). The Dmin CT_insp change was 0.86% and CT_exp change was 0.89%. The Dmean change of the lungs (heart) was in CT_insp 1.95% (2.89%) and 3.88% (2.38%) in CT_exp. In all, 4 patients had a clinically relevant change of the dose (≥ 5% Dmean to the heart and the lungs) between inspiration and expiration. These patients had a very cranially or caudally situated tumor. There are no relevant differences in the delivered dose to the regions of interest among the 3 techniques. Breathing motion management could be considered to achieve a better sparing of the lungs or heart in patients with cranially or caudally situated tumors. PMID:26419857

  17. 4D SPECT/CT acquisition for 3D dose calculation and dose planning in (177)Lu-peptide receptor radionuclide therapy: applications for clinical routine.

    PubMed

    Kairemo, Kalevi; Kangasmäki, Aki

    2013-01-01

    Molecular radiotherapy combines the potential of a specific tracer (vector) targeting tumor cells with local radiotoxicity. Designing a specific tumor-targeting/killing combination is a tailoring process. Radionuclides with imaging capacity serve best in the selection of the targeting molecule. The potential of targeted therapy with radiolabeled peptides has been reported in many conditions; peptide receptor radionuclide therapy (PRRT) is already part of Scandinavian guidelines for treating neuroendocrine tumors. Lu-177- and Y-90-labeled somatostatin analogs, including DOTATOC, DOTANOC, and DOTATATE, are most the commonly used and have turned out to be effective. For routine use, an efficient, rapid, and reliable dose calculation tool is needed. In this chapter we describe how serial pre- and posttherapeutic scans can be used for dose calculation and for predicting therapy doses. Our software for radionuclide dose calculation is a three-dimensional, voxel-based system. The 3D dose calculation requires coregistered SPECT image sets from several time points after infusion to reconstruct time-activity curves for each voxel. Image registration is done directly by SPECT image registration using the first time point as a target. From the time-activity curves, initial activity and total half-life maps are calculated to produce a cumulated activity map. The cumulated activity map is then convoluted with a voxel-dose kernel to obtain a 3D dose map. We performed dose calculations similarly for both therapeutic and preplanning images. Preplanning dose was extrapolated to predict therapy dose using the ratio of administered activities. Our 3D dose calculation results are also compared with those of OLINDA. Our preliminary results indicate that dose planning using pretherapeutic scanning can predict critical organ and tumor doses. In some cases, the dose planning prediction resulted in slight, and slightly dose-dependent, overestimation of final therapy dose. Real tumor dose

  18. SU-E-J-28: Gantry Speed Significantly Affects Image Quality and Imaging Dose for 4D Cone-Beam Computed Tomography On the Varian Edge Platform

    SciTech Connect

    Santoso, A; Song, K; Gardner, S; Chetty, I; Wen, N

    2015-06-15

    Purpose: 4D-CBCT facilitates assessment of tumor motion at treatment position. We investigated the effect of gantry speed on 4D-CBCT image quality and dose using the Varian Edge On-Board Imager (OBI). Methods: A thoracic protocol was designed using a 125 kVp spectrum. Image quality parameters were obtained via 4D acquisition using a Catphan phantom with a gating system. A sinusoidal waveform was executed with a five second period and superior-inferior motion. 4D-CBCT scans were sorted into 4 and 10 phases. Image quality metrics included spatial resolution, contrast-to-noise ratio (CNR), uniformity index (UI), Hounsfield unit (HU) sensitivity, and RMS error (RMSE) of motion amplitude. Dosimetry was accomplished using Gafchromic XR-QA2 films within a CIRS Thorax phantom. This was placed on the gating phantom using the same motion waveform. Results: High contrast resolution decreased linearly from 5.93 to 4.18 lp/cm, 6.54 to 4.18 lp/cm, and 5.19 to 3.91 lp/cm for averaged, 4 phase, and 10 phase 4DCBCT volumes respectively as gantry speed increased from 1.0 to 6.0 degs/sec. CNRs decreased linearly from 4.80 to 1.82 as the gantry speed increased from 1.0 to 6.0 degs/sec, respectively. No significant variations in UIs, HU sensitivities, or RMSEs were observed with variable gantry speed. Ion chamber measurements compared to film yielded small percent differences in plastic water regions (0.1–9.6%), larger percent differences in lung equivalent regions (7.5–34.8%), and significantly larger percent differences in bone equivalent regions (119.1–137.3%). Ion chamber measurements decreased from 17.29 to 2.89 cGy with increasing gantry speed from 1.0 to 6.0 degs/sec. Conclusion: Maintaining technique factors while changing gantry speed changes the number of projections used for reconstruction. Increasing the number of projections by decreasing gantry speed decreases noise, however, dose is increased. The future of 4DCBCT’s clinical utility relies on further

  19. 4-D-VAR assimilation of disdrometer data and radar spectral reflectivities for raindrop size distribution and vertical wind retrievals

    NASA Astrophysics Data System (ADS)

    Mercier, François; Chazottes, Aymeric; Barthès, Laurent; Mallet, Cécile

    2016-07-01

    This paper presents a novel framework for retrieving the vertical raindrop size distribution (DSD) and vertical wind profiles during light rain events. This is also intended as a tool to better characterize rainfall microphysical processes. It consists in coupling K band Doppler spectra and ground disdrometer measurements (raindrop fluxes) in a 2-D numerical model propagating the DSD from the clouds to the ground level. The coupling is done via a 4-D-VAR data assimilation algorithm. As a first step, in this paper, the dynamical model and the geometry of the problem are quite simple. They do not allow the complexity implied by all rain microphysical processes to be encompassed (evaporation, coalescence breakup and horizontal air motion are not taken into account). In the end, the model is limited to the fall of droplets under gravity, modulated by the effects of vertical winds. The framework is thus illustrated with light, stratiform rain events. We firstly use simulated data sets (data assimilation twin experiment) to show that the algorithm is able to retrieve the DSD profiles and vertical winds. It also demonstrates the ability of the algorithm to deal with the atmospheric turbulence (broadening of the Doppler spectra) and the instrumental noise. The method is then applied to a real case study which was conducted in the southwest of France during the autumn 2013. The data set collected during a long, quiet event (6 h duration, rain rate between 2 and 7 mm h-1) comes from an optical disdrometer and a 24 GHz vertically pointing Doppler radar. We show that the algorithm is able to reproduce the observations and retrieve realistic DSD and vertical wind profiles, when compared to what could be expected for such a rain event. A goal for this study is to apply it to extended data sets for a validation with independent data, which could not be done with our limited 2013 data. Other data sets would also help to parameterize more processes needed in the model (evaporation

  20. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  1. A computerized framework for monitoring four-dimensional dose distributions during stereotactic body radiation therapy using a portal dose image-based 2D/3D registration approach.

    PubMed

    Nakamoto, Takahiro; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Mizoguchi, Asumi; Hirose, Taka-Aki; Honda, Hiroshi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Hirata, Hideki

    2015-03-01

    A computerized framework for monitoring four-dimensional (4D) dose distributions during stereotactic body radiation therapy based on a portal dose image (PDI)-based 2D/3D registration approach has been proposed in this study. Using the PDI-based registration approach, simulated 4D "treatment" CT images were derived from the deformation of 3D planning CT images so that a 2D planning PDI could be similar to a 2D dynamic clinical PDI at a breathing phase. The planning PDI was calculated by applying a dose calculation algorithm (a pencil beam convolution algorithm) to the geometry of the planning CT image and a virtual water equivalent phantom. The dynamic clinical PDIs were estimated from electronic portal imaging device (EPID) dynamic images including breathing phase data obtained during a treatment. The parameters of the affine transformation matrix were optimized based on an objective function and a gamma pass rate using a Levenberg-Marquardt (LM) algorithm. The proposed framework was applied to the EPID dynamic images of ten lung cancer patients, which included 183 frames (mean: 18.3 per patient). The 4D dose distributions during the treatment time were successfully obtained by applying the dose calculation algorithm to the simulated 4D "treatment" CT images. The mean±standard deviation (SD) of the percentage errors between the prescribed dose and the estimated dose at an isocenter for all cases was 3.25±4.43%. The maximum error for the ten cases was 14.67% (prescribed dose: 1.50Gy, estimated dose: 1.72Gy), and the minimum error was 0.00%. The proposed framework could be feasible for monitoring the 4D dose distribution and dose errors within a patient's body during treatment. PMID:25592290

  2. Dose distributions in regions containing beta sources: Irregularly shaped source distributions in homogeneous media

    SciTech Connect

    Werner, B.L. )

    1991-11-01

    Methods are introduced by which dose rate distributions due to nonuniform, irregularly shaped distributions of beta emitters can be calculated using dose rate distributions for uniform, spherical source distributions. The dose rate distributions can be written in the MIRD formalism.

  3. Determination of dose distributions and parameter sensitivity

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow's milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1 as described in Calculation 001.

  4. Electron spectra derived from depth dose distributions.

    PubMed

    Faddegon, B A; Blevis, I

    2000-03-01

    The technique of extracting electron energy spectra from measured distributions of dose along the central axis of clinical electron beams is explored in detail. Clinical spectra measured with this simple spectroscopy tool are shown to be sufficient in accuracy and resolution for use in Monte Carlo treatment planning. A set of monoenergetic depth dose curves of appropriate energy spacing, precalculated with Monte Carlo for a simple beam model, are unfolded from the measured depth dose curve. The beam model is comprised of a point electron and photon source placed in vacuum with a source-to-surface distance of 100 cm. Systematic error introduced by this model affects the calculated depth dose curve by no more than 2%/2 mm. The component of the dose due to treatment head bremsstrahlung, subtracted prior to unfolding, is estimated from the thin-target Schiff spectrum within 0.3% of the maximum total dose (from electrons and photons) on the beam axis. Optimal unfolding parameters are chosen, based on physical principles. Unfolding is done with the public-domain code FERDO. Comparisons were made to previously published spectra measured with magnetic spectroscopy and to spectra we calculated with Monte Carlo treatment head simulation. The approach gives smooth spectra with an average resolution for the 27 beams studied of 16+/-3% of the mean peak energy. The mean peak energy of the magnetic spectrometer spectra was calculated within 2% for the AECL T20 scanning beam accelerators, 3% for the Philips SL25 scattering foil based machine. The number of low energy electrons in Monte Carlo spectra is estimated by unfolding with an accuracy of 2%, relative to the total number of electrons in the beam. Central axis depth dose curves calculated from unfolded spectra are within 0.5%/0.5 mm of measured and simulated depth dose curves, except near the practical range, where 1%/1 mm errors are evident. PMID:10757603

  5. Auger resonant Raman spectroscopy used to study the angular distributions of the Xe 4d{sub 5/2} {yields} 6p decay spectrum

    SciTech Connect

    Langer, B.; Berrah, N.; Farhat, A.

    1997-04-01

    Auger resonant Raman spectroscopy is a powerful tool for studying the resonant Auger decay processes with a resolution narrower than the natural lifetime width of the initial inner-shell hole state. This effect has been used to analyze branching ratios of resonantly excited atoms and molecules. In this paper, the authors present results of a study of angular distributions of the spectator decay lines of Xe following 4d{sub 5/2}{r_arrow}6p excitation using the Auger resonant Raman effect and highly resolved photons from the Advanced Light Source (ALS).

  6. 4D Imaging of Salt Precipitation during Evaporation from Saline Porous Media Influenced by the Particle Size Distribution

    NASA Astrophysics Data System (ADS)

    Norouzi Rad, M.; Shokri, N.

    2014-12-01

    Understanding the physics of water evaporation from saline porous media is important in many processes such as evaporation from porous media, vegetation, plant growth, biodiversity in soil, and durability of building materials. To investigate the effect of particle size distribution on the dynamics of salt precipitation in saline porous media during evaporation, we applied X-ray micro-tomography technique. Six samples of quartz sand with different grain size distributions were used in the present study enabling us to constrain the effects of particle and pore sizes on salt precipitation patterns and dynamics. The pore size distributions were computed using the pore-scale X-ray images. The packed beds were saturated with NaCl solution of 3 Molal and the X-ray imaging was continued for one day with temporal resolution of 30 min resulting in pore scale information about the evaporation and precipitation dynamics. Our results show more precipitation at the early stage of the evaporation in the case of sand with the larger particle size due to the presence of fewer evaporation sites at the surface. The presence of more preferential evaporation sites at the surface of finer sands significantly modified the patterns and thickness of the salt crust deposited on the surface such that a thinner salt crust was formed in the case of sand with smaller particle size covering larger area at the surface as opposed to the thicker patchy crusts in samples with larger particle sizes. Our results provide new insights regarding the physics of salt precipitation in porous media during evaporation.

  7. Calculation of external dose from distributed source

    SciTech Connect

    Kocher, D.C.

    1986-01-01

    This paper discusses a relatively simple calculational method, called the point kernel method (Fo68), for estimating external dose from distributed sources that emit photon or electron radiations. The principles of the point kernel method are emphasized, rather than the presentation of extensive sets of calculations or tables of numerical results. A few calculations are presented for simple source geometries as illustrations of the method, and references and descriptions are provided for other caluclations in the literature. This paper also describes exposure situations for which the point kernel method is not appropriate and other, more complex, methods must be used, but these methods are not discussed in any detail.

  8. Effects of Interfractional Motion and Anatomic Changes on Proton Therapy Dose Distribution in Lung Cancer

    SciTech Connect

    Hui Zhouguang; Zhang Xiaodong; Starkschall, George; Li Yupeng; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y.

    2008-12-01

    Purpose: Proton doses are sensitive to intra- and interfractional anatomic changes. We analyzed the effects of interfractional anatomic changes in doses to lung tumors treated with proton therapy. Methods and Materials: Weekly four-dimensional computed tomography (4D-CT) scans were acquired for 8 patients with mobile Stage III non-small cell lung cancer who were actually treated with intensity-modulated photon radiotherapy. A conformal proton therapy passive scattering plan was designed for each patient. Dose distributions were recalculated at end-inspiration and end-expiration breathing phases on each weekly 4D-CT data set using the same plans with alignment based on bone registration. Results: Clinical target volume (CTV) coverage was compromised (from 99% to 90.9%) in 1 patient because of anatomic changes and motion pattern variation. For the rest of the patients, the mean CTV coverage on the repeated weekly 4D-CT data sets was 98.4%, compared with 99% for the original plans. For all 8 patients, however, a mean 4% increase in the volume of the contralateral lung receiving a dose of at least 5 Gy (V5) and a mean 4.4-Gy increase in the spinal cord maximum dose was observed in the repeated 4D-CT data sets. A strong correlation between the CTV density change resulting from tumor shrinkage or anatomic variations and mean contralateral lung dose was observed. Conclusions: Adaptive re-planning during proton therapy may be indicated in selected patients with non-small cell lung cancer. For most patients, however, CTV coverage is adequate if tumor motion is taken into consideration in the original simulation and planning processes.

  9. SU-E-T-520: Four-Dimensional Dose Calculation Algorithm Considering Variations in Dose Distribution Induced by Sinusoidal One-Dimensional Motion Patterns

    SciTech Connect

    Taguenang, J; Algan, O; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate quantitatively the variations in dose-distributions induced by motion by measurements and modeling. A four-dimensional (4D) motion model of dose distributions that accounts for different motion parameters was developed. Methods: Variations in dose distributions induced by sinusoidal phantom motion were measured using a multiple-diode-array-detector (MapCheck2). MapCheck2 was mounted on a mobile platform that moves with adjustable calibrated motion patterns in the superior-inferior direction. Various plans including open and intensity-modulated fields were used to irradiate MapCheck2. A motion model was developed to predict spatial and temporal variations in the dose-distributions and dependence on the motion parameters using pencil-beam spread-out superposition function. This model used the superposition of pencil-beams weighted with a probability function extracted from the motion trajectory. The model was verified with measured dose-distributions obtained from MapCheck2. Results: Dose-distribution varied considerably with motion where in the regions between isocenter and 50% isodose-line, dose decreased with increase of the motion amplitude. Dose levels increased with increase in the motion amplitude in the region beyond 50% isodose-line. When the range of motion (ROM=twice amplitude) was smaller than the field length both central axis dose and the 50% isodose-line did not change with variation of motion amplitude and remained equal to the dose of stationary phantom. As ROM became larger than the field length, the dose level decreased at central axis dose and 50% isodose-line. Motion frequency and phase did not affect the dose distributions which were delivered over an extended time longer than few motion cycles, however, they played an important role for doses delivered with high-dose-rates within one motion cycle . Conclusion: A 4D-dose motion model was developed to predict and correct variations in dose distributions induced by one

  10. SU-E-T-330: To Analyze the Calculation Error of Live Dose-Volume Indices Applying 4D-CT in Radiotherapy for PTVs Within the Liver Completely

    SciTech Connect

    Gong, G; Liu, C; Yin, Y

    2014-06-01

    Purpose: To study the variation rule of normal liver dose-volume indices calculation for the liver malignancy patients whose plan target volumes were in the liver completely in all breath phases. Methods: Ten patients who accepted radiotherapy for malignant tumor were selected in our study. All patients underwent 4D-CT simulation and 3D-CT simulation in free breathing(FB). 4D-CT was sorted into 10 series CT images according to breath phase, named CT0, CT10 to CT90, respectively. And GTVs were contoured on different CT series, and the individual target volume(ITV) was obtained by merging 10 GTVs from 4D-CT. The PTVs were obtained from ITV applying margins. The PTVs were not beyond the boundary of liver in all breath phase observed by dynamic 4D-CT. The radiotherapy plans were designed and irradiation dose was calculated on 3D-CT images, and the livers were contoured on different series CT images and mapped to 3D-CT images applying rigid registration. To compare the dose-volume difference of livers based on distinct CT images. Results: (1)The liver volumes were similar on 4D-CT and 3D-CT images(CTFB 1485±500cm{sup 3}, CT0 1413±377cm{sup 3}, CT10 1409±396cm{sup 3}, CT20 1419±418cm{sup 3},CT30 1485±500cm{sup 3}, CT40 1438±392cm{sup 3}, CT50 1437±404cm{sup 3}, CT60 1439±409cm{sup 3}, CT70 1408±393cm{sup 3}, CT80 1384±397cm{sup 3}, CT90 1398±397cm{sup 3}; F=0.064,p=1.00) (2) The PTVs volume were 30.17±14.62cm{sup 3};(3) The mean dose and V5 to V10 of liver were similar among 4D-CT different series CT images(p>0.05), and the indices varied less than ±4% refer to liver on CT50. Conclusion: The calculation affection of liver dose-volume indices induced by breath motion were not significant for the PTV within liver completely as estimation before. And more objective prediction indices for radiation induced l.

  11. [An empirical model for calculating electron dose distributions].

    PubMed

    Leistner, H; Schüler, W

    1990-01-01

    Dose-distributions in radiation fields are calculated for purpose of irradiation planning from measured depth dose and cross-distributions predominantly. Especially in electron fields the measuring effort is high to this, because these distributions have to be measured for all occurring irradiation parameters and in many different tissue depths. At the very least it can be shown for the 6...10 MeV electron radiation of the linear accelerator Neptun 10p that all required distributions can be calculated from each separately measured depth dose and cross-distribution. For this depth dose distribution and the measured border decrease of cross-distribution are tabulated and the abscissas are submitted to a linear transformation x' = k.x. In case of depth dose distribution the transformation factor k is dependent on electron energy only and in cross-distribution on tissue depth and source-surface-distance additionally. PMID:2356295

  12. 4-D Photoacoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy. PMID:23346370

  13. 4-D Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  14. Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders

    SciTech Connect

    Supe, Sanjay S. Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M.

    2009-04-01

    Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome

  15. 4D Proton treatment planning strategy for mobile lung tumors

    SciTech Connect

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei . E-mail: ldong@mdanderson.org

    2007-03-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE{sub R}IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE{sub R}IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE{sub R}IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors.

  16. 4-D-VAR assimilation of disdrometer data and radar spectral reflectivities for rain drop size distribution and vertical wind retrievals

    NASA Astrophysics Data System (ADS)

    Mercier, F.; Chazottes, A.; Barthès, L.; Mallet, C.

    2015-11-01

    This paper presents a novel approach for retrieving the vertical raindrop size distribution (DSD) profiles and vertical winds during light rain events. It consists in coupling K band Doppler spectra and ground disdrometer measurements (raindrop fluxes) in a 2-D numerical model propagating the DSD from the clouds to the ground level. The coupling is made via a 4-D-VAR data assimilation algorithm. The model is, up to now, limited to the fall of droplets under gravity, modulated by the effects of vertical winds. Since evaporation, coalescence/break-up and horizontal air motion are not taken into account, we limit the study to light, stratiform rain events in which these phenomena appear negligible. We firstly use simulated data sets (data assimilation twin experiment) to show that the algorithm is able to retrieve the DSD profiles and vertical winds. It also demonstrates the ability of the algorithm to deal with the atmospheric turbulence (broadening of the Doppler spectra) and the instrumental noise. The method is then applied to a real case study which happened in the south-west of France during the autumn 2013. The data set collected during a long, quiet event (6 h duration, rain rate between 2 and 7 mm h-1) comes from an optical disdrometer and a 24 GHz vertically pointing Doppler radar. We show that the algorithm is able to explain the observations and supplies DSD and vertical wind profiles realistic compared to what could be expected for such a rain event. A perspective for this study is to apply it to extended data sets for a more thorough validation. Other data sets would also help to parameterize more phenomena needed in the model (evaporation, coalescence/break-up) to apply the algorithm to convective rain and to evaluate the adequacy of the model's parameterization.

  17. Computation and Optimization of Dose Distributions for Rotational Stereotactic Radiosurgery

    NASA Astrophysics Data System (ADS)

    Fox, Timothy Harold

    1994-01-01

    The stereotactic radiosurgery technique presented in this work is the patient rotator method which rotates the patient in a sitting position with a stereotactic head frame attached to the skull while collimated non-coplanar radiation beams from a 6 MV medical linear accelerator are delivered to the target point. The hypothesis of this dissertation is that accurate, three-dimensional dose distributions can be computed and optimized for the patient rotator method used in stereotactic radiosurgery. This dissertation presents research results in three areas related to computing and optimizing dose distributions for the patient rotator method. A three-dimensional dose model was developed to calculate the dose at any point in the cerebral cortex using a circular and adjustable collimator system and the geometry of the radiation beam with respect to the target point. The computed dose distributions compared to experimental measurements had an average maximum deviation of <0.7 mm for the relative isodose distributions greater than 50%. A system was developed to qualitatively and quantitatively visualize the computed dose distributions with patient anatomy. A registration method was presented for transforming each dataset to a common reference system. A method for computing the intersections of anatomical contour's boundaries was developed to calculate dose-volume information. The system efficiently and accurately reduced the large computed, volumetric sets of dose data, medical images, and anatomical contours to manageable images and graphs. A computer-aided optimization method was developed for rigorously selecting beam angles and weights for minimizing the dose to normal tissue. Linear programming was applied as the optimization method. The computed optimal beam angles and weights for a defined objective function and dose constraints exhibited a superior dose distribution compared to a standard plan. The developed dose model, qualitative and quantitative visualization

  18. Thyroid dose distribution in dental radiography

    SciTech Connect

    Bristow, R.G.; Wood, R.E.; Clark, G.M. )

    1989-10-01

    The anatomic position and proven radiosensitivity of the thyroid gland make it an organ of concern in dental radiography. A calibrated thermoluminescent dosimetry system was used to investigate the absorbed dose (microGy) to the thyroid gland resultant from a minimum irradiated volume, intraoral full-mouth radiography technique with the use of rectangular collimation with a lead-backed image receptor, and conventional panoramic radiography performed with front and rear lead aprons. Use of the minimum irradiated volume technique resulted in a significantly decreased absorbed dose over the entire thyroid region ranging from 100% to 350% (p less than 0.05). Because this intraoral technique results in radiographs with greater image quality and also exposes the thyroid gland to less radiation than the panoramic, this technique may be an alternative to the panoramic procedure.

  19. DISTRIBUTION OF 2,4-D IN AIR AND ON SURFACES INSIDE RESIDENCES FOLLOWING LAWN APPLICATIONS: COMPARING EXPOSURE ESTIMATES FOR YOUNG CHILDREN FROM VARIOUS MEDIA

    EPA Science Inventory

    Indoor air, surface wipes (floors, table tops and window sills) and floor dust samples were collected at multiple locations within 11 occupied and 2 unoccupied homes both prior to and following lawn application of the herbicide 2,4-D. Residue measurements were made over period...

  20. Constrained reconstructions for 4D intervention guidance

    NASA Astrophysics Data System (ADS)

    Kuntz, J.; Flach, B.; Kueres, R.; Semmler, W.; Kachelrieß, M.; Bartling, S.

    2013-05-01

    Image-guided interventions are an increasingly important part of clinical minimally invasive procedures. However, up to now they cannot be performed under 4D (3D + time) guidance due to the exceedingly high x-ray dose. In this work we investigate the applicability of compressed sensing reconstructions for highly undersampled CT datasets combined with the incorporation of prior images in order to yield low dose 4D intervention guidance. We present a new reconstruction scheme prior image dynamic interventional CT (PrIDICT) that accounts for specific image features in intervention guidance and compare it to PICCS and ASD-POCS. The optimal parameters for the dose per projection and the numbers of projections per reconstruction are determined in phantom simulations and measurements. In vivo experiments in six pigs are performed in a cone-beam CT; measured doses are compared to current gold-standard intervention guidance represented by a clinical fluoroscopy system. Phantom studies show maximum image quality for identical overall doses in the range of 14 to 21 projections per reconstruction. In vivo studies reveal that interventional materials can be followed in 4D visualization and that PrIDICT, compared to PICCS and ASD-POCS, shows superior reconstruction results and fewer artifacts in the periphery with dose in the order of biplane fluoroscopy. These results suggest that 4D intervention guidance can be realized with today’s flat detector and gantry systems using the herein presented reconstruction scheme.

  1. Fast range-corrected proton dose approximation method using prior dose distribution

    NASA Astrophysics Data System (ADS)

    Park, Peter C.; Cheung, Joey; Zhu, X. Ronald; Sahoo, Narayan; Court, Laurence; Dong, Lei

    2012-06-01

    For robust plan optimization and evaluation purposes, one needs a computationally efficient way to calculate dose distributions and dose-volume histograms (DVHs) under various changes in the variables associated with beam delivery and images. In this study, we report an approximate method for rapid calculation of dose when setup errors and anatomical changes occur during proton therapy. This fast dose approximation method calculates new dose distributions under various circumstances based on the prior knowledge of dose distribution from a reference setting. In order to validate the method, we calculated and compared the dose distributions from our approximation method to the dose distributions calculated from a clinically commissioned treatment planning system which was used as the ground truth. The overall accuracy of the proposed method was tested against varying degrees of setup error and anatomical deformation for selected patient cases. The setup error was simulated by rigid shifts of the patient; while the anatomical deformation was introduced using weekly acquired repeat CT data sets. We evaluated the agreement between the dose approximation method and full dose recalculation using a 3D gamma index and the root-mean-square (RMS) and maximum deviation of the cumulative dose volume histograms (cDVHs). The average passing rate of 3D gamma analysis under 3% dose and 3 mm distance-to-agreement criteria were 96% and 89% for setup errors and severe anatomy changes, respectively. The average of RMS and maximum deviation of the cDVHs under the setup error was 0.5% and 1.5%, respectively for all structures considered. Similarly, the average of RMS and maximum deviations under the weekly anatomical change were 0.6% and 2.7%, respectively. Our results show that the fast dose approximation method was able to account for the density variation of the patient due to the setup and anatomical changes with acceptable accuracy while significantly improving the computation time.

  2. Differential dose contributions on total dose distribution of 125I brachytherapy source

    PubMed Central

    Camgöz, B.; Yeğin, G.; Kumru, M.N.

    2010-01-01

    This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 125I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically. PMID:24376927

  3. Detailed dose distribution prediction of Cf-252 brachytherapy source with boron loading dose enhancement.

    PubMed

    Ghassoun, J; Mostacci, D; Molinari, V; Jehouani, A

    2010-02-01

    The purpose of this work is to evaluate the dose rate distribution and to determine the boron effect on dose rate distribution for (252)Cf brachytherapy source. This study was carried out using a Monte Carlo simulation. To validate the Monte Carlo computer code, the dosimetric parameters were determined following the updated TG-43 formalism and compared with current literature data. The validated computer code was then applied to evaluate the neutron and photon dose distribution and to illustrate the boron loading effect. PMID:19889549

  4. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    PubMed

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses. PMID:27218294

  5. Measurements and calculations of electron dose distributions in circular materials

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zhou, Xinzhi; An, Zhu; Zhou, Youyi; Wang, Shiming

    2002-03-01

    In this paper, the absorbed dose distributions of 0.6-2.0 MeV electrons in circular compound materials have been calculated by the calculation method of electron energy deposition in multi-layer media based on bipartition model of electron transport. In addition, the blue cellophane film dosimeters have been used to measure the electron absorbed dose distributions in some circular objects. The calculation results are in agreement with some measurement data. The results indicate the usefulness of the calculation and measurement methods for electron dose monitoring and control in radiation processing of wire and cable.

  6. SU-E-T-517: Analytic Formalism to Compute in Real Time Dose Distributions Delivered by HDR Units

    SciTech Connect

    Pokhrel, S; Loyalka, S; Palaniswaamy, G; Rangaraj, D; Izaguirre, E

    2014-06-01

    Purpose: Develop an analytical algorithm to compute the dose delivered by Ir-192 dwell positions with high accuracy using the 3-dimensional (3D) dose distribution of an HDR source. Using our analytical function, the dose delivered by an HDR unit as treatment progresses can be determined using the actual delivered temporal and positional data of each individual dwell. Consequently, true delivered dose can be computed when each catheter becomes active. We hypothesize that the knowledge of such analytical formulation will allow developing HDR systems with a real time treatment evaluation tool to avoid mistreatments. Methods: In our analytic formulation, the dose is computed by using the full anisotropic function data of the TG 43 formalism with 3D ellipsoidal function. The discrepancy between the planned dose and the delivered dose is computed using an analytic perturbation method over the initial dose distribution. This methodology speeds up the computation because only changes in dose discrepancies originated by spatial and temporal deviations are computed. A dose difference map at the point of interest is obtained from these functions and this difference can be shown during treatment in real time to examine the treatment accuracy. Results: We determine the analytical solution and a perturbation function for the 3 translational 3 rotational, and 1D temporal errors in source distributions. The analytic formulation is a sequence of simple equations that can be processed in any modern computer in few seconds. Because computations are based in an analytical solution, small deviations of the dose when sub-millimeter positional changes occur can be detected. Conclusions: We formulated an analytical method to compute 4D dose distributions and dose differences based on an analytical solution and perturbations to the original dose. This method is highly accurate and can be.

  7. Los Alamos National Laboratory 4D Database

    SciTech Connect

    Atencio, Julian J.

    2014-05-02

    4D is an integrated development platform - a single product comprised of the components you need to create and distribute professional applications. You get a graphical design environment, SQL database, a programming language, integrated PHP execution, HTTP server, application server, executable generator, and much more. 4D offers multi-platform development and deployment, meaning whatever you create on a Mac can be used on Windows, and vice-versa. Beyond productive development, 4D is renowned for its great flexibility in maintenance and modification of existing applications, and its extreme ease of implementation in its numerous deployment options. Your professional application can be put into production more quickly, at a lower cost, and will always be instantly scalable. 4D makes it easy, whether you're looking to create a classic desktop application, a client-server system, a distributed solution for Web or mobile clients - or all of the above!

  8. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    SciTech Connect

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-09-15

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or

  9. Space Radiation Absorbed Dose Distribution in a Human Phantom Torso

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Yang, T.; Atwell, W.

    2000-01-01

    The flight of a human phantom torso with head that containing active dosimeters at 5 organ sites and 1400 TLDs distributed in 34 1" thick sections is described. Experimental dose rates and quality factors are compared with calculations for shielding distributions at the sites using the Computerized Anatomical Male (CAM) model. The measurements were complemented with those obtained from other instruments. These results have provided the most comprehensive data set to map the dose distribution inside a human and to assess the accuracy of radiation transport models and astronaut radiation risk.

  10. Neural network modelling of dose distribution and dose uniformity in the Tunisian Gamma Irradiator.

    PubMed

    Manai, K; Trabelsi, A

    2013-11-01

    In this paper an approach to model dose distributions, isodose curves and dose uniformity in the Tunisian Gamma Irradiation Facility using artificial neural networks (ANNs) are described. For this purpose, measurements were carried out at different points in the irradiation cell using polymethyl methacrylate dosemeters. The calculated and experimental results are compared and good agreement is observed showing that ANNs can be used as an efficient tool for modelling dose distribution in the gamma irradiation facility. Monte Carlo (MC) photon-transport simulation techniques have been used to evaluate the spatial dose distribution for extensive benchmarking. ANN approach appears to be a significant advance over the time-consuming MC or the less accurate regression methods for dose mapping. As a second application, a detailed dose mapping using two different product densities was carried out. The minimum and maximum dose locations and dose uniformity as a function of the irradiated volume for each product density were determined. Good agreement between ANN modelling and experimental results was achieved. PMID:23633649

  11. Space radiation absorbed dose distribution in a human phantom.

    PubMed

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  12. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  13. Measurement of three-dimensional radiation dose distributions using MRI.

    PubMed

    Prasad, P V; Nalcioglu, O; Rabbani, B

    1991-10-01

    Recent investigations have shown that nuclear magnetic resonance (NMR) can be used in conjunction with a suitable chemical dosimeter to estimate the dose from ionizing radiation (Gore et al., Phys Med. Biol. 29, 1189-1197, 1984). Based on this fact it was proposed that spatial dose distributions can be measured in gels infused with the chemical dosimeter using NMR imaging. There have been few such attempts and they provided only qualitative results. In this paper, we report results demonstrating the feasibility of obtaining quantitative dose distribution measurements by this technique. It is shown that quantitative dose distribution measurements necessitate the calculation of relaxation rate maps. We have determined that the spin-spin relaxation rate is a more sensitive parameter than the spin-lattice relaxation rate. It is also demonstrated that the addition of chemical sensitizers could improve the dose sensitivity of the measured NMR parameters. The two features characterizing a photon beam, depth-dose relationship, and beam profile as measured by this technique are in good agreement with the measurements using conventional methods, ionization chambers, and film dosimetry. PMID:1924718

  14. Computational determination of absorbed dose distributions from gamma ray sources

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanyu; Inanc, Feyzi

    2001-04-01

    A biomedical procedure known as brachytherapy involves insertion of many radioactive seeds into a sick gland for eliminating sick tissue. For such implementations, the spatial distribution of absorbed dose is very important. A simulation tool has been developed to determine the spatial distribution of absorbed dose in heterogeneous environments where the gamma ray source consists of many small internal radiation emitters. The computation is base on integral transport method and the computations are done in a parallel fashion. Preliminary results involving 137Cs and 125I sources surrounded by water and comparison of the results to the experimental and computational data available in the literature are presented.

  15. Dose distributions using kilovoltage x-rays and dose enhancement from iodine contrast agents

    NASA Astrophysics Data System (ADS)

    Mesa, A. V.; Norman, A.; Solberg, T. D.; Demarco, J. J.; Smathers, J. B.

    1999-08-01

    In x-ray phototherapy of brain tumours, the tumour is loaded with iodine and exposed to kilovoltage x-rays. Due to the high photoelectric cross sections of iodine, substantial photoelectric interactions occur. The flux of photoelectrons, characteristic x-rays and Auger electrons produce a localized dose enhancement. A modified computed tomography scanner, CTRx, can be used both for tumour localization and delivery of the dose enhancement therapy. Monte Carlo methods were employed to simulate the treatment of iodinated brain tumours with a CTRx. The calculated results reveal the effect of tumour iodine concentration on dose distribution, the degree of skull bone sparing with the application of multiple arcs, and the homogeneity of tumour dose distribution versus iodine concentration. A comparison with 10 MV stereotactic radiosurgery treatment shows the potential of CTRx treatment relative to conventional treatment modalities.

  16. Three-dimensional gamma analysis of dose distributions in individual structures for IMRT dose verification.

    PubMed

    Tomiyama, Yuuki; Araki, Fujio; Oono, Takeshi; Hioki, Kazunari

    2014-07-01

    Our purpose in this study was to implement three-dimensional (3D) gamma analysis for structures of interest such as the planning target volume (PTV) or clinical target volume (CTV), and organs at risk (OARs) for intensity-modulated radiation therapy (IMRT) dose verification. IMRT dose distributions for prostate and head and neck (HN) cancer patients were calculated with an analytical anisotropic algorithm in an Eclipse (Varian Medical Systems) treatment planning system (TPS) and by Monte Carlo (MC) simulation. The MC dose distributions were calculated with EGSnrc/BEAMnrc and DOSXYZnrc user codes under conditions identical to those for the TPS. The prescribed doses were 76 Gy/38 fractions with five-field IMRT for the prostate and 33 Gy/17 fractions with seven-field IMRT for the HN. TPS dose distributions were verified by the gamma passing rates for the whole calculated volume, PTV or CTV, and OARs by use of 3D gamma analysis with reference to MC dose distributions. The acceptance criteria for the 3D gamma analysis were 3/3 and 2 %/2 mm for a dose difference and a distance to agreement. The gamma passing rates in PTV and OARs for the prostate IMRT plan were close to 100 %. For the HN IMRT plan, the passing rates of 2 %/2 mm in CTV and OARs were substantially lower because inhomogeneous tissues such as bone and air in the HN are included in the calculation area. 3D gamma analysis for individual structures is useful for IMRT dose verification. PMID:24796955

  17. The delta envelope: A technique for dose distribution comparison

    SciTech Connect

    Blanpain, Baptiste; Mercier, David

    2009-03-15

    The {gamma} index is a tool that compares a dose distribution with a reference distribution by combining dose-difference and distance-to-agreement criteria. It has been widely used for ten years despite its high computational cost. This cost is due to both a search process for each reference point and the necessity to remove overestimations caused by the discrete nature of dose grids. The method proposed in this paper is much faster since it avoids both these problems. It consists in computing the {delta} envelope formed by the {gamma} ellipsoids around the points of the reference distribution. This {delta} envelope provides dose-difference tolerances that are then used to create new indices, called the {delta} indices, that provide useful information to interpret the deviations. Applied to both 1D and 2D test cases and compared to the {gamma} index, the {delta} indices proved to be very accurate and intuitive. Their computational efficiency was evaluated on a 3D case: the {delta} envelope can be computed in 8 s on a 250x250x50 grid. Moreover it can be precomputed if the reference dose is known in advance. Then the {delta} indices are obtained in less than 2 s.

  18. Dose distribution to spinal structures from intrathecally administered yttrium-90

    NASA Astrophysics Data System (ADS)

    Mardirossian, George; Hall, Michael; Montebello, Joseph; Stevens, Patrick

    2006-01-01

    Previous treatment of cerebrospinal fluid (CSF) malignancies by intrathecal administration of 131I-radiolabelled monoclonal antibodies has led to the assumption that more healthy tissue will be spared when a pure beta-emitter such as 90Y replaces 131I. The purpose of this study is to compare and quantitatively evaluate the dose distribution from 90Y to the CSF space and its surrounding spinal structures to 131I. A 3D digital phantom of a section of the T-spine was constructed from the visible human project series of images which included the spinal cord, central canal, subarachnoid space, pia mater, arachnoid, dura mater, vertebral bone marrow and intervertebral disc. Monte Carlo N-particle (MCNP4C) was used to model the 90Y and 131I radiation distribution. Images of the CSF compartment were convolved with the radiation distribution to determine the dose within the subarachnoid space and surrounding tissues. 90Y appears to be a suitable radionuclide in the treatment of central nervous system (CNS) malignancies when attached to mAb's and the dose distribution would be confined largely within the vertebral foramen. This choice may offer favourable dose improvement to the subarachnoid and surface of spinal cord over 131I in such an application.

  19. Determination of dose distributions and parameter sensitivity. Hanford Environmental Dose Reconstruction Project; dose code recovery activities; Calculation 005

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow`s milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1 as described in Calculation 001.

  20. The effect of respiratory cycle and radiation beam-on timing on the dose distribution of free-breathing breast treatment using dynamic IMRT

    SciTech Connect

    Ding Chuxiong; Li Xiang; Huq, M. Saiful; Saw, Cheng B.; Heron, Dwight E.; Yue, Ning J.

    2007-09-15

    In breast cancer treatment, intensity-modulated radiation therapy (IMRT) can be utilized to deliver more homogeneous dose to target tissues to minimize the cosmetic impact. We have investigated the effect of the respiratory cycle and radiation beam-on timing on the dose distribution in free-breathing dynamic breast IMRT treatment. Six patients with early stage cancer of the left breast were included in this study. A helical computed tomography (CT) scan was acquired for treatment planning. A four-dimensional computed tomography (4D CT) scan was obtained right after the helical CT scan with little or no setup uncertainty to simulate patient respiratory motion. After optimizing based on the helical CT scan, the sliding-window dynamic multileaf collimator (DMLC) leaf sequence was segmented into multiple sections that corresponded to various respiratory phases per respiratory cycle and radiation beam-on timing. The segmented DMLC leaf sections were grouped according to respiratory phases and superimposed over the radiation fields of corresponding 4D CT image set. Dose calculation was then performed for each phase of the 4D CT scan. The total dose distribution was computed by accumulating the contribution of dose from each phase to every voxel in the region of interest. This was tracked by a deformable registration program throughout all of the respiratory phases of the 4D CT scan. A dose heterogeneity index, defined as the ratio between (D{sub 20}-D{sub 80}) and the prescription dose, was introduced to numerically illustrate the impact of respiratory motion on the dose distribution of treatment volume. A respiratory cycle range of 4-8 s and randomly distributed beam-on timing were assigned to simulate the patient respiratory motion during the free-breathing treatment. The results showed that the respiratory cycle period and radiation beam-on timing presented limited impact on the target dose coverage and slightly increased the target dose heterogeneity. This motion

  1. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    SciTech Connect

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  2. Actively triggered 4d cone-beam CT acquisition

    SciTech Connect

    Fast, Martin F.; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  3. Spatial dose distribution in polymer pipes exposed to electron beam

    NASA Astrophysics Data System (ADS)

    Ponomarev, Alexander V.

    2016-01-01

    Non-uniform distribution of absorbed dose in cross-section of any polymeric pipe is caused by non-uniform thickness of polymer layer penetrated by unidirectional electron beam. The special computer program was created for a prompt estimation of dose non-uniformity in pipes subjected to an irradiation by 1-10 MeV electron beam. Irrespective of electron beam energy, the local doses absorbed in the bulk of a material can be calculated on the basis of the universal correlations offered in the work. Incomplete deceleration of electrons in shallow layers of a polymer was taken into account. Possibilities for wide variation of pipe sizes, polymer properties and irradiation modes were provided by the algorithm. Both the unilateral and multilateral irradiation can be simulated.

  4. Environmental dose rate distribution along the Romanian Black Sea shore

    NASA Astrophysics Data System (ADS)

    Duliu, Octavian G.; Margineanu, Romul M.; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Bercea, Sorin

    2013-04-01

    The radiometric investigation of the natural radioactivity dose rate distribution along the most important Romanian Black Sea tourist resorts showed values between 34 and 54 nSv/h, lower than the 59 nSv/h, the average background reported for the entire Romanian territory. At the same time we have noticed that the experimental dose rates monotonously increase northward, reaching a maximum in the vicinity of Vadu and Corbu beaches, both on the southern part of the Chituc sandbank. Concurrent gamma ray spectrometric measurements, performed at the Slanic-Prahova Low-Background Radiation Laboratory for sand samples collected from the same location, have shown that the natural radionuclides have a major contribution to background radiation while anthropogenic Cs-137 plays, 26 years after Chernobyl catastrophe, a negligible role. The experimental values of activity concentrations of all radionuclides present in sand samples were used to calculate the corresponding values of dose rates to which, by adding the contribution of cosmic rays, we have obtained values coincident, within experimental uncertainties, with the experimental ones. At the same time, on Chituc sandbank, a transverse profile of dose rate distribution revealed the presence of some local maxima, two to thee times higher then the average ones. Subsequent gamma ray spectrometry showed an increased content of natural radionuclides, most probably due to a local accumulation of heavy minerals, a common occurrence in the vicinity of river deltas, in our case the Danube Delta. In such a way, the monitoring of local dose rate distribution could be very useful not only in attesting the environmental quality of various resorts and beaches, but also, in signaling the presence of heavy minerals, with beneficent economic consequences.

  5. 4D dosimetry and its applications to pre-treatment quality control and real-time in vivo dosimetry of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Nordström, F.; Wetterstedt, S. af; Bäck, S. Å. J.

    2013-06-01

    In this study, a 4D dosimetry concept was developed. This concept included a method for calculation of 3D reference absorbed dose matrices at every control point of the delivery using a clinical treatment planning system (TPS). Further, the gamma evaluation method was extended to incorporate the 4th dimension of the TPS calculated dose distributions. The applications of the 4D dosimetry concept on pre-treatment quality control and real-time in vivo dosimetry were investigated.

  6. The Community of Family Circles (CFC) algorithm: a new inversion approach to obtaining self-consitent 4D thermal histories from large, spatially distributed thermochronological data sets

    NASA Astrophysics Data System (ADS)

    Beucher, R.; Brown, R. W.

    2013-12-01

    One of the most significant advances in interpreting thermochronological data is arguably our ability to extract information about the rate and trajectory of cooling over a range of temperatures, rather than having to rely on the veracity of the simplification of assuming a single closure temperature specified by a rate of monotonic cooling. Modern thermochronometry data, such as apatite fission track and (U-Th)/He analysis, are particularly good examples of data amenable to this treatment as acceptably well calibrated kinetic models now exist for both systems. With ever larger data sets of this type being generated over ever larger areas the prospect of inverting very large amounts of such data distributed spatially over large areas offers new possibilities for constraining the thermal and erosional histories over length scales approximating whole orogens and sub-continents. The challenge though is in how to properly deal with joint inversion of multiple samples in a self-consistent manner while also utilising all the available information contained in the data. We describe a new approach to this problem, called the Community of Family Circles (CFC) algorithm, which extracts information from spatially distributed apatite fission track ages (AFT) and track length distributions (TLD). The method is based on the rationale that the 3D geothermal field of the crust varies smoothly through space and time because of the efficiency of thermal diffusion. Our approach consists of seeking groups of spatially adjacent samples, or families, within a given circular radius for which a common thermal history is appropriate. The temperature offsets between individual time-temperature paths are determined relative to a low-pass filtered topographic surface, whose shape is assumed to mimic the shape of the isotherms in the partial annealing zone. This enables a single common thermal history to be shared, or interpolated, between the family members while still honouring the

  7. Selecting radiotherapy dose distributions by means of constrained optimization problems.

    PubMed

    Alfonso, J C L; Buttazzo, G; García-Archilla, B; Herrero, M A; Núñez, L

    2014-05-01

    The main steps in planning radiotherapy consist in selecting for any patient diagnosed with a solid tumor (i) a prescribed radiation dose on the tumor, (ii) bounds on the radiation side effects on nearby organs at risk and (iii) a fractionation scheme specifying the number and frequency of therapeutic sessions during treatment. The goal of any radiotherapy treatment is to deliver on the tumor a radiation dose as close as possible to that selected in (i), while at the same time conforming to the constraints prescribed in (ii). To this day, considerable uncertainties remain concerning the best manner in which such issues should be addressed. In particular, the choice of a prescription radiation dose is mostly based on clinical experience accumulated on the particular type of tumor considered, without any direct reference to quantitative radiobiological assessment. Interestingly, mathematical models for the effect of radiation on biological matter have existed for quite some time, and are widely acknowledged by clinicians. However, the difficulty to obtain accurate in vivo measurements of the radiobiological parameters involved has severely restricted their direct application in current clinical practice.In this work, we first propose a mathematical model to select radiation dose distributions as solutions (minimizers) of suitable variational problems, under the assumption that key radiobiological parameters for tumors and organs at risk involved are known. Second, by analyzing the dependence of such solutions on the parameters involved, we then discuss the manner in which the use of those minimizers can improve current decision-making processes to select clinical dosimetries when (as is generally the case) only partial information on model radiosensitivity parameters is available. A comparison of the proposed radiation dose distributions with those actually delivered in a number of clinical cases strongly suggests that solutions of our mathematical model can be

  8. 4D micro-CT using fast prospective gating

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  9. A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy

    SciTech Connect

    Roland, Teboh; Hales, Russell; McNutt, Todd; Wong, John; Simari, Patricio; Tryggestad, Erik

    2012-01-15

    resulting from the new approach was quantified. Results: Analysis of the 4D dose distributions from all five patients showed that while achieving tumor coverage comparable to the ITV approach, the new planning target definition resulted in reductions of lung V{sub 10}, V{sub 20}, and V{sub 30} of 6.3% {+-} 1.7%, 10.6% {+-} 3.9%, and 12.9% {+-} 5.5%, respectively, as well as reductions in mean lung dose, mean dose to the GTV-ring and mean heart dose of 8.8% {+-} 2.5%, 7.2% {+-} 2.5%, and 10.6% {+-} 3.6%, respectively. Conclusions: The authors have developed a simple and systematic approach to generate a 4D-interpolated balanced planning target volume that implicitly incorporates the dynamics of respiratory-organ motion without requiring 4D-dose computation or optimization. Preliminary results based on 4D-CT data of five previously treated lung patients showed that this new planning target approach may improve normal tissue sparing without sacrificing tumor coverage.

  10. Dose distribution in a human phantom onboard aircraft

    NASA Astrophysics Data System (ADS)

    Berger, T.; Meier, M.; Reitz, G.; Schridde, M.

    The exposure of aircrew personnel to cosmic radiation has been considered as occupational exposure in the European Union since the European Council Directive 96 29 EURATOM became effective on May 13 1996 In Germany the corresponding safety standards for aircrew which include dose assessment among other things are regulated by the German Radiation Protection Ordinance which implemented the European law and was amended in 2001 The radiation exposure of most German aircrew is calculated by the DLR Institute of Aerospace Medicine in Cologne applying the calculation program EPCARD in the framework of the aircrew dose determination system CALVADOS underline CAL culated and underline V erified underline A viation underline DOS imetry Beside the operational dose calculations DLR performs measuring flights applying active e g TEPC DOSTEL etc and passive TLDs bubble detectors radiation detectors to verify the calculation codes Within these activities the project BODO underline BO dy underline DO simetry comprised a long term exposure of a RANDO copyright anthropomorphic phantom to measure for the first time the skin and the depth dose distribution inside a simulated human torso at aviation altitudes The torso was flown for three months from mid of July to mid of October 2004 onboard a Lufthansa Cargo aircraft This torso made up of 27 polyurethane slices with different densities -- simulating tissue and organs -- was equipped with passive thermoluminescence detectors TLDs of different types namely TLD 600 6 LiF Mg

  11. Joint pharmacy/nursing procedure for monitoring unit dose distribution and unadministered doses.

    PubMed

    Dahl, F C; Conway, M F; Henderson, C M

    1986-09-01

    This article describes a procedure that uses a multidisciplinary approach to quality assurance in a unit-dose distribution system. The procedure described here uses an assigned nurse and one member of the pharmacy staff (pharmacist, technician/intern) on each nursing unit to check the physical contents of medication cassettes as well as compare pharmacy patient profiles with nursing medication administration records. In examining data from a 184 calendar day period, there was an average of 822 doses of medication per day, including IV admixtures and piggybacks, checked using this system. The time spent in the checking process was approximately 40 minutes per day for each of the three pharmacy staff members performing the check. The average daily census during this period was 60 patients, located on two medical/surgical nursing units, a combined short-procedure unit/detox unit, and an eight-bed critical care unit. The procedure presented also includes a mechanism for the nursing staff to easily document unadministered doses in a manner that provides the pharmacy department with this information. The procedure described makes it extremely difficult for certain types of medication errors to extend beyond a 24-hour period. It also controls missing doses. We found during the 184-day period that only 12 doses were reported missing from the cassettes after the check process. The low number of missing doses reported can be attributed to the fact that the assigned nurse and member of the pharmacy staff verify the presence of a 24-hour supply of medication. PMID:10278987

  12. Improvement of depth dose distribution using multiple-field irradiation in boron neutron capture therapy.

    PubMed

    Fujimoto, N; Tanaka, H; Sakurai, Y; Takata, T; Kondo, N; Narabayashi, M; Nakagawa, Y; Watanabe, T; Kinashi, Y; Masunaga, S; Maruhashi, A; Ono, K; Suzuki, M

    2015-12-01

    It is important that improvements are made to depth dose distribution in boron neutron capture therapy, because the neutrons do not reach the innermost regions of the human body. Here, we evaluated the dose distribution obtained using multiple-field irradiation in simulation. From a dose volume histogram analysis, it was found that the mean and minimum tumor doses were increased using two-field irradiation, because of improved dose distribution for deeper-sited tumors. PMID:26282566

  13. Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers

    SciTech Connect

    Chan, Mark K. H.; Kwong, Dora L. W.; Ng, Sherry C. Y.; Tong, Anthony S. M.; Tam, Eric K. W.

    2013-04-15

    Purpose: Due to the complexity of 4D target tracking radiotherapy, the accuracy of this treatment strategy should be experimentally validated against established standard 3D technique. This work compared the accuracy of 3D and 4D dose calculations in respiration tracking stereotactic body radiotherapy (SBRT). Methods: Using the 4D planning module of the CyberKnife treatment planning system, treatment plans for a moving target and a static off-target cord structure were created on different four-dimensional computed tomography (4D-CT) datasets of a thorax phantom moving in different ranges. The 4D planning system used B-splines deformable image registrations (DIR) to accumulate dose distributions calculated on different breathing geometries, each corresponding to a static 3D-CT image of the 4D-CT dataset, onto a reference image to compose a 4D dose distribution. For each motion, 4D optimization was performed to generate a 4D treatment plan of the moving target. For comparison with standard 3D planning, each 4D plan was copied to the reference end-exhale images and a standard 3D dose calculation was followed. Treatment plans of the off-target structure were first obtained by standard 3D optimization on the end-exhale images. Subsequently, they were applied to recalculate the 4D dose distributions using DIRs. All dose distributions that were initially obtained using the ray-tracing algorithm with equivalent path-length heterogeneity correction (3D{sub EPL} and 4D{sub EPL}) were recalculated by a Monte Carlo algorithm (3D{sub MC} and 4D{sub MC}) to further investigate the effects of dose calculation algorithms. The calculated 3D{sub EPL}, 3D{sub MC}, 4D{sub EPL}, and 4D{sub MC} dose distributions were compared to measurements by Gafchromic EBT2 films in the axial and coronal planes of the moving target object, and the coronal plane for the static off-target object based on the {gamma} metric at 5%/3mm criteria ({gamma}{sub 5%/3mm}). Treatment plans were considered

  14. R4D on Ramp

    NASA Technical Reports Server (NTRS)

    1956-01-01

    This Photograph taken in 1956 shows the first of three R4D Skytrain aircraft on the ramp behind the NACA High-Speed Flight Station. Note the designation 'United States NACA' on the side of the aircraft. NACA stood for the National Advisory Committee for Aeronautics, which evolved into the National Aeronautics and Space Administration (NASA) in 1958. The R4D Skytrain was one of the early workhorses for NACA and NASA at Edwards Air Force Base, California, from 1952 to 1984. Designated the R4D by the U.S. Navy, the aircraft was called the C-47 by the U.S. Army and U.S. Air Force and the DC-3 by its builder, Douglas Aircraft. Nearly everyone called it the 'Gooney Bird.' In 1962, Congress consolidated the military-service designations and called all of them the C-47. After that date, the R4D at NASA's Flight Research Center (itself redesignated the Dryden Flight Research Center in 1976) was properly called a C-47. Over the 32 years it was used at Edwards, three different R4D/C-47s were used to shuttle personnel and equipment between NACA/NASA Centers and test locations throughout the country and for other purposes. One purpose was landing on 'dry' lakebeds used as alternate landing sites for the X-15, to determine whether their surfaces were hard (dry) enough for the X-15 to land on in case an emergency occurred after its launch and before it could reach Rogers Dry Lake at Edwards Air Force Base. The R4D/C-47 served a variety of needs, including serving as the first air-tow vehicle for the M2-F1 lifting body (which was built of mahogany plywood). The C-47 (as it was then called) was used for 77 tows before the M2-F1 was retired for more advanced lifting bodies that were dropped from the NASA B-52 'Mothership.' The R4D also served as a research aircraft. It was used to conduct early research on wing-tip-vortex flow visualization as well as checking out the NASA Uplink Control System. The first Gooney Bird was at the NACA High-Speed Flight Research Station (now the Dryden

  15. Dose Distribution Calculation in Skin Cancer Treatment Using Leipzig Applicator

    NASA Astrophysics Data System (ADS)

    Mowlawi, Ali Asghar; Yazdani, Majed

    The combination of 192Ir seed with the Leipzig applicators is used in a considerable number of clinical trials for skin cancer treatment. As is known, the beneficial effects of ionizing radiation for tumor treatment depends on the dosimetry accuracy. Nowadays, dosimetry calculations are supported by the characteristics provided by the manufacturer, which have been obtained from measurements with an ionization chamber in a phantom. Despite their benefit, the experimental data involves errors related to the positioning, energy, and angular dependence of the detectors. Thus, in order to get a detailed and more accurate dosimetry, the Monte Carlo code MCNP4C2 — Monte Carlo Neutron Particle, 4C2 version — has been employed to analyze the dose distribution in depth and at the surface in the skin cancer treatment using Leipzig applicators. On the other hand, some different measurements have been taken to validate the method and compare results. The results for this material of phantom (the skin with 0.5 cm thick over infinite soft tissue) can be used in treatment planning systems and also for computation of model dependent parameters like anisotropy dose function.

  16. Non-uniform dose distributions in cranial radiation therapy

    NASA Astrophysics Data System (ADS)

    Bender, Edward T.

    Radiation treatments are often delivered to patients with brain metastases. For those patients who receive radiation to the entire brain, there is a risk of long-term neuro-cognitive side effects, which may be due to damage to the hippocampus. In clinical MRI and CT scans it can be difficult to identify the hippocampus, but once identified it can be partially spared from radiation dose. Using deformable image registration we demonstrate a semi-automatic technique for obtaining an estimated location of this structure in a clinical MRI or CT scan. Deformable image registration is a useful tool in other areas such as adaptive radiotherapy, where the radiation oncology team monitors patients during the course of treatment and adjusts the radiation treatments if necessary when the patient anatomy changes. Deformable image registration is used in this setting, but there is a considerable level of uncertainty. This work represents one of many possible approaches at investigating the nature of these uncertainties utilizing consistency metrics. We will show that metrics such as the inverse consistency error correlate with actual registration uncertainties. Specifically relating to brain metastases, this work investigates where in the brain metastases are likely to form, and how the primary cancer site is related. We will show that the cerebellum is at high risk for metastases and that non-uniform dose distributions may be advantageous when delivering prophylactic cranial irradiation for patients with small cell lung cancer in complete remission.

  17. Scaling neutron absorbed dose distributions from one medium to another

    SciTech Connect

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1982-11-01

    Central axis depth dose (CADD) and off-axis absorbed dose ratio (OAR) measurements were made in water, muscle and whole skeletal bone TE-solutions, mineral oil and glycerin with a clinical neutron therapy beam. These measurements show that, for a given neutron beam quality and field size, there is a universal CADD distribution at infinity if the depth in the phantom is expressed in terms of appropriate scaling lengths. These are essentially the kerma-weighted neutron mean free paths in the media. The method used in ICRU No. 26 to scale the CADD by the ratio of the densities is shown to give incorrect results. the OAR's measured in different media at depths proportional to the respective mean free paths were also found to be independent of the media to a good approximation. It is recommended that relative CADD and OAR measurements be performed in water because of its universality and convenience. A table of calculated scaling lengths is given for various neutron energy spectra and for various tissues and materials of practical importance in neutron dosimetry.

  18. 4D image reconstruction for emission tomography

    NASA Astrophysics Data System (ADS)

    Reader, Andrew J.; Verhaeghe, Jeroen

    2014-11-01

    An overview of the theory of 4D image reconstruction for emission tomography is given along with a review of the current state of the art, covering both positron emission tomography and single photon emission computed tomography (SPECT). By viewing 4D image reconstruction as a matter of either linear or non-linear parameter estimation for a set of spatiotemporal functions chosen to approximately represent the radiotracer distribution, the areas of so-called ‘fully 4D’ image reconstruction and ‘direct kinetic parameter estimation’ are unified within a common framework. Many choices of linear and non-linear parameterization of these functions are considered (including the important case where the parameters have direct biological meaning), along with a review of the algorithms which are able to estimate these often non-linear parameters from emission tomography data. The other crucial components to image reconstruction (the objective function, the system model and the raw data format) are also covered, but in less detail due to the relatively straightforward extension from their corresponding components in conventional 3D image reconstruction. The key unifying concept is that maximum likelihood or maximum a posteriori (MAP) estimation of either linear or non-linear model parameters can be achieved in image space after carrying out a conventional expectation maximization (EM) update of the dynamic image series, using a Kullback-Leibler distance metric (comparing the modeled image values with the EM image values), to optimize the desired parameters. For MAP, an image-space penalty for regularization purposes is required. The benefits of 4D and direct reconstruction reported in the literature are reviewed, and furthermore demonstrated with simple simulation examples. It is clear that the future of reconstructing dynamic or functional emission tomography images, which often exhibit high levels of spatially correlated noise, should ideally exploit these 4D

  19. Generation and use of measurement-based 3-D dose distributions for 3-D dose calculation verification.

    PubMed

    Stern, R L; Fraass, B A; Gerhardsson, A; McShan, D L; Lam, K L

    1992-01-01

    A 3-D radiation therapy treatment planning system calculates dose to an entire volume of points and therefore requires a 3-D distribution of measured dose values for quality assurance and dose calculation verification. To measure such a volumetric distribution with a scanning ion chamber is prohibitively time consuming. A method is presented for the generation of a 3-D grid of dose values based on beam's-eye-view (BEV) film dosimetry. For each field configuration of interest, a set of BEV films at different depths is obtained and digitized, and the optical densities are converted to dose. To reduce inaccuracies associated with film measurement of megavoltage photon depth doses, doses on the different planes are normalized using an ion-chamber measurement of the depth dose. A 3-D grid of dose values is created by interpolation between BEV planes along divergent beam rays. This matrix of measurement-based dose values can then be compared to calculations over the entire volume of interest. This method is demonstrated for three different field configurations. Accuracy of the film-measured dose values is determined by 1-D and 2-D comparisons with ion chamber measurements. Film and ion chamber measurements agree within 2% in the central field regions and within 2.0 mm in the penumbral regions. PMID:1620042

  20. Dose distributions in regions containing beta sources: Uniform spherical source regions in homogeneous media

    SciTech Connect

    Werner, B.L.; Rahman, M.; Salk, W.N. ); Kwok, C.S. )

    1991-11-01

    The energy-averaged transport model for the calculation of dose rate distributions is applied to uniform, spherical source distributions in homogeneous media for radii smaller than the electron range. The model agrees well with Monte Carlo based calculations for source distributions with radii greater than half the continuous slowing down approximation range. The dose rate distributions can be written in the medical internal radiation dose (MIRD) formalism.

  1. A linear programming model for optimizing HDR brachytherapy dose distributions with respect to mean dose in the DVH-tail

    SciTech Connect

    Holm, Åsa; Larsson, Torbjörn; Tedgren, Åsa Carlsson

    2013-08-15

    Purpose: Recent research has shown that the optimization model hitherto used in high-dose-rate (HDR) brachytherapy corresponds weakly to the dosimetric indices used to evaluate the quality of a dose distribution. Although alternative models that explicitly include such dosimetric indices have been presented, the inclusion of the dosimetric indices explicitly yields intractable models. The purpose of this paper is to develop a model for optimizing dosimetric indices that is easier to solve than those proposed earlier.Methods: In this paper, the authors present an alternative approach for optimizing dose distributions for HDR brachytherapy where dosimetric indices are taken into account through surrogates based on the conditional value-at-risk concept. This yields a linear optimization model that is easy to solve, and has the advantage that the constraints are easy to interpret and modify to obtain satisfactory dose distributions.Results: The authors show by experimental comparisons, carried out retrospectively for a set of prostate cancer patients, that their proposed model corresponds well with constraining dosimetric indices. All modifications of the parameters in the authors' model yield the expected result. The dose distributions generated are also comparable to those generated by the standard model with respect to the dosimetric indices that are used for evaluating quality.Conclusions: The authors' new model is a viable surrogate to optimizing dosimetric indices and quickly and easily yields high quality dose distributions.

  2. Dosimetry of dose distributions in radiotherapy of patients with surgical implants

    NASA Astrophysics Data System (ADS)

    Brożyna, Bogusław; Chełmiński, Krzysztof; Bulski, Wojciech; Giżyńska, Marta; Grochowska, Paulina; Walewska, Agnieszka; Zalewska, Marta; Kawecki, Andrzej; Krajewski, Romuald

    2014-11-01

    The investigation was performed in order to evaluate the use of Gafchromic EBT films for measurements of dose distributions created during radiotherapy in tissues surrounding titanium or resorbable implants used for joining and consolidating facial bones. Inhomogeneous dose distributions at implant-tissue interfaces can be the reason of normal tissue complications observed in radiotherapy patients after surgery with implants. The dose measured at a depth of 2.5 cm on contact surfaces, proximal and distal to the beam source, between the titanium implant and the phantom material was 109% and 92% respectively of the reference dose measured in a homogeneous phantom. For the resorbable implants the doses measured on the proximal and the distal contact surfaces were 102% and 101% respectively of the reference dose. The resorbable implants affect the homogeneity of dose distribution at a significantly lesser degree than the titanium implants. Gafchromic EBT films allowed for precise dose distribution measurements at the contact surfaces between tissue equivalent materials and implants. We measured doses at contact surfaces between titanium implants and RW3 phantom. We measured doses at contact surfaces between resorbable implants and RW3 phantom. We compared doses measured on contact surfaces and doses in homogeneous phantom. Doses at contact surfaces between RW3 phantom and titanium were distorted about 8-9%. Doses at RW3 phantom and resorbable implant contact surfaces were distorted about 2%.

  3. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    PubMed

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-01-01

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors. PMID:21587191

  4. Effect of tissue inhomogeneities on dose distributions from Cf-252 brachytherapy source.

    PubMed

    Ghassoun, J

    2013-01-01

    The Monte Carlo method was used to determine the effect of tissue inhomogeneities on dose distribution from a Cf-252 brachytherapy source. Neutron and gamma-ray fluences, energy spectra and dose rate distributions were determined in both homogenous and inhomogeneous phantoms. Simulations were performed using the MCNP5 code. Obtained results were compared with experimentally measured values published in literature. Results showed a significant change in neutron dose rate distributions in presence of heterogeneities. However, their effect on gamma rays dose distribution is minimal. PMID:23069196

  5. Modeling multicellular response to nonuniform distributions of radioactivity: differences in cellular response to self-dose and cross-dose.

    PubMed

    Howell, Roger W; Neti, Prasad V S V

    2005-02-01

    Radiopharmaceuticals are distributed nonuniformly in tissue. While distributions of radioactivity often appear uniform at the organ level, in fact, microscopic examination reveals that only a fraction of the cells in tissue are labeled. Labeled cells and unlabeled cells often receive different absorbed doses depending on the extent of the nonuniformity and the characteristics of the emitted radiations. The labeled cells receive an absorbed dose from radioactivity within the cell (self-dose) as well as an absorbed dose from radioactivity in surrounding labeled cells (cross-dose). Unlabeled cells receive only a cross-dose. In recent communications, a multicellular cluster model was used to investigate the lethality of microscopic nonuniform distributions of 131I iododeoxyuridine (131IdU). For a given mean absorbed dose to the tissue, the dose response depended on the percentage of cells that were labeled. Specifically, when 1, 10 and 100% of the cells were labeled, a D37 of 6.4, 5.7 and 4.5 Gy, respectively, was observed. The reason for these differences was recently traced to differences in the cellular response to the self- and cross-doses delivered by 131IdU. Systematic isolation of the effects of self-dose resulted in a D37 of 1.2 +/- 0.3 Gy. The cross-dose component yielded a D37 of 6.4 +/- 0.5 Gy. In the present work, the overall survival of multicellular clusters containing 1, 10 and 100% labeled cells is modeled using a semi-empirical approach that uses the mean lethal self- and cross-doses and the fraction of cells labeled. There is excellent agreement between the theoretical model and the experimental data when the surviving fraction is greater than 1%. Therefore, when the distribution of 131I in tissue is nonuniform at the microscopic level, and the cellular response to self- and cross-doses differs, multicellular dosimetry can be used successfully to predict biological response, whereas the mean absorbed dose fails in this regard. PMID:15658898

  6. Radiation dose distributions due to sudden ejection of cobalt device.

    PubMed

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. PMID:27423021

  7. Distribution of exposure concentrations and doses for constituents of environmental tobacco smoke

    SciTech Connect

    LaKind, J.S.; Ginevan, M.E.; Naiman, D.Q.; James, A.C.; Jenkins, R.A.; Dourson, M.L.; Felter, S.P.; Graves, C.G.; Tardiff, R.G.

    1999-06-01

    The ultimate goal of the research reported in this series of three articles is to derive distributions of doses of selected environmental tobacco smoke (ETS)-related chemicals for nonsmoking workers. This analysis uses data from the 16-City Study collected with personal monitors over the course of one workday in workplaces where smoking occurred. In this article, the authors describe distributions of ETS chemical concentrations and the characteristics of those distributions for the workplace exposure. Next, they present population parameters relevant for estimating dose distributions and the methods used for estimating those dose distributions. Finally, they derive distributions of doses of selected ETS-related constituents obtained in the workplace for people in smoking work environments. Estimating dose distributions provided information beyond the usual point estimate of dose and showed that the preponderance of individuals exposed to ETS in the workplace were exposed at the low end of the dose distribution curve. The results of this analysis include estimations of hourly maxima and time-weighted average (TWA) doses of nicotine from workplace exposures to ETS and doses derived from modeled lung burdens of ultraviolet-absorbing particulate matter (UVPM) and solanesol resulting from workplace exposures to ETS (extrapolated from 1 day to 1 year).

  8. Estimation of radiation-induced cancer from three-dimensional dose distributions: Concept of organ equivalent dose

    SciTech Connect

    Schneider, Uwe . E-mail: uwe.schneider@psi.ch; Zwahlen, Daniel; Ross, Dieter; Kaser-Hotz, Barbara

    2005-04-01

    Purpose: Estimates of secondary cancer risk after radiotherapy are becoming more important for comparative treatment planning. Modern treatment planning systems provide accurate three-dimensional dose distributions for each individual patient. These data open up new possibilities for more precise estimates of secondary cancer incidence rates in the irradiated organs. We report a new method to estimate organ-specific radiation-induced cancer incidence rates. The concept of an organ equivalent dose (OED) for radiation-induced cancer assumes that any two dose distributions in an organ are equivalent if they cause the same radiation-induced cancer incidence. Methods and Materials: The two operational parameters of the OED concept are the organ-specific cancer incidence rate at low doses, which is taken from the data of the atomic bomb survivors, and cell sterilization at higher doses. The effect of cell sterilization in various organs was estimated by analyzing the secondary cancer incidence data of patients with Hodgkin's disease who were treated with radiotherapy in between 1962 and 1993. The radiotherapy plans used at the time the patients had been treated were reconstructed on a fully segmented whole body CT scan. The dose distributions were calculated in individual organs for which cancer incidence data were available. The model parameter that described cell sterilization was obtained by analyzing the dose and cancer incidence rates for the individual organs. Results: We found organ-specific cell radiosensitivities that varied from 0.017 for the mouth and pharynx up to 1.592 for the bladder. Using the two model parameters (organ-specific cancer incidence rate and the parameter characterizing cell sterilization), the OED concept can be applied to any three-dimensional dose distribution to analyze cancer incidence. Conclusion: We believe that the concept of OED presented in this investigation represents a first step in assessing the potential risk of secondary

  9. WE-A-17A-12: The Influence of Eye Plaque Design On Dose Distributions and Dose- Volume Histograms

    SciTech Connect

    Aryal, P; Molloy, JA; Rivard, MJ

    2014-06-15

    Purpose: To investigate the effect of slot design of the model EP917 plaque on dose distributions and dose-volume histograms (DVHs). Methods: The dimensions and orientation of the slots in EP917 plaques were measured. In the MCNP5 radiation simulation geometry, dose distributions on orthogonal planes and DVHs for a tumor and sclera were generated for comparisons. 27 slot designs and 13 plaques were evaluated and compared with the published literature and the Plaque Simulator clinical treatment planning system. Results: The dosimetric effect of the gold backing composition and mass density was < 3%. Slot depth, width, and length changed the central axis (CAX) dose distributions by < 1% per 0.1 mm in design variation. Seed shifts in the slot towards the eye and shifts of the {sup 125} I-coated Ag rod within the capsule had the greatest impact on CAX dose distribution, increasing by 14%, 9%, 4%, and 2.5% at 1, 2, 5, and 10 mm, respectively, from the inner sclera. Along the CAX, dose from the full plaque geometry using the measured slot design was 3.4% ± 2.3% higher than the manufacturer-provided geometry. D{sub 10} for the simulated tumor, inner sclera, and outer sclera for the measured plaque was also higher, but 9%, 10%, and 20%, respectively. In comparison to the measured plaque design, a theoretical plaque having narrow and deep slots delivered 30%, 37%, and 62% lower D{sub 10} doses to the tumor, inner sclera, and outer sclera, respectively. CAX doses at −1, 0, 1, and 2 mm were also lower by a factor of 2.6, 1.4, 1.23, and 1.13, respectively. Conclusion: The study identified substantial sensitivity of the EP917 plaque dose distributions to slot design. However, it did not identify substantial dosimetric variations based on radionuclide choice ({sup 125}I, {sup 103}Pd, or {sup 131}Cs). COMS plaques provided lower scleral doses with similar tumor dose coverage.

  10. Curtailing patient-specific IMRT QA procedures from 2D dose error distribution.

    PubMed

    Kurosu, Keita; Sumida, Iori; Mizuno, Hirokazu; Otani, Yuki; Oda, Michio; Isohashi, Fumiaki; Seo, Yuji; Suzuki, Osamu; Ogawa, Kazuhiko

    2016-06-01

    A patient-specific quality assurance (QA) test is conducted to verify the accuracy of dose delivery. It generally consists of three verification processes: the absolute point dose difference, the planar dose differences at each gantry angle, and the planar dose differences by 3D composite irradiation. However, this imposes a substantial workload on medical physicists. The objective of this study was to determine whether our novel method that predicts the 3D delivered dose allows certain patient-specific IMRT QAs to be curtailed. The object was IMRT QA for the pelvic region with regard to point dose and composite planar dose differences. We compared measured doses, doses calculated in the treatment planning system, and doses predicted by in-house software. The 3D predicted dose was reconstructed from the per-field measurement by incorporating the relative dose error distribution into the original dose grid of each beam. All point dose differences between the measured and the calculated dose were within ±3%, whereas 93.3% of them between the predicted and the calculated dose were within ±3%. As for planar dose differences, the gamma passing rates between the calculated and the predicted dose were higher than those between the calculated and the measured dose. Comparison and statistical analysis revealed a correlation between the predicted and the measured dose with regard to both point dose and planar dose differences. We concluded that the prediction-based approach is an accurate substitute for the conventional measurement-based approach in IMRT QA for the pelvic region. Our novel approach will help medical physicists save time on IMRT QA. PMID:26661854

  11. Curtailing patient-specific IMRT QA procedures from 2D dose error distribution

    PubMed Central

    Kurosu, Keita; Sumida, Iori; Mizuno, Hirokazu; Otani, Yuki; Oda, Michio; Isohashi, Fumiaki; Seo, Yuji; Suzuki, Osamu; Ogawa, Kazuhiko

    2016-01-01

    A patient-specific quality assurance (QA) test is conducted to verify the accuracy of dose delivery. It generally consists of three verification processes: the absolute point dose difference, the planar dose differences at each gantry angle, and the planar dose differences by 3D composite irradiation. However, this imposes a substantial workload on medical physicists. The objective of this study was to determine whether our novel method that predicts the 3D delivered dose allows certain patient-specific IMRT QAs to be curtailed. The object was IMRT QA for the pelvic region with regard to point dose and composite planar dose differences. We compared measured doses, doses calculated in the treatment planning system, and doses predicted by in-house software. The 3D predicted dose was reconstructed from the per-field measurement by incorporating the relative dose error distribution into the original dose grid of each beam. All point dose differences between the measured and the calculated dose were within ±3%, whereas 93.3% of them between the predicted and the calculated dose were within ±3%. As for planar dose differences, the gamma passing rates between the calculated and the predicted dose were higher than those between the calculated and the measured dose. Comparison and statistical analysis revealed a correlation between the predicted and the measured dose with regard to both point dose and planar dose differences. We concluded that the prediction-based approach is an accurate substitute for the conventional measurement-based approach in IMRT QA for the pelvic region. Our novel approach will help medical physicists save time on IMRT QA. PMID:26661854

  12. Optimization of Dose Distribution for the System of Linear Accelerator-Based Stereotactic Radiosurgery.

    NASA Astrophysics Data System (ADS)

    Suh, Tae-Suk

    The work suggested in this paper addresses a method for obtaining an optimal dose distribution for stereotactic radiosurgery. Since stereotactic radiosurgery utilizes multiple noncoplanar arcs and a three-dimensional dose evaluation technique, many beam parameters and complex optimization criteria are included in the dose optimization. Consequently, a lengthy computation time is required to optimize even the simplest case by a trial and error method. The basic approach presented here is to use both an analytical and an experimental optimization to minimize the dose to critical organs while maintaining a dose shaped to the target. The experimental approach is based on shaping the target volumes using multiple isocenters from dose experience, or on field shaping using a beam's eye view technique. The analytical approach is to adapt computer -aided design optimization to find optimum parameters automatically. Three-dimensional approximate dose models are developed to simulate the exact dose model using a spherical or cylindrical coordinate system. Optimum parameters are found much faster with the use of computer-aided design optimization techniques. The implementation of computer-aided design algorithms with the approximate dose model and the application of the algorithms to several cases are discussed. It is shown that the approximate dose model gives dose distributions similar to those of the exact dose model, which makes the approximate dose model an attractive alternative to the exact dose model, and much more efficient in terms of computer -aided design and visual optimization.

  13. Comparison of dose distributions for Hounsfield number conversion methods in GEANT4

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Dong; Kim, Byung Yong; Kim, Eng Chan; Yun, Sang Mo; Kang, Jeong Ku; Kim, Sung Kyu

    2014-06-01

    The conversion of patient computed tomography (CT) data to voxel phantoms is essential for CT-based Monte Carlo (MC) dose calculations, and incorrect assignments of materials and mass densities can lead to large errors in dose distributions. We investigated the effects of mass density and material assignments on GEANT4-based photon dose calculations. Three material conversion methods and four density conversion methods were compared for a lung tumor case. The dose calculations for 6-MV photon beams with a field size of 10 × 10 cm2 were performed using a 0.5 × 0.5 × 0.5 cm3 voxel with 1.2 × 109 histories. The material conversion methods led to different material assignment percentages in converted voxel regions. The GEANT4 example and the modified Schneider material conversion methods showed large local dose differences relative to the BEAMnrc default method for lung and other tissues. For mass density conversion methods when only water was used, our results showed only slight dose differences. Gaussian-like distributions, with mean values close to zero, were obtained when the reference method was compared with the other methods. The maximum dose difference of ˜2% indicated that the dose distributions agreed relatively well. Material assignment methods probably have more significant impacts on dose distributions than mass density assignment methods. The study confirms that material assignment methods cause significant dose differences in GEANT4-based photon dose calculations.

  14. Tomotherapy dose distribution verification using MAGIC-f polymer gel dosimetry

    SciTech Connect

    Pavoni, J. F.; Pike, T. L.; Snow, J.; DeWerd, L.; Baffa, O.

    2012-05-15

    Purpose: This paper presents the application of MAGIC-f gel in a three-dimensional dose distribution measurement and its ability to accurately measure the dose distribution from a tomotherapy unit. Methods: A prostate intensity-modulated radiation therapy (IMRT) irradiation was simulated in the gel phantom and the treatment was delivered by a TomoTherapy equipment. Dose distribution was evaluated by the R2 distribution measured in magnetic resonance imaging. Results: A high similarity was found by overlapping of isodoses of the dose distribution measured with the gel and expected by the treatment planning system (TPS). Another analysis was done by comparing the relative absorbed dose profiles in the measured and in the expected dose distributions extracted along indicated lines of the volume and the results were also in agreement. The gamma index analysis was also applied to the data and a high pass rate was achieved (88.4% for analysis using 3%/3 mm and of 96.5% using 4%/4 mm). The real three-dimensional analysis compared the dose-volume histograms measured for the planning volumes and expected by the treatment planning, being the results also in good agreement by the overlapping of the curves. Conclusions: These results show that MAGIC-f gel is a promise for tridimensional dose distribution measurements.

  15. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    SciTech Connect

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J. -J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, Steven J.; Horowitz, L.; Lamarque, J.-F.; Lee, Y. H.; Naik, Vaishali; Nagashima, T.; Shindell, Drew; Skeie, R. B.

    2013-05-17

    showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003–2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology.We extend the 2003–2009 reconstruction to the past up to 1979 using the 2003–2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosolclimate studies.

  16. A 4-D climatology (1979-2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

    NASA Astrophysics Data System (ADS)

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J. J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, S.; Horowitz, L. W.; Lamarque, J. F.; Lee, Y. H.; Naik, V.; Nagashima, T.; Shindell, D.; Skeie, R.

    2013-05-01

    aerosols showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003-2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology. We extend the 2003-2009 reconstruction to the past up to 1979 using the 2003-2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.

  17. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    NASA Technical Reports Server (NTRS)

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I; Morcrette, J. J.; Solomon, F.; Szopa, S.; Dulac, F; Collins, W.; Ghan, S.; Horowitz, L. W.; Lamarque, J. F.; Lee, Y. H.; Naik, V.; Nagashima, T.; Shindell, D.; Skeie, R.

    2013-01-01

    aerosols showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003-2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology.We extend the 2003-2009 reconstruction to the past up to 1979 using the 2003-2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.

  18. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    SciTech Connect

    Purwaningsih, Anik

    2014-09-30

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  19. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    NASA Astrophysics Data System (ADS)

    Purwaningsih, Anik

    2014-09-01

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  20. Evaluation of dose distributions in gamma chamber using glass plate detector

    PubMed Central

    Narayan, Pradeep; Vaijapurkar, S. G.; Bhatnagar, P. K.

    2008-01-01

    A commercial glass plate of thickness 1.75 mm has been utilized for evaluation of dose distributions inside the irradiation volume of gamma chamber using optical densitometry technique. The glass plate showed linear response in the dose range 0.10 Kilo Gray (kGy) to 10 kGy of cobalt-60 gamma radiation with optical sensitivity 0.04 Optical Density (OD) /kGy. The change in the optical density at each identified spatial dose matrix on the glass plate in relation to the position in the irradiation volume has been presented as dose distributions inside the gamma chamber. The optical density changes have been graphically plotted in the form of surface diagram of color washes for different percentage dose rate levels as isodose distributions in gamma chamber. The variation in dose distribution inside the gamma chamber unit, GC 900, BRIT India make, using this technique has been observed within ± 15%. This technique can be used for routine quality assurances and dose distribution validation of any gamma chamber during commissioning and source replacement. The application of commercial glass plate for dose mapping in gamma chambers has been found very promising due to its wider dose linearity, quick measurement, and lesser expertise requirement in application of the technique. PMID:19893695

  1. 4-D OCT in Developmental Cardiology

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  2. Dose distribution under external eye shields for high energy electrons

    SciTech Connect

    Rustgi, S.N.

    1986-01-01

    Effectiveness of eye shields in reducing the dose to the eye lens from 6 and 9 MeV electron beams from a linear accelerator has been evaluated. The thickness of the shields made from cerrobend was such that only bremsstrahlung photons were transmitted. A shield with a diameter of 1.3 cm and thickness of 1 cm was adequate for the 9 MeV electron beam. The optimum shield to phantom surface distance was 1 cm or less. The same shield with a thickness of 0.5 cm was found to be ineffective with a 6 MeV electron beam. The dose under the shield is greater than predicted by transmission measurements because of the contribution of phantom and electron cone generated scattered electrons.

  3. Potential dose distributions at proposed surface radioactvity clearance levels resulting from occupational scenarios.

    SciTech Connect

    Kamboj, S.; Yu, C.; Rabovsky, J.

    2011-08-02

    The purpose of this report is to evaluate the potential dose distribution resulting from surface radioactivity, using occupational radiation exposure scenarios. The surface radioactivity clearance values considered in this analysis may ultimately replace those currently specified in the U.S. Department of Energy (DOE) requirements and guidance for radiological protection of workers, the public and the environment. The surface contamination values apply to radioactive contamination deposited on a surface (i.e., not incorporated into the interior of the material). For these calculations, the dose coefficients for intake of radionuclides were taken from ICRP Publication 68 (ICRP 1994), and external exposure dose coefficients were taken from the compact disc (CD) that accompanied Federal Guidance Report (FGR) 13 (Eckerman et al. 1999). The ICRP Publication 68 dose coefficients were based on ICRP Publication 60 (ICRP 1990) and were used specifically for worker dose calculations. The calculated dose in this analysis is the 'effective dose' (ED), rather than the 'effective dose equivalent' (EDE).

  4. Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Pawlicki, T.; Jiang, S. B.; Li, J. S.; Deng, J.; Mok, E.; Kapur, A.; Xing, L.; Ma, L.; Boyer, A. L.

    2000-09-01

    The purpose of this work was to use Monte Carlo simulations to verify the accuracy of the dose distributions from a commercial treatment planning optimization system (Corvus, Nomos Corp., Sewickley, PA) for intensity-modulated radiotherapy (IMRT). A Monte Carlo treatment planning system has been implemented clinically to improve and verify the accuracy of radiotherapy dose calculations. Further modifications to the system were made to compute the dose in a patient for multiple fixed-gantry IMRT fields. The dose distributions in the experimental phantoms and in the patients were calculated and used to verify the optimized treatment plans generated by the Corvus system. The Monte Carlo calculated IMRT dose distributions agreed with the measurements to within 2% of the maximum dose for all the beam energies and field sizes for both the homogeneous and heterogeneous phantoms. The dose distributions predicted by the Corvus system, which employs a finite-size pencil beam (FSPB) algorithm, agreed with the Monte Carlo simulations and measurements to within 4% in a cylindrical water phantom with various hypothetical target shapes. Discrepancies of more than 5% (relative to the prescribed target dose) in the target region and over 20% in the critical structures were found in some IMRT patient calculations. The FSPB algorithm as implemented in the Corvus system is adequate for homogeneous phantoms (such as prostate) but may result in significant under- or over-estimation of the dose in some cases involving heterogeneities such as the air-tissue, lung-tissue and tissue-bone interfaces.

  5. Extrapolation of the dna fragment-size distribution after high-dose irradiation to predict effects at low doses

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.; Peterson, L. E.

    2001-01-01

    The patterns of DSBs induced in the genome are different for sparsely and densely ionizing radiations: In the former case, the patterns are well described by a random-breakage model; in the latter, a more sophisticated tool is needed. We used a Monte Carlo algorithm with a random-walk geometry of chromatin, and a track structure defined by the radial distribution of energy deposition from an incident ion, to fit the PFGE data for fragment-size distribution after high-dose irradiation. These fits determined the unknown parameters of the model, enabling the extrapolation of data for high-dose irradiation to the low doses that are relevant for NASA space radiation research. The randomly-located-clusters formalism was used to speed the simulations. It was shown that only one adjustable parameter, Q, the track efficiency parameter, was necessary to predict DNA fragment sizes for wide ranges of doses. This parameter was determined for a variety of radiations and LETs and was used to predict the DSB patterns at the HPRT locus of the human X chromosome after low-dose irradiation. It was found that high-LET radiation would be more likely than low-LET radiation to induce additional DSBs within the HPRT gene if this gene already contained one DSB.

  6. SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator

    SciTech Connect

    Hashimoto, M; Kozuka, T; Oguchi, M; Nishio, T; Haga, A; Hanada, T; Kabuki, S

    2014-06-15

    Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder. By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the correction of

  7. SU-D-BRB-07: Lipiodol Impact On Dose Distribution in Liver SBRT After TACE

    SciTech Connect

    Kawahara, D; Ozawa, S; Hioki, K; Suzuki, T; Lin, Y; Okumura, T; Ochi, Y; Nakashima, T; Ohno, Y; Kimura, T; Murakami, Y; Nagata, Y

    2015-06-15

    Purpose: Stereotactic body radiotherapy (SBRT) combining transarterial chemoembolization (TACE) with Lipiodol is expected to improve local control. This study aims to evaluate the impact of Lipiodol on dose distribution by comparing the dosimetric performance of the Acuros XB (AXB) algorithm, anisotropic analytical algorithm (AAA), and Monte Carlo (MC) method using a virtual heterogeneous phantom and a treatment plan for liver SBRT after TACE. Methods: The dose distributions calculated using AAA and AXB algorithm, both in Eclipse (ver. 11; Varian Medical Systems, Palo Alto, CA), and EGSnrc-MC were compared. First, the inhomogeneity correction accuracy of the AXB algorithm and AAA was evaluated by comparing the percent depth dose (PDD) obtained from the algorithms with that from the MC calculations using a virtual inhomogeneity phantom, which included water and Lipiodol. Second, the dose distribution of a liver SBRT patient treatment plan was compared between the calculation algorithms. Results In the virtual phantom, compared with the MC calculations, AAA underestimated the doses just before and in the Lipiodol region by 5.1% and 9.5%, respectively, and overestimated the doses behind the region by 6.0%. Furthermore, compared with the MC calculations, the AXB algorithm underestimated the doses just before and in the Lipiodol region by 4.5% and 10.5%, respectively, and overestimated the doses behind the region by 4.2%. In the SBRT plan, the AAA and AXB algorithm underestimated the maximum doses in the Lipiodol region by 9.0% in comparison with the MC calculations. In clinical cases, the dose enhancement in the Lipiodol region can approximately 10% increases in tumor dose without increase of dose to normal tissue. Conclusion: The MC method demonstrated a larger increase in the dose in the Lipiodol region than the AAA and AXB algorithm. Notably, dose enhancement were observed in the tumor area; this may lead to a clinical benefit.

  8. Seasonal influenza vaccine dose distribution in 157 countries (2004-2011).

    PubMed

    Palache, Abraham; Oriol-Mathieu, Valerie; Abelin, Atika; Music, Tamara

    2014-11-12

    Globally there are an estimated 3-5 million cases of severe influenza illness every year, resulting in 250,000-500,000 deaths. At the World Health Assembly in 2003, World Health Organization (WHO) resolved to increase influenza vaccine coverage rates (VCR) for high-risk groups, particularly focusing on at least 75% of the elderly by 2010. But systematic worldwide data have not been available to assist public health authorities to monitor vaccine uptake and review progress toward vaccination coverage targets. In 2008, the International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply task force (IFPMA IVS) developed a survey methodology to assess global influenza vaccine dose distribution. The current survey results represent 2011 data and demonstrate the evolution of the absolute number distributed between 2004 and 2011 inclusive, and the evolution in the per capita doses distributed in 2008-2011. Global distribution of IFPMA IVS member doses increased approximately 86.9% between 2004 and 2011, but only approximately 12.1% between 2008 and 2011. The WHO's regions in Eastern Mediterranean (EMRO), Southeast Asian (SEARO) and Africa (AFRO) together account for about 47% of the global population, but only 3.7% of all IFPMA IVS doses distributed. While distributed doses have globally increased, they have decreased in EURO and EMRO since 2009. Dose distribution can provide a reasonable proxy of vaccine utilization. Based on the dose distribution, we conclude that seasonal influenza VCR in many countries remains well below the WHA's VCR targets and below the recommendations of the Council of the European Union in EURO. Inter- and intra-regional disparities in dose distribution trends call into question the impact of current vaccine recommendations at achieving coverage targets. Additional policy measures, particularly those that influence patients adherence to vaccination programs, such as reimbursement, healthcare provider knowledge

  9. Implementation of a dose gradient method into optimization of dose distribution in prostate cancer 3D-CRT plans

    PubMed Central

    Giżyńska, Marta K.; Kukołowicz, Paweł F.; Kordowski, Paweł

    2014-01-01

    Aim The aim of this work is to present a method of beam weight and wedge angle optimization for patients with prostate cancer. Background 3D-CRT is usually realized with forward planning based on a trial and error method. Several authors have published a few methods of beam weight optimization applicable to the 3D-CRT. Still, none on these methods is in common use. Materials and methods Optimization is based on the assumption that the best plan is achieved if dose gradient at ICRU point is equal to zero. Our optimization algorithm requires beam quality index, depth of maximum dose, profiles of wedged fields and maximum dose to femoral heads. The method was tested for 10 patients with prostate cancer, treated with the 3-field technique. Optimized plans were compared with plans prepared by 12 experienced planners. Dose standard deviation in target volume, and minimum and maximum doses were analyzed. Results The quality of plans obtained with the proposed optimization algorithms was comparable to that prepared by experienced planners. Mean difference in target dose standard deviation was 0.1% in favor of the plans prepared by planners for optimization of beam weights and wedge angles. Introducing a correction factor for patient body outline for dose gradient at ICRU point improved dose distribution homogeneity. On average, a 0.1% lower standard deviation was achieved with the optimization algorithm. No significant difference in mean dose–volume histogram for the rectum was observed. Conclusions Optimization shortens very much time planning. The average planning time was 5 min and less than a minute for forward and computer optimization, respectively. PMID:25337411

  10. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    SciTech Connect

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  11. Modelling dose distribution in tubing and cable using CYLTRAN and ACCEPT Monte Carlo simulation code

    SciTech Connect

    Weiss, D.E.; Kensek, R.P.

    1993-12-31

    One of the difficulties in the irradiation of non-slab geometries, such as a tube, is the uneven penetration of the electrons. A simple model of the distribution of dose in a tube or cable in relationship to voltage, composition, wall thickness and diameter can be mapped using the cylinder geometry provided for in the ITS/CYLTRAN code, complete with automatic subzoning. The reality of more complex 3D geometry to include effects of window foil, backscattering fixtures and beam scanning angles can be more completely accounted for by using the ITS/ACCEPT code with a line source update and a system of intersecting wedges to define input zones for mapping dose distributions in a tube. Thus, all of the variables that affect dose distribution can be modelled without the need to run time consuming and costly factory experiments. The effects of composition changes on dose distribution can also be anticipated.

  12. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung

    NASA Astrophysics Data System (ADS)

    Chin, E.; Loewen, S. K.; Nichol, A.; Otto, K.

    2013-02-01

    Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.

  13. SU-D-207-03: Development of 4D-CBCT Imaging System with Dual Source KV X-Ray Tubes

    SciTech Connect

    Nakamura, M; Ishihara, Y; Matsuo, Y; Ueki, N; Iizuka, Y; Mizowaki, T; Hiraoka, M

    2015-06-15

    Purpose: The purposes of this work are to develop 4D-CBCT imaging system with orthogonal dual source kV X-ray tubes, and to determine the imaging doses from 4D-CBCT scans. Methods: Dual source kV X-ray tubes were used for the 4D-CBCT imaging. The maximum CBCT field of view was 200 mm in diameter and 150 mm in length, and the imaging parameters were 110 kV, 160 mA and 5 ms. The rotational angle was 105°, the rotational speed of the gantry was 1.5°/s, the gantry rotation time was 70 s, and the image acquisition interval was 0.3°. The observed amplitude of infrared marker motion during respiration was used to sort each image into eight respiratory phase bins. The EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc packages were used to simulate kV X-ray dose distributions of 4D-CBCT imaging. The kV X-ray dose distributions were calculated for 9 lung cancer patients based on the planning CT images with dose calculation grid size of 2.5 x 2.5 x 2.5 mm. The dose covering a 2-cc volume of skin (D2cc), defined as the inner 5 mm of the skin surface with the exception of bone structure, was assessed. Results: A moving object was well identified on 4D-CBCT images in a phantom study. Given a gantry rotational angle of 105° and the configuration of kV X-ray imaging subsystems, both kV X-ray fields overlapped at a part of skin surface. The D2cc for the 4D-CBCT scans was in the range 73.8–105.4 mGy. Linear correlation coefficient between the 1000 minus averaged SSD during CBCT scanning and D2cc was −0.65 (with a slope of −0.17) for the 4D-CBCT scans. Conclusion: We have developed 4D-CBCT imaging system with dual source kV X-ray tubes. The total imaging dose with 4D-CBCT scans was up to 105.4 mGy.

  14. Incorporation of functional imaging data in the evaluation of dose distributions using the generalized concept of equivalent uniform dose

    NASA Astrophysics Data System (ADS)

    Miften, Moyed M.; Das, Shiva K.; Su, Min; Marks, Lawrence B.

    2004-05-01

    Advances in the fields of IMRT and functional imaging have greatly increased the prospect of escalating the dose to highly active or hypoxic tumour sub-volumes and steering the dose away from highly functional critical structure regions. However, current clinical treatment planning and evaluation tools assume homogeneous activity/function status in the tumour/critical structures. A method was developed to incorporate tumour/critical structure heterogeneous functionality in the generalized concept of equivalent uniform dose (EUD). The tumour and critical structures functional EUD (FEUD) values were calculated from the dose-function histogram (DFH), which relates dose to the fraction of total function value at that dose. The DFH incorporates flouro-deoxyglucose positron emission tomography (FDG-PET) functional data for tumour, which describes the distribution of metabolically active tumour clonogens, and single photon emission computed tomography (SPECT) perfusion data for critical structures. To demonstrate the utility of the method, the lung dose distributions of two non-small cell lung caner patients, who received 3D conformal external beam radiotherapy treatment with curative intent, were evaluated. Differences between the calculated lungs EUD and FEUD values of up to 50% were observed in the 3D conformal plans. In addition, a non-small cell lung cancer patient was inversely planned with a target dose prescription of 76 Gy. Two IMRT plans (plan-A and plan-B) were generated for the patient based on the CT, FDG-PET and SPECT treatment planning images using dose-volume objective functions. The IMRT plans were generated with the goal of achieving more critical structures sparing in plan-B than plan-A. Results show the target volume EUD in plan-B is lower than plan-A by 5% with a value of 73.31 Gy, and the FEUD in plan-B is lower than plan-A by 2.6% with a value of 75.77 Gy. The FEUD plan-B values for heart and lungs were lower than plan-A by 22% and 18%, respectively

  15. Evaluation of Patient Residual Deviation and Its Impact on Dose Distribution for Proton Radiotherapy

    SciTech Connect

    Arjomandy, Bijan

    2011-10-01

    The residual deviations after final patient repositioning based on bony anatomy and the impact of such deviations on the proton dose distributions was investigated. Digitally reconstructed radiographs (DRRs) and kilovoltage (kV) 'portal verification' images from 10 patients treated with passively scattered proton radiotherapy was used to estimate the residual deviation. These changes were then applied to the location of isocenter points that, in effect, moved the isocenter relative to the apertures and compensators. A composite verification plan was obtained and compared with the original clinical treatment plan to evaluate any changes in dose distributions. The residual deviations were fitted to a Gaussian distribution with {mu} = -0.9 {+-} 0.1 mm and {sigma} = 2.55 {+-} 0.07 mm. The dose distribution showed under- and overcovered dose spots with complex dose distributions both in the target volumes and in the organs at risk. In some cases, this amounts to 63.5% above the intended clinical plan. Although patient positioning is carefully verified before treatment delivery and setup uncertainties are accounted for by using compensator smearing and aperture margins, a residual shift in a patient's position can considerably affect the dose distribution.

  16. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    SciTech Connect

    Kok, H. Petra; Crezee, Johannes; Franken, Nicolaas A.P.; Barendsen, Gerrit W.

    2014-03-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normal tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different

  17. Fractal structure of the distributions of air dose rates in Koriyama city in Fukushima.

    PubMed

    Ishihara, Masamichi

    2014-10-01

    The authors investigated the fractal structure of the distributions of air dose rates in Koriyama city in Fukushima using data published by the Fukushima Prefectural and Koriyama City governments. Relative frequency data of air dose rates (strength distribution) could be well fitted with a q-distribution. In the present analysis, the relative frequency decreases approximately as s for high air dose rate values, where the quantity s represents air dose rate. The fractal dimension is a function of the threshold sth of air dose rate. The fractal dimension is approximately 1.59 when sth is the average of the air dose rates in Koriyama (0.9 μSv h) and decreases with increasing the threshold: it is approximately 1.97 for sth = 0.6 μSv h and 1.40 for sth = 1.2 μSv h. These results confirm that the strength distribution behaves like a power function for high air dose rate values and that the fallout pattern can be described as a fractal. PMID:25162424

  18. Clinical usefulness of the management and delivery of radiation dose-distribution images using the Internet.

    PubMed

    Nakagawa, K; Onogi, Y; Aoki, Y; Kozuka, T; Ohtomo, K

    1998-01-01

    Dose distribution images in radiation therapy play important roles in the management of cancer patients. To date, hard copies of these images have been stored for referral by radiation oncologists as needed. In most cases, these images are not available to medical personnel outside the radiation oncology department. We have developed a means to access these dose distribution images from the hospital via the World-Wide Web (WWW). A screen snapshot of a dose distribution image on the CRT of a treatment planning unit is copied to the WWW server and converted to a GIF (graphic interchange format) image. Similarly, we can register dose volume histograms and digitally reconstructed radiographs (DRR) on the WWW. Medical personnel can view these images through the WWW browser from anywhere in the hospital. As a result, radiation oncologists are given detailed information on target definition in treatment planning by expert physicians. The system also helps co-medical personnel in understanding dose distribution and predicting radiation injury. At the same time, it actualizes an electronic archive of dose distribution images, which is a database for quick and reliable review, evaluation, and comparison of treatment plans. This technique also fosters closer relationships among radiation oncologists, physicians, and co-medical personnel. PMID:9814423

  19. [Management and delivery of radiation dose distribution images using the Internet].

    PubMed

    Onogi, Y; Nakagawa, K; Aoki, Y; Kozuka, T; Toyoda, T; Sasaki, Y

    1998-01-01

    Dose distribution images play important roles in the management of cancer patients. To date hard copies of these images have been stored and referred to by radiation oncologists as needed. In most cases, these images were not available to medical personnel outside the radiation oncology department. We have developed a mechanism in the hospital to access these dose distribution images via WWW (World Wide Web). A screen snapshot of a dose distribution image on the CRT of a treatment planning machine is copied to the WWW server and converted to a GIF image. Similarly, we can register dose volume histograms and digitally reconstructed radiographs on the WWW. Medical personnel throughout the hospital can access the images through the WWW browser. As a result, radiation oncologists are given detailed information on target definition in treatment planning by expert physicians. The system also helps co-medical staff in understanding dose distributions and predicting radiation injuries. At the same time, it actualizes an electronic archive of dose distribution images, which is a database for quick and reliable review, evaluation and comparison of treatment plans. This technique also furthers a close relationship among radiation oncologists, physicians, and co-medical personnel. PMID:9493431

  20. Detection of lung nodules in chest digital tomosynthesis (CDT): effects of the different angular dose distribution

    NASA Astrophysics Data System (ADS)

    Jo, Byungdu; Lee, Youngjin; Kim, Dohyeon; Lee, Dong-Hoon; Jin, Seong-Soo; Mu, Shou-Chih; Kim, Hye-Mi; Kim, Hee-Joung

    2015-03-01

    Chest digital tomosynthesis (CDT) is a recently introduced new imaging modality for better detection of high- and smallcontrast lung nodules compared to conventional X-ray radiography. In CDT system, several projection views need to be acquired with limited angular range. The acquisition of insufficient number of projection data can degrade the reconstructed image quality. This image degradation easily affected by acquisition parameters such as angular dose distribution, number of projection views and reconstruction algorithm. To investigate the imaging characteristics, we evaluated the impact of the angular dose distribution on image quality by simulation studies with Geant4 Application for Tomographic Emission (GATE). We designed the different angular dose distribution conditions. The results showed that the contrast-to-noise ratio (CNR) improves when exposed the higher dose at central projection views than peripheral views. While it was found that increasing angular dose distribution at central views improved lung nodule detectability, although both peripheral regions slightly suffer from image noise due to low dose distribution. The improvements of CNR by using proposed image acquisition technique suggest possible directions for further improvement of CDT system for lung nodule detection with high quality imaging capabilities.

  1. SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment

    SciTech Connect

    Imae, T; Haga, A; Saotome, N; Kida, S; Nakano, M; Takeuchi, Y; Shiraki, T; Yano, K; Yamashita, H; Nakagawa, K; Ohtomo, K

    2014-06-01

    Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions of multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target.

  2. Creation of 4D imaging data using open source image registration software

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth H.; Ibanez, Luis; Popa, Teo; Cleary, Kevin

    2006-03-01

    4D images (3 spatial dimensions plus time) using CT or MRI will play a key role in radiation medicine as techniques for respiratory motion compensation become more widely available. Advance knowledge of the motion of a tumor and its surrounding anatomy will allow the creation of highly conformal dose distributions in organs such as the lung, liver, and pancreas. However, many of the current investigations into 4D imaging rely on synchronizing the image acquisition with an external respiratory signal such as skin motion, tidal flow, or lung volume, which typically requires specialized hardware and modifications to the scanner. We propose a novel method for 4D image acquisition that does not require any specific gating equipment and is based solely on open source image registration algorithms. Specifically, we use the Insight Toolkit (ITK) to compute the normalized mutual information (NMI) between images taken at different times and use that value as an index of respiratory phase. This method has the advantages of (1) being able to be implemented without any hardware modification to the scanner, and (2) basing the respiratory phase on changes in internal anatomy rather than external signal. We have demonstrated the capabilities of this method with CT fluoroscopy data acquired from a swine model.

  3. Distribution of the radiation dose in multislice computer tomography of the chest – phantom study

    PubMed Central

    Gorycki, Tomasz; Kamiński, Kamil; Studniarek, Michał; Szlęzak, Przemysław; Szumska, Agnieszka

    2014-01-01

    Summary Background The most commonly used form of reporting doses in multislice computed tomography involves a CT dose index per slice and dose-length product for the whole series. The purpose of this study was to analyze the actual dose distribution in routine chest CT examination protocols using an antropomorphic phantom. Material/Methods We included in the analysis readings from a phantom filled with thermoluminescent detectors (Art Phantom Canberra) during routine chest CT examinations (64 MDCT TK LIGHT SPEED GE Medical System) performed using three protocols: low-dose, helical and angio-CT. Results Mean dose values (mSv) reported from anterior parts of the phantom sections in low-dose/helical/angio-CT protocols were as follows: 3.74; 16.95; 30.17; from central parts: 3.18; 14.15; 26.71; from posterior parts: 3.01; 12.47; 24.98 respectively. Correlation coefficients for mean doses registered in anterior parts of the phantom between low-dose/helical, low-dose/angio-CT and helical/angio-CT protocols were 0.49; 0.63; 0.36; from central parts: 0.73; 0.66; 0.83, while in posterior parts values were as follows: 0.06; 0.21; 0.57. Conclusions The greatest doses were recorded in anterior parts of all phantom sections in all protocols in reference to largest doses absorbed in the anterior part of the chest during CT examination. The doses were decreasing from anterior to posterior parts of all sections. In the long axis of the phantom, in all protocols, lower doses were measured in the upper part of the phantom and at the very lowest part. PMID:24744819

  4. Computing Myocardial Motion in 4D Echocardiography

    PubMed Central

    Mukherjee, Ryan; Sprouse, Chad; Pinheiro, Aurélio; Abraham, Theodore; Burlina, Philippe

    2012-01-01

    4D (3D spatial+time) echocardiography is gaining widespread acceptance at clinical institutions for its high temporal resolution and relatively low cost. We describe a novel method for computing dense 3D myocardial motion with high accuracy. The method is based on a classical variational optical flow technique, but exploits modern developments in optical flow research to utilize the full capabilities of 4D echocardiography. Using a variety of metrics, we present an in-depth performance evaluation of the method on synthetic, phantom, and intraoperative 4D Transesophageal Echocardiographic (TEE) data. When compared with state-of-the-art optical flow and speckle tracking techniques currently found in 4D echocardiography, the method we present shows notable improvements in error. We believe the performance improvements shown can have a positive impact when the method is used as input for various applications, such as strain computation, biomechanical modeling, or automated diagnostics. PMID:22677256

  5. On "new massive" 4D gravity

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric A.; Fernández-Melgarejo, J. J.; Rosseel, Jan; Townsend, Paul K.

    2012-04-01

    We construct a four-dimensional (4D) gauge theory that propagates, unitarily, the five polarization modes of a massive spin-2 particle. These modes are described by a "dual" graviton gauge potential and the Lagrangian is 4th-order in derivatives. As the construction mimics that of 3D "new massive gravity", we call this 4D model (linearized) "new massive dual gravity". We analyse its massless limit, and discuss similarities to the Eddington-Schrödinger model.

  6. An investigation of the dose distribution effect related with collimator angle for VMAT method

    NASA Astrophysics Data System (ADS)

    Tas, B.; Bilge, H.; Ozturk, S. Tokdemir

    2016-03-01

    Aim of this study is to investigate the efficacy of dose distribution in eleven prostate cancer patients with single VMAT and double VMAT when varying collimator angle. We generated optimum single and double VMAT treatment plans when collimator angle was 0°. We recalculated single VMAT plans at different collimator angles(0°,15°,30°,45°,60°,75°,90°) for double VMAT plans(0°-0°,15°-345°,30°-330°,45°-315°,60°-300°,75°-285°,90°-270°) without changing any optimization parameters. HI, DVH and %95 dose coverage of PTV calculated and analyzed. We determined better dose distribution with some collimator angles. Plans were verified using the 2 dimensional ion chamber array Matrixx® and 3 dimensional Compass® software program. A higher %95 dose coverage of PTV was found for single VMAT in the 15° collimator angle, for double VMAT in the 60°-300° and 75°-285° collimator angles. Because of lower rectum doses, we suggested 75°-285°. When we compared single and double VMAT's dose distribution, we had better % 95 dose coverage of PTV and lower HI with double VMAT. Our result was significant statistically. These finds are informative for choosing 75°-285° collimator angles in double VMAT plans for prostate cancer.

  7. Effect of Tissue Composition on Dose Distribution in Electron Beam Radiotherapy

    PubMed Central

    Ghorbani, M.; Tabatabaei, Z. S.; Vejdani Noghreiyan, A.; Vosoughi, H.; Knaup, C.

    2015-01-01

    Objective The aim of this study is to evaluate the effect of tissue composition on dose distribution in electron beam radiotherapy. Methods A Siemens Primus linear accelerator and a phantom were simulated using MCNPX Monte Carlo code. In a homogeneous cylindrical phantom, six types of soft tissue and three types of tissue-equivalent materials were investigated. The tissues included muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-components) and soft tissue (4-component). The tissue-equivalent materials were water, A-150 tissue-equivalent plastic and perspex. Electron dose relative to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for 8, 12, and 14 MeV electron energies. Results The results of relative electron dose in various materials relative to dose in 9-component soft tissue were reported for 8, 12 and 14 MeV electron beams as tabulated data. While differences were observed between dose distributions in various soft tissues and tissue-equivalent materials, which vary with the composition of material, electron energy and depth in phantom, they can be ignored due to the incorporated uncertainties in Monte Carlo calculations. Conclusion Based on the calculations performed, differences in dose distributions in various soft tissues and tissue-equivalent materials are not significant. However, due to the difference in composition of various materials, further research in this field with lower uncertainties is recommended. PMID:25973407

  8. Influence of Metal of the Applicator on the Dose Distribution during Brachytherapy

    PubMed Central

    Wu, Chin-Hui; Shiau, An-Cheng; Liao, Yi-Jen; Lin, Hsin-Yu

    2014-01-01

    This study explores how the metal materials of the applicator influence the dose distribution when performing brachytherapy for cervical cancer. A pinpoint ionization chamber, Monte Carlo code MCNPX, and treatment planning system are used to evaluate the dose distribution for a single Ir-192 source positioned in the tandem and ovoid. For dose distribution in water with the presence of the tandem, differences among measurement, MCNPX calculation and treatment planning system results are <5%. For dose distribution in water with the presence of the ovoid, the MCNPX result agrees with the measurement. But the doses calculated from treatment planning system are overestimated by up to a factor of 4. This is due to the shielding effect of the metal materials in the applicator not being considered in the treatment planning system. This result suggests that the treatment planning system should take into account corrections for the metal materials of the applicator in order to improve the accuracy of the radiation dose delivered. PMID:25133789

  9. Target point correction optimized based on the dose distribution of each fraction in daily IGRT

    NASA Astrophysics Data System (ADS)

    Stoll, Markus; Giske, Kristina; Stoiber, Eva M.; Schwarz, Michael; Bendl, Rolf

    2014-03-01

    Purpose: To use daily re-calculated dose distributions for optimization of target point corrections (TPCs) in image guided radiation therapy (IGRT). This aims to adapt fractioned intensity modulated radiation therapy (IMRT) to changes in the dose distribution induced by anatomical changes. Methods: Daily control images from an in-room on-rail spiral CT-Scanner of three head-and-neck cancer patients were analyzed. The dose distribution was re-calculated on each control CT after an initial TPC, found by a rigid image registration method. The clinical target volumes (CTVs) were transformed from the planning CT to the rigidly aligned control CTs using a deformable image registration method. If at least 95% of each transformed CTV was covered by the initially planned D95 value, the TPC was considered acceptable. Otherwise the TPC was iteratively altered to maximize the dose coverage of the CTVs. Results: In 14 (out of 59) fractions the criterion was already fulfilled after the initial TPC. In 10 fractions the TPC can be optimized to fulfill the coverage criterion. In 31 fractions the coverage can be increased but the criterion is not fulfilled. In another 4 fractions the coverage cannot be increased by the TPC optimization. Conclusions: The dose coverage criterion allows selection of patients who would benefit from replanning. Using the criterion to include daily re-calculated dose distributions in the TPC reduces the replanning rate in the analysed three patients from 76% to 59% compared to the rigid image registration TPC.

  10. Analytic characterization of linear accelerator radiosurgery dose distributions for fast optimization

    NASA Astrophysics Data System (ADS)

    Meeks, Sanford L.; Bova, Frank J.; Buatti, John M.; Friedman, William A.; Eyster, Brian; Kendrick, Lance A.

    1999-11-01

    Linear accelerator (linac) radiosurgery utilizes non-coplanar arc therapy delivered through circular collimators. Generally, spherically symmetric arc sets are used, resulting in nominally spherical dose distributions. Various treatment planning parameters may be manipulated to provide dose conformation to irregular lesions. Iterative manipulation of these variables can be a difficult and time-consuming task, because (a) understanding the effect of these parameters is complicated and (b) three-dimensional (3D) dose calculations are computationally expensive. This manipulation can be simplified, however, because the prescription isodose surface for all single isocentre distributions can be approximated by conic sections. In this study, the effects of treatment planning parameter manipulation on the dimensions of the treatment isodose surface were determined empirically. These dimensions were then fitted to analytic functions, assuming that the dose distributions were characterized as conic sections. These analytic functions allowed real-time approximation of the 3D isodose surface. Iterative plan optimization, either manual or automated, is achieved more efficiently using this real time approximation of the dose matrix. Subsequent to iterative plan optimization, the analytic function is related back to the appropriate plan parameters, and the dose distribution is determined using conventional dosimetry calculations. This provides a pseudo-inverse approach to radiosurgery optimization, based solely on geometric considerations.

  11. Analysis of high–dose rate brachytherapy dose distribution resemblance in CyberKnife hypofractionated treatment plans of localized prostate cancer

    SciTech Connect

    Sudahar, H.; Kurup, P.G.G.; Murali, V.; Mahadev, P.; Velmurugan, J.

    2013-01-01

    The present study is to analyze the CyberKnife hypofractionated dose distribution of localized prostate cancer in terms of high–dose rate (HDR) brachytherapy equivalent doses to assess the degree of HDR brachytherapy resemblance of CyberKnife dose distribution. Thirteen randomly selected localized prostate cancer cases treated using CyberKnife with a dose regimen of 36.25 Gy in 5 fractions were considered. HDR equivalent doses were calculated for 30 Gy in 3 fractions of HDR brachytherapy regimen. The D{sub 5%} of the target in the CyberKnife hypofractionation was 41.57 ± 2.41 Gy. The corresponding HDR fractionation (3 fractions) equivalent dose was 32.81 ± 1.86 Gy. The mean HDR fractionation equivalent dose, D{sub 98%}, was 27.93 ± 0.84 Gy. The V{sub 100%} of the prostate target was 95.57% ± 3.47%. The V{sub 100%} of the bladder and the rectum were 717.16 and 79.6 mm{sup 3}, respectively. Analysis of the HDR equivalent dose of CyberKnife dose distribution indicates a comparable resemblance to HDR dose distribution in the peripheral target doses (D{sub 98%} to D{sub 80%}) reported in the literature. However, there is a substantial difference observed in the core high-dose regions especially in D{sub 10%} and D{sub 5%}. The dose fall-off within the OAR is also superior in reported HDR dose distribution than the HDR equivalent doses of CyberKnife.

  12. Imaging of dose distributions using polymer gels based on radiation induced changes in stiffness

    NASA Astrophysics Data System (ADS)

    Crescenti, Remo A.; Bamber, Jeffrey C.; Oberai, Assad A.; Barbone, Paul E.; Richter, Joseph P.; Rivas, Carlos; Bush, Nigel L.; Webb, Steve

    2009-05-01

    Previously, dose determination based on radiation induced stiffness difference measurements has received no or very little attention. Here, a preliminary evaluation of a combined system for dosimetry based on radiation sensitive gels, ultrasonic elastography and a plane strain inverse algorithm is presented. A block of gel was irradiated along one of its axes producing stiff rod-like regions. The dose distribution found with quantitative ultrasound elastography was compared with a reference dose distribution measured with magnetic resonance imaging. In these early results, the high dose areas were clearly detected, while noise in the ultrasound measurement and strong regularisation in the inverse computing introduced shape distortions, noise in the dose estimates and problems estimating the correct dose contrast. Improvements in the experimental setup and inverse computing are possible, for example by acquisition of transversal ultrasound data, which could essentially reduce the noise and restrict direct influence of the experimental boundary condition on the dose estimation by providing additional information for inverse computing. Based on the preliminary results and the potential for improvement it is concluded that further investigations should follow to establish the potential of the rapidly developing field of elastography for measuring radiation dose based on radiation induced changes in stiffness.

  13. The impact of photon dose calculation algorithms on expected dose distributions in lungs under different respiratory phases

    NASA Astrophysics Data System (ADS)

    Fogliata, Antonella; Nicolini, Giorgia; Vanetti, Eugenio; Clivio, Alessandro; Winkler, Peter; Cozzi, Luca

    2008-05-01

    A planning study was carried out on a cohort of CT datasets from breast patients scanned during different respiratory phases. The aim of the study was to investigate the influence of different air filling in lungs on the calculation accuracy of photon dose algorithms and to identify potential patterns of failure with clinical implications. Selected respiratory phases were free breathing (FB), representative of typical end expiration, and deep inspiration breath hold (DIBH), a typical condition for clinical treatment with respiratory gating. Algorithms investigated were the pencil beam (PBC), the anisotropic analytical algorithm (AAA) and the collapsed cone (CC) from the Varian Eclipse or Philips Pinnacle planning system. Reference benchmark calculations were performed with the Voxel Monte Carlo (VMC++). An analysis was performed in terms of physical quantities inspecting either dose-volume or dose-mass histograms and in terms of an extension to three dimensions of the γ index of Low. Results were stratified according to a breathing phase and algorithm. Collectives acquired in FB or DIBH showed well-separated average lung density distributions with mean densities of 0.27 ± 0.04 and 0.16 ± 0.02 g cm-3, respectively, and average peak densities of 0.17 ± 0.03 and 0.09 ± 0.02 g cm-3. Analysis of volume-dose or mass-dose histograms proved the expected deviations on PBC results due to the missing lateral transport of electrons with underestimations in the low dose region and overestimations in the high dose region. From the γ analysis, it resulted that PBC is systematically defective compared to VMC++ over the entire range of lung densities and dose levels with severe violations in both respiratory phases. The fraction of lung voxels with γ > 1 for PBC reached 25% in DIBH and about 15% in FB. CC and AAA performed, in contrast, similarly and with fractions of lung voxels with γ > 1 in average inferior to 2% in FB and 4-5% (AAA) or 6-8% (CC) in DIBH. In summary, PBC

  14. Helical 4D CT and Comparison with Cine 4D CT

    NASA Astrophysics Data System (ADS)

    Pan, Tinsu

    4D CT was one of the most important developments in radiation oncology in the last decade. Its early development in single slice CT and commercialization in multi-slice CT has radically changed our practice in radiation treatment of lung cancer, and has enabled the stereotactic radiosurgery of early stage lung cancer. In this chapter, we will document the history of 4D CT development, detail the data sufficiency condition governing the 4D CT data collection; present the design of the commercial helical 4D CTs from Philips and Siemens; compare the differences between the helical 4D CT and the GE cine 4D CT in data acquisition, slice thickness, acquisition time and work flow; review the respiratory monitoring devices; and understand the causes of image artifacts in 4D CT.

  15. Approximate distribution of dose among foetal organs for radioiodine uptake via placenta transfer

    NASA Astrophysics Data System (ADS)

    Millard, R. K.; Saunders, M.; Palmer, A. M.; Preece, A. W.

    2001-11-01

    Absorbed radiation doses to internal foetal organs were calculated according to the medical internal radiation dose (MIRD) technique in this study. Anthropomorphic phantoms of the pregnant female as in MIRDOSE3 enabled estimation of absorbed dose to the whole foetus at two stages of gestation. Some foetal organ self-doses could have been estimated by invoking simple spherical models for thyroid, liver, etc, but we investigated the use of the MIRDOSE3 new-born phantom as a surrogate for the stage 3 foetus, scaled to be compatible with total foetal body mean absorbed dose/cumulated activity. We illustrate the method for obtaining approximate dose distribution in the foetus near term following intake of 1 MBq of 123I, 124I, 125I or 131I as sodium iodide by the mother using in vivo biodistribution data examples from a good model of placenta transfer. Doses to the foetal thyroid of up to 1.85 Gy MBq-1 were predicted from the 131I uptake data. Activity in the foetal thyroid was the largest contributor to absorbed dose in the foetal body, brain, heart and thymus. Average total doses to the whole foetus ranged from 0.16 to 1.2 mGy MBq-1 for stages 1 and 3 of pregnancy using the MIRDOSE3 program, and were considerably higher than those predicted from the maternal contributions alone. Doses to the foetal thymus and stomach were similar, around 2-3 mGy MBq-1. Some foetal organ doses from the radioiodides were ten times higher than to the corresponding organs of the mother, and up to 100 times higher to the thyroid. The fraction of activity uptakes in foetal organs were distributed similarly to the maternal ones.

  16. Longitudinal dose distribution and energy absorption in PMMA and water cylinders undergoing CT scans

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2014-10-15

    Purpose: The knowledge of longitudinal dose distribution provides the most direct view of the accumulated dose in computed tomography (CT) scanning. The purpose of this work was to perform a comprehensive study of dose distribution width and energy absorption with a wide range of subject sizes and beam irradiated lengths. Methods: Cumulative dose distribution along the z-axis was calculated based on the previously published CT dose equilibration data by Li, Zhang, and Liu [Med. Phys. 40, 031903 (10pp.) (2013)] and a mechanism for computing dose on axial lines by Li, Zhang, and Liu [Med. Phys. 39, 5347–5352 (2012)]. Full width at half maximum (FWHM), full width at tenth maximum (FWTM), the total energy (E) absorbed in a small cylinder of unit mass per centimeter square about the central or peripheral axis, and the energy (E{sub in}) absorbed inside irradiated length (L) were subsequently extracted from the dose distribution. Results: Extensive results of FWHM, FWTM, and E{sub in}/E were presented on the central and peripheral axes of infinitely long PMMA (diameters 6–50 cm) and water (diameters 6–55 cm) cylinders with L < 100 cm. FWHM was greater than the primary beam width only on the central axes of large phantoms and also with L ranging from a few centimeter to about 33 cm. FWTM generally increased with phantom diameter, and could be up to 32 cm longer than irradiated length, depending on L, phantom diameter and axis, but was insensitive to phantom material (PMMA or water). E{sub in}/E increased with L and asymptotically approached unity for large L. As phantom diameter increased, E{sub in}/E generally decreased, but asymptotically approached constant levels on the peripheral axes of large phantoms. A heuristic explanation of dose distribution width results was presented. Conclusions: This study enables the reader to gain a comprehensive view of dose distribution width and energy absorption and provides useful data for estimating doses to organs inside or

  17. SU-E-T-540: MCNPX Simulation of Proton Dose Distributions in a Water Phantom

    SciTech Connect

    Lee, C; Chen, S; Chiang, B; Tung, C; Chao, T

    2015-06-15

    Purpose: In this study, fluence and energy deposition of proton and proton by-products and dose distributions were simulated. Lateral dose distributions were also been discussed to understand the difference between Monte Carlo simulations and pencil beam algorithm. Methods: MCNPX codes were used to build a water phantom by using “repeated structures” technique and the doses and fluences in each cell was recorded by mesh tally. This study includes, proton equilibrium and proton disequilibrium case. For the proton equilibrium case, the doses difference between proton and proton by-products were studied. A 160 MeV proton pencil beam was perpendicularly incident into a 40 × 40 × 50 cm{sup 3} water phantom and the scoring volume was 20 × 20 × 0.2 cm{sup 3}. Energy deposition and fluence were calculated from MCNPX with (1) proton only; and (2) proton and secondary particles. For the proton disequilibrium case, the dose distribution variation using different multiple Coulomb scattering were studied. A 70 MeV proton pencil beam was perpendicularly incident into a 40 × 40 × 10 cm{sup 3} water phantom and two scoring voxel sizes of 0.1 × 0.1 × 0.05 cm{sup 3} and 0.01 × 0.01 × 0.05 cm{sup 3} were used for the depth dose distribution, and 0.01 × 0.01 × 0.05 cm{sup 3} for the lateral profile distribution simulations. Results: In the water phantom, proton fluence and dose in depths beyond the Bragg peak were slightly perturbed by the choice of the simulated particle types. The dose from secondary particles was about three orders smaller, but its simulation consumed significant computing time. The depth dose distributions and lateral dose distributions of 70 MeV proton pencil beam obtained from MCNPX, GEANT4, and the pencil beam algorithm showed the significant deviations, probably caused by multiple Coulomb scattering. Conclusion: Multiple Coulomb scattering is critical when there is in proton disequilibrium.

  18. [Study on the dose distribution of 8-MeV bremsstrahlung in mantle field techniques (author's transl)].

    PubMed

    Nemec, H W; Walther, E

    1979-08-01

    The dose distribution within the patient was studied with 8-MeV bremsstrahlung from a linear accelerator during mantle field irradiation using molded shielding blocks. Doses and dose distributions in the different layers of a modified Alderson phantom were measured by means of film dosimetry and related to the dose in the central ray beam at the middle of the body. Dose distribution within unshielded regions perpendicular to the central ray beam generally being relatively homogeneous, the highest relative doses, amounting to ca. 115%, are found in the region of the mandibular angle and in the supraclavicular region; the dose to superficial lymph nodes at the supraclavicular region reaches 100% of the dose in the central ray beam. As a cause for these important doses near the surface of the body are discussed the extension of mantle fields as well as the increased exit dose of the opposed field and the oblique incidence of radiation. PMID:473255

  19. Comparison of RTPS and Monte Carlo dose distributions in heterogeneous phantoms for photon beams.

    PubMed

    Nakaguchi, Yuji; Araki, Fujio; Maruyama, Masato; Fukuda, Shogo

    2010-04-20

    The purpose of this study was to compare dose distributions from three different RTPS with those from Monte Carlo (MC) calculations and measurements, in heterogeneous phantoms for photon beams. This study used four algorithms for RTPS: AAA (analytical anisotropic algorithm) implemented in the Eclipse (Varian Medical Systems) treatment planning system, CC (collapsed cone) superposition from the Pinnacle (Philips), and MGS (multigrid superposition) and FFT (fast Fourier transform) convolution from XiO (CMS). The dose distributions from these algorithms were compared with those from MC and measurements in a set of heterogeneous phantoms. Eclipse/AAA underestimated the dose inside the lung region for low energies of 4 and 6 MV. This is because Eclipse/AAA do not adequately account for a scaling of the spread of the pencil (lateral electron transport) based on changes in the electron density at low photon energies. The dose distributions from Pinnacle/CC and XiO/MGS almost agree with those of MC and measurements at low photon energies, but increase errors at high energy of 15 MV, especially for a small field of 3x3 cm(2). The FFT convolution extremely overestimated the dose inside the lung slab compared to MC. The dose distributions from the superposition algorithms almost agree with those from MC as well as measured values at 4 and 6 MV. The dose errors for Eclipse/AAA are lager in lung model phantoms for 4 and 6 MV. It is necessary to use the algorithms comparable to superposition for accuracy of dose calculations in heterogeneous regions. PMID:20625219

  20. Lamotrigine kidney distribution in male rats following a single intraperitoneal dose.

    PubMed

    Castel-Branco, M M; Falcão, A C; Figueiredo, I V; Macedo, T R A; Caramona, M M

    2004-02-01

    As it has been previously shown that lamotrigine (LTG) accumulates in the kidney of male rats, the purpose of the present investigation was to characterize the kidney profiles of LTG and its kidney distribution pattern in male rats, in order to confirm if a preferential distribution exists and to analyse if it does or does not affect the LTG systemic pharmacokinetics. Adult male Wistar rats were intraperitoneally injected with 5, 10 and 20 mg/kg of LTG. The concentration-time profiles of LTG in plasma and whole kidney were determined over 120 h postdose. The distribution of LTG in the rat kidney was investigated in another group of rats by measuring LTG levels in the renal cortex and medulla. The LTG plasma concentration-time profiles revealed a linear relationship with dose. However, a slight increase in the LTG elimination half-life with dose was observed. In contrast, a nonlinear relationship was established between LTG kidney levels and the dose administered. Consequently, nonparallel patterns were observed between LTG plasma and kidney profiles. The LTG kidney distribution pattern revealed an accumulation of LTG in the renal cortex. The present study demonstrated that LTG distributes preferentially to the kidneys of the male rat in a dose-dependent manner and suggests that such distribution may slightly affect the systemic kinetics of the drug. PMID:14748754

  1. A revision of the γ-evaluation concept for the comparison of dose distributions

    NASA Astrophysics Data System (ADS)

    Moodie, Trevor; Sykes, Jonathan; Gajewski, Romuald

    2014-12-01

    The Chi index described in the article ‘A revision of the γ-evaluation concept for the comparison of dose distributions’ by Bakai et al (Phys. Med. Biol. 2003 48 3543-53) indicates that smooth acceptance tubes, defining upper and lower limits of dose difference and distance to agreement, can be pre-defined for a given dose distribution based on the local dose gradient. Mathematical analysis and simulations indicate that the Chi index as described by Bakai et al does not produce smooth acceptance criteria in rapidly varying dose gradients. Instead, ‘horns’ are generated in the acceptance tubes which lead to the production of unacceptably large acceptance criteria and the possibility of false negatives.

  2. A {gamma} dose distribution evaluation technique using the k-d tree for nearest neighbor searching

    SciTech Connect

    Yuan Jiankui; Chen Weimin

    2010-09-15

    Purpose: The authors propose an algorithm based on the k-d tree for nearest neighbor searching to improve the {gamma} calculation time for 2D and 3D dose distributions. Methods: The {gamma} calculation method has been widely used for comparisons of dose distributions in clinical treatment plans and quality assurances. By specifying the acceptable dose and distance-to-agreement criteria, the method provides quantitative measurement of the agreement between the reference and evaluation dose distributions. The {gamma} value indicates the acceptability. In regions where {gamma}{<=}1, the predefined criterion is satisfied and thus the agreement is acceptable; otherwise, the agreement fails. Although the concept of the method is not complicated and a quick naieve implementation is straightforward, an efficient and robust implementation is not trivial. Recent algorithms based on exhaustive searching within a maximum radius, the geometric Euclidean distance, and the table lookup method have been proposed to improve the computational time for multidimensional dose distributions. Motivated by the fact that the least searching time for finding a nearest neighbor can be an O(log N) operation with a k-d tree, where N is the total number of the dose points, the authors propose an algorithm based on the k-d tree for the {gamma} evaluation in this work. Results: In the experiment, the authors found that the average k-d tree construction time per reference point is O(log N), while the nearest neighbor searching time per evaluation point is proportional to O(N{sup 1/k}), where k is between 2 and 3 for two-dimensional and three-dimensional dose distributions, respectively. Conclusions: Comparing with other algorithms such as exhaustive search and sorted list O(N), the k-d tree algorithm for {gamma} evaluation is much more efficient.

  3. Effects of target size on the comparison of photon and charged particle dose distributions

    SciTech Connect

    Phillips, M.H.; Frankel, K.A.; Tjoa, T.; Lyman, J.T.; Fabrikant, J.I.; Levy, R.P.

    1989-12-01

    The work presented here is part of an ongoing project to quantify and evaluate the differences in the use of different radiation types and irradiation geometries in radiosurgery. We are examining dose distributions for photons using the Gamma Knife'' and the linear accelerator arc methods, as well as different species of charged particles from protons to neon ions. A number of different factors need to be studied to accurately compare the different modalities such as target size, shape and location, the irradiation geometry, and biological response. This presentation focuses on target size, which has a large effect on the dose distributions in normal tissue surrounding the lesion. This work concentrates on dose distributions found in radiosurgery, as opposed to those usually found in radiotherapy. 5 refs., 2 figs.

  4. Evaluation of the breast absorbed dose distribution using the Fricke Xylenol Gel

    NASA Astrophysics Data System (ADS)

    Czelusniak, C.; Del Lama, L. S.; Moreira, M. V.; De Almeida, A.

    2010-11-01

    During a breast cancer radiotherapy treatment, several issues have to be taken into account, among them, hot spots, gradient of doses delivered over the breast, as well as in the lungs and the heart. The present work aims to apply the Fricke Xylenol Gel (FXG) dosimeter in the study of these issues, using a CCD camera to analyse the dose deposited distribution. Thus, the CCD was used to capture the images of different cuvettes that were filled with FXG and irradiated considering analogous setups employed in breast cancer radiotherapy treatments. Thereafter, these pictures where processed in a MatLab routine and the spatial dose distributions could be evaluated. These distributions were compared with the ones that were obtained from dedicated treatment planning's softwares. According to the results obtained, the FXG, allied with the CCD system, has shown to be a complementary tool in dosimetry, helping to prevent possible complications during breast cancer treatments.

  5. Stereotactic radiosurgery of prostate cancer - dose distribution for VMAT and CyberKnife techniques

    NASA Astrophysics Data System (ADS)

    Ślosarek, Krzysztof; Osewski, Wojciech; Grządziel, Aleksandra; Stąpór-Fudzińska, Małgorzata; Szlag, Marta

    2016-06-01

    New capabilities of biomedical accelerators allow for very precise depositing of the radiation dose and imaging verification during the therapy. In addition, computer algorithms calculating dose distributions are taking into account the increasing number of physical effects. Therefore, administration of high dose fractionation, which is consistent with radiobiology used in oncology, becomes safer and safer. Stereotactic radiosurgery (SRS), which is very precise irradiation with high dose fractionation is increasingly widespread use in radiotherapy of prostate cancer. For this purpose different biomedical accelerators are used. The aim of this study is to compare dose distributions for two techniques: VMAT and CyberKnife. Statistical analysis was performed for the two groups of patients treated by VMAT technique (25 patients), and CyberKnife technique (15 patients). The analysis shows that the dose distributions are comparable, both in the treated area (prostate) and in the critical organs (rectum, urinary bladder, femoral heads). The results show that stereotactic radiosurgery of prostate cancer can be carried out on CyberKnife accelerator as well as on the classical accelerator with the use of VMAT technique.

  6. [The use of polymer gel dosimetry to measure dose distribution around metallic implants].

    PubMed

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-10-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances. PMID:25327426

  7. Verification of dose distribution for volumetric modulated arc therapy total marrow irradiation in a humanlike phantom

    SciTech Connect

    Surucu, Murat; Yeginer, Mete; Kavak, Gulbin O.; Fan, John; Radosevich, James A.; Aydogan, Bulent

    2012-01-15

    Purpose: Volumetric modulated arc therapy (VMAT) treatment planning studies have been reported to provide good target coverage and organs at risk (OARs) sparing in total marrow irradiation (TMI). A comprehensive dosimetric study simulating the clinical situation as close as possible is a norm in radiotherapy before a technique can be used to treat a patient. Without such a study, it would be difficult to make a reliable and safe clinical transition especially with a technique as complicated as VMAT-TMI. To this end, the dosimetric feasibility of VMAT-TMI technique in terms of treatment planning, delivery efficiency, and the most importantly three dimensional dose distribution accuracy was investigated in this study. The VMAT-TMI dose distribution inside a humanlike Rando phantom was measured and compared to the dose calculated using RapidArc especially in the field junctions and the inhomogeneous tissues including the lungs, which is the dose-limiting organ in TMI. Methods: Three subplans with a total of nine arcs were used to treat the planning target volume (PTV), which was determined as all the bones plus the 3 mm margin. Thermoluminescent detectors (TLDs) were placed at 39 positions throughout the phantom. The measured TLD doses were compared to the calculated plan doses. Planar dose for each arc was verified using mapcheck. Results: TLD readings demonstrated accurate dose delivery, with a median dose difference of 0.5% (range: -4.3% and 6.6%) from the calculated dose in the junctions and in the inhomogeneous medium including the lungs. Conclusions: The results from this study suggest that RapidArc VMAT technique is dosimetrically accurate, safe, and efficient in delivering TMI within clinically acceptable time frame.

  8. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    SciTech Connect

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  9. Evaluation of gafchromic EBT film for intensity modulated radiation therapy dose distribution verification

    PubMed Central

    Sankar, A.; Kurup, P. G. Goplakrishna; Murali, V.; Ayyangar, Komanduri M.; Nehru, R. Mothilal; Velmurugan, J.

    2006-01-01

    This work was undertaken with the intention of investigating the possibility of clinical use of commercially available self-developing radiochromic film – Gafchromic EBT film – for IMRT dose verification. The dose response curves were generated for the films using VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak EDR2 films. It was found that the EBT film has a linear response between the dose ranges of 0 and 600 cGy. The dose-related characteristics of the EBT film, like post-irradiation color growth with time, film uniformity and effect of scanning orientation, were studied. There is up to 8.6% increase in the color density between 2 and 40 h after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative difference between calculated and measured dose distributions was analyzed using Gamma index with the tolerance of 3% dose difference and 3 mm distance agreement. EDR2 films showed good and consistent results with the calculated dose distribution, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large field IMRT verification. For IMRT of smaller field size (4.5 × 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films. PMID:21206669

  10. Collimator angle influence on dose distribution optimization for vertebral metastases using volumetric modulated arc therapy

    SciTech Connect

    Mancosu, Pietro; Cozzi, Luca; Fogliata, Antonella; Lattuada, Paola; Reggiori, Giacomo; Cantone, Marie Claire; Navarria, Pierina; Scorsetti, Marta

    2010-08-15

    Purpose: The cylindrical symmetry of vertebrae favors the use of volumetric modulated arc therapy in generating a dose ''hole'' on the center of the vertebrae limiting the dose to the spinal cord. The authors have evaluated if collimator angle is a significant parameter for dose distribution optimization in vertebral metastases. Methods: Three patients with one-three vertebrae involved were considered. Twenty-one differently optimized plans (nine single-arc and 12 double-arc plans) were performed, testing various collimator angle positions. Clinical target volume was defined as the whole vertebrae, excluding the spinal cord canal. The planning target volume (PTV) was defined as CTV+5 mm. Dose prescription was 5x4 Gy{sup 2} with normalization to PTV mean dose. The dose at 1 cm{sup 3} of spinal cord was limited to 11.5Gy. Results: The best plans in terms of target coverage and spinal cord sparing were achieved by two arcs and Arc1-80 deg. and Arc2-280 deg. collimator angles for all the cases considered (i.e., leaf travel parallel to the spinal cord primary orientation). If one arc is used, only 80 deg. reached the objectives. Conclusions: This study demonstrated the role of collimation rotation for the vertebrae metastasis irradiation, with the leaf travel parallel to the spinal cord primary orientation to be better than other solutions. Thus, optimal choice of collimator angle increases the optimization freedom to shape a desired dose distribution.

  11. Quantitative analysis of tomotherapy, linear-accelerator-based 3D conformal radiation therapy, intensity-modulated radiation therapy, and 4D conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Jong-Woong; Park, Hoon-Hee

    2012-04-01

    This study quantified, evaluated and analyzed the radiation dose to which tumors and normal tissues were exposed in 3D conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT) and tomotherapy by using a dose volume histogram (DVH) that represented the volume dose and the dose distribution of anatomical structures in the evaluation of treatment planning. Furthermore, a comparison was made for the dose to the gross tumor volume (GTV) and the planning target volume (PTV) of organ to be treated based on the change in field size for three- and four-dimensional computed tomography (3D-CT and 4D-CT) (gating based) and in the histogram with a view to proving the usefulness of 4D-CT therapy, which corresponds to respiration-gated radiation therapy. According to the study results, a comparison of 3D CRT, IMRT with a linear accelerator (LINAC), and tomotherapy demonstrated that the GTV of the cranium was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 5.2% and 4.6%, respectively. The GTV of the neck was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 6.5% and 2.0%, respectively. The GTV of the pelvis was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 8.6% and 3.7%, respectively. When the comparison was made for the 3D-CT and the 4D-CT (gating based) treatment equipment, the GTV and the PTV became smaller for 4D-CT treatment planning than for 3D-CT, which could reduce the area in which normal tissues in the surroundings are exposed to an unnecessary radiation dose. In addition, when 4D-CT treatment planning (gating based) was used, the radiation dose could be concentrated on the GTV, CTV or PTV, which meant that the treatment area exceeded that when 3D-CT's treatment planning was used. Moreover, the radiation dose on nearby normal tissues could be reduced. When 4D-CT treatment planning (gating based) was utilized, unnecessary areas that were exposed to a radiation dose could be reduced more than they could

  12. Optimizing radioimmunotherapy by matching dose distribution with tumor structure using 3D reconstructions of serial images.

    PubMed

    Flynn, A A; Pedley, R B; Green, A J; Boxer, G M; Boden, R; Begent, R H

    2001-10-01

    The biological effect of radioimmunotherapy (RIT) is most commonly assessed in terms of the absorbed radiation dose. In tumor, conventional dosimetry methods assume a uniform radionuclide and calculate a mean dose throughout the tumor. However, the vasculature of solid tumors tends to be highly irregular and the systemic delivery of antibodies is therefore heterogeneous. Tumor-specific antibodies preferentially localize in the viable, radiosensitive parts of the tumor whereas non-specific antibodies can penetrate into the necrosis where the dose is wasted. As a result, the observed biological effect can be very different to the predicted effect from conventional dose estimates. The purpose of this study is to assess the potential for optimizing the biological effect of RIT by matching the dose-distribution with tumor structure through the selection of appropriate antibodies and radionuclides. Storage phosphor plate technology was used to acquire images of the antibody distribution in serial tumor sections. Images of the distributions of a trivalent (TFM), bivalent (A5B7-IgG), monovalent (MFE-23) and a non-specific antibody (MOPC) were obtained. These images were registered with corresponding images showing tumor morphology. Serial images were reconstructed to form 3D maps of the antibody distribution and tumor structure. Convolution of the image of antibody distribution with beta dose point kernals generated dose-rate distributions for 14C, 131I and 90Y. These were statistically compared with the tumor structure. The highest correlation was obtained for the multivalent antibodies combined with 131I, due to specific retention in viable areas of tumor coupled with the fact that much of the dose was deposted locally. With decreasing avidity the correlation also decreased and with the non-specific antibody this correlation was negative, indicating higher concentrations in the necrotic regions. In conclusion, the dose distribution can be optimized in tumor by selecting

  13. SU-E-T-313: The Accuracy of the Acuros XB Advanced Dose Calculation Algorithm for IMRT Dose Distributions in Head and Neck

    SciTech Connect

    Araki, F; Onizuka, R; Ohno, T; Tomiyama, Y; Hioki, K

    2014-06-01

    Purpose: To investigate the accuracy of the Acuros XB version 11 (AXB11) advanced dose calculation algorithm by comparing with Monte Caro (MC) calculations. The comparisons were performed with dose distributions for a virtual inhomogeneity phantom and intensity-modulated radiotherapy (IMRT) in head and neck. Methods: Recently, AXB based on Linear Boltzmann Transport Equation has been installed in the Eclipse treatment planning system (Varian Medical Oncology System, USA). The dose calculation accuracy of AXB11 was tested by the EGSnrc-MC calculations. In additions, AXB version 10 (AXB10) and Analytical Anisotropic Algorithm (AAA) were also used. First the accuracy of an inhomogeneity correction for AXB and AAA algorithms was evaluated by comparing with MC-calculated dose distributions for a virtual inhomogeneity phantom that includes water, bone, air, adipose, muscle, and aluminum. Next the IMRT dose distributions for head and neck were compared with the AXB and AAA algorithms and MC by means of dose volume histograms and three dimensional gamma analysis for each structure (CTV, OAR, etc.). Results: For dose distributions with the virtual inhomogeneity phantom, AXB was in good agreement with those of MC, except the dose in air region. The dose in air region decreased in order of MCdose kernel of water, the doses in regions for air, bone, and aluminum considerably became higher than those of AXB and MC. The pass rates of the gamma analysis for IMRT dose distributions in head and neck were similar to those of MC in order of AXB11dose calculation accuracy of AXB11 was almost equivalent to the MC dose calculation.

  14. Measurement Technique of Dose Rate Distribution of Ionization Sources with Unstable in Time Beam Parameters

    NASA Astrophysics Data System (ADS)

    Stuchebrov, S. G.; Miloichikova, I. A.; Danilova, I. B.

    2016-01-01

    The article describes a new technique for the average values of radiation dose measurement for the unstable gamma-ray sources which are used in non-destructive testing. The method is based on usage of different types of compact accumulative dosimeters. Spatially distributed position sensitive dosimetry system based on compact sensitive elements was created. Size and spatial resolution of the system of the dosimetry system are chosen taking into account sources characteristics. The proposed method has been tested on the measurement of dose distribution of several sources of X-ray and gamma-radiation based on X-ray tubes, electronic accelerator betatrons and linear electron accelerators.

  15. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    SciTech Connect

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  16. Isotoxic Dose Escalation in the Treatment of Lung Cancer by Means of Heterogeneous Dose Distributions in the Presence of Respiratory Motion

    SciTech Connect

    Baker, Mariwan; Nielsen, Morten; Hansen, Olfred; Jahn, Jonas Westberg; Korreman, Stine; Brink, Carsten

    2011-11-01

    Purpose: To test, in the presence of intrafractional respiration movement, a margin recipe valid for a homogeneous and conformal dose distribution and to test whether the use of smaller margins combined with heterogeneous dose distributions allows an isotoxic dose escalation when respiratory motion is considered. Methods and Materials: Twenty-three Stage II-III non-small-cell lung cancer patients underwent four-dimensional computed tomography scanning. The gross tumor volume and clinical target volume (CTV) were outlined in the mid-ventilation phase. The CTV-to-planning target volume (PTV) margin was calculated by use of a standard margin recipe and the patient-specific respiration pattern. Standard three-dimensional treatment plans were generated and recalculated on the remaining respiration phases. The planning was repeated for a CTV-to-PTV margin decreased by 2.5 and 5 mm relative to the initial margin in all directions. Time-averaged dose-volume histograms (four-dimensional dose-volume histograms) were calculated to evaluate the CTV-to-PTV margin. Finally, the dose was escalated in the plans with decreased PTV such that the mean lung dose (predictor of radiation-induced pneumonitis) was equal to mean lung dose in the plan by use of the initially calculated margin. Results: A reduction of the standard margin by 2.5 mm compared with the recipe resulted in too low of a minimum dose for some patients. A combination of dose escalation and use of heterogeneous dose distribution was able to increase the minimum dose to the target by approximately 10% and 20% for a CTV-to-PTV margin reduction of 2.5 mm and 5.0 mm, respectively. Conclusion: The margin recipe is valid for intrafractional respiration-induced tumor motions. It is possible to increase the dose to the target without increased mean lung dose with an inhomogeneous dose distribution.

  17. 4D Bioprinting for Biomedical Applications.

    PubMed

    Gao, Bin; Yang, Qingzhen; Zhao, Xin; Jin, Guorui; Ma, Yufei; Xu, Feng

    2016-09-01

    3D bioprinting has been developed to effectively and rapidly pattern living cells and biomaterials, aiming to create complex bioconstructs. However, placing biocompatible materials or cells into direct contact via bioprinting is necessary but insufficient for creating these constructs. Therefore, '4D bioprinting' has emerged recently, where 'time' is integrated with 3D bioprinting as the fourth dimension, and the printed objects can change their shapes or functionalities when an external stimulus is imposed or when cell fusion or postprinting self-assembly occurs. In this review, we highlight recent developments in 4D bioprinting technology. Additionally, we review the uses of 4D bioprinting in tissue engineering and drug delivery. Finally, we discuss the major roadblocks to this approach, together with possible solutions, to provide future perspectives on this technology. PMID:27056447

  18. Determination of the threshold dose distribution in photodynamic action from in vitro experiments.

    PubMed

    de Faria, Clara Maria Gonçalves; Inada, Natalia Mayumi; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2016-09-01

    The concept of threshold in photodynamic action on cells or microorganisms is well observed in experiments but not fully explored on in vitro experiments. The intercomparison between light and used photosensitizer among many experiments is also poorly evaluated. In this report, we present an analytical model that allows extracting from the survival rate experiments the data of the threshold dose distribution, ie, the distribution of energies and photosensitizer concentration necessary to produce death of cells. Then, we use this model to investigate photodynamic therapy (PDT) data previously published in literature. The concept of threshold dose distribution instead of "single value of threshold" is a rich concept for the comparison of photodynamic action in different situations, allowing analyses of its efficiency as well as determination of optimized conditions for PDT. We observed that, in general, as it becomes more difficult to kill a population, the distribution tends to broaden, which means it presents a large spectrum of threshold values within the same cell type population. From the distribution parameters (center peak and full width), we also observed a clear distinction among cell types regarding their response to PDT that can be quantified. Comparing data obtained from the same cell line and used photosensitizer (PS), where the only distinct condition was the light source's wavelength, we found that the differences on the distribution parameters were comparable to the differences on the PS absorption. At last, we observed evidence that the threshold dose distribution matches the curve of apoptotic activity for some PSs. PMID:27371916

  19. A graphical user interface for calculation of 3D dose distribution using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Chow, J. C. L.; Leung, M. K. K.

    2008-02-01

    A software graphical user interface (GUI) for calculation of 3D dose distribution using Monte Carlo (MC) simulation is developed using MATLAB. This GUI (DOSCTP) provides a user-friendly platform for DICOM CT-based dose calculation using EGSnrcMP-based DOSXYZnrc code. It offers numerous features not found in DOSXYZnrc, such as the ability to use multiple beams from different phase-space files, and has built-in dose analysis and visualization tools. DOSCTP is written completely in MATLAB, with integrated access to DOSXYZnrc and CTCREATE. The program function may be divided into four subgroups, namely, beam placement, MC simulation with DOSXYZnrc, dose visualization, and export. Each is controlled by separate routines. The verification of DOSCTP was carried out by comparing plans with different beam arrangements (multi-beam/photon arc) on an inhomogeneous phantom as well as patient CT between the GUI and Pinnacle3. DOSCTP was developed and verified with the following features: (1) a built-in voxel editor to modify CT-based DOSXYZnrc phantoms for research purposes; (2) multi-beam placement is possible, which cannot be achieved using the current DOSXYZnrc code; (3) the treatment plan, including the dose distributions, contours and image set can be exported to a commercial treatment planning system such as Pinnacle3 or to CERR using RTOG format for plan evaluation and comparison; (4) a built-in RTOG-compatible dose reviewer for dose visualization and analysis such as finding the volume of hot/cold spots in the 3D dose distributions based on a user threshold. DOSCTP greatly simplifies the use of DOSXYZnrc and CTCREATE, and offers numerous features that not found in the original user-code. Moreover, since phase-space beams can be defined and generated by the user, it is a particularly useful tool to carry out plans using specifically designed irradiators/accelerators that cannot be found in the Linac library of commercial treatment planning systems.

  20. Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research

    PubMed Central

    Panta, Raj K.; Segars, Paul; Yin, Fang-Fang; Cai, Jing

    2015-01-01

    Aims To establish a framework to implement the 4D integrated extended cardiac torso (XCAT) digital phantom for 4D radiotherapy (RT) research. Materials and Methods A computer program was developed to facilitate the characterization and implementation of the 4D XCAT phantom. The program can (1) generate 4D XCAT images with customized parameter files; (2) review 4D XCAT images; (3) generate composite images from 4D XCAT images; (4) track motion of selected region-of-interested (ROI); (5) convert XCAT raw binary images into DICOM format; (6) analyse clinically acquired 4DCT images and real-time position management (RPM) respiratory signal. Motion tracking algorithm was validated by comparing with manual method. Major characteristics of the 4D XCAT phantom were studied. Results The comparison between motion tracking and manual measurements of lesion motion trajectory showed a small difference between them (mean difference in motion amplitude: 1.2 mm). The maximum lesion motion decreased nearly linearly (R2 = 0.97) as its distance to the diaphragm (DD) increased. At any given DD, lesion motion amplitude increased nearly linearly (R 2 range: 0.89 to 0.95) as the inputted diaphragm motion increased. For a given diaphragm motion, the lesion motion is independent of the lesion size at any given DD. The 4D XCAT phantom can closely reproduce irregular breathing profile. The end-to-end test showed that clinically comparable treatment plans can be generated successfully based on 4D XCAT images. Conclusions An integrated computer program has been developed to generate, review, analyse, process, and export the 4D XCAT images. A framework has been established to implement the 4D XCAT phantom for 4D RT research. PMID:23361276

  1. Mapping of dose distribution from IMRT onto MRI-guided high dose rate brachytherapy using deformable image registration for cervical cancer treatments: preliminary study with commercially available software

    PubMed Central

    Huq, M. Saiful; Houser, Chris; Beriwal, Sushil; Michalski, Dariusz

    2014-01-01

    Purpose For patients undergoing external beam radiation therapy (EBRT) and brachytherapy, recommendations for target doses and constraints are based on calculation of the equivalent dose in 2 Gy fractions (EQD2) from each phase. At present, the EBRT dose distribution is assumed to be uniform throughout the pelvis. We performed a preliminary study to determine whether deformable dose distribution mapping from the EBRT onto magnetic resonance (MR) images for the brachytherapy would yield differences in doses for organs at risk (OARs) and high-risk clinical target volume (HR-CTV). Material and methods Nine cervical cancer patients were treated to a total dose of 45 Gy in 25 fractions using intensity-modulated radiation therapy (IMRT), followed by MRI-based 3D high dose rate (HDR) brachytherapy. Retrospectively, the IMRT planning CT images were fused with the MR image for each fraction of brachytherapy using deformable image registration. The deformed IMRT dose onto MR images were converted to EQD2 and compared to the uniform dose assumption. Results For all patients, the EQD2 from the EBRT phase was significantly higher with deformable registration than with the conventional uniform dose distribution assumption. The mean EQD2 ± SD for HR-CTV D90 was 45.7 ± 0.7 Gy vs. 44.3 Gy for deformable vs. uniform dose distribution, respectively (p < 0.001). The dose to 2 cc of the bladder, rectum, and sigmoid was 46.4 ± 1.2 Gy, 46.2 ± 1.0 Gy, and 48.0 ± 2.5 Gy, respectively with deformable dose distribution, and was significantly higher than with uniform dose distribution (43.2 Gy for all OAR, p < 0.001). Conclusions This study reveals that deformed EBRT dose distribution to HR-CTV and OARs in MR images for brachytherapy is technically feasible, and achieves differences compared to a uniform dose distribution. Therefore, the assumption that EBRT contributes the same dose value may need to be carefully investigated further based on deformable image registration. PMID:25097559

  2. Monte Carlo calculation of dose distributions in oligometastatic patients planned for spine stereotactic ablative radiotherapy

    NASA Astrophysics Data System (ADS)

    Moiseenko, V.; Liu, M.; Loewen, S.; Kosztyla, R.; Vollans, E.; Lucido, J.; Fong, M.; Vellani, R.; Popescu, I. A.

    2013-10-01

    Dosimetric consequences of plans optimized using the analytical anisotropic algorithm (AAA) implemented in the Varian Eclipse treatment planning system for spine stereotactic body radiotherapy were evaluated by re-calculating with BEAMnrc/DOSXYZnrc Monte Carlo. Six patients with spinal vertebral metastases were planned using volumetric modulated arc therapy. The planning goal was to cover at least 80% of the planning target volume with a prescribed dose of 35 Gy in five fractions. Tissue heterogeneity-corrected AAA dose distributions for the planning target volume and spinal canal planning organ-at-risk volume were compared against those obtained from Monte Carlo. The results showed that the AAA overestimated planning target volume coverage with the prescribed dose by up to 13.5% (mean 8.3% +/- 3.2%) when compared to Monte Carlo simulations. Maximum dose to spinal canal planning organ-at-risk volume calculated with Monte Carlo was consistently smaller than calculated with the treatment planning system and remained under spinal cord dose tolerance. Differences in dose distribution appear to be related to the dosimetric effects of accounting for body composition in Monte Carlo simulations. In contrast, the treatment planning system assumes that all tissues are water-equivalent in their composition and only differ in their electron density.

  3. 3D dose and TCP distribution for radionuclide therapy in nuclear medicine

    SciTech Connect

    Valente, M.; Malano, F.; Perez, P.

    2010-08-04

    A common feature to any radiant therapy is that lesion and health tissue dosimetry provides relevant information for treatment optimization along with dose-efficacy and dose-complication correlation studies. Nowadays, different radionuclide therapies are commonly available, assessing both systemic and loco-regional approach and using different alfa-, beta-and gamma-emitting isotopes and binding molecules. It is well established, that specific dosimetric approaches become necessary according to each therapy modality. Sometimes, observed activity distribution can be satisfactory represented by simple geometrical models. However, Monte Carlo techniques are capable of better approaches, therefore becoming sometimes the only way to get dosimetric data since the patient-specific situation can not be adequately represented by conventional dosimetry techniques. Therefore, due to strong limitations of traditional and standard methods, this work concentrates on the development of a dedicated and novel calculation system in order to assess the dose distribution within the irradiated patient. However, physical dose may not be enough information in order to establish real deterministic biological/metabolic effects; therefore complementary radiobiological models have been suitably introduced with the aim of performing realistic 3D dose as well as corresponding Tumor Control Probability distribution calculation.

  4. 3D dose and TCP distribution for radionuclide therapy in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Valente, M.; Malano, F.; Pérez, P.

    2010-08-01

    A common feature to any radiant therapy is that lesion and health tissue dosimetry provides relevant information for treatment optimization along with dose-efficacy and dose-complication correlation studies. Nowadays, different radionuclide therapies are commonly available, assessing both systemic and loco-regional approach and using different alfa-, beta-and gamma-emitting isotopes and binding molecules. It is well established, that specific dosimetric approaches become necessary according to each therapy modality. Sometimes, observed activity distribution can be satisfactory represented by simple geometrical models. However, Monte Carlo techniques are capable of better approaches, therefore becoming sometimes the only way to get dosimetric data since the patient-specific situation can not be adequately represented by conventional dosimetry techniques. Therefore, due to strong limitations of traditional and standard methods, this work concentrates on the development of a dedicated and novel calculation system in order to assess the dose distribution within the irradiated patient. However, physical dose may not be enough information in order to establish real deterministic biological/metabolic effects; therefore complementary radiobiological models have been suitably introduced with the aim of performing realistic 3D dose as well as corresponding Tumor Control Probability distribution calculation.

  5. Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery

    SciTech Connect

    García-Garduño, O. A. E-mail: amanda.garcia.g@gmail.com; Rodríguez-Ponce, M.; Gamboa-deBuen, I.; Rodríguez-Villafuerte, M.; Galván de la Cruz, O. O.; and others

    2014-09-15

    Purpose: To assess the impact of the detector used to commission small photon beams on the calculated dose distribution in stereotactic radiosurgery (SRS). Methods: In this study, six types of detectors were used to characterize small photon beams: three diodes [a silicon stereotactic field diode SFD, a silicon diode SRS, and a silicon diode E], an ionization chamber CC01, and two types of radiochromic film models EBT and EBT2. These detectors were used to characterize circular collimated beams that were generated by a Novalis linear accelerator. This study was conducted in two parts. First, the following dosimetric data, which are of particular interest in SRS, were compared for the different detectors: the total scatter factor (TSF), the tissue phantom ratios (TPRs), and the off-axis ratios (OARs). Second, the commissioned data sets were incorporated into the treatment planning system (TPS) to compare the calculated dose distributions and the dose volume histograms (DVHs) that were obtained using the different detectors. Results: The TSFs data measured by all of the detectors were in good agreement with each other within the respective statistical uncertainties: two exceptions, where the data were systematically below those obtained for the other detectors, were the CC01 results for all of the circular collimators and the EBT2 film results for circular collimators with diameters below 10.0 mm. The OAR results obtained for all of the detectors were in excellent agreement for all of the circular collimators. This observation was supported by the gamma-index test. The largest difference in the TPR data was found for the 4.0 mm circular collimator, followed by the 10.0 and 20.0 mm circular collimators. The results for the calculated dose distributions showed that all of the detectors passed the gamma-index test at 100% for the 3 mm/3% criteria. The aforementioned observation was true regardless of the size of the calculation grid for all of the circular collimators

  6. A Monte Carlo study on dose distribution evaluation of Flexisource 192Ir brachytherapy source

    PubMed Central

    Alizadeh, Majid; Ghorbani, Mahdi; Haghparast, Abbas; Zare, Naser; Ahmadi Moghaddas, Toktam

    2015-01-01

    Aim The aim of this study is to evaluate the dose distribution of the Flexisource 192Ir source. Background Dosimetric evaluation of brachytherapy sources is recommended by task group number 43 (TG. 43) of American Association of Physicists in Medicine (AAPM). Materials and methods MCNPX code was used to simulate Flexisource 192Ir source. Dose rate constant and radial dose function were obtained for water and soft tissue phantoms and compared with previous data on this source. Furthermore, dose rate along the transverse axis was obtained by simulation of the Flexisource and a point source and the obtained data were compared with those from Flexiplan treatment planning system (TPS). Results The values of dose rate constant obtained for water and soft tissue phantoms were equal to 1.108 and 1.106, respectively. The values of the radial dose function are listed in the form of tabulated data. The values of dose rate (cGy/s) obtained are shown in the form of tabulated data and figures. The maximum difference between TPS and Monte Carlo (MC) dose rate values was 11% in a water phantom at 6.0 cm from the source. Conclusion Based on dosimetric parameter comparisons with values previously published, the accuracy of our simulation of Flexisource 192Ir was verified. The results of dose rate constant and radial dose function in water and soft tissue phantoms were the same for Flexisource and point sources. For Flexisource 192Ir source, the results of TPS calculations in a water phantom were in agreement with the simulations within the calculation uncertainties. Furthermore, the results from the TPS calculation for Flexisource and MC calculation for a point source were practically equal within the calculation uncertainties. PMID:25949224

  7. 4D-Var Developement at GMAO

    NASA Technical Reports Server (NTRS)

    Pelc, Joanna S.; Todling, Ricardo; Akkraoui, Amal El

    2014-01-01

    The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.

  8. Dose distribution in the Russian Segment of the International Space Station.

    PubMed

    Hajek, M; Berger, T; Fugger, M; Fürstner, M; Vana, N; Akatov, Y; Shurshakov, V; Arkhangelsky, V

    2006-01-01

    Absorbed dose and average linear energy transfer (LET) were assessed by means of (7)LiF:Mg,Ti (TLD-700) thermoluminescent (TL) detectors for different panels on-board the Russian Segment of the International Space Station in the timeframe between March and November 2002 (233 d). A technique is presented to correct the measured absorbed dose values for TL efficiency in the radiation climate on-board the spacecraft. Average LET is determined from the high-temperature TL emission in the TLD-700 glow curve and used as a parameter in the TL efficiency correction. Depending on the shielding distribution, the efficiency-corrected absorbed dose varies between 154 +/- 5 microGy d(-1) in panel no. 327 (core block ceiling) and 191 +/- 3 microGy d(-1) in panel no. 110 (core block central axis, floor). The experimental data are compared with the model calculations by using detailed shielding distributions and orbit parameters as inputs. PMID:16606660

  9. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator

    PubMed Central

    Wu, Chin-Hui; Liao, Yi-Jen; Shiau, An-Cheng; Lin, Hsin-Yu; Hsueh Liu, Yen-Wan; Hsu, Shih-Ming

    2015-01-01

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR 192Ir dose distribution in cervical cancer patients when performing brachytherapy using a metal-containing applicator. Thermoluminescent dosimeter (TLD) measurements and Monte Carlo N-Particle eXtended (MCNPX) code were used to explore the doses to the rectum and bladder when using a Henschke applicator containing metal during brachytherapy. When the applicator was assumed to be present, the absolute dose difference between the TLD measurement and MCNPX simulation values was within approximately 5%. A comparison of the MCNPX simulation and TPS calculation values revealed that the TPS overestimated the International Commission of Radiation Units and Measurement (ICRU) rectum and bladder reference doses by 57.78% and 49.59%, respectively. We therefore suggest that the TPS should be modified to account for the shielding effects of the applicator to ensure the accuracy of the delivered doses. PMID:26658746

  10. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator.

    PubMed

    Wu, Chin-Hui; Liao, Yi-Jen; Shiau, An-Cheng; Lin, Hsin-Yu; Hsueh Liu, Yen-Wan; Hsu, Shih-Ming

    2015-01-01

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR (192)Ir dose distribution in cervical cancer patients when performing brachytherapy using a metal-containing applicator. Thermoluminescent dosimeter (TLD) measurements and Monte Carlo N-Particle eXtended (MCNPX) code were used to explore the doses to the rectum and bladder when using a Henschke applicator containing metal during brachytherapy. When the applicator was assumed to be present, the absolute dose difference between the TLD measurement and MCNPX simulation values was within approximately 5%. A comparison of the MCNPX simulation and TPS calculation values revealed that the TPS overestimated the International Commission of Radiation Units and Measurement (ICRU) rectum and bladder reference doses by 57.78% and 49.59%, respectively. We therefore suggest that the TPS should be modified to account for the shielding effects of the applicator to ensure the accuracy of the delivered doses. PMID:26658746

  11. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3

    SciTech Connect

    Cusumano, Davide; Fumagalli, Maria L.; Marchetti, Marcello; Fariselli, Laura; De Martin, Elena

    2015-10-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.

  12. Intra-tumor distribution of PEGylated liposome upon repeated injection: No possession by prior dose.

    PubMed

    Nakamura, Hiroyuki; Abu Lila, Amr S; Nishio, Miho; Tanaka, Masao; Ando, Hidenori; Kiwada, Hiroshi; Ishida, Tatsuhiro

    2015-12-28

    Liposomes have proven to be a viable means for the delivery of chemotherapeutic agents to solid tumors. However, significant variability has been detected in their intra-tumor accumulation and distribution, resulting in compromised therapeutic outcomes. We recently examined the intra-tumor accumulation and distribution of weekly sequentially administered oxaliplatin (l-OHP)-containing PEGylated liposomes. In that study, the first and second doses of l-OHP-containing PEGylated liposomes were distributed diversely and broadly within tumor tissues, resulting in a potent anti-tumor efficacy. However, little is known about the mechanism underlying such a diverse and broad liposome distribution. Therefore, in the present study, we investigated the influence of dosage interval on the intra-tumor accumulation and distribution of "empty" PEGylated liposomes. Intra-tumor distribution of sequentially administered "empty" PEGylated liposomes was altered in a dosing interval-dependent manner. In addition, the intra-tumor distribution pattern was closely related to the chronological alteration of tumor blood flow as well as vascular permeability in the growing tumor tissue. These results suggest that the sequential administrations of PEGylated liposomes in well-spaced intervals might allow the distribution to different areas and enhance the total bulk accumulation within tumor tissue, resulting in better therapeutic efficacy of the encapsulated payload. This study may provide useful information for a better design of therapeutic regimens involving multiple administrations of nanocarrier drug delivery systems. PMID:26548975

  13. Characterisation of mega-voltage electron pencil beam dose distributions: viability of a measurement-based approach.

    PubMed

    Barnes, M P; Ebert, M A

    2008-03-01

    The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions. PMID:18488959

  14. Dosimetric and Clinical Analysis of Spatial Distribution of the Radiation Dose in Gamma Knife Radiosurgery for Vestibular Schwannoma

    SciTech Connect

    Massager, Nicolas; Lonneville, Sarah; Delbrouck, Carine; Benmebarek, Nadir; Desmedt, Francoise; Devriendt, Daniel

    2011-11-15

    Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradient index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.

  15. Simultaneous optimization of dose distributions and fractionation schemes in particle radiotherapy

    SciTech Connect

    Unkelbach, Jan; Zeng, Chuan; Engelsman, Martijn

    2013-09-15

    Purpose: The paper considers the fractionation problem in intensity modulated proton therapy (IMPT). Conventionally, IMPT fields are optimized independently of the fractionation scheme. In this work, we discuss the simultaneous optimization of fractionation scheme and pencil beam intensities.Methods: This is performed by allowing for distinct pencil beam intensities in each fraction, which are optimized using objective and constraint functions based on biologically equivalent dose (BED). The paper presents a model that mimics an IMPT treatment with a single incident beam direction for which the optimal fractionation scheme can be determined despite the nonconvexity of the BED-based treatment planning problem.Results: For this model, it is shown that a small α/β ratio in the tumor gives rise to a hypofractionated treatment, whereas a large α/β ratio gives rise to hyperfractionation. It is further demonstrated that, for intermediate α/β ratios in the tumor, a nonuniform fractionation scheme emerges, in which it is optimal to deliver different dose distributions in subsequent fractions. The intuitive explanation for this phenomenon is as follows: By varying the dose distribution in the tumor between fractions, the same total BED can be achieved with a lower physical dose. If it is possible to achieve this dose variation in the tumor without varying the dose in the normal tissue (which would have an adverse effect), the reduction in physical dose may lead to a net reduction of the normal tissue BED. For proton therapy, this is indeed possible to some degree because the entrance dose is mostly independent of the range of the proton pencil beam.Conclusions: The paper provides conceptual insight into the interdependence of optimal fractionation schemes and the spatial optimization of dose distributions. It demonstrates the emergence of nonuniform fractionation schemes that arise from the standard BED model when IMPT fields and fractionation scheme are optimized

  16. R4D Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1956-01-01

    This Photograph taken in 1956 shows the first of three R4D Skytrain aircraft on the ramp behind the NACA High-Speed Flight Station. NACA stood for the National Advisory Committee for Aeronautics, which evolved into the National Aeronautics and Space Administration (NASA) in 1958. The R4D Skytrain was one of the early workhorses for NACA and NASA at Edwards Air Force Base, California, from 1952 to 1984. Designated the R4D by the U.S. Navy, the aircraft was called the C-47 by the U.S. Army and U.S. Air Force and the DC-3 by its builder, Douglas Aircraft. Nearly everyone called it the 'Gooney Bird.' In 1962, Congress consolidated the military-service designations and called all of them the C-47. After that date, the R4D at NASA's Flight Research Center (itself redesignated the Dryden Flight Research Center in 1976) was properly called a C-47. Over the 32 years it was used at Edwards, three different R4D/C-47s were used to shuttle personnel and equipment between NACA/NASA Centers and test locations throughout the country and for other purposes. One purpose was landing on 'dry' lakebeds used as alternate landing sites for the X-15, to determine whether their surfaces were hard (dry) enough for the X-15 to land on in case an emergency occurred after its launch and before it could reach Rogers Dry Lake at Edwards Air Force Base. The R4D/C-47 served a variety of needs, including serving as the first air-tow vehicle for the M2-F1 lifting body (which was built of mahogany plywood). The C-47 (as it was then called) was used for 77 tows before the M2-F1 was retired for more advanced lifting bodies that were dropped from the NASA B-52 'Mothership.' The R4D also served as a research aircraft. It was used to conduct early research on wing-tip-vortex flow visualization as well as checking out the NASA Uplink Control System. The first Gooney Bird was at the NACA High-Speed Flight Research Station (now the Dryden Flight Research Center) from 1952 to 1956 and flew at least one cross

  17. Influence of Rotations on Dose Distributions in Spinal Stereotactic Body Radiotherapy (SBRT)

    PubMed Central

    Gutfeld, Orit; Kretzler, Annette E; Kashani, Rojano; Tatro, Daniel; Balter, James M

    2009-01-01

    Purpose To evaluate the impact of rotational setup errors on dose distribution in spinal stereotactic body radiotherapy (SBRT). Methods and Materials 39 Cone Beam CT (CBCT) scans from 16 SBRT treatment courses were analyzed. Alignment (including rotation) to the treatment planning CT was performed, followed by translational alignment that reproduced the actual positioning. The planned fluence was then applied to determine the delivered dose to the targets and organs at risk. Results The mean PTV volume was 71.01 mL (SD ± 60.05, range 22.62 – 250.65 mL). Prescribed dose (to the 62 – 82% isodose) was 14 – 30 Gy in one to six fractions. The average rotational displacements were 0.38 ± 1.21, 1.12 ± 1.82 and −0.51 ± 2.0 degrees with maximal rotations of −4.29, 5.76 and −6.64 degrees along the x (pitch), y (yaw), and z (roll) axes, respectively. PTV coverage changed by an average of −0.07 Gy (SD ± 0.20 Gy) between the rotated and the original plan, representing 0.92% of prescription dose (SD ± 2.65%). For the spinal cord, planned with 2 mm expansion to create a planning organ at risk volume (PRV), the difference in minimum dose to the upper 10% of the PRV volume was 0.03 ± 0.3 Gy (maximum 0.9 Gy). Other organs at risk saw insignificant changes in dose. Conclusions PRV expansion generally assures safe treatment delivery in the face of typically encountered rotations. Given the variability of delivered dose within this expansion for certain cases, caution should be taken to properly interpret doses to the cord when considering clinical dose limits. PMID:19306757

  18. Gamma Knife 3-D dose distribution near the area of tissue inhomogeneities by normoxic gel dosimetry

    SciTech Connect

    Isbakan, Fatih; Uelgen, Yekta; Bilge, Hatice; Ozen, Zeynep; Agus, Onur; Buyuksarac, Bora

    2007-05-15

    The accuracy of the Leksell GammaPlan registered , the dose planning system of the Gamma Knife Model-B, was evaluated near tissue inhomogeneities, using the gel dosimetry method. The lack of electronic equilibrium around the small-diameter gamma beams can cause dose calculation errors in the neighborhood of an air-tissue interface. An experiment was designed to investigate the effects of inhomogeneity near the paranosal sinuses cavities. The homogeneous phantom was a spherical glass balloon of 16 cm diameter, filled with MAGIC gel; i.e., the normoxic polymer gel. Two hollow PVC balls of 2 cm radius, filled with N{sub 2} gas, represented the air cavities inside the inhomogeneous phantom. For dose calibration purposes, 100 ml gel-containing vials were irradiated at predefined doses, and then scanned in a MR unit. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. Dose distributions are the results of a single shot of irradiation, obtained by collimating all 201 cobalt sources to a known target in the phantom. Both phantoms were irradiated at the same dose level at the same coordinates. Stereotactic frames and fiducial markers were attached to the phantoms prior to MR scanning. The dose distribution predicted by the Gamma Knife planning system was compared with that of the gel dosimetry. As expected, for the homogeneous phantom the isodose diameters measured by the gel dosimetry and the GammaPlan registered differed by 5% at most. However, with the inhomogeneous phantom, the dose maps in the axial, coronal and sagittal planes were spatially different. The diameters of the 50% isodose curves differed 43% in the X axis and 32% in the Y axis for the Z=90 mm axial plane; by 44% in the X axis and 24% in the Z axis for the Y=90 mm coronal plane; and by 32% in the Z axis and 42% in the Y axis for the X=92 mm sagittal plane. The lack of ability of the GammaPlan registered to predict the rapid dose fall off, due

  19. Gamma Knife 3-D dose distribution near the area of tissue inhomogeneities by normoxic gel dosimetry.

    PubMed

    Isbakan, Fatih; Ulgen, Yekta; Bilge, Hatice; Ozen, Zeynep; Agus, Onur; Buyuksarac, Bora

    2007-05-01

    The accuracy of the Leksell GammaPlan, the dose planning system of the Gamma Knife Model-B, was evaluated near tissue inhomogeneities, using the gel dosimetry method. The lack of electronic equilibrium around the small-diameter gamma beams can cause dose calculation errors in the neighborhood of an air-tissue interface. An experiment was designed to investigate the effects of inhomogeneity near the paranosal sinuses cavities. The homogeneous phantom was a spherical glass balloon of 16 cm diameter, filled with MAGIC gel; i.e., the normoxic polymer gel. Two hollow PVC balls of 2 cm radius, filled with N2 gas, represented the air cavities inside the inhomogeneous phantom. For dose calibration purposes, 100 ml gel-containing vials were irradiated at predefined doses, and then scanned in a MR unit. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. Dose distributions are the results of a single shot of irradiation, obtained by collimating all 201 cobalt sources to a known target in the phantom. Both phantoms were irradiated at the same dose level at the same coordinates. Stereotactic frames and fiducial markers were attached to the phantoms prior to MR scanning. The dose distribution predicted by the Gamma Knife planning system was compared with that of the gel dosimetry. As expected, for the homogeneous phantom the isodose diameters measured by the gel dosimetry and the GammaPlan differed by 5% at most. However, with the inhomogeneous phantom, the dose maps in the axial, coronal and sagittal planes were spatially different. The diameters of the 50% isodose curves differed 43% in the X axis and 32% in the Y axis for the Z =90 mm axial plane; by 44% in the X axis and 24% in the Z axis for the Y=90 mm coronal plane; and by 32% in the Z axis and 42% in the Y axis for the X=92 mm sagittal plane. The lack of ability of the GammaPlan to predict the rapid dose fall off, due to the air cavities behind or near the

  20. Effect of tissue inhomogeneity on dose distribution of point sources of low-energy electrons.

    PubMed

    Kwok, C S; Bialobzyski, P J; Yu, S K; Prestwich, W V

    1990-01-01

    Perturbation in dose distributions of point sources of low-energy electrons at planar interfaces of cortical bone (CB) and red marrow (RM) was investigated experimentally and by Monte Carlo codes EGS and the TIGER series. Ultrathin LiF thermoluminescent dosimeters were used to measure the dose distributions of point sources of 204Tl and 147Pm in RM. When the point sources were at 12 mg/cm2 from a planar interface of CB and RM equivalent plastics, dose enhancement ratios in RM averaged over the region 0-12 mg/cm2 from the interface were measured to be 1.08 +/- 0.03 (SE) and 1.03 +/- 0.03 (SE) for 204Tl and 147Pm, respectively. The Monte Carlo codes predicted 1.05 +/- 0.02 and 1.01 +/- 0.02 for the two nuclides, respectively. However, EGS gave consistently 3% higher dose in the dose scoring region than the TIGER series when point sources of monoenergetic electrons up to 0.75 MeV energy were considered in the homogeneous RM situation or in the CB and RM heterogeneous situation. By means of the TIGER series, it was demonstrated that aluminum, which is normally assumed to be equivalent to CB in radiation dosimetry, leads to an overestimation of backscattering of low-energy electrons in soft tissue at a CB-soft-tissue interface by as much as a factor of 2. PMID:2233564

  1. Liquid ionization chamber measurements of dose distributions in small 6 MV photon beams

    NASA Astrophysics Data System (ADS)

    Dasu, Alexandru; Löfroth, Per-Olov; Wickman, Göran

    1998-01-01

    A new liquid ionization chamber (LIC) design optimized for high spatial resolution was used for measurements of dose distributions in radiation fields intended for stereotactic radiosurgery (SRS). This work was mainly focused on the properties of this detector in radiation fields from linear accelerators for clinical radiotherapy (pulsed radiation with dose rates from approximately 0.5 to and beam diameters down to 8 mm). The narrow beams used in stereotactic radiosurgery require detectors with small sizes in order to provide a good spatial resolution. The LIC is investigated to see whether it can be used as a detector for dose measurements in beams currently used for stereotactic radiosurgery. Its properties are compared with those of silicon diodes. The comparisons include output factor (OF), depth dose and profile measurements in 6 MV photon fields of different sizes. For OF measurements, an NACP air ionization chamber was also used in the comparison. The dependence of the response on the detector orientation in the photon beam is also investigated for the diodes and the LIC. The results suggest that LICs can provide better properties than diodes for measuring dose distributions in narrow photon beams.

  2. Monte Carlo simulation of depth dose distribution in several organic models for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.

    2007-09-01

    Monte Carlo simulations are performed to evaluate depth-dose distributions for possible treatment of cancers by boron neutron capture therapy (BNCT). The ICRU computational model of ADAM & EVA was used as a phantom to simulate tumors at a depth of 5 cm in central regions of the lungs, liver and pancreas. Tumors of the prostate and osteosarcoma were also centered at the depth of 4.5 and 2.5 cm in the phantom models. The epithermal neutron beam from a research reactor was the primary neutron source for the MCNP calculation of the depth-dose distributions in those cancer models. For brain tumor irradiations, the whole-body dose was also evaluated. The MCNP simulations suggested that a lethal dose of 50 Gy to the tumors can be achieved without reaching the tolerance dose of 25 Gy to normal tissue. The whole-body phantom calculations also showed that the BNCT could be applied for brain tumors without significant damage to whole-body organs.

  3. Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms

    PubMed Central

    Nedaie, H. A.; Mosleh-Shirazi, M. A.; Allahverdi, M.

    2013-01-01

    Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions. PMID:23533162

  4. Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms.

    PubMed

    Nedaie, H A; Mosleh-Shirazi, M A; Allahverdi, M

    2013-01-01

    Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions. PMID:23533162

  5. Impact of Internal Metallic Ports in Temporary Tissue Expanders on Postmastectomy Radiation Dose Distribution

    SciTech Connect

    Chen, Susie A.; Ogunleye, Tomiwa; Dhabbaan, Anees; Huang, Eugene H.; Losken, Albert; Gabram, Sheryl; Davis, Lawrence; Torres, Mylin A.

    2013-03-01

    Purpose: Temporary tissue expanders (TTE) with an internal magnetic metal port (IMP) have been increasingly used for breast reconstruction in post-mastectomy patients who receive radiation therapy (XRT). We evaluated XRT plans of patients with IMP to determine its effect on XRT dose distribution. Methods and Materials: Original treatment plans with CT simulation scans of 24 consecutive patients who received XRT (ORI), planned without heterogeneity corrections, to a reconstructed breast containing an IMP were used. Two additional treatment plans were then generated: one treatment plan with the IMP assigned the electron density of the rare earth magnet, nickel plated neodymium-iron-boron (HET), and a second treatment plan with the IMP assigned a CT value of 1 to simulate a homogeneous breast without an IMP (BRS). All plans were prescribed 50 Gy to the reconstructed breast (CTV). Results: CTV coverage by 50 Gy was significantly lower in the HET (mean 87.7% CTV) than in either the ORI (mean 99.7% CTV, P<.001) or BRS plans (mean 95.0% CTV, P<.001). The effect of the port was more pronounced on CT slices containing the IMP with prescription dose coverage of the CTV being less in the HET than in either ORI (mean difference 33.6%, P<.01) or BRS plans (mean difference 30.1%, P<.001). HET had a less homogeneous and conformal dose distribution than BRS or ORI. Conclusion: IMPs increase dose heterogeneity and reduce dose to the breast CTV through attenuation of the beam. For optimal XRT treatment, heterogeneity corrections should be used in XRT planning for patients with TTE with IMP, as the IMP impacts dose distribution.

  6. Measurement of LET distribution and dose equivalent on board the space shuttle STS-65

    NASA Technical Reports Server (NTRS)

    Hayashi, T.; Doke, T.; Kikuchi, J.; Takeuchi, R.; Hasebe, N.; Ogura, K.; Nagaoka, S.; Kato, M.; Badhwar, G. D.

    1996-01-01

    Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.

  7. Pretreatment verification of IMRT absolute dose distributions using a commercial a-Si EPID

    SciTech Connect

    Talamonti, C.; Casati, M.; Bucciolini, M.

    2006-11-15

    A commercial amorphous silicon electronic portal imaging device (EPID) has been studied to investigate its potential in the field of pretreatment verifications of step and shoot, intensity modulated radiation therapy (IMRT), 6 MV photon beams. The EPID was calibrated to measure absolute exit dose in a water-equivalent phantom at patient level, following an experimental approach, which does not require sophisticated calculation algorithms. The procedure presented was specifically intended to replace the time-consuming in-phantom film dosimetry. The dosimetric response was characterized on the central axis in terms of stability, linearity, and pulse repetition frequency dependence. The a-Si EPID demonstrated a good linearity with dose (within 2% from 1 monitor unit), which represent a prerequisite for the application in IMRT. A series of measurements, in which phantom thickness, air gap between the phantom and the EPID, field size and position of measurement of dose in the phantom (entrance or exit) varied, was performed to find the optimal calibration conditions, for which the field size dependence is minimized. In these conditions (20 cm phantom thickness, 56 cm air gap, exit dose measured at the isocenter), the introduction of a filter for the low-energy scattered radiation allowed us to define a universal calibration factor, independent of field size. The off-axis extension of the dose calibration was performed by applying a radial correction for the beam profile, distorted due to the standard flood field calibration of the device. For the acquisition of IMRT fields, it was necessary to employ home-made software and a specific procedure. This method was applied for the measurement of the dose distributions for 15 clinical IMRT fields. The agreement between the dose distributions, quantified by the gamma index, was found, on average, in 97.6% and 98.3% of the analyzed points for EPID versus TPS and for EPID versus FILM, respectively, thus suggesting a great

  8. Quantitative comparison of dose distribution in radiotherapy plans using 2D gamma maps and X-ray computed tomography

    PubMed Central

    Balosso, Jacques

    2016-01-01

    Background The advanced dose calculation algorithms implemented in treatment planning system (TPS) have remarkably improved the accuracy of dose calculation especially the modeling of electrons transport in the low density medium. The purpose of this study is to evaluate the use of 2D gamma (γ) index to quantify and evaluate the impact of the calculation of electrons transport on dose distribution for lung radiotherapy. Methods X-ray computed tomography images were used to calculate the dose for twelve radiotherapy treatment plans. The doses were originally calculated with Modified Batho (MB) 1D density correction method, and recalculated with anisotropic analytical algorithm (AAA), using the same prescribed dose. Dose parameters derived from dose volume histograms (DVH) and target coverage indices were compared. To compare dose distribution, 2D γ-index was applied, ranging from 1%/1 mm to 6%/6 mm. The results were displayed using γ-maps in 2D. Correlation between DVH metrics and γ passing rates was tested using Spearman’s rank test and Wilcoxon paired test to calculate P values. Results the plans generated with AAA predicted more heterogeneous dose distribution inside the target, with P<0.05. However, MB overestimated the dose predicting more coverage of the target by the prescribed dose. The γ analysis showed that the difference between MB and AAA could reach up to ±10%. The 2D γ-maps illustrated that AAA predicted more dose to organs at risks, as well as lower dose to the target compared to MB. Conclusions Taking into account of the electrons transport on radiotherapy plans showed a significant impact on delivered dose and dose distribution. When considering the AAA represent the true cumulative dose, a readjusting of the prescribed dose and an optimization to protect the organs at risks should be taken in consideration in order to obtain the better clinical outcome. PMID:27429908

  9. A simplified methodology to produce Monte Carlo dose distributions in proton therapy.

    PubMed

    Beltran, Chris; Jia, Yingcui; Slopsema, Roelf; Yeung, Daniel; Li, Zuofeng

    2014-01-01

    The purpose of this study was to develop a simplified methodology that will produce Monte Carlo (MC) dose distribution for proton therapy which can be used as a clinical aid in determining the adequacy of proton plans produced from the treatment planning system (TPS). The Geant4 Monte Carlo toolkit was used for all simulations. The geometry of the double scatter nozzle in the simulation was a simplification of the treatment nozzle. The proton source was modeled as discrete energy layers, each with a unique energy distribution and weighting factor. The simplified MC system was designed to give the same dose distribution as the measured data used to commission the TPS. After the simplified MC system was finalized, a series of verification comparisons were made between it, measurements, and the clinically used TPS. Comparisons included the lateral profile of a stair-shaped compensator that simulated a sharp lateral heterogeneity and depth-dose measurements through heterogeneous materials. The simplified MC system matched measurements to within 2% or 2 mm for all commissioning data under investigation; moreover, the distal edge and lateral penumbra was within 1 mm of the measurements. The simplified MC system was able to better reproduce the measured profiles for a stair-shaped compensator than the TPS. Both MC and TPS matched the measured depth dose through heterogeneous materials to within 2% or 2 mm. The simplified MC system was straightforward to implement, and produced accurate results when compared to measurements. Therefore, it holds promise as a clinically useful methodology to validate the relative dose distribution of patient treatment plans produced by the treatment planning systems. PMID:25207391

  10. Interactive animation of 4D performance capture.

    PubMed

    Casas, Dan; Tejera, Margara; Guillemaut, Jean-Yves; Hilton, Adrian

    2013-05-01

    A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple mesh sequences of related motions. A real-time mesh sequence blending approach is introduced, which combines the realistic deformation of previous nonlinear solutions with efficient online computation. Transitions between different parametric motion spaces are evaluated in real time based on surface shape and motion similarity. Four-dimensional parametric motion graphs allow real-time interactive character animation while preserving the natural dynamics of the captured performance. PMID:23492379

  11. Nondipole Effects in Xe 4d Photoemission

    SciTech Connect

    Hemmers, O; Guillemin, R; Wolska, A; Lindle, D W; Rolles, D; Cheng, K T; Johnson, W R; Zhou, H L; Manson, S T

    2004-07-14

    We measured the nondipole parameters for the spin-orbit doublets Xe 4d{sub 5/2} and Xe 4d{sub 3/2} over a photon-energy range from 100 eV to 250 eV at beamline 8.0.1.3 of the Advanced Light Source at the Lawrence Berkeley National Laboratory. Significant nondipole effects are found at relatively low energies as a result of Cooper minima in dipole channels and interchannel coupling in quadrupole channels. Most importantly, sharp disagreement between experiment and theory, when otherwise excellent agreement was expected, has provided the first evidence of satellite two-electron quadrupole photoionization transitions, along with their crucial importance for a quantitatively accurate theory.

  12. SU-E-T-164: Evaluation of Electron Dose Distribution Using Two Algorithms

    SciTech Connect

    Liu, D; Li, Z; Shang, K; Jing, Z; Wang, J; Miao, M; Yang, J

    2014-06-01

    Purpose: To appreciate the difference of electron dose distributions calculated from the Monte Carlo and Electron 3D algorithms of radiotherapy in a heterogeneous phantom. Methods: A phantom consisted of two different materials (lungs mimicked by low-density cork and others by polystyrene) with an 11x16 cm field size (SSD = 100 cm) was utilized to estimate the two-dimensional dose distributions under 6 and 18 MeV beams. On behalf of two different types of tissue, the heterogeneous phantom was comprised of 3 identical slabs in the longitudinal direction with a thickness of 1 cm for each slab and 2 with a thickness of 2.5 cm. The Monte Carlo/MCTP application package constituted of five codes was performed to simulate the electron beams of a Varian Clinac 23IX. A 20x20 cm2 type III (open walled) applicator was used in these simulations. It has been shown elsewhere that the agreement of the phase space data between the calculation results of MCTP application package and the measured data were within 2% on depth-dose and transverse profiles, as well as output factor calculations. The electron 3D algorithm owned by Pinnacle 8.0m and the MCTP application package were applied for the two-dimensional dose distributions calculation. The curves at 50% and 100%-prescribed dose were observed for 6 and 18 MeV beams, respectively. Results: The MC calculations results were compared with the electron 3D calculations in terms of two-dimensional dose distributions for 6 and 18 MeV beams showed excellent agreement except in distal boundary where it was the very junction of the high and low-density region. Conclusions: The Monte Carlo/MCTP method could be used to better reflect the dose variation caused by heterogeneous tissues. Conclusion: A case study showed that the Monte Carlo/MCTP method could be used to better reflect the dose variation caused by heterogeneous tissues.

  13. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    SciTech Connect

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-15

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of {sup 60}Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  14. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    NASA Astrophysics Data System (ADS)

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-01

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of 60Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  15. The importance of pharmacist surveillance in a unit dose drug distribution system.

    PubMed

    Jarosinski, P F

    1978-09-01

    A study was conducted at a Public Health Service Hospital to determine if the pharmacist could provide important services to patient care while simultaneously performing the repetitious acts involved in unit dose drug distribution. During two five-week periods, the pharmacist actively questioned requests by the nursing staff for additional doses of medication to determine why these additional doses were needed. Also, during these periods the pharmacy actively questioned all doses returned in the dose medication carts which, according to doctor's orders, should have been administered to the patient. Results of these studies included the detection of some potentially dangerous deviations from accepted medication administration times (i.e., "twice" a day order given only four hours apart) as well as other problems, such as missed orders, medication "borrowing" which sometimes magnified errors, and underdosing. The conclusions from the studies are that the pharmacist can provide essential services while simultaneously performing the repetitious tasks of filling, checking, and exchanging unit dose medication cassettes. PMID:10238815

  16. MCNP simulation of radiation doses distributions in a water phantoms simulating interventional radiology patients

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Mah, Eugene; Huda, Walter; Selby, Bayne; Yao, Hai

    2011-03-01

    Purpose: To investigate the dose distributions in water cylinders simulating patients undergoing Interventional Radiological examinations. Method: The irradiation geometry consisted of an x-ray source, dose-area-product chamber, and image intensifier as currently used in Interventional Radiology. Water cylinders of diameters ranging between 17 and 30 cm were used to simulate patients weighing between 20 and 90 kg. X-ray spectra data with peak x-ray tube voltages ranging from 60 to 120 kV were generated using XCOMP3R. Radiation dose distributions inside the water cylinder (Dw) were obtained using MCNP5. The depth dose distribution along the x-ray beam central axis was normalized to free-in-air air kerma (AK) that is incident on the phantom. Scattered radiation within the water cylinders but outside the directly irradiated region was normalized to the dose at the edge of the radiation field. The total absorbed energy to the directly irradiated volume (Ep) and indirectly irradiated volume (Es) were also determined and investigated as a function of x-ray tube voltage and phantom size. Results: At 80 kV, the average Dw/AK near the x-ray entrance point was 1.3. The ratio of Dw near the entrance point to Dw near the exit point increased from ~ 26 for the 17 cm water cylinder to ~ 290 for the 30 cm water cylinder. At 80 kV, the relative dose for a 17 cm water cylinder fell to 0.1% at 49 cm away from the central ray of the x-ray beam. For a 30 cm water cylinder, the relative dose fell to 0.1% at 53 cm away from the central ray of the x-ray beam. At a fixed x-ray tube voltage of 80 kV, increasing the water cylinder diameter from 17 to 30 cm increased the Es/(Ep+Es) ratio by about 50%. At a fixed water cylinder diameter of 24 cm, increasing the tube voltage from 60 kV to 120 kV increased the Es/(Ep+Es) ratio by about 12%. The absorbed energy from scattered radiation was between 20-30% of the total energy absorbed by the water cylinder, and was affected more by patient size

  17. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    SciTech Connect

    Klüter, Sebastian Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  18. Three dimensional dose distribution comparison of simple and complex acquisition trajectories in dedicated breast CT

    PubMed Central

    Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.

    2015-01-01

    Purpose: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient’s chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. Methods: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source flux was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm3 voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50–50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. Results: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the

  19. Photon beam dose distributions for patients with implanted temporary tissue expanders

    NASA Astrophysics Data System (ADS)

    Asena, A.; Kairn, T.; Crowe, S. B.; Trapp, J. V.

    2015-01-01

    This study examines the effects of temporary tissue expanders (TTEs) on the dose distributions of photon beams in breast cancer radiotherapy treatments. EBT2 radiochromic film and ion chamber measurements were taken to quantify the attenuation and backscatter effects of the inhomogeneity. Results illustrate that the internal magnetic port present in a tissue expander causes a dose reduction of approximately 25% in photon tangent fields immediately downstream of the implant. It was also shown that the silicone elastomer shell of the tissue expander reduced the dose to the target volume by as much as 8%. This work demonstrates the importance for an accurately modelled high-density implant in the treatment planning system for post-mastectomy breast cancer patients.

  20. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy

    NASA Astrophysics Data System (ADS)

    Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade

    2014-10-01

    The Boron Neutron Capture Therapy ( BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.

  1. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy

    NASA Astrophysics Data System (ADS)

    Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade

    2014-10-01

    The Boron Neutron Capture Therapy (BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.

  2. Uneven surface absorbed dose distribution in electron-accelerator irradiation of rubber items

    SciTech Connect

    Gorbunov, I.F.; Pashinin, V.I.; Vanyushkin, B.M.

    1988-02-01

    Electron accelerators for industrial use are equipped with scanning devices, where the scan frequency or linear velocity along the window may vary. In a flow technology, where the items are transported to the irradiation zone at a set rate, the speed of an item may be comparable with the scan speed, so there is substantial nonuniformity in the absorbed dose, which adversely affects the quality. We have examined the dose nonuniformity for long rubber items during vulcanization by means of LUE-8-5RV and ELV-2 accelerators. The absorbed dose is calculated for an elementary part along which the irradiation is uniform on the assumption that current density distribution in the unswept beam is uniform as a result of scattering in the foil.

  3. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    SciTech Connect

    Liebl, Jakob; Paganetti, Harald; Zhu, Mingyao; Winey, Brian A.

    2014-09-15

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions

  4. SU-E-T-425: Spherical Dose Distributions for Radiosurgery Using a Standardized MLC Plan

    SciTech Connect

    Popple, R; Brezovich, I; Wu, X; Fiveash, J

    2014-06-01

    Purpose: To investigate a standardized MLC treatment plan to generate small spherical dose distributions. Methods: The static virtual cone plan comprised six table positions with clockwise and counterclockwise arcs having collimator angles 45 and 135 degrees, respectively, at each position. The central two leaves of a 2.5 mm leaf width MLC were set to a constant gap. Control points were weighted proportional to the sine of the gantry angle. Plans were created for the 10 MV flattening-filter-free beam of a TrueBeam STx (Varian Medical Systems) with gaps of 1, 1.5, 2, and 3 mm and were delivered to a phantom containing radiochromic film. Dose was calculated using the Eclipse AAA (Varian Medical Systems). A dynamic plan in which the table and gantry moved simultaneously with 1.5 mm gap was also created and delivered using the TrueBeam developer mode. Results: The full-width-half-max (FWHM) varied with leaf gap, ranging from 5.2 to 6.2 mm. Calculated FWHM was smaller than measured by 0.7 mm for the 1 mm gap and ≤ 0.4 mm for the larger gaps. The measured-to-calculated dose ratio was 0.93, 0.96, 1.01, and 0.99 for 1 mm, 1.5 mm, 2 mm, and 3 mm gaps, respectively. The dynamic results were the same as the static. The position deviations between the phantom target position and the center of the dose distribution were < 0.4 mm. Conclusion: The virtual cone can deliver spherical dose distributions suitable for radio surgery of small targets such as the trigeminal nerve. The Eclipse AAA accurately calculates the expected dose, particularly for leaf gap ≥ 1.5 mm. The measured dose distribution is slightly larger than the calculation, which is likely due to systematic leaf position error, isocenter variation due to gantry sag and table eccentricity, and inaccuracy in MLC leaf end modeling.

  5. A Monte Carlo study on dose distribution validation of GZP6 60Co stepping source

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Abdollahi, Maliheh; Ghorbani, Mahdi

    2012-01-01

    Aim Stepping source in brachytherapy systems is used to treat a target lesion longer than the effective treatment length of the source. Cancerous lesions in the cervix, esophagus and rectum are examples of such a target lesion. Background In this study, the stepping source of a GZP6 afterloading intracavitary brachytherapy unit was simulated using Monte Carlo (MC) simulation and the results were used for the validation of the GZP6 treatment planning system (TPS). Materials and methods The stepping source was simulated using MCNPX Monte Carlo code. Dose distributions in the longitudinal plane were obtained by using a matrix shift method for esophageal tumor lengths of 8 and 10 cm. A mesh tally has been employed for the absorbed dose calculation in a cylindrical water phantom. A total of 5 × 108 photon histories were scored and the MC statistical error obtained was at the range of 0.008–3.5%, an average of 0.2%. Results The acquired MC and TPS isodose curves were compared and it was shown that the dose distributions in the longitudinal plane were relatively coincidental. In the transverse direction, a maximum dose difference of 7% and 5% was observed for tumor lengths of 8 and 10 cm, respectively. Conclusion Considering that the certified source activity is given with ±10% uncertainty, the obtained difference is reasonable. It can be concluded that the accuracy of the dose distributions produced by GZP6 TPS for the stepping source is acceptable for its clinical applications. PMID:24416537

  6. Analysis of dose-LET distribution in the human body irradiated by high energy hadrons.

    PubMed

    Sato, T; Tsuda, S; Sakamoto, Y; Yamaguchi, Y; Niita, K

    2003-01-01

    For the purposes of radiological protection, it is important to analyse profiles of the particle field inside a human body irradiated by high energy hadrons, since they can produce a variety of secondary particles which play an important role in the energy deposition process, and characterise their radiation qualities. Therefore Monte Carlo calculations were performed to evaluate dose distributions in terms of the linear energy transfer of ionising particles (dose-LET distribution) using a newly developed particle transport code (Particle and Heavy Ion Transport code System, PHITS) for incidences of neutrons, protons and pions with energies from 100 MeV to 200 GeV. Based on these calculations, it was found that more than 80% and 90% of the total deposition energies are attributed to ionisation by particles with LET below 10 keV microm(-1) for the irradiations of neutrons and the charged particles, respectively. PMID:14653335

  7. A matheuristic for the selection of beam directions and dose distribution in Radiotherapy Planning

    NASA Astrophysics Data System (ADS)

    Obal, T. M.; Florentino, H. O.; Gevert, V. G.; Jones, D. F.; Ouelhadj, D.; Volpi, N. M. P.; Wilhelm, V. E.

    2015-05-01

    In this paper a matheuristic using a combined Genetic Algorithm (GA) and exact method approach is proposed for selecting the position of the beams and dose distribution in Intensity Modulated Radiotherapy Planning (IMRT). GA selects a set of beams, for which the dose distribution is determined in the process of the GA's evaluation, using an optimisation model that is solved by an Interior Point method. Two instances are used to evaluate the performance of the matheuristic, comparing to the optimum solution, in terms of solution and computation time, found using the exact methodology of Branch and Bound. The results show that the matheuristic is appropriate to this problem in the case study proposed, as it is extremely faster than the exact method and also have reached the optimum solution in several experiments done.

  8. MCNPX simulation of proton dose distribution in homogeneous and CT phantoms

    NASA Astrophysics Data System (ADS)

    Lee, C. C.; Lee, Y. J.; Tung, C. J.; Cheng, H. W.; Chao, T. C.

    2014-02-01

    A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R50%) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent Req,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively.

  9. Abdominal and pancreatic motion correlation using 4D CT, 4D transponders, and a gating belt.

    PubMed

    Betancourt, Ricardo; Zou, Wei; Plastaras, John P; Metz, James M; Teo, Boon-Keng; Kassaee, Alireza

    2013-01-01

    The correlation between the pancreatic and external abdominal motion due to respiration was investigated on two patients. These studies utilized four dimensional computer tomography (4D CT), a four dimensional (4D) electromagnetic transponder system, and a gating belt system. One 4D CT study was performed during simulation to quantify the pancreatic motion using computer tomography images at eight breathing phases. The motion under free breathing and breath-hold were analyzed for the 4D electromagnetic transponder system and the gating belt system during treatment. A linear curve was fitted for all data sets and correlation factors were evaluated between the 4D electromagnetic transponder system and the gating belt system data. The 4D CT study demonstrated a modest correlation between the external marker and the pancreatic motion with R-square values larger than 0.8 for the inferior-superior (inf-sup). Then, the relative pressure from the belt gating system correlated well with the 4D electromagnetic transponder system's motion in the anterior-posterior (ant-post) and the inf-post directions. These directions have a correlation value of -0.93 and 0.76, while the lateral only had a 0.03 correlation coefficient. Based on our limited study, external surrogates can be used as predictors of the pancreatic motion in the inf-sup and the ant-post directions. Although there is a low correlation on the lateral direction, its motion is significantly shorter. In conclusion, an appropriate treatment delivery can be used for pancreatic cancer when an internal tracking system, such as the 4D electromagnetic transponder system, is unavailable. PMID:23652242

  10. Motion4D-library extended

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2011-06-01

    The new version of the Motion4D-library now also includes the integration of a Sachs basis and the Jacobi equation to determine gravitational lensing of pointlike sources for arbitrary spacetimes.New version program summaryProgram title: Motion4D-libraryCatalogue identifier: AEEX_v3_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v3_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 219 441No. of bytes in distributed program, including test data, etc.: 6 968 223Distribution format: tar.gzProgramming language: C++Computer: All platforms with a C++ compilerOperating system: Linux, WindowsRAM: 61 MbytesClassification: 1.5External routines: Gnu Scientic Library (GSL) (http://www.gnu.org/software/gsl/)Catalogue identifier of previous version: AEEX_v2_0Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 703Does the new version supersede the previous version?: YesNature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes. Determine gravitational lensing by integration of Jacobi equation and parallel transport of Sachs basis.Solution method: Integration of ordinary differential equations.Reasons for new version: The main novelty of the current version is the extension to integrate the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. In combination, the change of the cross section of a light bundle and thus the gravitational lensing effect of a spacetime can be determined. Furthermore, we have implemented several new metrics.Summary of revisions: The main novelty of the current version is the integration of the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. The corresponding set of equations readd2xμdλ2=-Γρ

  11. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1993-12-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk. Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanford facilities in a calendar year; therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.

  12. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1994-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk (Napier 1992). Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanford facilities in a calendar year (Heeb 1993); therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.

  13. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    NASA Astrophysics Data System (ADS)

    Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  14. Dual-energy computed tomography of the head: a phantom study assessing axial dose distribution, eye lens dose, and image noise level

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro

    2016-03-01

    The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.

  15. 4D flow imaging: current status to future clinical applications.

    PubMed

    Markl, Michael; Schnell, Susanne; Barker, Alex J

    2014-05-01

    4D flow MRI permits a comprehensive in-vivo assessment of three-directional blood flow within 3-dimensional vascular structures throughout the cardiac cycle. Given the large coverage permitted from a 4D flow acquisition, the distribution of vessel wall and flow parameters along an entire vessel of interest can thus be derived from a single measurement without being dependent on multiple predefined 2D acquisitions. In addition to qualitative 3D visualizations of complex cardiac and vascular flow patterns, quantitative flow analysis can be performed and is complemented by the ability to compute sophisticated hemodynamic parameters, such as wall shear stress or 3D pressure difference maps. These metrics can provide information previously unavailable with conventional modalities regarding the impact of cardiovascular disease or therapy on global and regional changes in hemodynamics. This review provides an introduction to the methodological aspects of 4D flow MRI to assess vascular hemodynamics and describes its potential for the assessment and understanding of altered hemodynamics in the presence of cardiovascular disease. PMID:24700368

  16. A 4D Hyperspherical Interpretation of q-Space

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Bendlin, Barbara B.; Alexander, Andrew L.

    2015-01-01

    3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 4D hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently modeling the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal basis, we derive several well-established q-space indices and numerically estimate the diffusion orientation distribution function (dODF). We also derive the integral transform describing the relationship between the diffusion signal and propagator on a hypersphere. Most importantly, we will demonstrate that for hybrid diffusion imaging (HYDI) acquisitions low order linear expansion of the HSH basis is sufficient to characterize diffusion in neural tissue. In fact, the HSH basis achieves comparable signal and better dODF reconstructions than other well-established methods, such as Bessel Fourier orientation reconstruction (BFOR), using fewer fitting parameters. All in all, this work provides a new way of looking at q-space. PMID:25624043

  17. Semi-empirical model for the generation of dose distributions produced by a scanning electron beam

    SciTech Connect

    Nath, R.; Gignac, C.E.; Agostinelli, A.G.; Rothberg, S.; Schulz, R.J.

    1980-01-01

    There are linear accelerators (Sagittaire and Saturne accelerators produced by Compagnie Generale de Radiologie (CGR/MeV) Corporation) which produce broad, flat electron fields by magnetically scanning the relatively narrow electron beam as it emerges from the accelerator vacuum system. A semi-empirical model, which mimics the scanning action of this type of accelerator, was developed for the generation of dose distributions in homogeneous media. The model employs the dose distributions of the scanning electron beams. These were measured with photographic film in a polystyrene phantom by turning off the magnetic scanning system. The mean deviation calculated from measured dose distributions is about 0.2%; a few points have deviations as large as 2 to 4% inside of the 50% isodose curve, but less than 8% outside of the 50% isodose curve. The model has been used to generate the electron beam library required by a modified version of a commercially-available computerized treatment-planning system. (The RAD-8 treatment planning system was purchased from the Digital Equipment Corporation. It is currently available from Electronic Music Industries (EMI), Ltd.)

  18. Dose distribution transfer from CyberKnife to Varian treatment planning system

    NASA Astrophysics Data System (ADS)

    Osewski, W.; Ślosarek, K.; Karaszewska, B.

    2014-03-01

    The aim of this paper was to introduce one of the options of the locally developed DDcon.exe which gives the possibility to transfer the dose distribution from CyberKnife (Accuray) treatment planning system (CK TPS) to Varian treatment planning system (Eclipse TPS, Varian). DICOM format is known as a universal format for medical data. The dose distribution is stored as RTdose file in DICOM format, so there should be a possibility to transfer it between different treatment planning systems. Trying to transfer RTdose file from CK TPS to Eclipse TPS the error message occurs. That's because the RTdose file in CK TPS is connected with Structure_Set_Sequence against Eclipse TPS where it's connected with RT_Plan_Sequence. To make it transferable RTdose file from CK TPS have to be 'disconnected' from Structure_Set_Sequence and 'connected' with RT_Plan_Sequence. This is possible thanks DDcon software which creates new RTdose file by changing proper DICOM tags in original RTdose file. New homemade software gives us an opportunity to transfer dose distribution from CyberKnife TPS to TPS Eclipse. This method opens new possibilities to combine or compare different treatment techniques in Varian TPS.

  19. Dose-rate distribution of {sup 32}P-glass microspheres for intra-arterial brachytherapy

    SciTech Connect

    Guimaraes, Carla C.; Moralles, Mauricio; Sene, Frank F.; Martinelli, Jose R.

    2010-02-15

    Purpose: The intra-arterial administration of radioactive glass microspheres is an alternative therapy option for treating primary hepatocellular carcinoma, the main cause of liver cancer death, and metastatic liver cancer, another important kind of cancer induced in the liver. The technique involves the administration of radioactive microspheres in the hepatic artery, which are trapped preferentially in the tumor. Methods: In this work the GEANT4 toolkit was used to calculate the radial dose-rate distributions in water from {sup 32}P-loaded glass microspheres and also from {sup 90}Y-loaded glass microspheres. To validate the toolkit for this application, the authors compared the dose-rate distribution of {sup 32}P and {sup 90}Y point sources in water with data from the International Commission on Radiation Units and Measurements report 72. Results: Tables of radial dose-rate distributions are provided for practical use in brachytherapy planning with these microspheres. Conclusions: The simulations with the microspheres show that the shape of the beta ray energy spectra with respect to the {sup 32}P and {sup 90}Y sources is significantly modified by the glass matrix.

  20. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY.

    SciTech Connect

    BEEBE - WANG,J.J.; DILMANIAN,F.A.; PEGGS,S.G.; SCHLYEER,D.J.; VASKA,P.

    2002-06-03

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as {sup 12}C, {sup 14}N, and {sup 16}O. These radioisotopes, mainly {sup 11}C, {sup 13}N and {sup 15}O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner.

  1. Study of the impact of artificial articulations on the dose distribution under medical irradiation

    NASA Astrophysics Data System (ADS)

    Buffard, E.; Gschwind, R.; Makovicka, L.; Martin, E.; Meunier, C.; David, C.

    2005-02-01

    Perturbations due to the presence of high density heterogeneities in the body are not correctly taken into account in the Treatment Planning Systems currently available for external radiotherapy. For this reason, the accuracy of the dose distribution calculations has to be improved by using Monte Carlo simulations. In a previous study, we established a theoretical model by using the Monte Carlo code EGSnrc [I. Kawrakow, D.W.O. Rogers, The EGSnrc code system: MC simulation of electron and photon transport. Technical Report PIRS-701, NRCC, Ottawa, Canada, 2000] in order to obtain the dose distributions around simple heterogeneities. These simulations were then validated by experimental results obtained with thermoluminescent dosemeters and an ionisation chamber. The influence of samples composed of hip prostheses materials (titanium alloy and steel) and a substitute of bone were notably studied. A more complex model was then developed with the Monte Carlo code BEAMnrc [D.W.O. Rogers, C.M. MA, G.X. Ding, B. Walters, D. Sheikh-Bagheri, G.G. Zhang, BEAMnrc Users Manual. NRC Report PPIRS 509(a) rev F, 2001] in order to take into account the hip prosthesis geometry. The simulation results were compared to experimental measurements performed in a water phantom, in the case of a standard treatment of a pelvic cancer for one of the beams passing through the implant. These results have shown the great influence of the prostheses on the dose distribution.

  2. 4D micro-CT for cardiac and perfusion applications with view under sampling

    NASA Astrophysics Data System (ADS)

    Badea, Cristian T.; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan

    2011-06-01

    Micro-CT is commonly used in preclinical studies to provide anatomical information. There is growing interest in obtaining functional measurements from 4D micro-CT. We report here strategies for 4D micro-CT with a focus on two applications: (i) cardiac imaging based on retrospective gating and (ii) pulmonary perfusion using multiple contrast injections/rotations paradigm. A dual source micro-CT system is used for image acquisition with a sampling rate of 20 projections per second. The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent. Fast scanning of free breathing mice is achieved using retrospective gating. The ECG and respiratory signals are used to sort projections into ten cardiac phases. The pulmonary perfusion protocol uses a conventional contrast agent (Isovue 370) delivered by a micro-injector in four injections separated by 2 min intervals to allow for clearance. Each injection is synchronized with the rotation of the animal, and each of the four rotations is started with an angular offset of 22.5 from the starting angle of the previous rotation. Both cardiac and perfusion protocols result in an irregular angular distribution of projections that causes significant streaking artifacts in reconstructions when using traditional filtered backprojection (FBP) algorithms. The reconstruction involves the use of the point spread function of the micro-CT system for each time point, and the analysis of the distribution of the reconstructed data in the Fourier domain. This enables us to correct for angular inconsistencies via deconvolution and identify regions where data is missing. The missing regions are filled with data from a high quality but temporally averaged prior image reconstructed with all available projections. Simulations indicate that deconvolution successfully removes the streaking artifacts while preserving temporal information. 4D cardiac micro-CT in a mouse was performed with adequate image quality at isotropic

  3. Evaluation of brachytherapy lung implant dose distributions from photon-emitting sources due to tissue heterogeneities

    SciTech Connect

    Yang Yun; Rivard, Mark J.

    2011-11-15

    Purpose: Photon-emitting brachytherapy sources are used for permanent implantation to treat lung cancer. However, the current brachytherapy dose calculation formalism assumes a homogeneous water medium without considering the influence of radiation scatter or tissue heterogeneities. The purpose of this study was to determine the dosimetric effects of tissue heterogeneities for permanent lung brachytherapy. Methods: The MCNP5 v1.40 radiation transport code was used for Monte Carlo (MC) simulations. Point sources with energies of 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV were simulated to cover the range of pertinent brachytherapy energies and to glean dosimetric trends independent of specific radionuclide emissions. Source positions from postimplant CT scans of five patient implants were used for source coordinates, with dose normalized to 200 Gy at the center of each implant. With the presence of fibrosis (around the implant), cortical bone, lung, and healthy tissues, dose distributions and {sub PTV}DVH were calculated using the MCNP *FMESH4 tally and the NIST mass-energy absorption coefficients. This process was repeated upon replacing all tissues with water. For all photon energies, 10{sup 9} histories were simulated to achieve statistical errors (k = 1) typically of 1%. Results: The mean PTV doses calculated using tissue heterogeneities for all five patients changed (compared to dose to water) by only a few percent over the examined photon energy range, as did PTV dose at the implant center. The {sub PTV}V{sub 100} values were 81.2%, 90.0% (as normalized), 94.3%, 93.9%, 92.7%, and 92.2% for 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV source photons, respectively. Relative to water, the maximum bone doses were higher by factors of 3.7, 5.1, 5.2, 2.4, 1.2, and 1.0 The maximum lung doses were about 0.98, 0.94, 0.91, 0.94, 0.97, and 0.99. Relative to water, the maximum healthy tissue doses at the mediastinal position were higher by factors of 9.8, 2.2, 1.3, 1.1, 1.1, and

  4. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions.

    PubMed

    Fonseca, Gabriel Paiva; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank

    2014-10-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for (192)Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator. PMID

  5. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank

    2014-10-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.

  6. Active origami by 4D printing

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  7. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered

    SciTech Connect

    Hernandez, Andrew M.; Seibert, J. Anthony; Boone, John M.

    2015-11-15

    Purpose: Current dosimetry methods in mammography assume that the breast is comprised of a homogeneous mixture of glandular and adipose tissues. Three-dimensional (3D) dedicated breast CT (bCT) data sets were used previously to assess the complex anatomical structure within the breast, characterizing the statistical distribution of glandular tissue in the breast. The purpose of this work was to investigate the effect of bCT-derived heterogeneous glandular distributions on dosimetry in mammography. Methods: bCT-derived breast diameters, volumes, and 3D fibroglandular distributions were used to design realistic compressed breast models comprised of heterogeneous distributions of glandular tissue. The bCT-derived glandular distributions were fit to biGaussian functions and used as probability density maps to assign the density distributions within compressed breast models. The MCNPX 2.6.0 Monte Carlo code was used to estimate monoenergetic normalized mean glandular dose “DgN(E)” values in mammography geometry. The DgN(E) values were then weighted by typical mammography x-ray spectra to determine polyenergetic DgN (pDgN) coefficients for heterogeneous (pDgN{sub hetero}) and homogeneous (pDgN{sub homo}) cases. The dependence of estimated pDgN values on phantom size, volumetric glandular fraction (VGF), x-ray technique factors, and location of the heterogeneous glandular distributions was investigated. Results: The pDgN{sub hetero} coefficients were on average 35.3% (SD, 4.1) and 24.2% (SD, 3.0) lower than the pDgN{sub homo} coefficients for the Mo–Mo and W–Rh x-ray spectra, respectively, across all phantom sizes and VGFs when the glandular distributions were centered within the breast phantom in the coronal plane. At constant breast size, increasing VGF from 7.3% to 19.1% lead to a reduction in pDgN{sub hetero} relative to pDgN{sub homo} of 23.6%–27.4% for a W–Rh spectrum. Displacement of the glandular distribution, at a distance equal to 10% of the

  8. SU-E-J-62: Estimating Plausible Treatment Course Dose Distributions by Accounting for Registration Uncertainty and Organ Motion

    SciTech Connect

    Thor, M; Saleh, Z; Oh, JH; Apte, A; Deasy, J; Muren, L

    2014-06-01

    Purpose: Dose accumulation following deformable image registration (DIR) is challenging. In this study, we used a statistical sampling approach, which takes into account both DIR uncertainties and patient-specific organ motion, to study the distribution of possible true dose distributions. Methods: The study included ten patients (six CT scans/patient) treated with radiotherapy for prostate cancer. For each patient, the planned dose was re-calculated on the repeated geometries, following rigid registration based on fiducial markers. The dose re-calculated on the first CT served as our snapshot dose distribution (D1) and the average of the first five repeat scans as our treatment course reference dose distribution (Dref). Patient-specific motion and DIR-uncertainties, at each voxel in CT1, were assessed using a previously developed DIR performance measure, the distance discordance metric (DDM). To sample the distribution of possible true, predicted dose distributions (Dpred), we resampled D1 by perturbing the location of each voxel with the corresponding DDM. The three dose distribution approaches are compared for the rectum and the bladder. Results: The bladder generalized equivalent uniform dose (gEUD) from the averaged Dpred was closer to the gEUDref than to the gEUD1 (difference: 0.6 vs. 1.0 Gy). For both structures, the gEUDpred was higher than the gEUDref, and significantly higher (p≤0.05) for the rectum (average: 50.8 Gy vs. 48.0 Gy). Conclusion: We have shown that the bladder gEUD values resulting from our DIR-uncertainty inclusive dose sampling approach, Dpred, were closer to the gEUD from Dref than the gEUD values from D1. For the rectum, gEUDpred overestimated gEUDref. Theoretically however, gEUDpred values, sampled from DDM uncertainties are more representative of dose uncertainties.

  9. Impact of the differential fluence distribution of brachytherapy sources on the spectroscopic dose-rate constant

    SciTech Connect

    Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A. E-mail: ladewerd@wisc.edu

    2015-05-15

    Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-only model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in

  10. A robustness analysis method with fast estimation of dose uncertainty distributions for carbon-ion therapy treatment planning.

    PubMed

    Sakama, Makoto; Kanematsu, Nobuyuki; Inaniwa, Taku

    2016-08-01

    A simple and efficient approach is needed for robustness evaluation and optimization of treatment planning in routine clinical particle therapy. Here we propose a robustness analysis method using dose standard deviation (SD) in possible scenarios such as the robustness indicator and a fast dose warping method, i.e. deformation of dose distributions, taking into account the setup and range errors in carbon-ion therapy. The dose warping method is based on the nominal dose distribution and the water-equivalent path length obtained from planning computed tomography data with a clinically commissioned treatment planning system (TPS). We compared, in a limited number of scenarios at the extreme boundaries of the assumed error, the dose SD distributions obtained by the warping method with those obtained using the TPS dose recalculations. The accuracy of the warping method was examined by the standard-deviation-volume histograms (SDVHs) for varying degrees of setup and range errors for three different tumor sites. Furthermore, the influence of dose fractionation on the combined dose uncertainty, taking into consideration the correlation of setup and range errors between fractions, was evaluated with simple equations using the SDVHs and the mean value of SDs in the defined volume of interest. The results of the proposed method agreed well with those obtained with the dose recalculations in these comparisons, and the effectiveness of dose SD evaluations at the extreme boundaries of given errors was confirmed from the responsivity and DVH analysis of relative SD values for each error. The combined dose uncertainties depended heavily on the number of fractions, assumed errors and tumor sites. The typical computation time of the warping method is approximately 60 times less than that of the full dose calculation method using the TPS. The dose SD distributions and SDVHs with the fractionation effect will be useful indicators for robustness analysis in treatment planning, and the

  11. A robustness analysis method with fast estimation of dose uncertainty distributions for carbon-ion therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Sakama, Makoto; Kanematsu, Nobuyuki; Inaniwa, Taku

    2016-08-01

    A simple and efficient approach is needed for robustness evaluation and optimization of treatment planning in routine clinical particle therapy. Here we propose a robustness analysis method using dose standard deviation (SD) in possible scenarios such as the robustness indicator and a fast dose warping method, i.e. deformation of dose distributions, taking into account the setup and range errors in carbon-ion therapy. The dose warping method is based on the nominal dose distribution and the water-equivalent path length obtained from planning computed tomography data with a clinically commissioned treatment planning system (TPS). We compared, in a limited number of scenarios at the extreme boundaries of the assumed error, the dose SD distributions obtained by the warping method with those obtained using the TPS dose recalculations. The accuracy of the warping method was examined by the standard-deviation-volume histograms (SDVHs) for varying degrees of setup and range errors for three different tumor sites. Furthermore, the influence of dose fractionation on the combined dose uncertainty, taking into consideration the correlation of setup and range errors between fractions, was evaluated with simple equations using the SDVHs and the mean value of SDs in the defined volume of interest. The results of the proposed method agreed well with those obtained with the dose recalculations in these comparisons, and the effectiveness of dose SD evaluations at the extreme boundaries of given errors was confirmed from the responsivity and DVH analysis of relative SD values for each error. The combined dose uncertainties depended heavily on the number of fractions, assumed errors and tumor sites. The typical computation time of the warping method is approximately 60 times less than that of the full dose calculation method using the TPS. The dose SD distributions and SDVHs with the fractionation effect will be useful indicators for robustness analysis in treatment planning, and the

  12. Simulation of dosimetric consequences of 4D-CT-based motion margin estimation for proton radiotherapy using patient tumor motion data

    NASA Astrophysics Data System (ADS)

    Koybasi, Ozhan; Mishra, Pankaj; St. James, Sara; Lewis, John H.; Seco, Joao

    2014-02-01

    For the radiation treatment of lung cancer patients, four-dimensional computed tomography (4D-CT) is a common practice used clinically to image tumor motion and subsequently determine the internal target volume (ITV) from the maximum intensity projection (MIP) images. ITV, which is derived from short pre-treatment 4D-CT scan (<6 s per couch position), may not adequately cover the extent of tumor motion during the treatment, particularly for patients that exhibit a large respiratory variability. Inaccurate tumor localization may result in under-dosage of the tumor or over-dosage of the surrounding tissues. The purpose of this study is therefore to assess the degree of tumor under-dosage in case of regular and irregular breathing for proton radiotherapy using ITV-based treatment planning. We place a spherical lesion into a modified XCAT phantom that is also capable of producing 4D images based on irregular breathing, and move the tumor according to real tumor motion data, which is acquired over multiple days by tracking gold fiducial markers implanted into the lung tumors of patients. We derive ITVs by taking the union of all tumor positions during 6 s of tumor motion in the phantom using the first day patient tumor tracking data. This is equivalent to ITVs generated clinically from cine-mode 4D-CT MIP images. The treatment plans created for different ITVs are then implemented on dynamic phantoms with tumor motion governed by real tumor tracking data from consecutive days. By comparing gross tumor volume dose distribution on days of ‘treatment’ with the ITV dose distribution, we evaluate the deviation of the actually delivered dose from the predicted dose. Our results have shown that the proton treatment planning on ITV derived from pre-treatment cine-mode 4D-CT can result in under-dosage (dose covering 95% of volume) of the tumor by up to 25.7% over 3 min of treatment for the patient with irregular respiratory motion. Tumor under-dosage is less significant for

  13. Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Doucet, R.; Olivares, M.; DeBlois, F.; Podgorsak, E. B.; Kawrakow, I.; Seuntjens, J.

    2003-08-01

    Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 × 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid WaterTM (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.

  14. Effect of dose level and pregnancy on the distribution and toxicity of intravenous lead in rats

    SciTech Connect

    Hackett, P.L.; Hess, J.O.; Sikov, M.R.

    1982-01-01

    Female Wistar rats were injected intravenously with tracer levels of /sup 210/Pb, alone or combined with carrier Pb(NO/sub 3/)/sub 2/ at 5 or 25 mg/kg body weight at 9 or 15 days of gestation (dg). Tissue /sup 210/Pb distribution and retention, and lead excretion, were measured several times during the first 30 h and at 20 dg. Toxic effects following the administration of 25 mg/kg (a teratogenic dose) included an early decrease in hematocrit, hematuria, gastrointestinal hemorrhage, and diarrhea, as well as an eventual loss of body weight and an increase in spleen and kidney weights. The stage of pregnancy at injection did not affect the retention and distribution of lead in major organs other than the reproductive system. Following injection of the 25-mg/kg dose, deposition of lead in the liver, kidney, spleen, and lung was elevated. Disproportionately high plasma lead levels were also observed at early times after the injection of the 25-mg/kg dose, and may act as a significant factor in placental lead transfer and subsequent malformations or fetal mortality.

  15. Effect of dose level and pregnancy on the distribution and toxicity of intravenous lead in rats

    SciTech Connect

    Hackett, P.L.; Hess, J.O.; Sikov, M.R.

    1982-05-01

    Female Wistar rats were injected intravenously with tracer levels of /sup 210/Pb, alone or combined with carrier Pb(NO/sub 3/)/sub 2/ at 5 or 25 mg/kg body weight at 9 or 15 days of gestation (dg). Tissue /sup 210/Pb distribution and retention, and lead excretion, were measured several times during the first 30 h and at 20 dg. Toxic effects following the administration of 25 mg/kg (a tertogenic dose) included an early decrease in hematocrit, hematuria, gastrointestinal hemorrhage, and diarrhea, as well as an eventual body weight and an increase in spleen and kidney weights. The stage of pregnancy at injection did not affect the retention and distribution of lead in major organs other than the reproductive system. Following injection of the 25-mg/kg dose, deposition of lead in the liver, kidney, spleen, and lung was elevated. Disproportionately high plasma lead levels were also observed at early times after the injection of the 25-mg/kg dose, and may act as a significant factor in placental lead transfer and subsequent malformations or fetal mortality.

  16. Extended-Duration Dosing and Distribution of Dalbavancin into Bone and Articular Tissue

    PubMed Central

    Puttagunta, Sailaja; Sprenger, Craig R.; Rubino, Chris; Van Wart, Scott; Baldassarre, James

    2015-01-01

    Dalbavancin is an intravenous lipoglycopeptide with activity against Gram-positive pathogens and an MIC90 for Staphylococcus aureus of 0.06 μg/ml. With a terminal half-life of >14 days, dosing regimens with infrequent parenteral administration become available to treat infectious diseases such as osteomyelitis and endocarditis that otherwise require daily dosing for many weeks. In order to support a rationale for these novel regimens, the pharmacokinetics over an extended dosing interval and the distribution of dalbavancin into bone and articular tissue were studied in two phase I trials and pharmacokinetic modeling was performed. Intravenous administration of 1,000 mg of dalbavancin on day 1 followed by 500 mg weekly for seven additional weeks was well tolerated and did not demonstrate evidence of drug accumulation. In a separate study, dalbavancin concentrations in cortical bone 12 h after infusion of a single 1,000-mg intravenous infusion were 6.3 μg/g and 2 weeks later were 4.1 μg/g. A two-dose, once-weekly regimen that would provide tissue exposure over the dalbavancin MIC for Staphylococcus aureus for 8 weeks, maximizing the initial exposure to treatment while minimizing the frequency of intravenous therapy, is proposed. PMID:25561338

  17. Generation and dose distribution measurement of flash x-ray in KALI-5000 system

    SciTech Connect

    Menon, Rakhee; Roy, Amitava; Mitra, S.; Sharma, A.; Mondal, J.; Mittal, K. C.; Nagesh, K. V.; Chakravarthy, D. P.

    2008-10-15

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm{sup 2} current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO{sub 4}:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance {approx}1/x{sup n}, where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.

  18. Radiation dose distribution for workers in South Korean nuclear power plants.

    PubMed

    Lee, Byoung-il; Kim, So-i; Suh, Dong-hee; Jin, Young-woo; Kim, Jeong-in; Choi, Hoon; Lim, Young-khi

    2010-07-01

    A total of 33 680 nuclear power plants (NPPs) workers were monitored and recorded from 1990 to 2007. According to the record, the average individual radiation dose has been decreasing continually from 3.20 mSv man(-1) in 1990 to 1.12 mSv man(-1) at the end of 2007. After the International Commission on Radiological Protection 60 recommendation was generalised in South Korea, no NPP workers received >20 mSv radiation, and the numbers of relatively highly exposed workers have been decreasing continuously. The age distribution of radiation workers in NPPs was composed mainly of 20-30 y olds (83 %) for 1990-1994 and 30-40 y olds (75 %) for 2003-2007. The difference in individual average dose by age was not significant. Most (77 %) of the NPP radiation exposures from 1990 to 2007 occurred mostly during the refueling period. With regard to exposure type, the majority of exposures was external exposures, representing 95 % of the total exposures, whereas internal exposures represented only 5 %. External effective dose was affected mainly by gamma radiation exposure, with an insignificant amount of neutron exposure. As for internal effective dose, tritium in the pressurised heavy water reactor was the biggest cause of exposure. PMID:20223854

  19. Generation and dose distribution measurement of flash x-ray in KALI-5000 system.

    PubMed

    Menon, Rakhee; Roy, Amitava; Mitra, S; Sharma, A; Mondal, J; Mittal, K C; Nagesh, K V; Chakravarthy, D P

    2008-10-01

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm(2) current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO(4):Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance approximately 1/x(n), where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns. PMID:19044706

  20. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Anderson, Danielle; Siegbahn, E. Albert; Fallone, B. Gino; Serduc, Raphael; Warkentin, Brad

    2012-05-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm2 microbeam array in each phantom, as well as a 16 × 16 mm2 array in the 8 cm cat head, and a 32 × 32 mm2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study

  1. SU-D-17A-01: Geometric and Dosimetric Evaluation of a 4D-CBCT Reconstruction Technique Using Prior Knowledge

    SciTech Connect

    Zhang, Y; Yin, F; Ren, L

    2014-06-01

    Purpose: To evaluate a 4D-CBCT reconstruction technique both geometrically and dosimetrically Methods: A prior-knowledge guided 4DC-BCT reconstruction method named the motion-modeling and free-form deformation (MM-FD) has been developed. MM-FD views each phase of the 4D-CBCT as a deformation of a prior CT volume. The deformation field is first solved by principal component analysis based motion modeling, followed by constrained free-form deformation.The 4D digital extended-cardiac- torso (XCAT) phantom was used for comprehensive evaluation. Based on a simulated 4D planning CT of a lung patient, 8 different scenarios were simulated to cover the typical on-board anatomical and respiratory variations: (1) synchronized and (2) unsynchronized motion amplitude change for body and tumor; tumor (3) shrinkage and (4) expansion; tumor average position shift in (5) superior-inferior (SI) direction, (6) anterior-posterior (AP) direction and (7) SI, AP and lateral directions altogether; and (8) tumor phase shift relative to the respiratory cycle of the body. Orthogonal-view 30° projections were simulated based on the eight patient scenarios to reconstruct on-board 4D-CBCTs. For geometric evaluation, the volume-percentage-difference (VPD) was calculated to assess the volumetric differences between the reconstructed and the ground-truth tumor.For dosimetric evaluation, a gated treatment plan was designed for the prior 4D-CT. The dose distributions were calculated on the reconstructed 4D-CBCTs and the ground-truth images for comparison. The MM-FD technique was compared with MM-only and FD-only techniques. Results: The average (±s.d.) VPD values of reconstructed tumors for MM-only, FDonly and MM-FD methods were 59.16%(± 26.66%), 75.98%(± 27.21%) and 5.22%(± 2.12%), respectively. The average min/max/mean dose (normalized to prescription) of the reconstructed tumors by MM-only, FD-only, MM-FD methods and ground-truth tumors were 78.0%/122.2%/108.2%, 13%/117.7%/86%, 58

  2. Soft Route to 4D Tomography

    NASA Astrophysics Data System (ADS)

    Taillandier-Thomas, Thibault; Roux, Stéphane; Hild, François

    2016-07-01

    Based on the assumption that the time evolution of a sample observed by computed tomography requires many less parameters than the definition of the microstructure itself, it is proposed to reconstruct these changes based on the initial state (using computed tomography) and very few radiographs acquired at fixed intervals of time. This Letter presents a proof of concept that for a fatigue cracked sample its kinematics can be tracked from no more than two radiographs in situations where a complete 3D view would require several hundreds of radiographs. This 2 order of magnitude gain opens the way to a "computed" 4D tomography, which complements the recent progress achieved in fast or ultrafast computed tomography, which is based on beam brightness, detector sensitivity, and signal acquisition technologies.

  3. ICT4D: A Computer Science Perspective

    NASA Astrophysics Data System (ADS)

    Sutinen, Erkki; Tedre, Matti

    The term ICT4D refers to the opportunities of Information and Communication Technology (ICT) as an agent of development. Research in that field is often focused on evaluating the feasibility of existing technologies, mostly of Western or Far East Asian origin, in the context of developing regions. A computer science perspective is complementary to that agenda. The computer science perspective focuses on exploring the resources, or inputs, of a particular context and on basing the design of a technical intervention on the available resources, so that the output makes a difference in the development context. The modus operandi of computer science, construction, interacts with evaluation and exploration practices. An analysis of a contextualized information technology curriculum of Tumaini University in southern Tanzania shows the potential of the computer science perspective for designing meaningful information and communication technology for a developing region.

  4. Dose and sex dependent distribution of mercury in rats exposed to mercuric chloride

    SciTech Connect

    Khan, A.T.; Graham, T.C.; Webster, J.E.; Ferguson, J.A.

    1994-12-31

    A 14-day study was conducted in young male and female rats (Sprague-Dawley SDTM) with mercuric chloride at daily oral doses of 0, 1.25, 5.0, and 10.0 mg/kg mercuric chloride to determine the maximum tolerated dose and the distribution of mercury in the target organs. The brains, hearts, kidneys, livers, lungs and spleens of both male and female rats (survived or died during the experiment) were analyzed for mercury content. At all treatments (1.25, 2.5, 5.0, and 10.0 mg/kg) groups, mercury level was higher in the kidneys of both sexes, and followed by the livers, spleen, lungs, hearts, and brains, respectively. The mercury level in target organs of females was higher than those of males. All mercury treated rats also showed a reduction in cumulative body weight gained beginning on the third day of treatment.

  5. Effects of CT based Voxel Phantoms on Dose Distribution Calculated with Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Chen, Chaobin; Huang, Qunying; Wu, Yican

    2005-04-01

    A few CT-based voxel phantoms were produced to investigate the sensitivity of Monte Carlo simulations of x-ray beam and electron beam to the proportions of elements and the mass densities of the materials used to express the patient's anatomical structure. The human body can be well outlined by air, lung, adipose, muscle, soft bone and hard bone to calculate the dose distribution with Monte Carlo method. The effects of the calibration curves established by using various CT scanners are not clinically significant based on our investigation. The deviation from the values of cumulative dose volume histogram derived from CT-based voxel phantoms is less than 1% for the given target.

  6. Controlled Source 4D Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Morency, C.; Tromp, J.

    2009-12-01

    Earth's material properties may change after significant tectonic events, e.g., volcanic eruptions, earthquake ruptures, landslides, and hydrocarbon migration. While many studies focus on how to interpret observations in terms of changes in wavespeeds and attenuation, the oil industry is more interested in how we can identify and locate such temporal changes using seismic waves generated by controlled sources. 4D seismic analysis is indeed an important tool to monitor fluid movement in hydrocarbon reservoirs during production, improving fields management. Classic 4D seismic imaging involves comparing images obtained from two subsequent seismic surveys. Differences between the two images tell us where temporal changes occurred. However, when the temporal changes are small, it may be quite hard to reliably identify and characterize the differences between the two images. We propose to back-project residual seismograms between two subsequent surveys using adjoint methods, which results in images highlighting temporal changes. We use the SEG/EAGE salt dome model to illustrate our approach. In two subsequent surveys, the wavespeeds and density within a target region are changed, mimicking possible fluid migration. Due to changes in material properties induced by fluid migration, seismograms recorded in the two surveys differ. By back propagating these residuals, the adjoint images identify the location of the affected region. An important issue involves the nature of model. For instance, are we characterizing only changes in wavespeed, or do we also consider density and attenuation? How many model parameters characterize the model, e.g., is our model isotropic or anisotropic? Is acoustic wave propagation accurate enough or do we need to consider elastic or poroelastic effects? We will investigate how imaging strategies based upon acoustic, elastic and poroelastic simulations affect our imaging capabilities.

  7. Disposition of 2,4-dichlorophenoxyacetic acid dimethylamine by Fischer 344 rats dosed orally and dermally

    SciTech Connect

    Pelletier, O.; Ritter, L.; Caron, J.; Somers, D. )

    1989-01-01

    The dimethylamine salt of 14C-ring-labeled 2,4-D was administered to Fischer 344 rats orally (1 and 0.4 mg/kg body weight) and dermally (10 mg/kg body weight). Absorption, distribution, and elimination were determined from 14C-labeled 2,4-D in blood, tissues, and excreta. Quantitatively, most of the orally administered dose (94-96%) became systemically available within 6 h. Following dermal administration 10% of the dose became systemically available over 72 h. However, peak concentrations in blood and kidneys were achieved within 30 min of dosing by either route. By 1.5 h after dosing, 2,4-D concentrations in blood, muscle, liver, and kidneys had decreased in both the orally dosed and dermally dosed animals. Between 2 and 8 h, the blood, muscle, liver and kidney concentrations in dermally dosed animals maintained a plateau while urinary excretion increased, presumably due to continued absorption of 2,4-D from the skin. The concentrations in orally dosed animals continued to decrease. Following 7 h of dermal exposure, skin cleansing removed about 63% of the applied dose; about 17% of the applied dose remained at the site of dermal dosing. At 8 h, 2,4-D concentrations in blood, muscle, liver, and kidneys of dermally dosed animals began to decrease, most likely a result of the removal of the reservoir on the skin. However, 2,4-D continued to be absorbed from skin site, resulting in a slower decline of the 2,4-D concentrations in these tissues over remainder of the 72-h study period. By comparison, in animals that had been orally dosed, the absorbed dose was almost completely excreted within 24 h.

  8. Effect of Bladder Distension on Dose Distribution of Intracavitary Brachytherapy for Cervical Cancer: Three-Dimensional Computed Tomography Plan Evaluation

    SciTech Connect

    Cengiz, Mustafa Guerdalli, Salih; Selek, Ugur; Yildiz, Ferah; Saglam, Yuecel; Ozyar, Enis; Atahan, I. Lale

    2008-02-01

    Purpose: To quantify the effect of bladder volume on the dose distribution during intracavitary brachytherapy for cervical cancer. Methods and Patients: The study was performed on 10 women with cervical cancer who underwent brachytherapy treatment. After insertion of the brachytherapy applicator, the patients were transferred to the computed tomography unit. Two sets of computed tomography slices were taken, including the pelvis, one with an empty bladder and one after the bladder was filled with saline. The target and critical organs were delineated by the radiation oncologist and checked by the expert radiologist. The radiotherapy plan was run on the Plato planning system, version 14.1, to determine the dose distributions, dose-volume histograms, and maximal dose points. The doses and organ volumes were compared with the Wilcoxon signed ranks test on a personal computer using the Statistical Package for Social Sciences, version 11.0, statistical program. Results: No significant difference regarding the dose distribution and target volumes between an empty or full bladder was observed. Bladder fullness significantly affected the dose to the small intestine, rectum, and bladder. The median of maximal doses to the small intestine was significantly greater with an empty bladder (493 vs. 284 cGy). Although dosimetry revealed lower doses for larger volumes of bladder, the median maximal dose to the bladder was significantly greater with a full bladder (993 vs. 925 cGy). The rectal doses were also affected by bladder distension. The median maximal dose was significantly lower in the distended bladder (481vs. 628 cGy). Conclusions: Bladder fullness changed the dose distributions to the bladder, rectum, and small intestine. The clinical importance of these changes is not known and an increase in the use of three-dimensional brachytherapy planning will highlight the answer to this question.

  9. Food allergy population thresholds: an evaluation of the number of oral food challenges and dosing schemes on the accuracy of threshold dose distribution modeling.

    PubMed

    Klein Entink, Rinke H; Remington, Benjamin C; Blom, W Marty; Rubingh, Carina M; Kruizinga, Astrid G; Baumert, Joseph L; Taylor, Steve L; Houben, Geert F

    2014-08-01

    For most allergenic foods, limited availability of threshold dose information within the population restricts the advice on action levels of unintended allergenic foods which should trigger advisory labeling on packaged foods. The objective of this paper is to provide guidance for selecting an optimal sample size for threshold dosing studies for major allergenic foods and to identify factors influencing the accuracy of estimation. A simulation study was performed to evaluate the effects of sample size and dosing schemes on the accuracy of the threshold distribution curve. The relationships between sample size, dosing scheme and the employed statistical distribution on the one hand and accuracy of estimation on the other hand were obtained. It showed that the largest relative gains in accuracy are obtained when sample size increases from N=20 to N=60. Moreover, it showed that the EuroPrevall dosing scheme is a useful start, but that it may need revision for a specific allergen as more data become available, because a proper allocation of the dosing steps is important. The results may guide risk assessors in minimum sample sizes for new studies and in the allocation of proper dosing schemes for allergens in provocation studies. PMID:24815821

  10. Impact of Intrafractional Bowel Gas Movement on Carbon Ion Beam Dose Distribution in Pancreatic Radiotherapy

    SciTech Connect

    Kumagai, Motoki; Hara, Ryusuke; Mori, Shinichiro Yanagi, Takeshi; Asakura, Hiroshi; Kishimoto, Riwa; Kato, Hirotoshi; Yamada, Shigeru; Kandatsu, Susumu; Kamada, Tadashi

    2009-03-15

    Purpose: To assess carbon ion beam dose variation due to bowel gas movement in pancreatic radiotherapy. Methods and Materials: Ten pancreatic cancer inpatients were subject to diagnostic contrast-enhanced dynamic helical CT examination under breath-holding conditions, which included multiple-phase dynamic CT with arterial, venous, and delayed phases. The arterial-venous phase and arterial-delayed phase intervals were 35 and 145 s, respectively. A compensating bolus was designed to cover the target obtained at the arterial phase. Carbon ion dose distribution was calculated by applying the bolus to the CT data sets at the other two phases. Results: Dose conformation to the clinical target volume was degraded by beam overshoot/undershoot due to bowel gas movement. The D95 for clinical target volume was degraded from 98.2% (range, 98.0-99.1%) of the prescribed dose to 94.7% (range, 88.0-99.0%) at 145 s. Excessive dosing to normal tissues varied among tissues and was, for example, 12.2 GyE/13.1 GyE (0 s/145 s) for the cord and 38.8 GyE/39.8 GyE (0 s/145 s) for the duodenum. The magnitude of beam overshoot/undershoot was particularly exacerbated from the anterior and left directions. Conclusions: Bowel gas movement causes dosimetric variation to the target during treatment for radiotherapy. The effect of bowel gas movement varies with beam angle, with greatest influence on the anterior-posterior and left-right beams.

  11. Clinical examples of 3D dose distribution reconstruction, based on the actual MLC leaves movement, for dynamic treatment techniques

    PubMed Central

    Osewski, Wojciech; Dolla, Łukasz; Radwan, Michał; Szlag, Marta; Rutkowski, Roman; Smolińska, Barbara; Ślosarek, Krzysztof

    2014-01-01

    Aim To present practical examples of our new algorithm for reconstruction of 3D dose distribution, based on the actual MLC leaf movement. Background DynaLog and RTplan files were used by DDcon software to prepare a new RTplan file for dose distribution reconstruction. Materials and methods Four different clinically relevant scenarios were used to assess the feasibility of the proposed new approach: (1) Reconstruction of whole treatment sessions for prostate cancer; (2) Reconstruction of IMRT verification treatment plan; (3) Dose reconstruction in breast cancer; (4) Reconstruction of interrupted arc and complementary plan for an interrupted VMAT treatment session of prostate cancer. The applied reconstruction method was validated by comparing reconstructed and measured fluence maps. For all statistical analysis, the U Mann–Whitney test was used. Results In the first two and the fourth cases, there were no statistically significant differences between the planned and reconstructed dose distribution (p = 0.910, p = 0.975, p = 0.893, respectively). In the third case the differences were statistically significant (p = 0.015). Treatment plan had to be reconstructed. Conclusion Developed dose distribution reconstruction algorithm presents a very useful QA tool. It provides means for 3D dose distribution verification in patient volume and allows to evaluate the influence of actual MLC leaf motion on the dose distribution. PMID:25337416

  12. Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array

    SciTech Connect

    Arjomandy, Bijan; Sahoo, Narayan; Ciangaru, George; Zhu, Ronald; Song Xiaofei; Gillin, Michael

    2010-11-15

    Purpose: The purpose of this study was to determine whether a two-dimensional (2D) ion chamber array detector quickly and accurately measures patient-specific dose distributions in treatment with passively scattered and spot scanning proton beams. Methods: The 2D ion chamber array detector MatriXX was used to measure the dose distributions in plastic water phantom from passively scattered and spot scanning proton beam fields planned for patient treatment. Planar dose distributions were measured using MatriXX, and the distributions were compared to those calculated using a treatment-planning system. The dose distributions generated by the treatment-planning system and a film dosimetry system were similarly compared. Results: For passively scattered proton beams, the gamma index for the dose-distribution comparison for treatment fields for three patients with prostate cancer and for one patient with lung cancer was less than 1.0 for 99% and 100% of pixels for a 3% dose tolerance and 3 mm distance-to-dose agreement, respectively. For spot scanning beams, the mean ({+-} standard deviation) percentages of pixels with gamma indices meeting the passing criteria were 97.1%{+-}1.4% and 98.8%{+-}1.4% for MatriXX and film dosimetry, respectively, for 20 fields used to treat patients with prostate cancer. Conclusions: Unlike film dosimetry, MatriXX provides not only 2D dose-distribution information but also absolute dosimetry in fractions of minutes with acceptable accuracy. The results of this study indicate that MatriXX can be used to verify patient-field specific dose distributions in proton therapy.

  13. Practical dose point-based methods to characterize dose distribution in a stationary elliptical body phantom for a cone-beam C-arm CT system

    PubMed Central

    Choi, Jang-Hwan; Constantin, Dragos; Ganguly, Arundhuti; Girard, Erin; Morin, Richard L.; Dixon, Robert L.; Fahrig, Rebecca

    2015-01-01

    Purpose: To propose new dose point measurement-based metrics to characterize the dose distributions and the mean dose from a single partial rotation of an automatic exposure control-enabled, C-arm-based, wide cone angle computed tomography system over a stationary, large, body-shaped phantom. Methods: A small 0.6 cm3 ion chamber (IC) was used to measure the radiation dose in an elliptical body-shaped phantom made of tissue-equivalent material. The IC was placed at 23 well-distributed holes in the central and peripheral regions of the phantom and dose was recorded for six acquisition protocols with different combinations of minimum kVp (109 and 125 kVp) and z-collimator aperture (full: 22.2 cm; medium: 14.0 cm; small: 8.4 cm). Monte Carlo (MC) simulations were carried out to generate complete 2D dose distributions in the central plane (z = 0). The MC model was validated at the 23 dose points against IC experimental data. The planar dose distributions were then estimated using subsets of the point dose measurements using two proposed methods: (1) the proximity-based weighting method (method 1) and (2) the dose point surface fitting method (method 2). Twenty-eight different dose point distributions with six different point number cases (4, 5, 6, 7, 14, and 23 dose points) were evaluated to determine the optimal number of dose points and their placement in the phantom. The performances of the methods were determined by comparing their results with those of the validated MC simulations. The performances of the methods in the presence of measurement uncertainties were evaluated. Results: The 5-, 6-, and 7-point cases had differences below 2%, ranging from 1.0% to 1.7% for both methods, which is a performance comparable to that of the methods with a relatively large number of points, i.e., the 14- and 23-point cases. However, with the 4-point case, the performances of the two methods decreased sharply. Among the 4-, 5-, 6-, and 7-point cases, the 7-point case (1.0% [±0

  14. Fine-Resolution Voxel S Values for Constructing Absorbed Dose Distributions at Variable Voxel Size

    PubMed Central

    Dieudonné, Arnaud; Hobbs, Robert F.; Bolch, Wesley E.; Sgouros, George; Gardin, Isabelle

    2010-01-01

    This article presents a revised voxel S values (VSVs) approach for dosimetry in targeted radiotherapy, allowing dose calculation for any voxel size and shape of a given SPECT or PET dataset. This approach represents an update to the methodology presented in MIRD pamphlet no. 17. Methods VSVs were generated in soft tissue with a fine spatial sampling using the Monte Carlo (MC) code MCNPX for particle emissions of 9 radionuclides: 18F, 90Y, 99mTc, 111In, 123I, 131I, 177Lu, 186Re, and 201Tl. A specific resampling algorithm was developed to compute VSVs for desired voxel dimensions. The dose calculation was performed by convolution via a fast Hartley transform. The fine VSVs were calculated for cubic voxels of 0.5 mm for electrons and 1.0 mm for photons. Validation studies were done for 90Y and 131I VSV sets by comparing the revised VSV approach to direct MC simulations. The first comparison included 20 spheres with different voxel sizes (3.8–7.7 mm) and radii (4–64 voxels) and the second comparison a hepatic tumor with cubic voxels of 3.8 mm. MC simulations were done with MCNPX for both. The third comparison was performed on 2 clinical patients with the 3D-RD (3-Dimensional Radiobiologic Dosimetry) software using the EGSnrc (Electron Gamma Shower National Research Council Canada)-based MC implementation, assuming a homogeneous tissue-density distribution. Results For the sphere model study, the mean relative difference in the average absorbed dose was 0.20% ± 0.41% for 90Y and −0.36% ± 0.51% for 131I (n = 20). For the hepatic tumor, the difference in the average absorbed dose to tumor was 0.33% for 90Y and −0.61% for 131I and the difference in average absorbed dose to the liver was 0.25% for 90Y and −1.35% for 131I. The comparison with the 3D-RD software showed an average voxel-to-voxel dose ratio between 0.991 and 0.996. The calculation time was below 10 s with the VSV approach and 50 and 15 h with 3D-RD for the 2 clinical patients. Conclusion This new

  15. Opening the Black Box of ICT4D: Advancing Our Understanding of ICT4D Partnerships

    ERIC Educational Resources Information Center

    Park, Sung Jin

    2013-01-01

    The term, Information and Communication Technologies for Development (ICT4D), pertains to programs or projects that strategically use ICTs (e.g. mobile phones, computers, and the internet) as a means toward the socio-economic betterment for the poor in developing contexts. Gaining the political and financial support of the international community…

  16. Integral T-Shaped Phantom-Dosimeter System to Measure Transverse and Longitudinal Dose Distributions Simultaneously for Stereotactic Radiosurgery Dosimetry

    PubMed Central

    Yoo, Wook Jae; Moon, Jinsoo; Jang, Kyoung Won; Han, Ki-Tek; Shin, Sang Hun; Jeon, Dayeong; Park, Jang-Yeon; Park, Byung Gi; Lee, Bongsoo

    2012-01-01

    A T-shaped fiber-optic phantom-dosimeter system was developed using square scintillating optical fibers, a lens system, and a CMOS image camera. Images of scintillating light were used to simultaneously measure the transverse and longitudinal distributions of absorbed dose of a 6 MV photon beam with field sizes of 1 × 1 and 3 × 3 cm2. Each optical fiber has a very small sensitive volume and the sensitive material is water equivalent. This allows the measurements of cross-beam profile as well as the percentage depth dose of small field sizes. In the case of transverse dose distribution, the measured beam profiles were gradually become uneven and the beam edge had a gentle slope with increasing depth of the PMMA phantom. In addition, the maximum dose values of longitudinal dose distribution for 6 MV photon beam with field sizes of 1 × 1 and 3 × 3 cm2 were found to be at a depth of approximately 15 mm and the percentage depth dose of both field sizes were nearly in agreement at the skin dose level. Based on the results of this study, it is anticipated that an all-in-one phantom-dosimeter can be developed to accurately measure beam profiles and dose distribution in a small irradiation fields prior to carrying out stereotactic radiosurgery. PMID:22778649

  17. IDTT therapy in cadaveric lumbar spine: temperature and thermal dose distributions

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Nau, William H.; Kleinstueck, Frank; Lotz, Jeff; Bradford, David

    2001-06-01

    The purpose of this study was to perform extensive temperature mapping throughout human cadaveric disc (n=12) specimens during Intradiscal Thermal Therapy IDTT using the SpineCathTM applicator. Temperature distributions and accumulated thermal dose or thermal damage calculated from the temperature-time history are used to define probable regions of thermal necrosis (destruction of nerves) or thermal coagulation (induced structural changes). The IDTT procedure using SpineCath (5 cm resistive heating segment) and the current standard heating protocol (~17 min) produces intra-discal temperatures which are too low to generate appreciable regions of thermal coagulation and resultant changes in biomechanical properties. This finding was supported by temperature measurements which were mostly below the critical temperature of 60-65°C, except for regions within 1-2 mm of the SpineCath applicator. Furthermore, the analysis of the thermal dose profiles indicate that sufficient thermal doses (240-640 EM43°C) capable of generating complete thermal damage to the nociceptive nerves fibers infiltrating the disc are limited to within ~6 mm of the nucleus and IDTT probe heating segment.

  18. Modeling Focused Ultrasound Exposure for the Optimal Control of Thermal Dose Distribution

    PubMed Central

    Sassaroli, E.; Li, K. C. P.; O'Neill, B. E.

    2012-01-01

    Preclinical studies indicate that focused ultrasound at exposure conditions close to the threshold for thermal damage can increase drug delivery at the focal region. Although these results are promising, the optimal control of temperature still remains a challenge. To address this issue, computer-simulated ultrasound treatments have been performed. When the treatments are delivered without taking into account the cooling effect exerted by the blood flow, the resulting thermal dose is highly variable with regions of thermal damage, regions of underdosage close to the vessels, and areas in between these two extremes. When the power deposition is adjusted so that the peak thermal dose remains close to the threshold for thermal damage, the thermal dose is more uniformly distributed but under-dosage is still visible around the thermally significant vessels. The results of these simulations suggest that, for focused ultrasound, as for other delivery methods, the only way to control temperature is to adjust the average energy deposition to compensate for the presence of thermally significant vessels in the target area. By doing this, we have shown that it is possible to reduce the temperature heterogeneity observed in focused ultrasound thermal treatments. PMID:22593669

  19. A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions.

    PubMed

    Podesta, Mark; Persoon, Lucas C G G; Verhaegen, Frank

    2014-10-21

    Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors.The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation fields

  20. Calculation and Prediction of the Effect of Respiratory Motion on Whole Breast Radiation Therapy Dose Distributions

    SciTech Connect

    Cao Junsheng; Roeske, John C.; Chmura, Steve J.; Salama, Joseph K.; Shoushtari, Asal N.; Boyer, Arthur L.; Martel, Mary K.

    2009-07-01

    The standard treatment technique used for whole-breast irradiation can result in undesirable dose distributions in the treatment site, leading to skin reaction/fibrosis and pulmonary and cardiac toxicities. Hence, the technique has evolved from conventional wedged technique (CWT) to segment intensity-modulated radiation therapy (SIMRT) and beamlet IMRT (IMRT). However, these newer techniques feature more highly modulated dose distributions that may be affected by respiration. The purpose of this work was to conduct a simple study of the clinical impact of respiratory motion on breast radiotherapy dose distributions for the three treatment planning techniques. The ultimate goal was to determine which patients would benefit most from the use of motion management. Eight patients with early-stage breast cancer underwent a free-breathing (FB) computed tomography (CT) simulation, with medial and lateral markers placed on the skin. Two additional CT scans were obtained at the end of inspiration (EI) and the end of expiration (EE). The FB-CT scan was used to develop treatment plans using each technique. Each plan was then applied to EI and EE-CT scans. Compared with the FB CT scan, the medial markers moved up to 1.8 cm in the anterior-superior direction at the end of inspiration (EI-scan), and on average 8 mm. The CWT and SIMRT techniques were not 'sensitive' to respiratory motion, because the % clinical target volume (CTV) receiving 95% of the prescription dose (V{sub 95%}) remained constant for both techniques. For patients that had large respiratory motion indicated by marker movement >0.6 cm, differences in coverage of the CTV at the V100% between FB and EI for beamlet IMRT plans were on the order of >10% and up to 18%. A linear model was developed to relate the dosimetric coverage difference introduced by respiration with the motion information. With this model, the dosimetric coverage difference introduced by respiratory motion could be evaluated during patient CT

  1. Calculated depth-dose distributions for H + and He + beams in liquid water

    NASA Astrophysics Data System (ADS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2009-08-01

    We have calculated the dose distribution delivered by proton and helium beams in liquid water as a function of the target-depth, for incident energies in the range 0.5-10 MeV/u. The motion of the projectiles through the stopping medium is simulated by a code that combines Monte Carlo and a finite differences algorithm to consider the electronic stopping power, evaluated in the dielectric framework, and the multiple nuclear scattering with the target nuclei. Changes in projectile charge-state are taken into account dynamically as it moves through the target. We use the MELF-GOS model to describe the energy loss function of liquid water, obtaining a value of 79.4 eV for its mean excitation energy. Our calculated stopping powers and depth-dose distributions are compared with those obtained using other methods to describe the energy loss function of liquid water, such as the extended Drude and the Penn models, as well as with the prediction of the SRIM code and the tables of ICRU.

  2. Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India.

    PubMed

    Gusain, G S; Rautela, B S; Sahoo, S K; Ishikawa, T; Prasad, G; Omori, Y; Sorimachi, A; Tokonami, S; Ramola, R C

    2012-11-01

    Terrestrial gamma radiation is one of the important radiation exposures on the earth's surface that results from the three primordial radionuclides (226)Ra, (232)Th and (40)K. The elemental concentration of these elements in the earth's crust could result in the anomalous variation of the terrestrial gamma radiation in the environment. The geology of the local area plays an important role in distribution of these radioactive elements. Environmental terrestrial gamma radiation dose rates were measured around the eastern coastal area of Odisha with the objective of establishing baseline data on the background radiation level. The values of the terrestrial gamma radiation dose rate vary significantly at different locations in the study area. The values of the terrestrial gamma dose rate ranged from 77 to 1651 nGy h(-1), with an average of 230 nGy h(-1). During the measurement of the terrestrial gamma dose rate, sand and soil samples were also collected for the assessment of natural radionuclides. The activities of (226)Ra, (232)Th and (40)K from these samples were measured using a gamma-ray spectrometry with a NaI(Tl) detector. Activity concentrations of (226)Ra, (232)Th and (40)K ranged from 15.6 to 69 Bq kg(-1) with an average of 46.7 Bq kg(-1), from 28.9 to 973 Bq kg(-1) with an average of 250 Bq kg(-1) and from 139 to 952 Bq kg(-1) with an average of 429, respectively. The detailed significance of these studies has been discussed from the radiation protection point of view. PMID:22874894

  3. Commercial production and distribution of fresh fruits and vegetables: A scoping study on the importance of produce pathways to dose. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Marsh, T.L.; Anderson, D.M.; Farris, W.T.; Ikenberry, T.A.; Napier, B.A.; Wilfert, G.L.

    1992-09-01

    This letter report summarizes a scoping study that examined the potential importance of fresh fruit and vegetable pathways to dose. A simple production index was constructed with data collected from the Washington State Department of Agriculture (WSDA), the United States Bureau of the Census, and the United States Department of Agriculture (USDA). Hanford Environmental Dose Reconstruction (HEDR) Project staff from Battelle, Pacific Northwest Laboratories, in cooperation with members of the Technical Steering Panel (TSP), selected lettuce and spinach as the produce pathways most likely to impact dose. County agricultural reports published in 1956 provided historical descriptions of the predominant distribution patterns of fresh lettuce and spinach from production regions to local population centers. Pathway rankings and screening dose estimates were calculated for specific populations living in selected locations within the HEDR study area.

  4. Stereotactic, Single-Dose Irradiation of Lung Tumors: A Comparison of Absolute Dose and Dose Distribution Between Pencil Beam and Monte Carlo Algorithms Based on Actual Patient CT Scans

    SciTech Connect

    Chen Huixiao; Lohr, Frank; Fritz, Peter; Wenz, Frederik; Dobler, Barbara; Lorenz, Friedlieb; Muehlnickel, Werner

    2010-11-01

    Purpose: Dose calculation based on pencil beam (PB) algorithms has its shortcomings predicting dose in tissue heterogeneities. The aim of this study was to compare dose distributions of clinically applied non-intensity-modulated radiotherapy 15-MV plans for stereotactic body radiotherapy between voxel Monte Carlo (XVMC) calculation and PB calculation for lung lesions. Methods and Materials: To validate XVMC, one treatment plan was verified in an inhomogeneous thorax phantom with EDR2 film (Eastman Kodak, Rochester, NY). Both measured and calculated (PB and XVMC) dose distributions were compared regarding profiles and isodoses. Then, 35 lung plans originally created for clinical treatment by PB calculation with the Eclipse planning system (Varian Medical Systems, Palo Alto, CA) were recalculated by XVMC (investigational implementation in PrecisePLAN [Elekta AB, Stockholm, Sweden]). Clinically relevant dose-volume parameters for target and lung tissue were compared and analyzed statistically. Results: The XVMC calculation agreed well with film measurements (<1% difference in lateral profile), whereas the deviation between PB calculation and film measurements was up to +15%. On analysis of 35 clinical cases, the mean dose, minimal dose and coverage dose value for 95% volume of gross tumor volume were 1.14 {+-} 1.72 Gy, 1.68 {+-} 1.47 Gy, and 1.24 {+-} 1.04 Gy lower by XVMC compared with PB, respectively (prescription dose, 30 Gy). The volume covered by the 9 Gy isodose of lung was 2.73% {+-} 3.12% higher when calculated by XVMC compared with PB. The largest differences were observed for small lesions circumferentially encompassed by lung tissue. Conclusions: Pencil beam dose calculation overestimates dose to the tumor and underestimates lung volumes exposed to a given dose consistently for 15-MV photons. The degree of difference between XVMC and PB is tumor size and location dependent. Therefore XVMC calculation is helpful to further optimize treatment planning.

  5. Optical CT and MR imaging of radiation dose distributions using the FBX-gel dosimeter

    NASA Astrophysics Data System (ADS)

    Kelly, Robin G.

    In recent years, magnetic resonance imaging of gelatin doped with the Fricke solution has been applied to the direct measurement of three-dimensional (3D) dose distributions. However, the 3D-dose distribution can also be imaged more economically and efficiently using the method of optical absorption computed tomography. This is accomplished by first preparing a gelatin matrix containing a radiochromic dye and mapping the radiation-induced local change in the optical absorption coefficient. Ferrous Sulphate-Benzoic Acid-Xylenol Orange (FBX) was the dye of choice for this investigation. The complex formed by Fe 3+ and xylenol orange exhibits a linear change in optical attenuation (cm-1) with radiation dose in the range between 0 and 1000 cGy, and the local concentration of this complex can be probed using a green laser light (lambda = 543.5 nm). An optical computed tomography (CT) scanner was constructed analogous to a first-generation x-ray CT scanner, using a He-Ne laser, photodiodes, and rotation-translation stages controlled by a personal computer. The optical CT scanner itself can reconstruct attenuation coefficients to a baseline accuracy of <2% while yielding dose images accurate to within 5% when other uncertainties are taken into account. The radiation-induced conversion of ferrous ion (Fe2+) to ferric ion (Fe3+) in the FBX Gelatin dosimeter can also be measured using magnetic resonance imaging, similar to the standard Fricke-gelatin system. The oxidation process causes a shortening of the spin-spin (T 2), and spin-lattice (T1) relaxation times, each of which can be measured, with varying accuracy and precision, using different MR pulse sequences. In this investigation, the spin-lattice relaxation times of FBX gelatin were determined using both a fast inversion recovery pulse-sequence, and a three-dimensional Look-Locker (3D-LL) pulse-sequence. The inverse spin-lattice relaxation time (R1 = 1/T1) is shown to vary linearly with absorbed dose in the range 500

  6. Analysis of the Body Distribution of Absorbed Dose in the Organs of Three Species of Fish from Sepetiba Bay

    SciTech Connect

    Pereira, Wagner de S; Kelecom, Alphonse; Santos Gouvea, Rita de Cassia dos; Azevedo Py Junior, Delcy de

    2008-08-07

    The body distribution of Polonium-210 in three fishes from the Sepetiba Bay (Macrodon ancylodon, Micropogonias furnieri and Mugil curema) has been studied under the approach of the Department of Energy of the United States of America (DOE) that set the limit of absorbed dose rate in biota equal to 3.5x10{sup 3} {mu}Gy/y, and that also established the relation between dose rate (D) and radionuclide concentration (c) on a fish muscle fresh weight basis, as follows: D = 5.05 ExNxC, assuming that the radionuclide distribution is homogenous among organs. Two hypotheses were tested here, using statistical tools: 1) is the body distribution of absorbed dose homogenous among organs? and 2) is the body distribution of absorbed dose identical among studied fishes? It was concluded, as expected, that the distribution among organs is heterogeneous; but, unexpectedly, that the three fishes display identical body distribution pattern, although they belong to different trophic levels. Hence, concerning absorbed dose calculation, the statement that data distribution is homogenous must be understood merely as an approximation, at least in the case of Polonium-210.

  7. Developmental effects of +/-3,4-methylenedioxymethamphetamine on spatial versus path integration learning: effects of dose distribution.

    PubMed

    Vorhees, Charles V; Schaefer, Tori L; Williams, Michael T

    2007-07-01

    We previously demonstrated that postnatal day 11-20 +/-3,4-methylenedioxymethamphetamine (MDMA) exposure reduces locomotor activity and impairs path integration and spatial learning independent of the effects on activity. The effects were seen when the drug was administered twice per day, but the optimal dosing regimen is unknown. We tested whether the same total daily dose of MDMA administered in different patterns would equally affect later behavior. A split-litter design (15 litters) was used with one male/female pair per litter receiving one of four treatment regimens. All offspring received four injections per day on P11-20 as follows: 40 x 1 (40 mg/kg MDMA x 1 + saline x 3), 20 x 2 (20 mg/kg MDMA x 2 + saline x 2), 10 x 4 (10 mg/kg MDMA x 4), or Saline (saline x 4). Doses were spaced 2 h apart. Group 40 x 1 received MDMA as the first daily dose followed by three saline doses; group 20 x 2 received MDMA as the first and last dose and saline for the middle two doses; group 10 x 4 received MDMA for all four doses; and the saline group received saline for all four doses. Regardless of dose schedule, all groups treated with MDMA exhibited reduced locomotor activity. No MDMA effects were found on swimming ability in a straight channel. Modest MDMA effects were found on Barnes maze performance. The major findings were that the 40 x 1 and 20 x 2 MDMA groups showed impaired Cincinnati multiple T-water-maze learning and the 10 x 4 and 20 x 2 MDMA groups showed impaired Morris water maze learning. The results suggest that MDMA dose distribution has a long-term differential effect on different types of learning. Dose distribution warrants greater attention in the design of developmental drug studies along with the standard considerations of dose and age. PMID:17415794

  8. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  9. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  10. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  11. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2011 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  12. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2014 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  13. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2011 CFR

    2005-04-01

    ... 17 Commodity and Securities Exchanges 3 2005-04-01 2005-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  14. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2014 CFR

    2000-04-01

    ... 17 Commodity and Securities Exchanges 3 2000-04-01 2000-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a) Each application for an order under section 304(d)...

  15. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2010 CFR

    2015-04-01

    ... 17 Commodity and Securities Exchanges 4 2015-04-01 2015-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  16. Measurement of dose distribution in the spherical phantom onboard the ISS-KIBO module -MATROSHKA-R in KIBO-

    NASA Astrophysics Data System (ADS)

    Kodaira, Satoshi; Kawashima, Hajime; Kurano, Mieko; Uchihori, Yukio; Nikolaev, Igor; Ambrozova, Iva; Kitamura, Hisashi; Kartsev, Ivan; Tolochek, Raisa; Shurshakov, Vyacheslav

    The measurement of dose equivalent and effective dose during manned space missions on the International Space Station (ISS) is important for evaluating the risk to astronaut health and safety when exposed to space radiation. The dosimetric quantities are constantly changing and strongly depend on the level of solar activity and the various spacecraft- and orbit-dependent parameters such as the shielding distribution in the ISS module, location of the spacecraft within its orbit relative to the Earth, the attitude (orientation) and altitude. Consequently, the continuous monitoring of dosimetric quantities is required to record and evaluate the personal radiation dose for crew members during spaceflight. The dose distributions in the phantom body and on its surface give crucial information to estimate the dose equivalent in the human body and effective dose in manned space mission. We have measured the absorbed dose and dose equivalent rates using passive dosimeters installed in the spherical phantom in Japanese Experiment Module (“KIBO”) of the ISS in the framework of Matroshka-R space experiment. The exposure duration was 114 days from May 21 to September 12, 2012. The phantom consists of tissue-equivalent material covered with a poncho jacket with 32 pockets on its surface and 20 container rods inside of the phantom. The phantom diameter is 35 cm and the mass is 32 kg. The passive dosimeters consisted of a combination of luminescent detectors of Al _{2}O _{3};C OSL and CaSO _{4}:Dy TLD and CR-39 plastic nuclear track detectors. As one of preliminary results, the dose distribution on the phantom surface measured with OSL detectors installed in the jacket pockets is found to be ranging from 340 muGy/day to 260 muGy/day. In this talk, we will present the detail dose distributions, and variations of LET spectra and quality factor obtained outside and inside of the spherical phantom installed in the ISS-KIBO.

  17. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators

    SciTech Connect

    Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard

    2009-10-15

    Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate

  18. The dose distribution of low dose rate Cs-137 in intracavitary brachytherapy: comparison of Monte Carlo simulation, treatment planning calculation and polymer gel measurement

    NASA Astrophysics Data System (ADS)

    Fragoso, M.; Love, P. A.; Verhaegen, F.; Nalder, C.; Bidmead, A. M.; Leach, M.; Webb, S.

    2004-12-01

    In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous—with an air cavity—polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated.

  19. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    NASA Astrophysics Data System (ADS)

    Palmer, Antony L.; Lee, Chris; Ratcliffe, Ailsa J.; Bradley, David; Nisbet, Andrew

    2013-10-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  20. Optimization of deterministic transport parameters for the calculation of the dose distribution around a high dose-rate 192Ir brachytherapy source.

    PubMed

    Gifford, Kent A; Price, Michael J; Horton, John L; Wareing, Todd A; Mourtada, Firas

    2008-06-01

    The goal of this work was to calculate the dose distribution around a high dose-rate 192Ir brachytherapy source using a multi-group discrete ordinates code and then to compare the results with a Monte Carlo calculated dose distribution. The unstructured tetrahedral mesh discrete ordinates code Attila version 6.1.1 was used to calculate the photon kerma rate distribution in water around the Nucletron microSelectron mHDRv2 source. MCNPX 2.5.c was used to compute the Monte Carlo water photon kerma rate distribution. Two hundred million histories were simulated, resulting in standard errors of the mean of less than 3% overall. The number of energy groups, S(n) (angular order), P(n) (scattering order), and mesh elements were varied in addition to the method of analytic ray tracing to assess their effects on the deterministic solution. Water photon kerma rate matrices were exported from both codes into an in-house data analysis software. This software quantified the percent dose difference distribution, the number of points within +/- 3% and +/- 5%, and the mean percent difference between the two codes. The data demonstrated that a 5 energy-group cross-section set calculated results to within 0.5% of a 15 group cross-section set. S12 was sufficient to resolve the solution in angle. P2 expansion of the scattering cross-section was necessary to compute accurate distributions. A computational mesh with 55 064 tetrahedral elements in a 30 cm diameter phantom resolved the solution spatially. An efficiency factor of 110 with the above parameters was realized in comparison to MC methods. The Attila code provided an accurate and efficient solution of the Boltzmann transport equation for the mHDRv2 source. PMID:18649459

  1. Optimization of deterministic transport parameters for the calculation of the dose distribution around a high dose-rate {sup 192}Ir brachytherapy source

    SciTech Connect

    Gifford, Kent A.; Price, Michael J.; Horton, John L. Jr.; Wareing, Todd A.; Mourtada, Firas

    2008-06-15

    The goal of this work was to calculate the dose distribution around a high dose-rate {sup 192}Ir brachytherapy source using a multi-group discrete ordinates code and then to compare the results with a Monte Carlo calculated dose distribution. The unstructured tetrahedral mesh discrete ordinates code Attila version 6.1.1 was used to calculate the photon kerma rate distribution in water around the Nucletron microSelectron mHDRv2 source. MCNPX 2.5.c was used to compute the Monte Carlo water photon kerma rate distribution. Two hundred million histories were simulated, resulting in standard errors of the mean of less than 3% overall. The number of energy groups, S{sub n} (angular order), P{sub n} (scattering order), and mesh elements were varied in addition to the method of analytic ray tracing to assess their effects on the deterministic solution. Water photon kerma rate matrices were exported from both codes into an in-house data analysis software. This software quantified the percent dose difference distribution, the number of points within {+-}3% and {+-}5%, and the mean percent difference between the two codes. The data demonstrated that a 5 energy-group cross-section set calculated results to within 0.5% of a 15 group cross-section set. S{sub 12} was sufficient to resolve the solution in angle. P{sub 2} expansion of the scattering cross-section was necessary to compute accurate distributions. A computational mesh with 55 064 tetrahedral elements in a 30 cm diameter phantom resolved the solution spatially. An efficiency factor of 110 with the above parameters was realized in comparison to MC methods. The Attila code provided an accurate and efficient solution of the Boltzmann transport equation for the mHDRv2 source.

  2. Tuning Aerosol Particle Size Distribution of Metered Dose Inhalers Using Cosolvents and Surfactants

    PubMed Central

    Saleem, Imran Y.; Smyth, Hugh D. C.

    2013-01-01

    Objectives. The purpose of these studies was to understand the influence of cosolvent and surfactant contributions to particle size distributions emitted from solution metered dose inhalers (pMDIs) based on the propellant HFA 227. Methods. Two sets of formulations were prepared: (a) pMDIs-HFA 227 containing cosolvent (5–15% w/w ethanol) with constant surfactant (pluronic) concentration and (b) pMDIs-HFA 227 containing surfactant (0–5.45% w/w pluronic) with constant cosolvent concentration. Particle size distributions emitted from these pMDIs were analyzed using aerodynamic characterization (inertial impaction) and laser diffraction methods. Results. Both cosolvent and surfactant concentrations were positively correlated with median particle sizes; that is, drug particle size increased with increasing ethanol and pluronic concentrations. However, evaluation of particle size distributions showed that cosolvent caused reduction in the fine particle mode magnitude while the surfactant caused a shift in the mode position. These findings highlight the different mechanisms by which these components influence droplet formation and demonstrate the ability to utilize the different effects in formulations of pMDI-HFA 227 for independently modulating particle sizes in the respirable region. Conclusion. Potentially, the formulation design window generated using these excipients in combination could be used to match the particle size output of reformulated products to preexisting pMDI products. PMID:23984381

  3. 4D XCAT phantom for multimodality imaging research

    SciTech Connect

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-09-15

    realistic, predictive 3D and 4D imaging data from populations of normal and abnormal patients under various imaging parameters, the authors conclude that the XCAT provides an important tool in imaging research to evaluate and improve imaging devices and techniques. In the field of x-ray CT, the phantom may also provide the necessary foundation with which to optimize clinical CT applications in terms of image quality versus radiation dose, an area of research that is becoming more significant with the growing use of CT.

  4. 4D XCAT phantom for multimodality imaging research

    PubMed Central

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-01-01

    realistic, predictive 3D and 4D imaging data from populations of normal and abnormal patients under various imaging parameters, the authors conclude that the XCAT provides an important tool in imaging research to evaluate and improve imaging devices and techniques. In the field of x-ray CT, the phantom may also provide the necessary foundation with which to optimize clinical CT applications in terms of image quality versus radiation dose, an area of research that is becoming more significant with the growing use of CT. PMID:20964209

  5. Distributed optical fibre temperature measurements in a low dose rate radiation environment based on Rayleigh backscattering

    NASA Astrophysics Data System (ADS)

    Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A. A.; Liokumovich, L. B.; Kotov, O. I.; Zolotovskiy, I. O.; Tomashuk, A. L.; Deschoutheete, T.; Mégret, P.

    2012-04-01

    On-line monitoring of environmental conditions in nuclear facilities is becoming a more and more important problem. Standard electronic sensors are not the ideal solution due to radiation sensitivity and difficulties in installation of multiple sensors. In contrast, radiation-hard optical fibres can sustain very high radiation doses and also naturally offer multi-point or distributed monitoring of external perturbations. Multiple local electro-mechanical sensors can be replaced by just one measuring fibre. At present, there are over four hundred operational nuclear power plants (NPPs) in the world 1. Operating experience has shown that ineffective control of the ageing degradation of major NPP components can threaten plant safety and also plant life. Among those elements, cables are vital components of I&C systems in NPPs. To ensure their safe operation and predict remaining life, environmental monitoring is necessary. In particular, temperature and radiation dose are considered to be the two most important parameters. The aim of this paper is to assess experimentally the feasibility of optical fibre temperature measurements in a low doserate radiation environment, using a commercially available reflectometer based on Rayleigh backscattering. Four different fibres were installed in the Sub-Pile Room of the BR2 Material testing nuclear reactor in Mol, Belgium. This place is man-accessible during the reactor shut-down, allowing easy fibre installation. When the reactor operates, the dose-rates in the room are in a range 0.005-5 Gy/h with temperatures of 40-60 °C, depending on the location. Such a surrounding is not much different to some "hot" environments in NPPs, where I&C cables are located.

  6. Reference geometry-based detection of (4D-)CT motion artifacts: a feasibility study

    NASA Astrophysics Data System (ADS)

    Werner, René; Gauer, Tobias

    2015-03-01

    Respiration-correlated computed tomography (4D or 3D+t CT) can be considered as standard of care in radiation therapy treatment planning for lung and liver lesions. The decision about an application of motion management devices and the estimation of patient-specific motion effects on the dose distribution relies on precise motion assessment in the planning 4D CT data { which is impeded in case of CT motion artifacts. The development of image-based/post-processing approaches to reduce motion artifacts would benefit from precise detection and localization of the artifacts. Simple slice-by-slice comparison of intensity values and threshold-based analysis of related metrics suffer from- depending on the threshold- high false-positive or -negative rates. In this work, we propose exploiting prior knowledge about `ideal' (= artifact free) reference geometries to stabilize metric-based artifact detection by transferring (multi-)atlas-based concepts to this specific task. Two variants are introduced and evaluated: (S1) analysis and comparison of warped atlas data obtained by repeated non-linear atlas-to-patient registration with different levels of regularization; (S2) direct analysis of vector field properties (divergence, curl magnitude) of the atlas-to-patient transformation. Feasibility of approaches (S1) and (S2) is evaluated by motion-phantom data and intra-subject experiments (four patients) as well as - adopting a multi-atlas strategy- inter-subject investigations (twelve patients involved). It is demonstrated that especially sorting/double structure artifacts can be precisely detected and localized by (S1). In contrast, (S2) suffers from high false positive rates.

  7. CVD diamond wafers as large-area thermoluminescence detectors for measuring the spatial distribution of dose

    NASA Astrophysics Data System (ADS)

    Marczewska, B.; Bilski, P.; Olko, P.; Olko, P.; Nesládek, M.; Bergonzo, P.; Rbisz, M.; Waligórski, M. P. R.

    2003-09-01

    The applicability of large-area CVD diamond wafers (diameter about 5 cm, thickness about 0.1 mm), read out as thermoluminescence (TL) detectors, for assessing two-dimensional (2-D) dose distribution over their area, was investigated. To obtain 2-D TL images, a special TL reader equipped with large-area planchet and a CCD camera instead of the usual PM tube was developed. Several 2-D TL images: of an alpha source (Am-241), a Ra-226 needle source and a Ru-106 ophthalmic applicator, were measured and high-resolution digital images obtained. Our preliminary results demonstrate the potential capability of large-area CVD diamond wafers, read out as TL detectors, in 2-D dosimetry for medical applications. (

  8. The distribution of absorbed dose from x-rays as a function of depth

    NASA Astrophysics Data System (ADS)

    Cummings, Frederick

    2000-08-01

    Organizations responsible for monitoring the occupational exposure to radiation workers in the U.S. are directed to measure the dose to specific depths in tissue. The knowledge of the depth distribution of energy deposited by radiation in materials is essential to the interpretation of devices used to measure occupational exposure In this work, the quantities used to convert the reference transfer quantity for x-ray fields, air kerma, to the regulatory quantity, dose equivalent, for mono- energetic x-ray fields and poly-energetic x-ray fields specified by the National Institute of Standards and Technology are cogenerated for European x-ray fields are indicated and consistent conversion factors for use in the U.S. are recommended. For the mono-energetic x-ray beams conversion factors ranged from 0.9 to 1.7 at the 7 mg/cm2 depth and from 0.03 to 1.9 at the 1000 mg/cm2 depth in tissue specified by the International Commission of Radiation Units and Measurements. The conversion factors for the NIST x-ray fields were reasonably consistent with values in an unpublished draft standard by the American National Standards Institute, but exhibited sufficient disagreement to warrant a re-evaluation of the factors in that document prior to publication.

  9. Nuclear medicine annual external occupational dose distribution: Rio de Janeiro, Brazil, year 2005.

    PubMed

    Mauricio, Claudia L P; Lima, Ana L S; da Silva, Herica L R; Souza-Santos, Denison; Silva, Claudio R

    2011-03-01

    Brazil has about 300 nuclear medicine services (NMS), 44 of them located in the state of Rio de Janeiro (RJ). Most nuclear medicine staff are routinely monitored for external dose. This paper makes a statistical analysis of all the RJ NMS annual external occupational doses in year 2005. Around 100 professionals of RJ NMS received annual doses >4.0 mSv, considering only external doses, but no one receives doses higher than the mean annual dose limit of 20 mSv. Extremities dosemeters are used by about 10 % of the staff. In some cases, these doses are more than 10 times higher than the dose in thorax. The maximum ratio of extremity dose/thorax dose, in 2005, was 72. This study shows the importance to improve radiation protection procedures in nuclear medicine, mainly because the number of occupational individuals in nuclear medicine and their external doses are increasing. PMID:21051433

  10. Parallel Wavefront Analysis for a 4D Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  11. Respiratory regularity gated 4D CT acquisition: concepts and proof of principle.

    PubMed

    Keall, P J; Vedam, S S; George, R; Williamson, J F

    2007-09-01

    Four-dimensional CT images are generally sorted through a post-acquisition procedure correlating images with a time-synchronized external respiration signal. The patient's ability to maintain reproducible respiration is the limiting factor during 4D CT, where artifacts occur in approximately 85% of scans with current technology. To reduce these artifacts and their subsequent effects during radiotherapy planning, a method for improved 4D CT image acquisition that relies on gating 4D CT acquisition based on the real time monitoring of the respiration signal has been proposed. The respiration signal and CT data acquisition are linked, such that data from irregular breathing cycles, which cause artifacts, are not acquired by gating CT acquisition by the respiratory signal. A proof-of-principle application of the respiratory regularity gated 4D CT method using patient respiratory signals demonstrates the potential of this method to reduce artifacts currently found in 4D CT scans. Numerical simulations indicate a potential reduction in motion within a respiratory phase bin by 20-40% depending on tolerances chosen. Additional advantages of the proposed method are dose reduction by eliminating unnecessary oversampling and obviating the need for post-processing to create the 4D CT data set. PMID:18044305

  12. Quantitative analysis of dose distribution to determine optimal width of respiratory gating window using Gafchromic EBT2 film

    NASA Astrophysics Data System (ADS)

    Lee, Sung Hyun; Kim, Kum Bae; Kim, Mi-Sook; Yoo, Hyung-Jun; Park, Seungwoo; Jung, Haijo; Ji, Young Hoon; Yi, Chul-Young

    2013-02-01

    The purpose of this study was to determine the dependence of the dose distribution on the width of the respiratory gating window by using radiochromic Gafchromic EBT2 film. An in-house three-dimensional breathing simulator was used with a 4-s cycle and a 3-cm movement. The gamma index and the 50, 95, and 20-80% dose distributions were individually analyzed with regard to static, 100 (full motion), 60, 40, 30, 20, and 15% respiratory gating windows. In addition, dose differences based on the different extents of exposure were compared and analyzed along with total beam delivery time. Dose distributions became increasingly similar to the static value with decreasing respiratory gating window width. The extent differences from the static case for the low-dose region were not significant; neither were the extent differences for the high-dose region and 30, 20, and 15% gating windows (P = 0.388, 0.275, respectively). However, the 40% gating window showed a significant difference (P = 0.001). Moreover, the treatment time for the 30% gating window was reduced by more than half compared to that for the 15% gating window. Thus, the 30% window would be a reasonable choice for maximizing the range of the gating window while markedly decreasing the dose difference and the treatment time.

  13. Resolution enhancement of lung 4D-CT data using multiscale interphase iterative nonlocal means

    SciTech Connect

    Zhang Yu; Yap, Pew-Thian; Wu Guorong; Feng Qianjin; Chen Wufan; Lian Jun; Shen Dinggang

    2013-05-15

    Purpose: Four-dimensional computer tomography (4D-CT) has been widely used in lung cancer radiotherapy due to its capability in providing important tumor motion information. However, the prolonged scanning duration required by 4D-CT causes considerable increase in radiation dose. To minimize the radiation-related health risk, radiation dose is often reduced at the expense of interslice spatial resolution. However, inadequate resolution in 4D-CT causes artifacts and increases uncertainty in tumor localization, which eventually results in extra damages of healthy tissues during radiotherapy. In this paper, the authors propose a novel postprocessing algorithm to enhance the resolution of lung 4D-CT data. Methods: The authors' premise is that anatomical information missing in one phase can be recovered from the complementary information embedded in other phases. The authors employ a patch-based mechanism to propagate information across phases for the reconstruction of intermediate slices in the longitudinal direction, where resolution is normally the lowest. Specifically, the structurally matching and spatially nearby patches are combined for reconstruction of each patch. For greater sensitivity to anatomical details, the authors employ a quad-tree technique to adaptively partition the image for more fine-grained refinement. The authors further devise an iterative strategy for significant enhancement of anatomical details. Results: The authors evaluated their algorithm using a publicly available lung data that consist of 10 4D-CT cases. The authors' algorithm gives very promising results with significantly enhanced image structures and much less artifacts. Quantitative analysis shows that the authors' algorithm increases peak signal-to-noise ratio by 3-4 dB and the structural similarity index by 3%-5% when compared with the standard interpolation-based algorithms. Conclusions: The authors have developed a new algorithm to improve the resolution of 4D-CT. It outperforms

  14. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil. PMID:26408835

  15. Quinazolinones and pyrido[3,4-d]pyrimidin-4-ones as orally active and specific matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis.

    PubMed

    Li, Jie Jack; Nahra, Joe; Johnson, Adam R; Bunker, Amy; O'Brien, Patrick; Yue, Wen-Song; Ortwine, Daniel F; Man, Chiu-Fai; Baragi, Vijay; Kilgore, Kenneth; Dyer, Richard D; Han, Hyo-Kyung

    2008-02-28

    Quinazolinones 8 and pyrido[3,4-d]pyrimidin-4-ones 9 as orally active and specific matrix metalloproteinase-13 inhibitors were discovered for the treatment of osteoarthritis. Starting from a high-through-put screening (HTS) hit thizolopyrimidin-dione 7, we obtained two chemotypes, 8 and 9, using computer-aided drug design (CADD) and methodical structure-activity relationship (SAR) studies. They occupy the unique S 1'-specificity pocket and do not bind to the Zn(2+) ion. Some pyrido[3,4-d]pyrimidin-4-ones, such as 10a, possess favorable absorption, distribution, metabolism, and elimination (ADME) and safety profiles. 10a effectively prevents cartilage damage in rabbit animal models of osteoarthritis without inducing musculoskeletal side effects when given at extremely high doses to rats. PMID:18251495

  16. SU-E-J-241: Creation of Ventilation CT From Daily 4D CTs Or 4D Conebeam CTs Acquired During IGRT for Thoracic Cancers

    SciTech Connect

    Tai, A; Ahunbay, E; Li, X

    2014-06-01

    Purpose: To develop a method to create ventilation CTs from daily 4D CTs or 4D KV conebeam CTs (4DCBCT) acquired during image-guided radiation therapy (IGRT) for thoracic tumors, and to explore the potential for using the ventilation CTs as a means for early detection of lung injury during radiation treatment. Methods: 4DCT acquired using an in-room CT (CTVision, Siemens) and 4DCBCT acquired using the X-ray Volume Imaging (XVI) system (Infinity, Elekta) for representative lung cancer patients were analyzed. These 4D data sets were sorted into 10 phase images. A newly-available deformable image registration tool (ADMIRE, Elekta) is used to deform the phase images at the end of exhale (EE) to the phase images at the end of inhale (EI). The lung volumes at EI and EE were carefully contoured using an intensity-based auto-contour tool and then manually edited. The ventilation images were calculated from the variations of CT numbers of those voxels masked by the lung contour at EI between the registered phase images. The deformable image registration is also performed between the daily 4D images and planning 4DCT, and the resulting deformable field vector (DFV) is used to deform the planning doses to the daily images by an in-house Matlab program. Results: The ventilation images were successfully created. The tide volumes calculated using the ventilation images agree with those measured through volume difference of contours at EE and EI, indicating the accuracy of ventilation images. The association between the delivered doses and the change of lung ventilation from the daily ventilation CTs is identified. Conclusions: A method to create the ventilation CT using daily 4DCTs or 4D KV conebeam CTs was developed and demonstrated.

  17. Dose distribution from x-ray microbeam arrays applied to radiation therapy: an EGS4 Monte Carlo study.

    PubMed

    De Felici, M; Felici, R; Sanchez del Rio, M; Ferrero, C; Bacarian, T; Dilmanian, F A

    2005-08-01

    We present EGS4 Monte Carlo calculations of the spatial distribution of the dose deposited by a single x-ray pencil beam, a planar microbeam, and an array of parallel planar microbeams as used in radiation therapy research. The profiles of the absorbed dose distribution in a phantom, including the peak-to-valley ratio of the dose distribution from microbeam arrays, were calculated at micrometer resolution. We determined the dependence of the findings on the main parameters of photon and electron transport. The results illustrate the dependence of the electron range and the deposited in-beam dose on the cut-off energy, of the electron transport, as well as the effects on the dose profiles of the beam energy, the array size, and the beam spacing. The effect of beam polarization also was studied for a single pencil beam and for an array of parallel planar microbeams. The results show that although the polarization effect on the dose distribution from a 3 cm x 3 cm microbeam array inside a water phantom is large enough to be measured at the outer side of the array (16% difference of the deposited dose for x-ray beams of 200 keV), it is not detectable at the array's center, thus being irrelevant for the radiation therapy purposes. Finally we show that to properly compare the dose profiles determined with a metal oxide semiconductor field emission transistor detector with the computational method predictions, it is important to simulate adequately the size and the material of the device's Si active element. PMID:16193774

  18. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform.

    PubMed

    Mostafa, Laoues; Rachid, Khelifi; Ahmed, Sidi Moussa

    2016-08-01

    Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE. PMID:27499370

  19. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms.

    PubMed

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Han, Tae Jin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Bae, Hoonsik

    2015-01-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation. PMID:25724475

  20. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms

    SciTech Connect

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Jin Han, Tae; Kim, Haeyoung; Lee, Me-Yeon; Ju Kim, Kyoung Bae, Hoonsik

    2015-10-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.

  1. A comparison of the dose distributions from three proton treatment planning systems in the planning of meningioma patients with single-field uniform dose pencil beam scanning.

    PubMed

    Doolan, Paul J; Alshaikhi, Jailan; Rosenberg, Ivan; Ainsley, Chris G; Gibson, Adam; D'Souza, Derek; Bentefour, El Hassane; Royle, Gary

    2015-01-01

    With the number of new proton centers increasing rapidly, there is a need for an assessment of the available proton treatment planning systems (TPSs). This study compares the dose distributions of complex meningioma plans produced by three proton TPSs: Eclipse, Pinnacle3, and XiO. All three systems were commissioned with the same beam data and, as best as possible, matched configuration settings. Proton treatment plans for ten patients were produced on each system with a pencil beam scanning, single-field uniform dose approach, using a fixed horizontal beamline. All 30 plans were subjected to identical dose constraints, both for the target coverage and organ at risk (OAR) sparing, with a consistent order of priority. Beam geometry, lateral field margins, and lateral spot resolutions were made consistent across all systems. Few statistically significant differences were found between the target coverage and OAR sparing of each system, with all optimizers managing to produce plans within clinical tolerances (D2 < 107% of prescribed dose, D5 < 105%, D95 > 95%, D99 > 90%, and OAR maximum doses) despite strict constraints and overlapping structures. PMID:25679158

  2. Optimal angular dose distribution to acquire 3D and extra 2D images for digital breast tomosynthesis (DBT)

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Ye-Seul; Lee, Haeng-Hwa; Gang, Won-Suk; Kim, Hee-Joung; Choi, Young-Wook; Choi, JaeGu

    2015-08-01

    The purpose of this study is to determine the optimal non-uniform angular dose distribution to improve the quality of the 3D reconstructed images and to acquire extra 2D projection images. In this analysis, 7 acquisition sets were generated by using four different values for the number of projections (11, 15, 21, and 29) and total angular range (±14°, ±17.5°, ±21°, and ±24.5° ). For all acquisition sets, the zero-degree projection was used as the 2D image that was close to that of standard conventional mammography (CM). Exposures used were 50, 100, 150, and 200 mR for the zero-degree projection, and the remaining dose was distributed over the remaining projection angles. To quantitatively evaluate image quality, we computed the CNR (contrast-to-noise ratio) and the ASF (artifact spread function) for the same radiation dose. The results indicate that, for microcalcifications, acquisition sets with approximately 4 times higher exposure on the zero-degree projection than the average exposure for the remaining projection angles yielded higher CNR values and were 3% higher than the uniform distribution. However, very high dose concentrations toward the zero-degree projection may reduce the quality of the reconstructed images due to increasing noise in the peripheral views. The zero-degree projection of the non-uniform dose distribution offers a 2D image similar to that of standard CM, but with a significantly lower radiation dose. Therefore, we need to evaluate the diagnostic potential of extra 2D projection image when diagnose breast cancer by using 3D images with non-uniform angular dose distributions.

  3. Characterization of the dose distribution in the halo region of a clinical proton pencil beam using emulsion film detectors

    NASA Astrophysics Data System (ADS)

    Ariga, A.; Ariga, T.; Braccini, S.; Ereditato, A.; Giacoppo, F.; Nesteruk, K. P.; Pistillo, C.; Scampoli, P.

    2015-01-01

    Proton therapy is a high precision technique in cancer radiation therapy which allows irradiating the tumor with minimal damage to the surrounding healthy tissues. Pencil beam scanning is the most advanced dose distribution technique and it is based on a variable energy beam of a few millimeters FWHM which is moved to cover the target volume. Due to spurious effects of the accelerator, of dose distribution system and to the unavoidable scattering inside the patient's body, the pencil beam is surrounded by a halo that produces a peripheral dose. To assess this issue, nuclear emulsion films interleaved with tissue equivalent material were used for the first time to characterize the beam in the halo region and to experimentally evaluate the corresponding dose. The high-precision tracking performance of the emulsion films allowed studying the angular distribution of the protons in the halo. Measurements with this technique were performed on the clinical beam of the Gantry1 at the Paul Scherrer Institute. Proton tracks were identified in the emulsion films and the track density was studied at several depths. The corresponding dose was assessed by Monte Carlo simulations and the dose profile was obtained as a function of the distance from the center of the beam spot.

  4. Prediction of In-Phantom Dose Distribution Using In-Air Neutron Beam Characteristics for Boron Neutron Capture Synovectomy

    SciTech Connect

    Verbeke, Jerome M.; Chen, Allen S.; Vujic, Jasmina L.; Leung, Ka-Ngo

    2000-08-15

    A monoenergetic neutron beam simulation study was carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints such as knees and fingers. This study focuses on human knee joints. Two figures of merit are used to measure the neutron beam quality, the ratio of the synovium-absorbed dose to the skin-absorbed dose, and the ratio of the synovium-absorbed dose to the bone-absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment and that (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce the particle transport simulation time by a factor of 10 by modeling the moderator only.

  5. Comparison of distribution and toxicity following repeated oral dosing of different vanadium oxide nanoparticles in mice.

    PubMed

    Park, Eun-Jung; Lee, Gwang-Hee; Yoon, Cheolho; Kim, Dong-Wan

    2016-10-01

    Vanadium is an important ultra-trace element derived from fuel product combustion. With the development of nanotechnology, vanadium oxide nanoparticles (VO NPs) have been considered for application in various fields, thus the possibility of release into the environment and human exposure is also increasing. Considering that verification of bioaccumulation and relevant biological responses are essential for safe application of products, in this study, we aimed to identify the physicochemical properties that determine their health effects by comparing the biological effects and tissue distribution of different types of VO NPs in mice. For this, we prepared five types of VO NPs, commercial (C)-VO2 and -V2O5 NPs and synthetic (S)-VO2, -V2O3, and -V2O5 NPs. While the hydrodynamic diameter of the two types of C-VO NPs was irregular and impossible to measure, those of the three types of S-VO NPs was in the range of 125-170nm. The S- and C-V2O5 NPs showed higher dissolution rates compared to other VO NPs. We orally dosed the five types of VO NPs (70 and 210μg/mouse, approximately 2 and 6mg/kg) to mice for 28 days and compared their biodistribution and toxic effects. We found that S-V2O5 and S-V2O3 NPs more accumulated in tissues compared to other three types of VO NPs, and the accumulated level was in order of heart>liver>kidney>spleen. Additionally, tissue levels of redox reaction-related elements and electrolytes (Na(+), K(+), and Ca(2+)) were most clearly altered in the heart of treated mice. Notably, all S- and C-VO NPs decreased the number of WBCs at the higher dose, while total protein and albumin levels were reduced at the higher dose of S-V2O5 and S-V2O3 NPs. Taken together, we conclude that the biodistribution and toxic effects of VO NPs depend on their dissolution rates and size (surface area). Additionally, we suggest that further studies are needed to clarify effects of VO NPs on functions of the heart and the immune system. PMID:27288913

  6. Design and implementation of a water phantom for IMRT, arc therapy, and tomotherapy dose distribution measurements

    SciTech Connect

    Pallotta, Stefania; Marrazzo, Livia; Bucciolini, Marta

    2007-10-15

    The aim of this paper is to present a new phantom for arc therapy, intensity-modulated radiation therapy (IMRT), and tomotherapy dose distribution measurement in pretreatment verification. The presented phantom is innovative for its use of water as the tissue equivalent material, together with a technical solution specifically designed to support radiographic or radiochromic film and ionization chambers in any desired position. The phantom comprise a Plexiglas container, whose present shape and dimensions offer the possibility to simulate a human torso or abdomen; the container can be filled with water by opening the upper cover. On the internal side of the cover, a set of carbon pipes can support film in the desired coronal, axial, or sagittal planes. At one of the two ends of the phantom, an ionization chamber can be positioned parallel to the rotation axis of the accelerator gantry in all possible positions within a 20 cm diameter cylinder, for film calibration purposes. Inhomogeneities can be inserted into the phantom using the same carbon pipes and plastic sheets used to support film. An example of vertebra-shaped inserts made of bone equivalent material is reported. Radiochromic film can be dipped in water, while radiographic film must be protected to prevent damage. To accomplish this, radiographic film is laminated using a cold laminating film. In order to assess the effects of both the lamination itself and the effects of water on laminated Kodak EDR2 film, the optical density (OD) of conventional, laminated, and laminated film immersed in water and exposed to a range of doses from 0 to 300 cGy were compared. The OD of the three samples receiving the same radiation dose did not present any significant difference, thus proving that laminated EDR2 film can also be used in water. A prerequisite for any dosimetric comparison between planned and measured data is a proper film to plan registration. The solution proposed here is an extrinsic in-plane registration

  7. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2011 CFR

    1998-04-01

    ... 17 Commodity and Securities Exchanges 3 1998-04-01 1998-04-01 false Content. 260.4d-8 Section 260.4d-8 GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a) Each application for an order under section 304(d) of the Act (15 U.S.C. 77ddd(d))...

  8. The 4D-TECS integration for NASA TSRV airplane

    NASA Technical Reports Server (NTRS)

    Kaminer, I.; Oshaughnessy, P. R.

    1989-01-01

    The integration of the Total Energy Control System (TECS) concept with 4D navigation is described. This integration was made to increase the operational capacity of modern aircraft and encourage incorporation of this increased capability with the evolving National Airspace System (NAS). Described herein is: 4D smoothing, the basic concepts of TECS, the spoiler integration concept, an algorithm for nulling out time error, speed and altitude profile modes, manual spoiler implementation, 4D logic, and the results of linear and nonlinear analysis.

  9. Killing Weeds with 2,4-D. Extension Bulletin 389.

    ERIC Educational Resources Information Center

    Lee, Oliver C.

    Discussed is the use of the herbicide 2,4-D. Though written for farmers and agricultural workers, the pamphlet considers turf weed control and use of 2,4-D near ornamental plants. Aspects of the use of this herbicide covered are: (1) the common forms of 2,4-D; (2) plant responses and tolerances to the herbicide; (3) dilution and concentration of…

  10. Pros and cons for C4d as a biomarker.

    PubMed

    Cohen, Danielle; Colvin, Robert B; Daha, Mohamed R; Drachenberg, Cinthia B; Haas, Mark; Nickeleit, Volker; Salmon, Jane E; Sis, Banu; Zhao, Ming-Hui; Bruijn, Jan A; Bajema, Ingeborg M

    2012-04-01

    The introduction of C4d in daily clinical practice in the late nineties aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. As a marker of classical complement activation, C4d made it possible to visualize the direct link between anti-donor antibodies and tissue injury at sites of antibody binding in a graft. With the expanding use of C4d worldwide several limitations of C4d were identified. For instance, in ABO-incompatible transplantations C4d is present in the majority of grafts but this seems to point at 'graft accommodation' rather than antibody-mediated rejection. C4d is now increasingly recognized as a potential biomarker in other fields where antibodies can cause tissue damage, such as systemic autoimmune diseases and pregnancy. In all these fields, C4d holds promise to detect patients at risk for the consequences of antibody-mediated disease. Moreover, the emergence of new therapeutics that block complement activation makes C4d a marker with potential to identify patients who may possibly benefit from these drugs. This review provides an overview of the past, present, and future perspectives of C4d as a biomarker, focusing on its use in solid organ transplantation and discussing its possible new roles in autoimmunity and pregnancy. PMID:22297669

  11. Dose-related distribution of codeine, cocaine, and metabolites into human hair following controlled oral codeine and subcutaneous cocaine administration.

    PubMed

    Scheidweiler, Karl B; Cone, Edward J; Moolchan, Eric T; Huestis, Marilyn A

    2005-05-01

    Hair testing for the determination of drug exposure has many useful applications. Drug incorporated into hair can be found for extended periods following drug exposure. There are few controlled drug administration studies investigating drug distribution into human hair. Ten volunteers participated in a 10-week controlled cocaine and codeine administration study while residing in the secure research ward. Weekly hair samples were collected by electric razor. During the low-dose week (week 4), volunteers received 75 mg/70 kg cocaine subcutaneously and 60 mg/70 kg codeine orally on alternating days, a total of three doses for each drug. Similarly, during week 7, volunteers received three doses 150 mg/70 kg cocaine and 120 mg/70 kg codeine. Maximum hair concentrations (C(max)) were found 1 to 3 weeks after low and high doses. Dose-related C(max) values of cocaine, benzoylecgonine, ecgonine methyl ester, norcocaine, cocaethylene, and codeine were found following low and high doses. Hair analysis was performed using liquid chromatography tandem mass spectrometry. A positive linear relationship was found between total melanin content of hair and C(max) of codeine, cocaine, and metabolites following high dosing. This study demonstrated dose-related concentrations of cocaine and metabolites in human hair following controlled cocaine administration. These data are the first demonstrating melanin-related incorporation of cocaine and metabolites into human hair following controlled cocaine administration. PMID:15743923

  12. SU-F-18C-11: Diameter Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    SciTech Connect

    Bakalyar, D; McKenney, S; Feng, W

    2014-06-15

    Purpose: The radial dose distribution in the central plane of a long cylinder following a long CT scan depends upon the diameter and composition of the cylinder. An understanding of this behavior is required for determining the spatial average of the dose in the central plane. Polyethylene, the material for construction of the TG200/ICRU phantom (30 cm in diameter) was used for this study. Size effects are germane to the principles incorporated in size specific dose estimates (SSDE); thus diameter dependency was explored as well. Method: ssuming a uniform cylinder and cylindrically symmetric conditions of irradiation, the dose distribution can be described using a radial function. This function must be an even function of the radial distance due to the conditions of symmetry. Two effects are accounted for: The direct beam makes its weakest contribution at the center while the contribution due to scatter is strongest at the center and drops off abruptly at the outer radius. An analytic function incorporating these features was fit to Monte Carlo results determined for infinite polyethylene cylinders of various diameters. A further feature of this function is that it is integrable. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. The competing effects described above can Resultin an absolute maximum occurring between the center and outer edge of the cylinders. For the smallest cylinders, the maximum dose may occur at the center. Conclusion: An integrable, analytic function can be used to characterize the radial dependency of dose for cylindrical CT phantoms of various sizes. One use for this is to help determine average dose distribution over the central cylinder plane when equilibrium dose has been reached.

  13. Factors influencing aerodynamic particle size distribution of suspension pressurized metered dose inhalers.

    PubMed

    Sheth, Poonam; Stein, Stephen W; Myrdal, Paul B

    2015-02-01

    Pressurized metered dose inhalers (pMDIs) are frequently used for the treatment of asthma and chronic obstructive pulmonary disease. The aerodynamic particle size distribution (APSD) of the residual particles delivered from a pMDI plays a key role in determining the amount and region of drug deposition in the lung and thereby the efficacy of the inhaler. In this study, a simulation model that predicts the APSD of residual particles from suspension pMDIs was utilized to identify the primary determinants for APSD. These findings were then applied to better understand the effect of changing drug concentration and micronized drug size on experimentally observed APSDs determined through Andersen Cascade Impactor testing. The experimental formulations evaluated had micronized drug mass median aerodynamic diameters (MMAD) between 1.2 and 2.6 μm and drug concentrations ranging from 0.01 to 1% (w/w) with 8.5% (w/w) ethanol in 1,1,1,2-tetrafluoroethane (HFA-134a). It was determined that the drug concentration, micronized drug size, and initially atomized droplet distribution have a significant impact in modulating the proportion of atomized droplets that contain multiple suspended drug particles, which in turn increases the residual APSD. These factors were found to be predictive of the residual particle MMAD for experimental suspension HFA-134a formulations containing ethanol. The empirical algebraic model allows predicting the residual particle size for a variety of suspension formulations with an average error of 0.096 μm (standard deviation of 0.1 μm). PMID:25273026

  14. Macroscopic geometric heterogeneity effects in radiation dose distribution analysis for boron neutron capture therapy

    SciTech Connect

    Moran, J.M.; Nigg, D.W.; Wheeler, F.J.; Bauer, W.F. )

    1992-05-01

    Calculations of radiation flux and dose distributions for boron neutron capture therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This paper describes such a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for the tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for this model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous-tissue model. Comparison of the results showed that peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10%--20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  15. Comparison of Kodak EDR2 and Gafchromic EBT film for intensity-modulated radiation therapy dose distribution verification

    SciTech Connect

    Sankar, A. . E-mail: asankar_phy@yahoo.co.in; Ayyangar, Komanduri M.; Nehru, R. Mothilal; Gopalakrishna Kurup, P.G.; Murali, V.; Enke, Charles A.; Velmurugan, J.

    2006-01-01

    The quantitative dose validation of intensity-modulated radiation therapy (IMRT) plans require 2-dimensional (2D) high-resolution dosimetry systems with uniform response over its sensitive region. The present work deals with clinical use of commercially available self-developing Radio Chromic Film, Gafchromic EBT film, for IMRT dose verification. Dose response curves were generated for the films using a VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak extended dose range 2 (EDR2) films. The EBT film had a linear response between the dose range of 0 to 600 cGy. The dose-related characteristics of the EBT film, such as post irradiation color growth with time, film uniformity, and effect of scanning orientation, were studied. There was up to 8.6% increase in the color density between 2 to 40 hours after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative differences between calculated and measured dose distributions were analyzed using DTA and Gamma index with the tolerance of 3% dose difference and 3-mm distance agreement. The EDR2 films showed consistent results with the calculated dose distributions, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large-field IMRT verification. For IMRT of smaller field sizes (4.5 x 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films.

  16. Gastrointestinal toxicity and its relation to dose distributions in the anorectal region of prostate cancer patients treated with radiotherapy

    SciTech Connect

    Heemsbergen, Wilma D. . E-mail: wheems@nki.nl; Hoogeman, Mischa S.; Hart, Guus A.M.; Lebesque, Joos V.; Koper, Peter C.M.

    2005-03-15

    Purpose: To study the correlations between the dose distributions in the anorectal region and late GI symptoms in patients treated for localized prostate carcinoma. Methods and materials: Data from a randomized study were analyzed. In this trial, patients were treated with either rectangular or conformal fields with a dose of 66 Gy. Data concerning GI symptoms were collected from questionnaires of 197 patients. The distributions of the anorectal region were projected on maps, and the dose parameters were calculated. The incidences of complaints were studied as a function of the dose-area parameters and clinical parameters, using a proportional hazard regression model. Finally, we tested a series of dose parameters originating from different parts of the anorectal region. Results: Analyzing the total region, only a statistically significant dose-area effect relation for bleeding was found (p < 0.01). Defining subareas, we found effect relations for bleeding, soiling, fecal incontinence, and mucus loss. For bleeding and mucus loss, the strongest correlation was found for the dose received by the upper 70-80% of the anorectal region (p < 0.01). For soiling and fecal incontinence, we found the strongest association with the dose to the lower 40-50% (p < 0.05). Conclusion: We found evidence that complaints originate from specific regions of the irradiated lower GI tract. Bleeding and mucus loss are probably related to irradiation of the upper part of the rectum. Soiling and fecal incontinence are more likely related to the dose to the anal canal and the lower part of the rectum.

  17. Feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma from a viewpoint of dose distribution analysis

    SciTech Connect

    Suzuki, Minoru . E-mail: msuzuki@rri.kyoto-u.ac.jp; Sakurai, Yoshinori; Masunaga, Shinichiro; Kinashi, Yuko; Nagata, Kenji; Maruhashi, Akira; Ono, Koji

    2006-12-01

    Purpose: To investigate the feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma (MPM) from a viewpoint of dose distribution analysis using Simulation Environment for Radiotherapy Applications (SERA), a currently available BNCT treatment planning system. Methods and Materials: The BNCT treatment plans were constructed for 3 patients with MPM using the SERA system, with 2 opposed anterior-posterior beams. The {sup 1}B concentrations in the tumor and normal lung in this study were assumed to be 84 and 24 ppm, respectively, and were derived from data observed in clinical trials. The maximum, mean, and minimum doses to the tumors and the normal lung were assessed for each plan. The doses delivered to 5% and 95% of the tumor volume, D{sub 05} and D{sub 95}, were adopted as the representative dose for the maximum and minimum dose, respectively. Results: When the D{sub 05} to the normal ipsilateral lung was 5 Gy-Eq, the D{sub 95} and mean doses delivered to the normal lung were 2.2-3.6 and 3.5-4.2 Gy-Eq, respectively. The mean doses delivered to the tumors were 22.4-27.2 Gy-Eq. The D{sub 05} and D{sub 95} doses to the tumors were 9.6-15.0 and 31.5-39.5 Gy-Eq, respectively. Conclusions: From a viewpoint of the dose-distribution analysis, BNCT has the possibility to be a promising treatment for MPM patients who are inoperable because of age and other medical illnesses.

  18. Challenges of radiotherapy: report on the 4D treatment planning workshop 2013.

    PubMed

    Knopf, Antje; Nill, Simeon; Yohannes, Indra; Graeff, Christian; Dowdell, Stephen; Kurz, Christopher; Sonke, Jan-Jakob; Biegun, Aleksandra K; Lang, Stephanie; McClelland, Jamie; Champion, Benjamin; Fast, Martin; Wölfelschneider, Jens; Gianoli, Chiara; Rucinski, Antoni; Baroni, Guido; Richter, Christian; van de Water, Steven; Grassberger, Clemens; Weber, Damien; Poulsen, Per; Shimizu, Shinichi; Bert, Christoph

    2014-11-01

    This report, compiled by experts on the treatment of mobile targets with advanced radiotherapy, summarizes the main conclusions and innovations achieved during the 4D treatment planning workshop 2013. This annual workshop focuses on research aiming to advance 4D radiotherapy treatments, including all critical aspects of time resolved delivery, such as in-room imaging, motion detection, motion managing, beam application, and quality assurance techniques. The report aims to revise achievements in the field and to discuss remaining challenges and potential solutions. As main achievements advances in the development of a standardized 4D phantom and in the area of 4D-treatment plan optimization were identified. Furthermore, it was noticed that MR imaging gains importance and high interest for sequential 4DCT/MR data sets was expressed, which represents a general trend of the field towards data covering a longer time period of motion. A new point of attention was work related to dose reconstructions, which may play a major role in verification of 4D treatment deliveries. The experimental validation of results achieved by 4D treatment planning and the systematic evaluation of different deformable image registration methods especially for inter-modality fusions were identified as major remaining challenges. A challenge that was also suggested as focus for future 4D workshops was the adaptation of image guidance approaches from conventional radiotherapy into particle therapy. Besides summarizing the last workshop, the authors also want to point out new evolving demands and give an outlook on the focus of the next workshop. PMID:25172392

  19. Phosphodiesterase 4D Inhibitors Limit Prostate Cancer Growth Potential

    PubMed Central

    Powers, Ginny L.; Hammer, Kimberly D.P.; Domenech, Maribella; Frantskevich, Katsiaryna; Malinowski, Rita L.; Bushman, Wade; Beebe, David J.; Marker, Paul C.

    2014-01-01

    Phosphodiesterase 4D (PDE4D) has recently been implicated as a proliferation-promoting factor in prostate cancer and is over-expressed in human prostate carcinoma. However, the effects of PDE4D inhibition using pharmacological inhibitors have not been examined in prostate cancer. These studies examined the effects of selective PDE4D inhibitors, NVP-ABE171 and cilomilast, as anti-prostate cancer therapies in both in vitro and in vivo models. The effects of PDE4D inhibitors on pathways that are critical in prostate cancer and/or downstream of cyclic AMP (cAMP) were examined. Both NVP-ABE171 and cilomilast decreased cell growth. In vitro, PDE4D inhibitors lead to decreased signaling of the sonic hedgehog (SHH), Androgen Receptor (AR), and MAPK pathways, but growth inhibition was best correlated to the sonic hedgehog pathway. PDE4D inhibition also reduced proliferation of epithelial cells induced by paracrine signaling from co-cultured stromal cells that had activated hedgehog signaling. In addition, PDE4D inhibitors decreased the weight of the prostate in wild-type mice. Prostate cancer xenografts grown in nude mice that were treated with cilomilast or NVP-ABE171 had decreased wet weight and increased apoptosis compared to vehicle treated controls. These studies suggest the pharmacological inhibition of PDE4D using small molecule inhibitors is an effective option for prostate cancer therapy. Implications PDE4D inhibitors decrease the growth of prostate cancer cells in vivo and in vitro, and PDE4D inhibition has therapeutic potential in prostate cancer. PMID:25149359

  20. Distribution of radionuclides in surface soils, Singhbhum Shear Zone, India and associated dose.

    PubMed

    Patra, A C; Sahoo, S K; Tripathi, R M; Puranik, V D

    2013-09-01

    Gamma emitters were estimated in surface soils from a mineralized zone in Eastern India using high purity Germanium detector-based high resolution gamma spectrometry system. Activities of (238)U, (226)Ra, (232)Th, (235)U, (227)Th, (234 m)Pa, (210)Pb, (40)K, and (137)Cs were 79 ± 50, 81 ± 53, 65 ± 23, 4 ± 2, 5 ± 4, 92 ± 50, 97 ± 45, 517 ± 201, and 4 ± 2 Bq/kg, respectively. Most radionuclides were observed to follow log-normal distribution. The correlation between physicochemical properties of the samples, like pH, organic matter content, particle size, and moisture content were also studied. Activity ratios of (226)Ra/(238)U, (210)Pb/(226)Ra, and (227)Th/(235)U indicated deviation from secular equilibrium in some samples. The associated annual effective dose ranged from 0.07 to 0.24 mSv and the mean was calculated to be 0.12 ± 0.04 mSv for this region, indicating it to be one of normal natural background radiation. PMID:23456273

  1. Tissue distribution of residual antimony in rats treated with multiple doses of meglumine antimoniate

    PubMed Central

    Coelho, Deise Riba; Miranda, Elaine Silva; Saint’Pierre, Tatiana Dillenburg; Paumgartten, Francisco José Roma

    2014-01-01

    Meglumine antimoniate (MA) and sodium stibogluconate are pentavalent antimony (SbV) drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous). Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h) and a slow (t1/2 >> 24 h) elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain). The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies. PMID:25075781

  2. Antibodies labeled with metallic radionuclides: influence of nuclide chemistry on dose distribution.

    PubMed

    Vaughan, A T; Yankuba, S C; Anderson, P

    1987-01-01

    An antibody with human CEA specificity has been labeled with either yttrium-90, scandium-47, or indium-111, via a diethylenetriamine pentaacetic acid (DTPA) link covalently bound to the protein. The clearance of these proteins from the blood of mice can be described by a single exponential; the half-life decreases in the order indium-111 greater than yttrium-90 greater than scandium-47. Associated with the blood clearance is an uptake of radioactivity into the liver; scandium-47 has the highest concentration, indium-111 has the least, and yttrium-90 is intermediate. There is no correlation between these results and the equilibrium stability constants of the metals with DTPA-like ligands. The results obtained show that, in vivo, scandium-47 and yttrium-90 are more easily displaced from DTPA by other ions than is indium-111. They also show that free DTPA is able to extract yttrium-90 and scandium-47, but not indium-111, from the liver of treated animals, indicating that indium-111 is resistant to ligand exchange reactions in vivo. These data indicate that 1) the equilibrium stability constant is not a good indicator of the in vivo stability of metal-labeled proteins and 2) it is possible to manipulate the ion distribution and therefore the dose from scandium-47 and yttrium-90 after injection of the labeled proteins. PMID:3029601

  3. Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Koch, Nicholas C.; Newhauser, Wayne D.

    2010-02-01

    Proton beam radiotherapy is an effective and non-invasive treatment for uveal melanoma. Recent research efforts have focused on improving the dosimetric accuracy of treatment planning and overcoming the present limitation of relative analytical dose calculations. Monte Carlo algorithms have been shown to accurately predict dose per monitor unit (D/MU) values, but this has yet to be shown for analytical algorithms dedicated to ocular proton therapy, which are typically less computationally expensive than Monte Carlo algorithms. The objective of this study was to determine if an analytical method could predict absolute dose distributions and D/MU values for a variety of treatment fields like those used in ocular proton therapy. To accomplish this objective, we used a previously validated Monte Carlo model of an ocular nozzle to develop an analytical algorithm to predict three-dimensional distributions of D/MU values from pristine Bragg peaks and therapeutically useful spread-out Bragg peaks (SOBPs). Results demonstrated generally good agreement between the analytical and Monte Carlo absolute dose calculations. While agreement in the proximal region decreased for beams with less penetrating Bragg peaks compared with the open-beam condition, the difference was shown to be largely attributable to edge-scattered protons. A method for including this effect in any future analytical algorithm was proposed. Comparisons of D/MU values showed typical agreement to within 0.5%. We conclude that analytical algorithms can be employed to accurately predict absolute proton dose distributions delivered by an ocular nozzle.

  4. Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors

    SciTech Connect

    Richter, Daniel; Saito, Nami; Chaudhri, Naved; Härtig, Martin; Ellerbrock, Malte; Jäkel, Oliver; Combs, Stephanie E.; Habermehl, Daniel; Herfarth, Klaus; Durante, Marco; Bert, Christoph

    2014-05-01

    Purpose: Estimation of the actual delivered 4-dimensional (4D) dose in treatments of patients with mobile hepatocellular cancer with scanned carbon ion beam therapy. Methods and Materials: Six patients were treated with 4 fractions to a total relative biological effectiveness (RBE)–weighted dose of 40 Gy (RBE) using a single field. Respiratory motion was addressed by dedicated margins and abdominal compression (5 patients) or gating (1 patient). 4D treatment dose reconstructions based on the treatment records and the measured motion monitoring data were performed for the single-fraction dose and a total of 17 fractions. To assess the impact of uncertainties in the temporal correlation between motion trajectory and beam delivery sequence, 3 dose distributions for varying temporal correlation were calculated per fraction. For 3 patients, the total treatment dose was formed from the fractional distributions using all possible combinations. Clinical target volume (CTV) coverage was analyzed using the volumes receiving at least 95% (V{sub 95}) and 107% (V{sub 107}) of the planned doses. Results: 4D dose reconstruction based on daily measured data is possible in a clinical setting. V{sub 95} and V{sub 107} values for the single fractions ranged between 72% and 100%, and 0% and 32%, respectively. The estimated total treatment dose to the CTV exhibited improved and more robust dose coverage (mean V{sub 95} > 87%, SD < 3%) and overdose (mean V{sub 107} < 4%, SD < 3%) with respect to the single-fraction dose for all analyzed patients. Conclusions: A considerable impact of interplay effects on the single-fraction CTV dose was found for most of the analyzed patients. However, due to the fractionated treatment, dose heterogeneities were substantially reduced for the total treatment dose. 4D treatment dose reconstruction for scanned ion beam therapy is technically feasible and may evolve into a valuable tool for dose assessment.

  5. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  6. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  7. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  8. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  9. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  10. Non-destructive readout of 2D and 3D dose distributions using a disk-type radiophotoluminescent glass plate

    NASA Astrophysics Data System (ADS)

    Kurobori, T.; Maruyama, Y.; Miyamoto, Y.; Sasaki, T.; Nanto, H.

    2015-04-01

    Novel disk-type X-ray two- and three-dimensional (2D, 3D) dose distributions have been developed using atomic-scale defects as minimum luminescent units, such as radiation- induced silver (Ag)-related species in a Ag-activated phosphate glass. This luminescent detector is based on the radiophotoluminescence(RPL) phenomenon. Accurate accumulated dose distributions with a high spatial resolution on the order of microns over large areas, a wide dynamic range covering three orders of magnitude and a non-destructive readout were successfully demonstrated for the first time by using a disk-type glass plate with a 100-mm diameter and a 1-mm thickness. In addition, the combination of a confocal optical detection system with a transparent glass detector enables 3D reconstruction by piling up each dose image at different depths within the material.

  11. Comparative study of depth dose distributions for beams of light and heavy nuclei in tissue-like media

    NASA Astrophysics Data System (ADS)

    Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2008-04-01

    We study the energy deposition by beams of light and heavy nuclei in tissue-like media for their possible application in charged-particle cancer therapy. The depth-dose distributions for protons, 3He, 12C, 20Ne and 58Ni nuclei are calculated within a Monte Carlo model based on the GEANT4 toolkit. These distributions are compared with each other and with available experimental data. It is demonstrated that nuclear fragmentation reactions essentially reduce the peak-to-plateau ratio of the dose profiles for deeply penetrating energetic ions heavier than 3He. On the other hand, the shapes of depth-dose profiles for all projectiles up to 58Ni were found similar at low penetration depths.

  12. Experimental determination of particle range and dose distribution in thick targets through fragmentation reactions of stable heavy ions

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kohno, Toshiyuki; Tomitani, Takehiro; Urakabe, Eriko; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki

    2006-09-01

    In radiation therapy with highly energetic heavy ions, the conformal irradiation of a tumour can be achieved by using their advantageous features such as the good dose localization and the high relative biological effectiveness around their mean range. For effective utilization of such properties, it is necessary to evaluate the range of incident ions and the deposited dose distribution in a patient's body. Several methods have been proposed to derive such physical quantities; one of them uses positron emitters generated through projectile fragmentation reactions of incident ions with target nuclei. We have proposed the application of the maximum likelihood estimation (MLE) method to a detected annihilation gamma-ray distribution for determination of the range of incident ions in a target and we have demonstrated the effectiveness of the method with computer simulations. In this paper, a water, a polyethylene and a polymethyl methacrylate target were each irradiated with stable 12C, 14N, 16O and 20Ne beams. Except for a few combinations of incident beams and targets, the MLE method could determine the range of incident ions RMLE with a difference between RMLE and the experimental range of less than 2.0 mm under the circumstance that the measurement of annihilation gamma rays was started just after the irradiation of 61.4 s and lasted for 500 s. In the process of evaluating the range of incident ions with the MLE method, we must calculate many physical quantities such as the fluence and the energy of both primary ions and fragments as a function of depth in a target. Consequently, by using them we can obtain the dose distribution. Thus, when the mean range of incident ions is determined with the MLE method, the annihilation gamma-ray distribution and the deposited dose distribution can be derived simultaneously. The derived dose distributions in water for the mono-energetic heavy-ion beams of four species were compared with those measured with an ionization chamber

  13. Commercial production and distribution of fresh fruits and vegetables: A scoping study on the importance of produce pathways to dose

    SciTech Connect

    Marsh, T.L.; Anderson, D.M.; Farris, W.T.; Ikenberry, T.A.; Napier, B.A.; Wilfert, G.L.

    1992-09-01

    This letter report summarizes a scoping study that examined the potential importance of fresh fruit and vegetable pathways to dose. A simple production index was constructed with data collected from the Washington State Department of Agriculture (WSDA), the United States Bureau of the Census, and the United States Department of Agriculture (USDA). Hanford Environmental Dose Reconstruction (HEDR) Project staff from Battelle, Pacific Northwest Laboratories, in cooperation with members of the Technical Steering Panel (TSP), selected lettuce and spinach as the produce pathways most likely to impact dose. County agricultural reports published in 1956 provided historical descriptions of the predominant distribution patterns of fresh lettuce and spinach from production regions to local population centers. Pathway rankings and screening dose estimates were calculated for specific populations living in selected locations within the HEDR study area.

  14. Optimized computational method for determining the beta dose distribution using a multiple-element thermoluminescent dosimeter system

    SciTech Connect

    Shen, L.; Levine, S.H.; Catchen, G.L.

    1987-07-01

    This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.

  15. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters.

    PubMed

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S

    2015-12-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost(®) brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%. PMID:26572554

  16. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters

    NASA Astrophysics Data System (ADS)

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Rahim Hematiyan, Mohammad; Koontz, Craig; Meigooni, Ali S.

    2015-12-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%.

  17. SU-E-I-16: Scan Length Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    SciTech Connect

    Bakalyar, D; McKenney, S; Feng, W

    2015-06-15

    Purpose: The area-averaged dose in the central plane of a long cylinder following a CT scan depends upon the radial dose distribution and the length of the scan. The ICRU/TG200 phantom, a polyethylene cylinder 30 cm in diameter and 60 cm long, was the subject of this study. The purpose was to develop an analytic function that could determine the dose for a scan length L at any point in the central plane of this phantom. Methods: Monte Carlo calculations were performed on a simulated ICRU/TG200 phantom under conditions of cylindrically symmetric conditions of irradiation. Thus, the radial dose distribution function must be an even function that accounts for two competing effects: The direct beam makes its weakest contribution at the center while the scatter begins abruptly at the outer radius and grows as the center is approached. The scatter contribution also increases with scan length with the increase approaching its limiting value at the periphery faster than along the central axis. An analytic function was developed that fit the data and possessed these features. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the ICRU/TG200 phantom. The relative depth of the minimum decreases as the scan length grows and an absolute maximum can occur between the center and outer edge of the cylinders. As the scan length grows, the relative dip in the center decreases so that for very long scan lengths, the dose profile is relatively flat. Conclusion: An analytic function characterizes the radial and scan length dependency of dose for long cylindrical phantoms. The function can be integrated with the results expressed in closed form. One use for this is to help determine average dose distribution over the central cylinder plane for any scan length.

  18. The use of normoxic polymer gel for measuring dose distributions of 1, 4 and 30 mm cones

    NASA Astrophysics Data System (ADS)

    Lee, C. C.; Wu, J. F.; Chang, K. P.; Chu, C. H.; Wey, S. P.; Liu, H. L.; Tung, C. J.; Wu, S. W.; Chao, T. C.

    2014-11-01

    This study demonstrates the use of normoxic polymer gel for measuring dose distributions of small fields that lack lateral electronic equilibrium. Two different types of normoxic polymer gel, MAGAT and PAGAT, are studied in a larger field (10 cm×10 cm) and 1, 4 and 30 mm cones to obtain cone factors, dose profiles and percentage depth doses. These results were then compared to KODAK XV film measurements and BEAMnrc Monte Carlo simulations. The results show that the sensitivity of PAGAT gel is 0.090±0.074 s-1 Gy-1, which may not be suitable for small-field dosimetry with a 0.3 mm resolution scanned using a 3 T MR imager in a dose range lower than 2.5 Gy. There are good agreements between cone factors estimated using KODAK XV film and MAGAT gel. In a dose profile comparison, good dose agreement among MAGAT gel, XV film and MC simulation can be seen in the central area for a 30 mm cone. In penumbra, the distance to agreement is at most 1.2 mm (4 pixel), and less than 0.3 mm (1 pixel) for 4 and 1 mm cones. In a percentage depth dose comparison, there were good agreements between MAGAT and MC up to a depth of 8 cm. Possible factors for gel uncertainty such as MRI magnetic field inhomogeneity and temperature were also investigated.

  19. High-resolution mapping of 1D and 2D dose distributions using X-band electron paramagnetic resonance imaging.

    PubMed

    Kolbun, N; Adolfsson, E; Gustafsson, H; Lund, E

    2014-06-01

    Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogenously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. PMID:24748487

  20. Remote distributed optical fibre dose measuring of high gamma-irradiation with highly sensitive Al- and P-doped fibres

    NASA Astrophysics Data System (ADS)

    Faustov, A. V.; Gusarov, A.; Wuilpart, M.; Fotiadi, A.; Liokumivich, L. B.; Zolotovskiy, I. O.; Tomashuk, A. L.; de Schoutheete, T.; Mégret, P.

    2013-05-01

    We present our results on measuring distributed Radiation-Induced Absorption (RIA) by means of a commercially available Optical Frequency Domain Reflectometry (OFDR) system. We also compare distributed OFDR RIA measurements with spatially integrated spectral transmission detection using an Optical Spectra Analyser (OSA). We have chosen four different highly gamma-radiation sensitive fibres, two of which were doped with Al and two with P. The dose rate during irradiations was about 590 Gy/h. The irradiations were conducted at temperatures of 30°C and 80°C. Different temperatures were needed for studying the temperature dependence of the annealing speed of RIA. All four fibres demonstrated a strong saturation-like increase of RIA with the dose accumulation up to several tens of dB/m as detected by the OSA. In case of the OFDR measurements the change of the absorption in an optical fibre resulted in a clear change of the slope of the corresponding Rayleigh backscattering trace. The RIA dependences measured with the OFDR were in a reasonable agreement with the measurements obtained with the OSA. This allows us to use the RIA dependences on absorption dose obtained by means of OSA for the distributed dose reconstruction based on the OFDR technique. We also irradiated different lengths of one of the P-doped fibers to see if it influences accuracy of the distributed dose detection and to find out the minimal possible length of the probe. The results of the presented experiments provide a basis for a dose estimation model based on RIA in which temperature oscillations are taken into account.

  1. Analysis of Dose Distribution in the Heart for Radiosurgical Ablation of Atrial Fibrillation.

    PubMed

    Gardner, Edward A; Weidlich, Georg A

    2016-01-01

    In a treatment planning study, radiosurgical treatment plans designed to produce lesions on the left atrium were created using two different methodologies. In one, structures in the heart (mitral valve and coronary arteries) were designated as critical structures while this was not done in the second plan. The treatment plans that were created were compared with standards for heart dose used when treating spine tumors. Although the dosage for the whole heart greatly exceeded the dose standards, when only the dose to the ventricles was considered, the plan where the mitral valve was spared was very close to the dose standards. The ventricles received a substantially higher dose in the plan where the mitral valve was not a critical structure. Although neither treatment plan was delivered, this study demonstrated the feasibility of treating the heart while minimizing dose to the ventricles. PMID:27610282

  2. Analysis of Dose Distribution in the Heart for Radiosurgical Ablation of Atrial Fibrillation

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    In a treatment planning study, radiosurgical treatment plans designed to produce lesions on the left atrium were created using two different methodologies. In one, structures in the heart (mitral valve and coronary arteries) were designated as critical structures while this was not done in the second plan. The treatment plans that were created were compared with standards for heart dose used when treating spine tumors. Although the dosage for the whole heart greatly exceeded the dose standards, when only the dose to the ventricles was considered, the plan where the mitral valve was spared was very close to the dose standards. The ventricles received a substantially higher dose in the plan where the mitral valve was not a critical structure. Although neither treatment plan was delivered, this study demonstrated the feasibility of treating the heart while minimizing dose to the ventricles. PMID:27610282

  3. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources

    PubMed Central

    Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney

    2014-01-01

    Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623

  4. Depth Dose Distribution Study within a Phantom Torso after Irradiation with a Simulated Solar Particle Event at NSRL

    NASA Technical Reports Server (NTRS)

    Berger, Thomas; Matthiae, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis; Reitz, Guenther

    2010-01-01

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are compounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrapolation of skin dose to organ dose, which can lead to over- or underestimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be predicted to within about a +10% accuracy using space radiation transport models for galactic cosmic rays (GCR) and trapped radiation behind shielding. However for solar particle event (SPE) with steep energy spectra and for extra-vehicular activities on the surface of the moon where only tissue shielding is present, transport models predict that there are large differences in model assumptions in projecting organ doses. Therefore experimental verification of SPE induced organ doses may be crucial for the design of lunar missions. In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field

  5. Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution

    SciTech Connect

    Hrycushko, Brian A.; Li Shihong; Goins, Beth; Otto, Randal A.; Bao, Ande

    2011-03-15

    Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods: {sup 99m}Tc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts in nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, {sup 186}Re/{sup 188}Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy/MBq (318.2 Gy/mCi) and 5.7 Gy/MBq (209.1 Gy/mCi) could be delivered with this protocol of radiation delivery for {sup 186}Re/{sup 188}Re liposomes, respectively, and 37-92 MBq (1-2.5 mCi)/g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating

  6. New investigation of distribution imaging and content uniformity of very low dose drugs using hot-melt extrusion method.

    PubMed

    Park, Jun-Bom; Kang, Chin-Yang; Kang, Wie-Soo; Choi, Han-Gon; Han, Hyo-Kyung; Lee, Beom-Jin

    2013-12-31

    The content uniformity of low dose drugs in dosage forms is very important for quality assurance. The aim of this study was to prepare uniformly and homogeneously distributed dosage forms of very low-dose drugs using twin screw hot-melt extrusion (HME) and to investigate the distribution of drugs using instrumental analyses. For the feasibility of HME method, a very low amount of coumarin-6, a fluorescent dye, was used to visualize distribution images using confocal laser scanning microscope (CLSM). Limaprost, tamsulosin and glimepiride were then used as low-dose model drugs to study the applicability of HME for content uniformity and distribution behaviors. Hydrophilic thermosensitive polymers with low melting point, such as Poloxamer188 and polyethylene glycol (PEG) 6000, were chosen as carriers. The melt extrusion was carried out around 50°C, at which both carriers were easily dissolved but model drugs remained in solid form. The physicochemical properties of the hot-melt extrudates, including differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FT-IR), were measured. Content uniformity of the drugs was also checked by HPLC. CLSM imaging showed that model drugs were well distributed throughout the hot-melt extrudate, giving better content uniformity with low batch-to-batch variations compared with simple physical mixtures. DSC, PXRD and FT-IR data showed that there was no interaction or interference between model drugs and thermosensitive polymers. The current HME methods could be used to prepare uniformly distributed and reproducible solid dosage forms containing very low dose drugs for further pharmaceutical applications. PMID:24157343

  7. Fast 4D segmentation of large datasets using graph cuts

    NASA Astrophysics Data System (ADS)

    Lombaert, Herve; Sun, Yiyong; Cheriet, Farida

    2011-03-01

    In this paper, we propose to use 4D graph cuts for the segmentation of large spatio-temporal (4D) datasets. Indeed, as 4D datasets grow in popularity in many clinical areas, so will the demand for efficient general segmentation algorithms. The graph cuts method1 has become a leading method for complex 2D and 3D image segmentation in many applications. Despite a few attempts2-5 in 4D, the use of graph cuts on typical medical volume quickly exceeds today's computer capacities. Among all existing graph cuts based methods6-10 the multilevel banded graph cuts9 is the fastest and uses the least amount of memory. Nevertheless, this method has its limitation. Memory becomes an issue when using large 4D volume sequences, and small structures become hardly recoverable when using narrow bands. We thus improve the boundary refinement efficiency by using a 4D competitive region growing. First, we construct a coarse graph at a low resolution with strong temporal links to prevent the shrink bias inherent to the graph cuts method. Second, we use a competitive region growing using a priority queue to capture all fine details. Leaks are prevented by constraining the competitive region growing within a banded region and by adding a viscosity term. This strategy yields results comparable to the multilevel banded graph cuts but is faster and allows its application to large 4D datasets. We applied our method on both cardiac 4D MRI and 4D CT datasets with promising results.

  8. Magnitude of Residual Internal Anatomy Motion on Heavy Charged Particle Dose Distribution in Respiratory Gated Lung Therapy

    SciTech Connect

    Mori, Shinichiro Asakura, Hiroshi; Kandatsu, Susumu; Kumagai, Motoki; Baba, Masayuki; Endo, Masahiro

    2008-06-01

    Purpose: To assess the variation in carbon beam dose distribution due to residual motion in lung cancer patients undergoing respiratory-gated radiotherapy. Methods and Materials: A total of 11 lung cancer patients underwent four-dimensional computed tomography with a 256-multislice computed tomography scanner under free-breathing conditions. A compensating bolus was designed to cover the treatment beam for all planning target volumes during a 30% duty cycle centered on exhalation (gating window). This bolus was applied to the four-dimensional computed tomography data for one respiratory cycle, and then the carbon beam dose distribution was calculated. Results: A water equivalent pathlength variation of <5 mm was observed in the gating window, but this increased to {<=}20 mm on inhalation. As a result, beam overshoot/undershoot occurred around inhalation, which increased the excessive dosing to normal tissues and the organs at risk. The dose for >95% volume irradiation is dependent on the respiratory phase but not the gating window. However, the dose for >95% volume irradiation correlated well with the tumor displacement distance. More than 90% of the dose for >95% volume irradiation could be delivered in the gating window with <4-mm tumor displacement resulting from exhalation. Conclusion: The results of our study have shown that even when the treatment beam delivery occurs outside the gating window, the prescribed dose to the target is not affected in patients with a tumor displacement of <4 mm. Thus, respiratory gating is not required in radiotherapy for patients with <4-mm tumor displacement in a respiratory cycle.

  9. A Mathematical Study to Select Fractionation Regimen Based on Physical Dose Distribution and the Linear-Quadratic Model

    SciTech Connect

    Mizuta, Masahiro; Takao, Seishin; Date, Hiroyuki; Kishimoto, Naoki; Sutherland, Kenneth L.; Onimaru, Rikiya; Shirato, Hiroki

    2012-11-01

    Purpose: Hypofractionated irradiation is often used in precise radiotherapy instead of conventional multifractionated irradiation. We propose a novel mathematical method for selecting a hypofractionated or multifractionated irradiation regimen based on physical dose distribution adding to biologic consideration. Methods and Materials: The linear-quadratic model was used for the radiation effects on tumor and normal tissues, especially organs at risk (OARs). On the basis of the assumption that the OAR receives a fraction of the dose intended for the tumor, the minimization problem for the damage effect on the OAR was treated under the constraint that the radiation effect on the tumor is fixed. Results: For an N-time fractionated irradiation regimen, the constraint of tumor lethality was described by an N-dimensional hypersphere. The total dose of the fractionated irradiations was considered for minimizing the damage effect on the OAR under the hypersphere condition. It was found that the advantage of hypofractionated or multifractionated irradiation therapies depends on the magnitude of the ratio of {alpha}/{beta} parameters for the OAR and tumor in the linear-quadratic model and the ratio of the dose for the OAR and tumor. Conclusions: Our mathematical method shows that multifractionated irradiation with a constant dose is better if the ratio of {alpha}/{beta} for the OAR and tumor is less than the ratio of the dose for the OAR and tumor, whereas hypofractionated irradiation is better otherwise.

  10. Implementation and experimental results of 4D tumor tracking using robotic couch

    SciTech Connect

    Buzurovic, I.; Yu, Y.; Werner-Wasik, M.; Biswas, T.; Anne, P. R.; Dicker, A. P.; Podder, T. K.

    2012-11-15

    radiation dose distribution from these two sets of experiments were compared and presented here. Results: The mechanical accuracies were 0.12, 0.14, and 0.18 mm in X, Y, and Z directions. The repeatability of the desired motion was within {+-}0.2 mm. The differences of central axis dose between the 3D-CRT stationary plan and two tracking plans with different motion trajectories were 0.21% and 1.19%. The absolute dose differences of both 3D tracking plans comparing to the stationary plan were 1.09% and 1.20%. Comparing the stationary IMRT plan with the tracking IMRT plan, it was observed that the central axis dose difference was -0.87% and the absolute difference of both IMRT plans was 0.55%. Conclusions: The experimental results revealed that the treatment couch could be successfully used for real-time tumor tracking with a high level of accuracy. It was demonstrated that 4D tumor tracking was feasible using existing couch with implementation of appropriate tracking methodology and with modifications in the control system.

  11. Gating and tracking, 4D in thoracic tumours.

    PubMed

    Verellen, D; Depuydt, T; Gevaert, T; Linthout, N; Tournel, K; Duchateau, M; Reynders, T; Storme, G; De Ridder, M

    2010-10-01

    The limited ability to control for a tumour's location compromises the accuracy with which radiation can be delivered to tumour-bearing tissue. The resultant requirement for larger treatment volumes to accommodate target uncertainty restricts the radiation dose because more surrounding normal tissue is exposed. With image-guided radiation therapy (IGRT), these volumes can be optimized and tumouricidal doses may be delivered, achieving maximum tumour control with minimal complications. Moreover, with the ability of high precision dose delivery and real-time knowledge of the target volume location, IGRT has initiated the exploration of new indications in radiotherapy such as hypofractionated radiotherapy (or stereotactic body radiotherapy), deliberate inhomogeneous dose distributions coping with tumour heterogeneity (dose painting by numbers and biologically conformal radiation therapy), and adaptive radiotherapy. In short: "individualized radiotherapy". Tumour motion management, especially for thoracic tumours, is a particular problem in this context both for the delineation of tumours and organs at risk as well as during the actual treatment delivery. The latter will be covered in this paper with some examples based on the experience of the UZ Brussel. With the introduction of the NOVALIS system (BrainLAB, Feldkirchen, Germany) in 2000 and consecutive prototypes of the ExacTrac IGRT system, gradually a hypofractionation treatment protocol was introduced for the treatment of lung tumours and liver metastases evolving from motion-encompassing techniques towards respiratory-gated radiation therapy with audio-visual feedback and most recently dynamic tracking using the VERO system (BrainLAB, Feldkirchen, Germany). This evolution will be used to illustrate the recent developments in this particular field of research. PMID:20673737

  12. Time-resolved dose distributions to moving targets during volumetric modulated arc therapy with and without dynamic MLC tracking

    PubMed Central

    Ravkilde, Thomas; Keall, Paul J.; Grau, Cai; Høyer, Morten; Poulsen, Per R.

    2013-01-01

    Purpose: The highly conformal doses delivered by volumetric modulated arc therapy (VMAT) may be compromised by intrafraction target motion. Although dynamic multileaf collimator (DMLC) tracking can mitigate the dosimetric impact of motion on the accumulated dose, residual errors still exist. The purpose of this study was to investigate the temporal evolution of dose errors throughout VMAT treatments delivered with and without DMLC tracking. Methods: Tracking experiments were performed on a linear accelerator connected to prototype DMLC tracking software. A three-axis motion stage reproduced representative clinical trajectories of four lung tumors and four prostates. For each trajectory, two VMAT treatment plans (low and high modulation) were delivered with and without DMLC tracking as well as to a static phantom for reference. Dose distributions were measured continuously at 72 Hz using a dosimeter with biplanar diode arrays. During tracking, the MLC leaves were continuously refitted to the 3D target position measured by an electromagnetic transponder at 30 Hz. The dosimetric errors caused in the 32 motion experiments were quantified by a time-resolved 3%/3 mmγ-test. The erroneously exposed areas in treatment beam's eye view (BEV) caused by inadequate real-time MLC adaptation were calculated and compared with the time-resolved γ failure rates. Results: The transientγ failure rate was on average 16.8% without tracking and 5.3% with tracking. The γ failure rate correlated well with the erroneously exposed areas in BEV (mean of Pearson r = 0.83, p < 0.001). For the final accumulated doses, the mean γ failure rate was 17.9% without tracking and 1.0% with tracking. With tracking the transient dose errors tended to cancel out resulting in the low mean γ failure rate for the accumulated doses. Conclusions: Time-resolved measurements allow pinpointing of transient errors in dose during VMAT delivery as well as monitoring of erroneous dose evolution in key target

  13. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography

    SciTech Connect

    Kroll, Florian; Karsch, Leonhard; Pawelke, Jörg

    2013-08-15

    Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined

  14. Impact of 4D image quality on the accuracy of target definition.

    PubMed

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-03-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape. PMID:26577711

  15. Dose distribution outside the target volume for 170-MeV proton beam.

    PubMed

    Pachnerová Brabcová, K; Ambrožová, I; Kubančák, J; Puchalska, M; Vondráček, V; Molokanov, A G; Sihver, L; Davídková, M

    2014-10-01

    Dose delivered outside the proton field during radiotherapy can potentially lead to secondary cancer development. Measurements with a 170-MeV proton beam were performed with passive detectors (track etched detectors and thermoluminescence dosemeters) in three different depths along the Bragg curve. The measurement showed an uneven decrease of the dose outside of the beam field with local enhancements. The major contribution to the delivered dose is due to high-energy protons with linear energy transfer (LET) up to 10 keV µm(-1). However, both measurement and preliminary Monte Carlo calculation also confirmed the presence of particles with higher LET. PMID:24759915

  16. Effects of prenatal exposure to 2,4-D/2,4,5-T mixture on postnatal changes in rat brain glutamate, GABA protein, and nucleic acid levels

    SciTech Connect

    Mohammad, F.K.; Omer, V.E.V.

    1988-02-01

    The opportunity of maternal exposure to various chemicals in the work place and the general environments have increased, and the fetus and neonate may be at greater risk than the adult. However, the embryotoxic and teratogenic effects of the chlorinated phenoxy herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), the main chemicals in Agent Orange, are well documented only in laboratory animals. The brain of the developing fetus is vulnerable to the toxic effects of the phenoxy herbicides which readily cross the placental barrier and distribute into fetal tissues, including brain. Although the neurochemical basis for the behavioral teratogenicity of the phenoxy herbicides is not know, it was recently reported that non-teratogenic doses of a 1:1 mixture of 2,4-D and 2,4,5-T delayed the ontogeny of dopamine and serotonin in the brain of the developing rate. This communication provides further descriptive information about the ontogeny of rat brain nucleic acid, protein, glutamate and ..gamma..-aminobutyrate (GABA) following in utero exposure to non-teratogenic levels of a 1:1 mixture of 2,4-D/2,4,5-T.

  17. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: A digital phantom study

    SciTech Connect

    Bernatowicz, K. Knopf, A.; Lomax, A.; Keall, P.; Kipritidis, J.; Mishra, P.

    2015-01-15

    Purpose: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CT can significantly reduce lung imaging artifacts. Methods: Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) “conventional” 4D CT that uses a constant imaging and couch-shift frequency, (ii) “beam paused” 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) “respiratory-gated” 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm{sup 3} spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Results

  18. 4D-Var or Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Kalnay, E.; Li, H.; Yang, S.; Miyoshi, T.; Ballabrera, J.

    2007-05-01

    We consider the relative advantages of two advanced data assimilation systems, 4D-Var and ensemble Kalman filter (EnKF), currently in use or considered for operational implementation. We explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4D-Var, the variance inflation in EnKF, and the effect of model errors and reduced observation coverage in both systems. For short assimilation windows EnKF gives more accurate analyses. Both systems reach similar levels of accuracy if long windows are used for 4D-Var, and for infrequent observations, when ensemble perturbations grow nonlinearly and become non-Gaussian, 4D-Var attains lower errors than EnKF. Results obtained with variations of EnKF using operational models and both simulated and real observations are reviewed. A table summarizes the pros and cons of the two methods.

  19. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.; Watts, J. W. Jr; Parnell, T. A.

    1990-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day-1 have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLDs) of U.S.S.R. and U.S.A. manufacture. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  20. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Parnell, T. A.; Akatov, Yu. A.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.

    1995-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day(exp -1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD's) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  1. Solar particle dose rate buildup and distribution in critical body organs

    SciTech Connect

    Atwell, W.; Weyland, M.D.; Simonsen, L.C. ||

    1993-12-31

    Human body organs have varying degrees of radiosensitivity as evidenced by radioepidemiologic tables. The major critical organs for both the male and female that have been identified include the lung, thyroid, stomach, and breast (female). Using computerized anatomical models of the 50th percentile United States Air Force male and female, we present the self-shielding effects of these various body organs and how the shielding effects change as the location (dose point) in the body varies. Several major solar proton events from previous solar cycles and several events from the current 22nd solar cycle have been analyzed. The solar particle event rise time, peak intensity, and decay time vary considerably from event to event. Absorbed dose and dose equivalent rate calculations and organ risk assessment data are presented for each critical body organ. These data are compared with the current NASA astronaut dose limits as recommended by the National Council on Radiation Protection and Measurements.

  2. Solar particle dose rate buildup and distribution in critical body organs

    NASA Technical Reports Server (NTRS)

    Atwell, William; Weyland, Mark D.; Simonsen, Lisa C.

    1993-01-01

    Human body organs have varying degrees of radiosensitivity as evidenced by radioepidemiologic tables. The major critical organs for both the male and female that have been identified include the lung, thyroid, stomach, and breast (female). Using computerized anatomical models of the 50th percentile United States Air Force male and female, we present the self-shielding effects of these various body organs and how the shielding effects change as the location (dose point) in the body varies. Several major solar proton events from previous solar cycles and several events from the current 22nd solar cycle have been analyzed. The solar particle event rise time, peak intensity, and decay time vary considerably from event to event. Absorbed dose and dose equivalent rate calculations and organ risk assessment data are presented for each critical body organ. These data are compared with the current NASA astronaut dose limits as recommended by the National Council on Radiation Protection and Measurements.

  3. NOTE: A Monte Carlo study of dose rate distribution around the specially asymmetric CSM3-a 137Cs source

    NASA Astrophysics Data System (ADS)

    Pérez-Calatayud, J.; Lliso, F.; Ballester, F.; Serrano, M. A.; Lluch, J. L.; Limami, Y.; Puchades, V.; Casal, E.

    2001-07-01

    The CSM3 137Cs type stainless-steel encapsulated source is widely used in manually afterloaded low dose rate brachytherapy. A specially asymmetric source, CSM3-a, has been designed by CIS Bio International (France) substituting the eyelet side seed with an inactive material in the CSM3 source. This modification has been done in order to allow a uniform dose level over the upper vaginal surface when this `linear' source is inserted at the top of the dome vaginal applicators. In this study the Monte Carlo GEANT3 simulation code, incorporating the source geometry in detail, was used to investigate the dosimetric characteristics of this special CSM3-a 137Cs brachytherapy source. The absolute dose rate distribution in water around this source was calculated and is presented in the form of an along-away table. Comparison of Sievert integral type calculations with Monte Carlo results are discussed.

  4. Sensitivities in the production of spread-out Bragg peak dose distributions by passive scattering with beam current modulation

    SciTech Connect

    Lu, H.-M.; Brett, Robert; Engelsman, Martijn; Slopsema, Roelf; Kooy, Hanne; Flanz, Jay

    2007-10-15

    A spread-out Bragg peak (SOBP) is used in proton beam therapy to create a longitudinal conformality of the required dose to the target. In order to create this effect in a passive beam scattering system, a variety of components must operate in conjunction to produce the desired beam parameters. We will describe how the SOBP is generated and will explore the tolerances of the various components and their subsequent effect on the dose distribution. A specific aspect of this investigation includes a case study involving the use of a beam current modulated system. In such a system, the intensity of the beam current can be varied in synchronization with the revolution of the range-modulator wheel. As a result, the weights of the pulled-back Bragg peaks can be individually controlled to produce uniform dose plateaus for a large range of treatment depths using only a small number of modulator wheels.

  5. SU-E-T-324: The Influence of Patient Positioning Uncertainties in Proton Radiotherapy On Proton Range and Dose Distributions

    SciTech Connect

    Liebl, J; Paganetti, H; Winey, B

    2014-06-01

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: 38 clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50% and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs) and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: We identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 mm and 5.8 mm for the 90%-dose falloff position respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. TCP decreases larger than 10% (absolute) were seen for less than 2.2% of the target volumes or non-existent. EUD changes were up to 178% for OARs and 35% for target volumes. Conclusion: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain and target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple compensator

  6. Depth dose distribution study within a phantom torso after irradiation with a simulated Solar Particle Event at NSRL

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are com-pounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself. Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrap-olation of skin dose to organ dose, which can lead to over-or under-estimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be pre-dicted to within about a +10In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The first focus of the pre-sented experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on the results of the passive dosimetry using the anthropomorphic phantoms represent the best tool to generate reliable to

  7. 4-D-Var or ensemble Kalman filter?

    NASA Astrophysics Data System (ADS)

    Kalnay, Eugenia; Li, Hong; Miyoshi, Takemasa; Yang, Shu-Chih; Ballabrera-Poy, Joaquim

    2007-10-01

    We consider the relative advantages of two advanced data assimilation systems, 4-D-Var and ensemble Kalman filter (EnKF), currently in use or under consideration for operational implementation. With the Lorenz model, we explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4-D-Var, variance inflation in EnKF, and the effect of model errors and reduced observation coverage. For short assimilation windows EnKF gives more accurate analyses. Both systems reach similar levels of accuracy if long windows are used for 4-D-Var. For infrequent observations, when ensemble perturbations grow non-linearly and become non-Gaussian, 4-D-Var attains lower errors than EnKF. If the model is imperfect, the 4-D-Var with long windows requires weak constraint. Similar results are obtained with a quasi-geostrophic channel model. EnKF experiments made with the primitive equations SPEEDY model provide comparisons with 3-D-Var and guidance on model error and `observation localization'. Results obtained using operational models and both simulated and real observations indicate that currently EnKF is becoming competitive with 4-D-Var, and that the experience acquired with each of these methods can be used to improve the other. A table summarizes the pros and cons of the two methods.

  8. Substitutional 4d and 5d impurities in graphene.

    PubMed

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2016-08-21

    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The adsorption energies and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which are also well-known characteristics of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar adsorption energies, distances and magnetic moments to the 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3 μB for manganese is reduced to 1 μB for technetium and rhenium. We find that compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree of hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different if 4d or 5d impurities are used instead of 3d impurities. PMID:27439363

  9. Frameless fractionated stereotactic radiation therapy of intracranial lesions: impact of cone beam CT based setup correction on dose distribution

    PubMed Central

    2013-01-01

    Background The purpose of this study was to evaluate the impact of Cone Beam CT (CBCT) based setup correction on total dose distributions in fractionated frameless stereotactic radiation therapy of intracranial lesions. Methods Ten patients with intracranial lesions treated with 30 Gy in 6 fractions were included in this study. Treatment planning was performed with Oncentra® for a SynergyS® (Elekta Ltd, Crawley, UK) linear accelerator with XVI® Cone Beam CT, and HexaPOD™ couch top. Patients were immobilized by thermoplastic masks (BrainLab, Reuther). After initial patient setup with respect to lasers, a CBCT study was acquired and registered to the planning CT (PL-CT) study. Patient positioning was corrected according to the correction values (translational, rotational) calculated by the XVI® system. Afterwards a second CBCT study was acquired and registered to the PL-CT to confirm the accuracy of the corrections. An in-house developed software was used for rigid transformation of the PL-CT to the CBCT geometry, and dose calculations for each fraction were performed on the transformed CT. The total dose distribution was achieved by back-transformation and summation of the dose distributions of each fraction. Dose distributions based on PL-CT, CBCT (laser set-up), and final CBCT were compared to assess the influence of setup inaccuracies. Results The mean displacement vector, calculated over all treatments, was reduced from (4.3 ± 1.3) mm for laser based setup to (0.5 ± 0.2) mm if CBCT corrections were applied. The mean rotational errors around the medial-lateral, superior-inferior, anterior-posterior axis were reduced from (−0.1 ± 1.4)°, (0.1 ± 1.2)° and (−0.2 ± 1.0)°, to (0.04 ± 0.4)°, (0.01 ± 0.4)° and (0.02 ± 0.3)°. As a consequence the mean deviation between planned and delivered dose in the planning target volume (PTV) could be reduced from 12.3% to 0.4% for D95 and from 5.9% to 0.1% for Dav. Maximum

  10. Estimation of angular distribution of neutron dose using time-of-flight for 19F+Al system at 110 MeV

    NASA Astrophysics Data System (ADS)

    Nandy, Maitreyee; Sunil, C.; Maiti, Moumita; Palit, R.; Sarkar, P. K.

    2007-06-01

    We have reported measured angular and energy distributions of neutron dose from 110 MeV 19F projectiles bombarding a thick aluminum target. The measurements are carried out with BC501 liquid scintillator detector using the time-of-flight technique. We have measured neutron energy distributions at 0∘, 30∘, 60∘, 90∘, and 120∘ and converted them to dose distributions using the ICRP recommended fluence to ambient dose equivalent and absorbed dose conversion coefficients. Similar conversions to ambient dose equivalent are done for theoretically estimated distributions from the nuclear reaction model code EMPIRE-2.18. The experimental results are compared with calculated ambient dose equivalent from different empirical formulations proposed by earlier workers. Based on the comparison, we have attempted modifications of the parameters in these empirical expressions.

  11. Assessment of the dose distribution inside a cardiac cath lab using TLD measurements and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Teles, P.; Cardoso, G.; Vaz, P.

    2014-11-01

    Over the last decade, there was a substantial increase in the number of interventional cardiology procedures worldwide, and the corresponding ionizing radiation doses for both the medical staff and patients became a subject of concern. Interventional procedures in cardiology are normally very complex, resulting in long exposure times. Also, these interventions require the operator to work near the patient and, consequently, close to the primary X-ray beam. Moreover, due to the scattered radiation from the patient and the equipment, the medical staff is also exposed to a non-uniform radiation field that can lead to a significant exposure of sensitive body organs and tissues, such as the eye lens, the thyroid and the extremities. In order to better understand the spatial variation of the dose and dose rate distributions during an interventional cardiology procedure, the dose distribution around a C-arm fluoroscopic system, in operation in a cardiac cath lab at Portuguese Hospital, was estimated using both Monte Carlo (MC) simulations and dosimetric measurements. To model and simulate the cardiac cath lab, including the fluoroscopic equipment used to execute interventional procedures, the state-of-the-art MC radiation transport code MCNPX 2.7.0 was used. Subsequently, Thermo-Luminescent Detector (TLD) measurements were performed, in order to validate and support the simulation results obtained for the cath lab model. The preliminary results presented in this study reveal that the cardiac cath lab model was successfully validated, taking into account the good agreement between MC calculations and TLD measurements. The simulated results for the isodose curves related to the C-arm fluoroscopic system are also consistent with the dosimetric information provided by the equipment manufacturer (Siemens). The adequacy of the implemented computational model used to simulate complex procedures and map dose distributions around the operator and the medical staff is discussed, in

  12. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors.

    PubMed

    Garnica-Garza, H M

    2009-09-21

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360 degrees arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution. PMID:19700816

  13. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    NASA Astrophysics Data System (ADS)

    Garnica-Garza, H. M.

    2009-09-01

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360° arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  14. Octavius 4D characterization for flattened and flattening filter free rotational deliveries

    SciTech Connect

    McGarry, Conor K.; Hounsell, Alan R.; O’Connell, Barry F.; Grattan, Mark W. D.; Agnew, Christina E.; Irvine, Denise M.

    2013-09-15

    Purpose: In this study the Octavius detector 729 ionization chamber (IC) array with the Octavius 4D phantom was characterized for flattening filter (FF) and flattening filter free (FFF) static and rotational beams. The device was assessed for verification with FF and FFF RapidArc treatment plans.Methods: The response of the detectors to field size, dose linearity, and dose rate were assessed for 6 MV FF beams and also 6 and 10 MV FFF beams. Dosimetric and mechanical accuracy of the detector array within the Octavius 4D rotational phantom was evaluated against measurements made using semiflex and pinpoint ionization chambers, and radiochromic film. Verification FF and FFF RapidArc plans were assessed using a gamma function with 3%/3 mm tolerances and 2%/2 mm tolerances and further analysis of these plans was undertaken using film and a second detector array with higher spatial resolution.Results: A warm-up dose of >6 Gy was required for detector stability. Dose-rate measurements were stable across a range from 0.26 to 15 Gy/min and dose response was linear, although the device overestimated small doses compared with pinpoint ionization chamber measurements. Output factors agreed with ionization chamber measurements to within 0.6% for square fields of side between 3 and 25 cm and within 1.2% for 2 × 2 cm{sup 2} fields. The Octavius 4D phantom was found to be consistent with measurements made with radiochromic film, where the gantry angle was found to be within 0.4° of that expected during rotational deliveries. RapidArc FF and FFF beams were found to have an accuracy of >97.9% and >90% of pixels passing 3%/3 mm and 2%/2 mm, respectively. Detector spatial resolution was observed to be a factor in determining the accurate delivery of each plan, particularly at steep dose gradients. This was confirmed using data from a second detector array with higher spatial resolution and with radiochromic film.Conclusions: The Octavius 4D phantom with associated Octavius detector

  15. Study of dose distribution in a human body in international space station compartments with the tissue-equivalent spherical phantom

    PubMed Central

    Shurshakov, Vyacheslav A.; Tolochek, Raisa V.; Kartsev, Ivan S.; Petrov, Vladislav M.; Nikolaev, Igor V.; Moskalyova, Svetlana I.; Lyagushin, Vladimir I.

    2014-01-01

    Space radiation is known to be key hazard of manned space mission. To estimate accurately radiation health risk detailed study of dose distribution inside human body by means of human phantom is conducted. In the space experiment MATROSHKA-R, the tissue-equivalent spherical phantom (32 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been used on board the ISS for more than 8 years. Owing to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a real human body. If compared with the anthropomorphic phantom Rando used inside and outside the ISS, the spherical phantom has lower mass, smaller size and requires less crew time for the detector installation/retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. Originally the spherical phantom was installed in the star board crew cabin of the ISS Service Module, then in the Piers-1, MIM-2 and MIM-1 modules of the ISS Russian segment, and finally in JAXA Kibo module. Total duration of the detector exposure is more than 1700 days in 8 sessions. In the first phase of the experiment with the spherical phantom, the dose measurements were realized with only passive detectors (thermoluminescent and solid-state track detectors). The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. After each session the passive detectors are returned to the ground. The results obtained show the dose difference on the phantom surface as much as a factor of 2, the highest dose being observed close to the outer wall of the compartment, and the lowest dose being in the opposite location along the phantom diameter. Maximum dose rate measured in the phantom is obviously due to the galactic cosmic ray (GCR) and Earth' radiation belt contribution on

  16. SU-D-201-07: Exploring the Utility of 4D FDG-PET/CT Scans in Design of Radiation Therapy Planning Compared with 3D PET/CT: A Prospective Study

    SciTech Connect

    Ma, C; Yin, Y

    2015-06-15

    Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using a constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.

  17. PAGAT gel dosimeters for dose distribution measurements in the vicinity of high-density implants: A preliminary study

    NASA Astrophysics Data System (ADS)

    Asena, A.; Kairn, T.; Crowe, S. B.; Smith, S. T.; Trapp, J. V.

    2015-01-01

    This work examined the suitability of the PAGAT gel dosimeter for use in dose distribution measurements around high-density implants. An assessment of the gels reactivity with various metals was performed and no corrosive effects were observed. An artefact reduction technique was also investigated in order to minimise scattering of the laser light in the optical CT scans. The potential for attenuation and backscatter measurements using this gel dosimeter were examined for a temporary tissue expander's internal magnetic port.

  18. Effect of organ size and position on out-of-field dose distributions during radiation therapy

    NASA Astrophysics Data System (ADS)

    Scarboro, Sarah B.; Stovall, Marilyn; White, Allen; Smith, Susan A.; Yaldo, Derek; Kry, Stephen F.; Howell, Rebecca M.

    2010-12-01

    Mantle field irradiation has historically been the standard radiation treatment for Hodgkin lymphoma. It involves treating large regions of the chest and neck with high doses of radiation (up to 30 Gy). Previous epidemiological studies on the incidence of second malignancies following radiation therapy for Hodgkin lymphoma have revealed an increased incidence of second tumors in various organs, including lung, breast, thyroid and digestive tract. Multiple other studies, including the Surveillance, Epidemiology and End Results, indicated an increased incidence in digestive tract including stomach cancers following mantle field radiotherapy. Assessment of stomach dose is challenging because the stomach is outside the treatment field but very near the treatment border where there are steep dose gradients. In addition, the stomach can vary greatly in size and position. We sought to evaluate the dosimetric impact of the size and variable position of the stomach relative to the field border for a typical Hodgkin lymphoma mantle field irradiation. The mean stomach dose was measured using thermoluminescent dosimetry for nine variations in stomach size and position. The mean doses to the nine stomach variations ranged from 0.43 to 0.83 Gy when 30 Gy was delivered to the treatment isocenter. Statistical analyses indicated that there were no significant differences in the mean stomach dose when the stomach was symmetrically expanded up to 3 cm or shifted laterally (medial, anterior or posterior shifts) by up to 3 cm. There was, however, a significant (P > 0.01) difference in the mean dose when the stomach was shifted superiorly or inferiorly by >=2.5 cm.

  19. Effect of organ size and position on out-of-field dose distributions during radiation therapy

    PubMed Central

    Scarboro, Sarah B; Stovall, Marilyn; White, Allen; Smith, Susan A; Yaldo, Derek; Kry, Stephen F; Howell, Rebecca M

    2011-01-01

    Mantle field irradiation has historically been the standard radiation treatment for Hodgkin lymphoma. It involves treating large regions of the chest and neck with high doses of radiation (up to 30 Gy). Previous epidemiological studies on the incidence of second malignancies following radiation therapy for Hodgkin lymphoma have revealed an increased incidence of second tumors in various organs, including lung, breast, thyroid and digestive tract. Multiple other studies, including the Surveillance, Epidemiology and End Results, indicated an increased incidence in digestive tract including stomach cancers following mantle field radiotherapy. Assessment of stomach dose is challenging because the stomach is outside the treatment field but very near the treatment border where there are steep dose gradients. In addition, the stomach can vary greatly in size and position. We sought to evaluate the dosimetric impact of the size and variable position of the stomach relative to the field border for a typical Hodgkin lymphoma mantle field irradiation. The mean stomach dose was measured using thermoluminescent dosimetry for nine variations in stomach size and position. The mean doses to the nine stomach variations ranged from 0.43 to 0.83 Gy when 30 Gy was delivered to the treatment isocenter. Statistical analyses indicated that there were no significant differences in the mean stomach dose when the stomach was symmetrically expanded up to 3 cm or shifted laterally (medial, anterior or posterior shifts) by up to 3 cm. There was, however, a significant (P > 0.01) difference in the mean dose when the stomach was shifted superiorly or inferiorly by ≥ 2.5 cm. PMID:21076195

  20. Comparison of measured and calculated spatial dose distributions for a bench-mark 106Ru/106Rh hot particle source.

    PubMed

    Aydarous, A Sh; Charles, M W; Darley, P J

    2008-01-01

    This study is a part of a programme of research to provide validated dose measurement and calculation techniques for beta emitting hot particles by the construction of well-defined model hot particle sources. This enables parallel measurements and calculations to be critically compared. This particular study concentrates on the high-energy beta emitter, (106)Ru/(106)Rh (Emax = 3.54 MeV). This source is a common constituent of failed nuclear fuel, particularly in accident situations. The depth dose distributions were measured using radiochromic dye film (RDF); an imaging photon detector coupled to an LiF thermoluminescent dosemeter (LiF-IPD) and an extrapolation ionisation chamber (ECH). Dose calculations were performed using the Monte Carlo radiation transport code MCNP4C. Doses were measured and calculated as average values over various areas and depths. Of particular interest are the doses at depths of 7 and 30-50 mg cm(-2), and averaged over an area of 1 cm2, as recommended by the International Commission on Radiological Protection for use in routine and accidental over-exposures of the skin. In this case, the average ratios (MCNP/measurement) for RDF, ECH and LiF-IPD were 1.07 +/- 0.02, 1.02 +/- 0.01 and 0.83 +/- 0.16, respectively. There are significantly greater discrepancies between the ECH and LiF-IPD measurement techniques and calculations-particularly for shallow depths and small averaging areas. PMID:18083995

  1. Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam

    NASA Astrophysics Data System (ADS)

    Hall, David C.; Makarova, Anastasia; Paganetti, Harald; Gottschalk, Bernard

    2016-01-01

    A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning systems to accurately model this envelope when performing dose calculations for pencil beam scanning treatments, and Monte Carlo (MC) codes are commonly used for this purpose. This work aims to validate the nuclear models employed by the Geant4 MC code, by comparing the simulated absolute dose distribution to a recent experiment of a 177 MeV proton pencil beam stopping in water. Striking agreement is observed over five orders of magnitude, with both the shape and normalisation well modelled. The normalisations of two depth dose curves are lower than experiment, though this could be explained by an experimental positioning error. The Geant4 neutron production model is also verified in the distal region. The entrance dose is poorly modelled, suggesting an unaccounted upstream source of low-energy protons. Recommendations are given for a follow-up experiment which could resolve these issues.

  2. Experimental and Monte Carlo evaluation of Eclipse treatment planning system for effects on dose distribution of the hip prostheses

    SciTech Connect

    Çatlı, Serap; Tanır, Güneş

    2013-10-01

    The present study aimed to investigate the effects of titanium, titanium alloy, and stainless steel hip prostheses on dose distribution based on the Monte Carlo simulation method, as well as the accuracy of the Eclipse treatment planning system (TPS) at 6 and 18 MV photon energies. In the present study the pencil beam convolution (PBC) method implemented in the Eclipse TPS was compared to the Monte Carlo method and ionization chamber measurements. The present findings show that if high-Z material is used in prosthesis, large dose changes can occur due to scattering. The variance in dose observed in the present study was dependent on material type, density, and atomic number, as well as photon energy; as photon energy increased back scattering decreased. The dose perturbation effect of hip prostheses was significant and could not be predicted accurately by the PBC method for hip prostheses. The findings show that for accurate dose calculation the Monte Carlo-based TPS should be used in patients with hip prostheses.

  3. Improvement of dose distribution in breast radiotherapy using a reversible transverse magnetic field Linac-MR unit

    SciTech Connect

    Esmaeeli, A. D.; Mahdavi, S. R.; Pouladian, M.; Bagheri, S.; Monfared, A. S.

    2014-01-15

    Purpose: To investigate the improvement in dose distribution in tangential breast radiotherapy using a reversible transverse magnetic field that maintains the same direction of Lorentz force between two fields. The investigation has a potential application in future Linac-MR units. Methods: Computed tomography images of four patients and magnetic fields of 0.25–1.5 Tesla (T) were used for Monte Carlo simulation. Two patients had intact breast while the other two had mastectomy. Simulations of planning and chest wall irradiation were similar to the actual clinical process. The direction of superior-inferior magnetic field for the medial treatment beam was reversed for the lateral beam. Results: For the ipsilateral lung and heart mean doses were reduced by a mean (range) of 45.8% (27.6%–58.6%) and 26.0% (20.2%–38.9%), respectively, depending on various treatment plan setups. The mean V{sub 20} for ipsilateral lung was reduced by 55.0% (43.6%–77.3%). In addition acceptable results were shown after simulation of 0.25 T magnetic field demonstrated in dose-volume reductions of the heart, ipsilateral lung, and noninvolved skin. Conclusions: Applying a reversible magnetic field during breast radiotherapy, not only reduces the dose to the lung and heart but also produces a sharp drop dose volume histogram for planning target volume, because of bending of the path of secondary charged particles toward the chest wall by the Lorentz force. The simulations have shown that use of the magnetic field at 1.5 T is not feasible for clinical applications due to the increase of ipsilateral chest wall skin dose in comparison to the conventional planning while 0.25 T is suitable for all patients due to dose reduction to the chest wall skin.

  4. The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data

    NASA Astrophysics Data System (ADS)

    Ilic, Radovan D.; Spasic-Jokic, Vesna; Belicev, Petar; Dragovic, Milos

    2005-03-01

    This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour.

  5. The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data.

    PubMed

    Ilić, Radovan D; Spasić-Jokić, Vesna; Belicev, Petar; Dragović, Milos

    2005-03-01

    This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour. PMID:15798273

  6. Dose distribution along the transverse axis of a new 125I source for interstitial brachytherapy.

    PubMed

    Nath, R; Yue, N

    2000-11-01

    A new encapsulated source of 125I has been introduced for interstitial brachytherapy. This source, isoSTAR model 12501 (manufactured by Imagyn Corp.), consists of a welded titanium tube containing 125I as silver iodide uniformly coated on five silver beads. The dose rate constant and the radial dose function for this source were measured using lithium fluoride thermoluminescent dosimeters in a Solid Water phantom. The value of the dose rate constant is 0.95 cGy h(-1)U(-1) where the unit of air kerma strength is 1 U = 1 cGy h(-1)cm2. The air kerma strength was traceable to the year 2000 primary air kerma strength standard for the model 12501 source at the National Institute of Technology and Standards. The radial dose function for the source was very similar to that for the model 6711 source (manufactured by Nycomed Amersham) for radial distances up to 6 cm. However, the radial dose function is lower in value than that for the model 6702 source (manufactured by Nycomed Amersham) and the model MED3631-A/M Iogold source (manufactured by North American Scientific). PMID:11128306

  7. SU-E-J-194: Dynamic Tumor Tracking End-To-End Testing Using a 4D Thorax Phantom and EBT3 Films

    SciTech Connect

    Su, Z; Wu, J; Li, Z; Mamalui-Hunter, M

    2014-06-01

    Purpose: To quantify the Vero linac dosimetric accuracy of the tumor dynamic tracking treatment using EBT3 film embedded in a 4D thorax phantom. Methods: A dynamic thorax phantom with tissue equivalent materials and a film insert were used in this study. The thorax phantom was scanned in 4DCT mode with a viscoil embedded in its film insert composed of lung equivalent material. Dynamic tracking planning was performed using the 50% phase CT set with 5 conformal beams at gantry angles of 330, 15, 60, 105 and 150 degrees. Each field is a 3cm by 3cm square centered at viscoil since there was no solid mass target. Total 3 different 1–2cos4 motion profiles were used with varied motion magnitude and cycle frequency. Before treatment plan irradiation, a 4D motion model of the target was established using a series of acquired fluoroscopic images and infrared markers motion positions. During irradiation, fluoroscopic image monitoring viscoil motion was performed to verify model validity. The irradiated films were scanned and the dose maps were compared to the planned Monte Carlo dose distributions. Gamma analyses using 3%–3mm, 2%–3mm, 3%–2mm, 2%–2mm criteria were performed and presented. Results: For each motion pattern, a 4D motion model was built successfully and the target tracking performance was verified with fluoroscopic monitoring of the viscoil motion and its model predicted locations. The film gamma analysis showed the average pass rates among the 3 motion profiles are 98.14%, 96.2%, 91.3% and 85.61% for 3%–3mm, 2%–3mm, 3%–2mm, 2%–2mm criteria. Conclusion: Target dynamic tracking was performed using patient-like breathing patterns in a 4D thorax phantom with EBT3 film insert and a viscoil. There was excellent agreement between acquired and planned dose distributions for all three target motion patterns. This study performed end-to-end testing and verified the treatment accuracy of tumor dynamic tracking.

  8. Comparison of methods for the measurement of radiation dose distributions in high dose rate (HDR) brachytherapy: Ge-doped optical fiber, EBT3 Gafchromic film, and PRESAGE{sup Registered-Sign} radiochromic plastic

    SciTech Connect

    Palmer, A. L.; Di Pietro, P.; Alobaidli, S.; Issa, F.; Doran, S.; Bradley, D.; Nisbet, A.

    2013-06-15

    Purpose: Dose distribution measurement in clinical high dose rate (HDR) brachytherapy is challenging, because of the high dose gradients, large dose variations, and small scale, but it is essential to verify accurate treatment planning and treatment equipment performance. The authors compare and evaluate three dosimetry systems for potential use in brachytherapy dose distribution measurement: Ge-doped optical fibers, EBT3 Gafchromic film with multichannel analysis, and the radiochromic material PRESAGE{sup Registered-Sign} with optical-CT readout. Methods: Ge-doped SiO{sub 2} fibers with 6 {mu}m active core and 5.0 mm length were sensitivity-batched and their thermoluminescent properties used via conventional heating and annealing cycles. EBT3 Gafchromic film of 30 {mu}m active thickness was calibrated in three color channels using a nominal 6 MV linear accelerator. A 48-bit transmission scanner and advanced multichannel analysis method were utilized to derive dose measurements. Samples of the solid radiochromic polymer PRESAGE{sup Registered-Sign }, 60 mm diameter and 100 mm height, were analyzed with a parallel beam optical CT scanner. Each dosimetry system was used to measure the dose as a function of radial distance from a Co-60 HDR source, with results compared to Monte Carlo TG-43 model data. Each system was then used to measure the dose distribution along one or more lines through typical clinical dose distributions for cervix brachytherapy, with results compared to treatment planning system (TPS) calculations. Purpose-designed test objects constructed of Solid Water and held within a full-scatter water tank were utilized. Results: All three dosimetry systems reproduced the general shape of the isolated source radial dose function and the TPS dose distribution. However, the dynamic range of EBT3 exceeded those of doped optical fibers and PRESAGE{sup Registered-Sign }, and the latter two suffered from unacceptable noise and artifact. For the experimental

  9. Soil matrix and macropore biodegradation of 2,4-D

    SciTech Connect

    Pivetz, B.E.; Steenhuis, T.S.

    1995-07-01

    Preferential flow of pesticides in macropores can lead to decreased travel times through the vadose zone and increased groundwater contamination. Macropores, however, may present a favorable environment for biodegradation because of greater oxygen, nutrient, and substrate supply, and higher microbial populations in earthworm burrows, compared to the soil matrix. The biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was measured in macropores and soil matrix of packed soil columns (7.0-cm diam., 10-cm length) and undisturbed cores contained as well-defined artificial macropore and the undisturbed cores contained earthworm-burrow macropores. A 50 {mu}g/L 2,4-D solution was continuously applied to the unsaturated soil surface and breakthrough curves (BTCs) indicating pesticide loss in the effluent were obtained from the soil matrix and macropore flow paths. Biodegradation rates were calculated separately for each flow path by comparing the BTCs to BTCs representing abiotic conditions, and dividing the 2,4-D loss by the travel time through each flow path. The biodegradation rates increased with time in both flow paths, and the final biodegradation rate in the macropore region surpassed that of the matrix, presumably because of increased microbial populations in the macropore. Complete loss of the 2,4-D in both flow paths was observed after continuous application of 2,4-D for 400 h, with maximum column-averaged 2,4-D loss rates of 0.879 {mu}g/(L h) in the matrix and 1.073 {mu}g/(L h) in the macropore. Biodegradation of 2,4-D was also observed in the macropore and matrix regions of the undisturbed soil cores. 19 refs., 7 figs., 2 tabs.

  10. Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer

    PubMed Central

    Yang, Ying-Hua; Buhamrah, Asma; Schneider, Abraham; Lin, Yi-Ling; Zhou, Hua; Bugshan, Amr; Basile, John R.

    2016-01-01

    Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects. PMID:26910109

  11. Direction distributions of neutrons and reference values of the personal dose equivalent in workplace fields.

    PubMed

    Luszik-Bhadra, M; Bolognese-Milsztajn, T; Boschung, M; Coeck, M; Curzio, G; d'Errico, F; Fiechtner, A; Lacoste, V; Lindborg, L; Reginatto, M; Schuhmacher, H; Tanner, R; Vanhavere, F

    2007-01-01

    Within the EC project EVIDOS, double-differential (energy and direction) fluence spectra were determined by means of novel direction spectrometers. By folding the spectra with fluence-to-dose equivalent conversion coefficients, contributions to H*(10) for 14 directions, and values of the personal dose equivalent Hp(10) and the effective dose E for 6 directions of a person's orientation in the field were determined. The results of the measurements and calculations obtained within the EVIDOS project in workplace fields in nuclear installations in Europe, i.e., at Krümmel (boiling water reactor and transport cask), at Mol (Venus research reactor and fuel facility Belgonucléaire) and at Ringhals (pressurised reactor and transport cask) are presented. PMID:17369265

  12. Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code

    PubMed Central

    Parodi, K; Ferrari, A; Sommerer, F; Paganetti, H

    2008-01-01

    Clinical investigations on post-irradiation PET/CT (positron emission tomography / computed tomography) imaging for in-vivo verification of treatment delivery and, in particular, beam range in proton therapy are underway at Massachusetts General Hospital (MGH). Within this project we have developed a Monte Carlo framework for CT-based calculation of dose and irradiation induced positron emitter distributions. Initial proton beam information is provided by a separate Geant4 Monte Carlo simulation modeling the treatment head. Particle transport in the patient is performed in the CT voxel geometry using the FLUKA Monte Carlo code. The implementation uses a discrete number of different tissue types with composition and mean density deduced from the CT scan. Scaling factors are introduced to account for the continuous Hounsfield Unit dependence of the mass density and of the relative stopping power ratio to water used by the treatment planning system (XiO (Computerized Medical Systems Inc.)). Resulting Monte Carlo dose distributions are generally found in good correspondence with calculations of the treatment planning program, except few cases (e.g. in the presence of air/tissue interfaces). Whereas dose is computed using standard FLUKA utilities, positron emitter distributions are calculated by internally combining proton fluence with experimental and evaluated cross-sections yielding 11C, 15O, 14O, 13N, 38K and 30P. Simulated positron emitter distributions yield PET images in good agreement with measurements. In this paper we describe in detail the specific implementation of the FLUKA calculation framework, which may be easily adapted to handle arbitrary phase spaces of proton beams delivered by other facilities or include more reaction channels based on additional cross-section data. Further, we demonstrate the effects of different acquisition time regimes (e.g., PET imaging during or after irradiation) on the intensity and spatial distribution of the irradiation

  13. Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Parodi, K.; Ferrari, A.; Sommerer, F.; Paganetti, H.

    2007-07-01

    Clinical investigations on post-irradiation PET/CT (positron emission tomography/computed tomography) imaging for in vivo verification of treatment delivery and, in particular, beam range in proton therapy are underway at Massachusetts General Hospital (MGH). Within this project, we have developed a Monte Carlo framework for CT-based calculation of dose and irradiation-induced positron emitter distributions. Initial proton beam information is provided by a separate Geant4 Monte Carlo simulation modelling the treatment head. Particle transport in the patient is performed in the CT voxel geometry using the FLUKA Monte Carlo code. The implementation uses a discrete number of different tissue types with composition and mean density deduced from the CT scan. Scaling factors are introduced to account for the continuous Hounsfield unit dependence of the mass density and of the relative stopping power ratio to water used by the treatment planning system (XiO (Computerized Medical Systems Inc.)). Resulting Monte Carlo dose distributions are generally found in good correspondence with calculations of the treatment planning program, except a few cases (e.g. in the presence of air/tissue interfaces). Whereas dose is computed using standard FLUKA utilities, positron emitter distributions are calculated by internally combining proton fluence with experimental and evaluated cross-sections yielding 11C, 15O, 14O, 13N, 38K and 30P. Simulated positron emitter distributions yield PET images in good agreement with measurements. In this paper, we describe in detail the specific implementation of the FLUKA calculation framework, which may be easily adapted to handle arbitrary phase spaces of proton beams delivered by other facilities or include more reaction channels based on additional cross-section data. Further, we demonstrate the effects of different acquisition time regimes (e.g., PET imaging during or after irradiation) on the intensity and spatial distribution of the irradiation

  14. Extension of the NCAT phantom for the investigation of intra-fraction respiratory motion in IMRT using 4D Monte Carlo

    NASA Astrophysics Data System (ADS)

    McGurk, Ross; Seco, Joao; Riboldi, Marco; Wolfgang, John; Segars, Paul; Paganetti, Harald

    2010-03-01

    The purpose of this work was to create a computational platform for studying motion in intensity modulated radiotherapy (IMRT). Specifically, the non-uniform rational B-spline (NURB) cardiac and torso (NCAT) phantom was modified for use in a four-dimensional Monte Carlo (4D-MC) simulation system to investigate the effect of respiratory-induced intra-fraction organ motion on IMRT dose distributions as a function of diaphragm motion, lesion size and lung density. Treatment plans for four clinical scenarios were designed: diaphragm peak-to-peak amplitude of 1 cm and 3 cm, and two lesion sizes—2 cm and 4 cm diameter placed in the lower lobe of the right lung. Lung density was changed for each phase using a conservation of mass calculation. Further, a new heterogeneous lung model was implemented and tested. Each lesion had an internal target volume (ITV) subsequently expanded by 15 mm isotropically to give the planning target volume (PTV). The PTV was prescribed to receive 72 Gy in 40 fractions. The MLC leaf sequence defined by the planning system for each patient was exported and used as input into the MC system. MC simulations using the dose planning method (DPM) code together with deformable image registration based on the NCAT deformation field were used to find a composite dose distribution for each phantom. These composite distributions were subsequently analyzed using information from the dose volume histograms (DVH). Lesion motion amplitude has the largest effect on the dose distribution. Tumor size was found to have a smaller effect and can be mitigated by ensuring the planning constraints are optimized for the tumor size. The use of a dynamic or heterogeneous lung density model over a respiratory cycle does not appear to be an important factor with a <= 0.6% change in the mean dose received by the ITV, PTV and right lung. The heterogeneous model increases the realism of the NCAT phantom and may provide more accurate simulations in radiation therapy

  15. New C4D Sensor with a Simulated Inductor

    PubMed Central

    Lyu, Yingchao; Ji, Haifeng; Yang, Shijie; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2016-01-01

    A new capacitively coupled contactless conductivity detection (C4D) sensor with an improved simulated inductor is developed in this work. The improved simulated inductor is designed on the basis of the Riordan-type floating simulated inductor. With the improved simulated inductor, the negative influence of the coupling capacitances is overcome and the conductivity measurement is implemented by the series resonance principle. The conductivity measurement experiments are carried out in three pipes with different inner diameters of 3.0 mm, 4.6 mm and 6.4 mm, respectively. The experimental results show that the designs of the new C4D sensor and the improved simulated inductor are successful. The maximum relative error of the conductivity measurement is less than 5%. Compared with the C4D sensors using practical inductors, the measurement accuracy of the new C4D sensor is comparable. The research results also indicate that the adjustability of a simulated inductor can reduce the requirement for the AC source and guarantee the interchangeableness. Meanwhile, it is recommended that making the potential of one terminal of a simulated inductor stable is beneficial to the running stability. Furthermore, this work indirectly verifies the possibility and feasibility of the miniaturization of the C4D sensor by using the simulated inductor technique and lays a good foundation for future research work. PMID:26828493

  16. CHEMICALLY-INDUCED LUMBAR RIBS IN CD-1 MICE; SIZE DISTRIBUTION AND DOSE-RESPONSE

    EPA Science Inventory

    Supernumerary ribs (SNR) of differing sizes are common observations in rodent developmental toxicty studies, and the significance of treatment-related increases in SNR in standard studies has been contentious. We induced dose-related increases in SNR in CD-1 mice by treating on g...

  17. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method.

    PubMed

    Abella, V; Miró, R; Juste, B; Verdú, G

    2010-01-01

    The aim of this work is to provide the reconstruction of a real human voxelized phantom by means of a MatLab program and the simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, by using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project results in 3D dose mapping calculations inside the voxelized antropomorphic head phantom. The program provides the voxelization by first processing the CT slices; the process follows a two-dimensional pixel and material identification algorithm on each slice and three-dimensional interpolation in order to describe the phantom geometry via small cubic cells, resulting in an MCNP input deck format output. Dose rates are calculated by using the MCNP5 tool FMESH, superimposed mesh tally, which gives the track length estimation of the particle flux in units of particles/cm(2). Furthermore, the particle flux is converted into dose by using the conversion coefficients extracted from the NIST Physical Reference Data. The voxelization using a three-dimensional interpolation technique in combination with the use of the FMESH tool of the MCNP Monte Carlo code offers an optimal simulation which results in 3D dose mapping calculations inside anthropomorphic phantoms. This tool is very useful in radiation treatment assessments, in which voxelized phantoms are widely utilized. PMID:19892556

  18. Treatment planning and delivery of shell dose distribution for precision irradiation

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Iyer, Santosh; Ford, Eric; Wong, John; Kazanzides, Peter

    2010-02-01

    The motivation for shell dose irradiation is to deliver a high therapeutic dose to the surrounding supplying blood-vessels of a lesion. Our approach's main utility is in enabling laboratory experiments to test the much disputed hypothesis about tumor vascular damage. That is, at high doses, tumor control is driven by damage to the tumor vascular supply and not the damage to the tumor cells themselves. There is new evidence that bone marrow derived cells can reconstitute tumor blood vessels in mice after irradiation. Shell dosimetry is also of interest to study the effect of radiation on neurogenic stem cells that reside in small niche surface of the mouse ventricles, a generalized form of shell. The type of surface that we are considering as a shell is a sphere which is created by intersection of cylinders. The results are then extended to create the contours of different organ shapes. Specifically, we present a routine to identify the 3-D structure of a mouse brain, project it into 2-D contours and convert the contours into trajectories that can be executed by our platform. We use the Small Animal Radiation Research Platform (SARRP) to demonstrate the dose delivery procedure. The SARRP is a portable system for precision irradiation with beam sizes down to 0.5 mm and optimally planned radiation with on-board cone-beam CT guidance.

  19. Antibody Blockade of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodulatory Therapies.

    PubMed

    Evans, Elizabeth E; Jonason, Alan S; Bussler, Holm; Torno, Sebold; Veeraraghavan, Janaki; Reilly, Christine; Doherty, Michael A; Seils, Jennifer; Winter, Laurie A; Mallow, Crystal; Kirk, Renee; Howell, Alan; Giralico, Susan; Scrivens, Maria; Klimatcheva, Katya; Fisher, Terrence L; Bowers, William J; Paris, Mark; Smith, Ernest S; Zauderer, Maurice

    2015-06-01

    Semaphorin 4D (SEMA4D, CD100) and its receptor plexin-B1 (PLXNB1) are broadly expressed in murine and human tumors, and their expression has been shown to correlate with invasive disease in several human tumors. SEMA4D normally functions to regulate the motility and differentiation of multiple cell types, including those of the immune, vascular, and nervous systems. In the setting of cancer, SEMA4D-PLXNB1 interactions have been reported to affect vascular stabilization and transactivation of ERBB2, but effects on immune-cell trafficking in the tumor microenvironment (TME) have not been investigated. We describe a novel immunomodulatory function of SEMA4D, whereby strong expression of SEMA4D at the invasive margins of actively growing tumors influences the infiltration and distribution of leukocytes in the TME. Antibody neutralization of SEMA4D disrupts this gradient of expression, enhances recruitment of activated monocytes and lymphocytes into the tumor, and shifts the balance of cells and cytokines toward a proinflammatory and antitumor milieu within the TME. This orchestrated change in the tumor architecture was associated with durable tumor rejection in murine Colon26 and ERBB2(+) mammary carcinoma models. The immunomodulatory activity of anti-SEMA4D antibody can be enhanced by combination with other immunotherapies, including immune checkpoint inhibition and chemotherapy. Strikingly, the combination of anti-SEMA4D antibody with antibody to CTLA-4 acts synergistically to promote complete tumor rejection and survival. Inhibition of SEMA4D represents a novel mechanism and therapeutic strategy to promote functional immune infiltration into the TME and inhibit tumor progression. PMID:25614511

  20. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material

    SciTech Connect

    Titt, Uwe Mirkovic, Dragan; Mohan, Radhe; Sell, Martin; Unkelbach, Jan; Bangert, Mark; Oelfke, Uwe

    2015-11-15

    Purpose: The purpose of the work reported here was to investigate the influence of sub-millimeter size heterogeneities on the degradation of the distal edges of proton beams and to validate Monte Carlo (MC) methods’ ability to correctly predict such degradation. Methods: A custom-designed high-resolution plastic phantom approximating highly heterogeneous, lung-like structures was employed in measurements and in Monte Carlo simulations to evaluate the degradation of proton Bragg curves penetrating heterogeneous media. Results: Significant differences in distal falloff widths and in peak dose values were observed in the measured and the Monte Carlo simulated curves compared to pristine proton Bragg curves. Furthermore, differences between simulations of beams penetrating CT images of the phantom did not agree well with the corresponding experimental differences. The distal falloff widths in CT image-based geometries were underestimated by up to 0.2 cm in water (corresponding to 0.8–1.4 cm in lung tissue), and the peak dose values of pristine proton beams were overestimated by as much as ~35% compared to measured curves or depth-dose curves simulated on the basis of true geometry. The authors demonstrate that these discrepancies were caused by the limited spatial resolution of CT images that served as a basis for dose calculations and lead to underestimation of the impact of the fine structure of tissue heterogeneities. A convolution model was successfully applied to mitigate the underestimation. Conclusions: The results of this study justify further development of models to better represent heterogeneity effects in soft-tissue geometries, such as lung, and to correct systematic underestimation of the degradation of the distal edge of proton doses.

  1. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material

    PubMed Central

    Titt, Uwe; Sell, Martin; Unkelbach, Jan; Bangert, Mark; Mirkovic, Dragan; Oelfke, Uwe; Mohan, Radhe

    2015-01-01

    Purpose: The purpose of the work reported here was to investigate the influence of sub-millimeter size heterogeneities on the degradation of the distal edges of proton beams and to validate Monte Carlo (MC) methods’ ability to correctly predict such degradation. Methods: A custom-designed high-resolution plastic phantom approximating highly heterogeneous, lung-like structures was employed in measurements and in Monte Carlo simulations to evaluate the degradation of proton Bragg curves penetrating heterogeneous media. Results: Significant differences in distal falloff widths and in peak dose values were observed in the measured and the Monte Carlo simulated curves compared to pristine proton Bragg curves. Furthermore, differences between simulations of beams penetrating CT images of the phantom did not agree well with the corresponding experimental differences. The distal falloff widths in CT image-based geometries were underestimated by up to 0.2 cm in water (corresponding to 0.8–1.4 cm in lung tissue), and the peak dose values of pristine proton beams were overestimated by as much as ˜35% compared to measured curves or depth-dose curves simulated on the basis of true geometry. The authors demonstrate that these discrepancies were caused by the limited spatial resolution of CT images that served as a basis for dose calculations and lead to underestimation of the impact of the fine structure of tissue heterogeneities. A convolution model was successfully applied to mitigate the underestimation. Conclusions: The results of this study justify further development of models to better represent heterogeneity effects in soft-tissue geometries, such as lung, and to correct systematic underestimation of the degradation of the distal edge of proton doses. PMID:26520732

  2. Study of the spatial distribution of the absorbed dose in blood volumes irradiated using a teletherapy unit

    NASA Astrophysics Data System (ADS)

    Góes, E. G.; Nicolucci, P.; Nali, I. C.; Pelá, C. A.; Bruço, J. L.; Borges, J. C.; Covas, D. T.

    2010-06-01

    Blood irradiation can be performed using a dedicated blood irradiator or a teletherapy unit. A thermal device providing appropriate storage conditions during blood components irradiation with a teletherapy unit has been recently proposed. However, the most appropriated volume of the thermal device was not indicated. The goal of this study was to indicate the most appropriated blood volume for irradiation using a teletherapy unit in order to minimize both the dose heterogeneity in the volume and the blood irradiation time using these equipments. Theoretical and experimental methods were used to study the dose distribution in the blood volume irradiated using a linear accelerator and a cobalt-60 therapy machine. The calculation of absorbed doses in the middle plane of cylindrical acrylic volumes was accomplished by a treatment planning system. Experimentally, we also used cylindrical acrylic phantoms and thermoluminescent dosimeters to confirm the calculated doses. The data obtained were represented by isodose curves. We observed that an irradiation volume should have a height of 28 cm and a diameter of 28 cm and a height of 35 cm and a diameter of 35 cm, when the irradiation is to be performed by a linear accelerator and a cobalt-60 teletherapy unit, respectively. Calculated values of relative doses varied from 93% to 100% in the smaller volume, and from 66% to 100% in the largest one. A difference of 5.0%, approximately, was observed between calculated and experimental data. The size of these volumes permits the irradiation of blood bags in only one bath without compromising the homogeneity of the absorbed dose over the irradiated volume. Thus, these irradiation volumes can be recommend to minimize the irradiation time when a teletherapy unit is used to irradiate blood.

  3. Dosimetric impact of motion in free-breathing and gated lung radiotherapy: A 4D Monte Carlo study of intrafraction and interfraction effects

    PubMed Central

    Seco, Joao; Sharp, Greg C.; Wu, Ziji; Gierga, David; Buettner, Florian; Paganetti, Harald

    2008-01-01

    The purpose of this study was to investigate if interfraction and intrafraction motion in free-breathing and gated lung IMRT can lead to systematic dose differences between 3DCT and 4DCT. Dosimetric effects were studied considering the breathing pattern of three patients monitored during the course of their treatment and an in-house developed 4D Monte Carlo framework. Imaging data were taken in free-breathing and in cine mode for both 3D and 4D acquisition. Treatment planning for IMRT delivery was done based on the free-breathing data with the corvus (North American Scientific, Chatsworth, CA) planning system. The dose distributions as a function of phase in the breathing cycle were combined using deformable image registration. The study focused on (a) assessing the accuracy of the corvus pencil beam algorithm with Monte Carlo dose calculation in the lung, (b) evaluating the dosimetric effect of motion on the individual breathing phases of the respiratory cycle, and (c) assessing intrafraction and interfraction motion effects during free-breathing or gated radiotherapy. The comparison between (a) the planning system and the Monte Carlo system shows that the pencil beam algorithm underestimates the dose in low-density regions, such as lung tissue, and overestimates the dose in high-density regions, such as bone, by 5% or more of the prescribed dose (corresponding to approximately 3–5 Gy for the cases considered). For the patients studied this could have a significant impact on the dose volume histograms for the target structures depending on the margin added to the clinical target volume (CTV) to produce either the planning target (PTV) or internal target volume (ITV). The dose differences between (b) phases in the breathing cycle and the free-breathing case were shown to be negligible for all phases except for the inhale phase, where an underdosage of the tumor by as much as 9.3 Gy relative to the free-breathing was observed. The large difference was due to

  4. GaAs/GaAlAs distributed Bragg reflector laser with a focused ion beam, low dose dopant implanted grating

    SciTech Connect

    Wu, M.C.; Boenke, M.M.; Wang, S.; Clark W.M. Jr.; Stevens, E.H.; Utlaut, M.W.

    1988-07-25

    We report for the first time, the performance of a GaAs/GaAlAs distributed Bragg reflector (DBR) laser using a focused ion beam implanted grating (FIB-DBR). Stripes of Si/sup + +/ with a period of 2300 A and a dose approx.10/sup 14/ cm/sup -2/ are directly implanted into the passive large optical cavity layer to provide the distributed feedback. Surface-emitting light from the second-order grating is observed. Threshold current of 110 mA and single DBR mode operation from 20 to 40 /sup 0/C are obtained. The wavelength tuning rate with temperature is 0.8 A//sup 0/C. The coupling coefficient is estimated to be 15 cm/sup -1/. The results show that FIB technology is practical for distributed feedback and DBR lasers and optoelectronic integrated circuits.

  5. GaAs/GaAlAs distributed Bragg reflector laser with a focused ion beam, low dose dopant implanted grating

    NASA Technical Reports Server (NTRS)

    Wu, M. C.; Boenke, M. M.; Wang, S.; Clark, W. M., Jr.; Stevens, E. H.

    1988-01-01

    The performance of a GaAs/GaAlAs distributed Bragg reflector (DBR) laser using a focused ion beam implanted grating (FIB-DBR) is reported for the first time. Stripes of Si(2+) with a period of 2300 A and a dose about 10 to the 14th/sq cm are directly implanted into the passive large optical cavity layer to provide the distributed feedback. Surface-emitting light from the second-order grating is observed. Threshold current of 110 mA and single DBR mode operation from 20 to 40 C are obtained. The wavelength tuning rate with temperature is 0.8 A/C. The coupling coefficient is estimated to be 15/cm. The results show that FIB technology is practical for distributed feedback and DBR lasers and optoelectronic integrated circuits.

  6. Resolution enhancement of lung 4D-CT via group-sparsity

    SciTech Connect

    Bhavsar, Arnav; Wu, Guorong; Shen, Dinggang; Lian, Jun

    2013-12-15

    Purpose: 4D-CT typically delivers more accurate information about anatomical structures in the lung, over 3D-CT, due to its ability to capture visual information of the lung motion across different respiratory phases. This helps to better determine the dose during radiation therapy for lung cancer. However, a critical concern with 4D-CT that substantially compromises this advantage is the low superior-inferior resolution due to less number of acquired slices, in order to control the CT radiation dose. To address this limitation, the authors propose an approach to reconstruct missing intermediate slices, so as to improve the superior-inferior resolution.Methods: In this method the authors exploit the observation that sampling information across respiratory phases in 4D-CT can be complimentary due to lung motion. The authors’ approach uses this locally complimentary information across phases in a patch-based sparse-representation framework. Moreover, unlike some recent approaches that treat local patches independently, the authors’ approach employs the group-sparsity framework that imposes neighborhood and similarity constraints between patches. This helps in mitigating the trade-off between noise robustness and structure preservation, which is an important consideration in resolution enhancement. The authors discuss the regularizing ability of group-sparsity, which helps in reducing the effect of noise and enables better structural localization and enhancement.Results: The authors perform extensive experiments on the publicly available DIR-Lab Lung 4D-CT dataset [R. Castillo, E. Castillo, R. Guerra, V. Johnson, T. McPhail, A. Garg, and T. Guerrero, “A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets,” Phys. Med. Biol. 54, 1849–1870 (2009)]. First, the authors carry out empirical parametric analysis of some important parameters in their approach. The authors then demonstrate, qualitatively as well as

  7. Distribution of boreal toad populations in relation to estimated UV-B dose in Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Hossack, B.R.; Diamond, S.A.; Corn, P.S.

    2006-01-01

    A recent increase in ultraviolet B radiation is one hypothesis advanced to explain suspected or documented declines of the boreal toad (Bufo boreas Baird and Girard, 1852) across much of the western USA, where some experiments have shown ambient UV-B can reduce embryo survival. We examined B. boreas occupancy relative to daily UV-B dose at 172 potential breeding sites in Glacier National Park, Montana, to assess whether UV-B limits the distribution of toads. Dose estimates were based on ground-level UV-B data and the effects of elevation, local topographic and vegetative features, and attenuation in the water column. We also examined temporal trends in surface UV-B and spring snowpack to determine whether populations are likely to have experienced increased UV-B exposure in recent decades. We found no support for the hypothesis that UV-B limits the distribution of populations in the park, even when we analyzed high-elevation ponds separately. Instead, toads were more likely to breed in water bodies with higher estimated UV-B doses. The lack of a detectable trend in surface UV-B since 1979, combined with earlier snow melt in the region and increasing forest density at high elevations, suggests B. boreas embryos and larvae likely have not experienced increased UV-B.

  8. Linking carbon and nitrogen metabolism to depth distribution of submersed macrophytes using high ammonium dosing tests and a lake survey

    PubMed Central

    Yuan, Guixiang; Cao, Te; Fu, Hui; Ni, Leyi; Zhang, Xiaolin; Li, Wei; Song, Xin; Xie, Ping; Jeppesen, Erik

    2013-01-01

    Strategies of carbon (C) and nitrogen (N) utilisation are among the factors determining plant distribution. It has been argued that submersed macrophytes adapted to lower light environments are more efficient in maintaining C metabolic homeostasis due to their conservative C strategy and ability to balance C shortage. We studied how depth distributions of 12 submersed macrophytes in Lake Erhai, China, were linked to their C-N metabolic strategies when facing acute dosing. dosing changed C-N metabolism significantly by decreasing the soluble carbohydrate (SC) content and increasing the -N and free amino acid (FAA) content of plant tissues.The proportional changes in SC contents in the leaves and FAA contents in the stems induced by dosing were closely correlated (positive for SC and negative for FAA) with the colonising water depths of the plants in Lake Erhai, the plants adapted to lower light regimes being more efficient in maintaining SC and FAA homeostasis.These results indicate that conservative carbohydrate metabolism of submersed macrophytes allowed the plants to colonise greater water depths in eutrophic lakes, where low light availability in the water column diminishes carbohydrate production by the plants. PMID:25810562

  9. BNCT dose distribution in liver with epithermal D-D and D-T fusion-based neutron beams.

    PubMed

    Koivunoro, H; Bleuel, D L; Nastasi, U; Lou, T P; Reijonen, J; Leung, K-N

    2004-11-01

    Recently, a new application of boron neutron capture therapy (BNCT) treatment has been introduced. Results have indicated that liver tumors can be treated by BNCT after removal of the liver from the body. At Lawrence Berkeley National Laboratory, compact neutron generators based on (2)H(d,n)(3)He (D-D) or (3)H(t,n)(4)He (D-T) fusion reactions are being developed. Preliminary simulations of the applicability of 2.45 MeV D-D fusion and 14.1 MeV D-T fusion neutrons for in vivo liver tumor BNCT, without removing the liver from the body, have been carried out. MCNP simulations were performed in order to find a moderator configuration for creating a neutron beam of optimal neutron energy and to create a source model for dose calculations with the simulation environment for radiotherapy applications (SERA) treatment planning program. SERA dose calculations were performed in a patient model based on CT scans of the body. The BNCT dose distribution in liver and surrounding healthy organs was calculated with rectangular beam aperture sizes of 20 cm x 20 cm and 25 cm x 25 cm. Collimator thicknesses of 10 and 15 cm were used. The beam strength to obtain a practical treatment time was studied. In this paper, the beam shaping assemblies for D-D and D-T neutron generators and dose calculation results are presented. PMID:15308157

  10. Relative charge transfer cross section from Rb (4d)

    NASA Astrophysics Data System (ADS)

    Shah, M. H.; Camp, H. A.; Trachy, M. L.; Fléchard, X.; Gearba, M. A.; Nguyen, H.; Brédy, R.; Lundeen, S. R.; Depaola, B. D.

    2005-08-01

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7keV Na+ is reported. The specific channels reported are Na++Rb(4d5/2)→Na(nl)+Rb+ , where the dominant transfer cross sections channels were nl=3d and 4s . Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na++Rb(5s,5p) systems at the same collision energy.

  11. Relative charge transfer cross section from Rb(4d)

    SciTech Connect

    Shah, M.H.; Camp, H.A.; Trachy, M.L.; De Paola, B.D.; Flechard, X.; Gearba, M.A.; Nguyen, H.; Bredy, R.; Lundeen, S.R.

    2005-08-15

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7 keV Na{sup +} is reported. The specific channels reported are Na{sup +}+Rb(4d{sub 5/2}){yields}Na(nl)+Rb{sup +}, where the dominant transfer cross sections channels were nl=3d and 4s. Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na{sup +}+Rb(5s,5p) systems at the same collision energy.

  12. The 4-D approach to visual control of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dickmanns, Ernst D.

    1994-01-01

    Development of a 4-D approach to dynamic machine vision is described. Core elements of this method are spatio-temporal models oriented towards objects and laws of perspective projection in a foward mode. Integration of multi-sensory measurement data was achieved through spatio-temporal models as invariants for object recognition. Situation assessment and long term predictions were allowed through maintenance of a symbolic 4-D image of processes involving objects. Behavioral capabilities were easily realized by state feedback and feed-foward control.