Science.gov

Sample records for 4d motion phantom

  1. Geometric validation of self-gating k-space-sorted 4D-MRI vs 4D-CT using a respiratory motion phantom

    SciTech Connect

    Yue, Yong Yang, Wensha; McKenzie, Elizabeth; Tuli, Richard; Wallace, Robert; Fraass, Benedick; Fan, Zhaoyang; Pang, Jianing; Deng, Zixin; Li, Debiao

    2015-10-15

    Purpose: MRI is increasingly being used for radiotherapy planning, simulation, and in-treatment-room motion monitoring. To provide more detailed temporal and spatial MR data for these tasks, we have recently developed a novel self-gated (SG) MRI technique with advantage of k-space phase sorting, high isotropic spatial resolution, and high temporal resolution. The current work describes the validation of this 4D-MRI technique using a MRI- and CT-compatible respiratory motion phantom and comparison to 4D-CT. Methods: The 4D-MRI sequence is based on a spoiled gradient echo-based 3D projection reconstruction sequence with self-gating for 4D-MRI at 3 T. Respiratory phase is resolved by using SG k-space lines as the motion surrogate. 4D-MRI images are reconstructed into ten temporal bins with spatial resolution 1.56 × 1.56 × 1.56 mm{sup 3}. A MRI-CT compatible phantom was designed to validate the performance of the 4D-MRI sequence and 4D-CT imaging. A spherical target (diameter 23 mm, volume 6.37 ml) filled with high-concentration gadolinium (Gd) gel is embedded into a plastic box (35 × 40 × 63 mm{sup 3}) and stabilized with low-concentration Gd gel. The phantom, driven by an air pump, is able to produce human-type breathing patterns between 4 and 30 respiratory cycles/min. 4D-CT of the phantom has been acquired in cine mode, and reconstructed into ten phases with slice thickness 1.25 mm. The 4D images sets were imported into a treatment planning software for target contouring. The geometrical accuracy of the 4D MRI and CT images has been quantified using target volume, flattening, and eccentricity. The target motion was measured by tracking the centroids of the spheres in each individual phase. Motion ground-truth was obtained from input signals and real-time video recordings. Results: The dynamic phantom has been operated in four respiratory rate (RR) settings, 6, 10, 15, and 20/min, and was scanned with 4D-MRI and 4D-CT. 4D-CT images have target

  2. TH-E-17A-04: Geometric Validation of K-Space Self-Gated 4D-MRI Vs. 4D-CT Using A Respiratory Motion Phantom

    SciTech Connect

    Yue, Y; Fan, Z; Yang, W; Pang, J; McKenzie, E; Deng, Z; Tuli, R; Sandler, H; Li, D; Fraass, B

    2014-06-15

    Purpose: 4D-CT is often limited by motion artifacts, low temporal resolution, and poor phase-based target definition. We recently developed a novel k-space self-gated 4D-MRI technique with high spatial and temporal resolution. The goal here is to geometrically validate 4D-MRI using a MRI-CT compatible respiratory motion phantom and comparison to 4D-CT. Methods: 4D-MRI was acquired using 3T spoiled gradient echo-based 3D projection sequences. Respiratory phases were resolved using self-gated k-space lines as the motion surrogate. Images were reconstructed into 10 temporal bins with 1.56×1.56×1.56mm3. A MRI-CT compatible phantom was designed with a 23mm diameter ball target filled with highconcentration gadolinium(Gd) gel embedded in a 35×40×63mm3 plastic box stabilized with low-concentration Gd gel. The whole phantom was driven by an air pump. Human respiratory motion was mimicked using the controller from a commercial dynamic phantom (RSD). Four breathing settings (rates/depths: 10s/20mm, 6s/15mm, 4s/10mm, 3s/7mm) were scanned with 4D-MRI and 4D-CT (slice thickness 1.25mm). Motion ground-truth was obtained from input signals and real-time video recordings. Reconstructed images were imported into Eclipse(Varian) for target contouring. Volumes and target positions were compared with ground-truth. Initial human study was investigated on a liver patient. Results: 4D-MRI and 4D-CT scans for the different breathing cycles were reconstructed with 10 phases. Target volume in each phase was measured for both 4D-CT and 4D-MRI. Volume percentage difference for the 6.37ml target ranged from 6.67±5.33 to 11.63±5.57 for 4D-CT and from 1.47±0.52 to 2.12±1.60 for 4D-MRI. The Mann-Whitney U-test shows the 4D-MRI is significantly superior to 4D-CT (p=0.021) for phase-based target definition. Centroid motion error ranges were 1.35–1.25mm (4D-CT), and 0.31–0.12mm (4D-MRI). Conclusion: The k-space self-gated 4D-MRI we recently developed can accurately determine phase

  3. SU-E-J-74: Impact of Respiration-Correlated Image Quality On Tumor Motion Reconstruction in 4D-CBCT: A Phantom Study

    SciTech Connect

    Lee, S; Lu, B; Samant, S

    2014-06-01

    Purpose: To investigate the effects of scanning parameters and respiratory patterns on the image quality for 4-dimensional cone-beam computed tomography(4D-CBCT) imaging, and assess the accuracy of computed tumor trajectory for lung imaging using registration of phased 4D-CBCT imaging with treatment planning-CT. Methods: We simulated a periodic and non-sinusoidal respirations with various breathing periods and amplitudes using a respiratory phantom(Quasar, Modus Medical Devices Inc) to acquire respiration-correlated 4D-CBCT images. 4D-CBCT scans(Elekta Oncology Systems Ltd) were performed with different scanning parameters for collimation size(e.g., small and medium field-of-views) and scanning speed(e.g., slow 50°·min{sup −1}, fast 100°·min{sup −1}). Using a standard CBCT-QA phantom(Catphan500, The Phantom Laboratory), the image qualities of all phases in 4D-CBCT were evaluated with contrast-to-noise ratio(CNR) for lung tissue and uniformity in each module. Using a respiratory phantom, the target imaging in 4D-CBCT was compared to 3D-CBCT target image. The target trajectory from 10-respiratory phases in 4D-CBCT was extracted using an automatic image registration and subsequently assessed the accuracy by comparing with actual motion of the target. Results: Image analysis indicated that a short respiration with a small amplitude resulted in superior CNR and uniformity. Smaller variation of CNR and uniformity was present amongst different respiratory phases. The small field-of-view with a partial scan using slow scan can improve CNR, but degraded uniformity. Large amplitude of respiration can degrade image quality. RMS of voxel densities in tumor area of 4D-CBCT images between sinusoidal and non-sinusoidal motion exhibited no significant difference. The maximum displacement errors of motion trajectories were less than 1.0 mm and 13.5 mm, for sinusoidal and non-sinusoidal breathings, respectively. The accuracy of motion reconstruction showed good overall

  4. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    NASA Astrophysics Data System (ADS)

    Bowen, S. R.; Nyflot, M. J.; Herrmann, C.; Groh, C. M.; Meyer, J.; Wollenweber, S. D.; Stearns, C. W.; Kinahan, P. E.; Sandison, G. A.

    2015-05-01

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT

  5. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    PubMed Central

    Bowen, S R; Nyflot, M J; Hermann, C; Groh, C; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-01-01

    Effective positron emission tomography/computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by 6 different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy (VMAT) were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses (EUD), and 2%-2mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, < 5% in treatment planning, and < 2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT

  6. Impact of scanning parameters and breathing patterns on image quality and accuracy of tumor motion reconstruction in 4D CBCT: a phantom study.

    PubMed

    Lee, Soyoung; Yan, Guanghua; Lu, Bo; Kahler, Darren; Li, Jonathan G; Sanjiv, Samat S

    2015-01-01

    Four-dimensional, cone-beam CT (4D CBCT) substantially reduces respiration-induced motion blurring artifacts in three-dimension (3D) CBCT. However, the image quality of 4D CBCT is significantly degraded which may affect its accuracy in localizing a mobile tumor for high-precision, image-guided radiation therapy (IGRT). The purpose of this study was to investigate the impact of scanning parameters hereinafter collectively referred to as scanning sequence) and breathing patterns on the image quality and the accuracy of computed tumor trajectory for a commercial 4D CBCT system, in preparation for its clinical implementation. We simulated a series of periodic and aperiodic sinusoidal breathing patterns with a respiratory motion phantom. The aperiodic pattern was created by varying the period or amplitude of individual sinusoidal breathing cycles. 4D CBCT scans of the phantom were acquired with a manufacturer-supplied scanning sequence (4D-S-slow) and two in-house modified scanning sequences (4D-M-slow and 4D-M-fast). While 4D-S-slow used small field of view (FOV), partial rotation (200°), and no imaging filter, 4D-M-slow and 4D-M-fast used medium FOV, full rotation, and the F1 filter. The scanning speed was doubled in 4D-M-fast (100°/min gantry rotation). The image quality of the 4D CBCT scans was evaluated using contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and motion blurring ratio (MBR). The trajectory of the moving target was reconstructed by registering each phase of the 4D CBCT with a reference CT. The root-mean-squared-error (RMSE) analysis was used to quantify its accuracy. Significant decrease in CNR and SNR from 3D CBCT to 4D CBCT was observed. The 4D-S-slow and 4D-M-fast scans had comparable image quality, while the 4D-M-slow scans had better performance due to doubled projections. Both CNR and SNR decreased slightly as the breathing period increased, while no dependence on the amplitude was observed. The difference of both CNR and SNR

  7. Extension of the NCAT phantom for the investigation of intra-fraction respiratory motion in IMRT using 4D Monte Carlo

    NASA Astrophysics Data System (ADS)

    McGurk, Ross; Seco, Joao; Riboldi, Marco; Wolfgang, John; Segars, Paul; Paganetti, Harald

    2010-03-01

    The purpose of this work was to create a computational platform for studying motion in intensity modulated radiotherapy (IMRT). Specifically, the non-uniform rational B-spline (NURB) cardiac and torso (NCAT) phantom was modified for use in a four-dimensional Monte Carlo (4D-MC) simulation system to investigate the effect of respiratory-induced intra-fraction organ motion on IMRT dose distributions as a function of diaphragm motion, lesion size and lung density. Treatment plans for four clinical scenarios were designed: diaphragm peak-to-peak amplitude of 1 cm and 3 cm, and two lesion sizes—2 cm and 4 cm diameter placed in the lower lobe of the right lung. Lung density was changed for each phase using a conservation of mass calculation. Further, a new heterogeneous lung model was implemented and tested. Each lesion had an internal target volume (ITV) subsequently expanded by 15 mm isotropically to give the planning target volume (PTV). The PTV was prescribed to receive 72 Gy in 40 fractions. The MLC leaf sequence defined by the planning system for each patient was exported and used as input into the MC system. MC simulations using the dose planning method (DPM) code together with deformable image registration based on the NCAT deformation field were used to find a composite dose distribution for each phantom. These composite distributions were subsequently analyzed using information from the dose volume histograms (DVH). Lesion motion amplitude has the largest effect on the dose distribution. Tumor size was found to have a smaller effect and can be mitigated by ensuring the planning constraints are optimized for the tumor size. The use of a dynamic or heterogeneous lung density model over a respiratory cycle does not appear to be an important factor with a <= 0.6% change in the mean dose received by the ITV, PTV and right lung. The heterogeneous model increases the realism of the NCAT phantom and may provide more accurate simulations in radiation therapy

  8. 4D XCAT phantom for multimodality imaging research

    SciTech Connect

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-09-15

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ''Basic anatomical and physiological data for use in radiological protection: reference values,'' ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  9. 4D XCAT phantom for multimodality imaging research

    PubMed Central

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-01-01

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ‘‘Basic anatomical and physiological data for use in radiological protection: reference values,” ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  10. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    SciTech Connect

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Samei, E.; Williams, Cameron H.; Frush, D.; Feng Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.

    2013-04-15

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore, serve

  11. Computational Motion Phantoms and Statistical Models of Respiratory Motion

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Klinder, Tobias; Lorenz, Cristian

    Breathing motion is not a robust and 100 % reproducible process, and inter- and intra-fractional motion variations form an important problem in radiotherapy of the thorax and upper abdomen. A widespread consensus nowadays exists that it would be useful to use prior knowledge about respiratory organ motion and its variability to improve radiotherapy planning and treatment delivery. This chapter discusses two different approaches to model the variability of respiratory motion. In the first part, we review computational motion phantoms, i.e. computerized anatomical and physiological models. Computational phantoms are excellent tools to simulate and investigate the effects of organ motion in radiation therapy and to gain insight into methods for motion management. The second part of this chapter discusses statistical modeling techniques to describe the breathing motion and its variability in a population of 4D images. Population-based models can be generated from repeatedly acquired 4D images of the same patient (intra-patient models) and from 4D images of different patients (inter-patient models). The generation of those models is explained and possible applications of those models for motion prediction in radiotherapy are exemplified. Computational models of respiratory motion and motion variability have numerous applications in radiation therapy, e.g. to understand motion effects in simulation studies, to develop and evaluate treatment strategies or to introduce prior knowledge into the patient-specific treatment planning.

  12. A set of 4D pediatric XCAT reference phantoms for multimodality research

    SciTech Connect

    Norris, Hannah Zhang, Yakun; Bond, Jason; Sturgeon, Gregory M.; Samei, E.; Segars, W. P.; Minhas, Anum; Frush, D.; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.

    2014-03-15

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models

  13. A set of 4D pediatric XCAT reference phantoms for multimodality research

    PubMed Central

    Norris, Hannah; Zhang, Yakun; Bond, Jason; Sturgeon, Gregory M.; Minhas, Anum; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.; Frush, D.; Samei, E.; Segars, W. P.

    2014-01-01

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models

  14. A phantom for testing of 4D-CT for radiotherapy of small lesions

    SciTech Connect

    Dunn, L.; Kron, T.; Taylor, M. L.; Callahan, J.; Franich, R. D.

    2012-09-15

    Purpose: The use of time-resolved four-dimensional computed tomography (4D-CT) in radiotherapy requires strict quality assurance to ensure the accuracy of motion management protocols. The aim of this work was to design and test a phantom capable of large amplitude motion for use in 4D-CT, with particular interest in small lesions typical for stereotactic body radiotherapy. Methods: The phantom of 'see-saw' design is light weight, capable of including various sample materials and compatible with several surrogate marker signal acquisition systems. It is constructed of polymethylmethacrylate (Perspex) and its movement is controlled via a dc motor and drive wheel. It was tested using two CT scanners with different 4D acquisition methods: the Philips Brilliance Big Bore CT (helical scan, pressure belt) and a General Electric Discovery STE PET/CT (axial scan, infrared marker). Amplitudes ranging from 1.5 to 6.0 cm and frequencies of up to 40 cycles per minute were used to study the effect of motion on image quality. Maximum intensity projections (MIPs), as well as average intensity projections (AIPs) of moving objects were investigated and their quality dependence on the number of phase reconstruction bins assessed. Results: CT number discrepancies between moving and stationary objects were found to have no systematic dependence on amplitude, frequency, or specific interphase variability. MIP-delineated amplitudes of motion were found to match physical phantom amplitudes to within 2 mm for all motion scenarios tested. Objects undergoing large amplitude motions (>3.0 cm) were shown to cause artefacts in MIP and AIP projections when ten phase bins were assigned. This problem can be mitigated by increasing the number of phase bins in a 4D-CT scan. Conclusions: The phantom was found to be a suitable tool for evaluating the image quality of 4D-CT motion management technology, as well as providing a quality assurance tool for intercenter/intervendor testing of commercial 4D

  15. Motion artifacts occurring at the lung/diaphragm interface using 4D CT attenuation correction of 4D PET scans.

    PubMed

    Killoran, Joseph H; Gerbaudo, Victor H; Mamede, Marcelo; Ionascu, Dan; Park, Sang-June; Berbeco, Ross

    2011-11-15

    For PET/CT, fast CT acquisition time can lead to errors in attenuation correction, particularly at the lung/diaphragm interface. Gated 4D PET can reduce motion artifacts, though residual artifacts may persist depending on the CT dataset used for attenuation correction. We performed phantom studies to evaluate 4D PET images of targets near a density interface using three different methods for attenuation correction: a single 3D CT (3D CTAC), an averaged 4D CT (CINE CTAC), and a fully phase matched 4D CT (4D CTAC). A phantom was designed with two density regions corresponding to diaphragm and lung. An 8 mL sphere phantom loaded with 18F-FDG was used to represent a lung tumor and background FDG included at an 8:1 ratio. Motion patterns of sin(x) and sin4(x) were used for dynamic studies. Image data was acquired using a GE Discovery DVCT-PET/CT scanner. Attenuation correction methods were compared based on normalized recovery coefficient (NRC), as well as a novel quantity "fixed activity volume" (FAV) introduced in our report. Image metrics were compared to those determined from a 3D PET scan with no motion present (3D STATIC). Values of FAV and NRC showed significant variation over the motion cycle when corrected by 3D CTAC images. 4D CTAC- and CINE CTAC-corrected PET images reduced these motion artifacts. The amount of artifact reduction is greater when the target is surrounded by lower density material and when motion was based on sin4(x). 4D CTAC reduced artifacts more than CINE CTAC for most scenarios. For a target surrounded by water equivalent material, there was no advantage to 4D CTAC over CINE CTAC when using the sin(x) motion pattern. Attenuation correction using both 4D CTAC or CINE CTAC can reduce motion artifacts in regions that include a tissue interface such as the lung/diaphragm border. 4D CTAC is more effective than CINE CTAC at reducing artifacts in some, but not all, scenarios.

  16. 4D offline PET-based treatment verification in scanned ion beam therapy: a phantom study

    NASA Astrophysics Data System (ADS)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Stützer, Kristin; Bert, Christoph; Parodi, Katia

    2015-08-01

    At the Heidelberg Ion-Beam Therapy Center, patient irradiation with scanned proton and carbon ion beams is verified by offline positron emission tomography (PET) imaging: the {β+} -activity measured within the patient is compared to a prediction calculated on the basis of the treatment planning data in order to identify potential delivery errors. Currently, this monitoring technique is limited to the treatment of static target structures. However, intra-fractional organ motion imposes considerable additional challenges to scanned ion beam radiotherapy. In this work, the feasibility and potential of time-resolved (4D) offline PET-based treatment verification with a commercial full-ring PET/CT (x-ray computed tomography) device are investigated for the first time, based on an experimental campaign with moving phantoms. Motion was monitored during the gated beam delivery as well as the subsequent PET acquisition and was taken into account in the corresponding 4D Monte-Carlo simulations and data evaluation. Under the given experimental conditions, millimeter agreement between the prediction and measurement was found. Dosimetric consequences due to the phantom motion could be reliably identified. The agreement between PET measurement and prediction in the presence of motion was found to be similar as in static reference measurements, thus demonstrating the potential of 4D PET-based treatment verification for future clinical applications.

  17. 4D offline PET-based treatment verification in scanned ion beam therapy: a phantom study.

    PubMed

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Stützer, Kristin; Bert, Christoph; Parodi, Katia

    2015-08-21

    At the Heidelberg Ion-Beam Therapy Center, patient irradiation with scanned proton and carbon ion beams is verified by offline positron emission tomography (PET) imaging: the β+-activity measured within the patient is compared to a prediction calculated on the basis of the treatment planning data in order to identify potential delivery errors. Currently, this monitoring technique is limited to the treatment of static target structures. However, intra-fractional organ motion imposes considerable additional challenges to scanned ion beam radiotherapy. In this work, the feasibility and potential of time-resolved (4D) offline PET-based treatment verification with a commercial full-ring PET/CT (x-ray computed tomography) device are investigated for the first time, based on an experimental campaign with moving phantoms. Motion was monitored during the gated beam delivery as well as the subsequent PET acquisition and was taken into account in the corresponding 4D Monte-Carlo simulations and data evaluation. Under the given experimental conditions, millimeter agreement between the prediction and measurement was found. Dosimetric consequences due to the phantom motion could be reliably identified. The agreement between PET measurement and prediction in the presence of motion was found to be similar as in static reference measurements, thus demonstrating the potential of 4D PET-based treatment verification for future clinical applications. PMID:26237315

  18. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR).

    PubMed

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET. PMID:27385378

  19. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    NASA Astrophysics Data System (ADS)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  20. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR).

    PubMed

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  1. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    NASA Astrophysics Data System (ADS)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10–40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  2. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.

    PubMed

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  3. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    NASA Astrophysics Data System (ADS)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  4. A deformable phantom for 4D radiotherapy verification: Design and image registration evaluation

    SciTech Connect

    Serban, Monica; Heath, Emily; Stroian, Gabriela; Collins, D. Louis; Seuntjens, Jan

    2008-03-15

    peak inhale. The SI displacement of the landmarks varied between 94% and 3% of the piston excursion for positions closer and farther away from the piston, respectively. The reproducibility of the phantom deformation was within the image resolution (0.7x0.7x1.25 mm{sup 3}). Vector average registration accuracy based on point landmarks was found to be 0.5 (0.4 SD) mm. The tumor and lung mean 3D DTA obtained from triangulated surfaces were 0.4 (0.1 SD) mm and 1.0 (0.8 SD) mm, respectively. This phantom is capable of reproducibly emulating the physically realistic lung features and deformations and has a wide range of potential applications, including four-dimensional (4D) imaging, evaluation of deformable registration accuracy, 4D planning and dose delivery.

  5. 4D motion animation of coronary arteries from rotational angiography

    NASA Astrophysics Data System (ADS)

    Holub, Wolfgang; Rohkohl, Christopher; Schuldhaus, Dominik; Prümmer, Marcus; Lauritsch, Günter; Hornegger, Joachim

    2011-03-01

    Time-resolved 3-D imaging of the heart is a major research topic in the medical imaging community. Recent advances in the interventional cardiac 3-D imaging from rotational angiography (C-arm CT) are now also making 4-D imaging feasible during procedures in the catheter laboratory. State-of-the-art reconstruction algorithms try to estimate the cardiac motion and utilize the motion field to enhance the reconstruction of a stable cardiac phase (diastole). The available data offers a handful of opportunities during interventional procedures, e.g. the ECG-synchronized dynamic roadmapping or the computation and analysis of functional parameters. In this paper we will demonstrate that the motion vector field (MVF) that is output by motion compensated image reconstruction algorithms is in general not directly usable for animation and motion analysis. Dependent on the algorithm different defects are investigated. A primary issue is that the MVF needs to be inverted, i.e. the wrong direction of motion is provided. A second major issue is the non-periodicity of cardiac motion. In algorithms which compute a non-periodic motion field from a single rotation the in depth motion information along viewing direction is missing, since this cannot be measured in the projections. As a result, while the MVF improves reconstruction quality, it is insufficient for motion animation and analysis. We propose an algorithm to solve both problems, i.e. inversion and missing in-depth information in a unified framework. A periodic version of the MVF is approximated. The task is formulated as a linear optimization problem where a parametric smooth motion model based on B-splines is estimated from the MVF. It is shown that the problem can be solved using a sparse QR factorization within a clinical feasible time of less than one minute. In a phantom experiment using the publicly available CAVAREV platform, the average quality of a non-periodic animation could be increased by 39% by applying the

  6. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    SciTech Connect

    Wang, Jing; Gu, Xuejun

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  7. Motion4D-library extended

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2011-06-01

    The new version of the Motion4D-library now also includes the integration of a Sachs basis and the Jacobi equation to determine gravitational lensing of pointlike sources for arbitrary spacetimes.New version program summaryProgram title: Motion4D-libraryCatalogue identifier: AEEX_v3_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v3_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 219 441No. of bytes in distributed program, including test data, etc.: 6 968 223Distribution format: tar.gzProgramming language: C++Computer: All platforms with a C++ compilerOperating system: Linux, WindowsRAM: 61 MbytesClassification: 1.5External routines: Gnu Scientic Library (GSL) (http://www.gnu.org/software/gsl/)Catalogue identifier of previous version: AEEX_v2_0Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 703Does the new version supersede the previous version?: YesNature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes. Determine gravitational lensing by integration of Jacobi equation and parallel transport of Sachs basis.Solution method: Integration of ordinary differential equations.Reasons for new version: The main novelty of the current version is the extension to integrate the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. In combination, the change of the cross section of a light bundle and thus the gravitational lensing effect of a spacetime can be determined. Furthermore, we have implemented several new metrics.Summary of revisions: The main novelty of the current version is the integration of the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. The corresponding set of equations readd2xμdλ2=-Γρ

  8. Development of the 4D Phantom for patient-specific, end-to-end radiation therapy QA

    NASA Astrophysics Data System (ADS)

    Malinowski, K.; Noel, C.; Lu, W.; Lechleiter, K.; Hubenschmidt, J.; Low, D.; Parikh, P.

    2007-03-01

    In many patients respiratory motion causes motion artifacts in CT images, thereby inhibiting precise treatment planning and lowering the ability to target radiation to tumors. The 4D Phantom, which includes a 3D stage and a 1D stage that each are capable of arbitrary motion and timing, was developed to serve as an end-to-end radiation therapy QA device that could be used throughout CT imaging, radiation therapy treatment planning, and radiation therapy delivery. The dynamic accuracy of the system was measured with a camera system. The positional error was found to be equally likely to occur in the positive and negative directions for each axis, and the stage was within 0.1 mm of the desired position 85% of the time. In an experiment designed to use the 4D Phantom's encoders to measure trial-to-trial precision of the system, the 4D Phantom reproduced the motion during variable bag ventilation of a transponder that had been bronchoscopically implanted in a canine lung. In this case, the encoder readout indicated that the stage was within 10 microns of the sent position 94% of the time and that the RMS error was 7 microns. Motion artifacts were clearly visible in 3D and respiratory-correlated (4D) CT scans of phantoms reproducing tissue motion. In 4D CT scans, apparent volume was found to be directly correlated to instantaneous velocity. The system is capable of reproducing individual patient-specific tissue trajectories with a high degree of accuracy and precision and will be useful for end-to-end radiation therapy QA.

  9. Abdominal and pancreatic motion correlation using 4D CT, 4D transponders, and a gating belt.

    PubMed

    Betancourt, Ricardo; Zou, Wei; Plastaras, John P; Metz, James M; Teo, Boon-Keng; Kassaee, Alireza

    2013-01-01

    The correlation between the pancreatic and external abdominal motion due to respiration was investigated on two patients. These studies utilized four dimensional computer tomography (4D CT), a four dimensional (4D) electromagnetic transponder system, and a gating belt system. One 4D CT study was performed during simulation to quantify the pancreatic motion using computer tomography images at eight breathing phases. The motion under free breathing and breath-hold were analyzed for the 4D electromagnetic transponder system and the gating belt system during treatment. A linear curve was fitted for all data sets and correlation factors were evaluated between the 4D electromagnetic transponder system and the gating belt system data. The 4D CT study demonstrated a modest correlation between the external marker and the pancreatic motion with R-square values larger than 0.8 for the inferior-superior (inf-sup). Then, the relative pressure from the belt gating system correlated well with the 4D electromagnetic transponder system's motion in the anterior-posterior (ant-post) and the inf-post directions. These directions have a correlation value of -0.93 and 0.76, while the lateral only had a 0.03 correlation coefficient. Based on our limited study, external surrogates can be used as predictors of the pancreatic motion in the inf-sup and the ant-post directions. Although there is a low correlation on the lateral direction, its motion is significantly shorter. In conclusion, an appropriate treatment delivery can be used for pancreatic cancer when an internal tracking system, such as the 4D electromagnetic transponder system, is unavailable. PMID:23652242

  10. Abdominal and pancreatic motion correlation using 4D CT, 4D transponders, and a gating belt.

    PubMed

    Betancourt, Ricardo; Zou, Wei; Plastaras, John P; Metz, James M; Teo, Boon-Keng; Kassaee, Alireza

    2013-05-06

    The correlation between the pancreatic and external abdominal motion due to respiration was investigated on two patients. These studies utilized four dimensional computer tomography (4D CT), a four dimensional (4D) electromagnetic transponder system, and a gating belt system. One 4D CT study was performed during simulation to quantify the pancreatic motion using computer tomography images at eight breathing phases. The motion under free breathing and breath-hold were analyzed for the 4D electromagnetic transponder system and the gating belt system during treatment. A linear curve was fitted for all data sets and correlation factors were evaluated between the 4D electromagnetic transponder system and the gating belt system data. The 4D CT study demonstrated a modest correlation between the external marker and the pancreatic motion with R-square values larger than 0.8 for the inferior-superior (inf-sup). Then, the relative pressure from the belt gating system correlated well with the 4D electromagnetic transponder system's motion in the anterior-posterior (ant-post) and the inf-post directions. These directions have a correlation value of -0.93 and 0.76, while the lateral only had a 0.03 correlation coefficient. Based on our limited study, external surrogates can be used as predictors of the pancreatic motion in the inf-sup and the ant-post directions. Although there is a low correlation on the lateral direction, its motion is significantly shorter. In conclusion, an appropriate treatment delivery can be used for pancreatic cancer when an internal tracking system, such as the 4D electromagnetic transponder system, is unavailable.

  11. Development of a model of the coronary arterial tree for the 4D XCAT phantom

    NASA Astrophysics Data System (ADS)

    Fung, George S. K.; Segars, W. Paul; Gullberg, Grant T.; Tsui, Benjamin M. W.

    2011-09-01

    A detailed three-dimensional (3D) model of the coronary artery tree with cardiac motion has great potential for applications in a wide variety of medical imaging research areas. In this work, we first developed a computer-generated 3D model of the coronary arterial tree for the heart in the extended cardiac-torso (XCAT) phantom, thereby creating a realistic computer model of the human anatomy. The coronary arterial tree model was based on two datasets: (1) a gated cardiac dual-source computed tomography (CT) angiographic dataset obtained from a normal human subject and (2) statistical morphometric data of porcine hearts. The initial proximal segments of the vasculature and the anatomical details of the boundaries of the ventricles were defined by segmenting the CT data. An iterative rule-based generation method was developed and applied to extend the coronary arterial tree beyond the initial proximal segments. The algorithm was governed by three factors: (1) statistical morphometric measurements of the connectivity, lengths and diameters of the arterial segments; (2) avoidance forces from other vessel segments and the boundaries of the myocardium, and (3) optimality principles which minimize the drag force at the bifurcations of the generated tree. Using this algorithm, the 3D computational model of the largest six orders of the coronary arterial tree was generated, which spread across the myocardium of the left and right ventricles. The 3D coronary arterial tree model was then extended to 4D to simulate different cardiac phases by deforming the original 3D model according to the motion vector map of the 4D cardiac model of the XCAT phantom at the corresponding phases. As a result, a detailed and realistic 4D model of the coronary arterial tree was developed for the XCAT phantom by imposing constraints of anatomical and physiological characteristics of the coronary vasculature. This new 4D coronary artery tree model provides a unique simulation tool that can be

  12. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Gu, Xuejun

    2014-03-01

    Image reconstruction and motion model estimation in four dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4DCBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR). The proposed SMEIR algorithm consists of two alternating steps: 1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and 2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction (SART) technique coupled with total variation minimization. During the forward- and back-projection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.

  13. Clinical evaluation of 4D PET motion compensation strategies for treatment verification in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Gianoli, Chiara; Kurz, Christopher; Riboldi, Marco; Bauer, Julia; Fontana, Giulia; Baroni, Guido; Debus, Jürgen; Parodi, Katia

    2016-06-01

    A clinical trial named PROMETHEUS is currently ongoing for inoperable hepatocellular carcinoma (HCC) at the Heidelberg Ion Beam Therapy Center (HIT, Germany). In this framework, 4D PET-CT datasets are acquired shortly after the therapeutic treatment to compare the irradiation induced PET image with a Monte Carlo PET prediction resulting from the simulation of treatment delivery. The extremely low count statistics of this measured PET image represents a major limitation of this technique, especially in presence of target motion. The purpose of the study is to investigate two different 4D PET motion compensation strategies towards the recovery of the whole count statistics for improved image quality of the 4D PET-CT datasets for PET-based treatment verification. The well-known 4D-MLEM reconstruction algorithm, embedding the motion compensation in the reconstruction process of 4D PET sinograms, was compared to a recently proposed pre-reconstruction motion compensation strategy, which operates in sinogram domain by applying the motion compensation to the 4D PET sinograms. With reference to phantom and patient datasets, advantages and drawbacks of the two 4D PET motion compensation strategies were identified. The 4D-MLEM algorithm was strongly affected by inverse inconsistency of the motion model but demonstrated the capability to mitigate the noise-break-up effects. Conversely, the pre-reconstruction warping showed less sensitivity to inverse inconsistency but also more noise in the reconstructed images. The comparison was performed by relying on quantification of PET activity and ion range difference, typically yielding similar results. The study demonstrated that treatment verification of moving targets could be accomplished by relying on the whole count statistics image quality, as obtained from the application of 4D PET motion compensation strategies. In particular, the pre-reconstruction warping was shown to represent a promising choice when combined with intra

  14. Clinical evaluation of 4D PET motion compensation strategies for treatment verification in ion beam therapy.

    PubMed

    Gianoli, Chiara; Kurz, Christopher; Riboldi, Marco; Bauer, Julia; Fontana, Giulia; Baroni, Guido; Debus, Jürgen; Parodi, Katia

    2016-06-01

    A clinical trial named PROMETHEUS is currently ongoing for inoperable hepatocellular carcinoma (HCC) at the Heidelberg Ion Beam Therapy Center (HIT, Germany). In this framework, 4D PET-CT datasets are acquired shortly after the therapeutic treatment to compare the irradiation induced PET image with a Monte Carlo PET prediction resulting from the simulation of treatment delivery. The extremely low count statistics of this measured PET image represents a major limitation of this technique, especially in presence of target motion. The purpose of the study is to investigate two different 4D PET motion compensation strategies towards the recovery of the whole count statistics for improved image quality of the 4D PET-CT datasets for PET-based treatment verification. The well-known 4D-MLEM reconstruction algorithm, embedding the motion compensation in the reconstruction process of 4D PET sinograms, was compared to a recently proposed pre-reconstruction motion compensation strategy, which operates in sinogram domain by applying the motion compensation to the 4D PET sinograms. With reference to phantom and patient datasets, advantages and drawbacks of the two 4D PET motion compensation strategies were identified. The 4D-MLEM algorithm was strongly affected by inverse inconsistency of the motion model but demonstrated the capability to mitigate the noise-break-up effects. Conversely, the pre-reconstruction warping showed less sensitivity to inverse inconsistency but also more noise in the reconstructed images. The comparison was performed by relying on quantification of PET activity and ion range difference, typically yielding similar results. The study demonstrated that treatment verification of moving targets could be accomplished by relying on the whole count statistics image quality, as obtained from the application of 4D PET motion compensation strategies. In particular, the pre-reconstruction warping was shown to represent a promising choice when combined with intra

  15. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring.

    PubMed

    Tian, Y; Stützer, K; Enghardt, W; Priegnitz, M; Helmbrecht, S; Bert, C; Fiedler, F

    2016-01-21

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with ⩽ 4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed.

  16. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Stützer, K.; Enghardt, W.; Priegnitz, M.; Helmbrecht, S.; Bert, C.; Fiedler, F.

    2016-01-01

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with  ⩽4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed.

  17. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring.

    PubMed

    Tian, Y; Stützer, K; Enghardt, W; Priegnitz, M; Helmbrecht, S; Bert, C; Fiedler, F

    2016-01-21

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with ⩽ 4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed. PMID:26733104

  18. The development of a population of 4D pediatric XCAT phantoms for CT imaging research and optimization

    NASA Astrophysics Data System (ADS)

    Norris, Hannah; Zhang, Yakun; Frush, Jack; Sturgeon, Gregory M.; Minhas, Anum; Tward, Daniel J.; Ratnanather, J. Tilak; Miller, M. I.; Frush, Donald; Samei, Ehsan; Segars, W. Paul

    2014-03-01

    With the increased use of CT examinations, the associated radiation dose has become a large concern, especially for pediatrics. Much research has focused on reducing radiation dose through new scanning and reconstruction methods. Computational phantoms provide an effective and efficient means for evaluating image quality, patient-specific dose, and organ-specific dose in CT. We previously developed a set of highly-detailed 4D reference pediatric XCAT phantoms at ages of newborn, 1, 5, 10, and 15 years with organ and tissues masses matched to ICRP Publication 89 values. We now extend this reference set to a series of 64 pediatric phantoms of a variety of ages and height and weight percentiles, representative of the public at large. High resolution PET-CT data was reviewed by a practicing experienced radiologist for anatomic regularity and was then segmented with manual and semi-automatic methods to form a target model. A Multi-Channel Large Deformation Diffeomorphic Metric Mapping (MC-LDDMM) algorithm was used to calculate the transform from the best age matching pediatric reference phantom to the patient target. The transform was used to complete the target, filling in the non-segmented structures and defining models for the cardiac and respiratory motions. The complete phantoms, consisting of thousands of structures, were then manually inspected for anatomical accuracy. 3D CT data was simulated from the phantoms to demonstrate their ability to generate realistic, patient quality imaging data. The population of pediatric phantoms developed in this work provides a vital tool to investigate dose reduction techniques in 3D and 4D pediatric CT.

  19. Development of phantom and methodology for 3D and 4D dose intercomparisons for advanced lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Caloz, Misael; Kafrouni, Marilyne; Leturgie, Quentin; Corde, Stéphanie; Downes, Simon; Lehmann, Joerg; Thwaites, David

    2015-01-01

    There are few reported intercomparisons or audits of combinations of advanced radiotherapy methods, particularly for 4D treatments. As part of an evaluation of the implementation of advanced radiotherapy technology, a phantom and associated methods, initially developed for in-house commissioning and QA of 4D lung treatments, has been developed further with the aim of using it for end-to-end dose intercomparison of 4D treatment planning and delivery. The respiratory thorax phantom can house moving inserts with variable speed (breathing rate) and motion amplitude. In one set-up mode it contains a small ion chamber for point dose measurements, or alternatively it can hold strips of radiochromic film to measure dose distributions. Initial pilot and feasibility measurements have been carried out in one hospital to thoroughly test the methods and procedures before using it more widely across a range of hospitals and treatment systems. Overall, the results show good agreement between measured and calculated doses and distributions, supporting the use of the phantom and methodology for multi-centre intercomparisons. However, before wider use, refinements of the method and analysis are currently underway particularly for the film measurements.

  20. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: A digital phantom study

    SciTech Connect

    Bernatowicz, K. Knopf, A.; Lomax, A.; Keall, P.; Kipritidis, J.; Mishra, P.

    2015-01-15

    Purpose: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CT can significantly reduce lung imaging artifacts. Methods: Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) “conventional” 4D CT that uses a constant imaging and couch-shift frequency, (ii) “beam paused” 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) “respiratory-gated” 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm{sup 3} spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Results

  1. Enhancing 4D PC-MRI in an aortic phantom considering numerical simulations

    NASA Astrophysics Data System (ADS)

    Kratzke, Jonas; Schoch, Nicolai; Weis, Christian; Müller-Eschner, Matthias; Speidel, Stefanie; Farag, Mina; Beller, Carsten J.; Heuveline, Vincent

    2015-03-01

    To date, cardiovascular surgery enables the treatment of a wide range of aortic pathologies. One of the current challenges in this field is given by the detection of high-risk patients for adverse aortic events, who should be treated electively. Reliable diagnostic parameters, which indicate the urge of treatment, have to be determined. Functional imaging by means of 4D phase contrast-magnetic resonance imaging (PC-MRI) enables the time-resolved measurement of blood flow velocity in 3D. Applied to aortic phantoms, three dimensional blood flow properties and their relation to adverse dynamics can be investigated in vitro. Emerging "in silico" methods of numerical simulation can supplement these measurements in computing additional information on crucial parameters. We propose a framework that complements 4D PC-MRI imaging by means of numerical simulation based on the Finite Element Method (FEM). The framework is developed on the basis of a prototypic aortic phantom and validated by 4D PC-MRI measurements of the phantom. Based on physical principles of biomechanics, the derived simulation depicts aortic blood flow properties and characteristics. The framework might help identifying factors that induce aortic pathologies such as aortic dilatation or aortic dissection. Alarming thresholds of parameters such as wall shear stress distribution can be evaluated. The combined techniques of 4D PC-MRI and numerical simulation can be used as complementary tools for risk-stratification of aortic pathology.

  2. Evaluation of the Elekta Symmetry ™ 4D IGRT system by using a moving lung phantom

    NASA Astrophysics Data System (ADS)

    Shin, Hun-Joo; Kim, Shin-Wook; Kay, Chul Seung; Seo, Jae-Hyuk; Lee, Gi-Woong; Kang, Ki-Mun; Jang, Hong Seok; Kang, Young-nam

    2015-07-01

    Purpose: 4D cone-beam computed tomography (CBCT) is a beneficial tool for the treatment of movable tumors because it can help us to understand where the tumors are actually located and it has a precise treatment plan. However, general CBCT images have a limitation in that they cannot perfectly perform a sophisticated registration. On the other hand, the Symmetry TM 4D image-guided radiation therapy (IGRT) system of Elekta offers a 4D CBCT registration option. In this study, we evaluated the usefulness of Symmetry TM . Method and Materials: Planning CT images of the CIRS moving lung phantom were acquired 4D multi-detector CT (MDCT), and the images were sorted as 10 phases from 0% phase to 90% phase. The thickness of the CT images was 1 mm. Acquired MDCT images were transferred to the contouring software, and a virtual target was generated. A one-arc volumetric-modulated arc therapy (VMAT) plan was performed by using the treatment planning system on the virtual target. Finally, the movement of the phantom was verified by using the XVI Symmetry TM system. Results: The physical movement of the CIRS moving lung phantom was ±10.0 mm in the superiorinferior direction, ±1.0 mm in the lateral direction, and ±2.5 mm in the anterior-posterior direction. The movement of the phantom was measured from the 4D MDCT registration as ±10.2 mm in the superior-inferior direction, ±0.9 mm in the lateral direction, and ±2.45 mm in the anterior-posterior direction. The movement of the phantom was measured from the SymmetryTM registration as ±10.1 mm in the superior-inferior direction, ±0.9 mm in the lateral direction, and ±2.4 mm in the anterior-posterior direction. Conclusion: We confirmed that 4D CBCT is a beneficial tool for the treatment of movable tumors, and that the 4D registration of SymmetryTM can increase the precision of the registration when a movable tumor is the target of radiation treatment.

  3. 4D rotational x-ray imaging of wrist joint dynamic motion

    SciTech Connect

    Carelsen, Bart; Bakker, Niels H.; Strackee, Simon D.; Boon, Sjirk N.; Maas, Mario; Sabczynski, Joerg; Grimbergen, Cornelis A.; Streekstra, Geert J.

    2005-09-15

    Current methods for imaging joint motion are limited to either two-dimensional (2D) video fluoroscopy, or to animated motions from a series of static three-dimensional (3D) images. 3D movement patterns can be detected from biplane fluoroscopy images matched with computed tomography images. This involves several x-ray modalities and sophisticated 2D to 3D matching for the complex wrist joint. We present a method for the acquisition of dynamic 3D images of a moving joint. In our method a 3D-rotational x-ray (3D-RX) system is used to image a cyclically moving joint. The cyclic motion is synchronized to the x-ray acquisition to yield multiple sets of projection images, which are reconstructed to a series of time resolved 3D images, i.e., four-dimensional rotational x ray (4D-RX). To investigate the obtained image quality parameters the full width at half maximum (FWHM) of the point spread function (PSF) via the edge spread function and the contrast to noise ratio between air and phantom were determined on reconstructions of a bullet and rod phantom, using 4D-RX as well as stationary 3D-RX images. The CNR in volume reconstructions based on 251 projection images in the static situation and on 41 and 34 projection images of a moving phantom were 6.9, 3.0, and 2.9, respectively. The average FWHM of the PSF of these same images was, respectively, 1.1, 1.7, and 2.2 mm orthogonal to the motion and parallel to direction of motion 0.6, 0.7, and 1.0 mm. The main deterioration of 4D-RX images compared to 3D-RX images is due to the low number of projection images used and not to the motion of the object. Using 41 projection images seems the best setting for the current system. Experiments on a postmortem wrist show the feasibility of the method for imaging 3D dynamic joint motion. We expect that 4D-RX will pave the way to improved assessment of joint disorders by detection of 3D dynamic motion patterns in joints.

  4. Development of a dynamic 4D anthropomorphic breast phantom for contrast-based breast imaging

    NASA Astrophysics Data System (ADS)

    Kiarashi, Nooshin; Lin, Yuan; Segars, William P.; Ghate, Sujata V.; Ikejimba, Lynda; Chen, Baiyu; Lo, Joseph Y.; Dobbins, James T., III; Nolte, Loren W.; Samei, Ehsan

    2012-03-01

    Mammography is currently the most widely accepted tool for detection and diagnosis of breast cancer. However, the sensitivity of mammography is reduced in women with dense breast tissue due to tissue overlap, which may obscure lesions. Digital breast tomosynthesis with contrast enhancement reduces tissue overlap and provides additional functional information about lesions (i.e. morphology and kinetics), which in turn may improve lesion characterization. The performance of such techniques is highly dependent on the structural composition of the breast, which varies significantly across patients. Therefore, optimization of breast imaging systems should be done with respect to this patient versatility. Furthermore, imaging techniques that employ contrast require the inclusion of a temporally varying breast composition with respect to the contrast agent kinetics to enable the optimization of the system. To these ends, we have developed a dynamic 4D anthropomorphic breast phantom, which can be used for optimizing a breast imaging system by incorporating material characteristics. The presented dynamic phantom is based on two recently developed anthropomorphic breast phantoms, which can be representative of a whole population through their randomized anatomical feature generation and various compression levels. The 4D dynamic phantom is incorporated with the kinetics of contrast agent uptake in different tissues and can realistically model benign and malignant lesions. To demonstrate the utility of the proposed dynamic phantom, contrast-enhanced digital mammography and breast tomosynthesis were simulated where a ray-tracing algorithm emulated the projections, a filtered back projection algorithm was used for reconstruction, and dual-energy and temporal subtractions were performed and compared.

  5. Motion-compensated fully 4D reconstruction of gated cardiac sequences

    NASA Astrophysics Data System (ADS)

    Gravier, Erwan; Yang, Yongyi

    2005-03-01

    In this paper we investigate the benefits of a spatio-temporal approach for reconstruction of cardiac image sequences. We introduce a temporal prior based on motion-compensation to enforce temporal correlations along the curved trajectories that follow the cardiac motion. The image frames in a sequence are reconstructed simultaneously through maximum a posteriori (MAP) estimation. We evaluated the performance of our algorithm using the 4D gated mathematical cardiac-torso (gMCAT) D1.01 phantom to simulate gated SPECT perfusion imaging with Tc-99m-sestamibi. Our experimental results show that the proposed approach could significantly improve the accuracy of reconstructed images without causing cross-frame blurring that may arise form the cardiac motion.

  6. Myocardial motion and function assessment using 4D images

    NASA Astrophysics Data System (ADS)

    Shi, Peng-Cheng; Robinson, Glynn P.; Duncan, James S.

    1994-09-01

    This paper describes efforts aimed at more objectively and accurately quantifying the local, regional and global function of the left ventricle (LV) of the heart from 4D image data. Using our shape-based image analysis methods, point-wise myocardial motion vector fields between successive image frames through the entire cardiac cycle will be computed. Quantitative LV motion, thickening, and strain measurements will then be established from the point correspondence maps. In the paper, we will also briefly describe an in vivo experimental model which uses implanted imaging-opaque markers to validate the results of our image analysis methods. Finally, initial experimental results using image sequences from two different modalities will be presented.

  7. Motion-aware temporal regularization for improved 4D cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Mory, Cyril; Janssens, Guillaume; Rit, Simon

    2016-09-01

    Four-dimensional cone-beam computed tomography (4D-CBCT) of the free-breathing thorax is a valuable tool in image-guided radiation therapy of the thorax and the upper abdomen. It allows the determination of the position of a tumor throughout the breathing cycle, while only its mean position can be extracted from three-dimensional CBCT. The classical approaches are not fully satisfactory: respiration-correlated methods allow one to accurately locate high-contrast structures in any frame, but contain strong streak artifacts unless the acquisition is significantly slowed down. Motion-compensated methods can yield streak-free, but static, reconstructions. This work proposes a 4D-CBCT method that can be seen as a trade-off between respiration-correlated and motion-compensated reconstruction. It builds upon the existing reconstruction using spatial and temporal regularization (ROOSTER) and is called motion-aware ROOSTER (MA-ROOSTER). It performs temporal regularization along curved trajectories, following the motion estimated on a prior 4D CT scan. MA-ROOSTER does not involve motion-compensated forward and back projections: the input motion is used only during temporal regularization. MA-ROOSTER is compared to ROOSTER, motion-compensated Feldkamp–Davis–Kress (MC-FDK), and two respiration-correlated methods, on CBCT acquisitions of one physical phantom and two patients. It yields streak-free reconstructions, visually similar to MC-FDK, and robust information on tumor location throughout the breathing cycle. MA-ROOSTER also allows a variation of the lung tissue density during the breathing cycle, similar to that of planning CT, which is required for quantitative post-processing.

  8. Motion-aware temporal regularization for improved 4D cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Mory, Cyril; Janssens, Guillaume; Rit, Simon

    2016-09-01

    Four-dimensional cone-beam computed tomography (4D-CBCT) of the free-breathing thorax is a valuable tool in image-guided radiation therapy of the thorax and the upper abdomen. It allows the determination of the position of a tumor throughout the breathing cycle, while only its mean position can be extracted from three-dimensional CBCT. The classical approaches are not fully satisfactory: respiration-correlated methods allow one to accurately locate high-contrast structures in any frame, but contain strong streak artifacts unless the acquisition is significantly slowed down. Motion-compensated methods can yield streak-free, but static, reconstructions. This work proposes a 4D-CBCT method that can be seen as a trade-off between respiration-correlated and motion-compensated reconstruction. It builds upon the existing reconstruction using spatial and temporal regularization (ROOSTER) and is called motion-aware ROOSTER (MA-ROOSTER). It performs temporal regularization along curved trajectories, following the motion estimated on a prior 4D CT scan. MA-ROOSTER does not involve motion-compensated forward and back projections: the input motion is used only during temporal regularization. MA-ROOSTER is compared to ROOSTER, motion-compensated Feldkamp-Davis-Kress (MC-FDK), and two respiration-correlated methods, on CBCT acquisitions of one physical phantom and two patients. It yields streak-free reconstructions, visually similar to MC-FDK, and robust information on tumor location throughout the breathing cycle. MA-ROOSTER also allows a variation of the lung tissue density during the breathing cycle, similar to that of planning CT, which is required for quantitative post-processing.

  9. Reference geometry-based detection of (4D-)CT motion artifacts: a feasibility study

    NASA Astrophysics Data System (ADS)

    Werner, René; Gauer, Tobias

    2015-03-01

    Respiration-correlated computed tomography (4D or 3D+t CT) can be considered as standard of care in radiation therapy treatment planning for lung and liver lesions. The decision about an application of motion management devices and the estimation of patient-specific motion effects on the dose distribution relies on precise motion assessment in the planning 4D CT data { which is impeded in case of CT motion artifacts. The development of image-based/post-processing approaches to reduce motion artifacts would benefit from precise detection and localization of the artifacts. Simple slice-by-slice comparison of intensity values and threshold-based analysis of related metrics suffer from- depending on the threshold- high false-positive or -negative rates. In this work, we propose exploiting prior knowledge about `ideal' (= artifact free) reference geometries to stabilize metric-based artifact detection by transferring (multi-)atlas-based concepts to this specific task. Two variants are introduced and evaluated: (S1) analysis and comparison of warped atlas data obtained by repeated non-linear atlas-to-patient registration with different levels of regularization; (S2) direct analysis of vector field properties (divergence, curl magnitude) of the atlas-to-patient transformation. Feasibility of approaches (S1) and (S2) is evaluated by motion-phantom data and intra-subject experiments (four patients) as well as - adopting a multi-atlas strategy- inter-subject investigations (twelve patients involved). It is demonstrated that especially sorting/double structure artifacts can be precisely detected and localized by (S1). In contrast, (S2) suffers from high false positive rates.

  10. Four-dimensional (4D) Motion Detection to Correct Respiratory Effects in Treatment Response Assessment Using Molecular Imaging Biomarkers

    PubMed Central

    Schreibmann, Eduard; Crocker, Ian; Schuster, David M.; Curran, Walter J.; Fox, Tim

    2014-01-01

    Observing early metabolic changes in positron emission tomography (PET) is an essential tool to assess treatment efficiency in radiotherapy. However, for thoracic regions, the use of three-dimensional (3D) PET imaging is unfeasible because the radiotracer activity is smeared by the respiratory motion and averaged during the imaging acquisition process. This motion-induced degradation is similar in magnitude with the treatment-induced changes, and the two occurrences become indiscernible. We present a customized temporal-spatial deformable registration method for quantifying respiratory motion in a four-dimensional (4D) PET dataset. Once the motion is quantified, a motion-corrected (MC) dataset is created by tracking voxels to eliminate breathing-induced changes in the 4D imaging scan. The 4D voxel-tracking data is then summed to yield a 3D MC-PET scan containing only treatment-induced changes. This proof of concept is exemplified on both phantom and clinical data, where the proposed algorithm tracked the trajectories of individual points through the 4D datasets reducing motion to less than 4 mm in all phases. This correction approach using deformable registration can discern motion blurring from treatment-induced changes in treatment response assessment using PET imaging. PMID:24000982

  11. SU-E-J-194: Dynamic Tumor Tracking End-To-End Testing Using a 4D Thorax Phantom and EBT3 Films

    SciTech Connect

    Su, Z; Wu, J; Li, Z; Mamalui-Hunter, M

    2014-06-01

    Purpose: To quantify the Vero linac dosimetric accuracy of the tumor dynamic tracking treatment using EBT3 film embedded in a 4D thorax phantom. Methods: A dynamic thorax phantom with tissue equivalent materials and a film insert were used in this study. The thorax phantom was scanned in 4DCT mode with a viscoil embedded in its film insert composed of lung equivalent material. Dynamic tracking planning was performed using the 50% phase CT set with 5 conformal beams at gantry angles of 330, 15, 60, 105 and 150 degrees. Each field is a 3cm by 3cm square centered at viscoil since there was no solid mass target. Total 3 different 1–2cos4 motion profiles were used with varied motion magnitude and cycle frequency. Before treatment plan irradiation, a 4D motion model of the target was established using a series of acquired fluoroscopic images and infrared markers motion positions. During irradiation, fluoroscopic image monitoring viscoil motion was performed to verify model validity. The irradiated films were scanned and the dose maps were compared to the planned Monte Carlo dose distributions. Gamma analyses using 3%–3mm, 2%–3mm, 3%–2mm, 2%–2mm criteria were performed and presented. Results: For each motion pattern, a 4D motion model was built successfully and the target tracking performance was verified with fluoroscopic monitoring of the viscoil motion and its model predicted locations. The film gamma analysis showed the average pass rates among the 3 motion profiles are 98.14%, 96.2%, 91.3% and 85.61% for 3%–3mm, 2%–3mm, 3%–2mm, 2%–2mm criteria. Conclusion: Target dynamic tracking was performed using patient-like breathing patterns in a 4D thorax phantom with EBT3 film insert and a viscoil. There was excellent agreement between acquired and planned dose distributions for all three target motion patterns. This study performed end-to-end testing and verified the treatment accuracy of tumor dynamic tracking.

  12. Poster — Thur Eve — 71: A 4D Multimodal Lung Phantom for Regmentation Evaluation

    SciTech Connect

    Markel, D; Levesque, I R; El Naqa, I

    2014-08-15

    Segmentation and registration of medical imaging data are two processes that can be integrated (a process termed regmentation) to iteratively reinforce each other, potentially improving efficiency and overall accuracy. A significant challenge is presented when attempting to validate the joint process particularly with regards to minimizing geometric uncertainties associated with the ground truth while maintaining anatomical realism. This work demonstrates a 4D MRI, PET, and CT compatible tissue phantom with a known ground truth for evaluating registration and segmentation accuracy. The phantom consists of a preserved swine lung connected to an air pump via a PVC tube for inflation. Mock tumors were constructed from sea sponges contained within two vacuum-sealed compartments with catheters running into each one for injection of radiotracer solution. The phantom was scanned using a GE Discovery-ST PET/CT scanner and a 0.23T Phillips MRI, and resulted in anatomically realistic images. A bifurcation tracking algorithm was implemented to provide a ground truth for evaluating registration accuracy. This algorithm was validated using known deformations of up to 7.8 cm using a separate CT scan of a human thorax. Using the known deformation vectors to compare against, 76 bifurcation points were selected. The tracking accuracy was found to have maximum mean errors of −0.94, 0.79 and −0.57 voxels in the left-right, anterior-posterior and inferior-superior directions, respectively. A pneumatic control system is under development to match the respiratory profile of the lungs to a breathing trace from an individual patient.

  13. Fully 4D motion-compensated reconstruction of cardiac SPECT images

    NASA Astrophysics Data System (ADS)

    Gravier, Erwan; Yang, Yongyi; King, Michael A.; Jin, Mingwu

    2006-09-01

    In this paper, we investigate the benefits of a spatiotemporal approach for reconstruction of image sequences. In the proposed approach, we introduce a temporal prior in the form of motion compensation to account for the statistical correlations among the frames in a sequence, and reconstruct all the frames collectively as a single function of space and time. The reconstruction algorithm is derived based on the maximum a posteriori estimate, for which the one-step late expectation-maximization algorithm is used. We demonstrated the method in our experiments using simulated single photon emission computed tomography (SPECT) cardiac perfusion images. The four-dimensional (4D) gated mathematical cardiac-torso phantom was used for simulation of gated SPECT perfusion imaging with Tc-99m-sestamibi. In addition to bias-variance analysis and time activity curves, we also used a channelized Hotelling observer to evaluate the detectability of perfusion defects in the reconstructed images. Our experimental results demonstrated that the incorporation of temporal regularization into image reconstruction could significantly improve the accuracy of cardiac images without causing any significant cross-frame blurring that may arise from the cardiac motion. This could lead to not only improved detection of perfusion defects, but also improved reconstruction of the heart wall which is important for functional assessment of the myocardium. This work was supported in part by the National Institutes of Health under grant no HL65425.

  14. Simulation of dosimetric consequences of 4D-CT-based motion margin estimation for proton radiotherapy using patient tumor motion data

    NASA Astrophysics Data System (ADS)

    Koybasi, Ozhan; Mishra, Pankaj; St. James, Sara; Lewis, John H.; Seco, Joao

    2014-02-01

    For the radiation treatment of lung cancer patients, four-dimensional computed tomography (4D-CT) is a common practice used clinically to image tumor motion and subsequently determine the internal target volume (ITV) from the maximum intensity projection (MIP) images. ITV, which is derived from short pre-treatment 4D-CT scan (<6 s per couch position), may not adequately cover the extent of tumor motion during the treatment, particularly for patients that exhibit a large respiratory variability. Inaccurate tumor localization may result in under-dosage of the tumor or over-dosage of the surrounding tissues. The purpose of this study is therefore to assess the degree of tumor under-dosage in case of regular and irregular breathing for proton radiotherapy using ITV-based treatment planning. We place a spherical lesion into a modified XCAT phantom that is also capable of producing 4D images based on irregular breathing, and move the tumor according to real tumor motion data, which is acquired over multiple days by tracking gold fiducial markers implanted into the lung tumors of patients. We derive ITVs by taking the union of all tumor positions during 6 s of tumor motion in the phantom using the first day patient tumor tracking data. This is equivalent to ITVs generated clinically from cine-mode 4D-CT MIP images. The treatment plans created for different ITVs are then implemented on dynamic phantoms with tumor motion governed by real tumor tracking data from consecutive days. By comparing gross tumor volume dose distribution on days of ‘treatment’ with the ITV dose distribution, we evaluate the deviation of the actually delivered dose from the predicted dose. Our results have shown that the proton treatment planning on ITV derived from pre-treatment cine-mode 4D-CT can result in under-dosage (dose covering 95% of volume) of the tumor by up to 25.7% over 3 min of treatment for the patient with irregular respiratory motion. Tumor under-dosage is less significant for

  15. SU-E-J-31: Monitor Interfractional Variation of Tumor Respiratory Motion Using 4D KV Conebeam Computed Tomography for Stereotactic Body Radiation Therapy of Lung Cancer

    SciTech Connect

    Tai, A; Prior, P; Gore, E; Johnstone, C; Li, X

    2015-06-15

    Purpose: 4DCT has been widely used to generate internal tumor volume (ITV) for a lung tumor for treatment planning. However, lung tumors may show different respiratory motion on the treatment day. The purpose of this study is to evaluate 4D KV conebeam computed tomography (CBCT) for monitoring tumor interfractional motion variation between simulation and each fraction of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: 4D KV CBCT was acquired with the Elekta XVI system. The accuracy of 4D KV CBCT for image-guided radiation therapy (IGRT) was tested with a dynamic thorax motion phantom (CIRS, Virginia) with a linear amplitude of 2 cm. In addition, an adult anthropomorphic phantom (Alderson, Rando) with optically stimulated luminescence (OSL) dosimeters embedded at the center and periphery of a slab of solid water was used to measure the dose of 4D KV CBCT and to compare it with the dose with 3D KV CBCT. The image registration was performed by aligning\\ each phase images of 4D KV CBCT to the planning images and the final couch shifts were calculated as a mean of all these individual shifts along each direction.A workflow was established based on these quality assurance tests for lung cancer patients. Results: 4D KV CBCT does not increase imaging dose in comparison to 3D KV CBCT. Acquisition of 4D KV CBCT is 4 minutes as compared to 2 minutes for 3D KV CBCT. Most of patients showed a small daily variation of tumor respiratory motion about 2 mm. However, some patients may have more than 5 mm variations of tumor respiratory motion. Conclusion: The radiation dose does not increase with 4D KV CBCT. 4D KV CBCT is a useful tool for monitoring interfractional variations of tumor respiratory motion before SBRT of lung cancer patients.

  16. SU-E-J-209: Geometric Distortion at 3T in a Commercial 4D MRI-Compatible Phantom

    SciTech Connect

    Fatemi-Ardekani, A; Wronski, M; Kim, A; Stanisz, G; Sarfehnia, A; Keller, B

    2015-06-15

    Purpose: There are very few commercial 4D phantoms that are marketed as MRI compatible. We are evaluating one such commercial phantom, made to be used with an MRI-Linear accelerator. The focus of this work is to characterize the geometric distortions produced in this phantom at 3T using 3 clinical MR pulse sequences. Methods: The CIRS MRI-Linac Dynamic Phantom (CIRSTM) under investigation in this study consists of a softwaredriven moving tumour volume within a thorax phantom body and enables dose accumulation by placing a dosimeter within the tumour volume. Our initial investigation is to evaluate the phantom in static mode prior to examining its 4D capability. The water-filled thorax phantom was scanned using a wide-bore Philips 3T Achieva MRI scanner employing a Thoracic xl coil and clinical 2D T1W FFE, 2D T1W TSE and 3D T1W TFE pulse sequences. Each of the MR image sets was rigidly fused with a reference CT image of the phantom employing a rigid registration with 6 degrees of freedom. Geometric distortions between the MR and CT image sets were measured in 3 dimensions at selected points along the periphery of the distortion grid embedded within the phantom body (11.5, 7.5 and 3 cm laterally, ant/post and sup/inf of magnetic isocenter respectively). Results: The maximal measured geometric distortions between the MR and reference CT points of interest were 0.9, 1.8 and 1.3 mm in the lateral, anteriorposterior and cranio-caudal directions, respectively. For all 3 spatial dimensions, the maximal distortions occurred for the FFE pulse sequence. Maximal distortions for the 2D FFE, 2D TSE and 3D TFE sequences were 1, 0.7 and 1.8 mm, respectively. Conclusion: Our initial static investigation of this phantom shows minimal geometric distortions at 3T along the periphery of the embedded grid. CIRS has provided us with a phantom at no charge for evaluation at 3 Tesla.

  17. Design, performance characteristics and application examples of a new 4D motion platform.

    PubMed

    Grohmann, Carsten; Frenzel, Thorsten; Werner, René; Cremers, Florian

    2015-06-01

    In this publication, a three-dimensionally movable motion phantom is described and its performance characteristics are evaluated. The intended primary fields of application for the phantom are the quality assurance (QA) of respiratory motion management devices in radiation therapy (RT) like gating or tumour tracking systems, training for clinical use of these techniques, and related 4DRT research. Considering especially the QA aspect, the phantom was designed as a motion platform that can be equipped with an appropriate add-on like standard QA phantoms for dosimetric measurements. The platform is driven by three computer-controlled independent linear motors (motion range: 40 × 50 × 50 mm in anterior-posterior/superior-inferior/lateral direction; max. velocity: 3.9 m/s; max. acceleration: 10 m/s(2)), which allow the simulation of normal breathing patterns as well as arbitrary trajectories and anomalous events like coughing or baseline drift. For normal breathing patterns (here: sinusoidal curves with an amplitude of 20mm and a period of 3 s/6 s), the accuracy of the simulated motion paths was measured to be within 0,521 mm even for the ArcCHECK (weight: 20 kg) as a platform load - values that we consider to be sufficient for the intended fields of application. The respective use of the motion phantom is illustrated.

  18. SU-E-J-26: A Novel Technique for Markerless Self-Sorted 4D-CBCT Using Patient Motion Modeling: A Feasibility Study

    SciTech Connect

    Zhang, L; Zhang, Y; Harris, W; Yin, F; Ren, L

    2015-06-15

    Purpose: To develop an automatic markerless 4D-CBCT projection sorting technique by using a patient respiratory motion model extracted from the planning 4D-CT images. Methods: Each phase of onboard 4D-CBCT is considered as a deformation of one phase of the prior planning 4D-CT. The deformation field map (DFM) is represented as a linear combination of three major deformation patterns extracted from the planning 4D-CT using principle component analysis (PCA). The coefficients of the PCA deformation patterns are solved by matching the digitally reconstructed radiograph (DRR) of the deformed volume to the onboard projection acquired. The PCA coefficients are solved for each single projection, and are used for phase sorting. Projections at the peaks of the Z direction coefficient are sorted as phase 1 and other projections are assigned into 10 phase bins by dividing phases equally between peaks. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the proposed technique. Three scenarios were simulated, with different tumor motion amplitude (3cm to 2cm), tumor spatial shift (8mm SI), and tumor body motion phase shift (2 phases) from prior to on-board images. Projections were simulated over 180 degree scan-angle for the 4D-XCAT. The percentage of accurately binned projections across entire dataset was calculated to represent the phase sorting accuracy. Results: With a changed tumor motion amplitude from 3cm to 2cm, markerless phase sorting accuracy was 100%. With a tumor phase shift of 2 phases w.r.t. body motion, the phase sorting accuracy was 100%. With a tumor spatial shift of 8mm in SI direction, phase sorting accuracy was 86.1%. Conclusion: The XCAT phantom simulation results demonstrated that it is feasible to use prior knowledge and motion modeling technique to achieve markerless 4D-CBCT phase sorting. National Institutes of Health Grant No. R01-CA184173 Varian Medical System.

  19. Impact of motion velocity on four-dimensional target volumes: a phantom study.

    PubMed

    Nakamura, Mitsuhiro; Narita, Yuichiro; Sawada, Akira; Matsugi, Kiyotomo; Nakata, Manabu; Matsuo, Yukinori; Mizowaki, Takashi; Hiraoka, Masahiro

    2009-05-01

    This study aims to assess the impact of motion velocity that may cause motion artifacts on target volumes (TVs) using a one-dimensional moving phantom. A 20 mm diameter spherical object embedded in a QUASAR phantom sinusoidally moved with approximately 5.0 or 10.0 mm amplitude (A) along the longitudinal axis of the computed tomography (CT) couch. The motion period was manually set in the range of 2.0-10.0 s at approximately 2.0 s interval. Four-dimensional (4D) CT images were acquired by a four-slice CT scanner (LightSpeed RT; General Electric Medical Systems, Waukesha, WI) with a slice thickness of 1.25 mm in axial cine mode. The minimum gantry rotation of 1.0 s was employed to achieve the maximum in-slice temporal resolution. Projection data over a full gantry rotation (1.0 s) were used for image reconstruction. Reflective marker position was recorded by the real-time positioning management system (Varian Medical Systems, Palo Alto, CA). ADVANTAGE 4D software exported ten respiratory phase volumes and the maximum intensity volume generated from all reconstructed data (MIV). The threshold to obtain static object volume (V0, 4.19 ml) was used to automatically segment TVs on CT images, and then the union of TVs on 4D CT images (TV(4D)) was constructed. TVs on MIV (TV(MIV)) were also segmented by the threshold that can determine the area occupied within the central slice of TV(MIV). The maximum motion velocity for each phase bin was calculated using the actual averaged motion period displayed on ADVANTAGE 4D software (T), the range of phases used to construct the target phase bin (phase range), and a mathematical model of sinusoidal function. Each volume size and the motion range of TV in the cranial-caudal (CC) direction were measured. Subsequently, cross-correlation coefficients between TV size and motion velocity as well as phase range were calculated. Both misalignment and motion-blurring artifacts were caused by high motion velocity, Less than 6% phase range was

  20. Toward time resolved 4D cardiac CT imaging with patient dose reduction: estimating the global heart motion

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuyuki; Segars, W. Paul; Fung, George S. K.; Tsui, Benjamin M. W.

    2006-03-01

    Coronary artery imaging with multi-slice helical computed tomography is a promising noninvasive imaging technique. The current major issues include the insufficient temporal resolution and large patient dose. We propose an image reconstruction method which provides a solution to both of the problems. The method uses an iterative approach repeating the following four steps until the difference between the two projection data sets falls below a certain criteria in step-4: 1) estimating or updating the cardiac motion vectors, 2) reconstructing the time-resolved 4D dynamic volume images using the motion vectors, 3) calculating the projection data from the current 4D images, 4) comparing them with the measured ones. In this study, we obtain the first estimate of the motion vector. We use the 4D NCAT phantom, a realistic computer model for the human anatomy and cardiac motions, to generate the dynamic fan-beam projection data sets as well to provide a known truth for the motion. Then, the halfscan reconstruction with the sliding time-window technique is used to generate cine images: f(t, r r). Here, we use one heart beat for each position r so that the time information is retained. Next, the magnitude of the first derivative of f(t, r r) with respect to time, i.e., |df/dt|, is calculated and summed over a region-of-interest (ROI), which is called the mean-absolute difference (MAD). The initial estimation of the vector field are obtained using MAD for each ROI. Results of the preliminary study are presented.

  1. Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: A technical feasibility study

    SciTech Connect

    Boye, Dirk; Lomax, Tony; Knopf, Antje

    2013-06-15

    Purpose: Target sites affected by organ motion require a time resolved (4D) dose calculation. Typical 4D dose calculations use 4D-CT as a basis. Unfortunately, 4D-CT images have the disadvantage of being a 'snap-shot' of the motion during acquisition and of assuming regularity of breathing. In addition, 4D-CT acquisitions involve a substantial additional dose burden to the patient making many, repeated 4D-CT acquisitions undesirable. Here the authors test the feasibility of an alternative approach to generate patient specific 4D-CT data sets. Methods: In this approach motion information is extracted from 4D-MRI. Simulated 4D-CT data sets [which the authors call 4D-CT(MRI)] are created by warping extracted deformation fields to a static 3D-CT data set. The employment of 4D-MRI sequences for this has the advantage that no assumptions on breathing regularity are made, irregularities in breathing can be studied and, if necessary, many repeat imaging studies (and consequently simulated 4D-CT data sets) can be performed on patients and/or volunteers. The accuracy of 4D-CT(MRI)s has been validated by 4D proton dose calculations. Our 4D dose algorithm takes into account displacements as well as deformations on the originating 4D-CT/4D-CT(MRI) by calculating the dose of each pencil beam based on an individual time stamp of when that pencil beam is applied. According to corresponding displacement and density-variation-maps the position and the water equivalent range of the dose grid points is adjusted at each time instance. Results: 4D dose distributions, using 4D-CT(MRI) data sets as input were compared to results based on a reference conventional 4D-CT data set capturing similar motion characteristics. Almost identical 4D dose distributions could be achieved, even though scanned proton beams are very sensitive to small differences in the patient geometry. In addition, 4D dose calculations have been performed on the same patient, but using 4D-CT(MRI) data sets based on

  2. Dosimetric quality assurance of highly conformal external beam treatments: from 2D phantom comparisons to 4D patient dose reconstruction

    NASA Astrophysics Data System (ADS)

    Feygelman, V.; Nelms, B.

    2013-06-01

    As IMRT technology continues to evolve, so do the dosimetric QA methods. A historical review of those is presented, starting with longstanding techniques such as film and ion chamber in a phantom and progressing towards 3D and 4D dose reconstruction in the patient. Regarding patient-specific QA, we envision that the currently prevalent limited comparison of dose distributions in the phantom by γ-analysis will be eventually replaced by clinically meaningful patient dose analyses with improved sensitivity and specificity. In a larger sense, we envision a future of QA built upon lessons from the rich history of "quality" as a science and philosophy. This future will aim to improve quality (and ultimately reduce cost) via advanced commissioning processes that succeed in detecting and rooting out systematic errors upstream of patient treatment, thus reducing our reliance on, and the resource burden associated with, per-beam/per-plan inspection.

  3. A Pelvic Phantom for Modeling Internal Organ Motions

    SciTech Connect

    Kovacs, Peter; Sebestyen, Zsolt; Farkas, Robert; Bellyei, Szabolcs; Szigeti, Andras; Liposits, Gabor; Hideghety, Katalin; Derczy, Katalin; Mangel, Laszlo

    2011-10-01

    A pelvic phantom was developed for use in testing image-guided radiation therapy (IGRT) and adaptive applications in radiation therapy (ART) with simulating the anterior-posterior internal organ motions during prostate radiotherapy. Measurements could be done with an ionization chamber (IC) in the simulated prostate. The rectum was simulated by air-equivalent material (AEM). The volume superior to the IC placement was considered as the bladder. The extension of AEM volume could be varied. The vertical position of the IC placement could be shifted by {+-}1 cm to simulate the prostate motion parallel to the changes in bladder volume. The reality of the simulation was inspected. Three-millimeter-slice-increment computed tomography (CT) scans were taken for irradiation planning. The structure set was adapted to the phantom from a treated patient. Planning target volume was delineated according to the RTOG 0126 study. IMRT and 3D conformal radiation therapy (3D-CRT) plans were made. Prostate motion and rectum volume changes were simulated in the phantom. IC displacement was corrected by phantom shifting. The delivered dose was measured with IC in 7 cases using intensity-modulated radiation therapy (IMRT) and 3D-CRT fractions, and single square-shaped beams: anteroposterior (AP), posteroanterior (PA), and lateral (LAT). Variations from the calculated doses were slightly below 1% at IMRT and around 1% at 3D-CRT; below 4.5% at square AP beam; up to 9% at square PA beam; and around 0.5% at square LAT beam. Other authors have already shown that by using planning systems and ultrasonic and cone beam CT guidance, correction of organ motions in a real patient during prostate cancer IGRT does not have a significant dosimetric effect. The inspection of our phantom-as described here-ended with similar results. Our team suggested that our model is sufficiently realistic and can be used for IGRT and ART testing.

  4. An externally and internally deformable, programmable lung motion phantom

    PubMed Central

    Cheung, Yam; Sawant, Amit

    2015-01-01

    Purpose: Most clinically deployed strategies for respiratory motion management in lung radiotherapy (e.g., gating and tracking) use external markers that serve as surrogates for tumor motion. However, typical lung phantoms used to validate these strategies are based on a rigid exterior and a rigid or a deformable-interior. Such designs do not adequately represent respiration because the thoracic anatomy deforms internally as well as externally. In order to create a closer approximation of respiratory motion, the authors describe the construction and experimental testing of an externally as well as internally deformable, programmable lung phantom. Methods: The outer shell of a commercially available lung phantom (RS-1500, RSD, Inc.) was used. The shell consists of a chest cavity with a flexible anterior surface, and embedded vertebrae, rib-cage and sternum. A custom-made insert was designed using a piece of natural latex foam block. A motion platform was programmed with sinusoidal and ten patient-recorded lung tumor trajectories. The platform was used to drive a rigid foam “diaphragm” that compressed/decompressed the phantom interior. Experimental characterization comprised of determining the reproducibility and the external–internal correlation of external and internal marker trajectories extracted from kV x-ray fluoroscopy. Experiments were conducted to illustrate three example applications of the phantom—(i) validating the geometric accuracy of the VisionRT surface photogrammetry system; (ii) validating an image registration tool, NiftyReg; and (iii) quantifying the geometric error due to irregular motion in four-dimensional computed tomography (4DCT). Results: The phantom correctly reproduced sinusoidal and patient-derived motion, as well as realistic respiratory motion-related effects such as hysteresis. The reproducibility of marker trajectories over multiple runs for sinusoidal as well as patient traces, as characterized by fluoroscopy, was within 0

  5. An externally and internally deformable, programmable lung motion phantom

    SciTech Connect

    Cheung, Yam; Sawant, Amit

    2015-05-15

    Purpose: Most clinically deployed strategies for respiratory motion management in lung radiotherapy (e.g., gating and tracking) use external markers that serve as surrogates for tumor motion. However, typical lung phantoms used to validate these strategies are based on a rigid exterior and a rigid or a deformable-interior. Such designs do not adequately represent respiration because the thoracic anatomy deforms internally as well as externally. In order to create a closer approximation of respiratory motion, the authors describe the construction and experimental testing of an externally as well as internally deformable, programmable lung phantom. Methods: The outer shell of a commercially available lung phantom (RS-1500, RSD, Inc.) was used. The shell consists of a chest cavity with a flexible anterior surface, and embedded vertebrae, rib-cage and sternum. A custom-made insert was designed using a piece of natural latex foam block. A motion platform was programmed with sinusoidal and ten patient-recorded lung tumor trajectories. The platform was used to drive a rigid foam “diaphragm” that compressed/decompressed the phantom interior. Experimental characterization comprised of determining the reproducibility and the external–internal correlation of external and internal marker trajectories extracted from kV x-ray fluoroscopy. Experiments were conducted to illustrate three example applications of the phantom—(i) validating the geometric accuracy of the VisionRT surface photogrammetry system; (ii) validating an image registration tool, NiftyReg; and (iii) quantifying the geometric error due to irregular motion in four-dimensional computed tomography (4DCT). Results: The phantom correctly reproduced sinusoidal and patient-derived motion, as well as realistic respiratory motion-related effects such as hysteresis. The reproducibility of marker trajectories over multiple runs for sinusoidal as well as patient traces, as characterized by fluoroscopy, was within 0

  6. A 4D biomechanical lung phantom for joint segmentation/registration evaluation

    NASA Astrophysics Data System (ADS)

    Markel, Daniel; Levesque, Ives; Larkin, Joe; Léger, Pierre; El Naqa, Issam

    2016-10-01

    At present, there exists few openly available methods for evaluation of simultaneous segmentation and registration algorithms. These methods allow for a combination of both techniques to track the tumor in complex settings such as adaptive radiotherapy. We have produced a quality assurance platform for evaluating this specific subset of algorithms using a preserved porcine lung in such that it is multi-modality compatible: positron emission tomography (PET), computer tomography (CT) and magnetic resonance imaging (MRI). A computer controlled respirator was constructed to pneumatically manipulate the lungs in order to replicate human breathing traces. A registration ground truth was provided using an in-house bifurcation tracking pipeline. Segmentation ground truth was provided by synthetic multi-compartment lesions to simulate biologically active tumor, background tissue and a necrotic core. The bifurcation tracking pipeline results were compared to digital deformations and used to evaluate three registration algorithms, Diffeomorphic demons, fast-symmetric forces demons and MiMVista’s deformable registration tool. Three segmentation algorithms the Chan Vese level sets method, a Hybrid technique and the multi-valued level sets algorithm. The respirator was able to replicate three seperate breathing traces with a mean accuracy of 2-2.2%. Bifurcation tracking error was found to be sub-voxel when using human CT data for displacements up to 6.5 cm and approximately 1.5 voxel widths for displacements up to 3.5 cm for the porcine lungs. For the fast-symmetric, diffeomorphic and MiMvista registration algorithms, mean geometric errors were found to be 0.430+/- 0.001 , 0.416+/- 0.001 and 0.605+/- 0.002 voxels widths respectively using the vector field differences and 0.4+/- 0.2 , 0.4+/- 0.2 and 0.6+/- 0.2 voxel widths using the bifurcation tracking pipeline. The proposed phantom was found sufficient for accurate evaluation of registration and segmentation algorithms

  7. Non-rigid dual respiratory and cardiac motion correction methods after, during, and before image reconstruction for 4D cardiac PET

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Wang, Jizhe; Fung, George; Tsui, Benjamin

    2016-01-01

    Respiratory motion (RM) and cardiac motion (CM) degrade the quality and resolution in cardiac PET scans. We have developed non-rigid motion estimation methods to estimate both RM and CM based on 4D cardiac gated PET data alone, and compensate the dual respiratory and cardiac (R&C) motions after (MCAR), during (MCDR), and before (MCBR) image reconstruction. In all three R&C motion correction methods, attenuation-activity mismatch effect was modeled by using transformed attenuation maps using the estimated RM. The difference of using activity preserving and non-activity preserving models in R&C correction was also studied. Realistic Monte Carlo simulated 4D cardiac PET data using the 4D XCAT phantom and accurate models of the scanner design parameters and performance characteristics at different noise levels were employed as the known truth and for method development and evaluation. Results from the simulation study suggested that all three dual R&C motion correction methods provide substantial improvement in the quality of 4D cardiac gated PET images as compared with no motion correction. Specifically, the MCDR method yields the best performance for all different noise levels compared with the MCAR and MCBR methods. While MCBR reduces computational time dramatically but the resultant 4D cardiac gated PET images has overall inferior image quality when compared to that from the MCAR and MCDR approaches in the ‘almost’ noise free case. Also, the MCBR method has better noise handling properties when compared with MCAR and provides better quantitative results in high noise cases. When the goal is to reduce scan time or patient radiation dose, MCDR and MCBR provide a good compromise between image quality and computational times.

  8. Non-rigid dual respiratory and cardiac motion correction methods after, during, and before image reconstruction for 4D cardiac PET.

    PubMed

    Feng, Tao; Wang, Jizhe; Fung, George; Tsui, Benjamin

    2016-01-01

    Respiratory motion (RM) and cardiac motion (CM) degrade the quality and resolution in cardiac PET scans. We have developed non-rigid motion estimation methods to estimate both RM and CM based on 4D cardiac gated PET data alone, and compensate the dual respiratory and cardiac (R&C) motions after (MCAR), during (MCDR), and before (MCBR) image reconstruction. In all three R&C motion correction methods, attenuation-activity mismatch effect was modeled by using transformed attenuation maps using the estimated RM. The difference of using activity preserving and non-activity preserving models in R&C correction was also studied. Realistic Monte Carlo simulated 4D cardiac PET data using the 4D XCAT phantom and accurate models of the scanner design parameters and performance characteristics at different noise levels were employed as the known truth and for method development and evaluation. Results from the simulation study suggested that all three dual R&C motion correction methods provide substantial improvement in the quality of 4D cardiac gated PET images as compared with no motion correction. Specifically, the MCDR method yields the best performance for all different noise levels compared with the MCAR and MCBR methods. While MCBR reduces computational time dramatically but the resultant 4D cardiac gated PET images has overall inferior image quality when compared to that from the MCAR and MCDR approaches in the 'almost' noise free case. Also, the MCBR method has better noise handling properties when compared with MCAR and provides better quantitative results in high noise cases. When the goal is to reduce scan time or patient radiation dose, MCDR and MCBR provide a good compromise between image quality and computational times.

  9. Shape-correlated deformation statistics for respiratory motion prediction in 4D lung

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxiao; Oguz, Ipek; Pizer, Stephen M.; Mageras, Gig S.

    2010-02-01

    4D image-guided radiation therapy (IGRT) for free-breathing lungs is challenging due to the complicated respiratory dynamics. Effective modeling of respiratory motion is crucial to account for the motion affects on the dose to tumors. We propose a shape-correlated statistical model on dense image deformations for patient-specic respiratory motion estimation in 4D lung IGRT. Using the shape deformations of the high-contrast lungs as the surrogate, the statistical model trained from the planning CTs can be used to predict the image deformation during delivery verication time, with the assumption that the respiratory motion at both times are similar for the same patient. Dense image deformation fields obtained by diffeomorphic image registrations characterize the respiratory motion within one breathing cycle. A point-based particle optimization algorithm is used to obtain the shape models of lungs with group-wise surface correspondences. Canonical correlation analysis (CCA) is adopted in training to maximize the linear correlation between the shape variations of the lungs and the corresponding dense image deformations. Both intra- and inter-session CT studies are carried out on a small group of lung cancer patients and evaluated in terms of the tumor location accuracies. The results suggest potential applications using the proposed method.

  10. Evaluation of COPD's diaphragm motion extracted from 4D-MRI

    NASA Astrophysics Data System (ADS)

    Swastika, Windra; Masuda, Yoshitada; Kawata, Naoko; Matsumoto, Koji; Suzuki, Toshio; Iesato, Ken; Tada, Yuji; Sugiura, Toshihiko; Tanabe, Nobuhiro; Tatsumi, Koichiro; Ohnishi, Takashi; Haneishi, Hideaki

    2015-03-01

    We have developed a method called intersection profile method to construct a 4D-MRI (3D+time) from time-series of 2D-MRI. The basic idea is to find the best matching of the intersection profile from the time series of 2D-MRI in sagittal plane (navigator slice) and time series of 2D-MRI in coronal plane (data slice). In this study, we use 4D-MRI to semiautomatically extract the right diaphragm motion of 16 subjects (8 healthy subjects and 8 COPD patients). The diaphragm motion is then evaluated quantitatively by calculating the displacement of each subjects and normalized it. We also generate phase-length map to view and locate paradoxical motion of the COPD patients. The quantitative results of the normalized displacement shows that COPD patients tend to have smaller displacement compared to healthy subjects. The average normalized displacement of total 8 COPD patients is 9.4mm and the average of normalized displacement of 8 healthy volunteers is 15.3mm. The generated phase-length maps show that not all of the COPD patients have paradoxical motion, however if it has paradoxical motion, the phase-length map is able to locate where does it occur.

  11. Assessment of tumor motion reproducibility with audio-visual coaching through successive 4D CT sessions.

    PubMed

    Goossens, Samuel; Senny, Frédéric; Lee, John A; Janssens, Guillaume; Geets, Xavier

    2014-01-04

    This study aimed to compare combined audio-visual coaching with audio coaching alone and assess their respective impact on the reproducibility of external breathing motion and, one step further, on the internal lung tumor motion itself, through successive sessions. Thirteen patients with NSCLC were enrolled in this study. The tumor motion was assessed by three to four successive 4D CT sessions, while the breathing signal was measured from magnetic sensors positioned on the epigastric region. For all sessions, the breathing was regularized with either audio coaching alone (AC, n = 5) or combined with a real-time visual feedback (A/VC, n = 8) when tolerated by the patients. Peak-to-peak amplitude, period and signal shape of both breathing and tumor motions were first measured. Then, the correlation between the respiratory signal and internal tumor motion over time was evaluated, as well as the residual tumor motion for a gated strategy. Although breathing and tumor motions were comparable between AC and AV/C groups, A/VC approach achieved better reproducibility through sessions than AC alone (mean tumor motion of 7.2 mm ± 1 vs. 8.6 mm ± 1.8 mm, and mean breathing motion of 14.9 mm ± 1.2 mm vs. 13.3mm ± 3.7 mm, respectively). High internal/external correlation reproducibility was achieved in the superior-inferior tumor motion direction for all patients. For the anterior posterior tumor motion direction, better correlation reproducibility has been observed when visual feedback has been used. For a displacement-based gating approach, A/VC might also be recommended, since it led to smaller residual tumor motion within clinically relevant duty cycles. This study suggests that combining real-time visual feedback with audio coaching might improve the reproducibility of key characteristics of the breathing pattern, and might thus be considered in the implementation of lung tumor radiotherapy.

  12. Enhanced 4D cone-beam CT with inter-phase motion model.

    PubMed

    Li, Tianfang; Koong, Albert; Xing, Lei

    2007-09-01

    Four-dimensional (4D) cone-beam CT (CBCT) is commonly obtained by respiratory phase binning of the projections, followed by independent reconstructions of the rebinned data in each phase bin. Due to the significantly reduced number of projections per reconstruction, the quality of the 4DCBCT images is often degraded by view-aliasing artifacts easily seen in the axial view. Acquisitions using multiple gantry rotations or slow gantry rotation can increase the number of projections and substantially improve the 4D images. However, the extra cost of the scan time may set fundamental limits to their applications in clinics. Improving the trade-off between image quality and scan time is the key to making 4D onboard imaging practical and more useful. In this article, we present a novel technique toward high-quality 4DCBCT imaging without prolonging the acquisition time, referred to as the "enhanced 4DCBCT". The method correlates the data in different phase bins and integrates the internal motion into the 4DCBCT image formulation. Several strategies of the motion derivation are discussed, and the resultant images are assessed with numerical simulations as well as a clinical case.

  13. TH-A-BRF-12: Assessment of 4D-MRI for Robust Motion and Volume Characterization

    SciTech Connect

    Glide-Hurst, C; Kim, J; Wen, N; Chetty, I; Hu, Y; Mutic, S

    2014-06-15

    Purpose: Precise radiation therapy for abdominal lesions is complicated by respiratory motion and poor soft tissue contrast from 4DCT whereas 4DMRI provides superior tissue discrimination. We evaluated a novel 4D-MRI algorithm for MR-SIM motion management. Methods: Respiratory-triggered, T2-weighted single-shot Turbo Spin Echo 4D-MRI was evaluated for open high-field 1.0T MR-SIM. A programmable platform pulled objects on a trolley ∼2 cm superior-inferior (S-I) for “regular” (sinusoidal, (1-cos{sup 2}), 3-5 second periods) and “irregular” breathing patterns (exaggerated (1-cos{sup 2}) and patient curves), while a respiratory waveform was generated via a pressure sensor device. Coronal 4D-MRIs (2–12;10 phases, TE/TR/α = 35−61/6100 ms/90°, voxel=1×1×4 mm{sup 3}) were acquired for 54 unique phantom cases. Abdominal 4D−MRIs were evaluated for 5 healthy volunteers and 1 liver cancer patient (6–10 phases, TE/TR/α = 30−96/4500−6100 ms/90°, voxel=1×1×5–10 mm{sup 3}) on an IRB-approved protocol. Duty cycle, scan time, and excursion were evaluated between phase acquisitions and compared to coronal cine-MRI (∼1 frame/sec). Maximum intensity projections (MIPs) were analyzed. Results: In phantom, average duty cycle was 42.6 ± 11.4% (range: 23.6–69.1%). Regular, periodic breathing (sinusoidal, (1-cos{sup 2})) yielded higher duty cycles than irregular (48.5% and 35.9%, respectively, p<0.001) and fast periods had higher duty cycles than slow (50.4% for 3s and 39.4% for 5s, p<0.001). ∼4-fold acquisition time increase was measured for 10-phase versus 2-phase. MIP renderings revealed that SI object extent was underestimated a maximum of 4% (3mm) and 8% (6mm) for cine and 2-phase 4D-MRI, respectively, with respect to 10-phases. However, this was waveform dependent. A highly irregular breathing volunteer yielded lowest duty cycle (23%) and longest 10-phase scan time (∼14 minutes), although 6-phase acquisition for a liver cancer patient was

  14. Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

    DOEpatents

    Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P

    2013-09-17

    A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.

  15. TU-F-17A-03: A 4D Lung Phantom for Coupled Registration/Segmentation Evaluation

    SciTech Connect

    Markel, D; El Naqa, I; Levesque, I

    2014-06-15

    Purpose: Coupling the processes of segmentation and registration (regmentation) is a recent development that allows improved efficiency and accuracy for both steps and may improve the clinical feasibility of online adaptive radiotherapy. Presented is a multimodality animal tissue model designed specifically to provide a ground truth to simultaneously evaluate segmentation and registration errors during respiratory motion. Methods: Tumor surrogates were constructed from vacuum sealed hydrated natural sea sponges with catheters used for the injection of PET radiotracer. These contained two compartments allowing for two concentrations of radiotracer mimicking both tumor and background signals. The lungs were inflated to different volumes using an air pump and flow valve and scanned using PET/CT and MRI. Anatomical landmarks were used to evaluate the registration accuracy using an automated bifurcation tracking pipeline for reproducibility. The bifurcation tracking accuracy was assessed using virtual deformations of 2.6 cm, 5.2 cm and 7.8 cm of a CT scan of a corresponding human thorax. Bifurcations were detected in the deformed dataset and compared to known deformation coordinates for 76 points. Results: The bifurcation tracking accuracy was found to have a mean error of −0.94, 0.79 and −0.57 voxels in the left-right, anterior-posterior and inferior-superior axes using a 1×1×5 mm3 resolution after the CT volume was deformed 7.8 cm. The tumor surrogates provided a segmentation ground truth after being registered to the phantom image. Conclusion: A swine lung model in conjunction with vacuum sealed sponges and a bifurcation tracking algorithm is presented that is MRI, PET and CT compatible and anatomically and kinetically realistic. Corresponding software for tracking anatomical landmarks within the phantom shows sub-voxel accuracy. Vacuum sealed sponges provide realistic tumor surrogate with a known boundary. A ground truth with minimal uncertainty is thus

  16. Respiratory motion variations from skin surface on lung cancer patients from 4D CT data

    NASA Astrophysics Data System (ADS)

    Gallego-Ortiz, Nicolas; Orban de Xivry, Jonathan; Descampe, Antonin; Goossens, Samuel; Geets, Xavier; Janssens, Guillaume; Macq, Benoit

    2014-03-01

    In radiation therapy of thorax and abdomen regions, knowing how respiratory motion modifies tumor position and trajectory is crucial for accurate dose delivery to tumors while avoiding healthy tissue and organs at risk. Three types of variations are studied: motion amplitudes measured from the patient's skin surface and internal tumor trajectory, internal/external correlations and tumor trajectory baseline shift. Four male patients with lung cancer with three repeated 4D computed tomography (4DCT) scans, taken on different treatment days, were studied. Surfaces were extracted from 4DCT scans by segmentation. Motion over specific regions of interest was analyzed with respect to the motion of the tumor center of mass and correlation coefficient was computed. Tumor baseline shifts were analyzed after rigid registration based on vertebrae and surface registration. External amplitude variations were observed between fractions. Correlation coefficients of internal trajectories and external distances are greater than 0.6 in the abdomen. This correlation was observable and significant for all patients showing that the external motion is a good surrogate for internal movement on an intra-fraction basis. However for the inter-fraction case, external amplitude variations were observed between fractions and no correlation was found with the internal amplitude variations. Moreover, baseline shifts after surface registration were greater than those after vertebrae registration and the mean distance between surfaces after registration was not correlated to the magnitude of the baseline shift. These two observations show that, with the current representation of the external surface, inter-fraction variations are not detectable on the surface.

  17. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT.

    PubMed

    Pan, Tinsu; Lee, Ting-Yim; Rietzel, Eike; Chen, George T Y

    2004-02-01

    We propose a new scanning protocol for generating 4D-CT image data sets influenced by respiratory motion. A cine scanning protocol is used during data acquisition, and two registration methods are used to sort images into temporal phases. A volume is imaged in multiple acquisitions of 1 or 2 cm length along the cranial-caudal direction. In each acquisition, the scans are continuously acquired for a time interval greater than or equal to the average respiratory cycle plus the duration of the data for an image reconstruction. The x ray is turned off during CT table translation and the acquisition is repeated until the prescribed volume is completely scanned. The scanning for 20 cm coverage takes about 1 min with an eight-slice CT or 2 mins with a four-slice CT. After data acquisition, the CT data are registered into respiratory phases based on either an internal anatomical match or an external respiratory signal. The internal approach registers the data according to correlation of anatomy in the CT images between two adjacent locations in consecutive respiratory cycles. We have demonstrated the technique with ROIs placed in the region of diaphragm. The external approach registers the image data according to an externally recorded respiratory signal generated by the Real-Time Position Management (RPM) Respiratory Gating System (Varian Medical Systems, Palo Alto, CA). Compared with previously reported prospective or retrospective imaging of the respiratory motion with a single-slice or multi-slice CT, the 4D-CT method proposed here provides (1) a shorter scan time of three to six times faster than the single-slice CT with prospective gating; (2) a shorter scan time of two to four times improvement over a previously reported multi-slice CT implementation, and (3) images over all phases of a breathing cycle. We have applied the scanning and registration methods on phantom, animal and patients, and initial results suggest the applicability of both the scanning and the

  18. Digital Anthropomorphic Phantoms of Non-Rigid Human Respiratory and Voluntary Body Motion for Investigating Motion Correction in Emission Imaging

    PubMed Central

    Könik, Arda; Connolly, Caitlin M; Johnson, Karen L; Dasari, Paul; Segars, Paul W; Pretorius, P H; Lindsay, Clifford; Dey, Joyoni; King, Michael A

    2014-01-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used XCAT phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain more realistic representation of motion, we developed a series of individual-specific XCAT phantoms modeling non-rigid respiratory and non-rigid body motions derived from the MRI acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, MRI was acquired during free/regular breathing. The MR slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a GUI. Thus far we have created 5 body motion and 5 respiratory motion XCAT phantoms from MRI acquisitions of 6 healthy volunteers (3 males and 3 females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory and body motion phantoms with a varying extent and character for each individual. In addition to these phantoms, we

  19. SU-E-J-123: Assessing Segmentation Accuracy of Internal Volumes and Sub-Volumes in 4D PET/CT of Lung Tumors Using a Novel 3D Printed Phantom

    SciTech Connect

    Soultan, D; Murphy, J; James, C; Hoh, C; Moiseenko, V; Cervino, L; Gill, B

    2015-06-15

    Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images were binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing.

  20. [Super-resolution reconstruction of lung 4D-CT images based on fast sub-pixel motion estimation].

    PubMed

    Xiao, Shan; Wang, Tingting; Lü, Qingwen; Zhang, Yu

    2015-07-01

    Super-resolution image reconstruction techniques play an important role for improving image resolution of lung 4D-CT. We presents a super-resolution approach based on fast sub-pixel motion estimation to reconstruct lung 4D-CT images. A fast sub-pixel motion estimation method was used to estimate the deformation fields between "frames", and then iterative back projection (IBP) algorithm was employed to reconstruct high-resolution images. Experimental results showed that compared with traditional interpolation method and super-resolution reconstruction algorithm based on full search motion estimation, the proposed method produced clearer images with significantly enhanced image structure details and reduced time for computation.

  1. A breathing thorax phantom with independently programmable 6D tumour motion for dosimetric measurements in radiation therapy

    NASA Astrophysics Data System (ADS)

    Steidl, P.; Richter, D.; Schuy, C.; Schubert, E.; Haberer, Th; Durante, M.; Bert, C.

    2012-04-01

    Irradiation of moving targets using a scanned ion beam can cause clinically intolerable under- and overdosages within the target volume due to the interplay effect. Several motion mitigation techniques such as gating, beam tracking and rescanning are currently investigated to overcome this restriction. To enable detailed experimental studies of potential mitigation techniques a complex thorax phantom was developed. The phantom consists of an artificial thorax with ribs to introduce density changes. The contraction of the thorax can be controlled by a stepping motor. A robotic driven detector head positioned inside the thorax mimics e.g. a lung tumour. The detector head comprises 20 ionization chambers and 5 radiographic films for target dose measurements. The phantom’s breathing as well as the 6D tumour motion (3D translation, 3D rotation) can be programmed independently and adjusted online. This flexibility allows studying the dosimetric effects of correlation mismatches between internal and external motions, irregular breathing, or baseline drifts to name a few. Commercial motion detection systems, e.g. VisionRT or Anzai belt, can be mounted as they would be mounted in a patient case. They are used to control the 4D treatment delivery and to generate data for 4D dose calculation. To evaluate the phantom’s properties, measurements addressing reproducibility, stability, temporal behaviour and performance of dedicated breathing manoeuvres were performed. In addition, initial dosimetric tests for treatment with a scanned carbon beam are reported.

  2. A 4D dose computation method to investigate motion interplay effects in scanned ion beam prostate therapy

    NASA Astrophysics Data System (ADS)

    Ammazzalorso, F.; Jelen, U.

    2014-06-01

    In particle therapy, the interplay between beam scanning and target motion during treatment delivery may result in dose deterioration. Interplay effects have been studied for targets exhibiting periodic respiratory motion, however, they are not well understood for irregular motion patterns, such as those exhibited by the prostate. In this note, we propose and validate a 4D dose computation method, which enables estimation of effective dose delivered to the prostate by scanning ion beams in presence of intrafraction motion, as well as facilitates investigation of various motion interplay countermeasures.

  3. Reconstruction of 4D-CT data sets acquired during free breathing for the analysis of respiratory motion

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Werner, Rene; Frenzel, Thorsten; Säring, Dennis; Lu, Wei; Low, Daniel; Handels, Heinz

    2006-03-01

    Respiratory motion is a significant source of error in radiotherapy treatment planning. 4D-CT data sets can be useful to measure the impact of organ motion caused by breathing. But modern CT scanners can only scan a limited region of the body simultaneously and patients have to be scanned in segments consisting of multiple slices. For studying free breathing motion multislice CT scans can be collected simultaneously with digital spirometry over several breathing cycles. The 4D data set is assembled by sorting the free breathing multislice CT scans according to the couch position and the tidal volume. But artifacts can occur because there are no data segments for exactly the same tidal volume and all couch positions. We present an optical flow based method for the reconstruction of 4D-CT data sets from multislice CT scans, which are collected simultaneously with digital spirometry. The optical flow between the scans is estimated by a non-linear registration method. The calculated velocity field is used to reconstruct a 4D-CT data set by interpolating data at user-defined tidal volumes. By this technique, artifacts can be reduced significantly. The reconstructed 4D-CT data sets are used for studying inner organ motion during the respiratory cycle. The procedures described were applied to reconstruct 4D-CT data sets for four tumour patients who have been scanned during free breathing. The reconstructed 4D data sets were used to quantify organ displacements and to visualize the abdominothoracic organ motion.

  4. Joint surface reconstruction and 4D deformation estimation from sparse data and prior knowledge for marker-less Respiratory motion tracking

    SciTech Connect

    Berkels, Benjamin; Rumpf, Martin; Bauer, Sebastian; Ettl, Svenja; Arold, Oliver; Hornegger, Joachim

    2013-09-15

    Purpose: The intraprocedural tracking of respiratory motion has the potential to substantially improve image-guided diagnosis and interventions. The authors have developed a sparse-to-dense registration approach that is capable of recovering the patient's external 3D body surface and estimating a 4D (3D + time) surface motion field from sparse sampling data and patient-specific prior shape knowledge.Methods: The system utilizes an emerging marker-less and laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement field is recovered, which describes the spatio-temporal 4D deformation of the complete patient body surface, depending on the type and state of respiration. It yields both a reconstruction of the instantaneous patient shape and a high-dimensional respiratory surrogate for respiratory motion tracking. The method is validated on a 4D CT respiration phantom and evaluated on both real data from an AT prototype and synthetic data sampled from dense surface scans acquired with a structured-light scanner.Results: In the experiments, the authors estimated surface motion fields with the proposed algorithm on 256 datasets from 16 subjects and in different respiration states, achieving a mean surface reconstruction accuracy of ±0.23 mm with respect to ground truth data—down from a mean initial surface mismatch of 5.66 mm. The 95th percentile of the local residual mesh-to-mesh distance after registration did not exceed 1.17 mm for any subject. On average, the total runtime of our proof of concept CPU implementation is 2.3 s per frame, outperforming related work substantially.Conclusions: In external beam radiation therapy, the approach holds potential for patient monitoring during treatment using the reconstructed surface, and for motion-compensated dose delivery using

  5. Cardiac C-arm CT: 4D non-model based heart motion estimation and its application

    NASA Astrophysics Data System (ADS)

    Prümmer, M.; Fahrig, R.; Wigström, L.; Boese, J.; Lauritsch, G.; Strobel, N.; Hornegger, J.

    2007-03-01

    The combination of real-time fluoroscopy and 3D cardiac imaging on the same C-arm system is a promising technique that might improve therapy planning, guiding, and monitoring in the interventional suite. In principal, to reconstruct a 3D image of the beating heart at a particular cardiac phase, a complete set of X-ray projection data representing that phase is required. One approximate approach is the retrospectively ECG-gated FDK reconstruction (RG-FDK). From the acquired data set of N s multiple C-arm sweeps, those projection images which are acquired closest in time to the desired cardiac phase are retrospectively selected. However, this approach uses only 1/ N s of the obtained data. Our goal is to utilize data from other cardiac phases as well. In order to minimize blurring and motion artifacts, cardiac motion has to be compensated for, which can be achieved using a temporally dependent spatial 3D warping of the filtered-backprojections. In this work we investigate the computation of the 4D heart motion based on prior reconstructions of several cardiac phases using RG-FDK. A 4D motion estimation framework is presented using standard fast non-rigid registration. A smooth 4D motion vector field (MVF) represents the relative deformation compared to a reference cardiac phase. A 4D deformation regridding by adaptive supersampling allows selecting any reference phase independently of the set of phases used in the RG-FDK for a motion corrected reconstruction. Initial promising results from in vivo experiments are shown. The subjects individual 4D cardiac MVF could be computed from only three RG-FDK image volumes. In addition, all acquired projection data were motion corrected and subsequently used for image reconstruction to improve the signal-to-noise ratio compared to RG-FDK.

  6. Motion4D - A library for lightrays and timelike worldlines in the theory of relativity

    NASA Astrophysics Data System (ADS)

    Müller, Thomas; Grave, Frank

    2009-11-01

    The Motion4D-library solves the geodesic equation as well as the parallel- and Fermi-Walker-transport in four-dimensional Lorentzian spacetimes numerically. Initial conditions are given with respect to natural local tetrads which are adapted to the symmetries or the coordinates of the spacetime. Beside some already implemented metrics like the Schwarzschild and Kerr metric, the object oriented structure of the library permits to implement other metrics or integrators in a straight forward manner. Catalogue identifier: AEEX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 150 425 No. of bytes in distributed program, including test data, etc.: 5 139 407 Distribution format: tar.gz Programming language: C++ Computer: All platforms with a C++ compiler Operating system: Linux, Unix, Windows RAM: 39 MBytes Classification: 1.5 External routines: Gnu Scientific Library (GSL) (http://www.gnu.org/software/gsl/) Nature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes. Solution method: Integration of ordinary differential equations Running time: The test runs provided with the distribution require only a few seconds to run.

  7. Photo-consistency registration of a 4D cardiac motion model to endoscopic video for image guidance of robotic coronary artery bypass

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Rueckert, Daniel; Edwards, Eddie

    2009-02-01

    The aim of the work described in this paper is registration of a 4D preoperative motion model of the heart to the video view of the patient through the intraoperative endoscope. The heart motion is cyclical and can be modelled using multiple reconstructions of cardiac gated coronary CT. We propose the use of photoconsistency between the two views through the da Vinci endoscope to align to the preoperative heart surface model from CT. The temporal alignment from the video to the CT model could in principle be obtained from the ECG signal. We propose averaging of the photoconsistency over the cardiac cycle to improve the registration compared to a single view. Though there is considerable motion of the heart, after correct temporal alignment we suggest that the remaining motion should be close to rigid. Results are presented for simulated renderings and for real video of a beating heart phantom. We found much smoother sections at the minimum when using multiple phases for the registration, furthermore convergence was found to be better when more phases are used.

  8. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    SciTech Connect

    Vijayan, Sinara; Klein, Stefan; Hofstad, Erlend Fagertun; Langø, Thomas; Lindseth, Frank; Ystgaard, Brynjulf

    2014-08-15

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  9. Automatic generation of time resolved motion vector fields of coronary arteries and 4D surface extraction using rotational x-ray angiography

    NASA Astrophysics Data System (ADS)

    Jandt, Uwe; Schäfer, Dirk; Grass, Michael; Rasche, Volker

    2009-01-01

    Rotational coronary angiography provides a multitude of x-ray projections of the contrast agent enhanced coronary arteries along a given trajectory with parallel ECG recording. These data can be used to derive motion information of the coronary arteries including vessel displacement and pulsation. In this paper, a fully automated algorithm to generate 4D motion vector fields for coronary arteries from multi-phase 3D centerline data is presented. The algorithm computes similarity measures of centerline segments at different cardiac phases and defines corresponding centerline segments as those with highest similarity. In order to achieve an excellent matching accuracy, an increasing number of bifurcations is included as reference points in an iterative manner. Based on the motion data, time-dependent vessel surface extraction is performed on the projections without the need of prior reconstruction. The algorithm accuracy is evaluated quantitatively on phantom data. The magnitude of longitudinal errors (parallel to the centerline) reaches approx. 0.50 mm and is thus more than twice as large as the transversal 3D extraction errors of the underlying multi-phase 3D centerline data. It is shown that the algorithm can extract asymmetric stenoses accurately. The feasibility on clinical data is demonstrated on five different cases. The ability of the algorithm to extract time-dependent surface data, e.g. for quantification of pulsating stenosis is demonstrated.

  10. Validation of computational fluid dynamics methods with anatomically exact, 3D printed MRI phantoms and 4D pcMRI.

    PubMed

    Anderson, Jeff R; Diaz, Orlando; Klucznik, Richard; Zhang, Y Jonathan; Britz, Gavin W; Grossman, Robert G; Lv, Nan; Huang, Qinghai; Karmonik, Christof

    2014-01-01

    A new concept of rapid 3D prototyping was implemented using cost-effective 3D printing for creating anatomically correct replica of cerebral aneurysms. With a dedicated flow loop set-up in a full body human MRI scanner, flow measurements were performed using 4D phase contrast magnetic resonance imaging to visualize and quantify intra-aneurysmal flow patterns. Ultrashort TE sequences were employed to obtain high-resolution 3D image data to visualize the lumen inside the plastic replica. In-vitro results were compared with retrospectively obtained in-vivo data and results from computational fluid dynamics simulations (CFD). Rapid prototyping of anatomically realistic 3D models may have future impact in treatment planning, design of image acquisition methods for MRI and angiographic systems and for the design and testing of advanced image post-processing technologies.

  11. Induction and separation of motion artifacts in EEG data using a mobile phantom head device

    NASA Astrophysics Data System (ADS)

    Oliveira, Anderson S.; Schlink, Bryan R.; Hairston, W. David; König, Peter; Ferris, Daniel P.

    2016-06-01

    Objective. Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. Approach. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Main results. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components’ (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%–700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Significance. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

  12. Induction and separation of motion artifacts in EEG data using a mobile phantom head device

    NASA Astrophysics Data System (ADS)

    Oliveira, Anderson S.; Schlink, Bryan R.; Hairston, W. David; König, Peter; Ferris, Daniel P.

    2016-06-01

    Objective. Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. Approach. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Main results. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components’ (ICs) power spectrum (˜15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%-700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Significance. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

  13. SU-E-J-155: Utilizing Varian TrueBeam Developer Mode for the Quantification of Mechanical Limits and the Simulation of 4D Respiratory Motion

    SciTech Connect

    Moseley, D; Dave, M

    2014-06-01

    Purpose: Use Varian TrueBeam Developer mode to quantify the mechanical limits of the couch and to simulate 4D respiratory motion. Methods: An in-house MATLAB based GUI was created to make the BEAM XML files. The couch was moved in a triangular wave in the S/I direction with varying amplitudes (1mm, 5mm, 10mm, and 50mm) and periods (3s, 6s, and 9s). The periods were determined by specifying the speed. The theoretical positions were compared to the values recorded by the machine at 50 Hz. HD videos were taken for certain tests as external validation. 4D Respiratory motion was simulated by an A/P MV beam being delivered while the couch moved in an elliptical manner. The ellipse had a major axis of 2 cm (S/I) and a minor axis of 1 cm (A/P). Results: The path planned by the TrueBeam deviated from the theoretical triangular form as the speed increased. Deviations were noticed starting at a speed of 3.33 cm/s (50mm amplitude, 6s period). The greatest deviation occurred in the 50mm- 3s sequence with a correlation value of −0.13 and a 27% time increase; the plan essentially became out of phase. Excluding these two, the plans had correlation values of 0.99. The elliptical sequence effectively simulated a respiratory pattern with a period of 6s. The period could be controlled by changing the speeds or the dose rate. Conclusion: The work first shows the quantification of the mechanical limits of the couch and the speeds at which the proposed plans begin to deviate. These limits must be kept in mind when programming other couch sequences. The methodology can be used to quantify the limits of other axes. Furthermore, the work shows the possibility of creating 4D respiratory simulations without using specialized phantoms or motion-platforms. This can be further developed to program patient-specific breathing patterns.

  14. SU-E-J-81: Interplay Effect in Non-Gated Dynamic Treatment Delivery of a Lung Phantom with Simulated Respiratory Motion

    SciTech Connect

    Desai, V; Fagerstrom, J; Bayliss, A; Kissick, M

    2014-06-01

    Purpose: To quantify the interplay effect in non-gated VMAT external beam delivery using realistic, clinically relevant 3D motion in an anthropomorphic lung phantom, and to determine if adding margins is sufficient to account for motion or if gating is required in all cases. Methods: A 4D motion stage was used to move a Virtual Water (VW) lung target containing a piece of radiochromic EBT3 film in an anthropomorphic chest phantom. A five-arc stereotactic body radiation therapy (SBRT) treatment was planned using a CT scan of the phantom in its stationary position, using planning parameters chosen to push the optimizer to achieve a highly-modulated plan. Two scenarios were delivered using a Varian TrueBeam: the first was delivered with the phantom and target both stationary and the second was delivered with the phantom stationary but the target moving in a realistic, irregular 3D elliptical pattern. A single piece of 4×4 cm{sup 2} film was used per fraction, located in the central coronal plane of the target. Film was calibrated on a 6 MV beam with dose values from 0.20 to 20 Gy. Results: Preliminary test films were analyzed in ImageJ and MatLab software. Dose maps were calculated on a central region of interest (ROI) delineated on both the motion-induced and stationary films. Both static and dynamic film dose maps agreed with planning values within acceptable uncertainty. Conclusion: Including a large number of arcs in a clinically realistic SBRT treatment could reduce the effect of motion interplay due to averaging. Because all clinics do not employ multiple arcs for SBRT lung treatments, it is still important to consider the effects of motion on treatment delivery. Further analysis on the treatment films, as well as a broader investigation other planning parameters, will be conducted.

  15. A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy.

    PubMed

    McClelland, Jamie R; Blackall, Jane M; Tarte, Ségolène; Chandler, Adam C; Hughes, Simon; Ahmad, Shahreen; Landau, David B; Hawkes, David J

    2006-09-01

    Respiratory motion causes errors when planning and delivering radiotherapy treatment to lung cancer patients. To reduce these errors, methods of acquiring and using four-dimensional computed tomography (4DCT) datasets have been developed. We have developed a novel method of constructing computational motion models from 4DCT. The motion models attempt to describe an average respiratory cycle, which reduces the effects of variation between different cycles. They require substantially less memory than a 4DCT dataset, are continuous in space and time, and facilitate automatic target propagation and combining of doses over the respiratory cycle. The motion models are constructed from CT data acquired in cine mode while the patient is free breathing (free breathing CT - FBCT). A "slab" of data is acquired at each couch position, with 3-4 contiguous slabs being acquired per patient. For each slab a sequence of 20 or 30 volumes was acquired over 20 seconds. A respiratory signal is simultaneously recorded in order to calculate the position in the respiratory cycle for each FBCT. Additionally, a high quality reference CT volume is acquired at breath hold. The reference volume is nonrigidly registered to each of the FBCT volumes. A motion model is then constructed for each slab by temporally fitting the nonrigid registration results. The value of each of the registration parameters is related to the position in the respiratory cycle by fitting an approximating B spline to the registration results. As an approximating function is used, and the data is acquired over several respiratory cycles, the function should model an average respiratory cycle. This can then be used to calculate the value of each degree of freedom at any desired position in the respiratory cycle. The resulting nonrigid transformation will deform the reference volume to predict the contents of the slab at the desired position in the respiratory cycle. The slab model predictions are then concatenated to

  16. IGRT/ART phantom with programmable independent rib cage and tumor motion

    SciTech Connect

    Haas, Olivier C. L.; Mills, John A.; Land, Imke; Mulholl, Pete; Menary, Paul; Crichton, Robert; Wilson, Adrian; Sage, John; Anna, Morenc; Depuydt, Tom

    2014-02-15

    Purpose: This paper describes the design and experimental evaluation of the Methods and Advanced Equipment for Simulation and Treatment in Radiation Oncology (MAESTRO) thorax phantom, a new anthropomorphic moving ribcage combined with a 3D tumor positioning system to move target inserts within static lungs. Methods: The new rib cage design is described and its motion is evaluated using Vicon Nexus, a commercial 3D motion tracking system. CT studies at inhale and exhale position are used to study the effect of rib motion and tissue equivalence. Results: The 3D target positioning system and the rib cage have millimetre accuracy. Each axis of motion can reproduce given trajectories from files or individually programmed sinusoidal motion in terms of amplitude, period, and phase shift. The maximum rib motion ranges from 7 to 20 mm SI and from 0.3 to 3.7 mm AP with LR motion less than 1 mm. The repeatability between cycles is within 0.16 mm root mean square error. The agreement between CT electron and mass density for skin, ribcage, spine hard and inner bone as well as cartilage is within 3%. Conclusions: The MAESTRO phantom is a useful research tool that produces programmable 3D rib motions which can be synchronized with 3D internal target motion. The easily accessible static lungs enable the use of a wide range of inserts or can be filled with lung tissue equivalent and deformed using the target motion system.

  17. Tumor and normal tissue motion in the thorax during respiration: Analysis of volumetric and positional variations using 4D CT

    SciTech Connect

    Weiss, Elisabeth . E-mail: eweiss@mcvh-vcu.edu; Wijesooriya, Krishni; Dill, S. Vaughn; Keall, Paul J.

    2007-01-01

    Purpose: To investigate temporospatial variations of tumor and normal tissue during respiration in lung cancer patients. Methods and Materials: In 14 patients, gross tumor volume (GTV) and normal tissue structures were manually contoured on four-dimensional computed tomography (4D-CT) scans. Structures were evaluated for volume changes, centroid (center of mass) motion, and phase dependence of variations relative to inspiration. Only volumetrically complete structures were used for analysis (lung in 2, heart in 8, all other structures in >10 patients). Results: During respiration, the magnitude of contoured volumes varied up to 62.5% for GTVs, 25.5% for lungs, and 12.6% for hearts. The range of maximum three-dimensional centroid movement for individual patients was 1.3-24.0 mm for GTV, 2.4-7.9 mm for heart, 5.2-12.0 mm for lungs, 0.3-5.5 mm for skin markers, 2.9-10.0 mm for trachea, and 6.6-21.7 mm for diaphragm. During respiration, the centroid positions of normal structures varied relative to the centroid position of the respective GTV by 1.5-8.1 mm for heart, 2.9-9.3 mm for lungs, 1.2-9.2 mm for skin markers, 0.9-7.1 mm for trachea, and 2.7-16.4 mm for diaphragm. Conclusion: Using 4D-CT, volumetric changes, positional alterations as well as changes in the position of contoured structures relative to the GTV were observed with large variations between individual patients. Although the interpretation of 4D-CT data has considerable uncertainty because of 4D-CT artifacts, observer variations, and the limited acquisition time, the findings might have a significant impact on treatment planning.

  18. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    PubMed

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms. PMID:23286095

  19. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    PubMed

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.

  20. Development of a 6DOF robotic motion phantom for radiation therapy

    SciTech Connect

    Belcher, Andrew H.; Liu, Xinmin; Grelewicz, Zachary; Pearson, Erik; Wiersma, Rodney D.

    2014-12-15

    Purpose: The use of medical technology capable of tracking patient motion or positioning patients along 6 degree-of-freedom (6DOF) has steadily increased in the field of radiation therapy. However, due to the complex nature of tracking and performing 6DOF motion, it is critical that such technology is properly verified to be operating within specifications in order to ensure patient safety. In this study, a robotic motion phantom is presented that can be programmed to perform highly accurate motion along any X (left–right), Y (superior–inferior), Z (anterior–posterior), pitch (around X), roll (around Y), and yaw (around Z) axes. In addition, highly synchronized motion along all axes can be performed in order to simulate the dynamic motion of a tumor in 6D. The accuracy and reproducibility of this 6D motion were characterized. Methods: An in-house designed and built 6D robotic motion phantom was constructed following the Stewart–Gough parallel kinematics platform archetype. The device was controlled using an inverse kinematics formulation, and precise movements in all 6 degrees-of-freedom (X, Y, Z, pitch, roll, and yaw) were performed, both simultaneously and separately for each degree-of-freedom. Additionally, previously recorded 6D cranial and prostate motions were effectively executed. The robotic phantom movements were verified using a 15 fps 6D infrared marker tracking system and the measured trajectories were compared quantitatively to the intended input trajectories. The workspace, maximum 6D velocity, backlash, and weight load capabilities of the system were also established. Results: Evaluation of the 6D platform demonstrated translational root mean square error (RMSE) values of 0.14, 0.22, and 0.08 mm over 20 mm in X and Y and 10 mm in Z, respectively, and rotational RMSE values of 0.16°, 0.06°, and 0.08° over 10° of pitch, roll, and yaw, respectively. The robotic stage also effectively performed controlled 6D motions, as well as reproduced

  1. Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy.

    PubMed

    Kim, Jina; Lee, Youngkyu; Shin, Hunjoo; Ji, Sanghoon; Park, Sungkwang; Kim, Jinyoung; Jang, Hongseok; Kang, Youngnam

    2016-01-01

    Radiation treatment requires high accuracy to protect healthy organs and destroy the tumor. However, tumors located near the diaphragm constantly move during treatment. Respiration-gated radiotherapy has significant potential for the improvement of the irradiation of tumor sites affected by respiratory motion, such as lung and liver tumors. To measure and minimize the effects of respiratory motion, a realistic deformable phantom is required for use as a gold standard. The purpose of this study was to develop and study the characteristics of a deformable moving lung (DML) phantom, such as simulation, tissue equivalence, and rate of deformation. The rate of change of the lung volume, target deformation, and respiratory signals were measured in this study; they were accurately measured using a realistic deformable phantom. The measured volume difference was 31%, which closely corresponds to the average difference in human respiration, and the target movement was - 30 to + 32mm. The measured signals accurately described human respiratory signals. This DML phantom would be useful for the estimation of deformable image registration and in respiration-gated radiotherapy. This study shows that the developed DML phantom can exactly simulate the patient׳s respiratory signal and it acts as a deformable 4-dimensional simulation of a patient׳s lung with sufficient volume change.

  2. 5D respiratory motion model based image reconstruction algorithm for 4D cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jiulong; Zhang, Xue; Zhang, Xiaoqun; Zhao, Hongkai; Gao, Yu; Thomas, David; Low, Daniel A.; Gao, Hao

    2015-11-01

    4D cone-beam computed tomography (4DCBCT) reconstructs a temporal sequence of CBCT images for the purpose of motion management or 4D treatment in radiotherapy. However the image reconstruction often involves the binning of projection data to each temporal phase, and therefore suffers from deteriorated image quality due to inaccurate or uneven binning in phase, e.g., under the non-periodic breathing. A 5D model has been developed as an accurate model of (periodic and non-periodic) respiratory motion. That is, given the measurements of breathing amplitude and its time derivative, the 5D model parametrizes the respiratory motion by three time-independent variables, i.e., one reference image and two vector fields. In this work we aim to develop a new 4DCBCT reconstruction method based on 5D model. Instead of reconstructing a temporal sequence of images after the projection binning, the new method reconstructs time-independent reference image and vector fields with no requirement of binning. The image reconstruction is formulated as a optimization problem with total-variation regularization on both reference image and vector fields, and the problem is solved by the proximal alternating minimization algorithm, during which the split Bregman method is used to reconstruct the reference image, and the Chambolle's duality-based algorithm is used to reconstruct the vector fields. The convergence analysis of the proposed algorithm is provided for this nonconvex problem. Validated by the simulation studies, the new method has significantly improved image reconstruction accuracy due to no binning and reduced number of unknowns via the use of the 5D model.

  3. 4D Monitoring of a River Restoration Project with Structure-from-Motion

    NASA Astrophysics Data System (ADS)

    Dietrich, J. T.

    2013-12-01

    Structure-from-Motion (SfM) has been gaining ground in recent years as a unique, low-cost tool for 3D data collection in the geosciences. For rivers, SfM can provide a useful supplement to traditional cross-section and longitudinal surveys. The data that SfM provides, orthophotographs and digital surface models (DSMs), can provide useful analysis of sediment size, riparian vegetation and fluvial wood that traditional methods are unable to capture at high-resolutions. This research highlights the applications of SfM to 3D temporal change detection on a recent 300-meter river restoration project on Granite Boulder Creek, a tributary of the Middle Fork John Day River in eastern Oregon. I used a pole mounted digital SLR camera to collect photographs of the channel and rtkGPS to collect ground control points throughout the length of the study reach. I collected the first dataset in 2012, immediately after initial restoration, and the second dataset in 2013. Using a combination of new point-cloud based differencing as well as more conventional difference of DEMs (DoD), I was able to detect changes in vegetation, bar and bank morphology and sediment distribution at high-resolutions in the restoration project. This research demonstrates that high-resolution 3D change detection can be achieved simply and effectively using a basic photographic platform in the field.

  4. Dosimetric evaluation of intrafractional tumor motion by means of a robot driven phantom

    SciTech Connect

    Richter, Anne; Wilbert, Juergen; Flentje, Michael

    2011-10-15

    Purpose: The aim of the work was to investigate the influence of intrafractional tumor motion to the accumulated (absorbed) dose. The accumulated dose was determined by means of calculations and measurements with a robot driven motion phantom. Methods: Different motion scenarios and compensation techniques were realized in a phantom study to investigate the influence of motion on image acquisition, dose calculation, and dose measurement. The influence of motion on the accumulated dose was calculated by employing two methods (a model based and a voxel based method). Results: Tumor motion resulted in a blurring of steep dose gradients and a reduction of dose at the periphery of the target. A systematic variation of motion parameters allowed the determination of the main influence parameters on the accumulated dose. The key parameters with the greatest influence on dose were the mean amplitude and the pattern of motion. Investigations on necessary safety margins to compensate for dose reduction have shown that smaller safety margins are sufficient, if the developed concept with optimized margins (OPT concept) was used instead of the standard internal target volume (ITV) concept. Both calculation methods were a reasonable approximation of the measured dose with the voxel based method being in better agreement with the measurements. Conclusions: Further evaluation of available systems and algorithms for dose accumulation are needed to create guidelines for the verification of the accumulated dose.

  5. 4D-analysis of left ventricular heart cycle using procrustes motion analysis.

    PubMed

    Piras, Paolo; Evangelista, Antonietta; Gabriele, Stefano; Nardinocchi, Paola; Teresi, Luciano; Torromeo, Concetta; Schiariti, Michele; Varano, Valerio; Puddu, Paolo Emilio

    2014-01-01

    The aim of this study is to investigate human left ventricular heart morphological changes in time among 17 healthy subjects. Preliminarily, 2 patients with volumetric overload due to aortic insufficiency were added to our analyses. We propose a special strategy to compare the shape, orientation and size of cardiac cycle's morphological trajectories in time. We used 3D data obtained by Speckle Tracking Echocardiography in order to detect semi-automated and homologous landmarks clouds as proxies of left ventricular heart morphology. An extended Geometric Morphometrics toolkit in order to distinguish between intra- and inter-individual shape variations was used. Shape of trajectories with inter-individual variation were compared under the assumption that trajectories attributes, estimated at electrophysiologically homologous times are expressions of left ventricular heart function. We found that shape analysis as commonly applied in Geometric Morphometrics studies fails in identifying a proper morpho-space to compare the shape of morphological trajectories in time. To overcome this problem, we performed a special type of Riemannian Parallel Transport, called "linear shift". Whereas the two patients with aortic insufficiency were not differentiated in the static shape analysis from the healthy subjects, they set apart significantly in the analyses of motion trajectory's shape and orientation. We found that in healthy subjects, the variations due to inter-individual morphological differences were not related to shape and orientation of morphological trajectories. Principal Component Analysis showed that volumetric contraction, torsion and twist are differently distributed on different axes. Moreover, global shape change appeared to be more correlated with endocardial shape change than with the epicardial one. Finally, the total shape variation occurring among different subjects was significantly larger than that observable across properly defined morphological

  6. A new 4-D dynamical modelling of the Moon orbital and rotational motion developed at POLAC

    NASA Astrophysics Data System (ADS)

    Bourgoin, A.; Le Poncin-Lafitte, C.; Bouquillon, S.; Francou, G.; Angonin, M.-C.

    2015-12-01

    Nowadays, General Relativity (GR) is very well tested within the Solar System using observables given by the tracking of spacecraft tep{2003Natur.425..374B}, Very Long Baseline Interferometry tep{2009A&A...499..331L,2011A&A...529A..70L} and Lunar Laser Ranging -LLR- tep{2010LRR....13....7M}. These tests are mainly based on two frameworks: the Parametrized Post Newtonian (PPN) and the search for a fifth force. However other frameworks are available and can be used to look for deviations from GR. In this context, we present the ongoing work concerning LLR performed at POLAC (Paris Observatory Lunar Analysis Center) in SYRTE, Paris Observatory. We focus on a new generation of software that simulates the observable (the round trip time of photons) from a given space-time metric tep{2012CQGra..29w5027H}. This flexible approach allows to perform simulations in any alternative metric theories of gravity. The output of these software provides templates of anomalous residuals that should show up in real data if the underlying theory of gravity is not GR. Those templates can be used to give a rough estimation of the constraints on the additional parameters involved in the alternative theory. To succeed, we are building a numerical lunar ephemeris which integrates the differential equations governing the orbital and rotational motion of bodies in the Solar System. In addition, we integrate the difference between the Terrestrial Time (TT) and the Barycentric Dynamical Time (TDB) to make the ephemeris self-consistent. Special attention is paid to the computation of partial derivatives since they are integrated numerically from the variational equations.

  7. Tracking 'differential organ motion' with a 'breathing' multileaf collimator: magnitude of problem assessed using 4D CT data and a motion-compensation strategy

    NASA Astrophysics Data System (ADS)

    McClelland, J. R.; Webb, S.; McQuaid, D.; Binnie, D. M.; Hawkes, D. J.

    2007-08-01

    Intrafraction tumour (e.g. lung) motion due to breathing can, in principle, be compensated for by applying identical breathing motions to the leaves of a multileaf collimator (MLC) as intensity-modulated radiation therapy is delivered by the dynamic MLC (DMLC) technique. A difficulty arising, however, is that irradiated voxels, which are in line with a bixel at one breathing phase (at which the treatment plan has been made), may move such that they cease to be in line with that breathing bixel at another phase. This is the phenomenon of differential voxel motion and existing tracking solutions have ignored this very real problem. There is absolutely no tracking solution to the problem of compensating for differential voxel motion. However, there is a strategy that can be applied in which the leaf breathing is determined to minimize the geometrical mismatch in a least-squares sense in irradiating differentially-moving voxels. A 1D formulation in very restricted circumstances is already in the literature and has been applied to some model breathing situations which can be studied analytically. These are, however, highly artificial. This paper presents the general 2D formulation of the problem including allowing different importance factors to be applied to planning target volume and organ at risk (or most generally) each voxel. The strategy also extends the literature strategy to the situation where the number of voxels connecting to a bixel is a variable. Additionally the phenomenon of 'cross-leaf-track/channel' voxel motion is formally addressed. The general equations are presented and analytic results are given for some 1D, artificially contrived, motions based on the Lujan equations of breathing motion. Further to this, 3D clinical voxel motion data have been extracted from 4D CT measurements to both assess the magnitude of the problem of 2D motion perpendicular to the beam-delivery axis in clinical practice and also to find the 2D optimum breathing-leaf strategy

  8. Does motion affect liver stiffness estimates in shear wave elastography? Phantom and clinical study.

    PubMed

    Pellot-Barakat, Claire; Chami, Linda; Correas, Jean Michel; Lefort, Muriel; Lucidarme, Olivier

    2016-09-01

    This study was undertaken to evaluate the impact of free-breathing (FB) vs. Apnea on Shear-wave elastography (SWE) measurements. Quantitative liver-stiffness measurements were obtained during FB and Apnea for 97 patients with various body-morphologies and liver textures. Quality indexes of FB and Apnea elasticity maps (percentage of non-filling (PNF), temporal (TV) and spatial (SV) variabilities) were computed. SWE measurements were also obtained from an homogeneous phantom at rest and during a mechanically-induced motion. Liver-stiffness values estimated from FB and Apnea acquisitions were correlated, particularly for homogeneous livers (r=0.76, P<0.001) and favorable body-morphologies (r=0.68, P<0.001). However FB values were consistently 20-25% lower than Apnea ones (P<0.001). FB also systematically resulted in degradation of TV (P<0.005) and PNF (P<0.001) compared to Apnea but had no impact on SV. With the phantom, no differences between SWE measurements at rest and during motion were observed. Apnea and FB measurements are highly correlated, although FB data quality is degraded compared to Apnea and estimated stiffness in FB is systematically lower than in Apnea. These discrepancies between rest and motion states were observed for patients but not for phantom data, suggesting that patient breath-holding impacts liver stiffness. PMID:27501901

  9. Does motion affect liver stiffness estimates in shear wave elastography? Phantom and clinical study.

    PubMed

    Pellot-Barakat, Claire; Chami, Linda; Correas, Jean Michel; Lefort, Muriel; Lucidarme, Olivier

    2016-09-01

    This study was undertaken to evaluate the impact of free-breathing (FB) vs. Apnea on Shear-wave elastography (SWE) measurements. Quantitative liver-stiffness measurements were obtained during FB and Apnea for 97 patients with various body-morphologies and liver textures. Quality indexes of FB and Apnea elasticity maps (percentage of non-filling (PNF), temporal (TV) and spatial (SV) variabilities) were computed. SWE measurements were also obtained from an homogeneous phantom at rest and during a mechanically-induced motion. Liver-stiffness values estimated from FB and Apnea acquisitions were correlated, particularly for homogeneous livers (r=0.76, P<0.001) and favorable body-morphologies (r=0.68, P<0.001). However FB values were consistently 20-25% lower than Apnea ones (P<0.001). FB also systematically resulted in degradation of TV (P<0.005) and PNF (P<0.001) compared to Apnea but had no impact on SV. With the phantom, no differences between SWE measurements at rest and during motion were observed. Apnea and FB measurements are highly correlated, although FB data quality is degraded compared to Apnea and estimated stiffness in FB is systematically lower than in Apnea. These discrepancies between rest and motion states were observed for patients but not for phantom data, suggesting that patient breath-holding impacts liver stiffness.

  10. First Steps Toward Ultrasound-Based Motion Compensation for Imaging and Therapy: Calibration with an Optical System and 4D PET Imaging.

    PubMed

    Schwaab, Julia; Kurz, Christopher; Sarti, Cristina; Bongers, André; Schoenahl, Frédéric; Bert, Christoph; Debus, Jürgen; Parodi, Katia; Jenne, Jürgen Walter

    2015-01-01

    Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound (US) represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking. The goal of this project is to develop an US-based motion tracking for real-time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET). In this work, a workflow is established to enable the transformation of US tracking data to the coordinates of the treatment delivery or imaging system - even if the US probe is moving due to respiration. It is shown that the US tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible. PMID:26649277

  11. First Steps Toward Ultrasound-Based Motion Compensation for Imaging and Therapy: Calibration with an Optical System and 4D PET Imaging

    PubMed Central

    Schwaab, Julia; Kurz, Christopher; Sarti, Cristina; Bongers, André; Schoenahl, Frédéric; Bert, Christoph; Debus, Jürgen; Parodi, Katia; Jenne, Jürgen Walter

    2015-01-01

    Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound (US) represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking. The goal of this project is to develop an US-based motion tracking for real-time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET). In this work, a workflow is established to enable the transformation of US tracking data to the coordinates of the treatment delivery or imaging system – even if the US probe is moving due to respiration. It is shown that the US tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible. PMID:26649277

  12. SU-D-17A-03: 5D Respiratory Motion Model Based Iterative Reconstruction Method for 4D Cone-Beam CT

    SciTech Connect

    Gao, Y; Thomas, D; Low, D; Gao, H

    2014-06-01

    Purpose: The purpose of this work is to develop a new iterative reconstruction method for 4D cone-beam CT (CBCT) based on a published time-independent 5D respiratory motion model. The proposed method will offer a single high-resolution image at a user-selected breathing phase and the 5D motion model parameters, which could be used to generate the breathing pattern during the CT acquisition. Methods: 5D respiratory motion model was proposed for accurately modeling the motion of lung and lung tumor tissues. 4D images are then parameterized by a reference image, measured breathing amplitude, breathing rate, two time-independent vector fields that describe the 5D model parameters, and a scalar field that describes the change in HU as a function of breathing amplitude. In contrast with the traditional method of reconstructing multiple temporal image phases to reduce respiratory artifact, 5D model based method simplify the problem into the reconstruction of a single reference image and the 5D motion model parameters. The reconstruction formulation of the reference image and scalar and vector fields is a nonlinear least-square optimization problem that consists of solving the reference image and fields alternately, in which the reference image is regularized with the total variation sparsity transform and the vector fields are solved through linearizations regularized by the H1 norm. 2D lung simulations were performed in this proof-of-concept study. Results: The breathing amplitude, its rate, and the corresponding scalar and vector fields were generated from a patient case. Compared with filtered backprojection method and sparsity regularized iterative method for the phase-by-phase reconstruction, the proposed 5D motion model based method yielded improved image quality. Conclusion: Based on 5D respiratory motion model, we have developed a new iterative reconstruction method for 4D CBCT that has the potential for improving image quality while providing needed on

  13. TU-F-17A-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - An Automatic Toolkit for Efficient and Robust Analysis of 4D Respiratory Motion

    SciTech Connect

    Wei, J; Yuan, A; Li, G

    2014-06-15

    Purpose: To provide an automatic image analysis toolkit to process thoracic 4-dimensional computed tomography (4DCT) and extract patient-specific motion information to facilitate investigational or clinical use of 4DCT. Methods: We developed an automatic toolkit in MATLAB to overcome the extra workload from the time dimension in 4DCT. This toolkit employs image/signal processing, computer vision, and machine learning methods to visualize, segment, register, and characterize lung 4DCT automatically or interactively. A fully-automated 3D lung segmentation algorithm was designed and 4D lung segmentation was achieved in batch mode. Voxel counting was used to calculate volume variations of the torso, lung and its air component, and local volume changes at the diaphragm and chest wall to characterize breathing pattern. Segmented lung volumes in 12 patients are compared with those from a treatment planning system (TPS). Voxel conversion was introduced from CT# to other physical parameters, such as gravity-induced pressure, to create a secondary 4D image. A demon algorithm was applied in deformable image registration and motion trajectories were extracted automatically. Calculated motion parameters were plotted with various templates. Machine learning algorithms, such as Naive Bayes and random forests, were implemented to study respiratory motion. This toolkit is complementary to and will be integrated with the Computational Environment for Radiotherapy Research (CERR). Results: The automatic 4D image/data processing toolkit provides a platform for analysis of 4D images and datasets. It processes 4D data automatically in batch mode and provides interactive visual verification for manual adjustments. The discrepancy in lung volume calculation between this and the TPS is <±2% and the time saving is by 1–2 orders of magnitude. Conclusion: A framework of 4D toolkit has been developed to analyze thoracic 4DCT automatically or interactively, facilitating both investigational

  14. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study

    SciTech Connect

    Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong; Ackerman, Jerome L.; Petibon, Yoann

    2014-04-15

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.

  15. A Javascript library that uses Windows Script Host (WSH) to analyze prostate motion data fragmented across a multitude of Excel files by the Calypso 4D Localization System.

    PubMed

    Vali, Faisal S; Hsi, Alex; Cho, Paul; Parsai, Homayon; Garver, Elizabeth; Garza, Richard

    2008-11-06

    The Calypso 4D Localization System records prostate motion continuously during radiation treatment. It stores the data across thousands of Excel files. We developed Javascript (JScript) libraries for Windows Script Host (WSH) that use ActiveX Data Objects, OLE Automation and SQL to statistically analyze the data and display the results as a comprehensible Excel table. We then leveraged these libraries in other research to perform vector math on data spread across multiple access databases.

  16. 4D human body posture estimation based on a motion capture system and a multi-rigid link model.

    PubMed

    Yoshikawa, Naoya; Suzuki, Yasuyuki; Ozaki, Wataru; Yamamoto, Tomohisa; Nomura, Taishin

    2012-01-01

    Human motion analysis in various fields such as neurophysiology, clinical medicine, and sports sciences utilizes a multi-rigid link model of a human body for considering kinetics by solving inverse dynamics of a motion, in which a motion capture system with reflective markers are often used to measure the motion, and then the obtained motion are mapped onto the multi-rigid link model. However, algorithms for such a mapping from spatio-temporal positions of the markers to the corresponding posture of the model are not always fully disclosed. Moreover, a common difficulty for such algorithms is an error caused by displacements of the markers attached on the body surface, referred to as the skin motion error. In this study, we developed a simple algorithm that maps positions of the markers to the corresponding posture of a rigid link model, and examined accuracy of the algorithm by evaluating quantitatively differences between the measured and the estimated posture. We also analyzed the skin motion error. It is shown that magnitude of the error was determined not only by the amplitude of the skin motion, but also by the direction of the marker displacement relative to the frame of reference attached to each segment of the body.

  17. SU-E-J-79: Internal Tumor Volume Motion and Volume Size Assessment Using 4D CT Lung Data

    SciTech Connect

    Jurkovic, I; Stathakis, S; Li, Y; Patel, A; Vincent, J; Papanikolaou, N; Mavroidis, P

    2014-06-01

    Purpose: To assess internal tumor volume change through breathing cycle and associated tumor motion using the 4DCT data. Methods: Respiration induced volume change through breathing cycle and associated motion was analyzed for nine patients that were scanned during the different respiratory phases. The examined datasets were the maximum and average intensity projections (MIP and AIP) and the 10 phases of the respiratory cycle. The internal target volume (ITV) was delineated on each of the phases and the planning target volume (PTV) was then created by adding setup margins to the ITV. Tumor motion through the phases was assessed using the acquired 4DCT dataset, which was then used to determine if the margins used for the ITV creation successfully encompassed the tumor in three dimensions. Results: Results showed that GTV motion along the superior inferior axes was the largest in all the cases independent of the tumor location and/or size or the use of abdomen compression. The extent of the tumor motion was found to be connected with the size of the GTV. The smallest GTVs exhibited largest motion vector independent of the tumor location. The motion vector size varied through the phases depending on the tumor size and location and it was smallest for phases 20 and 30. The smaller the volume of the delineated GTV, the greater its volume difference through the different respiratory phases was. The average GTV volume change was largest for the phases 60 and 70. Conclusion: Even if GTV is delineated using both AIP and MIP datasets, its motion extent will exceed the used margins especially for the very small GTV volumes. When the GTV size is less than 10 cc it is recommended to use fusion of the GTVs through all the phases to create the planning ITV.

  18. Tumor Tracking Method Based on a Deformable 4D CT Breathing Motion Model Driven by an External Surface Surrogate

    SciTech Connect

    Fassi, Aurora; Schaerer, Joël; Fernandes, Mathieu; Riboldi, Marco; Sarrut, David; Baroni, Guido

    2014-01-01

    Purpose: To develop a tumor tracking method based on a surrogate-driven motion model, which provides noninvasive dynamic localization of extracranial targets for the compensation of respiration-induced intrafraction motion in high-precision radiation therapy. Methods and Materials: The proposed approach is based on a patient-specific breathing motion model, derived a priori from 4-dimensional planning computed tomography (CT) images. Model parameters (respiratory baseline, amplitude, and phase) are retrieved and updated at each treatment fraction according to in-room radiography acquisition and optical surface imaging. The baseline parameter is adapted to the interfraction variations obtained from the daily cone beam (CB) CT scan. The respiratory amplitude and phase are extracted from an external breathing surrogate, estimated from the displacement of the patient thoracoabdominal surface, acquired with a noninvasive surface imaging device. The developed method was tested on a database of 7 lung cancer patients, including the synchronized information on internal and external respiratory motion during a CBCT scan. Results: About 30 seconds of simultaneous acquisition of CBCT and optical surface images were analyzed for each patient. The tumor trajectories identified in CBCT projections were used as reference and compared with the target trajectories estimated from surface displacement with the a priori motion model. The resulting absolute differences between the reference and estimated tumor motion along the 2 image dimensions ranged between 0.7 and 2.4 mm; the measured phase shifts did not exceed 7% of the breathing cycle length. Conclusions: We investigated a tumor tracking method that integrates breathing motion information provided by the 4-dimensional planning CT with surface imaging at the time of treatment, representing an alternative approach to point-based external–internal correlation models. Although an in-room radiograph-based assessment of the

  19. Estimation of lung motion fields in 4D CT data by variational non-linear intensity-based registration: A comparison and evaluation study.

    PubMed

    Werner, René; Schmidt-Richberg, Alexander; Handels, Heinz; Ehrhardt, Jan

    2014-08-01

    Accurate and robust estimation of motion fields in respiration-correlated CT (4D CT) images, usually performed by non-linear registration of the temporal CT frames, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported diagnostics and treatment planning. In this work, we present a comprehensive comparison and evaluation study of non-linear registration variants applied to the task of lung motion estimation in thoracic 4D CT data. In contrast to existing multi-institutional comparison studies (e.g. MIDRAS and EMPIRE10), we focus on the specific but common class of variational intensity-based non-parametric registration and analyze the impact of the different main building blocks of the underlying optimization problem: the distance measure to be minimized, the regularization approach and the transformation space considered during optimization. In total, 90 different combinations of building block instances are compared. Evaluated on proprietary and publicly accessible 4D CT images, landmark-based registration errors (TRE) between 1.14 and 1.20 mm for the most accurate registration variants demonstrate competitive performance of the applied general registration framework compared to other state-of-the-art approaches for lung CT registration. Although some specific trends can be observed, effects of interchanging individual instances of the building blocks on the TRE are in general rather small (no single outstanding registration variant existing); the same level of accuracy is, however, associated with significantly different degrees of motion field smoothness and computational demands. Consequently, the building block combination of choice will depend on application-specific requirements on motion field characteristics.

  20. SU-C-210-02: Impact of Intrafractional Motion On TomoTherapy Stereotactic Body Radiotherapy (SBRT) 4D Dosimetry

    SciTech Connect

    Lian, J; Matney, J; Chao, E; Chang, S; Zagar, T; Wang, A; Chera, B; Das, S; Schreiber, E

    2015-06-15

    Purpose: TomoTherapy treatment has unique challenges in handling intrafractional motion compared to conventional LINAC. This study is aimed to gain a realistic and quantitative understanding of motion impact on TomoTherapy SBRT treatment of lung and prostate cancer patients. Methods: A 4D dose engine utilizing GPUs and including motion during treatment was developed for the efficient simulation of TomoTherapy delivered dosimetry. Two clinical CyberKnife lung cases with respiratory motion tracking and two prostate cases with a slower non-periodical organ motion treated by LINAC plus Calypso tracking were used in the study. For each disease site, one selected case has an average motion (6mm); the other has a large motion (10mm for lung and 15mm for prostate). SBRT of lung and prostate cases were re-planned on TomoTherapy with 12 Gyx4 fractions and 7Gyx5 fractions, respectively, all with 95% PTV coverage. Each case was planned with 4 jaw settings: 1) conventional 1cm static, 2) 2.5cm static, 3) 2.5cm dynamic, and 4) 5cm dynamic. The intrafractional rigid motion of the target was applied in the dose calculation of individual fractions of each plan and total dose was accumulated from multiple fractions. Results: For 1cm static jaw plans with motions applied, PTV coverage is related to motion type and amplitude. For SBRT patients with average motion (6mm), the PTV coverage remains > 95% for lung case and 74% for prostate case. For cases with large motion, PTV coverage drops to 61% for lung SBRT and 49% for prostate SBRT. Plans with other jaws improve uniformity of moving target, but still suffer from poor PTV coverage (< 70%). Conclusion: TomoTherapy lung SBRT is less motion-impacted when average amplitude of respiratory-induced intrafractional motion is present (6mm). When motion is large and/or non-periodic (prostate), all studied plans lead to significantly decreased target coverage in actual delivered dosimetry.

  1. SU-C-BRF-05: Design and Geometric Validation of An Externally and Internally Deformable, Programmable Lung Motion Phantom

    SciTech Connect

    Cheung, Y; Sawant, A

    2014-06-15

    Purpose: Most clinically-deployed strategies for respiratory motion management in lung radiotherapy (e.g., gating, tracking) use external markers that serve as surrogates for tumor motion. However, typical lung phantoms used to validate these strategies are rigid-exterior+rigid-interior or rigid-exterior+deformable-interior. Neither class adequately represents the human anatomy, which is deformable internally as well as externally. We describe the construction and experimental validation of a more realistic, externally- and internally-deformable, programmable lung phantom. Methods: The outer shell of a commercially-available lung phantom (RS- 1500, RSD Inc.) was used. The shell consists of a chest cavity with a flexible anterior surface, and embedded vertebrae, rib-cage and sternum. A 3-axis platform was programmed with sinusoidal and six patient-recorded lung tumor trajectories. The platform was used to drive a rigid foam ‘diaphragm’ that compressed/decompressed the phantom interior. Experimental characterization comprised of mapping the superior-inferior (SI) and anterior-posterior (AP) trajectories of external and internal radioopaque markers with kV x-ray fluoroscopy and correlating these with optical surface monitoring using the in-room VisionRT system. Results: The phantom correctly reproduced the programmed motion as well as realistic effects such as hysteresis. The reproducibility of marker trajectories over multiple runs for sinusoidal as well as patient traces, as characterized by fluoroscopy, was within 0.4 mm RMS error for internal as well as external markers. The motion trajectories of internal and external markers as measured by fluoroscopy were found to be highly correlated (R=0.97). Furthermore, motion trajectories of arbitrary points on the deforming phantom surface, as recorded by the VisionRT system also showed a high correlation with respect to the fluoroscopically-measured trajectories of internal markers (R=0.92). Conclusion: We have

  2. Assessment of myocardial elastography performance in phantoms under combined physiologic motion configurations with preliminary in vivo feasibility

    NASA Astrophysics Data System (ADS)

    Okrasinski, S. J.; Ramachandran, B.; Konofagou, E. E.

    2012-09-01

    Myocardial elastography (ME) is a non-invasive, ultrasound-based strain imaging technique, which can detect and localize abnormalities in myocardial function. By acquiring radio-frequency (RF) frames at high frame rates, the deformation of the myocardium can be estimated, and used to identify regions of abnormal deformation indicative of cardiovascular disease. In this study, the primary objective is to evaluate the effect of torsion on the performance of ME, while the secondary objective is to image inclusions during different motion schemes. Finally, the phantom findings are validated with an in vivo human case. Phantoms of homogeneous stiffness, or containing harder inclusions, were fixed to a pump and motors, and imaged. Incremental displacements were estimated from the RF signals, and accumulated over a motion cycle, and rotation angle, radial strain and circumferential strain were estimated. Phantoms were subjected to four motion schemes: rotation, torsion, deformation, and a combination of torsion and deformation. Sonomicrometry was used as a gold standard during deformation and combined motion schemes. In the rotation scheme, the input and estimated rotation angle agree in both the homogeneous and inclusion phantoms. In the torsion scheme, the estimated rotation angle was found to be highest, closest to the source of torsion and lowest farthest from the source of torsion. In the deformation scheme, if an inclusion was not present, the estimated strain patterns accurately depicted homogeneity, while if an inclusion was present, abnormalities were observed which enabled detection of the inclusion. In addition, no significant rotation was detected. In the combined scheme, if an inclusion was not present, the estimated strain patterns accurately depicted homogeneity, while, if an inclusion was present, abnormalities were observed which enabled detection of the inclusion. Also, torsion was separated from the combined scheme and was found to be similar to the

  3. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    SciTech Connect

    Huang, Chuan; Petibon, Yoann; Ouyang, Jinsong; El Fakhri, Georges; Reese, Timothy G.; Ahlman, Mark A.; Bluemke, David A.

    2015-02-15

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PET using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide

  4. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    PubMed Central

    Huang, Chuan; Petibon, Yoann; Ouyang, Jinsong; Reese, Timothy G.; Ahlman, Mark A.; Bluemke, David A.; El Fakhri, Georges

    2015-01-01

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PET using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide

  5. 4D optimization of scanned ion beam tracking therapy for moving tumors

    NASA Astrophysics Data System (ADS)

    Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph

    2014-07-01

    Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking.

  6. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D).

    PubMed

    Al-Anezi, T; Khambay, B; Peng, M J; O'Leary, E; Ju, X; Ayoub, A

    2013-01-01

    The aim of this study was to validate the automatic tracking of facial landmarks in 3D image sequences. 32 subjects (16 males and 16 females) aged 18-35 years were recruited. 23 anthropometric landmarks were marked on the face of each subject with non-permanent ink using a 0.5mm pen. The subjects were asked to perform three facial animations (maximal smile, lip purse and cheek puff) from rest position. Each animation was captured by the 3D imaging system. A single operator manually digitised the landmarks on the 3D facial models and their locations were compared with those of the automatically tracked ones. To investigate the accuracy of manual digitisation, the operator re-digitised the same set of 3D images of 10 subjects (5 male and 5 female) at 1 month interval. The discrepancies in x, y and z coordinates between the 3D position of the manual digitised landmarks and that of the automatic tracked facial landmarks were within 0.17mm. The mean distance between the manually digitised and the automatically tracked landmarks using the tracking software was within 0.55 mm. The automatic tracking of facial landmarks demonstrated satisfactory accuracy which would facilitate the analysis of the dynamic motion during facial animations. PMID:23218511

  7. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D).

    PubMed

    Al-Anezi, T; Khambay, B; Peng, M J; O'Leary, E; Ju, X; Ayoub, A

    2013-01-01

    The aim of this study was to validate the automatic tracking of facial landmarks in 3D image sequences. 32 subjects (16 males and 16 females) aged 18-35 years were recruited. 23 anthropometric landmarks were marked on the face of each subject with non-permanent ink using a 0.5mm pen. The subjects were asked to perform three facial animations (maximal smile, lip purse and cheek puff) from rest position. Each animation was captured by the 3D imaging system. A single operator manually digitised the landmarks on the 3D facial models and their locations were compared with those of the automatically tracked ones. To investigate the accuracy of manual digitisation, the operator re-digitised the same set of 3D images of 10 subjects (5 male and 5 female) at 1 month interval. The discrepancies in x, y and z coordinates between the 3D position of the manual digitised landmarks and that of the automatic tracked facial landmarks were within 0.17mm. The mean distance between the manually digitised and the automatically tracked landmarks using the tracking software was within 0.55 mm. The automatic tracking of facial landmarks demonstrated satisfactory accuracy which would facilitate the analysis of the dynamic motion during facial animations.

  8. 4-D Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  9. 4D Electron Tomography

    NASA Astrophysics Data System (ADS)

    Kwon, Oh-Hoon; Zewail, Ahmed H.

    2010-06-01

    Electron tomography provides three-dimensional (3D) imaging of noncrystalline and crystalline equilibrium structures, as well as elemental volume composition, of materials and biological specimens, including those of viruses and cells. We report the development of 4D electron tomography by integrating the fourth dimension (time resolution) with the 3D spatial resolution obtained from a complete tilt series of 2D projections of an object. The different time frames of tomograms constitute a movie of the object in motion, thus enabling studies of nonequilibrium structures and transient processes. The method was demonstrated using carbon nanotubes of a bracelet-like ring structure for which 4D tomograms display different modes of motion, such as breathing and wiggling, with resonance frequencies up to 30 megahertz. Applications can now make use of the full space-time range with the nanometer-femtosecond resolution of ultrafast electron tomography.

  10. SU-E-T-562: Motion Tracking Optimization for Conformal Arc Radiotherapy Plans: A QUASAR Phantom Based Study

    SciTech Connect

    Xu, Z; Wang, I; Yao, R; Podgorsak, M

    2015-06-15

    Purpose: This study is to use plan parameters optimization (Dose rate, collimator angle, couch angle, initial starting phase) to improve the performance of conformal arc radiotherapy plans with motion tracking by increasing the plan performance score (PPS). Methods: Two types of 3D conformal arc plans were created based on QUASAR respiratory motion phantom with spherical and cylindrical targets. Sinusoidal model was applied to the MLC leaves to generate motion tracking plans. A MATLAB program was developed to calculate PPS of each plan (ranges from 0–1) and optimize plan parameters. We first selected the dose rate for motion tracking plans and then used simulated annealing algorithm to search for the combination of the other parameters that resulted in the plan of the maximal PPS. The optimized motion tracking plan was delivered by Varian Truebeam Linac. In-room cameras and stopwatch were used for starting phase selection and synchronization between phantom motion and plan delivery. Gaf-EBT2 dosimetry films were used to measure the dose delivered to the target in QUASAR phantom. Dose profiles and Truebeam trajectory log files were used for plan delivery performance evaluation. Results: For spherical target, the maximal PPS (PPSsph) of the optimized plan was 0.79: (Dose rate: 500MU/min, Collimator: 90°, Couch: +10°, starting phase: 0.83π). For cylindrical target, the maximal PPScyl was 0.75 (Dose rate: 300MU/min, Collimator: 87°, starting phase: 0.97π) with couch at 0°. Differences of dose profiles between motion tracking plans (with the maximal and the minimal PPS) and 3D conformal plans were as follows: PPSsph=0.79: %ΔFWHM: 8.9%, %Dmax: 3.1%; PPSsph=0.52: %ΔFWHM: 10.4%, %Dmax: 6.1%. PPScyl=0.75: %ΔFWHM: 4.7%, %Dmax: 3.6%; PPScyl=0.42: %ΔFWHM: 12.5%, %Dmax: 9.6%. Conclusion: By achieving high plan performance score through parameters optimization, we can improve target dose conformity of motion tracking plan by decreasing total MLC leaf travel distance

  11. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies

    PubMed Central

    Huang, Chuan; Ackerman, Jerome L.; Petibon, Yoann; Normandin, Marc D.; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong

    2014-01-01

    Brain PET scanning plays an important role in the diagnosis, prognostication and monitoring of many brain diseases. Motion artifacts from head motion are one of the major hurdles in brain PET. In this work, we propose to use wireless MR active markers to track head motion in real time during a simultaneous PET-MR brain scan and incorporate the motion measured by the markers in the listmode PET reconstruction. Several wireless MR active markers and a dedicated fast MR tracking pulse sequence module were built. Data were acquired on an ACR Flangeless PET phantom with multiple spheres and a non-human primate with and without motion. Motions of the phantom and monkey’s head were measured with the wireless markers using a dedicated MR tracking sequence module. The motion PET data were reconstructed using list-mode reconstruction with and without motion correction. Static reference was used as gold standard for quantitative analysis. The motion artifacts, which were prominent on the images without motion correction, were eliminated by the wireless marker based motion correction in both the phantom and monkey experiments. Quantitative analysis was performed on the phantom motion data from 24 independent noise realizations. The reduction of bias of sphere-to-background PET contrast by active marker based motion correction ranges from 26% to 64% and 17% to 25% for hot (i.e., radioactive) and cold (i.e., non-radioactive) spheres, respectively. The motion correction improved the channelized Hotelling observer signal-to-noise ratio of the spheres by 1.2 to 6.9 depending on their locations and sizes. The proposed wireless MR active marker based motion correction technique removes the motion artifacts in the reconstructed PET images and yields accurate quantitative values. PMID:24418501

  12. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies.

    PubMed

    Huang, Chuan; Ackerman, Jerome L; Petibon, Yoann; Normandin, Marc D; Brady, Thomas J; El Fakhri, Georges; Ouyang, Jinsong

    2014-05-01

    Brain PET scanning plays an important role in the diagnosis, prognostication and monitoring of many brain diseases. Motion artifacts from head motion are one of the major hurdles in brain PET. In this work, we propose to use wireless MR active markers to track head motion in real time during a simultaneous PET-MR brain scan and incorporate the motion measured by the markers in the listmode PET reconstruction. Several wireless MR active markers and a dedicated fast MR tracking pulse sequence module were built. Data were acquired on an ACR Flangeless PET phantom with multiple spheres and a non-human primate with and without motion. Motions of the phantom and monkey's head were measured with the wireless markers using a dedicated MR tracking sequence module. The motion PET data were reconstructed using list-mode reconstruction with and without motion correction. Static reference was used as gold standard for quantitative analysis. The motion artifacts, which were prominent on the images without motion correction, were eliminated by the wireless marker based motion correction in both the phantom and monkey experiments. Quantitative analysis was performed on the phantom motion data from 24 independent noise realizations. The reduction of bias of sphere-to-background PET contrast by active marker based motion correction ranges from 26% to 64% and 17% to 25% for hot (i.e., radioactive) and cold (i.e., non-radioactive) spheres, respectively. The motion correction improved the channelized Hotelling observer signal-to-noise ratio of the spheres by 1.2 to 6.9 depending on their locations and sizes. The proposed wireless MR active marker based motion correction technique removes the motion artifacts in the reconstructed PET images and yields accurate quantitative values.

  13. A sinogram warping strategy for pre-reconstruction 4D PET optimization.

    PubMed

    Gianoli, Chiara; Riboldi, Marco; Fontana, Giulia; Kurz, Christopher; Parodi, Katia; Baroni, Guido

    2016-03-01

    A novel strategy for 4D PET optimization in the sinogram domain is proposed, aiming at motion model application before image reconstruction ("sinogram warping" strategy). Compared to state-of-the-art 4D-MLEM reconstruction, the proposed strategy is able to optimize the image SNR, avoiding iterative direct and inverse warping procedures, which are typical of the 4D-MLEM algorithm. A full-count statistics sinogram of the motion-compensated 4D PET reference phase is generated by warping the sinograms corresponding to the different PET phases. This is achieved relying on a motion model expressed in the sinogram domain. The strategy was tested on the anthropomorphic 4D PET-CT NCAT phantom in comparison with the 4D-MLEM algorithm, with particular reference to robustness to PET-CT co-registrations artefacts. The MLEM reconstruction of the warped sinogram according to the proposed strategy exhibited better accuracy (up to +40.90 % with respect to the ideal value), whereas images reconstructed according to the 4D-MLEM reconstruction resulted in less noisy (down to -26.90 % with respect to the ideal value) but more blurred. The sinogram warping strategy demonstrates advantages with respect to 4D-MLEM algorithm. These advantages are paid back by introducing approximation of the deformation field, and further efforts are required to mitigate the impact of such an approximation in clinical 4D PET reconstruction.

  14. SU-E-J-156: Preclinical Inverstigation of Dynamic Tumor Tracking Using Vero SBRT Linear Accelerator: Motion Phantom Dosimetry Study

    SciTech Connect

    Mamalui-Hunter, M; Wu, J; Li, Z; Su, Z

    2014-06-01

    Purpose: Following the ‘end-to-end testing’ paradigm of Dynamic Target Tracking option in our Image-Guided dedicated SBRT VeroTM linac, we verify the capability of the system to deliver planned dose to moving targets in the heterogeneous thorax phantom (CIRSTM). The system includes gimbaled C-band linac head, robotic 6 degree of freedom couch and a tumor tracking method based on predictive modeling of target position using fluoroscopically tracked implanted markers and optically tracked infrared reflecting external markers. Methods: 4DCT scan of the motion phantom with the VisicoilTM implanted marker in the close vicinity of the target was acquired, the ‘exhale’=most prevalent phase was used for planning (iPlan by BrainLabTM). Typical 3D conformal SBRT treatment plans aimed to deliver 6-8Gy/fx to two types of targets: a)solid water-equivalent target 3cm in diameter; b)single VisicoilTM marker inserted within lung equivalent material. The planning GTV/CTV-to-PTV margins were 2mm, the block margins were 3 mm. The dose calculated by MonteCarlo algorithm with 1% variance using option Dose-to-water was compared to the ion chamber (CC01 by IBA Dosimetry) measurements in case (a) and GafchromicTM EBT3 film measurements in case (b). During delivery, the target 6 motion patterns available as a standard on CIRSTM motion phantom were investigated: in case (a), the target was moving along the designated sine or cosine4 3D trajectory; in case (b), the inserted marker was moving sinusoidally in 1D. Results: The ion chamber measurements have shown the agreement with the planned dose within 1% under all the studied motion conditions. The film measurements show 98.1% agreement with the planar calculated dose (gamma criteria: 3%/3mm). Conclusion: We successfully verified the capability of the SBRT VeroTM linac to perform real-time tumor tracking and accurate dose delivery to the target, based on predictive modeling of the correlation between implanted marker motion and

  15. Assessment of phase based dose modulation for improved dose efficiency in cardiac CT on an anthropomorphic motion phantom

    NASA Astrophysics Data System (ADS)

    Budde, Adam; Nilsen, Roy; Nett, Brian

    2014-03-01

    State of the art automatic exposure control modulates the tube current across view angle and Z based on patient anatomy for use in axial full scan reconstructions. Cardiac CT, however, uses a fundamentally different image reconstruction that applies a temporal weighting to reduce motion artifacts. This paper describes a phase based mA modulation that goes beyond axial and ECG modulation; it uses knowledge of the temporal view weighting applied within the reconstruction algorithm to improve dose efficiency in cardiac CT scanning. Using physical phantoms and synthetic noise emulation, we measure how knowledge of sinogram temporal weighting and the prescribed cardiac phase can be used to improve dose efficiency. First, we validated that a synthetic CT noise emulation method produced realistic image noise. Next, we used the CT noise emulation method to simulate mA modulation on scans of a physical anthropomorphic phantom where a motion profile corresponding to a heart rate of 60 beats per minute was used. The CT noise emulation method matched noise to lower dose scans across the image within 1.5% relative error. Using this noise emulation method to simulate modulating the mA while keeping the total dose constant, the image variance was reduced by an average of 11.9% on a scan with 50 msec padding, demonstrating improved dose efficiency. Radiation dose reduction in cardiac CT can be achieved while maintaining the same level of image noise through phase based dose modulation that incorporates knowledge of the cardiac reconstruction algorithm.

  16. Creation of 3D digital anthropomorphic phantoms which model actual patient non-rigid body motion as determined from MRI and position tracking studies of volunteers

    NASA Astrophysics Data System (ADS)

    Connolly, C. M.; Konik, A.; Dasari, P. K. R.; Segars, P.; Zheng, S.; Johnson, K. L.; Dey, J.; King, M. A.

    2011-03-01

    Patient motion can cause artifacts, which can lead to difficulty in interpretation. The purpose of this study is to create 3D digital anthropomorphic phantoms which model the location of the structures of the chest and upper abdomen of human volunteers undergoing a series of clinically relevant motions. The 3D anatomy is modeled using the XCAT phantom and based on MRI studies. The NURBS surfaces of the XCAT are interactively adapted to fit the MRI studies. A detailed XCAT phantom is first developed from an EKG triggered Navigator acquisition composed of sagittal slices with a 3 x 3 x 3 mm voxel dimension. Rigid body motion states are then acquired at breath-hold as sagittal slices partially covering the thorax, centered on the heart, with 9 mm gaps between them. For non-rigid body motion requiring greater sampling, modified Navigator sequences covering the entire thorax with 3 mm gaps between slices are obtained. The structures of the initial XCAT are then adapted to fit these different motion states. Simultaneous to MRI imaging the positions of multiple reflective markers on stretchy bands about the volunteer's chest and abdomen are optically tracked in 3D via stereo imaging. These phantoms with combined position tracking will be used to investigate both imaging-data-driven and motion-tracking strategies to estimate and correct for patient motion. Our initial application will be to cardiacperfusion SPECT imaging where the XCAT phantoms will be used to create patient activity and attenuation distributions for each volunteer with corresponding motion tracking data from the markers on the body-surface. Monte Carlo methods will then be used to simulate SPECT acquisitions, which will be used to evaluate various motion estimation and correction strategies.

  17. Validation of a 4D-PET Maximum Intensity Projection for Delineation of an Internal Target Volume

    SciTech Connect

    Callahan, Jason; Kron, Tomas; Schneider-Kolsky, Michal; Dunn, Leon; Thompson, Mick; Siva, Shankar; Aarons, Yolanda; Binns, David; Hicks, Rodney J.

    2013-07-15

    Purpose: The delineation of internal target volumes (ITVs) in radiation therapy of lung tumors is currently performed by use of either free-breathing (FB) {sup 18}F-fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT) or 4-dimensional (4D)-CT maximum intensity projection (MIP). In this report we validate the use of 4D-PET-MIP for the delineation of target volumes in both a phantom and in patients. Methods and Materials: A phantom with 3 hollow spheres was prepared surrounded by air then water. The spheres and water background were filled with a mixture of {sup 18}F and radiographic contrast medium. A 4D-PET/CT scan was performed of the phantom while moving in 4 different breathing patterns using a programmable motion device. Nine patients with an FDG-avid lung tumor who underwent FB and 4D-PET/CT and >5 mm of tumor motion were included for analysis. The 3 spheres and patient lesions were contoured by 2 contouring methods (40% of maximum and PET edge) on the FB-PET, FB-CT, 4D-PET, 4D-PET-MIP, and 4D-CT-MIP. The concordance between the different contoured volumes was calculated using a Dice coefficient (DC). The difference in lung tumor volumes between FB-PET and 4D-PET volumes was also measured. Results: The average DC in the phantom using 40% and PET edge, respectively, was lowest for FB-PET/CT (DCAir = 0.72/0.67, DCBackground 0.63/0.62) and highest for 4D-PET/CT-MIP (DCAir = 0.84/0.83, DCBackground = 0.78/0.73). The average DC in the 9 patients using 40% and PET edge, respectively, was also lowest for FB-PET/CT (DC = 0.45/0.44) and highest for 4D-PET/CT-MIP (DC = 0.72/0.73). In the 9 lesions, the target volumes of the FB-PET using 40% and PET edge, respectively, were on average 40% and 45% smaller than the 4D-PET-MIP. Conclusion: A 4D-PET-MIP produces volumes with the highest concordance with 4D-CT-MIP across multiple breathing patterns and lesion sizes in both a phantom and among patients. Freebreathing PET/CT consistently

  18. Four-dimensional magnetic resonance imaging (4D-MRI) using image-based respiratory surrogate: A feasibility study

    PubMed Central

    Cai, Jing; Chang, Zheng; Wang, Zhiheng; Paul Segars, William; Yin, Fang-Fang

    2011-01-01

    Purpose: Four-dimensional computed tomography (4D-CT) has been widely used in radiation therapy to assess patient-specific breathing motion for determining individual safety margins. However, it has two major drawbacks: low soft-tissue contrast and an excessive imaging dose to the patient. This research aimed to develop a clinically feasible four-dimensional magnetic resonance imaging (4D-MRI) technique to overcome these limitations. Methods: The proposed 4D-MRI technique was achieved by continuously acquiring axial images throughout the breathing cycle using fast 2D cine-MR imaging, and then retrospectively sorting the images by respiratory phase. The key component of the technique was the use of body area (BA) of the axial MR images as an internal respiratory surrogate to extract the breathing signal. The validation of the BA surrogate was performed using 4D-CT images of 12 cancer patients by comparing the respiratory phases determined using the BA method to those determined clinically using the Real-time position management (RPM) system. The feasibility of the 4D-MRI technique was tested on a dynamic motion phantom, the 4D extended Cardiac Torso (XCAT) digital phantom, and two healthy human subjects. Results: Respiratory phases determined from the BA matched closely to those determined from the RPM: mean (±SD) difference in phase: −3.9% (±6.4%); mean (±SD) absolute difference in phase: 10.40% (±3.3%); mean (±SD) correlation coefficient: 0.93 (±0.04). In the motion phantom study, 4D-MRI clearly showed the sinusoidal motion of the phantom; image artifacts observed were minimal to none. Motion trajectories measured from 4D-MRI and 2D cine-MRI (used as a reference) matched excellently: the mean (±SD) absolute difference in motion amplitude: −0.3 (±0.5) mm. In the 4D-XCAT phantom study, the simulated “4D-MRI” images showed good consistency with the original 4D-XCAT phantom images. The motion trajectory of the hypothesized “tumor” matched

  19. SU-D-BRE-01: A Realistic Breathing Phantom of the Thorax for Testing New Motion Mitigation Techniques with Scanning Proton Therapy

    SciTech Connect

    Perrin, R; Peroni, M; Bernatowicz, K; Zakova, M; Knopf, A; Safai, S; Parkel, T

    2014-06-01

    Purpose: A prototype breathing phantom (named LuCa) has been developed which simulates the anatomy and motion of a patient thorax.In this work, we describe the results of the first commissioning tests with LuCa. Methods: The phantom provides a close representation of the human thorax. The lungs,contained within a tissue-equivalent ribcage and skin,are made from a polymer foam,which is inflated and deflated using a custommade ventilator. A tumor is simulated using a wooden ball with cutplanes for placing GafChromic films. The ventilator,controlled with Labview software,simulates a full range of breathing motion types.Commissioning tests were performed to assess its performance using imaging (CT and radiographic) and film dosimetry as follows:i)maximum Tumor excursion at acceptable pressure ranges, ii)tumor Motion repeatability between breathing periods,iii)reproducibility between measurement days,iv)tumor-to-surface motion correlation and v)reproducibility of film positioning in phantom. Results: The phantom can generate repeatable motion patterns with sin{sup 4},sin,breath-hold (tumor amplitude repeatability <0.5mm over 10min),aswell as patient-specific motion types. Maximum excursions of the tumor are 20mm and 14mm for the large and small tumor inserts respectively. Amplitude reproducibility (Coefficient of Variation) averaged at 16% for the workable pressure range over 2 months. Good correlation between tumor and surface motion was found with R{sup 2}=0.92. Reproducibility of film positioning within the thorax was within 0.9mm, and maximum 3° error from the coronal plane. Film measurements revealed that the film repositioning error yields relative errors in the mean dose over the planned target volume (PTV) of up to 2.5% and 4.5% for films at the center and on the edge of the PTV respectively. Conclusion: Commissioning tests have shown that the LuCa phantom can produce tumor motion with excellent repeatability. However,a poorer performance in reproducibility of

  20. Impact of 4D image quality on the accuracy of target definition.

    PubMed

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-03-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  1. Fully 4D list-mode reconstruction applied to respiratory-gated PET scans

    NASA Astrophysics Data System (ADS)

    Grotus, N; Reader, A J; Stute, S; Rosenwald, J C; Giraud, P; Buvat, I

    2009-03-01

    18F-fluoro-deoxy-glucose (18F-FDG) positron emission tomography (PET) is one of the most sensitive and specific imaging modalities for the diagnosis of non-small cell lung cancer. A drawback of PET is that it requires several minutes of acquisition per bed position, which results in images being affected by respiratory blur. Respiratory gating techniques have been developed to deal with respiratory motion in the PET images. However, these techniques considerably increase the level of noise in the reconstructed images unless the acquisition time is increased. The aim of this paper is to evaluate a four-dimensional (4D) image reconstruction algorithm that combines the acquired events in all the gates whilst preserving the motion deblurring. This algorithm was compared to classic ordered subset expectation maximization (OSEM) reconstruction of gated and non-gated images, and to temporal filtering of gated images reconstructed with OSEM. Two datasets were used for comparing the different reconstruction approaches: one involving the NEMA IEC/2001 body phantom in motion, the other obtained using Monte-Carlo simulations of the NCAT breathing phantom. Results show that 4D reconstruction reaches a similar performance in terms of the signal-to-noise ratio (SNR) as non-gated reconstruction whilst preserving the motion deblurring. In particular, 4D reconstruction improves the SNR compared to respiratory-gated images reconstructed with the OSEM algorithm. Temporal filtering of the OSEM-reconstructed images helps improve the SNR, but does not achieve the same performance as 4D reconstruction. 4D reconstruction of respiratory-gated images thus appears as a promising tool to reach the same performance in terms of the SNR as non-gated acquisitions while reducing the motion blur, without increasing the acquisition time.

  2. Data acquisition system for harmonic motion microwave Doppler imaging.

    PubMed

    Tafreshi, Azadeh Kamali; Karadaş, Mürsel; Top, Can Barış; Gençer, Nevzat Güneri

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) is a hybrid method proposed for breast tumor detection, which images the coupled dielectric and elastic properties of the tissue. In this paper, the performance of a data acquisition system for HMMDI method is evaluated on breast phantom materials. A breast fat phantom including fibro-glandular and tumor phantom regions is produced. The phantom is excited using a focused ultrasound probe and a microwave transmitter. The received microwave signal level is measured on three different points inside the phantom (fat, fibro-glandular, and tumor regions). The experimental results using the designed homodyne receiver proved the effectiveness of the proposed setup. In tumor phantom region, the signal level decreased about 3 dB compared to the signal level obtained from the fibro-glandular phantom area, whereas this signal was about 4 dB higher than the received signal from the fat phantom.

  3. Semiautomatic method to identify the best phase for gated RT in lung region by 4D-PET/CT acquisitions

    SciTech Connect

    Mancosu, Pietro; Danna, Massimo; Bettinardi, Valentino; Aquilina, Mark Anthony; Lobefalo, Francesca; Cozzi, Luca; Fogliata, Antonella; Scorsetti, Marta

    2011-01-15

    Purpose: Delineating tumor motion by four-dimensional positron emission tomography/computed tomography (4D-PET/CT) is a crucial step for gated radiotherapy (RT). This article quantitatively evaluates semiautomatic algorithms for tumor shift estimation in the lung region due to patient respiration by 4D-PET/CT, in order to support the selection of the best phases for gated RT, by considering the most stable phases of the breathing cycle. Methods: Three mobile spheres and ten selected lesions were included in this study. 4D-PET/CT data were reconstructed and classified into six/ten phases. The semiautomatic algorithms required the generation of single sets of images representative of the full target motion, used as masks for segmenting the phases. For 4D-CT, a pre-established HU range was used, whereas three thresholds (100%, 80%, and 40%) were evaluated for 4D-PET. By using these segmentations, the authors estimated the lesion motion from the shifting centroids, and the phases with the least motion were also deduced including the phases with a curve slope less than 2 mm/{Delta}phase. The proposed algorithms were validated by comparing the results to those generated entirely by manual contouring. Results: In the phantom study, the mean difference between the manual contour and the semiautomatic technique was 0.1{+-}0.1 mm for 4D-CT and 0.2{+-}0.1 mm for the 4D-PET based on 40% threshold. In the patients' series, the mean difference was 0.9{+-}0.6 mm for 4D-CT and 0.8{+-}0.2 mm for the 4D-PET based on 40% threshold. Conclusions: Estimation of lesion motion by the proposed semiautomatic algorithm can be used to evaluate tumor motion due to breathing.

  4. 4D micro-CT using fast prospective gating

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  5. SU-E-P-59: A Graphical Interface for XCAT Phantom Configuration, Generation and Processing

    SciTech Connect

    Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J; Hurwitz, M

    2015-06-15

    Purpose: To design a comprehensive open-source, publicly available, graphical user interface (GUI) to facilitate the configuration, generation, processing and use of the 4D Extended Cardiac-Torso (XCAT) phantom. Methods: The XCAT phantom includes over 9000 anatomical objects as well as respiratory, cardiac and tumor motion. It is widely used for research studies in medical imaging and radiotherapy. The phantom generation process involves the configuration of a text script to parameterize the geometry, motion, and composition of the whole body and objects within it, and to generate simulated PET or CT images. To avoid the need for manual editing or script writing, our MATLAB-based GUI uses slider controls, drop-down lists, buttons and graphical text input to parameterize and process the phantom. Results: Our GUI can be used to: a) generate parameter files; b) generate the voxelized phantom; c) combine the phantom with a lesion; d) display the phantom; e) produce average and maximum intensity images from the phantom output files; f) incorporate irregular patient breathing patterns; and f) generate DICOM files containing phantom images. The GUI provides local help information using tool-tip strings on the currently selected phantom, minimizing the need for external documentation. The DICOM generation feature is intended to simplify the process of importing the phantom images into radiotherapy treatment planning systems or other clinical software. Conclusion: The GUI simplifies and automates the use of the XCAT phantom for imaging-based research projects in medical imaging or radiotherapy. This has the potential to accelerate research conducted with the XCAT phantom, or to ease the learning curve for new users. This tool does not include the XCAT phantom software itself. We would like to acknowledge funding from MRA, Varian Medical Systems Inc.

  6. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    SciTech Connect

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J; Guo, X

    2015-06-15

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.

  7. Actively triggered 4d cone-beam CT acquisition

    SciTech Connect

    Fast, Martin F.; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  8. PET Motion Compensation for Radiation Therapy Using a CT-Based Mid-Position Motion Model: Methodology and Clinical Evaluation

    SciTech Connect

    Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, José S.A.; Herk, Marcel van

    2013-10-01

    Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV{sub max}) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV{sub max} up to 25% and reduce the diameter of the 50% SUV{sub max} volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions.

  9. Interactive animation of 4D performance capture.

    PubMed

    Casas, Dan; Tejera, Margara; Guillemaut, Jean-Yves; Hilton, Adrian

    2013-05-01

    A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple mesh sequences of related motions. A real-time mesh sequence blending approach is introduced, which combines the realistic deformation of previous nonlinear solutions with efficient online computation. Transitions between different parametric motion spaces are evaluated in real time based on surface shape and motion similarity. Four-dimensional parametric motion graphs allow real-time interactive character animation while preserving the natural dynamics of the captured performance.

  10. Interactive animation of 4D performance capture.

    PubMed

    Casas, Dan; Tejera, Margara; Guillemaut, Jean-Yves; Hilton, Adrian

    2013-05-01

    A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple mesh sequences of related motions. A real-time mesh sequence blending approach is introduced, which combines the realistic deformation of previous nonlinear solutions with efficient online computation. Transitions between different parametric motion spaces are evaluated in real time based on surface shape and motion similarity. Four-dimensional parametric motion graphs allow real-time interactive character animation while preserving the natural dynamics of the captured performance. PMID:23492379

  11. Development of posture-specific computational phantoms using motion capture technology and application to radiation dose-reconstruction for the 1999 Tokai-Mura nuclear criticality accident

    NASA Astrophysics Data System (ADS)

    Vazquez, Justin A.; Caracappa, Peter F.; Xu, X. George

    2014-09-01

    The majority of existing computational phantoms are designed to represent workers in typical standing anatomical postures with fixed arm and leg positions. However, workers found in accident-related scenarios often assume varied postures. This paper describes the development and application of two phantoms with adjusted postures specified by data acquired from a motion capture system to simulate unique human postures found in a 1999 criticality accident that took place at a JCO facility in Tokai-Mura, Japan. In the course of this accident, two workers were fatally exposed to extremely high levels of radiation. Implementation of the emergent techniques discussed produced more accurate and more detailed dose estimates for the two workers than were reported in previous studies. A total-body dose of 6.43 and 26.38 Gy was estimated for the two workers, who assumed a crouching and a standing posture, respectively. Additionally, organ-specific dose estimates were determined, including a 7.93 Gy dose to the thyroid and 6.11 Gy dose to the stomach for the crouching worker and a 41.71 Gy dose to the liver and a 37.26 Gy dose to the stomach for the standing worker. Implications for the medical prognosis of the workers are discussed, and the results of this study were found to correlate better with the patient outcome than previous estimates, suggesting potential future applications of such methods for improved epidemiological studies involving next-generation computational phantom tools.

  12. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms

    PubMed Central

    Pirnstill, Casey W.; Coté, Gerard L.

    2013-01-01

    Abstract. Noninvasive glucose monitoring is being investigated as a tool for effectively managing diabetes mellitus. Optical polarimetry has emerged as one such method, which can potentially be used to ascertain blood glucose levels by measuring the aqueous humor glucose levels in the anterior chamber of the eye. The key limitation for realizing this technique is the presence of sample noise due to corneal birefringence, which in the presence of motion artifact can confound the glucose signature in the aqueous humor of the eye. We present the development and characterization of a real-time, closed-loop, dual-wavelength polarimetric system for glucose monitoring using both a custom-built plastic eye phantom (in vitro) and isolated rabbit corneas (ex vivo) mounted in an artificial anterior chamber. The results show that the system can account for these noise sources and can monitor physiologic glucose levels accurately for a limited range of motion-induced birefringence. Using the dual-wavelength system in vitro and ex vivo, standard errors were 14.5  mg/dL and 22.4  mg/dL, respectively, in the presence of birefringence with motion. The results indicate that although dual-wavelength polarimetry has a limited range of compensation for motion-induced birefringence, when aligned correctly, it can minimize the effect of time-varying corneal birefringence for a range of motion larger than what has been reported in vivo. PMID:23299516

  13. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms

    NASA Astrophysics Data System (ADS)

    Malik, Bilal H.; Pirnstill, Casey W.; Coté, Gerard L.

    2013-01-01

    Noninvasive glucose monitoring is being investigated as a tool for effectively managing diabetes mellitus. Optical polarimetry has emerged as one such method, which can potentially be used to ascertain blood glucose levels by measuring the aqueous humor glucose levels in the anterior chamber of the eye. The key limitation for realizing this technique is the presence of sample noise due to corneal birefringence, which in the presence of motion artifact can confound the glucose signature in the aqueous humor of the eye. We present the development and characterization of a real-time, closed-loop, dual-wavelength polarimetric system for glucose monitoring using both a custom-built plastic eye phantom (in vitro) and isolated rabbit corneas (ex vivo) mounted in an artificial anterior chamber. The results show that the system can account for these noise sources and can monitor physiologic glucose levels accurately for a limited range of motion-induced birefringence. Using the dual-wavelength system in vitro and ex vivo, standard errors were 14.5 mg/dL and 22.4 mg/dL, respectively, in the presence of birefringence with motion. The results indicate that although dual-wavelength polarimetry has a limited range of compensation for motion-induced birefringence, when aligned correctly, it can minimize the effect of time-varying corneal birefringence for a range of motion larger than what has been reported in vivo.

  14. Constrained reconstructions for 4D intervention guidance.

    PubMed

    Kuntz, J; Flach, B; Kueres, R; Semmler, W; Kachelriess, M; Bartling, S

    2013-05-21

    Image-guided interventions are an increasingly important part of clinical minimally invasive procedures. However, up to now they cannot be performed under 4D (3D + time) guidance due to the exceedingly high x-ray dose. In this work we investigate the applicability of compressed sensing reconstructions for highly undersampled CT datasets combined with the incorporation of prior images in order to yield low dose 4D intervention guidance. We present a new reconstruction scheme prior image dynamic interventional CT (PrIDICT) that accounts for specific image features in intervention guidance and compare it to PICCS and ASD-POCS. The optimal parameters for the dose per projection and the numbers of projections per reconstruction are determined in phantom simulations and measurements. In vivo experiments in six pigs are performed in a cone-beam CT; measured doses are compared to current gold-standard intervention guidance represented by a clinical fluoroscopy system. Phantom studies show maximum image quality for identical overall doses in the range of 14 to 21 projections per reconstruction. In vivo studies reveal that interventional materials can be followed in 4D visualization and that PrIDICT, compared to PICCS and ASD-POCS, shows superior reconstruction results and fewer artifacts in the periphery with dose in the order of biplane fluoroscopy. These results suggest that 4D intervention guidance can be realized with today's flat detector and gantry systems using the herein presented reconstruction scheme.

  15. Constrained reconstructions for 4D intervention guidance

    NASA Astrophysics Data System (ADS)

    Kuntz, J.; Flach, B.; Kueres, R.; Semmler, W.; Kachelrieß, M.; Bartling, S.

    2013-05-01

    Image-guided interventions are an increasingly important part of clinical minimally invasive procedures. However, up to now they cannot be performed under 4D (3D + time) guidance due to the exceedingly high x-ray dose. In this work we investigate the applicability of compressed sensing reconstructions for highly undersampled CT datasets combined with the incorporation of prior images in order to yield low dose 4D intervention guidance. We present a new reconstruction scheme prior image dynamic interventional CT (PrIDICT) that accounts for specific image features in intervention guidance and compare it to PICCS and ASD-POCS. The optimal parameters for the dose per projection and the numbers of projections per reconstruction are determined in phantom simulations and measurements. In vivo experiments in six pigs are performed in a cone-beam CT; measured doses are compared to current gold-standard intervention guidance represented by a clinical fluoroscopy system. Phantom studies show maximum image quality for identical overall doses in the range of 14 to 21 projections per reconstruction. In vivo studies reveal that interventional materials can be followed in 4D visualization and that PrIDICT, compared to PICCS and ASD-POCS, shows superior reconstruction results and fewer artifacts in the periphery with dose in the order of biplane fluoroscopy. These results suggest that 4D intervention guidance can be realized with today’s flat detector and gantry systems using the herein presented reconstruction scheme.

  16. VMAT QA: Measurement-guided 4D dose reconstruction on a patient

    SciTech Connect

    Nelms, Benjamin E.; Opp, Daniel; Robinson, Joshua; Wolf, Theresa K.; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir

    2012-07-15

    global fluence change. Results: Across four TG-119 plans, the average PTV point dose difference in the cube between 3DVH and ion chamber is 0.1 {+-} 1.0%. Average film vs TPS {gamma}-analysis passing rates are 83.0%, 91.1%, and 98.4% for 1%/2 mm, 2%/2 mm, and 3%/3 mm threshold combinations, respectively, while average film vs 3DVH {gamma}-analysis passing rates are 88.6%, 96.1%, and 99.5% for the same respective criteria. 4D MGDR was also sufficiently accurate. First, for 99.5% voxels in each case, the doses from 3D and 4D MGDR at the end of delivery agree within 0.5%local dose-error/1 mm distance. Moreover, all failing voxels are confined to the edge of the cylindrical reconstruction volume. Second, dose vs time curves track between the ion chamber and 4D MGDR within 1%. Finally, 4D MGDR dose changes linearly with the accelerator output: the difference between cumulative ion chamber and MGDR dose changed by no more than 1% (randomly) with the output variation range of 10%. Conclusions: Even for a well-commissioned TPS, comparison metrics show better agreement on average to MGDR than to TPS on the arbitrary-shaped measurable 'patient.' The method requires no more accelerator time than standard QA, while producing more clinically relevant information. Validation in a heterogeneous thoracic phantom is under way, as is the ultimate application of 4D MGDR to virtual motion studies.

  17. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  18. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT.

    PubMed

    Lee, Taek-Soo; Frey, Eric C; Tsui, Benjamin M W

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of (99m)Tc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman's rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  19. Dosimetric Correction for a 4D-Computed Tomography Dataset using the Free-Form Deformation Algorithm

    NASA Astrophysics Data System (ADS)

    Markel, Daniel; Alasti, Hamideh; Chow, James C. L.

    2012-10-01

    A Free-Form Deformable (FFD) image registration algorithm in conjunction with 4D Computed Tomography (CT) images was implemented within a graphical user interface, FFD4D, for dosimetric calculations. The algorithm was developed using the cubic-B-spline method with smoothness corrections and registration point assistance to mark fudicials. Validation of the algorithm was performed with manually measured geometric differences using a QUASAR Respiratory Motion Phantom. In this work, we used the FFD algorithm to demonstrate dosimetric corrections amongst 10 breathing phases of a lung cancer patient using the 4D-CT image datasets. Different methods to enhance the image processing speed for high-performance computing were also discussed.

  20. Comparing the accuracy of four-dimensional photon dose calculations with three-dimensional calculations using moving and deforming phantoms

    SciTech Connect

    Vinogradskiy, Yevgeniy Y.; Balter, Peter; Followill, David S.; Alvarez, Paola E.; White, R. Allen; Starkschall, George

    2009-11-15

    Purpose: Four-dimensional (4D) dose calculation algorithms, which explicitly incorporate respiratory motion in the calculation of doses, have the potential to improve the accuracy of dose calculations in thoracic treatment planning; however, they generally require greater computing power and resources than currently used for three-dimensional (3D) dose calculations. The purpose of this work was to quantify the increase in accuracy of 4D dose calculations versus 3D dose calculations. Methods: The accuracy of each dose calculation algorithm was assessed using measurements made with two phantoms. Specifically, the authors used a rigid moving anthropomorphic thoracic phantom and an anthropomorphic thoracic phantom with a deformable lung insert. To incorporate a clinically relevant range of scenarios, they programed the phantoms to move and deform with two motion patterns: A sinusoidal motion pattern and an irregular motion pattern that was extracted from an actual patient's breathing profile. For each combination of phantom and motion pattern, three plans were created: A single-beam plan, a multiple-beam plan, and an intensity-modulated radiation therapy plan. Doses were calculated using 4D dose calculation methods as well as conventional 3D dose calculation methods. The rigid moving and deforming phantoms were irradiated according to the three treatment plans and doses were measured using thermoluminescent dosimeters (TLDs) and radiochromic film. The accuracy of each dose calculation algorithm was assessed using measured-to-calculated TLD doses and a {gamma} analysis. Results: No significant differences were observed between the measured-to-calculated TLD ratios among 4D and 3D dose calculations. The {gamma} results revealed that 4D dose calculations had significantly greater percentage of pixels passing the 5%/3 mm criteria than 3D dose calculations. Conclusions: These results indicate no significant differences in the accuracy between the 4D and the 3D dose

  1. High frame rate and high line density ultrasound imaging for local pulse wave velocity estimation using motion matching: A feasibility study on vessel phantoms.

    PubMed

    Li, Fubing; He, Qiong; Huang, Chengwu; Liu, Ke; Shao, Jinhua; Luo, Jianwen

    2016-04-01

    Pulse wave imaging (PWI) is an ultrasound-based method to visualize the propagation of pulse wave and to quantitatively estimate regional pulse wave velocity (PWV) of the arteries within the imaging field of view (FOV). To guarantee the reliability of PWV measurement, high frame rate imaging is required, which can be achieved by reducing the line density of ultrasound imaging or transmitting plane wave at the expense of spatial resolution and/or signal-to-noise ratio (SNR). In this study, a composite, full-view imaging method using motion matching was proposed with both high temporal and spatial resolution. Ultrasound radiofrequency (RF) data of 4 sub-sectors, each with 34 beams, including a common beam, were acquired successively to achieve a frame rate of ∼507 Hz at an imaging depth of 35 mm. The acceleration profiles of the vessel wall estimated from the common beam were used to reconstruct the full-view (38-mm width, 128-beam) image sequence. The feasibility of mapping local PWV variation along the artery using PWI technique was preliminarily validated on both homogeneous and inhomogeneous polyvinyl alcohol (PVA) cryogel vessel phantoms. Regional PWVs for the three homogeneous phantoms measured by the proposed method were in accordance with the sparse imaging method (38-mm width, 32-beam) and plane wave imaging method. Local PWV was estimated using the above-mentioned three methods on 3 inhomogeneous phantoms, and good agreement was obtained in both the softer (1.91±0.24 m/s, 1.97±0.27 m/s and 1.78±0.28 m/s) and the stiffer region (4.17±0.46 m/s, 3.99±0.53 m/s and 4.27±0.49 m/s) of the phantoms. In addition to the improved spatial resolution, higher precision of local PWV estimation in low SNR circumstances was also obtained by the proposed method as compared with the sparse imaging method. The proposed method might be helpful in disease detections through mapping the local PWV of the vascular wall. PMID:26773791

  2. High frame rate and high line density ultrasound imaging for local pulse wave velocity estimation using motion matching: A feasibility study on vessel phantoms.

    PubMed

    Li, Fubing; He, Qiong; Huang, Chengwu; Liu, Ke; Shao, Jinhua; Luo, Jianwen

    2016-04-01

    Pulse wave imaging (PWI) is an ultrasound-based method to visualize the propagation of pulse wave and to quantitatively estimate regional pulse wave velocity (PWV) of the arteries within the imaging field of view (FOV). To guarantee the reliability of PWV measurement, high frame rate imaging is required, which can be achieved by reducing the line density of ultrasound imaging or transmitting plane wave at the expense of spatial resolution and/or signal-to-noise ratio (SNR). In this study, a composite, full-view imaging method using motion matching was proposed with both high temporal and spatial resolution. Ultrasound radiofrequency (RF) data of 4 sub-sectors, each with 34 beams, including a common beam, were acquired successively to achieve a frame rate of ∼507 Hz at an imaging depth of 35 mm. The acceleration profiles of the vessel wall estimated from the common beam were used to reconstruct the full-view (38-mm width, 128-beam) image sequence. The feasibility of mapping local PWV variation along the artery using PWI technique was preliminarily validated on both homogeneous and inhomogeneous polyvinyl alcohol (PVA) cryogel vessel phantoms. Regional PWVs for the three homogeneous phantoms measured by the proposed method were in accordance with the sparse imaging method (38-mm width, 32-beam) and plane wave imaging method. Local PWV was estimated using the above-mentioned three methods on 3 inhomogeneous phantoms, and good agreement was obtained in both the softer (1.91±0.24 m/s, 1.97±0.27 m/s and 1.78±0.28 m/s) and the stiffer region (4.17±0.46 m/s, 3.99±0.53 m/s and 4.27±0.49 m/s) of the phantoms. In addition to the improved spatial resolution, higher precision of local PWV estimation in low SNR circumstances was also obtained by the proposed method as compared with the sparse imaging method. The proposed method might be helpful in disease detections through mapping the local PWV of the vascular wall.

  3. Upgrade and benchmarking of a 4D treatment planning system for scanned ion beam therapy

    SciTech Connect

    Richter, D.; Schwarzkopf, A.; Trautmann, J.; Durante, M.; Kraemer, M.; Jaekel, O.; Bert, C.

    2013-05-15

    Purpose: Upgrade and benchmarking of a research 4D treatment planning system (4DTPS) suitable for realistic patient treatment planning and treatment simulations taking into account specific requirements for scanned ion beam therapy, i.e., modeling of dose heterogeneities due to interplay effects and range changes caused by patient motion and dynamic beam delivery. Methods: The 4DTPS integrates data interfaces to 4D computed tomography (4DCT), deformable image registration and clinically used motion monitoring devices. The authors implemented a novel data model for 4D image segmentation using Boolean mask volume datasets and developed an algorithm propagating a manually contoured reference contour dataset to all 4DCT phases. They further included detailed treatment simulation and dose reconstruction functionality, based on the irregular patient motion and the temporal structure of the beam delivery. The treatment simulation functionality was validated against experimental data from irradiation of moving radiographic films in air, 3D moving ionization chambers in a water phantom, and moving cells in a biological phantom with a scanned carbon ion beam. The performance of the program was compared to results obtained with predecessor programs. Results: The measured optical density distributions of the radiographic films were reproduced by the simulations to (-2 {+-} 12)%. Compared to earlier versions of the 4DTPS, the mean agreement improved by 2%, standard deviations were reduced by 7%. The simulated dose to the moving ionization chambers in water showed an agreement with the measured dose of (-1 {+-} 4)% for the typical beam configuration. The mean deviation of the simulated from the measured biologically effective dose determined via cell survival was (617 {+-} 538) mGy relative biological effectiveness corresponding to (10 {+-} 9)%. Conclusions: The authors developed a research 4DTPS suitable for realistic treatment planning on patient data and capable of simulating

  4. Validation of the 4D NCAT simulation tools for use in high-resolution x-ray CT research

    NASA Astrophysics Data System (ADS)

    Segars, W. P.; Mahesh, Mahadevappa; Beck, T.; Frey, E. C.; Tsui, B. M. W.

    2005-04-01

    We validate the computer-based simulation tools developed in our laboratory for use in high-resolution CT research. The 4D NURBS-based cardiac-torso (NCAT) phantom was developed to provide a realistic and flexible model of the human anatomy and physiology. Unlike current phantoms in CT, the 4D NCAT has the advantage, due to its design, that its organ shapes can be changed to realistically model anatomical variations and patient motion. To efficiently simulate high-resolution CT images, we developed a unique analytic projection algorithm (including scatter and quantum noise) to accurately calculate projections directly from the surface definition of the phantom given parameters defining the CT scanner and geometry. The projection data are reconstructed into CT images using algorithms developed in our laboratory. The 4D NCAT phantom contains a level of detail that is close to impossible to produce in a physical test object. We, therefore, validate our CT simulation tools and methods through a series of direct comparisons with data obtained experimentally using existing, simple physical phantoms at different doses and using different x-ray energy spectra. In each case, the first-order simulations were found to produce comparable results (<12%). We reason that since the simulations produced equivalent results using simple test objects, they should be able to do the same in more anatomically realistic conditions. We conclude that, with the ability to provide realistic simulated CT image data close to that from actual patients, the simulation tools developed in this work will have applications in a broad range of CT imaging research.

  5. Evaluation of a 4D cone-beam CT reconstruction approach using a simulation framework.

    PubMed

    Hartl, Alexander; Yaniv, Ziv

    2009-01-01

    Current image-guided navigation systems for thoracic abdominal interventions utilize three dimensional (3D) images acquired at breath-hold. As a result they can only provide guidance at a specific point in the respiratory cycle. The intervention is thus performed in a gated manner, with the physician advancing only when the patient is at the same respiratory cycle in which the 3D image was acquired. To enable a more continuous workflow we propose to use 4D image data. We describe an approach to constructing a set of 4D images from a diagnostic CT acquired at breath-hold and a set of intraoperative cone-beam CT (CBCT) projection images acquired while the patient is freely breathing. Our approach is based on an initial reconstruction of a gated 4D CBCT data set. The 3D CBCT images for each respiratory phase are then non-rigidly registered to the diagnostic CT data. Finally the diagnostic CT is deformed based on the registration results, providing a 4D data set with sufficient quality for navigation purposes. In this work we evaluate the proposed reconstruction approach using a simulation framework. A 3D CBCT dataset of an anthropomorphic phantom is deformed using internal motion data acquired from an animal model to create a ground truth 4D CBCT image. Simulated projection images are then created from the 4D image and the known CBCT scan parameters. Finally, the original 3D CBCT and the simulated X-ray images are used as input to our reconstruction method. The resulting 4D data set is then compared to the known ground truth by normalized cross correlation(NCC). We show that the deformed diagnostic CTs are of better quality than the gated reconstructions with a mean NCC value of 0.94 versus a mean 0.81 for the reconstructions. PMID:19964143

  6. Incorporation of a Left Ventricle Finite Element Model Defining Infarction Into the XCAT Imaging Phantom

    PubMed Central

    Veress, Alexander I.; Segars, W. Paul; Tsui, Benjamin M. W.; Gullberg, Grant T.

    2011-01-01

    The 4D extended cardiac-torso (XCAT) phantom was developed to provide a realistic and flexible model of the human anatomy and cardiac and respiratory motions for use in medical imaging research. A prior limitation to the phantom was that it did not accurately simulate altered functions of the heart that result from cardiac pathologies such as coronary artery disease (CAD). We overcame this limitation in a previous study by combining the phantom with a finite-element (FE) mechanical model of the left ventricle (LV) capable of more realistically simulating regional defects caused by ischemia. In the present work, we extend this model giving it the ability to accurately simulate motion abnormalities caused by myocardial infarction (MI), a far more complex situation in terms of altered mechanics compared with the modeling of acute ischemia. The FE model geometry is based on high resolution CT images of a normal male subject. An anterior region was defined as infarcted and the material properties and fiber distribution were altered, according to the bio-physiological properties of two types of infarction, i.e., fibrous and remodeled infarction (30% thinner wall than fibrous case). Compared with the original, surface-based 4D beating heart model of the XCAT, where regional abnormalities are modeled by simply scaling down the motion in those regions, the FE model was found to provide a more accurate representation of the abnormal motion of the LV due to the effects of fibrous infarction as well as depicting the motion of remodeled infarction. In particular, the FE models allow for the accurate depiction of dyskinetic motion. The average circumferential strain results were found to be consistent with measured dyskinetic experimental results. Combined with the 4D XCAT phantom, the FE model can be used to produce realistic multimodality sets of imaging data from a variety of patients in which the normal or abnormal cardiac function is accurately represented. PMID:21041157

  7. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation.

    PubMed

    Chen, Jiangang; Hou, Gary Y; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n = 5) and in vitro canine livers (n = 3) were tested, as well as HIFU lesions in in vitro canine livers (n = 5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R² = 0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm(-1) MHz(-1), which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm(-1) MHz(-1)) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation.

  8. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation

    NASA Astrophysics Data System (ADS)

    Chen, Jiangang; Hou, Gary Y.; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n=5 ) and in vitro canine livers (n=3 ) were tested, as well as HIFU lesions in in vitro canine livers (n=5 ). Results demonstrated that attenuations obtained from the phantoms showed a good correlation ({{R}2}=0.976 ) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm-1 MHz-1, which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm-1 MHz-1) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation.

  9. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation.

    PubMed

    Chen, Jiangang; Hou, Gary Y; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n = 5) and in vitro canine livers (n = 3) were tested, as well as HIFU lesions in in vitro canine livers (n = 5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R² = 0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm(-1) MHz(-1), which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm(-1) MHz(-1)) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation. PMID:26371501

  10. Do Maximum Intensity Projection Images Truly Capture Tumor Motion?

    SciTech Connect

    Park, Kwangyoul Huang, Long; Gagne, Havaleh; Papiez, Lech

    2009-02-01

    Purpose: For the treatment of patients with lung cancer, internal target volume frequently is determined by using maximum intensity projection (MIP) images generated by means of four-dimensional computed tomography (4D-CT). To check the accuracy of MIPs for various target motions, especially for targets moving irregularly, we performed phantom studies using a programmable dynamic lung phantom. Methods and Materials: A custom-built programmable lung phantom was used to simulate irregular target motions along the superior-inferior direction. After scanning in helical mode using 4D-CT, reconstructed phase and MIP images were imported into the Pinnacle 8.0 treatment planning system for image analysis. Results: For all regular periodic target motions with constant amplitude and period, the measured MIP target span along the superior-inferior direction was accurate within 2-3 mm of the real target motion span. For irregular target motions with varying amplitudes and periods, the measured MIP target span systematically underrepresented the real range of target motion by more than 1 cm in some cases. The difference between measured MIP target span and real target span decreased as the target moved faster. We associate these discrepancies with the fact that current reconstruction algorithms of commercial 4D-CT are based on phase binning. Conclusions: According to our phantom measurements, MIP accurately reflects the range of target motion for regular target motion. However, it generally underestimates the range of target motion when the motion is irregular in amplitude and periodicity. Clinical internal target volume determination using MIP requires caution, especially when there is breathing irregularity.

  11. Poster — Thur Eve — 30: 4D VMAT dose calculation methodology to investigate the interplay effect: experimental validation using TrueBeam Developer Mode and Gafchromic film

    SciTech Connect

    Teke, T; Milette, MP; Huang, V; Thomas, SD

    2014-08-15

    The interplay effect between the tumor motion and the radiation beam modulation during a VMAT treatment delivery alters the delivered dose distribution from the planned one. This work present and validate a method to accurately calculate the dose distribution in 4D taking into account the tumor motion, the field modulation and the treatment starting phase. A QUASAR™ respiratory motion phantom was 4D scanned with motion amplitude of 3 cm and with a 3 second period. A static scan was also acquired with the lung insert and the tumor contained in it centered. A VMAT plan with a 6XFFF beam was created on the averaged CT and delivered on a Varian TrueBeam and the trajectory log file was saved. From the trajectory log file 10 VMAT plans (one for each breathing phase) and a developer mode XML file were created. For the 10 VMAT plans, the tumor motion was modeled by moving the isocentre on the static scan, the plans were re-calculated and summed in the treatment planning system. In the developer mode, the tumor motion was simulated by moving the couch dynamically during the treatment. Gafchromic films were placed in the QUASAR phantom static and irradiated using the developer mode. Different treatment starting phase were investigated (no phase shift, maximum inhalation and maximum exhalation). Calculated and measured isodose lines and profiles are in very good agreement. For each starting phase, the dose distribution exhibit significant differences but are accurately calculated with the methodology presented in this work.

  12. SU-D-18C-01: A Novel 4D-MRI Technology Based On K-Space Retrospective Sorting

    SciTech Connect

    Liu, Y; Yin, F; Cai, J

    2014-06-01

    Purpose: Current 4D-MRI techniques lack sufficient temporal/spatial resolution and consistent tumor contrast. To overcome these limitations, this study presents the development and initial evaluation of an entirely new framework of 4D-MRI based on k-space retrospective sorting. Methods: An important challenge of the proposed technique is to determine the number of repeated scans(NR) required to obtain sufficient k-space data for 4D-MRI. To do that, simulations using 29 cancer patients' respiratory profiles were performed to derive the relationship between data acquisition completeness(Cp) and NR, also relationship between NR(Cp=95%) and the following factors: total slice(NS), respiratory phase bin length(Lb), frame rate(fr), resolution(R) and image acquisition starting-phase(P0). To evaluate our technique, a computer simulation study on a 4D digital human phantom (XCAT) were conducted with regular breathing (fr=0.5Hz; R=256×256). A 2D echo planer imaging(EPI) MRI sequence were assumed to acquire raw k-space data, with respiratory signal and acquisition time for each k-space data line recorded simultaneously. K-space data was re-sorted based on respiratory phases. To evaluate 4D-MRI image quality, tumor trajectories were measured and compared with the input signal. Mean relative amplitude difference(D) and cross-correlation coefficient(CC) are calculated. Finally, phase-sharing sliding window technique was applied to investigate the feasibility of generating ultra-fast 4D-MRI. Result: Cp increased with NR(Cp=100*[1-exp(-0.19*NR)], when NS=30, Lb=100%/6). NR(Cp=95%) was inversely-proportional to Lb (r=0.97), but independent of other factors. 4D-MRI on XCAT demonstrated highly accurate motion information (D=0.67%, CC=0.996) with much less artifacts than those on image-based sorting 4D-MRI. Ultra-fast 4D-MRI with an apparent temporal resolution of 10 frames/second was reconstructed using the phase-sharing sliding window technique. Conclusions: A novel 4D

  13. Biomimetic 4D printing

    NASA Astrophysics Data System (ADS)

    Sydney Gladman, A.; Matsumoto, Elisabetta A.; Nuzzo, Ralph G.; Mahadevan, L.; Lewis, Jennifer A.

    2016-04-01

    Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies.

  14. Biomimetic 4D printing.

    PubMed

    Gladman, A Sydney; Matsumoto, Elisabetta A; Nuzzo, Ralph G; Mahadevan, L; Lewis, Jennifer A

    2016-04-01

    Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies.

  15. Biomimetic 4D printing.

    PubMed

    Gladman, A Sydney; Matsumoto, Elisabetta A; Nuzzo, Ralph G; Mahadevan, L; Lewis, Jennifer A

    2016-04-01

    Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies. PMID:26808461

  16. 4D cone-beam CT imaging for guidance in radiation therapy: setup verification by use of implanted fiducial markers

    NASA Astrophysics Data System (ADS)

    Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C. C. M.; Bel, Arjan; Alderliesten, Tanja

    2016-03-01

    The use of 4D cone-beam computed tomography (CBCT) and fiducial markers for guidance during radiation therapy of mobile tumors is challenging due to the trade-off between image quality, imaging dose, and scanning time. We aimed to investigate the visibility of markers and the feasibility of marker-based 4D registration and manual respiration-induced marker motion quantification for different CBCT acquisition settings. A dynamic thorax phantom and a patient with implanted gold markers were included. For both the phantom and patient, the peak-to-peak amplitude of marker motion in the cranial-caudal direction ranged from 5.3 to 14.0 mm, which did not affect the marker visibility and the associated marker-based registration feasibility. While using a medium field of view (FOV) and the same total imaging dose as is applied for 3D CBCT scanning in our clinic, it was feasible to attain an improved marker visibility by reducing the imaging dose per projection and increasing the number of projection images. For a small FOV with a shorter rotation arc but similar total imaging dose, streak artifacts were reduced due to using a smaller sampling angle. Additionally, the use of a small FOV allowed reducing total imaging dose and scanning time (~2.5 min) without losing the marker visibility. In conclusion, by using 4D CBCT with identical or lower imaging dose and a reduced gantry speed, it is feasible to attain sufficient marker visibility for marker-based 4D setup verification. Moreover, regardless of the settings, manual marker motion quantification can achieve a high accuracy with the error <1.2 mm.

  17. 4D numerical observer for lesion detection in respiratory-gated PET

    PubMed Central

    Lorsakul, Auranuch; Li, Quanzheng; Trott, Cathryn M.; Hoog, Christopher; Petibon, Yoann; Ouyang, Jinsong; Laine, Andrew F.; El Fakhri, Georges

    2014-01-01

    Purpose: Respiratory-gated positron emission tomography (PET)/computed tomography protocols reduce lesion smearing and improve lesion detection through a synchronized acquisition of emission data. However, an objective assessment of image quality of the improvement gained from respiratory-gated PET is mainly limited to a three-dimensional (3D) approach. This work proposes a 4D numerical observer that incorporates both spatial and temporal informations for detection tasks in pulmonary oncology. Methods: The authors propose a 4D numerical observer constructed with a 3D channelized Hotelling observer for the spatial domain followed by a Hotelling observer for the temporal domain. Realistic 18F-fluorodeoxyglucose activity distributions were simulated using a 4D extended cardiac torso anthropomorphic phantom including 12 spherical lesions at different anatomical locations (lower, upper, anterior, and posterior) within the lungs. Simulated data based on Monte Carlo simulation were obtained using geant4 application for tomographic emission (GATE). Fifty noise realizations of six respiratory-gated PET frames were simulated by GATE using a model of the Siemens Biograph mMR scanner geometry. PET sinograms of the thorax background and pulmonary lesions that were simulated separately were merged to generate different conditions of the lesions to the background (e.g., lesion contrast and motion). A conventional ordered subset expectation maximization (OSEM) reconstruction (5 iterations and 6 subsets) was used to obtain: (1) gated, (2) nongated, and (3) motion-corrected image volumes (a total of 3200 subimage volumes: 2400 gated, 400 nongated, and 400 motion-corrected). Lesion-detection signal-to-noise ratios (SNRs) were measured in different lesion-to-background contrast levels (3.5, 8.0, 9.0, and 20.0), lesion diameters (10.0, 13.0, and 16.0 mm), and respiratory motion displacements (17.6–31.3 mm). The proposed 4D numerical observer applied on multiple-gated images was

  18. 4D numerical observer for lesion detection in respiratory-gated PET

    SciTech Connect

    Lorsakul, Auranuch; Li, Quanzheng; Ouyang, Jinsong; El Fakhri, Georges; Trott, Cathryn M.; Hoog, Christopher; Petibon, Yoann; Laine, Andrew F.

    2014-10-15

    Purpose: Respiratory-gated positron emission tomography (PET)/computed tomography protocols reduce lesion smearing and improve lesion detection through a synchronized acquisition of emission data. However, an objective assessment of image quality of the improvement gained from respiratory-gated PET is mainly limited to a three-dimensional (3D) approach. This work proposes a 4D numerical observer that incorporates both spatial and temporal informations for detection tasks in pulmonary oncology. Methods: The authors propose a 4D numerical observer constructed with a 3D channelized Hotelling observer for the spatial domain followed by a Hotelling observer for the temporal domain. Realistic {sup 18}F-fluorodeoxyglucose activity distributions were simulated using a 4D extended cardiac torso anthropomorphic phantom including 12 spherical lesions at different anatomical locations (lower, upper, anterior, and posterior) within the lungs. Simulated data based on Monte Carlo simulation were obtained using GEANT4 application for tomographic emission (GATE). Fifty noise realizations of six respiratory-gated PET frames were simulated by GATE using a model of the Siemens Biograph mMR scanner geometry. PET sinograms of the thorax background and pulmonary lesions that were simulated separately were merged to generate different conditions of the lesions to the background (e.g., lesion contrast and motion). A conventional ordered subset expectation maximization (OSEM) reconstruction (5 iterations and 6 subsets) was used to obtain: (1) gated, (2) nongated, and (3) motion-corrected image volumes (a total of 3200 subimage volumes: 2400 gated, 400 nongated, and 400 motion-corrected). Lesion-detection signal-to-noise ratios (SNRs) were measured in different lesion-to-background contrast levels (3.5, 8.0, 9.0, and 20.0), lesion diameters (10.0, 13.0, and 16.0 mm), and respiratory motion displacements (17.6–31.3 mm). The proposed 4D numerical observer applied on multiple-gated images was

  19. Preliminary Clinical Evaluation of a 4D-CBCT Estimation Technique using Prior Information and Limited-angle Projections

    PubMed Central

    Zhang, You; Yin, Fang-Fang; Pan, Tinsu; Vergalasova, Irina; Ren, Lei

    2015-01-01

    Background and Purpose A new technique has been previously reported to estimate high-quality 4D-CBCT using prior information and limited-angle projections. This study is to investigate its clinical feasibility through both phantom and patient studies. Materials and Methods The new technique used to estimate 4D-CBCT is called MMFD-NCC. It is based on the previously reported motion-modeling and free-form deformation (MMFD) method, with the introduction of normalized-cross-correlation (NCC) as a new similarity metric. The clinical feasibility of this technique was evaluated by assessing the accuracy of estimated anatomical structures in comparison to those in the ‘ground-truth’ reference 4D-CBCT, using data obtained from a physical phantom and three lung cancer patients. Both volume percentage error (VPE) and center-of-mass error (COME) of the estimated tumor volume were used as the evaluation metrics. Results The average VPE/COME of the tumor in the prior image was 257.1%/10.1 mm for the phantom study and 55.6%/3.8 mm for the patient study. Using only orthogonal-view 30° projections, the MMFD-NCC has reduced the corresponding values to 7.7% /1.2 mm and 9.6%/1.1 mm, respectively. Conclusions The MMFD-NCC technique is able to estimate 4D-CBCT images with geometrical accuracy of the tumor within 10% VPE and 2 mm COME, which can be used to improve the localization accuracy of radiotherapy. PMID:25818396

  20. A novel method for 4D measurement-guided planned dose perturbation to estimate patient dose/DVH changes due to interplay

    NASA Astrophysics Data System (ADS)

    Nelms, B.; Feygelman, V.

    2013-06-01

    As IMRT/VMAT technology continues to evolve, so do the dosimetric QA methods. We present the theoretical framework for the novel planned dose perturbation algorithm. It allows not only to reconstruct the 3D volumetric doe on a patient from a measurement in a cylindrical phantom, but also to incorporate the effects of the interplay between the intrafractional organ motion and dynamic delivery. Unlike in our previous work, this 4D dose reconstruction does not require the knowledge of the TPS dose for each control point of the plan, making the method much more practical. Motion is viewed as just another source of error, accounted for by perturbing (morphing) the planned dose distribution based on the limited empirical dose from the phantom measurement. The strategy for empirical verification of the algorithm is presented as the necessary next step.

  1. Spatial-temporal total variation regularization (STTVR) for 4D-CT reconstruction

    NASA Astrophysics Data System (ADS)

    Wu, Haibo; Maier, Andreas; Fahrig, Rebecca; Hornegger, Joachim

    2012-03-01

    Four dimensional computed tomography (4D-CT) is very important for treatment planning in thorax or abdomen area, e.g. for guiding radiation therapy planning. The respiratory motion makes the reconstruction problem illposed. Recently, compressed sensing theory was introduced. It uses sparsity as a prior to solve the problem and improves image quality considerably. However, the images at each phase are reconstructed individually. The correlations between neighboring phases are not considered in the reconstruction process. In this paper, we propose the spatial-temporal total variation regularization (STTVR) method which not only employs the sparsity in the spatial domain but also in the temporal domain. The algorithm is validated with XCAT thorax phantom. The Euclidean norm of the reconstructed image and ground truth is calculated for evaluation. The results indicate that our method improves the reconstruction quality by more than 50% compared to standard ART.

  2. Advances in 4D radiation therapy for managing respiration: part II - 4D treatment planning.

    PubMed

    Rosu, Mihaela; Hugo, Geoffrey D

    2012-12-01

    The development of 4D CT imaging technology made possible the creation of patient models that are reflective of respiration-induced anatomical changes by adding a temporal dimension to the conventional 3D, spatial-only, patient description. This had opened a new venue for treatment planning and radiation delivery, aimed at creating a comprehensive 4D radiation therapy process for moving targets. Unlike other breathing motion compensation strategies (e.g. breath-hold and gating techniques), 4D radiotherapy assumes treatment delivery over the entire respiratory cycle - an added bonus for both patient comfort and treatment time efficiency. The time-dependent positional and volumetric information holds the promise for optimal, highly conformal, radiotherapy for targets experiencing movements caused by respiration, with potentially elevated dose prescriptions and therefore higher cure rates, while avoiding the uninvolved nearby structures. In this paper, the current state of the 4D treatment planning is reviewed, from theory to the established practical routine. While the fundamental principles of 4D radiotherapy are well defined, the development of a complete, robust and clinically feasible process still remains a challenge, imposed by limitations in the available treatment planning and radiation delivery systems.

  3. Advances in 4D Radiation Therapy for Managing Respiration: Part II – 4D Treatment Planning

    PubMed Central

    Rosu, Mihaela; Hugo, Geoffrey D.

    2014-01-01

    The development of 4D CT imaging technology made possible the creation of patient models that are reflective of respiration-induced anatomical changes by adding a temporal dimension to the conventional 3D, spatial-only, patient description. This had opened a new venue for treatment planning and radiation delivery, aimed at creating a comprehensive 4D radiation therapy process for moving targets. Unlike other breathing motion compensation strategies (e.g. breath-hold and gating techniques), 4D radiotherapy assumes treatment delivery over the entire respiratory cycle – an added bonus for both patient comfort and treatment time efficiency. The time-dependent positional and volumetric information holds the promise for optimal, highly conformal, radiotherapy for targets experiencing movements caused by respiration, with potentially elevated dose prescriptions and therefore higher cure rates, while avoiding the uninvolved nearby structures. In this paper, the current state of the 4D treatment planning is reviewed, from theory to the established practical routine. While the fundamental principles of 4D radiotherapy are well defined, the development of a complete, robust and clinically feasible process still remains a challenge, imposed by limitations in the available treatment planning and radiation delivery systems. PMID:22796324

  4. 4D Clinical Imaging for Dynamic CAD

    PubMed Central

    McIntyre, Frederick

    2013-01-01

    A basic 4D imaging system to capture the jaw motion has been developed that produces high resolution 3D surface data. Fluorescent microspheres are brushed onto the areas of the upper and the lower arches to be imaged, producing a high-contrast random optical pattern. A hand-held imaging device operated at about 10 cm from the mouth captures time-based perspective images of the fluorescent areas. Each set of images, containing both upper and the lower arch data, is converted to a 3d point mesh using photogrammetry, thereby providing an instantaneous relative jaw position. Eight 3d positions per second are captured. Using one of the 3d frames as a reference, incremental transforms are derived to express the free body motion of the mandible. Conventional 3d models of the dentition are directly registered to the reference frame, allowing them to be animated using the derived transforms. PMID:24082882

  5. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  6. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study.

    PubMed

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M; Tsui, Benjamin M W

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  7. Task-Based Evaluation of a 4D MAP-RBI-EM Image Reconstruction Method for Gated Myocardial Perfusion SPECT using a Human Observer Study

    PubMed Central

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-01-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  8. 4D planning over the full course of fractionation: assessment of the benefit of tumor trailing

    NASA Astrophysics Data System (ADS)

    McQuaid, D.; Bortfeld, T.

    2011-11-01

    Tumor trailing techniques have been proposed as a method of reducing the problem of intrafraction motion in radiotherapy. However the dosimetric assessment of trailing strategies is complicated by the requirement to study dose deposition over a full fraction delivery. Common 4D planning strategies allowing assessment of dosimetric motion effects study a single cycle acquired with 4DCT. In this paper, a methodology to assess dose deposited over an entire treatment course is advanced and used to assess the potential benefit of tumor trailing strategies for lung cancer patients. Two digital phantoms mimicking patient anatomy were each programmed to follow the tumor respiratory trajectory observed from 33 lung cancer patients. The two phantoms were designed to represent the cases of a small (volume = 13.6 cm3) and large (volume = 181.7 cm3) lung lesion. Motion margins required to obtain CTV coverage by 95% of the prescription dose to 90% of the available cases were computed for a standard treatment strategy and a trailing treatment strategy. The trailing strategy facilitated a margin reduction of over 30% relative to the conventional delivery. When the dose was computed across the entire delivery for the 33 cases, the trailing strategy was found to significantly reduce the underdosage to the outlier cases and the reduced trailing margin facilitated a 15% (small lesion) and 4% (large lesion) reduction for the mean lung dose and 7% (small lesion) and 10% (large lesion) for the mean esophagus dose. Finally, for comparison an ideal continuous tracking strategy was assessed and found to further reduce the mean lung and esophagus dose. However, this improvement comes at the price of increased delivery complexity and increased reliance on tumor localization accuracy.

  9. SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET

    SciTech Connect

    Cui, Y; Bowsher, J; Yan, S; Cai, J; Das, S; Yin, F

    2014-06-01

    Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with {sup 18}F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medical Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy.

  10. Impact of CT attenuation correction method on quantitative respiratory-correlated (4D) PET/CT imaging

    SciTech Connect

    Nyflot, Matthew J.; Lee, Tzu-Cheng; Alessio, Adam M.; Kinahan, Paul E.; Wollenweber, Scott D.; Stearns, Charles W.; Bowen, Stephen R.

    2015-01-15

    Purpose: Respiratory-correlated positron emission tomography (PET/CT) 4D PET/CT is used to mitigate errors from respiratory motion; however, the optimal CT attenuation correction (CTAC) method for 4D PET/CT is unknown. The authors performed a phantom study to evaluate the quantitative performance of CTAC methods for 4D PET/CT in the ground truth setting. Methods: A programmable respiratory motion phantom with a custom movable insert designed to emulate a lung lesion and lung tissue was used for this study. The insert was driven by one of five waveforms: two sinusoidal waveforms or three patient-specific respiratory waveforms. 3DPET and 4DPET images of the phantom under motion were acquired and reconstructed with six CTAC methods: helical breath-hold (3DHEL), helical free-breathing (3DMOT), 4D phase-averaged (4DAVG), 4D maximum intensity projection (4DMIP), 4D phase-matched (4DMATCH), and 4D end-exhale (4DEXH) CTAC. Recovery of SUV{sub max}, SUV{sub mean}, SUV{sub peak}, and segmented tumor volume was evaluated as RC{sub max}, RC{sub mean}, RC{sub peak}, and RC{sub vol}, representing percent difference relative to the static ground truth case. Paired Wilcoxon tests and Kruskal–Wallis ANOVA were used to test for significant differences. Results: For 4DPET imaging, the maximum intensity projection CTAC produced significantly more accurate recovery coefficients than all other CTAC methods (p < 0.0001 over all metrics). Over all motion waveforms, ratios of 4DMIP CTAC recovery were 0.2 ± 5.4, −1.8 ± 6.5, −3.2 ± 5.0, and 3.0 ± 5.9 for RC{sub max}, RC{sub peak}, RC{sub mean}, and RC{sub vol}. In comparison, recovery coefficients for phase-matched CTAC were −8.4 ± 5.3, −10.5 ± 6.2, −7.6 ± 5.0, and −13.0 ± 7.7 for RC{sub max}, RC{sub peak}, RC{sub mean}, and RC{sub vol}. When testing differences between phases over all CTAC methods and waveforms, end-exhale phases were significantly more accurate (p = 0.005). However, these differences were driven by

  11. MRI-Guided Target Motion Assessment using Dynamic Automatic Segmentation

    NASA Astrophysics Data System (ADS)

    Saenz, Daniel L.

    Motion significantly impacts the radiotherapy process and represents one of the persisting problems in treatment delivery. In order to improve motion management techniques and implement future image guided radiotherapy tools such as MRI-guidance, automatic segmentation algorithms hold great promise. Such algorithms are attractive due to their direct measurement accuracy, speed, and ability to assess motion trajectories for daily treatment plan modifications. We developed and optimized an automatic segmentation technique to enable target tracking using MR cines, 4D-MRI, and 4D-CT. This algorithm overcomes weaknesses in automatic contouring such as lack of image contrast, subjectivity, slow speed, and lack of differentiating feature vectors by the use of morphological processing. The software is enhanced with predictive parameter capabilities and dynamic processing. The 4D-MRI images are acquired by applying a retrospective phase binning approach to radially-acquired MR image projections. The quantification of motion is validated with a motor phantom undergoing a known trajectory in 4D-CT, 4D-MRI, and in MR cines from the ViewRay MR-Guided RT system. In addition, a clinical case study demonstrates wide-reaching implications of the software to segment lesions in the brain and lung as well as critical structures such as the liver. Auto-segmentation results from MR cines of canines correlate well with manually drawn contours, both in terms of Dice similarity coefficient and agreement of extracted motion trajectories.

  12. SU-E-J-207: Assessing the Validity of 4D-CT Based Target Volumes and Free Breathing CBCT Localization in Lung Stereotactic Ablative Radiation Therapy (SABR)

    SciTech Connect

    Badkul, R; Pokhrel, D; Jiang, H; Park, J; Wang, F; Kumar, P

    2014-06-01

    Purpose: Four-dimensional-computed-tomography(4D-CT) imaging for target-volume delineation and cone-beam-tomography(CBCT) for treatment localization are widely utilized in lung-SABR.Aim of this study was to perform a quantitative-assessment and inter-comparison of Internal-targetvolumes( ITV) drawn on various phases of breathing-cycle 4D-CT-scans, Maximum-intensity-projection(MIP), average-intensity-projection(AIP)and static CT-scans of lung-motion-phantom to simulate lung-SABR patient geometry. We also analyzed and compared the ITVs drawn on freebreathing- CBCT. Materials and Methods: 4D-CT-scans were acquired on Philips big-bore 16slice CT and Bellows-respiratory monitoring-system using retrospective phase-binning method. Each respiratory cycle divided into 10-phases. Quasar-Phantom with lung-inserts and 3cm-diameter nylonball to simulate tumor and was placed on respiratory-motion-platform for 4D-CT and CBCT-acquisition. Amplitudes of motions: 0.5,1.0,2.0,3.0cm in superior-inferior direction with breathing-cycle time of 6,5,4,6sec, respectively used.4D-CTs with 10-phases(0%to90%)for each excursion-set and 3D-CT for static-phantom exported to iPlan treatment-planningsystem( TPS).Tumor-volumes delineated in all phases of 4D-CT, MIP,AIP,CBCT scans using fixed-HU-threshold(−500to1000)values automatically.For each 4D-dataset ITV obtained by unifying the tumorcontours on all phases.CBCT-ITV-volumes were drawn in Eclipse-TPS. Results: Mean volume of tumor contours for all phases compared with static 3D-CT were 0.62±0.08%, 1.67±0.26%, 4.77±0.54% and 9.27±1.23% for 0.5cm,1cm,2cm,3cm excursions respectively. Differences of mean Union-ITV with MIP-ITV were close(≤2.4%).Mean Union-ITV from expected-theoretical values differed from −4.9% to 3.8%.Union-ITV and MIP-ITV were closer within 2.3%. AIP-ITVs were underestimated from 14 to 32% compared to union-ITV for all motion datasets. Differences of −5.9% to −44% and −5% to 6.7% for CBCT-ITV from MIP-ITV and AIP

  13. Linac-integrated 4D cone beam CT: first experimental results

    NASA Astrophysics Data System (ADS)

    Dietrich, Lars; Jetter, Siri; Tücking, Thomas; Nill, Simeon; Oelfke, Uwe

    2006-06-01

    A new online imaging approach, linac-integrated cone beam CT (CBCT), has been developed over the past few years. It has the advantage that a patient can be examined in their treatment position directly before or during a radiotherapy treatment. Unfortunately, respiratory organ motion, one of the largest intrafractional organ motions, often leads to artefacts in the reconstructed 3D images. One way to take this into account is to register the breathing phase during image acquisition for a phase-correlated image reconstruction. Therefore, the main focus of this work is to present a system which has the potential to investigate the correlation between internal (movement of the diaphragm) and external (data of a respiratory gating system) information about breathing phase and amplitude using an inline CBCT scanner. This also includes a feasibility study about using the acquired information for a respiratory-correlated 4D CBCT reconstruction. First, a moving lung phantom was used to develop and to specify the required methods which are based on an image reconstruction using only projections belonging to a certain moving phase. For that purpose, the corresponding phase has to be detected for each projection. In the case of the phantom, an electrical signal allows one to track the movement in real time. The number of projections available for the image reconstruction depends on the breathing phase and the size of the position range from which projections should be used for the reconstruction. The narrower this range is, the better the inner structures can be located, but also the noise of the images increases due to the limited number of projections. This correlation has also been analysed. In a second step, the methods were clinically applied using data sets of patients with lung tumours. In this case, the breathing phase was detected by an external gating system (AZ-733V, Anzai Medical Co.) based on a pressure sensor attached to the patient's abdominal region with a

  14. SU-E-J-150: Four-Dimensional Cone-Beam CT Algorithm by Extraction of Physical and Motion Parameter of Mobile Targets Retrospective to Image Reconstruction with Motion Modeling

    SciTech Connect

    Ali, I; Ahmad, S; Alsbou, N

    2015-06-15

    Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing phases

  15. SU-E-J-02: 4D Digital Tomosynthesis Based On Algebraic Image Reconstruction and Total-Variation Minimization for the Improvement of Image Quality

    SciTech Connect

    Kim, D; Kang, S; Kim, T; Suh, T; Kim, S

    2014-06-01

    Purpose: In this paper, we implemented the four-dimensional (4D) digital tomosynthesis (DTS) imaging based on algebraic image reconstruction technique and total-variation minimization method in order to compensate the undersampled projection data and improve the image quality. Methods: The projection data were acquired as supposed the cone-beam computed tomography system in linear accelerator by the Monte Carlo simulation and the in-house 4D digital phantom generation program. We performed 4D DTS based upon simultaneous algebraic reconstruction technique (SART) among the iterative image reconstruction technique and total-variation minimization method (TVMM). To verify the effectiveness of this reconstruction algorithm, we performed systematic simulation studies to investigate the imaging performance. Results: The 4D DTS algorithm based upon the SART and TVMM seems to give better results than that based upon the existing method, or filtered-backprojection. Conclusion: The advanced image reconstruction algorithm for the 4D DTS would be useful to validate each intra-fraction motion during radiation therapy. In addition, it will be possible to give advantage to real-time imaging for the adaptive radiation therapy. This research was supported by Leading Foreign Research Institute Recruitment Program (Grant No.2009-00420) and Basic Atomic Energy Research Institute (BAERI); (Grant No. 2009-0078390) through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP)

  16. Respiratory triggered 4D cone-beam computed tomography: A novel method to reduce imaging dose

    PubMed Central

    Cooper, Benjamin J.; O’Brien, Ricky T.; Balik, Salim; Hugo, Geoffrey D.; Keall, Paul J.

    2013-01-01

    Purpose: A novel method called respiratory triggered 4D cone-beam computed tomography (RT 4D CBCT) is described whereby imaging dose can be reduced without degrading image quality. RT 4D CBCT utilizes a respiratory signal to trigger projections such that only a single projection is assigned to a given respiratory bin for each breathing cycle. In contrast, commercial 4D CBCT does not actively use the respiratory signal to minimize image dose. Methods: To compare RT 4D CBCT with conventional 4D CBCT, 3600 CBCT projections of a thorax phantom were gathered and reconstructed to generate a ground truth CBCT dataset. Simulation pairs of conventional 4D CBCT acquisitions and RT 4D CBCT acquisitions were developed assuming a sinusoidal respiratory signal which governs the selection of projections from the pool of 3600 original projections. The RT 4D CBCT acquisition triggers a single projection when the respiratory signal enters a desired acquisition bin; the conventional acquisition does not use a respiratory trigger and projections are acquired at a constant frequency. Acquisition parameters studied were breathing period, acquisition time, and imager frequency. The performance of RT 4D CBCT using phase based and displacement based sorting was also studied. Image quality was quantified by calculating difference images of the test dataset from the ground truth dataset. Imaging dose was calculated by counting projections. Results: Using phase based sorting RT 4D CBCT results in 47% less imaging dose on average compared to conventional 4D CBCT. Image quality differences were less than 4% at worst. Using displacement based sorting RT 4D CBCT results in 57% less imaging dose on average, than conventional 4D CBCT methods; however, image quality was 26% worse with RT 4D CBCT. Conclusions: Simulation studies have shown that RT 4D CBCT reduces imaging dose while maintaining comparable image quality for phase based 4D CBCT; image quality is degraded for displacement based RT 4D

  17. 4-D reconstruction for dynamic fluorescence diffuse optical tomography.

    PubMed

    Liu, Xin; Zhang, Bin; Luo, Jianwen; Bai, Jing

    2012-11-01

    Dynamic fluorescence diffuse optical tomography (FDOT) is important for the research of drug delivery, medical diagnosis and treatment. Conventionally, dynamic tomographic images are reconstructed frame by frame, independently. This approach fails to account for the temporal correlations in measurement data. Ideally, the entire image sequence should be considered as a whole and a four-dimensional (4-D) reconstruction should be performed. However, the fully 4-D reconstruction is computationally intensive. In this paper, we propose a new 4-D reconstruction approach for dynamic FDOT, which is achieved by applying a temporal Karhunen-Loève (KL) transformation to the imaging equation. By taking advantage of the decorrelation and compression properties of the KL transformation, the complex 4-D optical reconstruction problem is greatly simplified. To evaluate the performance of the method, simulation, phantom, and in vivo experiments (N=7) are performed on a hybrid FDOT/x-ray computed tomography imaging system. The experimental results indicate that the reconstruction images obtained by the KL method provide good reconstruction quality. Additionally, by discarding high-order KL components, the computation time involved with fully 4-D reconstruction can be greatly reduced in contrast to the conventional frame-by-frame reconstruction.

  18. SU-E-J-28: Gantry Speed Significantly Affects Image Quality and Imaging Dose for 4D Cone-Beam Computed Tomography On the Varian Edge Platform

    SciTech Connect

    Santoso, A; Song, K; Gardner, S; Chetty, I; Wen, N

    2015-06-15

    Purpose: 4D-CBCT facilitates assessment of tumor motion at treatment position. We investigated the effect of gantry speed on 4D-CBCT image quality and dose using the Varian Edge On-Board Imager (OBI). Methods: A thoracic protocol was designed using a 125 kVp spectrum. Image quality parameters were obtained via 4D acquisition using a Catphan phantom with a gating system. A sinusoidal waveform was executed with a five second period and superior-inferior motion. 4D-CBCT scans were sorted into 4 and 10 phases. Image quality metrics included spatial resolution, contrast-to-noise ratio (CNR), uniformity index (UI), Hounsfield unit (HU) sensitivity, and RMS error (RMSE) of motion amplitude. Dosimetry was accomplished using Gafchromic XR-QA2 films within a CIRS Thorax phantom. This was placed on the gating phantom using the same motion waveform. Results: High contrast resolution decreased linearly from 5.93 to 4.18 lp/cm, 6.54 to 4.18 lp/cm, and 5.19 to 3.91 lp/cm for averaged, 4 phase, and 10 phase 4DCBCT volumes respectively as gantry speed increased from 1.0 to 6.0 degs/sec. CNRs decreased linearly from 4.80 to 1.82 as the gantry speed increased from 1.0 to 6.0 degs/sec, respectively. No significant variations in UIs, HU sensitivities, or RMSEs were observed with variable gantry speed. Ion chamber measurements compared to film yielded small percent differences in plastic water regions (0.1–9.6%), larger percent differences in lung equivalent regions (7.5–34.8%), and significantly larger percent differences in bone equivalent regions (119.1–137.3%). Ion chamber measurements decreased from 17.29 to 2.89 cGy with increasing gantry speed from 1.0 to 6.0 degs/sec. Conclusion: Maintaining technique factors while changing gantry speed changes the number of projections used for reconstruction. Increasing the number of projections by decreasing gantry speed decreases noise, however, dose is increased. The future of 4DCBCT’s clinical utility relies on further

  19. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  20. 4D-Imaging of the Lung: Reproducibility of Lesion Size and Displacement on Helical CT, MRI, and Cone Beam CT in a Ventilated Ex Vivo System

    SciTech Connect

    Biederer, Juergen Dinkel, Julien; Remmert, Gregor; Jetter, Siri; Nill, Simeon; Moser, Torsten; Bendl, Rolf; Thierfelder, Carsten; Fabel, Michael; Oelfke, Uwe; Bock, Michael; Plathow, Christian; Bolte, Hendrik; Welzel, Thomas; Hoffmann, Beata; Hartmann, Guenter; Schlegel, Wolfgang; Debus, Juergen; Heller, Martin

    2009-03-01

    Purpose: Four-dimensional (4D) imaging is a key to motion-adapted radiotherapy of lung tumors. We evaluated in a ventilated ex vivo system how size and displacement of artificial pulmonary nodules are reproduced with helical 4D-CT, 4D-MRI, and linac-integrated cone beam CT (CBCT). Methods and Materials: Four porcine lungs with 18 agarose nodules (mean diameters 1.3-1.9 cm), were ventilated inside a chest phantom at 8/min and subject to 4D-CT (collimation 24 x 1.2 mm, pitch 0.1, slice/increment 24x10{sup 2}/1.5/0.8 mm, pitch 0.1, temporal resolution 0.5 s), 4D-MRI (echo-shared dynamic three-dimensional-flash; repetition/echo time 2.13/0.72 ms, voxel size 2.7 x 2.7 x 4.0 mm, temporal resolution 1.4 s) and linac-integrated 4D-CBCT (720 projections, 3-min rotation, temporal resolution {approx}1 s). Static CT without respiration served as control. Three observers recorded lesion size (RECIST-diameters x/y/z) and axial displacement. Interobserver- and interphase-variation coefficients (IO/IP VC) of measurements indicated reproducibility. Results: Mean x/y/z lesion diameters in cm were equal on static and dynamic CT (1.88/1.87; 1.30/1.39; 1.71/1.73; p > 0.05), but appeared larger on MRI and CBCT (2.06/1.95 [p < 0.05 vs. CT]; 1.47/1.28 [MRI vs. CT/CBCT p < 0.05]; 1.86/1.83 [CT vs. CBCT p < 0.05]). Interobserver-VC for lesion sizes were 2.54-4.47% (CT), 2.29-4.48% (4D-CT); 5.44-6.22% (MRI) and 4.86-6.97% (CBCT). Interphase-VC for lesion sizes ranged from 2.28% (4D-CT) to 10.0% (CBCT). Mean displacement in cm decreased from static CT (1.65) to 4D-CT (1.40), CBCT (1.23) and MRI (1.16). Conclusions: Lesion sizes are exactly reproduced with 4D-CT but overestimated on 4D-MRI and CBCT with a larger variability due to limited temporal and spatial resolution. All 4D-modalities underestimate lesion displacement.

  1. Long-term stability assessment of a 4D tumor tracking system integrated into a gimbaled linear accelerator.

    PubMed

    Akimoto, Mami; Nakamura, Mitsuhiro; Miyabe, Yuki; Mukumoto, Nobutaka; Yokota, Kenji; Mizowaki, Takashi; Hiraoka, Masahiro

    2015-09-08

    We assessed long-term stability of tracking accuracy using the Vero4DRT system. This metric was observed between September 2012 and March 2015. A programmable respiratory motion phantom, designed to move phantoms synchronously with respiratory surrogates, was used. The infrared (IR) markers moved in the anterior-posterior (AP) direction as respiratory surrogates, while a cube phantom with a steel ball at the center, representing the tumor, and with radiopaque markers around it moved in the superior-inferior (SI) direction with one-dimensional (1D) sinusoidal patterns. A correlation model between the tumor and IR marker motion (4D model) was created from the training data obtained for 20 s just before beam delivery. The irradiation field was set to 3 × 3 cm2 and 300 monitor units (MUs) of desired MV X-ray beam were delivered. The gantry and ring angles were set to 0° and 45°, respectively. During beam delivery, the system recorded approximately 60 electronic portal imaging device (EPID) images. We analyzed: 1) the predictive accuracy of the 4D model (EP), defined as the difference between the detected and predicted target positions during 4D model creation, and 2) the tracking accuracy (ET), defined as the difference between the center of the steel ball and the MV X-ray field on the EPID image. The median values of mean plus two standard deviations (SDs) for EP were 0.06, 0.35, and 0.06 mm in the left-right (LR), SI, and AP directions, respectively. The mean values of maximum deviation for ET were 0.38, 0.49, and 0.53 mm and the coefficients of variance (CV) were 0.16, 0.10, and 0.05 in lateral, longitudinal, and 2D directions, respectively. Consequently, the IR Tracking accuracy was consistent over a period of two years. Our proposed method assessed the overall tracking accuracy readily using real-time EPID images, and proved to be a useful QA tool for dynamic tumor tracking with the Vero4DRT system.

  2. 4-D ultrafast shear-wave imaging.

    PubMed

    Gennisson, Jean-Luc; Provost, Jean; Deffieux, Thomas; Papadacci, Clément; Imbault, Marion; Pernot, Mathieu; Tanter, Mickael

    2015-06-01

    Over the last ten years, shear wave elastography (SWE) has seen considerable development and is now routinely used in clinics to provide mechanical characterization of tissues to improve diagnosis. The most advanced technique relies on the use of an ultrafast scanner to generate and image shear waves in real time in a 2-D plane at several thousands of frames per second. We have recently introduced 3-D ultrafast ultrasound imaging to acquire with matrix probes the 3-D propagation of shear waves generated by a dedicated radiation pressure transducer in a single acquisition. In this study, we demonstrate 3-D SWE based on ultrafast volumetric imaging in a clinically applicable configuration. A 32 × 32 matrix phased array driven by a customized, programmable, 1024-channel ultrasound system was designed to perform 4-D shear-wave imaging. A matrix phased array was used to generate and control in 3-D the shear waves inside the medium using the acoustic radiation force. The same matrix array was used with 3-D coherent plane wave compounding to perform high-quality ultrafast imaging of the shear wave propagation. Volumetric ultrafast acquisitions were then beamformed in 3-D using a delay-and-sum algorithm. 3-D volumetric maps of the shear modulus were reconstructed using a time-of-flight algorithm based on local multiscale cross-correlation of shear wave profiles in the three main directions using directional filters. Results are first presented in an isotropic homogeneous and elastic breast phantom. Then, a full 3-D stiffness reconstruction of the breast was performed in vivo on healthy volunteers. This new full 3-D ultrafast ultrasound system paves the way toward real-time 3-D SWE. PMID:26067040

  3. Cone beam CT dosimetry: A unified and self-consistent approach including all scan modalities—With or without phantom motion

    PubMed Central

    Dixon, Robert L.; Boone, John M.

    2010-01-01

    Purpose: This article describes a common methodology and measurement technique, encompassing both conventional (helical and axial) CT scanning using phantom translation and cone beam (or narrow fan beam) CT scans about a stationary phantom. Cone beam CT systems having beam widths along the z-axis wide enough to cover a significant anatomical length (50–160 mm) in a single axial rotation (e.g., in cardiac CT) are rapidly proliferating in the clinic, referred to herein as stationary cone beam CT (SCBCT). The integral format of the CTDI paradigm is not appropriate for a stationary phantom, and is not useful for predicting the dose in SCBCT, nor for perfusion studies or CT fluoroscopy. Likewise, the pencil chamber has limited utility in this domain (even one of extended length). Methods: By demonstrating, both experimentally and theoretically, the match between the dose distribution f(z) for a wide cone beam and that due to an axial scan series D˜(z), it is shown that the dose on the central ray of the cone beam f(0) is both spatially colocated and numerically equal to the dose predicted by CTDI for the axial series; and thus f(0) is the logical (and unique) choice for a SCBCT dose-descriptor consistent with the CTDI-based dose of conventional CT. This dose f(0) can be readily measured using a conventional (short) ionization chamber. Additionally, Monte Carlo simulations of Boone [J. M. Boone, “Dose spread functions in computed tomography: A Monte Carlo study,” Med. Phys. 36, 4547–4554 (2009)], expressed as a scatter LSF (or DSF), allow the application of a convolution-based model [R. L. Dixon, M. T. Munley, and E. Bayram, “An improved analytical model for CT dose simulation with a new look at the theory of CT dose,” Med. Phys. 32, 3712–3728 (2005)] of the axial dose profile f(z) for any primary beam width a (anyn×T), fan beam and cone beam alike, from a single LSF kernel; its simple form allows the results to be expressed as simple analytical equations

  4. Normal and Pathological NCAT Image and PhantomData Based onPhysiologically Realistic Left Ventricle Finite-Element Models

    SciTech Connect

    Veress, Alexander I.; Segars, W. Paul; Weiss, Jeffrey A.; Tsui,Benjamin M.W.; Gullberg, Grant T.

    2006-08-02

    The 4D NURBS-based Cardiac-Torso (NCAT) phantom, whichprovides a realistic model of the normal human anatomy and cardiac andrespiratory motions, is used in medical imaging research to evaluate andimprove imaging devices and techniques, especially dynamic cardiacapplications. One limitation of the phantom is that it lacks the abilityto accurately simulate altered functions of the heart that result fromcardiac pathologies such as coronary artery disease (CAD). The goal ofthis work was to enhance the 4D NCAT phantom by incorporating aphysiologically based, finite-element (FE) mechanical model of the leftventricle (LV) to simulate both normal and abnormal cardiac motions. Thegeometry of the FE mechanical model was based on gated high-resolutionx-ray multi-slice computed tomography (MSCT) data of a healthy malesubject. The myocardial wall was represented as transversely isotropichyperelastic material, with the fiber angle varying from -90 degrees atthe epicardial surface, through 0 degreesat the mid-wall, to 90 degreesat the endocardial surface. A time varying elastance model was used tosimulate fiber contraction, and physiological intraventricular systolicpressure-time curves were applied to simulate the cardiac motion over theentire cardiac cycle. To demonstrate the ability of the FE mechanicalmodel to accurately simulate the normal cardiac motion as well abnormalmotions indicative of CAD, a normal case and two pathologic cases weresimulated and analyzed. In the first pathologic model, a subendocardialanterior ischemic region was defined. A second model was created with atransmural ischemic region defined in the same location. The FE baseddeformations were incorporated into the 4D NCAT cardiac model through thecontrol points that define the cardiac structures in the phantom whichwere set to move according to the predictions of the mechanical model. Asimulation study was performed using the FE-NCAT combination toinvestigate how the differences in contractile function

  5. Poster — Thur Eve — 23: Dose and Position Quality Assurance using the RADPOS System for 4D Radiotherapy with CyberKnife

    SciTech Connect

    Marants, R; Vandervoort, E; Cygler, J E

    2014-08-15

    Introduction: RADPOS 4D dosimetry system consists of a microMOSFET dosimeter combined with an electromagnetic positioning sensor, which allows for performing real-time dose and position measurements simultaneously. In this report the use of RADPOS as an independent quality assurance (QA) tool during CyberKnife 4D radiotherapy treatment is described. In addition to RADPOS, GAFCHROMIC® films were used for simultaneous dose measurement. Methods: RADPOS and films were calibrated in a Solid Water® phantom at 1.5 cm depth, SAD= 80 cm, using 60 mm cone. CT based treatment plan was created for a Solid Water® breast phantom containing metal fiducials and RADPOS probe. Dose calculations were performed using iPlan pencil beam algorithm. Before the treatment delivery, GAFCHROMIC® film was inserted inside the breast phantom, next to the RADPOS probe. Then the phantom was positioned on the chest platform of the QUASAR, to which Synchrony LED optical markers were also attached. Position logging began for RADPOS and the Synchrony tracking system, the QUASAR motion was initiated and the treatment was delivered. Results: RADPOS position measurements very closely matched the LED marker positions recorded by the Synchrony camera tracking system. The RADPOS measured dose was 2.5% higher than the average film measured dose, which is within the experimental uncertainties. Treatment plan calculated dose was 4.1 and 1.6% lower than measured by RADPOS and film, respectively. This is most likely due to the inferior nature of the dose calculation algorithm. Conclusions: Our study demonstrates that RADPOS system is a useful tool for independent QA of CyberKnife treatments.

  6. SU-D-17A-01: Geometric and Dosimetric Evaluation of a 4D-CBCT Reconstruction Technique Using Prior Knowledge

    SciTech Connect

    Zhang, Y; Yin, F; Ren, L

    2014-06-01

    Purpose: To evaluate a 4D-CBCT reconstruction technique both geometrically and dosimetrically Methods: A prior-knowledge guided 4DC-BCT reconstruction method named the motion-modeling and free-form deformation (MM-FD) has been developed. MM-FD views each phase of the 4D-CBCT as a deformation of a prior CT volume. The deformation field is first solved by principal component analysis based motion modeling, followed by constrained free-form deformation.The 4D digital extended-cardiac- torso (XCAT) phantom was used for comprehensive evaluation. Based on a simulated 4D planning CT of a lung patient, 8 different scenarios were simulated to cover the typical on-board anatomical and respiratory variations: (1) synchronized and (2) unsynchronized motion amplitude change for body and tumor; tumor (3) shrinkage and (4) expansion; tumor average position shift in (5) superior-inferior (SI) direction, (6) anterior-posterior (AP) direction and (7) SI, AP and lateral directions altogether; and (8) tumor phase shift relative to the respiratory cycle of the body. Orthogonal-view 30° projections were simulated based on the eight patient scenarios to reconstruct on-board 4D-CBCTs. For geometric evaluation, the volume-percentage-difference (VPD) was calculated to assess the volumetric differences between the reconstructed and the ground-truth tumor.For dosimetric evaluation, a gated treatment plan was designed for the prior 4D-CT. The dose distributions were calculated on the reconstructed 4D-CBCTs and the ground-truth images for comparison. The MM-FD technique was compared with MM-only and FD-only techniques. Results: The average (±s.d.) VPD values of reconstructed tumors for MM-only, FDonly and MM-FD methods were 59.16%(± 26.66%), 75.98%(± 27.21%) and 5.22%(± 2.12%), respectively. The average min/max/mean dose (normalized to prescription) of the reconstructed tumors by MM-only, FD-only, MM-FD methods and ground-truth tumors were 78.0%/122.2%/108.2%, 13%/117.7%/86%, 58

  7. Development and clinical evaluation of a simple optical method to detect and measure patient external motion.

    PubMed

    Barbés, Benigno; Azcona, Juan Diego; Prieto, Elena; de Foronda, José Manuel; García, Marina; Burguete, Javier

    2015-01-01

    A simple and independent system to detect and measure the position of a number of points in space was devised and implemented. Its application aimed to detect patient motion during radiotherapy treatments, alert of out-of-tolerances motion, and record the trajectories for subsequent studies. The system obtains the 3D position of points in space, through its projections in 2D images recorded by two cameras. It tracks black dots on a white sticker placed on the surface of the moving object. The system was tested with linear displacements of a phantom, circular trajectories of a rotating disk, oscillations of an in-house phantom, and oscillations of a 4D phantom. It was also used to track 461 trajectories of points on the surface of patients during their radiotherapy treatments. Trajectories of several points were reproduced with accuracy better than 0.3 mm in the three spatial directions. The system was able to follow periodic motion with amplitudes lower than 0.5 mm, to follow trajectories of rotating points at speeds up to 11.5 cm/s, and to track accurately the motion of a respiratory phantom. The technique has been used to track the motion of patients during radiotherapy and to analyze that motion. The method is flexible. Its installation and calibration are simple and quick. It is easy to use and can be implemented at a very affordable price. Data collection does not involve any discomfort to the patient and does not delay the treatment, so the system can be used routinely in all treatments. It has an accuracy similar to that of other, more sophisticated, commercially available systems. It is suitable to implement a gating system or any other application requiring motion detection, such as 4D CT, MRI or PET. PMID:26699313

  8. Respiratory Motional Effect on Cone-Beam CT in Lung Radiation Surgery

    SciTech Connect

    Song, Ju-Young Nam, Taek-Keun; Ahn, Sung-Ja; Chung, Woong-Ki; Yoon, Mee-Sun; Nah, Byunk-Sik

    2009-07-01

    The cone-beam CT (CBCT), which is acquired using an on-board imager (OBI) attached to a linear accelerator, is used effectively in the verification of setup accuracy for lung radiation surgery. In this study, the respiratory organ motional effect on the CBCT was evaluated with a properly devised phantom system, and the level of possible error in conditions of a real clinical process was assessed. In a comparison study between the CBCT in static status and CBCT images acquired in 20 different motional cases, we confirmed that the image quality and information of CBCT were degraded, with an increase of motional ranges in the region of inhomogeneous structures. The 4D-CT MIP (50{approx}55%) for the planning of lung radiation surgery and the 4D-CT MIP (full phase) were compared with CBCT in the various motional cases for the evaluation of the influence of the motional effect on CBCT in the process of the setup error correction. The average ratio of relative difference between plan CT: 4D-CT MIP (50%{approx}55%) and CBCT was 5.79% and between plan CT: 4D-CT MIP (50%{approx}55%) and 4D-CT MIP (full phase) was 42.95% in the phantom study. In the analysis of clinical cases of lung radiation surgery, the gross tumor volumes were compared in each CT image. The average ratio of relative difference between plan CT: 4D-CT MIP (50{approx}55%) and CBCT was 10.72% and between plan CT: 4D-CT MIP (50{approx}55%) and 4D-CT MIP (full phase) was 28.19%. These results showed that, although a respiratory organ motional effect on CBCT introduced variation in image quality, the error as a result of this variation could be estimated relatively low in the setup error correction for a gated-lung radiation surgery when the planning was performed in 4D-CT MIP (50{approx}55%), which already included a related signal of motional effect.

  9. 4D-Flow validation, numerical and experimental framework

    NASA Astrophysics Data System (ADS)

    Sansom, Kurt; Liu, Haining; Canton, Gador; Aliseda, Alberto; Yuan, Chun

    2015-11-01

    This work presents a group of assessment metrics of new 4D MRI flow sequences, an imaging modality that allows for visualization of three-dimensional pulsatile flow in the cardiovascular anatomy through time-resolved three-dimensional blood velocity measurements from cardiac-cycle synchronized MRI acquisition. This is a promising tool for clinical assessment but lacks a robust validation framework. First, 4D-MRI flow in a subject's stenotic carotid bifurcation is compared with a patient-specific CFD model using two different boundary condition methods. Second, Particle Image Velocimetry in a patient-specific phantom is used as a benchmark to compare the 4D-MRI in vivo measurements and CFD simulations under the same conditions. Comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, Lagrangian particle residence time, will be discussed, with justification for their biomechanics relevance and the insights they can provide on the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new sequence to provide a quantitative assessment. A parametric analysis on the carotid bifurcation pulsatile flow conditions will be presented and an accuracy assessment provided.

  10. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections

    SciTech Connect

    Zhang, You; Yin, Fang-Fang; Ren, Lei; Segars, W. Paul

    2013-12-15

    Purpose: To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy.Methods: Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes to the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and “ground-truth” onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy.Results: For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)/COMS (±S.D.) between lesions in prior images and “ground-truth” onboard images were 136.11% (±42.76%)/15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD/COMS between the lesion

  11. Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries

    SciTech Connect

    Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel; Stambaugh, Cassandra; Wolf, Theresa K.; Nelms, Benjamin E.

    2013-02-15

    Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1-1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90 Degree-Sign (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT

  12. IMRT treatment planning on 4D geometries for the era of dynamic MLC tracking.

    PubMed

    Suh, Yelin; Murray, Walter; Keall, Paul J

    2014-12-01

    The problem addressed here was to obtain optimal and deliverable dynamic multileaf collimator (MLC) leaf sequences from four-dimensional (4D) geometries for dynamic MLC tracking delivery. The envisaged scenario was where respiratory phase and position information of the target was available during treatment, from which the optimal treatment plan could be further adapted in real time. A tool for 4D treatment plan optimization was developed that integrates a commercially available treatment planning system and a general-purpose optimization system. The 4D planning method was applied to the 4D computed tomography planning scans of three lung cancer patients. The optimization variables were MLC leaf positions as a function of monitor units and respiratory phase. The objective function was the deformable dose-summed 4D treatment plan score. MLC leaf motion was constrained by the maximum leaf velocity between control points in terms of monitor units for tumor motion parallel to the leaf travel direction and between phases for tumor motion parallel to the leaf travel direction. For comparison and a starting point for the 4D optimization, three-dimensional (3D) optimization was performed on each of the phases. The output of the 4D IMRT planning process is a leaf sequence which is a function of both monitor unit and phase, which can be delivered to a patient whose breathing may vary between the imaging and treatment sessions. The 4D treatment plan score improved during 4D optimization by 34%, 4%, and 50% for Patients A, B, and C, respectively, indicating 4D optimization generated a better 4D treatment plan than the deformable sum of individually optimized phase plans. The dose-volume histograms for each phase remained similar, indicating robustness of the 4D treatment plan to respiratory variations expected during treatment delivery. In summary, 4D optimization for respiratory phase-dependent treatment planning with dynamic MLC motion tracking improved the 4D treatment plan

  13. Accuracy and sensitivity of four-dimensional dose calculation to systematic motion variability in stereotatic body radiotherapy (SBRT) for lung cancer.

    PubMed

    Chan, Mark K H; Kwong, Dora L W; Ng, Sherry C Y; Tong, Anthony S M; Tam, Eric K W

    2012-11-08

    The dynamic movement of radiation beam in real-time tumor tracking may cause overdosing to critical organs surrounding the target. The primary objective of this study was to verify the accuracy of the 4D planning module incorporated in CyberKnife treatment planning system. The secondary objective was to evaluate the error that may occur in the case of a systematic change of motion pattern. Measurements were made using a rigid thorax phantom. Target motion was simulated with two waveforms (sin and cos4) of different amplitude and frequency. Inversely optimized dose distributions were calculated in the CyberKnife treatment planning system using the 4D Monte Carlo dose calculation algorithm. Each plan was delivered to the phantom assuming (1) reproducible target motion,and (2) systematic change of target motion pattern. The accuracy of 4D dose calculation algorithm was assessed using GAFCHROMIC EBT2 films based on 5%/3 mm γ criteria. Treatment plans were considered acceptable if the percentage of pixels passing the 5%/3 mm γ criteria was greater than 90%. The mean percentages of pixels passing were 95% for the target and 91% for the static off-target structure, respectively, with reproducible target motion. When systematic changes of the motion pattern were introduced during treatment delivery, the mean percentages of pixels passing decreased significantly in the off-target films (48%; p < 0.05), but did not change significantly in the target films (92%; p = 0.324) compared to results of reproducible target motion. These results suggest that the accuracy of 4D dose calculation, particularly in off-target stationary structure, is strongly tied to the reproducibility of target motion and that the solutions of 4D planning do not reflect the clinical nature of nonreproducible target motion generally.

  14. TU-C-BRD-01: Image Guided SBRT I: Multi-Modality 4D Imaging

    SciTech Connect

    Cai, J; Mageras, G; Pan, T

    2014-06-15

    Motion management is one of the critical technical challenges for radiation therapy. 4D imaging has been rapidly adopted as essential tool to assess organ motion associated with respiratory breathing. A variety of 4D imaging techniques have been developed and are currently under development based on different imaging modalities such as CT, MRI, PET, and CBCT. Each modality provides specific and complementary information about organ and tumor respiratory motion. Effective use of each different technique or combined use of different techniques can introduce a comprehensive management of tumor motion. Specifically, these techniques have afforded tremendous opportunities to better define and delineate tumor volumes, more accurately perform patient positioning, and effectively apply highly conformal therapy techniques such as IMRT and SBRT. Successful implementation requires good understanding of not only each technique, including unique features, limitations, artifacts, imaging acquisition and process, but also how to systematically apply the information obtained from different imaging modalities using proper tools such as deformable image registration. Furthermore, it is important to understand the differences in the effects of breathing variation between different imaging modalities. A comprehensive motion management strategy using multi-modality 4D imaging has shown promise in improving patient care, but at the same time faces significant challenges. This session will focuses on the current status and advances in imaging respiration-induced organ motion with different imaging modalities: 4D-CT, 4D-MRI, 4D-PET, and 4D-CBCT/DTS. Learning Objectives: Understand the need and role of multimodality 4D imaging in radiation therapy. Understand the underlying physics behind each 4D imaging technique. Recognize the advantages and limitations of each 4D imaging technique.

  15. 4-D OCT in Developmental Cardiology

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  16. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung.

    PubMed

    Chin, E; Loewen, S K; Nichol, A; Otto, K

    2013-02-21

    Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.

  17. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung

    NASA Astrophysics Data System (ADS)

    Chin, E.; Loewen, S. K.; Nichol, A.; Otto, K.

    2013-02-01

    Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.

  18. SU-D-207-03: Development of 4D-CBCT Imaging System with Dual Source KV X-Ray Tubes

    SciTech Connect

    Nakamura, M; Ishihara, Y; Matsuo, Y; Ueki, N; Iizuka, Y; Mizowaki, T; Hiraoka, M

    2015-06-15

    Purpose: The purposes of this work are to develop 4D-CBCT imaging system with orthogonal dual source kV X-ray tubes, and to determine the imaging doses from 4D-CBCT scans. Methods: Dual source kV X-ray tubes were used for the 4D-CBCT imaging. The maximum CBCT field of view was 200 mm in diameter and 150 mm in length, and the imaging parameters were 110 kV, 160 mA and 5 ms. The rotational angle was 105°, the rotational speed of the gantry was 1.5°/s, the gantry rotation time was 70 s, and the image acquisition interval was 0.3°. The observed amplitude of infrared marker motion during respiration was used to sort each image into eight respiratory phase bins. The EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc packages were used to simulate kV X-ray dose distributions of 4D-CBCT imaging. The kV X-ray dose distributions were calculated for 9 lung cancer patients based on the planning CT images with dose calculation grid size of 2.5 x 2.5 x 2.5 mm. The dose covering a 2-cc volume of skin (D2cc), defined as the inner 5 mm of the skin surface with the exception of bone structure, was assessed. Results: A moving object was well identified on 4D-CBCT images in a phantom study. Given a gantry rotational angle of 105° and the configuration of kV X-ray imaging subsystems, both kV X-ray fields overlapped at a part of skin surface. The D2cc for the 4D-CBCT scans was in the range 73.8–105.4 mGy. Linear correlation coefficient between the 1000 minus averaged SSD during CBCT scanning and D2cc was −0.65 (with a slope of −0.17) for the 4D-CBCT scans. Conclusion: We have developed 4D-CBCT imaging system with dual source kV X-ray tubes. The total imaging dose with 4D-CBCT scans was up to 105.4 mGy.

  19. Advances in 4D radiation therapy for managing respiration: part I - 4D imaging.

    PubMed

    Hugo, Geoffrey D; Rosu, Mihaela

    2012-12-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available "first generation" 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are described, including necessity of breathing surrogates for 4D image reconstruction, assumptions made in acquisition and reconstruction about the breathing pattern, and commonly-observed artifacts. Both established and developmental methods to deal with these limitations are detailed. Finally, strategies to construct 4D targets and images and, alternatively, to compress 4D information into static targets and images for radiation therapy planning are described.

  20. Advances in 4D Radiation Therapy for Managing Respiration: Part I – 4D Imaging

    PubMed Central

    Hugo, Geoffrey D.; Rosu, Mihaela

    2014-01-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available “first generation” 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are described, including necessity of breathing surrogates for 4D image reconstruction, assumptions made in acquisition and reconstruction about the breathing pattern, and commonly-observed artifacts. Both established and developmental methods to deal with these limitations are detailed. Finally, strategies to construct 4D targets and images and, alternatively, to compress 4D information into static targets and images for radiation therapy planning are described. PMID:22784929

  1. VMAT-SBRT planning based on an average intensity projection for lung tumors located in close proximity to the diaphragm: a phantom and clinical validity study.

    PubMed

    Ohira, Shingo; Ueda, Yoshihiro; Hashimoto, Misaki; Miyazaki, Masayoshi; Isono, Masaru; Kamikaseda, Hiroshi; Masaoka, Akira; Takashina, Masaaki; Koizumi, Masahiko; Teshima, Teruki

    2016-01-01

    The aim of the this study was to validate the use of an average intensity projection (AIP) for volumetric-modulated arc therapy for stereotactic body radiation therapy (VMAT-SBRT) planning for a moving lung tumor located near the diaphragm. VMAT-SBRT plans were created using AIPs reconstructed from 10 phases of 4DCT images that were acquired with a target phantom moving with amplitudes of 5, 10, 20 and 30 mm. To generate a 4D dose distribution, the static dose for each phase was recalculated and the doses were accumulated by using the phantom position known for each phase. For 10 patients with lung tumors, a deformable registration was used to generate 4D dose distributions. Doses to the target volume obtained from the AIP plan and the 4D plan were compared, as were the doses obtained from each plan to the organs at risk (OARs). In both phantom and clinical study, dose discrepancies for all parameters of the dose volume (D(min), D(99), D(max), D(1) and D(mean)) to the target were <3%. The discrepancies of D(max) for spinal cord, esophagus and heart were <1 Gy, and the discrepancy of V20 for lung tissue was <1%. However, for OARs with large respiratory motion, the discrepancy of the D(max) was as much as 9.6 Gy for liver and 5.7 Gy for stomach. Thus, AIP is clinically acceptable as a planning CT image for predicting 4D dose, but doses to the OARs with large respiratory motion were underestimated with the AIP approach.

  2. VMAT–SBRT planning based on an average intensity projection for lung tumors located in close proximity to the diaphragm: a phantom and clinical validity study

    PubMed Central

    Ohira, Shingo; Ueda, Yoshihiro; Hashimoto, Misaki; Miyazaki, Masayoshi; Isono, Masaru; Kamikaseda, Hiroshi; Masaoka, Akira; Takashina, Masaaki; Koizumi, Masahiko; Teshima, Teruki

    2016-01-01

    The aim of the this study was to validate the use of an average intensity projection (AIP) for volumetric-modulated arc therapy for stereotactic body radiation therapy (VMAT–SBRT) planning for a moving lung tumor located near the diaphragm. VMAT–SBRT plans were created using AIPs reconstructed from 10 phases of 4DCT images that were acquired with a target phantom moving with amplitudes of 5, 10, 20 and 30 mm. To generate a 4D dose distribution, the static dose for each phase was recalculated and the doses were accumulated by using the phantom position known for each phase. For 10 patients with lung tumors, a deformable registration was used to generate 4D dose distributions. Doses to the target volume obtained from the AIP plan and the 4D plan were compared, as were the doses obtained from each plan to the organs at risk (OARs). In both phantom and clinical study, dose discrepancies for all parameters of the dose volume (Dmin, D99, Dmax, D1 and Dmean) to the target were <3%. The discrepancies of Dmax for spinal cord, esophagus and heart were <1 Gy, and the discrepancy of V20 for lung tissue was <1%. However, for OARs with large respiratory motion, the discrepancy of the Dmax was as much as 9.6 Gy for liver and 5.7 Gy for stomach. Thus, AIP is clinically acceptable as a planning CT image for predicting 4D dose, but doses to the OARs with large respiratory motion were underestimated with the AIP approach. PMID:26419645

  3. The development and initial evaluation of a realistic simulated SPECT dataset with simultaneous respiratory and cardiac motion for gated myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Tsui, Benjamin M. W.

    2015-02-01

    We developed a realistic simulation dataset for simultaneous respiratory and cardiac (R&C) gated SPECT/CT using the 4D NURBS-based Cardiac-Torso (NCAT) Phantom and Monte Carlo simulation methods, and evaluated it for a sample application study. The 4D NCAT phantom included realistic respiratory motion and beating heart motion based on respiratory gated CT and cardiac tagged MRI data of normal human subjects. To model the respiratory motion, a set of 24 separate 3D NCAT phantoms excluding the heart was generated over a respiratory cycle. The beating heart motion was modeled separately with 48 frames per cardiac cycle for each of the 24 respiratory phases. The resultant set of 24  ×  48 3D NCAT phantoms provides a realistic model of a normal human subject at different phases of combined R&C motions. An almost noise-free SPECT projection dataset for each of the 1152 3D NCAT phantoms was generated using Monte Carlo simulation techniques and the radioactivity uptake distribution of 99mTc sestamibi in different organs. By grouping and summing the separate projection datasets, separate or simultaneous R&C gated acquired data with different gating schemes could be simulated. In the initial evaluation, we combined the projection datasets into ungated, 6 respiratory-gates only, 8 cardiac-gates only, and combined 6 respiratory-gates & 8 cardiac-gates projection datasets. Each dataset was reconstructed using 3D OS-EM without and with attenuation correction using the averaged and respiratory-gated attenuation maps, and the resulting reconstructed images were compared. These results were used to demonstrate the effects of R&C motions and the reduction of image artifact due to R&C motions by gating and attenuation corrections. We concluded that the realistic 4D NCAT phantom and Monte Carlo simulated SPECT projection datasets with R&C motions are powerful tools in the study of the effects of R&C motions, as well as in the development of R&C gating schemes and motion

  4. The Development and Initial Evaluation of a Realistic Simulated SPECT Dataset with Simultaneous Respiratory and Cardiac Motion for Gated Myocardial Perfusion SPECT

    PubMed Central

    Lee, Taek-Soo; Tsui, Benjamin M. W.

    2015-01-01

    We developed a realistic simulation dataset for simultaneous respiratory and cardiac (R&C) gated SPECT/CT using the 4D NURBS-based Cardiac-Torso (NCAT) Phantom and Monte Carlo simulation methods, and evaluated it for a sample application study. The 4D NCAT phantom included realistic respiratory motion and beating heart motion based on respiratory gated CT and cardiac tagged MRI data of normal human subjects. To model the respiratory motion, a set of 24 separate 3D NCAT phantoms excluding the heart was generated over a respiratory cycle. The beating heart motion was modelled separately with 48 frames per cardiac cycle for each of the 24 respiratory phases. The resultant set of 24×48 3D NCAT phantoms provides a realistic model of a normal human subject at different phases of combined R&C motions. An almost noise-free SPECT projection dataset for each of the 1,152 3D NCAT phantoms was generated using Monte Carlo simulation techniques and the radioactivity uptake distribution of 99mTc sestamibi in different organs. By grouping and summing the separate projection datasets, separate or simultaneous R&C gated acquired data with different gating schemes could be simulated. In the initial evaluation, we combined the projection datasets into no gating, 6 respiratory-gates only, 8 cardiac-gates only, and combined 6 respiratory-gates & 8 cardiac-gates projection datasets. Each dataset was reconstructed using 3D OS-EM without and with attenuation correction using the averaged and respiratory-gated attenuation maps, and the resulting reconstructed images were compared. These results were used to demonstrate the effects of R&C motions and the reduction of image artifact due to R&C motions by gating and attenuation corrections. We concluded that the realistic 4D NCAT phantom and Monte Carlo simulated SPECT projection datasets with R&C motions are powerful tools in the study of the effects of R&C motions, as well as in the development of R&C gating schemes and motion correction

  5. The development and initial evaluation of a realistic simulated SPECT dataset with simultaneous respiratory and cardiac motion for gated myocardial perfusion SPECT.

    PubMed

    Lee, Taek-Soo; Tsui, Benjamin M W

    2015-02-21

    We developed a realistic simulation dataset for simultaneous respiratory and cardiac (R&C) gated SPECT/CT using the 4D NURBS-based Cardiac-Torso (NCAT) Phantom and Monte Carlo simulation methods, and evaluated it for a sample application study. The 4D NCAT phantom included realistic respiratory motion and beating heart motion based on respiratory gated CT and cardiac tagged MRI data of normal human subjects. To model the respiratory motion, a set of 24 separate 3D NCAT phantoms excluding the heart was generated over a respiratory cycle. The beating heart motion was modeled separately with 48 frames per cardiac cycle for each of the 24 respiratory phases. The resultant set of 24  ×  48 3D NCAT phantoms provides a realistic model of a normal human subject at different phases of combined R&C motions. An almost noise-free SPECT projection dataset for each of the 1152 3D NCAT phantoms was generated using Monte Carlo simulation techniques and the radioactivity uptake distribution of (99m)Tc sestamibi in different organs. By grouping and summing the separate projection datasets, separate or simultaneous R&C gated acquired data with different gating schemes could be simulated. In the initial evaluation, we combined the projection datasets into ungated, 6 respiratory-gates only, 8 cardiac-gates only, and combined 6 respiratory-gates & 8 cardiac-gates projection datasets. Each dataset was reconstructed using 3D OS-EM without and with attenuation correction using the averaged and respiratory-gated attenuation maps, and the resulting reconstructed images were compared. These results were used to demonstrate the effects of R&C motions and the reduction of image artifact due to R&C motions by gating and attenuation corrections. We concluded that the realistic 4D NCAT phantom and Monte Carlo simulated SPECT projection datasets with R&C motions are powerful tools in the study of the effects of R&C motions, as well as in the development of R&C gating schemes and motion

  6. 4D electron microscopy: principles and applications.

    PubMed

    Flannigan, David J; Zewail, Ahmed H

    2012-10-16

    achievable with short intense pulses containing a large number of electrons, however, are limited to tens of nanometers and nanoseconds, respectively. This is because Coulomb repulsion is significant in such a pulse, and the electrons spread in space and time, thus limiting the beam coherence. It is therefore not possible to image the ultrafast elementary dynamics of complex transformations. The challenge was to retain the high spatial resolution of a conventional TEM while simultaneously enabling the temporal resolution required to visualize atomic-scale motions. In this Account, we discuss the development of four-dimensional ultrafast electron microscopy (4D UEM) and summarize techniques and applications that illustrate the power of the approach. In UEM, images are obtained either stroboscopically with coherent single-electron packets or with a single electron bunch. Coulomb repulsion is absent under the single-electron condition, thus permitting imaging, diffraction, and spectroscopy, all with high spatiotemporal resolution, the atomic scale (sub-nanometer and femtosecond). The time resolution is limited only by the laser pulse duration and energy carried by the electron packets; the CCD camera has no bearing on the temporal resolution. In the regime of single pulses of electrons, the temporal resolution of picoseconds can be attained when hundreds of electrons are in the bunch. The applications given here are selected to highlight phenomena of different length and time scales, from atomic motions during structural dynamics to phase transitions and nanomechanical oscillations. We conclude with a brief discussion of emerging methods, which include scanning ultrafast electron microscopy (S-UEM), scanning transmission ultrafast electron microscopy (ST-UEM) with convergent beams, and time-resolved imaging of biological structures at ambient conditions with environmental cells.

  7. Evaluation of image guided motion management methods in lung cancer radiotherapy

    SciTech Connect

    Zhuang, Ling; Yan, Di; Liang, Jian; Ionascu, Dan; Mangona, Victor; Yang, Kai; Zhou, Jun

    2014-03-15

    Purpose: To evaluate the accuracy and reliability of three target localization methods for image guided motion management in lung cancer radiotherapy. Methods: Three online image localization methods, including (1) 2D method based on 2D cone beam (CB) projection images, (2) 3D method using 3D cone beam CT (CBCT) imaging, and (3) 4D method using 4D CBCT imaging, have been evaluated using a moving phantom controlled by (a) 1D theoretical breathing motion curves and (b) 3D target motion patterns obtained from daily treatment of 3 lung cancer patients. While all methods are able to provide target mean position (MP), the 2D and 4D methods can also provide target motion standard deviation (SD) and excursion (EX). For each method, the detected MP/SD/EX values are compared to the analytically calculated actual values to calculate the errors. The MP errors are compared among three methods and the SD/EX errors are compared between the 2D and 4D methods. In the theoretical motion study (a), the dependency of MP/SD/EX error on EX is investigated with EX varying from 2.0 cm to 3.0 cm with an increment step of 0.2 cm. In the patient motion study (b), the dependency of MP error on target sizes (2.0 cm and 3.0 cm), motion patterns (four motions per patient) and EX variations is investigated using multivariant linear regression analysis. Results: In the theoretical motion study (a), the MP detection errors are −0.2 ± 0.2, −1.5 ± 1.1, and −0.2 ± 0.2 mm for 2D, 3D, and 4D methods, respectively. Both the 2D and 4D methods could accurately detect motion pattern EX (error < 1.2 mm) and SD (error < 1.0 mm). In the patient motion study (b), MP detection error vector (mm) with the 2D method (0.7 ± 0.4) is found to be significantly less than with the 3D method (1.7 ± 0.8,p < 0.001) and the 4D method (1.4 ± 1.0, p < 0.001) using paired t-test. However, no significant difference is found between the 4D method and the 3D method. Based on multivariant linear regression analysis, the

  8. Development of real-time motion verification system using in-room optical images for respiratory-gated radiotherapy.

    PubMed

    Park, Yang-Kyun; Son, Tae-geun; Kim, Hwiyoung; Lee, Jaegi; Sung, Wonmo; Kim, Il Han; Lee, Kunwoo; Bang, Young-bong; Ye, Sung-Joon

    2013-09-06

    Phase-based respiratory-gated radiotherapy relies on the reproducibility of patient breathing during the treatment. To monitor the positional reproducibility of patient breathing against a 4D CT simulation, we developed a real-time motion verification system (RMVS) using an optical tracking technology. The system in the treatment room was integrated with a real-time position management system. To test the system, an anthropomorphic phantom that was mounted on a motion platform moved on a programmed breathing pattern and then underwent a 4D CT simulation with RPM. The phase-resolved anterior surface lines were extracted from the 4D CT data to constitute 4D reference lines. In the treatment room, three infrared reflective markers were attached on the superior, middle, and inferior parts of the phantom along with the body midline and then RMVS could track those markers using an optical camera system. The real-time phase information extracted from RPM was delivered to RMVS via in-house network software. Thus, the real-time anterior-posterior positions of the markers were simultaneously compared with the 4D reference lines. The technical feasibility of RMVS was evaluated by repeating the above procedure under several scenarios such as ideal case (with identical motion parameters between simulation and treatment), cycle change, baseline shift, displacement change, and breathing type changes (abdominal or chest breathing). The system capability for operating under irregular breathing was also investigated using real patient data. The evaluation results showed that RMVS has a competence to detect phase-matching errors between patient's motion during the treatment and 4D CT simulation. Thus, we concluded that RMVS could be used as an online quality assurance tool for phase-based gating treatments.

  9. Motion as perturbation. II. Development of the method for dosimetric analysis of motion effects with fixed-gantry IMRT

    SciTech Connect

    Nelms, Benjamin E.; Opp, Daniel; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir

    2014-06-15

    Purpose: In this work, the feasibility of implementing a motion-perturbation approach to accurately estimate volumetric dose in the presence of organ motion—previously demonstrated for VMAT-–is studied for static gantry IMRT. The method's accuracy is improved for the voxels that have very low planned dose but acquire appreciable dose due to motion. The study describes the modified algorithm and its experimental validation and provides an example of a clinical application. Methods: A contoured region-of-interest is propagated according to the predefined motion kernel throughout time-resolved 4D phantom dose grids. This timed series of 3D dose grids is produced by the measurement-guided dose reconstruction algorithm, based on an irradiation of a staticARCCHECK (AC) helical dosimeter array (Sun Nuclear Corp., Melbourne, FL). Each moving voxel collects dose over the dynamic simulation. The difference in dose-to-moving voxel vs dose-to-static voxel in-phantom forms the basis of a motion perturbation correction that is applied to the corresponding voxel in the patient dataset. A new method to synchronize the accelerator and dosimeter clocks, applicable to fixed-gantry IMRT, was developed. Refinements to the algorithm account for the excursion of low dose voxels into high dose regions, causing appreciable dose increase due to motion (LDVE correction). For experimental validation, four plans using TG-119 structure sets and objectives were produced using segmented IMRT direct machine parameters optimization in Pinnacle treatment planning system (v. 9.6, Philips Radiation Oncology Systems, Fitchburg, WI). All beams were delivered with the gantry angle of 0°. Each beam was delivered three times: (1) to the static AC centered on the room lasers; (2) to a static phantom containing a MAPCHECK2 (MC2) planar diode array dosimeter (Sun Nuclear); and (3) to the moving MC2 phantom. The motion trajectory was an ellipse in the IEC XY plane, with 3 and 1.5 cm axes. The period was 5

  10. Four-dimensional (4D) PET/CT imaging of the thorax

    SciTech Connect

    Nehmeh, S.A.; Erdi, Y.E.; Pan, T.

    2004-12-01

    We have reported in our previous studies on the methodology, and feasibility of 4D-PET (Gated PET) acquisition, to reduce respiratory motion artifact in PET imaging of the thorax. In this study, we expand our investigation to address the problem of respiration motion in PET/CT imaging. The respiratory motion of four lung cancer patients were monitored by tracking external markers placed on the thorax. A 4D-CT acquisition was performed using a 'step-and-shoot' technique, in which computed tomography (CT) projection data were acquired over a complete respiratory cycle at each couch position. The period of each CT acquisition segment was time stamped with an 'x-ray ON' signal, which was recorded by the tracking system. 4D-CT data were then sorted into 10 groups, according to their corresponding phase of the breathing cycle. 4D-PET data were acquired in the gated mode, where each breathing cycle was divided into ten 0.5 s bins. For both CT and PET acquisitions, patients received audio prompting to regularize breathing. The 4D-CT and 4D-PET data were then correlated according to respiratory phase. The effect of 4D acquisition on improving the co-registration of PET and CT images, reducing motion smearing, and consequently increase the quantitation of the SUV, were investigated. Also, quantitation of the tumor motions in PET, and CT, were studied and compared. 4D-PET with matching phase 4D-CTAC showed an improved accuracy in PET-CT image co-registration of up to 41%, compared to measurements from 4D-PET with clinical-CTAC. Gating PET data in correlation with respiratory motion reduced motion-induced smearing, thereby decreasing the observed tumor volume, by as much as 43%. 4D-PET lesions volumes showed a maximum deviation of 19% between clinical CT and phase- matched 4D-CT attenuation corrected PET images. In CT, 4D acquisition resulted in increasing the tumor volume in two patients by up to 79%, and decreasing it in the other two by up to 35%. Consequently, these

  11. Los Alamos National Laboratory 4D Database

    SciTech Connect

    Atencio, Julian J.

    2014-05-02

    4D is an integrated development platform - a single product comprised of the components you need to create and distribute professional applications. You get a graphical design environment, SQL database, a programming language, integrated PHP execution, HTTP server, application server, executable generator, and much more. 4D offers multi-platform development and deployment, meaning whatever you create on a Mac can be used on Windows, and vice-versa. Beyond productive development, 4D is renowned for its great flexibility in maintenance and modification of existing applications, and its extreme ease of implementation in its numerous deployment options. Your professional application can be put into production more quickly, at a lower cost, and will always be instantly scalable. 4D makes it easy, whether you're looking to create a classic desktop application, a client-server system, a distributed solution for Web or mobile clients - or all of the above!

  12. Phase and amplitude binning for 4D-CT imaging

    NASA Astrophysics Data System (ADS)

    Abdelnour, A. F.; Nehmeh, S. A.; Pan, T.; Humm, J. L.; Vernon, P.; Schöder, H.; Rosenzweig, K. E.; Mageras, G. S.; Yorke, E.; Larson, S. M.; Erdi, Y. E.

    2007-07-01

    We compare the consistency and accuracy of two image binning approaches used in 4D-CT imaging. One approach, phase binning (PB), assigns each breathing cycle 2π rad, within which the images are grouped. In amplitude binning (AB), the images are assigned bins according to the breathing signal's full amplitude. To quantitate both approaches we used a NEMA NU2-2001 IEC phantom oscillating in the axial direction and at random frequencies and amplitudes, approximately simulating a patient's breathing. 4D-CT images were obtained using a four-slice GE Lightspeed CT scanner operating in cine mode. We define consistency error as a measure of ability to correctly bin over repeated cycles in the same field of view. Average consistency error μe ± σe in PB ranged from 18% ± 20% to 30% ± 35%, while in AB the error ranged from 11% ± 14% to 20% ± 24%. In PB nearly all bins contained sphere slices. AB was more accurate, revealing empty bins where no sphere slices existed. As a proof of principle, we present examples of two non-small cell lung carcinoma patients' 4D-CT lung images binned by both approaches. While AB can lead to gaps in the coronal images, depending on the patient's breathing pattern, PB exhibits no gaps but suffers visible artifacts due to misbinning, yielding images that cover a relatively large amplitude range. AB was more consistent, though often resulted in gaps when no data existed due to patients' breathing pattern. We conclude AB is more accurate than PB. This has important consequences to treatment planning and diagnosis.

  13. Impact of incorporating visual biofeedback in 4D MRI.

    PubMed

    To, David T; Kim, Joshua P; Price, Ryan G; Chetty, Indrin J; Glide-Hurst, Carri K

    2016-05-08

    Precise radiation therapy (RT) for abdominal lesions is complicated by respiratory motion and suboptimal soft tissue contrast in 4D CT. 4D MRI offers improved con-trast although long scan times and irregular breathing patterns can be limiting. To address this, visual biofeedback (VBF) was introduced into 4D MRI. Ten volunteers were consented to an IRB-approved protocol. Prospective respiratory-triggered, T2-weighted, coronal 4D MRIs were acquired on an open 1.0T MR-SIM. VBF was integrated using an MR-compatible interactive breath-hold control system. Subjects visually monitored their breathing patterns to stay within predetermined tolerances. 4D MRIs were acquired with and without VBF for 2- and 8-phase acquisitions. Normalized respiratory waveforms were evaluated for scan time, duty cycle (programmed/acquisition time), breathing period, and breathing regularity (end-inhale coefficient of variation, EI-COV). Three reviewers performed image quality assessment to compare artifacts with and without VBF. Respiration-induced liver motion was calculated via centroid difference analysis of end-exhale (EE) and EI liver contours. Incorporating VBF reduced 2-phase acquisition time (4.7 ± 1.0 and 5.4 ± 1.5 min with and without VBF, respectively) while reducing EI-COV by 43.8% ± 16.6%. For 8-phase acquisitions, VBF reduced acquisition time by 1.9 ± 1.6 min and EI-COVs by 38.8% ± 25.7% despite breathing rate remaining similar (11.1 ± 3.8 breaths/min with vs. 10.5 ± 2.9 without). Using VBF yielded higher duty cycles than unguided free breathing (34.4% ± 5.8% vs. 28.1% ± 6.6%, respectively). Image grading showed that out of 40 paired evaluations, 20 cases had equivalent and 17 had improved image quality scores with VBF, particularly for mid-exhale and EI. Increased liver excursion was observed with VBF, where superior-inferior, anterior-posterior, and left-right EE-EI displacements were 14.1± 5.8, 4.9 ± 2.1, and 1.5 ± 1.0 mm, respectively, with VBF compared to 11.9

  14. 4D MR imaging using robust internal respiratory signal

    NASA Astrophysics Data System (ADS)

    Hui, CheukKai; Wen, Zhifei; Stemkens, Bjorn; Tijssen, R. H. N.; van den Berg, C. A. T.; Hwang, Ken-Pin; Beddar, Sam

    2016-05-01

    The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D.

  15. Helical 4D CT and Comparison with Cine 4D CT

    NASA Astrophysics Data System (ADS)

    Pan, Tinsu

    4D CT was one of the most important developments in radiation oncology in the last decade. Its early development in single slice CT and commercialization in multi-slice CT has radically changed our practice in radiation treatment of lung cancer, and has enabled the stereotactic radiosurgery of early stage lung cancer. In this chapter, we will document the history of 4D CT development, detail the data sufficiency condition governing the 4D CT data collection; present the design of the commercial helical 4D CTs from Philips and Siemens; compare the differences between the helical 4D CT and the GE cine 4D CT in data acquisition, slice thickness, acquisition time and work flow; review the respiratory monitoring devices; and understand the causes of image artifacts in 4D CT.

  16. 4D flow imaging with MRI

    PubMed Central

    Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.

    2014-01-01

    Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414

  17. Phosphodiesterase4D (PDE4D)--A risk factor for atrial fibrillation and stroke?

    PubMed

    Jørgensen, Carina; Yasmeen, Saiqa; Iversen, Helle K; Kruuse, Christina

    2015-12-15

    Mutations in the gene encoding phosphodiesterase 4D (PDE4D) enzyme are associated with ischemic stroke; however the functional implications of such mutations are not well understood. PDE4D is part of a complex protein family modulating intracellular signalling by cyclic nucleotides. The PDE4 family includes subtypes A-D, all of which show unique intracellular, cellular and tissue distribution. PDE4D is the major subtype expressed in human atrial myocytes and involved in the pathophysiology of arrhythmias, such as atrial fibrillation. The PDE4D enzyme hydrolyses cyclic adenosine monophosphate (cAMP). Though diverging results are reported, several population based studies describe association of various PDE4D single nucleotide polymorphisms (SNP) with cardio-embolic stroke in particular. Functionally, a down regulation of PDE4D variants has been reported in stroke patients. The anti-inflammatory and vasodilator properties of PDE4 inhibitors make them suitable for treatment of stroke and cardiovascular disease. PDE4D has recently been suggested as factor in atrial fibrillation. This review summarizes the possible function of PDE4D in the brain, heart, and vasculature. Further, association of the described SNPs, in particular, with cardioembolic stroke, is reviewed. Current findings on the PDE4D mutations suggest functionality involves an increased cardiac risk factor as well as augmented risk of atrial fibrillation. PMID:26671126

  18. WE-G-17A-03: MRIgRT: Quantification of Organ Motion

    SciTech Connect

    Stanescu, T; Tadic, T; Jaffray, D

    2014-06-15

    Purpose: To develop an MRI-based methodology and tools required for the quantification of organ motion on a dedicated MRI-guided radiotherapy system. A three-room facility, consisting of a TrueBeam 6X linac vault, a 1.5T MR suite and a brachytherapy interventional room, is currently under commissioning at our institution. The MR scanner can move and image in either room for diagnostic and treatment guidance purposes. Methods: A multi-imaging modality (MR, kV) phantom, featuring programmable 3D simple and complex motion trajectories, was used for the validation of several image sorting algorithms. The testing was performed on MRI (e.g. TrueFISP, TurboFLASH), 4D CT and 4D CBCT. The image sorting techniques were based on a) direct image pixel manipulation into columns or rows, b) single and aggregated pixel data tracking and c) using computer vision techniques for global pixel analysis. Subsequently, the motion phantom and sorting algorithms were utilized for commissioning of MR fast imaging techniques for 2D-cine and 4D data rendering. MR imaging protocols were optimized (e.g. readout gradient strength vs. SNR) to minimize the presence of susceptibility-induced distortions, which were reported through phantom experiments and numerical simulations. The system-related distortions were also quantified (dedicated field phantom) and treated as systematic shifts where relevant. Results: Image sorting algorithms were validated for specific MR-based applications such as quantification of organ motion, local data sampling, and 4D MRI for pre-RT delivery with accuracy better than the raw image pixel size (e.g. 1 mm). MR fast imaging sequences were commissioning and imaging strategies were developed to mitigate spatial artifacts with minimal penalty on the image spatial and temporal sampling. Workflows (e.g. liver) were optimized to include the new motion quantification tools for RT planning and daily patient setup verification. Conclusion: Comprehensive methods were developed

  19. Comparison of setup error using different reference images: a phantom and lung cancer patients study

    SciTech Connect

    Jiang Bo; Dai Jianrong; Zhang Ye; Zhang Ke; Men Kuo; Zhou Zongmei; Liang Jun; Wang Lvhua

    2012-04-01

    The purpose of this study was to compare setup errors obtained with kilovoltage cone-beam computed tomography (CBCT) and 2 different kinds of reference images, free-breathing 3D localization CT images (FB-CT) and the average images of 4-D localization CT images (AVG-CT) for phantom and lung cancer patients. This study also explored the correlation between the difference of translational setup errors and the gross tumor volume (GTV) motion. A respiratory phantom and 14 patients were enrolled in this study. For phantom and each patient, 3D helical CT and 4D CT images were acquired, and AVG-CT images were generated from the 4D CT. The setup errors were determined based on the image registration between the CBCT and the 2 different reference images, respectively. The data for both translational and rotational setup errors were analyzed and compared. The GTV centroid movement as well as its correlation with the translational setup error differences was also evaluated. In the phantom study, the AVG-CT method was more accurate than the FB-CT method. For patients, the translational setup errors based on FB-CT were significantly larger than those from AVG-CT in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) directions (p < 0.05). Translational setup errors differed by >1 mm in 32.6% and >2 mm in 12.9% of CBCT scans. The rotational setup errors from FB-CT were significantly different from those from AVG-CT in the LR and AP directions (p < 0.05). The correlation coefficient of the translational setup error differences and the GTV centroid movement in the LR, SI, and AP directions was 0.515 (p = 0.060), 0.902 (p < 0.001), and 0.510 (p = 0.062), respectively. For lung cancer patients, respiration may affect the on-line target position location. AVG-CT provides different reference information than FB-CT. The difference in SI direction caused by the 2 methods increases with the GTV movement. Therefore, AVG-CT should be the prefered choice of reference

  20. Shadow-driven 4D haptic visualization.

    PubMed

    Zhang, Hui; Hanson, Andrew

    2007-01-01

    Just as we can work with two-dimensional floor plans to communicate 3D architectural design, we can exploit reduced-dimension shadows to manipulate the higher-dimensional objects generating the shadows. In particular, by taking advantage of physically reactive 3D shadow-space controllers, we can transform the task of interacting with 4D objects to a new level of physical reality. We begin with a teaching tool that uses 2D knot diagrams to manipulate the geometry of 3D mathematical knots via their projections; our unique 2D haptic interface allows the user to become familiar with sketching, editing, exploration, and manipulation of 3D knots rendered as projected imageson a 2D shadow space. By combining graphics and collision-sensing haptics, we can enhance the 2D shadow-driven editing protocol to successfully leverage 2D pen-and-paper or blackboard skills. Building on the reduced-dimension 2D editing tool for manipulating 3D shapes, we develop the natural analogy to produce a reduced-dimension 3D tool for manipulating 4D shapes. By physically modeling the correct properties of 4D surfaces, their bending forces, and their collisions in the 3D haptic controller interface, we can support full-featured physical exploration of 4D mathematical objects in a manner that is otherwise far beyond the experience accessible to human beings. As far as we are aware, this paper reports the first interactive system with force-feedback that provides "4D haptic visualization" permitting the user to model and interact with 4D cloth-like objects.

  1. Phantom Crossing DGP Gravity

    SciTech Connect

    Hirano, Koichi; Komiya, Zen

    2010-08-12

    We propose a phantom crossing Dvali-Gabadadze-Porrati (DGP) model. In our model, the effective equation of state of the DGP gravity crosses the phantom divide line. We demonstrate crossing of the phantom divide does not occur within the framework of the original DGP model or the DGP model developed by Dvali and Turner. By extending their model, we construct a model that realizes crossing of the phantom divide. DGP models can account for late-time acceleration of the universe without dark energy. Phantom Crossing DGP model is more compatible with recent observational data from Type Ia Supernovae (SNIa), Cosmic Microwave Background (CMB) anisotropies, and Baryon Acoustic Oscillations (BAO) than the original DGP model or the DGP model developed by Dvali and Turner.

  2. 4D Confocal Imaging of Yeast Organelles.

    PubMed

    Day, Kasey J; Papanikou, Effrosyni; Glick, Benjamin S

    2016-01-01

    Yeast cells are well suited to visualizing organelles by 4D confocal microscopy. Typically, one or more cellular compartments are labeled with a fluorescent protein or dye, and a stack of confocal sections spanning the entire cell volume is captured every few seconds. Under appropriate conditions, organelle dynamics can be observed for many minutes with only limited photobleaching. Images are captured at a relatively low signal-to-noise ratio and are subsequently processed to generate movies that can be analyzed and quantified. Here, we describe methods for acquiring and processing 4D data using conventional scanning confocal microscopy. PMID:27631997

  3. The scientific value of 4D visualizations

    NASA Astrophysics Data System (ADS)

    Minster, J.; Olsen, K.; Day, S.; Moore, R.; Jordan, T. H.; Maechling, P.; Chourasia, A.

    2006-12-01

    Significant scientific insights derive from viewing measured, or calculated three-dimensional, time-dependent -- that is four-dimensional-- fields. This issue cuts across all disciplines of Earth Sciences. Addressing it calls for close collaborations between "domain" scientists and "IT" visualization specialists. Techniques to display such 4D fields in a intuitive way are a major challenge, especially when the relevant variables to be displayed are not scalars but tensors. This talk will illustrate some attempts to deal with this challenge, using seismic wave fields as specific objects to display. We will highlight how 4D displays can help address very difficult issues of significant scientific import.

  4. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging

    SciTech Connect

    Yan, Hao; Folkerts, Michael; Jiang, Steve B. E-mail: steve.jiang@UTSouthwestern.edu; Jia, Xun E-mail: steve.jiang@UTSouthwestern.edu; Zhen, Xin; Li, Yongbao; Pan, Tinsu; Cervino, Laura

    2014-07-15

    Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase

  5. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G.; Liu, Chihray; Lu, Bo

    2015-12-01

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR). In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the

  6. 4D-Var Developement at GMAO

    NASA Technical Reports Server (NTRS)

    Pelc, Joanna S.; Todling, Ricardo; Akkraoui, Amal El

    2014-01-01

    The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.

  7. Lung pair phantom

    DOEpatents

    Olsen, P.C.; Gordon, N.R.; Simmons, K.L.

    1993-11-30

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an ``authentic lung tissue`` or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  8. Lung pair phantom

    DOEpatents

    Olsen, Peter C.; Gordon, N. Ross; Simmons, Kevin L.

    1993-01-01

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an "authentic lung tissue" or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  9. Nondipole Effects in Xe 4d Photoemission

    SciTech Connect

    Hemmers, O; Guillemin, R; Wolska, A; Lindle, D W; Rolles, D; Cheng, K T; Johnson, W R; Zhou, H L; Manson, S T

    2004-07-14

    We measured the nondipole parameters for the spin-orbit doublets Xe 4d{sub 5/2} and Xe 4d{sub 3/2} over a photon-energy range from 100 eV to 250 eV at beamline 8.0.1.3 of the Advanced Light Source at the Lawrence Berkeley National Laboratory. Significant nondipole effects are found at relatively low energies as a result of Cooper minima in dipole channels and interchannel coupling in quadrupole channels. Most importantly, sharp disagreement between experiment and theory, when otherwise excellent agreement was expected, has provided the first evidence of satellite two-electron quadrupole photoionization transitions, along with their crucial importance for a quantitatively accurate theory.

  10. Stability of phantom wormholes

    SciTech Connect

    Lobo, Francisco S.N.

    2005-06-15

    It has recently been shown that traversable wormholes may be supported by phantom energy. In this work phantom wormhole geometries are modeled by matching an interior traversable wormhole solution, governed by the equation of state p={omega}{rho} with {omega}<-1, to an exterior vacuum spacetime at a finite junction interface. The stability analysis of these phantom wormholes to linearized spherically symmetric perturbations about static equilibrium solutions is carried out. A master equation dictating the stability regions is deduced, and by separating the cases of a positive and a negative surface energy density, it is found that the respective stable equilibrium configurations may be increased by strategically varying the wormhole throat radius. The first model considered, in the absence of a thin shell, is that of an asymptotically flat phantom wormhole spacetime. The second model constructed is that of an isotropic pressure phantom wormhole, which is of particular interest, as the notion of phantom energy is that of a spatially homogeneous cosmic fluid, although it may be extended to inhomogeneous spherically symmetric spacetimes.

  11. Quantum phantom cosmology

    SciTech Connect

    DaPbrowski, Mariusz P.; Kiefer, Claus; Sandhoefer, Barbara

    2006-08-15

    We apply the formalism of quantum cosmology to models containing a phantom field. Three models are discussed explicitly: a toy model, a model with an exponential phantom potential, and a model with phantom field accompanied by a negative cosmological constant. In all these cases we calculate the classical trajectories in configuration space and give solutions to the Wheeler-DeWitt equation in quantum cosmology. In the cases of the toy model and the model with exponential potential we are able to solve the Wheeler-DeWitt equation exactly. For comparison, we also give the corresponding solutions for an ordinary scalar field. We discuss, in particular, the behavior of wave packets in minisuperspace. For the phantom field these packets disperse in the region that corresponds to the big-rip singularity. This thus constitutes a genuine quantum region at large scales, described by a regular solution of the Wheeler-DeWitt equation. For the ordinary scalar field, the big-bang singularity is avoided. Some remarks on the arrow of time in phantom models as well as on the relation of phantom models to loop quantum cosmology are given.

  12. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment.

    PubMed

    Cai, Weixing; Dhou, Salam; Cifter, Fulya; Myronakis, Marios; Hurwitz, Martina H; Williams, Christopher L; Berbeco, Ross I; Seco, Joao; Lewis, John H

    2016-01-21

    The purpose of this research is to develop a 4DCBCT-based dose assessment method for calculating actual delivered dose for patients with significant respiratory motion or anatomical changes during the course of SBRT. To address the limitation of 4DCT-based dose assessment, we propose to calculate the delivered dose using time-varying ('fluoroscopic') 3D patient images generated from a 4DCBCT-based motion model. The method includes four steps: (1) before each treatment, 4DCBCT data is acquired with the patient in treatment position, based on which a patient-specific motion model is created using a principal components analysis algorithm. (2) During treatment, 2D time-varying kV projection images are continuously acquired, from which time-varying 'fluoroscopic' 3D images of the patient are reconstructed using the motion model. (3) Lateral truncation artifacts are corrected using planning 4DCT images. (4) The 3D dose distribution is computed for each timepoint in the set of 3D fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach is validated using six modified XCAT phantoms with lung tumors and different respiratory motions derived from patient data. The estimated doses are compared to that calculated using ground-truth XCAT phantoms. For each XCAT phantom, the calculated delivered tumor dose values generally follow the same trend as that of the ground truth and at most timepoints the difference is less than 5%. For the overall delivered dose, the normalized error of calculated 3D dose distribution is generally less than 3% and the tumor D95 error is less than 1.5%. XCAT phantom studies indicate the potential of the proposed method to accurately estimate 3D tumor dose distributions for SBRT lung treatment based on 4DCBCT imaging and motion modeling. Further research is necessary to investigate its performance for clinical patient data.

  13. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment

    NASA Astrophysics Data System (ADS)

    Cai, Weixing; Dhou, Salam; Cifter, Fulya; Myronakis, Marios; Hurwitz, Martina H.; Williams, Christopher L.; Berbeco, Ross I.; Seco, Joao; Lewis, John H.

    2016-01-01

    The purpose of this research is to develop a 4DCBCT-based dose assessment method for calculating actual delivered dose for patients with significant respiratory motion or anatomical changes during the course of SBRT. To address the limitation of 4DCT-based dose assessment, we propose to calculate the delivered dose using time-varying (‘fluoroscopic’) 3D patient images generated from a 4DCBCT-based motion model. The method includes four steps: (1) before each treatment, 4DCBCT data is acquired with the patient in treatment position, based on which a patient-specific motion model is created using a principal components analysis algorithm. (2) During treatment, 2D time-varying kV projection images are continuously acquired, from which time-varying ‘fluoroscopic’ 3D images of the patient are reconstructed using the motion model. (3) Lateral truncation artifacts are corrected using planning 4DCT images. (4) The 3D dose distribution is computed for each timepoint in the set of 3D fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach is validated using six modified XCAT phantoms with lung tumors and different respiratory motions derived from patient data. The estimated doses are compared to that calculated using ground-truth XCAT phantoms. For each XCAT phantom, the calculated delivered tumor dose values generally follow the same trend as that of the ground truth and at most timepoints the difference is less than 5%. For the overall delivered dose, the normalized error of calculated 3D dose distribution is generally less than 3% and the tumor D95 error is less than 1.5%. XCAT phantom studies indicate the potential of the proposed method to accurately estimate 3D tumor dose distributions for SBRT lung treatment based on 4DCBCT imaging and motion modeling. Further research is necessary to investigate its performance for clinical patient data.

  14. Phantom energy traversable wormholes

    SciTech Connect

    Lobo, Francisco S.N.

    2005-04-15

    It has been suggested that a possible candidate for the present accelerated expansion of the Universe is 'phantom energy'. The latter possesses an equation of state of the form {omega}{identical_to}p/{rho}<-1, consequently violating the null energy condition. As this is the fundamental ingredient to sustain traversable wormholes, this cosmic fluid presents us with a natural scenario for the existence of these exotic geometries. 'Note, however, that the notion of phantom energy is that of a homogeneously distributed fluid. Nevertheless, it can be extended to inhomogeneous spherically symmetric spacetimes, and it is shown that traversable wormholes may be supported by phantom energy. Because of the fact of the accelerating Universe, macroscopic wormholes could naturally be grown from the submicroscopic constructions that originally pervaded the quantum foam. One could also imagine an advanced civilization mining the cosmic fluid for phantom energy necessary to construct and sustain a traversable wormhole. In this context, we investigate the physical properties and characteristics of traversable wormholes constructed using the equation of state p={omega}{rho}, with {omega}<-1. We analyze specific wormhole geometries, considering asymptotically flat spacetimes and imposing an isotropic pressure. We also construct a thin shell around the interior wormhole solution, by imposing the phantom energy equation of state on the surface stresses. Using the 'volume integral quantifier' we verify that it is theoretically possible to construct these geometries with vanishing amounts of averaged null energy condition violating phantom energy. Specific wormhole dimensions and the traversal velocity and time are also deduced from the traversability conditions for a particular wormhole geometry. These phantom energy traversable wormholes have far-reaching physical and cosmological implications. For instance, an advanced civilization may use these geometries to induce closed timelike

  15. 4D Proton treatment planning strategy for mobile lung tumors

    SciTech Connect

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei . E-mail: ldong@mdanderson.org

    2007-03-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE{sub R}IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE{sub R}IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE{sub R}IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors.

  16. Synchronized tumour tracking with electromagnetic transponders and kV x-ray imaging: evaluation based on a thorax phantom.

    PubMed

    Rau, A W; Nill, S; Eidens, R S; Oelfke, U

    2008-07-21

    Intrafractional organ motion remains a source of error in conformal radiotherapy of dynamic targets such as tumours of the lung or of the prostate. The purpose of this work was to devise a method for the continuous and routine measurement of intrafractional organ motion. The method consists of a combination of an electromagnetic (EM), internal marker-based tracking system with the on-board kilovoltage x-ray imaging system of a modern treatment machine. The EM system continuously tracks the target, while x-ray images can be acquired simultaneously if demand arises. An image processing algorithm has been developed to automatically localize and track the EM markers in the x-ray images. We have demonstrated simultaneous target tracking using the EM system and x-ray imaging of a mobile target inside a programmable thorax phantom. The target motion was very well reproduced by both systems. The comparability of the target locations reported by both systems was established (better than 0.25 mm up to target velocities of 3 cm s(-1)). One immediate use of the synchronized system was shown: the generation of a 4D cone beam computed tomography data set using the EM system for the measurement of motion. In conclusion, we have developed a system for the routine measurement of intrafractional motion that continuously provides the 3D position of the target with the ability to acquire images of the treatment field only when needed, thereby eliminating avoidable imaging dose to the patient.

  17. Biomechanics of DNA structures visualized by 4D electron microscopy

    PubMed Central

    Lorenz, Ulrich J.; Zewail, Ahmed H.

    2013-01-01

    We present a technique for in situ visualization of the biomechanics of DNA structural networks using 4D electron microscopy. Vibrational oscillations of the DNA structure are excited mechanically through a short burst of substrate vibrations triggered by a laser pulse. Subsequently, the motion is probed with electron pulses to observe the impulse response of the specimen in space and time. From the frequency and amplitude of the observed oscillations, we determine the normal modes and eigenfrequencies of the structures involved. Moreover, by selective “nano-cutting” at a given point in the network, it was possible to obtain Young’s modulus, and hence the stiffness, of the DNA filament at that position. This experimental approach enables nanoscale mechanics studies of macromolecules and should find applications in other domains of biological networks such as origamis. PMID:23382239

  18. Active origami by 4D printing

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  19. Quantifying the image quality and dose reduction of respiratory triggered 4D cone-beam computed tomography with patient-measured breathing

    NASA Astrophysics Data System (ADS)

    Cooper, Benjamin J.; O'Brien, Ricky T.; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J.

    2015-12-01

    Respiratory triggered four dimensional cone-beam computed tomography (RT 4D CBCT) is a novel technique that uses a patient’s respiratory signal to drive the image acquisition with the goal of imaging dose reduction without degrading image quality. This work investigates image quality and dose using patient-measured respiratory signals for RT 4D CBCT simulations. Studies were performed that simulate a 4D CBCT image acquisition using both the novel RT 4D CBCT technique and a conventional 4D CBCT technique. A set containing 111 free breathing lung cancer patient respiratory signal files was used to create 111 pairs of RT 4D CBCT and conventional 4D CBCT image sets from realistic simulations of a 4D CBCT system using a Rando phantom and the digital phantom, XCAT. Each of these image sets were compared to a ground truth dataset from which a mean absolute pixel difference (MAPD) metric was calculated to quantify the degradation of image quality. The number of projections used in each simulation was counted and was assumed as a surrogate for imaging dose. Based on 111 breathing traces, when comparing RT 4D CBCT with conventional 4D CBCT, the average image quality was reduced by 7.6% (Rando study) and 11.1% (XCAT study). However, the average imaging dose reduction was 53% based on needing fewer projections (617 on average) than conventional 4D CBCT (1320 projections). The simulation studies have demonstrated that the RT 4D CBCT method can potentially offer a 53% saving in imaging dose on average compared to conventional 4D CBCT in simulation studies using a wide range of patient-measured breathing traces with a minimal impact on image quality.

  20. Octavius 4D characterization for flattened and flattening filter free rotational deliveries

    SciTech Connect

    McGarry, Conor K.; Hounsell, Alan R.; O’Connell, Barry F.; Grattan, Mark W. D.; Agnew, Christina E.; Irvine, Denise M.

    2013-09-15

    Purpose: In this study the Octavius detector 729 ionization chamber (IC) array with the Octavius 4D phantom was characterized for flattening filter (FF) and flattening filter free (FFF) static and rotational beams. The device was assessed for verification with FF and FFF RapidArc treatment plans.Methods: The response of the detectors to field size, dose linearity, and dose rate were assessed for 6 MV FF beams and also 6 and 10 MV FFF beams. Dosimetric and mechanical accuracy of the detector array within the Octavius 4D rotational phantom was evaluated against measurements made using semiflex and pinpoint ionization chambers, and radiochromic film. Verification FF and FFF RapidArc plans were assessed using a gamma function with 3%/3 mm tolerances and 2%/2 mm tolerances and further analysis of these plans was undertaken using film and a second detector array with higher spatial resolution.Results: A warm-up dose of >6 Gy was required for detector stability. Dose-rate measurements were stable across a range from 0.26 to 15 Gy/min and dose response was linear, although the device overestimated small doses compared with pinpoint ionization chamber measurements. Output factors agreed with ionization chamber measurements to within 0.6% for square fields of side between 3 and 25 cm and within 1.2% for 2 × 2 cm{sup 2} fields. The Octavius 4D phantom was found to be consistent with measurements made with radiochromic film, where the gantry angle was found to be within 0.4° of that expected during rotational deliveries. RapidArc FF and FFF beams were found to have an accuracy of >97.9% and >90% of pixels passing 3%/3 mm and 2%/2 mm, respectively. Detector spatial resolution was observed to be a factor in determining the accurate delivery of each plan, particularly at steep dose gradients. This was confirmed using data from a second detector array with higher spatial resolution and with radiochromic film.Conclusions: The Octavius 4D phantom with associated Octavius detector

  1. Full 3-D transverse oscillations: a method for tissue motion estimation.

    PubMed

    Salles, Sebastien; Liebgott, Hervé; Garcia, Damien; Vray, Didier

    2015-08-01

    We present a new method to estimate 4-D (3-D + time) tissue motion. The method used combines 3-D phase based motion estimation with an unconventional beamforming strategy. The beamforming technique allows us to obtain full 3-D RF volumes with axial, lateral, and elevation modulations. Based on these images, we propose a method to estimate 3-D motion that uses phase images instead of amplitude images. First, volumes featuring 3-D oscillations are created using only a single apodization function, and the 3-D displacement between two consecutive volumes is estimated simultaneously by applying this 3-D estimation. The validity of the method is investigated by conducting simulations and phantom experiments. The results are compared with those obtained with two other conventional estimation methods: block matching and optical flow. The results show that the proposed method outperforms the conventional methods, especially in the transverse directions.

  2. ICT4D: A Computer Science Perspective

    NASA Astrophysics Data System (ADS)

    Sutinen, Erkki; Tedre, Matti

    The term ICT4D refers to the opportunities of Information and Communication Technology (ICT) as an agent of development. Research in that field is often focused on evaluating the feasibility of existing technologies, mostly of Western or Far East Asian origin, in the context of developing regions. A computer science perspective is complementary to that agenda. The computer science perspective focuses on exploring the resources, or inputs, of a particular context and on basing the design of a technical intervention on the available resources, so that the output makes a difference in the development context. The modus operandi of computer science, construction, interacts with evaluation and exploration practices. An analysis of a contextualized information technology curriculum of Tumaini University in southern Tanzania shows the potential of the computer science perspective for designing meaningful information and communication technology for a developing region.

  3. Soft Route to 4D Tomography.

    PubMed

    Taillandier-Thomas, Thibault; Roux, Stéphane; Hild, François

    2016-07-01

    Based on the assumption that the time evolution of a sample observed by computed tomography requires many less parameters than the definition of the microstructure itself, it is proposed to reconstruct these changes based on the initial state (using computed tomography) and very few radiographs acquired at fixed intervals of time. This Letter presents a proof of concept that for a fatigue cracked sample its kinematics can be tracked from no more than two radiographs in situations where a complete 3D view would require several hundreds of radiographs. This 2 order of magnitude gain opens the way to a "computed" 4D tomography, which complements the recent progress achieved in fast or ultrafast computed tomography, which is based on beam brightness, detector sensitivity, and signal acquisition technologies.

  4. Soft Route to 4D Tomography

    NASA Astrophysics Data System (ADS)

    Taillandier-Thomas, Thibault; Roux, Stéphane; Hild, François

    2016-07-01

    Based on the assumption that the time evolution of a sample observed by computed tomography requires many less parameters than the definition of the microstructure itself, it is proposed to reconstruct these changes based on the initial state (using computed tomography) and very few radiographs acquired at fixed intervals of time. This Letter presents a proof of concept that for a fatigue cracked sample its kinematics can be tracked from no more than two radiographs in situations where a complete 3D view would require several hundreds of radiographs. This 2 order of magnitude gain opens the way to a "computed" 4D tomography, which complements the recent progress achieved in fast or ultrafast computed tomography, which is based on beam brightness, detector sensitivity, and signal acquisition technologies.

  5. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    SciTech Connect

    Paganelli, Chiara; Peroni, Marta

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT

  6. Volumetric limiting spatial resolution analysis of four dimensional digital subtraction angiography (4D-DSA)

    NASA Astrophysics Data System (ADS)

    Davis, Brian; Oberstar, Erick; Royalty, Kevin; Schafer, Sebastian; Strother, Charles; Mistretta, Charles

    2015-03-01

    Static C-Arm CT 3D FDK baseline reconstructions (3D-DSA) are unable to provide temporal information to radiologists. 4D-DSA provides a time series of 3D volumes implementing a constrained image, thresholded 3D-DSA, reconstruction utilizing temporal dynamics in the 2D projections. Volumetric limiting spatial resolution (VLSR) of 4DDSA is quantified and compared to a 3D-DSA reconstruction using the same 3D-DSA parameters. Investigated were the effects of varying over significant ranges the 4D-DSA parameters of 2D blurring kernel size applied to the projection and threshold applied to the 3D-DSA when generating the constraining image of a scanned phantom (SPH) and an electronic phantom (EPH). The SPH consisted of a 76 micron tungsten wire encased in a 47 mm O.D. plastic radially concentric thin walled support structure. An 8-second/248-frame/198° scan protocol acquired the raw projection data. VLSR was determined from averaged MTF curves generated from each 2D transverse slice of every (248) 4D temporal frame (3D). 4D results for SPH and EPH were compared to the 3D-DSA. Analysis of the 3D-DSA resulted in a VLSR of 2.28 and 1.69 lp/mm for the EPH and SPH respectively. Kernel (2D) sizes of either 10x10 or 20x20 pixels with a threshold of 10% of the 3D-DSA as a constraining image provided 4D-DSA VLSR nearest to the 3D-DSA. 4D-DSA algorithms yielded 2.21 and 1.67 lp/mm with a percent error of 3.1% and 1.2% for the EPH and SPH respectively as compared to the 3D-DSA. This research indicates 4D-DSA is capable of retaining the resolution of the 3D-DSA.

  7. The Phantom brane revisited

    NASA Astrophysics Data System (ADS)

    Sahni, Varun

    2016-07-01

    The Phantom brane is based on the normal branch of the DGP braneworld. It possesses a phantom-like equation of state at late times, but no big-rip future singularity. In this braneworld, the cosmological constant is dynamically screened at late times. Consequently it provides a good fit to SDSS DR11 measurements of H(z) at high redshifts. We obtain a closed system of equations for scalar perturbations on the brane. Perturbations of radiation, matter and the Weyl fluid are self-consistently evolved until the present epoch. We find that the late time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials φ, Ψ evolve differently on the brane than in ΛCDM, for which φ = Ψ. On the Brane, by contrast, the ratio φ/Ψ exceeds unity during the late matter dominated epoch (z ≤ 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large scale structure. The phantom brane also displays a pole in its equation of state, which provides a key test of this dark energy model.

  8. Jamitons: Phantom Traffic Jams

    ERIC Educational Resources Information Center

    Kowszun, Jorj

    2013-01-01

    Traffic on motorways can slow down for no apparent reason. Sudden changes in speed by one or two drivers can create a chain reaction that causes a traffic jam for the vehicles that are following. This kind of phantom traffic jam is called a "jamiton" and the article discusses some of the ways in which traffic engineers produce…

  9. Psychophysical Evaluation of the Capability for Phantom Limb Movement in Forearm Amputees.

    PubMed

    Kawashima, Noritaka; Mita, Tomoki

    2016-01-01

    A phantom limb is the sensation that an amputated limb is still attached to the body and is moving together with other body parts. Phantom limb phenomenon is often described on the basis of the patient's subjective sense, for example as represented using a visual analog scale (VAS). The aim of this study was to propose a novel quantification method for behavioral aspect of phantom limb by psychophysics. Twelve unilateral forearm amputees were asked to perform phantom wrist motion with various motion frequencies (60, 80, 100, 120, 140, 160, 180, 200, 220, 240% of preferred speed). The attainment of phantom limb motion in each session was rated by the VAS ranging from 0 (hard) to 10 (easy). The relationship between the VAS and motion frequency was mathematically fitted by quadric function, and the value of shift and the degree of steepness were obtained as evaluation variables for the phantom limb movement. In order to test whether the proposed method can reasonably quantify the characteristics of phantom limb motion, we compared the variables among three different phantom limb movement conditions: (1) unilateral (phantom only), (2) bimanual, and (3) bimanual wrist movement with mirror reflection-induced visual feedback (MVF). While VAS rating showed a larger extent of inter- and intra-subject variability, the relationship of the VAS in response to motion frequency could be fitted by quadric curve, and the obtained parameters based on quadric function well characterize task-dependent changes in phantom limb movement. The present results suggest the potential usefulness of psychophysical evaluation as a validate assessment tool of phantom limb condition. PMID:27227973

  10. Psychophysical Evaluation of the Capability for Phantom Limb Movement in Forearm Amputees

    PubMed Central

    Kawashima, Noritaka; Mita, Tomoki

    2016-01-01

    A phantom limb is the sensation that an amputated limb is still attached to the body and is moving together with other body parts. Phantom limb phenomenon is often described on the basis of the patient’s subjective sense, for example as represented using a visual analog scale (VAS). The aim of this study was to propose a novel quantification method for behavioral aspect of phantom limb by psychophysics. Twelve unilateral forearm amputees were asked to perform phantom wrist motion with various motion frequencies (60, 80, 100, 120, 140, 160, 180, 200, 220, 240% of preferred speed). The attainment of phantom limb motion in each session was rated by the VAS ranging from 0 (hard) to 10 (easy). The relationship between the VAS and motion frequency was mathematically fitted by quadric function, and the value of shift and the degree of steepness were obtained as evaluation variables for the phantom limb movement. In order to test whether the proposed method can reasonably quantify the characteristics of phantom limb motion, we compared the variables among three different phantom limb movement conditions: (1) unilateral (phantom only), (2) bimanual, and (3) bimanual wrist movement with mirror reflection-induced visual feedback (MVF). While VAS rating showed a larger extent of inter- and intra-subject variability, the relationship of the VAS in response to motion frequency could be fitted by quadric curve, and the obtained parameters based on quadric function well characterize task-dependent changes in phantom limb movement. The present results suggest the potential usefulness of psychophysical evaluation as a validate assessment tool of phantom limb condition. PMID:27227973

  11. Automated contour mapping using sparse volume sampling for 4D radiation therapy

    SciTech Connect

    Chao Ming; Schreibmann, Eduard; Li Tianfang; Wink, Nicole; Xing Lei

    2007-10-15

    The purpose of this work is to develop a novel strategy to automatically map organ contours from one phase of respiration to all other phases on a four-dimensional computed tomography (4D CT). A region of interest (ROI) was manually delineated by a physician on one phase specific image set of a 4D CT. A number of cubic control volumes of the size of {approx}1 cm were automatically placed along the contours. The control volumes were then collectively mapped to the next phase using a rigid transformation. To accommodate organ deformation, a model-based adaptation of the control volume positions was followed after the rigid mapping procedure. This further adjustment of control volume positions was performed by minimizing an energy function which balances the tendency for the control volumes to move to their correspondences with the desire to maintain similar image features and shape integrity of the contour. The mapped ROI surface was then constructed based on the central positions of the control volumes using a triangulated surface construction technique. The proposed technique was assessed using a digital phantom and 4D CT images of three lung patients. Our digital phantom study data indicated that a spatial accuracy better than 2.5 mm is achievable using the proposed technique. The patient study showed a similar level of accuracy. In addition, the computational speed of our algorithm was significantly improved as compared with a conventional deformable registration-based contour mapping technique. The robustness and accuracy of this approach make it a valuable tool for the efficient use of the available spatial-tempo information for 4D simulation and treatment.

  12. Opening the Black Box of ICT4D: Advancing Our Understanding of ICT4D Partnerships

    ERIC Educational Resources Information Center

    Park, Sung Jin

    2013-01-01

    The term, Information and Communication Technologies for Development (ICT4D), pertains to programs or projects that strategically use ICTs (e.g. mobile phones, computers, and the internet) as a means toward the socio-economic betterment for the poor in developing contexts. Gaining the political and financial support of the international community…

  13. Egg White Phantoms for HIFU

    SciTech Connect

    Divkovic, Gabriela; Jenne, Juergen W.

    2005-03-28

    We used fresh egg white and polyacrylamide to create a transparent tissue mimicking phantom. Heating of phantoms by HIFU leads to egg white protein denaturation and creation of visible white lesions. We measured the acoustical and thermal properties and investigated the possibility to use such phantoms to study the lesion formation during the HIFU therapy.

  14. Comparison of functional MRI image realignment tools using a computer-generated phantom.

    PubMed

    Morgan, V L; Pickens, D R; Hartmann, S L; Price, R R

    2001-09-01

    This study discusses the development of a computer-generated phantom to compare the effects of image realignment programs on functional MRI (fMRI) pixel activation. The phantom is a whole-head MRI volume with added random noise, activation, and motion. It allows simulation of realistic head motions with controlled areas of activation. Without motion, the phantom shows the effects of realignment on motion-free data sets. Prior to realignment, the phantom illustrates some activation corruption due to motion. Finally, three widely used realignment packages are examined. The results showed that the most accurate algorithms are able to increase specificity through accurate realignment while maintaining sensitivity through effective resampling techniques. In fact, accurate realignment alone is not a powerful indicator of the most effective algorithm in terms of true activation.

  15. SU-E-T-520: Four-Dimensional Dose Calculation Algorithm Considering Variations in Dose Distribution Induced by Sinusoidal One-Dimensional Motion Patterns

    SciTech Connect

    Taguenang, J; Algan, O; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate quantitatively the variations in dose-distributions induced by motion by measurements and modeling. A four-dimensional (4D) motion model of dose distributions that accounts for different motion parameters was developed. Methods: Variations in dose distributions induced by sinusoidal phantom motion were measured using a multiple-diode-array-detector (MapCheck2). MapCheck2 was mounted on a mobile platform that moves with adjustable calibrated motion patterns in the superior-inferior direction. Various plans including open and intensity-modulated fields were used to irradiate MapCheck2. A motion model was developed to predict spatial and temporal variations in the dose-distributions and dependence on the motion parameters using pencil-beam spread-out superposition function. This model used the superposition of pencil-beams weighted with a probability function extracted from the motion trajectory. The model was verified with measured dose-distributions obtained from MapCheck2. Results: Dose-distribution varied considerably with motion where in the regions between isocenter and 50% isodose-line, dose decreased with increase of the motion amplitude. Dose levels increased with increase in the motion amplitude in the region beyond 50% isodose-line. When the range of motion (ROM=twice amplitude) was smaller than the field length both central axis dose and the 50% isodose-line did not change with variation of motion amplitude and remained equal to the dose of stationary phantom. As ROM became larger than the field length, the dose level decreased at central axis dose and 50% isodose-line. Motion frequency and phase did not affect the dose distributions which were delivered over an extended time longer than few motion cycles, however, they played an important role for doses delivered with high-dose-rates within one motion cycle . Conclusion: A 4D-dose motion model was developed to predict and correct variations in dose distributions induced by one

  16. A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data

    SciTech Connect

    Yang Yin; Zhong Zichun; Guo Xiaohu; Wang Jing; Anderson, John; Solberg, Timothy; Mao Weihua

    2012-04-01

    Purpose: In this study, we present a novel markerless technique, based on cone beam computed tomography (CBCT) raw projection data, to evaluate lung tumor daily motion. Method and Materials: The markerless technique, which uses raw CBCT projection data and locates tumors directly on every projection, consists of three steps. First, the tumor contour on the planning CT is used to create digitally reconstructed radiographs (DRRs) at every projection angle. Two sets of DRRs are created: one showing only the tumor, and another with the complete anatomy without the tumor. Second, a rigid two-dimensional image registration is performed to register the DRR set without the tumor to the CBCT projections. After the registration, the projections are subtracted from the DRRs, resulting in a projection dataset containing primarily tumor. Finally, a second registration is performed between the subtracted projection and tumor-only DRR. The methodology was evaluated using a chest phantom containing a moving tumor, and retrospectively in 4 lung cancer patients treated by stereotactic body radiation therapy. Tumors detected on projection images were compared with those from three-dimensional (3D) and four-dimensional (4D) CBCT reconstruction results. Results: Results in both static and moving phantoms demonstrate that the accuracy is within 1 mm. The subsequent application to 22 sets of CBCT scan raw projection data of 4 lung cancer patients includes about 11,000 projections, with the detected tumor locations consistent with 3D and 4D CBCT reconstruction results. This technique reveals detailed lung tumor motion and provides additional information than conventional 4D images. Conclusion: This technique is capable of accurately characterizing lung tumor motion on a daily basis based on a conventional CBCT scan. It provides daily verification of the tumor motion to ensure that these motions are within prior estimation and covered by the treatment planning volume.

  17. Advances in 4D Treatment Planning for Scanned Particle Beam Therapy — Report of Dedicated Workshops

    PubMed Central

    Bert, Christoph; Graeff, Christian; Riboldi, Marco; Nill, Simeon; Baroni, Guido; Knopf, Antje-Christin

    2014-01-01

    We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle therapy delivery and development. The first workshop resulted in a summary of recommendations for the treatment of mobile targets, along with a list of requirements to apply these guidelines clinically. The increased interest in the treatment of mobile tumors led to a continuously growing number of attendees: the 2012 edition counted more than 60 participants from 20 institutions and commercial vendors. The focus of research discussions among workshop participants progressively moved from 4D treatment planning to complete 4D treatments, aiming at effective and safe treatment delivery. Current research perspectives on 4D treatments include all critical aspects of time resolved delivery, such as in-room imaging, motion detection, beam application, and quality assurance techniques. This was motivated by the start of first clinical treatments of hepato cellular tumors with a scanned particle beam, relying on gating or abdominal compression for motion mitigation. Up to date research activities emphasize significant efforts in investigating advanced motion mitigation techniques, with a specific interest in the development of dedicated tools for experimental validation. Potential improvements will be made possible in the near future through 4D optimized treatment plans that require upgrades of the currently established therapy control systems for time resolved delivery. But since also these novel optimization techniques rely on the validity of the 4DCT, research focusing on alternative 4D imaging technique, such as MRI based 4DCT generation will continue. PMID:24354749

  18. Four-dimensional (4D) tracking of high-temperature microparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.

    2016-11-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  19. TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps

    NASA Astrophysics Data System (ADS)

    Mendrik, Adriënne M.; Vonken, Evert-jan; van Ginneken, Bram; de Jong, Hugo W.; Riordan, Alan; van Seeters, Tom; Smit, Ewoud J.; Viergever, Max A.; Prokop, Mathias

    2011-07-01

    Cerebral computed tomography perfusion (CTP) scans are acquired to detect areas of abnormal perfusion in patients with cerebrovascular diseases. These 4D CTP scans consist of multiple sequential 3D CT scans over time. Therefore, to reduce radiation exposure to the patient, the amount of x-ray radiation that can be used per sequential scan is limited, which results in a high level of noise. To detect areas of abnormal perfusion, perfusion parameters are derived from the CTP data, such as the cerebral blood flow (CBF). Algorithms to determine perfusion parameters, especially singular value decomposition, are very sensitive to noise. Therefore, noise reduction is an important preprocessing step for CTP analysis. In this paper, we propose a time-intensity profile similarity (TIPS) bilateral filter to reduce noise in 4D CTP scans, while preserving the time-intensity profiles (fourth dimension) that are essential for determining the perfusion parameters. The proposed TIPS bilateral filter is compared to standard Gaussian filtering, and 4D and 3D (applied separately to each sequential scan) bilateral filtering on both phantom and patient data. Results on the phantom data show that the TIPS bilateral filter is best able to approach the ground truth (noise-free phantom), compared to the other filtering methods (lowest root mean square error). An observer study is performed using CBF maps derived from fifteen CTP scans of acute stroke patients filtered with standard Gaussian, 3D, 4D and TIPS bilateral filtering. These CBF maps were blindly presented to two observers that indicated which map they preferred for (1) gray/white matter differentiation, (2) detectability of infarcted area and (3) overall image quality. Based on these results, the TIPS bilateral filter ranked best and its CBF maps were scored to have the best overall image quality in 100% of the cases by both observers. Furthermore, quantitative CBF and cerebral blood volume values in both the phantom and the

  20. Regular phantom black holes.

    PubMed

    Bronnikov, K A; Fabris, J C

    2006-06-30

    We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials (favored by cosmological observations) and single out 16 classes of possible regular configurations with flat, de Sitter, and anti-de Sitter asymptotics. Among them are traversable wormholes, bouncing Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include k-essence type scalar fields (with a potential) and scalar-tensor gravity.

  1. Tissue-like phantoms

    DOEpatents

    Frangioni, John V.; De Grand, Alec M.

    2007-10-30

    The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.

  2. Quality Assurance of 4D-CT Scan Techniques in Multicenter Phase III Trial of Surgery Versus Stereotactic Radiotherapy (Radiosurgery or Surgery for Operable Early Stage (Stage 1A) Non-Small-Cell Lung Cancer [ROSEL] Study)

    SciTech Connect

    Hurkmans, Coen W.; Lieshout, Maarten van; Schuring, Danny; Heumen, Marielle J.T. van; Cuijpers, Johan P.; Lagerwaard, Frank J.; Widder, Joachim; Heide, Uulke A. van der; Senan, Suresh

    2011-07-01

    Purpose: To determine the accuracy of four-dimensional computed tomography (4D-CT) scanning techniques in institutions participating in a Phase III trial of surgery vs. stereotactic radiotherapy (SBRT) for lung cancer. Methods and Materials: All 9 centers performed a 4D-CT scan of a motion phantom (Quasar, Modus Medical Devices) in accordance with their in-house imaging protocol for SBRT. A cylindrical cedar wood insert with plastic spheres of 15 mm (o15) and 30 mm (o30) diameter was moved in a cosine-based pattern, with an extended period in the exhale position to mimic the actual breathing motion. A range of motion of R = 15 and R = 25 mm and breathing period of T = 3 and T = 6 s were used. Positional and volumetric imaging accuracy was analyzed using Pinnacle version 8.1x at various breathing phases, including the mid-ventilation phase and maximal intensity projections of the spheres. Results: Imaging using eight CT scanners (Philips, Siemens, GE) and one positron emission tomography-CT scanner (Institution 3, Siemens) was investigated. The imaging protocols varied widely among the institutions. No strong correlation was found between the specific scan protocol parameters and the observed results. Deviations in the maximal intensity projection volumes averaged 1.9% (starting phase of the breathing cycle [o]15, R = 15), 12.3% (o15, R = 25), and -0.9% (o30, R = 15). The end-expiration volume deviations (13.4%, o15 and 2.5%, o30), were, on average, smaller than the end-inspiration deviations (20.7%, o15 and 4.5%, o30), which, in turn, were smaller than the mid-ventilation deviations (32.6%, o15 and 8.0%, o30). A slightly larger variation in the mid-ventilation origin position was observed (mean, -0.2 mm; range, -3.6-4.2) than in the maximal intensity projection origin position (mean, -0.1 mm; range, -2.5-2.5). The range of motion was generally underestimated (mean, -1.5 mm; range, -5.5-1). Conclusions: Notable differences were seen in the 4D-CT imaging protocols

  3. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  4. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2012 CFR

    2005-04-01

    ... 17 Commodity and Securities Exchanges 3 2005-04-01 2005-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  5. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2013 CFR

    2000-04-01

    ... 17 Commodity and Securities Exchanges 3 2000-04-01 2000-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a) Each application for an order under section 304(d)...

  6. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  7. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  8. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  9. 76 FR 55814 - 2,4-D; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... AGENCY 40 CFR Part 180 2,4-D; Pesticide Tolerances AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This regulation establishes tolerances for residues of 2,4-D in or on teff, bran... 180.142 be amended by establishing a tolerance for residues of the herbicide 2,4-D...

  10. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  11. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation

    NASA Astrophysics Data System (ADS)

    Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea

    2015-12-01

    PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δ φ =0.3+/- 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC  =  0.66+/- 0.04 ), Positive Predictive Value (PPV  =  0.81+/- 0.06 ) and Sensitivity (Sen.  =  0.49+/- 0.05 ). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol)  =  40+/- 30 , DSC  =  0.71+/- 0.07 and PPV  =  0.90+/- 0.13 ). High accuracy in target tracking position (Δ ME) was obtained for experimental and clinical data (Δ ME{{}\\text{exp}}=0+/- 3 mm; Δ ME{{}\\text{clin}}=0.3+/- 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume

  12. TU-F-17A-04: Respiratory Phase-Resolved 3D MRI with Isotropic High Spatial Resolution: Determination of the Average Breathing Motion Pattern for Abdominal Radiotherapy Planning

    SciTech Connect

    Deng, Z; Pang, J; Yang, W; Yue, Y; Tuli, R; Fraass, B; Li, D; Fan, Z

    2014-06-15

    Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The technique was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins

  13. Cylindrical thin-shell wormholes supported by phantom energy

    NASA Astrophysics Data System (ADS)

    Eid, A.

    2016-09-01

    In the framework of Darmois-Israel formalism, the general equations describing the motion of cylindrical thin-shell wormholes supported by equation of state of phantom energy are derived. The linear perturbation approach is used to investigate the stability of a cylindrical thin-shell wormhole of a static solution.

  14. Graph-based retrospective 4D image construction from free-breathing MRI slice acquisitions

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Ciesielski, Krzysztof C.; McDonough, Joseph M.; Mong, Andrew; Campbell, Robert M.

    2014-03-01

    4D or dynamic imaging of the thorax has many potential applications [1, 2]. CT and MRI offer sufficient speed to acquire motion information via 4D imaging. However they have different constraints and requirements. For both modalities both prospective and retrospective respiratory gating and tracking techniques have been developed [3, 4]. For pediatric imaging, x-ray radiation becomes a primary concern and MRI remains as the de facto choice. The pediatric subjects we deal with often suffer from extreme malformations of their chest wall, diaphragm, and/or spine, as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort. Moreover, we are interested in the mechanical function of their thorax in its natural form in tidal breathing. Therefore free-breathing MRI acquisition is the ideal modality of imaging for these patients. In our set up, for each coronal (or sagittal) slice position, slice images are acquired at a rate of about 200-300 ms/slice over several natural breathing cycles. This produces typically several thousands of slices which contain both the anatomic and dynamic information. However, it is not trivial to form a consistent and well defined 4D volume from these data. In this paper, we present a novel graph-based combinatorial optimization solution for constructing the best possible 4D scene from such data entirely in the digital domain. Our proposed method is purely image-based and does not need breath holding or any external surrogates or instruments to record respiratory motion or tidal volume. Both adult and children patients' data are used to illustrate the performance of the proposed method. Experimental results show that the reconstructed 4D scenes are smooth and consistent spatially and temporally, agreeing with known shape and motion of the lungs.

  15. Dynamic volume vs respiratory correlated 4DCT for motion assessment in radiation therapy simulation

    SciTech Connect

    Coolens, Catherine; Bracken, John; Driscoll, Brandon; Hope, Andrew; Jaffray, David

    2012-05-15

    Purpose: Conventional (i.e., respiratory-correlated) 4DCT exploits the repetitive nature of breathing to provide an estimate of motion; however, it has limitations due to binning artifacts and irregular breathing in actual patient breathing patterns. The aim of this work was to evaluate the accuracy and image quality of a dynamic volume, CT approach (4D{sub vol}) using a 320-slice CT scanner to minimize these limitations, wherein entire image volumes are acquired dynamically without couch movement. This will be compared to the conventional respiratory-correlated 4DCT approach (RCCT). Methods: 4D{sub vol} CT was performed and characterized on an in-house, programmable respiratory motion phantom containing multiple geometric and morphological ''tumor'' objects over a range of regular and irregular patient breathing traces obtained from 3D fluoroscopy and compared to RCCT. The accuracy of volumetric capture and breathing displacement were evaluated and compared with the ground truth values and with the results reported using RCCT. A motion model was investigated to validate the number of motion samples needed to obtain accurate motion probability density functions (PDF). The impact of 4D image quality on this accuracy was then investigated. Dose measurements using volumetric and conventional scan techniques were also performed and compared. Results: Both conventional and dynamic volume 4DCT methods were capable of estimating the programmed displacement of sinusoidal motion, but patient breathing is known to not be regular, and obvious differences were seen for realistic, irregular motion. The mean RCCT amplitude error averaged at 4 mm (max. 7.8 mm) whereas the 4D{sub vol} CT error stayed below 0.5 mm. Similarly, the average absolute volume error was lower with 4D{sub vol} CT. Under irregular breathing, the 4D{sub vol} CT method provides a close description of the motion PDF (cross-correlation 0.99) and is able to track each object, whereas the RCCT method results in a

  16. SU-E-J-06: A Feasibility Study On Clinical Implementation of 4D-CBCT in Lung Cancer Treatment

    SciTech Connect

    Hu, Y; Stanford, J; Duggar, W; Ruan, C; He, R; Yang, C

    2014-06-01

    Purpose: Four-dimensional cone-beam CT (4D-CBCT) is a novel imaging technique to setup patients with pulmonary lesions in radiation therapy. This paper is to perform a feasibility study on the implementation of 4D-CBCT as image guidance for (1) SBRT and (2) Low Modulation (Low-Mod) IMRT in lung cancer treatment. Methods: Image artifacts and observers variability are evaluated by analyzing the 4D-CT QA phantom and patient 4D image data. There are two 4D-CBCT image artifacts: (1) Spatial artifact caused by the patient irregular breathing pattern will generate blurring and anatomy gap/overlap; (2) Cone beam scattering and hardening artifact will affect the image spatial and contrast resolution. The couch shift varies between 1mm to 3mm from different observers during the 4D-CBCT registration. Breath training is highly recommended to improve the respiratory regularity during CT simulation and treatment, especially for SBRT. Elekta XVI 4.5 Symmetry protocol is adopted in the patient 4DCBCT scanning and intensity-based registration. Physician adjustments on the auto-registration are involved prior to the treatment. Physician peer review on 4D-CBCT image acquisition and registration is also recommended to reduce the inter-observer variability. The average 4D-CT in reference volume coordinates is exported to MIM Vista 5.6.2 to manually fuse to the planning CT for further evaluation. Results: (1) SBRT: 4DCBCT is performed in dry-run and in each treatment fraction. Image registration and couch shift are reviewed by another physician on the 1st fraction before the treatment starts. (2) Low-Mod IMRT: 4D-CBCT is performed and peer reviewed on weekly basis. Conclusion: 4D-CBCT in SBRT dry-run can discover the ITV discrepancies caused by the low quality 4D-CT simulation. 4D-CBCT during SBRT and Low-Mod IMRT treatment provides physicians more confidence to target lung tumor and capability to evaluate inter-fractional ITV changes. More advanced 4D-CBCT scan protocol and

  17. Multi-Modality Phantom Development

    SciTech Connect

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe both our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.

  18. Improvement of the cine-CT based 4D-CT imaging

    SciTech Connect

    Pan Tinsu; Sun Xiaojun; Luo Dershan

    2007-11-15

    An improved 4D-CT utility has been developed on the GE LightSpeed multislice CT (MSCT) and Discovery PET/CT scanners, which have the cine CT scan capability. Two new features have been added in this 4D-CT over the commercial Advantage 4D-CT from GE. One feature was a new tool for disabling parts of the respiratory signal with irregular respiration and improving the accuracy of phase determination for the respiratory signal from the Varian real-time positioning and monitoring (RPM) system before sorting of the cine CT images into the 4D-CT images. The second feature was to allow generation of the maximum-intensity-projection (MIP), average (AVG) and minimum-intensity-projection (mip) CT images from the cine CT images without a respiratory signal. The implementation enables the assessment of tumor motion in treatment planning with the MIP, AVG, and mip CT images on the GE MSCT and PET/CT scanners without the RPM and the Advantage 4D-CT with a GE Advantage windows workstation. Several clinical examples are included to illustrate this new application.

  19. Evaluation of 4D CT acquisition methods designed to reduce artifacts.

    PubMed

    Castillo, Sarah J; Castillo, Richard; Castillo, Edward; Pan, Tinsu; Ibbott, Geoffrey; Balter, Peter; Hobbs, Brian; Guerrero, Thomas

    2015-03-08

    Four-dimensional computed tomography (4D CT) is used to account for respiratory motion in radiation treatment planning, but artifacts resulting from the acquisition and postprocessing limit its accuracy. We investigated the efficacy of three experimental 4D CT acquisition methods to reduce artifacts in a prospective institutional review board approved study. Eighteen thoracic patients scheduled to undergo radiation therapy received standard clinical 4D CT scans followed by each of the alternative 4D CT acquisitions: 1) data oversampling, 2) beam gating with breathing irregularities, and 3) rescanning the clinical acquisition acquired during irregular breathing. Relative values of a validated correlation-based artifact metric (CM) determined the best acquisition method per patient. Each 4D CT was processed by an extended phase sorting approach that optimizes the quantitative artifact metric (CM sorting). The clinical acquisitions were also postprocessed by phase sorting for artifact comparison of our current clinical implementation with the experimental methods. The oversampling acquisition achieved the lowest artifact presence among all acquisitions, achieving a 27% reduction from the current clinical 4D CT implementation (95% confidence interval = 34-20). The rescan method presented a significantly higher artifact presence from the clinical acquisition (37%; p < 0.002), the gating acquisition (26%; p < 0.005), and the oversampling acquisition (31%; p < 0.001), while the data lacked evidence of a significant difference between the clinical, gating, and oversampling methods. The oversampling acquisition reduced artifact presence from the current clinical 4D CT implementation to the largest degree and provided the simplest and most reproducible implementation. The rescan acquisition increased artifact presence significantly, compared to all acquisitions, and suffered from combination of data from independent scans over which large internal anatomic shifts occurred.

  20. Resolution enhancement of lung 4D-CT data using multiscale interphase iterative nonlocal means

    SciTech Connect

    Zhang Yu; Yap, Pew-Thian; Wu Guorong; Feng Qianjin; Chen Wufan; Lian Jun; Shen Dinggang

    2013-05-15

    Purpose: Four-dimensional computer tomography (4D-CT) has been widely used in lung cancer radiotherapy due to its capability in providing important tumor motion information. However, the prolonged scanning duration required by 4D-CT causes considerable increase in radiation dose. To minimize the radiation-related health risk, radiation dose is often reduced at the expense of interslice spatial resolution. However, inadequate resolution in 4D-CT causes artifacts and increases uncertainty in tumor localization, which eventually results in extra damages of healthy tissues during radiotherapy. In this paper, the authors propose a novel postprocessing algorithm to enhance the resolution of lung 4D-CT data. Methods: The authors' premise is that anatomical information missing in one phase can be recovered from the complementary information embedded in other phases. The authors employ a patch-based mechanism to propagate information across phases for the reconstruction of intermediate slices in the longitudinal direction, where resolution is normally the lowest. Specifically, the structurally matching and spatially nearby patches are combined for reconstruction of each patch. For greater sensitivity to anatomical details, the authors employ a quad-tree technique to adaptively partition the image for more fine-grained refinement. The authors further devise an iterative strategy for significant enhancement of anatomical details. Results: The authors evaluated their algorithm using a publicly available lung data that consist of 10 4D-CT cases. The authors' algorithm gives very promising results with significantly enhanced image structures and much less artifacts. Quantitative analysis shows that the authors' algorithm increases peak signal-to-noise ratio by 3-4 dB and the structural similarity index by 3%-5% when compared with the standard interpolation-based algorithms. Conclusions: The authors have developed a new algorithm to improve the resolution of 4D-CT. It outperforms

  1. The Use of Gated and 4D CT Imaging in Planning for Stereotactic Body Radiation Therapy

    SciTech Connect

    D'Souza, Warren D. . E-mail: wdsou001@umaryland.edu; Nazareth, Daryl P.; Zhang Bin; Deyoung, Chad; Suntharalingam, Mohan; Kwok, Young; Yu, Cedric X.; Regine, William F.

    2007-07-01

    The localization of treatment targets is of utmost importance for patients receiving stereotactic body radiation therapy (SBRT), where the dose per fraction is large. While both setup or respiration-induced motion components affect the localization of the treatment volume, the purpose of this work is to describe our management of the intrafraction localization uncertainty induced by normal respiration. At our institution, we have implemented gated computed tomography (CT) acquisition with an active breathing control system (ABC), and 4-dimensional (4D) CT using a skin-based marker and retrospective respiration phase-based image sorting. During gated simulation, 3D CT images were acquired corresponding to end-inhalation and end-exhalation. For 4D CT imaging, 3D CT images were acquired corresponding to 8 phases of the respiratory cycle. In addition to gated or 4D CT images, we acquired a conventional free-breathing CT (FB). For both gated and 4D CT images, the target contours were registered to the FB scan in the planning system. These contours were then combined in the FB image set to form the internal target volume (ITV). Dynamic conformal arc treatment plans were generated for the ITV using the FB scan and the gated or 4D scans with an additional 7-mm margin for patient setup uncertainty. We have described our results for a pancreas and a lung tumor case. Plans were normalized so that the PTV received 95% of the prescription dose. The dose distribution for all the critical structures in the pancreas and lung tumor cases resulted in increased sparing when the ITV was defined using gated or 4D CT images than when the FB scan was used. Our results show that patient-specific target definition using gated or 4D CT scans lead to improved normal tissue sparing.

  2. SU-E-J-183: Quantifying the Image Quality and Dose Reduction of Respiratory Triggered 4D Cone-Beam Computed Tomography with Patient- Measured Breathing

    SciTech Connect

    Cooper, B; OBrien, R; Kipritidis, J; Keall, P

    2014-06-01

    Purpose: Respiratory triggered four dimensional cone-beam computed tomography (RT 4D CBCT) is a novel technique that uses a patient's respiratory signal to drive the image acquisition with the goal of imaging dose reduction without degrading image quality. This work investigates image quality and dose using patient-measured respiratory signals for RT 4D CBCT simulations instead of synthetic sinusoidal signals used in previous work. Methods: Studies were performed that simulate a 4D CBCT image acquisition using both the novel RT 4D CBCT technique and a conventional 4D CBCT technique from a database of oversampled Rando phantom CBCT projections. A database containing 111 free breathing lung cancer patient respiratory signal files was used to create 111 RT 4D CBCT and 111 conventional 4D CBCT image datasets from realistic simulations of a 4D RT CBCT system. Each of these image datasets were compared to a ground truth dataset from which a root mean square error (RMSE) metric was calculated to quantify the degradation of image quality. The number of projections used in each simulation is counted and was assumed as a surrogate for imaging dose. Results: Based on 111 breathing traces, when comparing RT 4D CBCT with conventional 4D CBCT the average image quality was reduced by 7.6%. However, the average imaging dose reduction was 53% based on needing fewer projections (617 on average) than conventional 4D CBCT (1320 projections). Conclusion: The simulation studies using a wide range of patient breathing traces have demonstrated that the RT 4D CBCT method can potentially offer a substantial saving of imaging dose of 53% on average compared to conventional 4D CBCT in simulation studies with a minimal impact on image quality. A patent application (PCT/US2012/048693) has been filed which is related to this work.

  3. Dynamically accumulated dose and 4D accumulated dose for moving tumors

    SciTech Connect

    Li Heng; Li Yupeng; Zhang Xiaodong; Li Xiaoqiang; Liu Wei; Gillin, Michael T.; Zhu, X. Ronald

    2012-12-15

    Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a 'pulsed beam'; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a 'continuous beam.' A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose difference

  4. The 4D-TECS integration for NASA TSRV airplane

    NASA Technical Reports Server (NTRS)

    Kaminer, I.; Oshaughnessy, P. R.

    1989-01-01

    The integration of the Total Energy Control System (TECS) concept with 4D navigation is described. This integration was made to increase the operational capacity of modern aircraft and encourage incorporation of this increased capability with the evolving National Airspace System (NAS). Described herein is: 4D smoothing, the basic concepts of TECS, the spoiler integration concept, an algorithm for nulling out time error, speed and altitude profile modes, manual spoiler implementation, 4D logic, and the results of linear and nonlinear analysis.

  5. Killing Weeds with 2,4-D. Extension Bulletin 389.

    ERIC Educational Resources Information Center

    Lee, Oliver C.

    Discussed is the use of the herbicide 2,4-D. Though written for farmers and agricultural workers, the pamphlet considers turf weed control and use of 2,4-D near ornamental plants. Aspects of the use of this herbicide covered are: (1) the common forms of 2,4-D; (2) plant responses and tolerances to the herbicide; (3) dilution and concentration of…

  6. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models.

    PubMed

    Dhou, S; Hurwitz, M; Mishra, P; Cai, W; Rottmann, J; Li, R; Williams, C; Wagar, M; Berbeco, R; Ionascu, D; Lewis, J H

    2015-05-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery.

  7. Clinical Utility of 4D FDG-PET/CT Scans in Radiation Treatment Planning

    SciTech Connect

    Aristophanous, Michalis; Sher, David J.; Allen, Aaron M.; Larson, Elysia; Chen, Aileen B.

    2012-01-01

    Purpose: The potential role of four-dimensional (4D) positron emission tomography (PET)/computed tomography (CT) in radiation treatment planning, relative to standard three-dimensional (3D) PET/CT, was examined. Methods and Materials: Ten patients with non-small-cell lung cancer had sequential 3D and 4D [{sup 18}F]fluorodeoxyglucose PET/CT scans in the treatment position prior to radiation therapy. The gross tumor volume and involved lymph nodes were contoured on the PET scan by use of three different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; a technique with a constant threshold of standardized uptake value (SUV) greater than 2.5; and an automatic segmentation technique. For each technique, the tumor volume was defined on the 3D scan (VOL3D) and on the 4D scan (VOL4D) by combining the volume defined on each of the five breathing phases individually. The range of tumor motion and the location of each lesion were also recorded, and their influence on the differences observed between VOL3D and VOL4D was investigated. Results: We identified and analyzed 22 distinct lesions, including 9 primary tumors and 13 mediastinal lymph nodes. Mean VOL4D was larger than mean VOL3D with all three techniques, and the difference was statistically significant (p < 0.01). The range of tumor motion and the location of the tumor affected the magnitude of the difference. For one case, all three tumor definition techniques identified volume of moderate uptake of approximately 1 mL in the hilar region on the 4D scan (SUV maximum, 3.3) but not on the 3D scan (SUV maximum, 2.3). Conclusions: In comparison to 3D PET, 4D PET may better define the full physiologic extent of moving tumors and improve radiation treatment planning for lung tumors. In addition, reduction of blurring from free-breathing images may reveal additional information regarding regional disease.

  8. Pros and cons for C4d as a biomarker.

    PubMed

    Cohen, Danielle; Colvin, Robert B; Daha, Mohamed R; Drachenberg, Cinthia B; Haas, Mark; Nickeleit, Volker; Salmon, Jane E; Sis, Banu; Zhao, Ming-Hui; Bruijn, Jan A; Bajema, Ingeborg M

    2012-04-01

    The introduction of C4d in daily clinical practice in the late nineties aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. As a marker of classical complement activation, C4d made it possible to visualize the direct link between anti-donor antibodies and tissue injury at sites of antibody binding in a graft. With the expanding use of C4d worldwide several limitations of C4d were identified. For instance, in ABO-incompatible transplantations C4d is present in the majority of grafts but this seems to point at 'graft accommodation' rather than antibody-mediated rejection. C4d is now increasingly recognized as a potential biomarker in other fields where antibodies can cause tissue damage, such as systemic autoimmune diseases and pregnancy. In all these fields, C4d holds promise to detect patients at risk for the consequences of antibody-mediated disease. Moreover, the emergence of new therapeutics that block complement activation makes C4d a marker with potential to identify patients who may possibly benefit from these drugs. This review provides an overview of the past, present, and future perspectives of C4d as a biomarker, focusing on its use in solid organ transplantation and discussing its possible new roles in autoimmunity and pregnancy. PMID:22297669

  9. The phantom robot - Predictive displays for teleoperation with time delay

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Kim, Won S.; Venema, Steven C.

    1990-01-01

    An enhanced teleoperation technique for time-delayed bilateral teleoperator control is discussed. The control technique selected for time delay is based on the use of a high-fidelity graphics phantom robot that is being controlled in real time (without time delay) against the static task image. Thus, the motion of the phantom robot image on the monitor predicts the motion of the real robot. The real robot's motion will follow the phantom robot's motion on the monitor with the communication time delay implied in the task. Real-time high-fidelity graphics simulation of a PUMA arm is generated and overlaid on the actual camera view of the arm. A simple camera calibration technique is used for calibrated graphics overlay. A preliminary experiment is performed with the predictive display by using a very simple tapping task. The results with this simple task indicate that predictive display enhances the human operator's telemanipulation task performance significantly during free motion when there is a long time delay. It appears, however, that either two-view or stereoscopic predictive displays are necessary for general three-dimensional tasks.

  10. Ultrasonic Calibration Wire Test Phantom

    SciTech Connect

    Lehman, S K; Fisher, K A; Werve, M; Chambers, D H

    2004-09-24

    We designed and built a phantom consisting of vertical wires maintained under tension to be used as an ultrasonic test, calibration, and reconstruction object for the Lawrence Livermore National Laboratory annular array scanner. We provide a description of the phantom, present example data sets, preliminary reconstructions, example metadata, and MATLAB codes to read the data.

  11. MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance

    PubMed Central

    2014-01-01

    Background Computer simulations are important for validating novel image acquisition and reconstruction strategies. In cardiovascular magnetic resonance (CMR), numerical simulations need to combine anatomical information and the effects of cardiac and/or respiratory motion. To this end, a framework for realistic CMR simulations is proposed and its use for image reconstruction from undersampled data is demonstrated. Methods The extended Cardiac-Torso (XCAT) anatomical phantom framework with various motion options was used as a basis for the numerical phantoms. Different tissue, dynamic contrast and signal models, multiple receiver coils and noise are simulated. Arbitrary trajectories and undersampled acquisition can be selected. The utility of the framework is demonstrated for accelerated cine and first-pass myocardial perfusion imaging using k-t PCA and k-t SPARSE. Results MRXCAT phantoms allow for realistic simulation of CMR including optional cardiac and respiratory motion. Example reconstructions from simulated undersampled k-t parallel imaging demonstrate the feasibility of simulated acquisition and reconstruction using the presented framework. Myocardial blood flow assessment from simulated myocardial perfusion images highlights the suitability of MRXCAT for quantitative post-processing simulation. Conclusion The proposed MRXCAT phantom framework enables versatile and realistic simulations of CMR including breathhold and free-breathing acquisitions. PMID:25204441

  12. Phosphodiesterase 4D Inhibitors Limit Prostate Cancer Growth Potential

    PubMed Central

    Powers, Ginny L.; Hammer, Kimberly D.P.; Domenech, Maribella; Frantskevich, Katsiaryna; Malinowski, Rita L.; Bushman, Wade; Beebe, David J.; Marker, Paul C.

    2014-01-01

    Phosphodiesterase 4D (PDE4D) has recently been implicated as a proliferation-promoting factor in prostate cancer and is over-expressed in human prostate carcinoma. However, the effects of PDE4D inhibition using pharmacological inhibitors have not been examined in prostate cancer. These studies examined the effects of selective PDE4D inhibitors, NVP-ABE171 and cilomilast, as anti-prostate cancer therapies in both in vitro and in vivo models. The effects of PDE4D inhibitors on pathways that are critical in prostate cancer and/or downstream of cyclic AMP (cAMP) were examined. Both NVP-ABE171 and cilomilast decreased cell growth. In vitro, PDE4D inhibitors lead to decreased signaling of the sonic hedgehog (SHH), Androgen Receptor (AR), and MAPK pathways, but growth inhibition was best correlated to the sonic hedgehog pathway. PDE4D inhibition also reduced proliferation of epithelial cells induced by paracrine signaling from co-cultured stromal cells that had activated hedgehog signaling. In addition, PDE4D inhibitors decreased the weight of the prostate in wild-type mice. Prostate cancer xenografts grown in nude mice that were treated with cilomilast or NVP-ABE171 had decreased wet weight and increased apoptosis compared to vehicle treated controls. These studies suggest the pharmacological inhibition of PDE4D using small molecule inhibitors is an effective option for prostate cancer therapy. Implications PDE4D inhibitors decrease the growth of prostate cancer cells in vivo and in vitro, and PDE4D inhibition has therapeutic potential in prostate cancer. PMID:25149359

  13. A dose error evaluation study for 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  14. Predicting lower mantle heterogeneity from 4-D Earth models

    NASA Astrophysics Data System (ADS)

    Flament, Nicolas; Williams, Simon; Müller, Dietmar; Gurnis, Michael; Bower, Dan J.

    2016-04-01

    basal layer ˜ 4% denser than ambient mantle. Increasing convective vigour (Ra ≈ 5 x 108) or decreasing the density of the basal layer decreases both the accuracy and sensitivity of the predicted lower mantle structure. References: D. J. Bower, M. Gurnis, N. Flament, Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8-22 (2015). V. Lekic, S. Cottaar, A. Dziewonski, B. Romanowicz, Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68-77 (2012).

  15. Multigating, a 4D Optimized Beam Tracking in Scanned Ion Beam Therapy

    PubMed Central

    Graeff, Christian; Constantinescu, Anna; Lüchtenborg, Robert; Durante, Marco; Bert, Christoph

    2014-01-01

    The treatment of moving tumors with a scanned ion beam is challenging due to interplay effects and changing beam range. We propose multigating, as a method for 4D-treatment optimization and delivery. In 3D beam tracking, tracking vectors are added during delivery to beam spot positions based on the detected motion phase. This has the disadvantage of dose errors in case of complex motion patterns and an uncertain out-of-target dose distribution. In multigating, the motion phase for each beam spot is predefined, which allows to add the tracking vector prior to beam weight optimization on all motion phases. The synchronization of delivery and target motion is assured by fast gating. The feasibility of the delivery was shown in a film experiment and required only minor software modification to the treatment planning system. In a treatment planning study in 4 lung cancer patients, target coverage could be restored to the level of a static reference plan by multigating (V95 > 99%) but not by standard beam tracking (V95 < 95%). The conformity of the multigating plans was only slightly lower than those of the static plan, with a conformity number of 72.0% (median, range 64.6–76.6%) compared to 75.8% (70.8–81.5%) in spite of target motion of up to 22 mm. In conclusion, we showed the technical feasibility of multigating, a 4D-optimization and delivery method using scanned beams that allows for conformal and homogeneous dose delivery to moving targets also in case of complex motion. PMID:24354752

  16. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels.

    PubMed

    Bakarich, Shannon E; Gorkin, Robert; in het Panhuis, Marc; Spinks, Geoffrey M

    2015-06-01

    A smart valve is created by 4D printing of hydrogels that are both mechanically robust and thermally actuating. The printed hydrogels are made up of an interpenetrating network of alginate and poly(N-isopropylacrylamide). 4D structures are created by printing the "dynamic" hydrogel ink alongside other static materials. PMID:25864515

  17. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  18. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels.

    PubMed

    Bakarich, Shannon E; Gorkin, Robert; in het Panhuis, Marc; Spinks, Geoffrey M

    2015-06-01

    A smart valve is created by 4D printing of hydrogels that are both mechanically robust and thermally actuating. The printed hydrogels are made up of an interpenetrating network of alginate and poly(N-isopropylacrylamide). 4D structures are created by printing the "dynamic" hydrogel ink alongside other static materials.

  19. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  20. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  1. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  2. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  3. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  4. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0–1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  5. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy.

    PubMed

    Stemkens, Bjorn; Tijssen, Rob H N; de Senneville, Baudouin Denis; Lagendijk, Jan J W; van den Berg, Cornelis A T

    2016-07-21

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  6. The effect of respiratory motion variability and tumor size on the accuracy of average intensity projection from four-dimensional computed tomography: an investigation based on dynamic MRI.

    PubMed

    Cai, Jing; Read, Paul W; Sheng, Ke

    2008-11-01

    Composite images such as average intensity projection (AIP) and maximum intensity projection (MIP) derived from four-dimensional computed tomography (4D-CT) images are commonly used in radiation therapy for treating lung and abdominal tumors. It has been reported that the quality of 4D-CT images is influenced by the patient respiratory variability, which can be assessed by the standard deviation of the peak and valley of the respiratory trajectory. Subsequently, the resultant MIP underestimates the actual tumor motion extent. As a more general application, AIP comprises not only the tumor motion extent but also the probability that the tumor is present. AIP generated from 4D-CT can also be affected by the respiratory variability. To quantitate the accuracy of AIP and develop clinically relevant parameters for determining suitability of the 4D-CT study for AIP-based treatment planning, real time sagittal dynamic magnetic resonance imaging (dMRI) was used as the basis for generating simulated 4D-CT. Five-minute MRI scans were performed on seven healthy volunteers and eight lung tumor patients. In addition, images of circular phantoms with diameter 1, 3, or 5 cm were generated by software to simulate lung tumors. Motion patterns determined by dMRI images were reproduced by the software generated phantoms. Resorted dMRI using a 4D-CT acquisition method (RedCAM) based on phantom or patient images was reconstructed by simulating the imaging rebinning processes. AIP images and the corresponding color intensity projection (CIP) images were reconstructed from RedCAM and the full set of dMRI for comparison. AIP similarity indicated by the Dice index between RedCAM and dMRI was calculated and correlated with respiratory variability (v) and tumor size (s). The similarity of percentile intrafractional motion target area (IMTA), defined by the area that the tumor presented for a given percentage of time, and MIP-to-percentile IMTA similarity as a function of percentile were also

  7. Digital Image-Based Elasto-Tomography: First Experiments in Surface Based Mechanical Property Estimation of Gelatine Phantoms

    NASA Astrophysics Data System (ADS)

    Peters, Ashton; Wortmann, Stefan; Elliott, Rodney; Staiger, Mark; Chase, James Geoffrey; Houten, Elijah Van

    Digital Image-based Elasto-Tomography (DIET) is a novel surface-based elasticity reconstruction method for determining the elastic property distribution within the breast. Following on from proof of concept simulation studies, this research considers the motion evaluation and stiffness reconstruction of a soft tissue approximating gelatine phantom. This initial phantom work provides an intermediate stage between prior simulation studies more detailed phantom studies to follow. Reference points on the surface of a cylindrical phantom were successfully tracked and converted into a steady-state motion description. Motion error based mechanical property reconstruction allowed an estimation of the stiffness of the gelatine when actuated at 50Hz. The reconstructed stiffness compared favorably with independently measured stiffness properties of the gelatine material when experimental assumptions were considered. An experimental noise estimate of 50% was confirmed accurate by comparing experimental motions to simulated motion data with added noise.

  8. Comparison of an alternative and existing binning methods to reduce the acquisition duration of 4D PET/CT

    SciTech Connect

    Didierlaurent, David Ribes, Sophie; Caselles, Olivier; Jaudet, Cyril; Dierickx, Lawrence O.; Zerdoud, Slimane; Brillouet, Severine; Weits, Kathleen; Batatia, Hadj; Courbon, Frédéric

    2014-11-01

    Purpose: Respiratory motion is a source of artifacts that reduce image quality in PET. Four dimensional (4D) PET/CT is one approach to overcome this problem. Existing techniques to limiting the effects of respiratory motions are based on prospective phase binning which requires a long acquisition duration (15–25 min). This time is uncomfortable for the patients and limits the clinical exploitation of 4D PET/CT. In this work, the authors evaluated an existing method and an alternative retrospective binning method to reduce the acquisition duration of 4D PET/CT. Methods: The authors studied an existing mixed-amplitude binning (MAB) method and an alternative binning method by mixed-phases (MPhB). Before implementing MPhB, they analyzed the regularity of the breathing patterns in patients. They studied the breathing signal drift and missing CT slices that could be challenging for implementing MAB. They compared the performance of MAB and MPhB with current binning methods to measure the maximum uptake, internal volume, and maximal range of tumor motion. Results: MPhB can be implemented depending on an optimal phase (in average, the exhalation peak phase −4.1% of the entire breathing cycle duration). Signal drift of patients was in average 35% relative to the breathing amplitude. Even after correcting this drift, MAB was feasible in 4D CT for only 64% of patients. No significant differences appeared between the different binning methods to measure the maximum uptake, internal volume, and maximal range of tumor motion. The authors also determined the inaccuracies of MAB and MPhB to measure the maximum amplitude of tumor motion with three bins (less than 3 mm for movement inferior to 12 mm, up to 6.4 mm for a 21 mm movement). Conclusions: The authors proposed an alternative binning method by mixed-phase binning that halves the acquisition duration of 4D PET/CT. Mixed-amplitude binning was challenging because of signal drift and missing CT slices. They showed that more

  9. Inverse planning for four-dimensional (4D) volumetric modulated arc therapy

    SciTech Connect

    Ma Yunzhi; Chang, Daniel; Keall, Paul; Xie Yiaoqin; Park, Jae-yoon; Suh, Tae-Suk; Xing Lei

    2010-11-15

    Purpose: To develop a 4D volumetric modulated arc therapy (VMAT) inverse planning framework. Methods: 4D VMAT inverse planning aims to derive an aperture and weight modulated arc therapy treatment plan that optimizes the accumulated dose distribution from all gantry angles and breathing phases. Under an assumption that the gantry rotation and patient breathing are synchronized (i.e., there is a functional relationship between the phase of the patient breathing cycle and the beam angle), the authors compute the contribution from different respiration phases through the registration of the phased CT images. The accumulative dose distribution is optimized by iteratively adjusting the aperture shape and weight of each beam through the minimization of the planning objective function. For comparison, traditional 3D VMAT plans are also performed for the two cases and the performance of the proposed technique is demonstrated. Results: A framework for 4D VMAT inverse planning has been proposed. With the consideration of the extra dimension of time in VMAT, a tighter target margin can be achieved with a full duty cycle, which is otherwise not achievable simultaneously by either 3D VMAT optimization or gated VMAT. Conclusions: The 4D VMAT planning formulism proposed here provides useful insight on how the ''time'' dimension can be exploited in rotational arc therapy to maximally compensate for the intrafraction organ motion.

  10. A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy

    SciTech Connect

    Roland, Teboh; Hales, Russell; McNutt, Todd; Wong, John; Simari, Patricio; Tryggestad, Erik

    2012-01-15

    Purpose: Tumor control and normal tissue toxicity are strongly correlated to the tumor and normal tissue volumes receiving high prescribed dose levels in the course of radiotherapy. Planning target definition is, therefore, crucial to ensure favorable clinical outcomes. This is especially important for stereotactic body radiation therapy of lung cancers, characterized by high fractional doses and steep dose gradients. The shift in recent years from population-based to patient-specific treatment margins, as facilitated by the emergence of 4D medical imaging capabilities, is a major improvement. The commonly used motion-encompassing, or internal-target volume (ITV), target definition approach provides a high likelihood of coverage for the mobile tumor but inevitably exposes healthy tissue to high prescribed dose levels. The goal of this work was to generate an interpolated balanced planning target that takes into account both tumor coverage and normal tissue sparing from high prescribed dose levels, thereby improving on the ITV approach. Methods: For each 4DCT dataset, 4D deformable image registration was used to derive two bounding targets, namely, a 4D-intersection and a 4D-composite target which minimized normal tissue exposure to high prescribed dose levels and maximized tumor coverage, respectively. Through definition of an ''effective overlap volume histogram'' the authors derived an ''interpolated balanced planning target'' intended to balance normal tissue sparing from prescribed doses with tumor coverage. To demonstrate the dosimetric efficacy of the interpolated balanced planning target, the authors performed 4D treatment planning based on deformable image registration of 4D-CT data for five previously treated lung cancer patients. Two 4D plans were generated per patient, one based on the interpolated balanced planning target and the other based on the conventional ITV target. Plans were compared for tumor coverage and the degree of normal tissue sparing

  11. 4D-fingerprints, universal QSAR and QSPR descriptors.

    PubMed

    Senese, Craig L; Duca, J; Pan, D; Hopfinger, A J; Tseng, Y J

    2004-01-01

    An elusive goal in the field of chemoinformatics and molecular modeling has been the generation of a set of descriptors that, once calculated for a molecule, may be used in a wide variety of applications. Since such universal descriptors are generated free from external constraints, they are inherently independent of the data set in which they are employed. The realization of a set of universal descriptors would significantly streamline such chemoinformatics tasks as virtual high-throughout screening (VHTS) and toxicity profiling. The current study reports the derivation and validation of a potential set of universal descriptors, referred to as the 4D-fingerprints. The 4D-fingerprints are derived from the 4D-molecular similarity analysis. To evaluate the applicability of the 4D-fingerprints as universal descriptors, they are used to generate descriptive QSAR models for 5 independent training sets. Each of the training sets has been analyzed previously by several varying QSAR methods, and the results of the models generated using the 4D-fingerprints are compared to the results of the previous QSAR analyses. It was found that the models generated using the 4D-fingerprints are comparable in quality, based on statistical measures of fit and test set prediction, to the previously reported models for the other QSAR methods. This finding is particularly significant considering the 4D-fingerprints are generated independent of external constraints such as alignment, while the QSAR methods used for comparison all require an alignment analysis.

  12. Design and development of an ultrasound calibration phantom and system

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Ackerman, Martin K.; Chirikjian, Gregory S.; Boctor, Emad M.

    2014-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the ultrasound transducer and the ultrasound image. A phantom or model with known geometry is also required. In this work, we design and test an ultrasound calibration phantom and software. The two main considerations in this work are utilizing our knowledge of ultrasound physics to design the phantom and delivering an easy to use calibration process to the user. We explore the use of a three-dimensional printer to create the phantom in its entirety without need for user assembly. We have also developed software to automatically segment the three-dimensional printed rods from the ultrasound image by leveraging knowledge about the shape and scale of the phantom. In this work, we present preliminary results from using this phantom to perform ultrasound calibration. To test the efficacy of our method, we match the projection of the points segmented from the image to the known model and calculate a sum squared difference between each point for several combinations of motion generation and filtering methods. The best performing combination of motion and filtering techniques had an error of 1.56 mm and a standard deviation of 1.02 mm.

  13. Characterization of transverse isotropy in compressed tissue-mimicking phantoms.

    PubMed

    Urban, Matthew W; Lopera, Manuela; Aristizabal, Sara; Amador, Carolina; Nenadic, Ivan; Kinnick, Randall R; Weston, Alexander D; Qiang, Bo; Zhang, Xiaoming; Greenleaf, James F

    2015-06-01

    Tissues such as skeletal muscle and kidneys have well-defined structure that affects the measurements of mechanical properties. As an approach to characterize the material properties of these tissues, different groups have assumed that they are transversely isotropic (TI) and measure the shear wave velocity as it varies with angle with respect to the structural architecture of the organ. To refine measurements in these organs, it is desirable to have tissue-mimicking phantoms that exhibit similar anisotropic characteristics. Some approaches involve embedding fibers into a material matrix. However, if a homogeneous solid is under compression due to a static stress, an acoustoelastic effect can manifest that makes the measured wave velocities change with the compression stress. We propose to exploit this characteristic to demonstrate that stressed tissue mimicking phantoms can be characterized as a TI material. We tested six phantoms made with different concentrations of gelatin and agar. Stress was applied by the weight of a water container centered on top of a plate on top of the phantom. A linear array transducer and a V-1 Verasonics system were used to induce and measure shear waves in the phantoms. The shear wave motion was measured using a compound plane wave imaging technique. Autocorrelation was applied to the received in-phase/quadrature data. The shear wave velocity, c, was estimated using a Radon transform method. The transducer was mounted on a rotating stage so measurements were made every 10° over a range of 0° to 360°, where the stress is applied along 0° to 180° direction. The shear moduli were estimated. A TI model was fit to the data and the fractional anisotropy was evaluated. This approach can be used to explore many configurations of transverse isotropy with the same phantom, simply by applying stress to the tissue-mimicking phantom. PMID:26067038

  14. Characterization of transverse isotropy in compressed tissue-mimicking phantoms.

    PubMed

    Urban, Matthew W; Lopera, Manuela; Aristizabal, Sara; Amador, Carolina; Nenadic, Ivan; Kinnick, Randall R; Weston, Alexander D; Qiang, Bo; Zhang, Xiaoming; Greenleaf, James F

    2015-06-01

    Tissues such as skeletal muscle and kidneys have well-defined structure that affects the measurements of mechanical properties. As an approach to characterize the material properties of these tissues, different groups have assumed that they are transversely isotropic (TI) and measure the shear wave velocity as it varies with angle with respect to the structural architecture of the organ. To refine measurements in these organs, it is desirable to have tissue-mimicking phantoms that exhibit similar anisotropic characteristics. Some approaches involve embedding fibers into a material matrix. However, if a homogeneous solid is under compression due to a static stress, an acoustoelastic effect can manifest that makes the measured wave velocities change with the compression stress. We propose to exploit this characteristic to demonstrate that stressed tissue mimicking phantoms can be characterized as a TI material. We tested six phantoms made with different concentrations of gelatin and agar. Stress was applied by the weight of a water container centered on top of a plate on top of the phantom. A linear array transducer and a V-1 Verasonics system were used to induce and measure shear waves in the phantoms. The shear wave motion was measured using a compound plane wave imaging technique. Autocorrelation was applied to the received in-phase/quadrature data. The shear wave velocity, c, was estimated using a Radon transform method. The transducer was mounted on a rotating stage so measurements were made every 10° over a range of 0° to 360°, where the stress is applied along 0° to 180° direction. The shear moduli were estimated. A TI model was fit to the data and the fractional anisotropy was evaluated. This approach can be used to explore many configurations of transverse isotropy with the same phantom, simply by applying stress to the tissue-mimicking phantom.

  15. Organosilicon phantom for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Avigo, Cinzia; Di Lascio, Nicole; Armanetti, Paolo; Kusmic, Claudia; Cavigli, Lucia; Ratto, Fulvio; Meucci, Sandro; Masciullo, Cecilia; Cecchini, Marco; Pini, Roberto; Faita, Francesco; Menichetti, Luca

    2015-04-01

    Photoacoustic imaging is an emerging technique. Although commercially available photoacoustic imaging systems currently exist, the technology is still in its infancy. Therefore, the design of stable phantoms is essential to achieve semiquantitative evaluation of the performance of a photoacoustic system and can help optimize the properties of contrast agents. We designed and developed a polydimethylsiloxane (PDMS) phantom with exceptionally fine geometry; the phantom was tested using photoacoustic experiments loaded with the standard indocyanine green dye and compared to an agar phantom pattern through polyethylene glycol-gold nanorods. The linearity of the photoacoustic signal with the nanoparticle number was assessed. The signal-to-noise ratio and contrast were employed as image quality parameters, and enhancements of up to 50 and up to 300%, respectively, were measured with the PDMS phantom with respect to the agar one. A tissue-mimicking (TM)-PDMS was prepared by adding TiO2 and India ink; photoacoustic tests were performed in order to compare the signal generated by the TM-PDMS and the biological tissue. The PDMS phantom can become a particularly promising tool in the field of photoacoustics for the evaluation of the performance of a PA system and as a model of the structure of vascularized soft tissues.

  16. Phantom stars and topology change

    SciTech Connect

    DeBenedictis, Andrew; Garattini, Remo; Lobo, Francisco S. N.

    2008-11-15

    In this work, we consider time-dependent dark-energy star models, with an evolving parameter {omega} crossing the phantom divide {omega}=-1. Once in the phantom regime, the null energy condition is violated, which physically implies that the negative radial pressure exceeds the energy density. Therefore, an enormous negative pressure in the center may, in principle, imply a topology change, consequently opening up a tunnel and converting the dark-energy star into a wormhole. The criteria for this topology change are discussed and, in particular, we consider a Casimir energy approach involving quasilocal energy difference calculations that may reflect or measure the occurrence of a topology change. We denote these exotic geometries consisting of dark-energy stars (in the phantom regime) and phantom wormholes as phantom stars. The final product of this topological change, namely, phantom wormholes, have far-reaching physical and cosmological implications, as in addition to being used for interstellar shortcuts, an absurdly advanced civilization may manipulate these geometries to induce closed timelike curves, consequently violating causality.

  17. Organosilicon phantom for photoacoustic imaging.

    PubMed

    Avigo, Cinzia; Di Lascio, Nicole; Armanetti, Paolo; Kusmic, Claudia; Cavigli, Lucia; Ratto, Fulvio; Meucci, Sandro; Masciullo, Cecilia; Cecchini, Marco; Pini, Roberto; Faita, Francesco; Menichetti, Luca

    2015-04-01

    Photoacoustic imaging is an emerging technique. Although commercially available photoacoustic imaging systems currently exist, the technology is still in its infancy. Therefore, the design of stable phantoms is essential to achieve semiquantitative evaluation of the performance of a photoacoustic system and can help optimize the properties of contrast agents. We designed and developed a polydimethylsiloxane (PDMS) phantom with exceptionally fine geometry; the phantom was tested using photoacoustic experiments loaded with the standard indocyanine green dye and compared to an agar phantom pattern through polyethylene glycol-gold nanorods. The linearity of the photoacoustic signal with the nanoparticle number was assessed. The signal-tonoiseratio and contrast were employed as image quality parameters, and enhancements of up to 50 and up to 300%, respectively, were measured with the PDMS phantom with respect to the agar one. A tissue-mimicking (TM)-PDMS was prepared by adding TiO2 and India ink; photoacoustic tests were performed in order to compare the signal generated by the TM-PDMS and the biological tissue. The PDMS phantom can become a particularly promising tool in the field of photoacoustics for the evaluation of the performance of a PA system and as a model of the structure of vascularized soft tissues.

  18. Analysis of the advantage of individual PTVs defined on axial 3D CT and 4D CT images for liver cancer.

    PubMed

    Li, Fengxiang; Li, Jianbin; Xing, Jun; Zhang, Yingjie; Fan, Tingyong; Xu, Min; Shang, Dongping; Liu, Tonghai; Song, Jinlong

    2012-11-08

    The purpose of this study was to compare positional and volumetric differences of planning target volumes (PTVs) defined on axial three dimensional CT (3D CT) and four dimensional CT (4D CT) for liver cancer. Fourteen patients with liver cancer underwent 3D CT and 4D CT simulation scans during free breathing. The tumor motion was measured by 4D CT. Three internal target volumes (ITVs) were produced based on the clinical target volume from 3DCT (CTV3D): i) A conventional ITV (ITVconv) was produced by adding 10 mm in CC direction and 5 mm in LR and and AP directions to CTV3D; ii) A specific ITV (ITVspec) was created using a specific margin in transaxial direction; iii) ITVvector was produced by adding an isotropic margin derived from the individual tumor motion vector. ITV4D was defined on the fusion of CTVs on all phases of 4D CT. PTVs were generated by adding a 5 mm setup margin to ITVs. The average centroid shifts between PTVs derived from 3DCT and PTV4D in left-right (LR), anterior-posterior (AP), and cranial-caudal (CC) directions were close to zero. Comparing PTV4D to PTVconv, PTVspec, and PTVvector resulted in a decrease in volume size by 33.18% ± 12.39%, 24.95% ± 13.01%, 48.08% ± 15.32%, respectively. The mean degree of inclusions (DI) of PTV4D in PTVconv, and PTV4D in PTVspec, and PTV4D in PTVvector was 0.98, 0.97, and 0.99, which showed no significant correlation to tumor motion vector (r = -0.470, 0.259, and 0.244; p = 0.090, 0.371, and 0.401). The mean DIs of PTVconv in PTV4D, PTVspec in PTV4D, and PTVvector in PTV4D was 0.66, 0.73, and 0.52. The size of individual PTV from 4D CT is significantly less than that of PTVs from 3DCT. The position of targets derived from axial 3DCT images scatters around the center of 4D targets randomly. Compared to conventional PTV, the use of 3D CT-based PTVs with individual margins cannot significantly reduce normal tissues being unnecessarily irradiated, but may contribute to reducing the risk of missing targets for

  19. Interactive 4D Visualization of Sediment Transport Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.; Englert, C. M.

    2013-12-01

    Coastal sediment transport models simulate the effects that waves, currents, and tides have on near-shore bathymetry and features such as beaches and barrier islands. Understanding these dynamic processes is integral to the study of coastline stability, beach erosion, and environmental contamination. Furthermore, analyzing the results of these simulations is a critical task in the design, placement, and engineering of coastal structures such as seawalls, jetties, support pilings for wind turbines, etc. Despite the importance of these models, there is a lack of available visualization software that allows users to explore and perform analysis on these datasets in an intuitive and effective manner. Existing visualization interfaces for these datasets often present only one variable at a time, using two dimensional plan or cross-sectional views. These visual restrictions limit the ability to observe the contents in the proper overall context, both in spatial and multi-dimensional terms. To improve upon these limitations, we use 3D rendering and particle system based illustration techniques to show water column/flow data across all depths simultaneously. We can also encode multiple variables across different perceptual channels (color, texture, motion, etc.) to enrich surfaces with multi-dimensional information. Interactive tools are provided, which can be used to explore the dataset and find regions-of-interest for further investigation. Our visualization package provides an intuitive 4D (3D, time-varying) visualization of sediment transport model output. In addition, we are also integrating real world observations with the simulated data to support analysis of the impact from major sediment transport events. In particular, we have been focusing on the effects of Superstorm Sandy on the Redbird Artificial Reef Site, offshore of Delaware Bay. Based on our pre- and post-storm high-resolution sonar surveys, there has significant scour and bedform migration around the

  20. C4d staining as immunohistochemical marker in inflammatory myopathies.

    PubMed

    Pytel, Peter

    2014-10-01

    The diagnosis of an inflammatory myopathy is often established based on basic histologic studies. Additional immunohistochemical studies are sometimes required to support the diagnosis and the classification of inflammatory myopathies. Staining for major histocompatibility complex 1 (MHC1) often shows increased sarcolemmal labeling in inflammatory myopathies. Endomysial capillary staining C5b-9 (membrane attack complex) is a feature that is reported as frequently associated with dermatomyositis. Immunohistochemical staining for C4d is widely used for various applications including the assessment of antibody-mediated rejection after solid organ transplantation. In the context of dermatomyositis, C4d staining has been described in skin biopsies but not in muscle biopsies. A total of 32 muscle biopsy specimens were examined. The hematoxylin and eosin-stained slides were reviewed, and immunohistochemical studies for MHC1, C5b-9, and C4d were conducted. The staining observed for C5b-9 and C4d was compared. Overall, the staining pattern for C4d mirrored the one observed for C5b-9 in the examined muscle biopsy specimens. There was high and statistically significant (P<0.0001) correlation between the staining seen with these 2 antibodies. Both antibodies labeled the cytoplasm of degenerating necrotic myofibers. In addition, both antibodies showed distinct endomysial capillary labeling in a subset of dermatomyositis. Areas with perifascicular atrophy often exhibited the most prominent vascular labeling for C4d and C5b-9. In conclusion, C4d and C5b-9 show similar expression patterns in muscle biopsies of patients with inflammatory myopathies and both highlight the presence of vascular labeling associated with dermatomyositis. C4d antibodies are widely used and may offer an alternative for C5b-9 staining.

  1. Substitutional 4d and 5d impurities in graphene.

    PubMed

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2016-08-21

    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The adsorption energies and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which are also well-known characteristics of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar adsorption energies, distances and magnetic moments to the 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3 μB for manganese is reduced to 1 μB for technetium and rhenium. We find that compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree of hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different if 4d or 5d impurities are used instead of 3d impurities.

  2. Substitutional 4d and 5d impurities in graphene.

    PubMed

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2016-08-21

    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The adsorption energies and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which are also well-known characteristics of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar adsorption energies, distances and magnetic moments to the 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3 μB for manganese is reduced to 1 μB for technetium and rhenium. We find that compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree of hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different if 4d or 5d impurities are used instead of 3d impurities. PMID:27439363

  3. Resolution enhancement of lung 4D-CT via group-sparsity

    SciTech Connect

    Bhavsar, Arnav; Wu, Guorong; Shen, Dinggang; Lian, Jun

    2013-12-15

    Purpose: 4D-CT typically delivers more accurate information about anatomical structures in the lung, over 3D-CT, due to its ability to capture visual information of the lung motion across different respiratory phases. This helps to better determine the dose during radiation therapy for lung cancer. However, a critical concern with 4D-CT that substantially compromises this advantage is the low superior-inferior resolution due to less number of acquired slices, in order to control the CT radiation dose. To address this limitation, the authors propose an approach to reconstruct missing intermediate slices, so as to improve the superior-inferior resolution.Methods: In this method the authors exploit the observation that sampling information across respiratory phases in 4D-CT can be complimentary due to lung motion. The authors’ approach uses this locally complimentary information across phases in a patch-based sparse-representation framework. Moreover, unlike some recent approaches that treat local patches independently, the authors’ approach employs the group-sparsity framework that imposes neighborhood and similarity constraints between patches. This helps in mitigating the trade-off between noise robustness and structure preservation, which is an important consideration in resolution enhancement. The authors discuss the regularizing ability of group-sparsity, which helps in reducing the effect of noise and enables better structural localization and enhancement.Results: The authors perform extensive experiments on the publicly available DIR-Lab Lung 4D-CT dataset [R. Castillo, E. Castillo, R. Guerra, V. Johnson, T. McPhail, A. Garg, and T. Guerrero, “A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets,” Phys. Med. Biol. 54, 1849–1870 (2009)]. First, the authors carry out empirical parametric analysis of some important parameters in their approach. The authors then demonstrate, qualitatively as well as

  4. Phantom black holes and sigma models

    SciTech Connect

    Azreg-Aienou, Mustapha; Clement, Gerard; Fabris, Julio C.; Rodrigues, Manuel E.

    2011-06-15

    We construct static multicenter solutions of phantom Einstein-Maxwell-dilaton theory from null geodesics of the target space, leading to regular black holes without spatial symmetry for certain discrete values of the dilaton coupling constant. We also discuss the three-dimensional gravitating sigma models obtained by reduction of phantom Einstein-Maxwell, phantom Kaluza-Klein and phantom Einstein-Maxwell-dilaton-axion theories. In each case, we generate by group transformations phantom charged black hole solutions from a neutral seed.

  5. Feasibility of reduced-dose 3D/4D-DSA using a weighted edge preserving filter

    NASA Astrophysics Data System (ADS)

    Oberstar, Erick L.; Speidel, Michael A.; Davis, Brian J.; Strother, Charles; Mistretta, Charles

    2016-03-01

    A conventional 3D/4D digital subtraction angiogram (DSA) requires two rotational acquisitions (mask and fill) to compute the log-subtracted projections that are used to reconstruct a 3D/4D volume. Since all of the vascular information is contained in the fill acquisition, it is hypothesized that it is possible to reduce the x-ray dose of the mask acquisition substantially and still obtain subtracted projections adequate to reconstruct a 3D/4D volume with noise level comparable to a full dose acquisition. A full dose mask and fill acquisition were acquired from a clinical study to provide a known full dose reference reconstruction. Gaussian noise was added to the mask acquisition to simulate a mask acquisition acquired at 10% relative dose. Noise in the low-dose mask projections was reduced with a weighted edge preserving (WEP) filter designed to preserve bony edges while suppressing noise. 2D log-subtracted projections were computed from the filtered low-dose mask and full-dose fill projections, and then 3D/4D-DSA reconstruction algorithms were applied. Additional bilateral filtering was applied to the 3D volumes. The signal-to-noise ratio measured in the filtered 3D/4D-DSA volumes was compared to the full dose case. The average ratio of filtered low-dose SNR to full-dose SNR was 1.07 for the 3D-DSA and 1.05 for the 4D-DSA, indicating the method is a feasible approach to restoring SNR in DSA scans acquired with a low-dose mask. The method was also tested in a phantom study with full dose fill and 22% dose mask.

  6. Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer.

    PubMed

    Yang, Ying-Hua; Buhamrah, Asma; Schneider, Abraham; Lin, Yi-Ling; Zhou, Hua; Bugshan, Amr; Basile, John R

    2016-01-01

    Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects.

  7. Soil matrix and macropore biodegradation of 2,4-D

    SciTech Connect

    Pivetz, B.E.; Steenhuis, T.S.

    1995-07-01

    Preferential flow of pesticides in macropores can lead to decreased travel times through the vadose zone and increased groundwater contamination. Macropores, however, may present a favorable environment for biodegradation because of greater oxygen, nutrient, and substrate supply, and higher microbial populations in earthworm burrows, compared to the soil matrix. The biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was measured in macropores and soil matrix of packed soil columns (7.0-cm diam., 10-cm length) and undisturbed cores contained as well-defined artificial macropore and the undisturbed cores contained earthworm-burrow macropores. A 50 {mu}g/L 2,4-D solution was continuously applied to the unsaturated soil surface and breakthrough curves (BTCs) indicating pesticide loss in the effluent were obtained from the soil matrix and macropore flow paths. Biodegradation rates were calculated separately for each flow path by comparing the BTCs to BTCs representing abiotic conditions, and dividing the 2,4-D loss by the travel time through each flow path. The biodegradation rates increased with time in both flow paths, and the final biodegradation rate in the macropore region surpassed that of the matrix, presumably because of increased microbial populations in the macropore. Complete loss of the 2,4-D in both flow paths was observed after continuous application of 2,4-D for 400 h, with maximum column-averaged 2,4-D loss rates of 0.879 {mu}g/(L h) in the matrix and 1.073 {mu}g/(L h) in the macropore. Biodegradation of 2,4-D was also observed in the macropore and matrix regions of the undisturbed soil cores. 19 refs., 7 figs., 2 tabs.

  8. Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer

    PubMed Central

    Yang, Ying-Hua; Buhamrah, Asma; Schneider, Abraham; Lin, Yi-Ling; Zhou, Hua; Bugshan, Amr; Basile, John R.

    2016-01-01

    Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects. PMID:26910109

  9. Real Time Target Tracking in a Phantom Using Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Corner, G.; Huang, Z.

    In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.

  10. Effect of respiratory motion on internal radiation dosimetry

    SciTech Connect

    Xie, Tianwu; Zaidi, Habib

    2014-11-01

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transport code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic

  11. New C4D Sensor with a Simulated Inductor

    PubMed Central

    Lyu, Yingchao; Ji, Haifeng; Yang, Shijie; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2016-01-01

    A new capacitively coupled contactless conductivity detection (C4D) sensor with an improved simulated inductor is developed in this work. The improved simulated inductor is designed on the basis of the Riordan-type floating simulated inductor. With the improved simulated inductor, the negative influence of the coupling capacitances is overcome and the conductivity measurement is implemented by the series resonance principle. The conductivity measurement experiments are carried out in three pipes with different inner diameters of 3.0 mm, 4.6 mm and 6.4 mm, respectively. The experimental results show that the designs of the new C4D sensor and the improved simulated inductor are successful. The maximum relative error of the conductivity measurement is less than 5%. Compared with the C4D sensors using practical inductors, the measurement accuracy of the new C4D sensor is comparable. The research results also indicate that the adjustability of a simulated inductor can reduce the requirement for the AC source and guarantee the interchangeableness. Meanwhile, it is recommended that making the potential of one terminal of a simulated inductor stable is beneficial to the running stability. Furthermore, this work indirectly verifies the possibility and feasibility of the miniaturization of the C4D sensor by using the simulated inductor technique and lays a good foundation for future research work. PMID:26828493

  12. Low abundances of synthetics lipids in phantoms

    NASA Astrophysics Data System (ADS)

    Villanueva-Luna, A. E.; Santiago-Alvarado, A.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Aguilar-Soto, J.; Delgado-Atencio, J. A.

    2012-03-01

    Phantoms simulate optical characteristics of tissues. Phantoms use to mimic light distributions in living tissue. Several Phantoms compositions made of silicone, polyester, polyurethane, and epoxy resin have been described in the literature. These kinds of phantoms have the problem of long time preservation. In this work, we describe the fabrication and characterization of phantoms with low concentrations of synthetic lipid using Raman spectroscopy. We fabricate four phantoms made of Polydimethylsiloxane (PDMS). These phantoms have synthetic lipid content of cholesterol and triglycerides. The size of our phantoms is 1 x 1 cm and 5 mm of thickness.We used the point-to-point mapping technique. Finally, we compared advantages and performance of made PDMS and gelatin phantoms.

  13. 4D Optical Coherence Tomography based Microangiography achieved by 1.6 MHz FDML Swept source

    PubMed Central

    Zhi, Zhongwei; Qin, Wan; Wang, Jingang; Wei, Wei; Wang, Ruikang K.

    2015-01-01

    We demonstrate the use of an ultra-high speed swept-source optical coherence tomography (OCT) to achieve optical microangiography (OMAG) of microcirculatory tissue beds in vivo. The system is based on a 1310 nm Fourier domain mode locking (FDML) laser with 1.6MHz A-line rate, providing a frame rate of 3.415 KHz, an axial resolution of ~10 µm and signal to noise ratio of 102 dB. Motion from blood flow causes change in OCT signals between consecutive B-frames acquired at the same location. Intensity based inter-frame subtraction algorithm is applied to extract blood flow from tissue background without any motion correction. We demonstrate the capability of this 1.6 MHz OCT system for 4D optical microangiography of in vivo tissue at a volume rate of 4.7 volumes/s (volume size: 512×200×720 voxels). PMID:25872072

  14. A 4D Hyperspherical Interpretation of q-Space

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Alexander, Andrew L.; Bendlin, Barbara B.

    2014-01-01

    3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 4D hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently modeling the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal basis, we analytically derive several quantitative indices and numerically estimate the diffusion ODF. Importantly, we derive the integral transform describing the relationship between the diffusion signal and propagator on a hypersphere. We also show that the HSH basis expends less fitting parameters than other well-established methods to achieve comparable signal and better ODF reconstructions. All in all, this work provides a new way of looking at q-space. PMID:24505799

  15. Eigenbreasts for statistical breast phantoms

    NASA Astrophysics Data System (ADS)

    Sturgeon, Gregory M.; Tward, Daniel J.; Ketcha, M.; Ratnanather, J. T.; Miller, M. I.; Park, Subok; Segars, W. P.; Lo, Joseph Y.

    2016-03-01

    To facilitate rigorous virtual clinical trials using model observers for breast imaging optimization and evaluation, we demonstrated a method of defining statistical models, based on 177 sets of breast CT patient data, in order to generate tens of thousands of unique digital breast phantoms. In order to separate anatomical texture from variation in breast shape, each training set of breast phantoms were deformed to a consistent atlas compressed geometry. Principal component analysis (PCA) was then performed on the shape-matched breast CT volumes to capture the variation of patient breast textures. PCA decomposes the training set of N breast CT volumes into an N-1-dimensional space of eigenvectors, which we call eigenbreasts. By summing weighted combinations of eigenbreasts, a large ensemble of different breast phantoms can be newly created. Different training sets can be used in eigenbreast analysis for designing basis models to target sub-populations defined by breast characteristics, such as size or density. In this work, we plan to generate ensembles of 30,000 new phantoms based on glandularity for an upcoming virtual trial of lesion detectability in digital breast tomosynthesis. Our method extends our series of digital and physical breast phantoms based on human subject anatomy, providing the capability to generate new, unique ensembles consisting of tens of thousands or more virtual subjects. This work represents an important step towards conducting future virtual trials for tasks-based assessment of breast imaging, where it is vital to have a large ensemble of realistic phantoms for statistical power as well as clinical relevance.

  16. Registration based super-resolution reconstruction for lung 4D-CT.

    PubMed

    Wu, Xiuxiu; Xiao, Shan; Zhang, Yu

    2014-01-01

    Lung 4D-CT plays an important role in lung cancer radiotherapy for tumor localization and treatment planning. In lung 4D-CT data, the resolution in the slice direction is often much lower than the in-plane resolution. For multi-plane display, isotropic resolution is necessary, but the commonly used interpolation operation will blur the images. In this paper, we present a registration based method for super resolution enhancement of the 4D-CT multi-plane images. Our working premise is that the low-resolution images of different phases at the corresponding position can be regarded as input "frames" to reconstruct high resolution images. First, we employ the Demons registration algorithm to estimate the motion field between different "frames". Then, the projections onto convex sets (POCS) approach is employed to reconstruction high-resolution lung images. We show that our method can get clearer lung images and enhance image structure, compared with the cubic spline interpolation and back projection method. PMID:25570484

  17. Registration based super-resolution reconstruction for lung 4D-CT.

    PubMed

    Wu, Xiuxiu; Xiao, Shan; Zhang, Yu

    2014-01-01

    Lung 4D-CT plays an important role in lung cancer radiotherapy for tumor localization and treatment planning. In lung 4D-CT data, the resolution in the slice direction is often much lower than the in-plane resolution. For multi-plane display, isotropic resolution is necessary, but the commonly used interpolation operation will blur the images. In this paper, we present a registration based method for super resolution enhancement of the 4D-CT multi-plane images. Our working premise is that the low-resolution images of different phases at the corresponding position can be regarded as input "frames" to reconstruct high resolution images. First, we employ the Demons registration algorithm to estimate the motion field between different "frames". Then, the projections onto convex sets (POCS) approach is employed to reconstruction high-resolution lung images. We show that our method can get clearer lung images and enhance image structure, compared with the cubic spline interpolation and back projection method.

  18. Relative charge transfer cross section from Rb (4d)

    NASA Astrophysics Data System (ADS)

    Shah, M. H.; Camp, H. A.; Trachy, M. L.; Fléchard, X.; Gearba, M. A.; Nguyen, H.; Brédy, R.; Lundeen, S. R.; Depaola, B. D.

    2005-08-01

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7keV Na+ is reported. The specific channels reported are Na++Rb(4d5/2)→Na(nl)+Rb+ , where the dominant transfer cross sections channels were nl=3d and 4s . Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na++Rb(5s,5p) systems at the same collision energy.

  19. Relative charge transfer cross section from Rb(4d)

    SciTech Connect

    Shah, M.H.; Camp, H.A.; Trachy, M.L.; De Paola, B.D.; Flechard, X.; Gearba, M.A.; Nguyen, H.; Bredy, R.; Lundeen, S.R.

    2005-08-15

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7 keV Na{sup +} is reported. The specific channels reported are Na{sup +}+Rb(4d{sub 5/2}){yields}Na(nl)+Rb{sup +}, where the dominant transfer cross sections channels were nl=3d and 4s. Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na{sup +}+Rb(5s,5p) systems at the same collision energy.

  20. The 4-D approach to visual control of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dickmanns, Ernst D.

    1994-01-01

    Development of a 4-D approach to dynamic machine vision is described. Core elements of this method are spatio-temporal models oriented towards objects and laws of perspective projection in a foward mode. Integration of multi-sensory measurement data was achieved through spatio-temporal models as invariants for object recognition. Situation assessment and long term predictions were allowed through maintenance of a symbolic 4-D image of processes involving objects. Behavioral capabilities were easily realized by state feedback and feed-foward control.

  1. Emerging Applications of Abdominal 4D Flow MRI

    PubMed Central

    Roldán-Alzate, Alejandro; Francois, Christopher J.; Wieben, Oliver; Reeder, Scott B.

    2016-01-01

    OBJECTIVE Comprehensive assessment of abdominal hemodynamics is crucial for many clinical diagnoses but is challenged by a tremendous complexity of anatomy, normal physiology, and a wide variety of pathologic abnormalities. This article introduces 4D flow MRI as a powerful technique for noninvasive assessment of the hemodynamics of abdominal vascular territories. CONCLUSION Four-dimensional flow MRI provides clinicians with a more extensive and straightforward approach to evaluate disorders that affect blood flow in the abdomen. This review presents a series of clinical cases to illustrate the utility of 4D flow MRI in the comprehensive assessment of the abdominal circulation. PMID:27187681

  2. Four-dimensional cardiac reconstruction from rotational x-ray sequences: first results for 4D coronary angiography

    NASA Astrophysics Data System (ADS)

    Hansis, Eberhard; Schomberg, Hermann; Erhard, Klaus; Dössel, Olaf; Grass, Michael

    2009-02-01

    The tomographic reconstruction of the beating heart requires dedicated methods. One possibility is gated reconstruction, where only data corresponding to a certain motion state are incorporated. Another one is motioncompensated reconstruction with a pre-computed motion vector field, which requires a preceding estimation of the motion. Here, results of a new approach are presented: simultaneous reconstruction of a three-dimensional object and its motion over time, yielding a fully four-dimensional representation. The object motion is modeled by a time-dependent elastic transformation. The reconstruction is carried out with an iterative gradient-descent algorithm which simultaneously optimizes the three-dimensional image and the motion parameters. The method was tested on a simulated rotational X-ray acquisition of a dynamic coronary artery phantom, acquired on a C-arm system with a slowly rotating C-arm. Accurate reconstruction of both absorption coefficient and motion could be achieved. First results from experiments on clinical rotational X-ray coronary angiography data are shown. The resulting reconstructions enable the analysis of both static properties, such as vessel geometry and cross-sectional areas, and dynamic properties, like magnitude, speed, and synchrony of motion during the cardiac cycle.

  3. 4D tumor centroid tracking using orthogonal 2D dynamic MRI: Implications for radiotherapy planning

    SciTech Connect

    Tryggestad, Erik; Flammang, Aaron; Shea, Steven M.; Hales, Russell; Herman, Joseph; Lee, Junghoon; McNutt, Todd; Roland, Teboh; Wong, John

    2013-09-15

    Purpose: Current pretreatment, 4D imaging techniques are suboptimal in that they sample breathing motion over a very limited “snapshot” in time. Heretofore, long-duration, 4D motion characterization for radiotherapy planning, margin optimization, and validation have been impractical for safety reasons, requiring invasive markers imaged under x-ray fluoroscopy. To characterize 3D tumor motion and associated variability over durations more consistent with treatments, the authors have developed a practical dynamic MRI (dMRI) technique employing two orthogonal planes acquired in a continuous, interleaved fashion.Methods: 2D balanced steady-state free precession MRI was acquired continuously over 9–14 min at approximately 4 Hz in three healthy volunteers using a commercial 1.5 T system; alternating orthogonal imaging planes (sagittal, coronal, sagittal, etc.) were employed. The 2D in-plane pixel resolution was 2 × 2 mm{sup 2} with a 5 mm slice profile. Simultaneous with image acquisition, the authors monitored a 1D surrogate respiratory signal using a device available with the MRI system. 2D template matching-based anatomic feature registration, or tracking, was performed independently in each orientation. 4D feature tracking at the raw frame rate was derived using spline interpolation.Results: Tracking vascular features in the lung for two volunteers and pancreatic features in one volunteer, the authors have successfully demonstrated this method. Registration error, defined here as the difference between the sagittal and coronal tracking result in the SI direction, ranged from 0.7 to 1.6 mm (1σ) which was less than the acquired image resolution. Although the healthy volunteers were instructed to relax and breathe normally, significantly variable respiration was observed. To demonstrate potential applications of this technique, the authors subsequently explored the intrafraction stability of hypothetical tumoral internal target volumes and 3D spatial probability

  4. 4D CT amplitude binning for the generation of a time-averaged 3D mid-position CT scan.

    PubMed

    Kruis, Matthijs F; van de Kamer, Jeroen B; Belderbos, José S A; Sonke, Jan-Jakob; van Herk, Marcel

    2014-09-21

    ). Similar relative offsets were found at the diaphragm. We have devised a method to use amplitude binned 4D-CT to construct motion model and generate a mid-position planning CT for radiotherapy treatment purposes. We have decimated the systematic offset of this mid-position model with a motion model derived from P-4D-CT. We found that the A-4D-CT led to a decrease of local artefacts and that this decrease was correlated to the irregularity of the external respiration signal.

  5. Strategies for reducing intra-fraction motion induced dosimetric effects in proton therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Li

    Intra-fraction respiration motion during radiation delivery presents a major challenge to radiation therapy. There has been a growing effort to characterize and manage internal organ motion in radiation therapy, however very few studies focus on tackling this issue in proton therapy. Current practice for treating lung tumors in proton therapy is still to apply population-based margins to account for internal tumor motion, which can lead to target underdosage and normal tissue overdosage. This thesis explores the intra-fraction motion induced dosimetric effects from both computational treatment planning and experimental studies. Four-dimensional CT scans are used to analyze the patient-specific tumor motion characteristics. A feasible method to design the range compensator by using the maximum intensity projection (MIP) images is proposed. Results demonstrate that this MIP approach ensures adequate tumor coverage throughout the entire respiratory cycle whilst maintaining normal tissue dose under clinical constraints. Based on 4D-CT scans, dose convolution is used for assessing the accuracy of Gaussian probability density function for modeling the patient-specific respiratory motion on dose distribution. Non-negligible dose discrepancy is observed in comparisons of convolved dose distributions, and patient-specific respiration PDF is advocated. In addition, an experimental phantom study primarily focusing on the interplay effect between target motion and the scanning beam motion is implemented in two proton beam delivery systems: double scattering and uniform scanning. Measurement results suggest that dose blurring effect is dominant, and interplay effect is trivial in the uniform scanning system due to dose repainting.

  6. [Motion-compensated compressed sensing four-dimensional cone-beam CT reconstruction].

    PubMed

    Yang, Xuan; Zhang, Hua; He, Ji; Zeng, Dong; Zhang, Xin-Yu; Bian, Zhao-Ying; Zhang, Jing; Ma, Jian-Hua

    2016-06-20

    Restriction by hardware caused the very low projection number at a single phase for 4-dimensional cone beam (4D-CBCT) CT imaging, and reconstruction using conventional reconstruction algorithms is thus constrained by serious streak artifacts and noises. To address this problem, we propose an approach to reconstructing 4D-CBCT images with multi-phase projections based on the assumption that the image at one phase can be viewed as the motion-compensated image at another phase. Specifically, we formulated a cost function using multi-phase projections to construct the fidelity term and the TV regularization method. For fidelity term construction, the projection data of the current phase and those at other phases were jointly used by reformulating the imaging model. The Gradient-Projection-Barzilai-Line search (GPBL) method was used to optimize the complex cost function. Physical phantom and patient data results showed that the proposed approach could effectively reduce the noise and artifacts, and the introduction of additional temporal correlation did not introduce new artifacts or motion blur. PMID:27435778

  7. Impact of temporal probability in 4D dose calculation for lung tumors.

    PubMed

    Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi

    2015-11-08

    The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can

  8. SU-E-J-148: Tools for Development of 4D Proton CT

    SciTech Connect

    Dou, T; Ramos-Mendez, J; Piersimoni, P; Giacometti, V; Penfold, S; Censor, Y; Faddegon, B; Low, D; Schulte, R

    2015-06-15

    Purpose: To develop tools for performing 4D proton computed tomography (CT). Methods: A suitable patient with a tumor in the right lower lobe was selected from a set of 4D CT scans. The volumetric CT images formed the basis for calculating the parameters of a breathing model that allows reconstruction of a static reference CT and CT images in each breathing phase. The images were imported into the TOPAS Monte Carlo simulation platform for simulating an experimental proton CT scan with 45 projections spaced by 4 degree intervals. Each projection acquired data for 2 seconds followed by a gantry rotation for 2 seconds without acquisition. The scan covered 180 degrees with individual protons passing through a 9-cm slab of the patient’s lung covering the moving tumor. An initial proton energy sufficient for penetrating the patient from all directions was determined. Performing the proton CT simulation, TOPAS provided output of the proton energy and coordinates registered in two planes before and after the patient, respectively. The set of projection data was then used with an iterative reconstruction algorithm to generate a volumetric proton CT image set of the static reference image and the image obtained under breathing motion, respectively. Results: An initial proton energy of 230 MeV was found to be sufficient, while for an initial energy of 200 MeV a substantial number of protons did not penetrate the patient. The reconstruction of the static reference image set provided sufficient detail for treatment planning. Conclusion: We have developed tools to perform studies of proton CT in the presence of lung motion based on the TOPAS simulation toolkit. This will allow to optimize 4D reconstruction algorithms by synchronizing the acquired proton CT data with a breathing signal and utilizing a breathing model obtained prior to the proton CT scan. This research has been supported by the National Institute Of Biomedical Imaging And Bioengineering of the National

  9. 2,4-Dichlorophenoxyacetic acid (2,4-D)

    Integrated Risk Information System (IRIS)

    2,4 - Dichlorophenoxyacetic acid ( 2,4 - D ) ; CASRN 94 - 75 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asses

  10. Enterococcus faecalis promotes osteoclastogenesis and semaphorin 4D expression.

    PubMed

    Wang, Shuai; Deng, Zuhui; Seneviratne, Chaminda J; Cheung, Gary S P; Jin, Lijian; Zhao, Baohong; Zhang, Chengfei

    2015-10-01

    Enterococcus faecalis is considered a major bacterial pathogen implicated in endodontic infections and contributes considerably to periapical periodontitis. This study aimed to investigate the potential mechanisms by which E. faecalis accounts for the bone destruction in periapical periodontitis in vitro. Osteoclast precursor RAW264.7 cells were treated with E. faecalis ATCC 29212 and a wild strain of E. faecalis derived clinically from an infected root canal. The results showed that, to some extent, E. faecalis induced the RAW264.7 cells to form tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclast-like cells. This pathogen markedly stimulated RAW264.7 cells to express semaphorin 4D (Sema4D), which inhibits bone formation. Once RAW264.7 cells were primed by low-dose receptor activator of nuclear factor-kappa B ligand (RANKL), E. faecalis could significantly increase the production of TRAP-positive multinucleated cells and up-regulate the expression of osteoclast-specific markers, including NFATc1, TRAP and cathepsin K. Both p38 and ERK1/2 MAPK signaling pathways were activated by E. faecalis in RANKL-primed RAW264.7 cells, and meanwhile the expression of Sema4D was highly increased. In conclusion, E. faecalis may greatly contribute to the bone resorption in periapical periodontitis by promoting RANKL-dependent osteoclastogenesis and expression of Sema4D through activation of p38 and ERK1/2 MAPK signaling pathways.

  11. 4D x-ray phase contrast tomography for repeatable motion of biological samples

    NASA Astrophysics Data System (ADS)

    Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto

    2016-09-01

    X-ray phase contrast tomography based on a grating interferometer was applied to fast and dynamic measurements of biological samples. To achieve this, the scanning procedure in the tomographic scan was improved. A triangle-shaped voltage signal from a waveform generator to a Piezo stage was used for the fast phase stepping in the grating interferometer. In addition, an optical fiber coupled x-ray scientific CMOS camera was used to achieve fast and highly efficient image acquisitions. These optimizations made it possible to perform an x-ray phase contrast tomographic measurement within an 8 min scan with density resolution of 2.4 mg/cm3. A maximum volume size of 13 × 13 × 6 mm3 was obtained with a single tomographic measurement with a voxel size of 6.5 μm. The scanning procedure using the triangle wave was applied to four-dimensional measurements in which highly sensitive three-dimensional x-ray imaging and a time-resolved dynamic measurement of biological samples were combined. A fresh tendon in the tail of a rat was measured under a uniaxial stretching and releasing condition. To maintain the freshness of the sample during four-dimensional phase contrast tomography, the temperature of the bathing liquid of the sample was kept below 10° using a simple cooling system. The time-resolved deformation of the tendon and each fascicle was measured with a temporal resolution of 5.7 Hz. Evaluations of cross-sectional area size, length of the axis, and mass density in the fascicle during a stretching process provided a basis for quantitative analysis of the deformation of tendon fascicle.

  12. Tracking tracer motion in a 4-D electrical resistivity tomography experiment

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Nilsson, H.; Kuras, O.; Bai, L.

    2016-05-01

    A new framework for automatically tracking subsurface tracers in electrical resistivity tomography (ERT) monitoring images is presented. Using computer vision and Bayesian inference techniques, in the form of a Kalman filter, the trajectory of a subsurface tracer is monitored by predicting and updating a state model representing its movements. Observations for the Kalman filter are gathered using the maximally stable volumes algorithm, which is used to dynamically threshold local regions of an ERT image sequence to detect the tracer at each time step. The application of the framework to the results of 2-D and 3-D tracer monitoring experiments show that the proposed method is effective for detecting and tracking tracer plumes in ERT images in the presence of noise, without intermediate manual intervention.

  13. Anatomically correct deformable colon phantom

    NASA Astrophysics Data System (ADS)

    Norris, James A.; Barton, Michael D.; Davis, Brynmor J.; Bieszczad, Jerry; Meunier, Norm L.; Brown, Nathan W.; Kynor, David B.

    2011-03-01

    We describe a technique to build a soft-walled colon phantom that provides realistic lumen anatomy in computed tomography (CT) images. The technique begins with the geometry of a human colon measured during CT colonography (CTC). The three-dimensional air-filled colonic lumen is segmented and then replicated using stereolithography (SLA). The rigid SLA model includes large-scale features (e.g., haustral folds and tenia coli bands) down to small-scale features (e.g., a small pedunculated polyp). Since the rigid model represents the internal air-filled volume, a highly-pliable silicone polymer is painted onto the rigid model. This thin layer of silicone, when removed, becomes the colon wall. Small 3 mm diameter glass beads are affixed to the outer wall. These glass beads show up with high intensity in CT scans and provide a ground truth for evaluating performance of algorithms designed to register prone and supine CTC data sets. After curing, the silicone colon wall is peeled off the rigid model. The resulting colon phantom is filled with air and submerged in a water bath. CT images and intraluminal fly-through reconstructions from CTC scans of the colon phantom are compared against patient data to demonstrate the ability of the phantom to simulate a human colon.

  14. 4D flow mri post-processing strategies for neuropathologies

    NASA Astrophysics Data System (ADS)

    Schrauben, Eric Mathew

    4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a

  15. Automated 4D lung computed tomography reconstruction during free breathing for conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam M.; Low, Daniel A.; Christensen, Gary E.; Parikh, Parag J.; Song, Joo Hyun; Nystrom, Michelle M.; Lu, Wei; Deasy, Joseph O.; Hubenschmidt, James P.; Wahab, Sasha H.; Mutic, Sasa; Singh, Anurag K.; Bradley, Jeffrey D.

    2004-04-01

    We are developing 4D-CT to provide breathing motion information (trajectories) for radiation therapy treatment planning of lung cancer. Potential applications include optimization of intensity-modulated beams in the presence of breathing motion and intra-fraction target volume margin determination for conformal therapy. The images are acquired using a multi-slice CT scanner while the patient undergoes simultaneous quantitative spirometry. At each couch position, the CT scanner is operated in ciné mode and acquires up to 15 scans of 12 slices each. Each CT scan is associated with the measured tidal volume for retrospective reconstruction of 3D CT scans at arbitrary tidal volumes. The specific tasks of this project involves the development of automated registration of internal organ motion (trajectories) during breathing. A modified least-squares based optical flow algorithm tracks specific features of interest by modifying the eigenvalues of gradient matrix (gradient structural tensor). Good correlations between the measured motion and spirometry-based tidal volume are observed and evidence of internal hysteresis is also detected.

  16. SU-E-J-192: Verification of 4D-MRI Internal Target Volume Using Cine MRI

    SciTech Connect

    Lafata, K; Czito, B; Palta, M; Bashir, M; Yin, F; Cai, J

    2014-06-01

    Purpose: To investigate the accuracy of 4D-MRI in determining the Internal Target Volume (ITV) used in radiation oncology treatment planning of liver cancers. Cine MRI is used as the standard baseline in establishing the feasibility and accuracy of 4D-MRI tumor motion within the liver. Methods: IRB approval was obtained for this retrospective study. Analysis was performed on MR images from four patients receiving external beam radiation therapy for liver cancer at our institution. Eligible patients received both Cine and 4D-MRI scans before treatment. Cine images were acquired sagittally in real time at a slice bisecting the tumor, while 4D images were acquired volumetrically. Cine MR DICOM headers were manipulated such that each respiratory frame was assigned a unique slice location. This approach permitted the treatment planning system (Eclipse, Varian Medical Systems) to recognize a complete respiratory cycle as a “volume”, where the gross tumor was contoured temporally. Software was developed to calculate the union of all frame contours in the structure set, resulting in the corresponding plane of the ITV projecting through the middle of the tumor, defined as the Internal Target Area (ITA). This was repeated for 4D-MRI, at the corresponding slice location, allowing a direct comparison of ITAs obtained from each modality. Results: Four patients have been analyzed. ITAs contoured from 4D-MRI correlate with contours from Cine MRI. The mean error of 4D values relative to Cine values is 7.67 +/− 2.55 %. No single ITA contoured from 4D-MRI demonstrated more than 10.5 % error compared to its Cine MRI counterpart. Conclusion: Motion management is a significant aspect of treatment planning within dynamic environments such as the liver, where diaphragmatic and cardiac activity influence plan accuracy. This small pilot study suggests that 4D-MRI based ITA measurements agree with Cine MRI based measurements, an important step towards clinical implementation. NIH 1R21

  17. 4D cone beam CT phase sorting using high frequency optical surface measurement during image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Price, G. J.; Marchant, T. E.; Parkhurst, J. M.; Sharrock, P. J.; Whitfield, G. A.; Moore, C. J.

    2011-03-01

    In image guided radiotherapy (IGRT) two of the most promising recent developments are four dimensional cone beam CT (4D CBCT) and dynamic optical metrology of patient surfaces. 4D CBCT is now becoming commercially available and finds use in treatment planning and verification, and whilst optical monitoring is a young technology, its ability to measure during treatment delivery without dose consequences has led to its uptake in many institutes. In this paper, we demonstrate the use of dynamic patient surfaces, simultaneously captured during CBCT acquisition using an optical sensor, to phase sort projection images for 4D CBCT volume reconstruction. The dual modality approach we describe means that in addition to 4D volumetric data, the system provides correlated wide field measurements of the patient's skin surface with high spatial and temporal resolution. As well as the value of such complementary data in verification and motion analysis studies, it introduces flexibility into the acquisition of the signal required for phase sorting. The specific technique used may be varied according to individual patient circumstances and the imaging target. We give details of three different methods of obtaining a suitable signal from the optical surfaces: simply following the motion of triangulation spots used to calibrate the surfaces' absolute height; monitoring the surface height in a single, arbitrarily selected, camera pixel; and tracking, in three dimensions, the movement of a surface feature. In addition to describing the system and methodology, we present initial results from a case study oesophageal cancer patient.

  18. 4D Tumorigenesis Model for Quantitating Coalescence, Directed Cell Motility and Chemotaxis, Identifying Unique Cell Behaviors, and Testing Anticancer Drugs.

    PubMed

    Kuhl, Spencer; Voss, Edward; Scherer, Amanda; Lusche, Daniel F; Wessels, Deborah; Soll, David R

    2016-01-01

    A 4D high-resolution computer-assisted reconstruction and motion analysis system has been developed and applied to the long-term (14-30 days) analysis of cancer cells migrating and aggregating within a 3D matrix. 4D tumorigenesis models more closely approximate the tumor microenvironment than 2D substrates and, therefore, are improved tools for elucidating the interactions within the tumor microenvironment that promote growth and metastasis. The model we describe here can be used to analyze the growth of tumor cells, aggregate coalescence, directed cell motility and chemotaxis, matrix degradation, the effects of anticancer drugs, and the behavior of immune and endothelial cells mixed with cancer cells. The information given in this chapter is also intended to acquaint the reader with computer-assisted methods and algorithms that can be used for high-resolution 3D reconstruction and quantitative motion analysis. PMID:27271907

  19. Assessment of Left Ventricular Function in Cardiac MSCT Imaging by a 4D Hierarchical Surface-Volume Matching Process

    PubMed Central

    Simon, Antoine; Boulmier, Dominique; Coatrieux, Jean-Louis; Le Breton, Hervé

    2006-01-01

    Multislice computed tomography (MSCT) scanners offer new perspectives for cardiac kinetics evaluation with 4D dynamic sequences of high contrast and spatiotemporal resolutions. A new method is proposed for cardiac motion extraction in multislice CT. Based on a 4D hierarchical surface-volume matching process, it provides the detection of the heart left cavities along the acquired sequence and the estimation of their 3D surface velocity fields. A Markov random field model is defined to find, according to topological descriptors, the best correspondences between a 3D mesh describing the left endocardium at one time and the 3D acquired volume at the following time. The global optimization of the correspondences is realized with a multiresolution process. Results obtained on simulated and real data show the capabilities to extract clinically relevant global and local motion parameters and highlight new perspectives in cardiac computed tomography imaging. PMID:23165027

  20. Tumor control probability and the utility of 4D vs 3D dose calculations for stereotactic body radiotherapy for lung cancer.

    PubMed

    Valdes, Gilmer; Robinson, Clifford; Lee, Percy; Morel, Delphine; Low, Daniel; Iwamoto, Keisuke S; Lamb, James M

    2015-01-01

    Four-dimensional (4D) dose calculations for lung cancer radiotherapy have been technically feasible for a number of years but have not become standard clinical practice. The purpose of this study was to determine if clinically significant differences in tumor control probability (TCP) exist between 3D and 4D dose calculations so as to inform the decision whether 4D dose calculations should be used routinely for treatment planning. Radiotherapy plans for Stage I-II lung cancer were created for 8 patients. Clinically acceptable treatment plans were created with dose calculated on the end-exhale 4D computed tomography (CT) phase using a Monte Carlo algorithm. Dose was then projected onto the remaining 9 phases of 4D-CT using the Monte Carlo algorithm and accumulated onto the end-exhale phase using commercially available deformable registration software. The resulting dose-volume histograms (DVH) of the gross tumor volume (GTV), planning tumor volume (PTV), and PTVsetup were compared according to target coverage and dose. The PTVsetup was defined as a volume including the GTV and a margin for setup uncertainties but not for respiratory motion. TCPs resulting from these DVHs were estimated using a wide range of alphas, betas, and tumor cell densities. Differences of up to 5Gy were observed between 3D and 4D calculations for a PTV with highly irregular shape. When the TCP was calculated using the resulting DVHs for fractionation schedules typically used in stereotactic body radiation therapy (SBRT), the TCP differed at most by 5% between 4D and 3D cases, and in most cases, it was by less than 1%. We conclude that 4D dose calculations are not necessary for most cases treated with SBRT, but they might be valuable for irregularly shaped target volumes. If 4D calculations are used, 4D DVHs should be evaluated on volumes that include margin for setup uncertainty but not respiratory motion.

  1. Tumor control probability and the utility of 4D vs 3D dose calculations for stereotactic body radiotherapy for lung cancer

    SciTech Connect

    Valdes, Gilmer; Robinson, Clifford; Lee, Percy; Morel, Delphine; Low, Daniel; Iwamoto, Keisuke S.; Lamb, James M.

    2015-04-01

    Four-dimensional (4D) dose calculations for lung cancer radiotherapy have been technically feasible for a number of years but have not become standard clinical practice. The purpose of this study was to determine if clinically significant differences in tumor control probability (TCP) exist between 3D and 4D dose calculations so as to inform the decision whether 4D dose calculations should be used routinely for treatment planning. Radiotherapy plans for Stage I-II lung cancer were created for 8 patients. Clinically acceptable treatment plans were created with dose calculated on the end-exhale 4D computed tomography (CT) phase using a Monte Carlo algorithm. Dose was then projected onto the remaining 9 phases of 4D-CT using the Monte Carlo algorithm and accumulated onto the end-exhale phase using commercially available deformable registration software. The resulting dose-volume histograms (DVH) of the gross tumor volume (GTV), planning tumor volume (PTV), and PTV{sub setup} were compared according to target coverage and dose. The PTV{sub setup} was defined as a volume including the GTV and a margin for setup uncertainties but not for respiratory motion. TCPs resulting from these DVHs were estimated using a wide range of alphas, betas, and tumor cell densities. Differences of up to 5 Gy were observed between 3D and 4D calculations for a PTV with highly irregular shape. When the TCP was calculated using the resulting DVHs for fractionation schedules typically used in stereotactic body radiation therapy (SBRT), the TCP differed at most by 5% between 4D and 3D cases, and in most cases, it was by less than 1%. We conclude that 4D dose calculations are not necessary for most cases treated with SBRT, but they might be valuable for irregularly shaped target volumes. If 4D calculations are used, 4D DVHs should be evaluated on volumes that include margin for setup uncertainty but not respiratory motion.

  2. Exome sequencing identifies PDE4D mutations in acrodysostosis.

    PubMed

    Lee, Hane; Graham, John M; Rimoin, David L; Lachman, Ralph S; Krejci, Pavel; Tompson, Stuart W; Nelson, Stanley F; Krakow, Deborah; Cohn, Daniel H

    2012-04-01

    Acrodysostosis is a dominantly-inherited, multisystem disorder characterized by skeletal, endocrine, and neurological abnormalities. To identify the molecular basis of acrodysostosis, we performed exome sequencing on five genetically independent cases. Three different missense mutations in PDE4D, which encodes cyclic AMP (cAMP)-specific phosphodiesterase 4D, were found to be heterozygous in three of the cases. Two of the mutations were demonstrated to have occurred de novo, providing strong genetic evidence of causation. Two additional cases were heterozygous for de novo missense mutations in PRKAR1A, which encodes the cAMP-dependent regulatory subunit of protein kinase A and which has been recently reported to be the cause of a form of acrodysostosis resistant to multiple hormones. These findings demonstrate that acrodysostosis is genetically heterogeneous and underscore the exquisite sensitivity of many tissues to alterations in cAMP homeostasis. PMID:22464252

  3. Intelligent Vehicle Systems: A 4D/RCS Approach

    SciTech Connect

    Madhavan, Raj

    2007-04-01

    This book presents new research on autonomous mobility capabilities and shows how technological advances can be anticipated in the coming two decades. An in-depth description is presented on the theoretical foundations and engineering approaches that enable these capabilities. Chapter 1 provides a brief introduction to the 4D/RCS reference model architecture and design methodology that has proven successful in guiding the development of autonomous mobility systems. Chapters 2 through 7 provide more detailed descriptions of research that has been conducted and algorithms that have been developed to implement the various aspects of the 4D/RCS reference model architecture and design methodology. Chapters 8 and 9 discuss applications, performance measures, and standards. Chapter 10 provides a history of Army and DARPA research in autonomous ground mobility. Chapter 11 provides a perspective on the potential future developments in autonomous mobility.

  4. Brain tissue segmentation in 4D CT using voxel classification

    NASA Astrophysics Data System (ADS)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  5. 4D embryonic cardiography using gated optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jenkins, M. W.; Rothenberg, F.; Roy, D.; Nikolski, V. P.; Hu, Z.; Watanabe, M.; Wilson, D. L.; Efimov, I. R.; Rollins, A. M.

    2006-01-01

    Simultaneous imaging of very early embryonic heart structure and function has technical limitations of spatial and temporal resolution. We have developed a gated technique using optical coherence tomography (OCT) that can rapidly image beating embryonic hearts in four-dimensions (4D), at high spatial resolution (10-15 μm), and with a depth penetration of 1.5 - 2.0 mm that is suitable for the study of early embryonic hearts. We acquired data from paced, excised, embryonic chicken and mouse hearts using gated sampling and employed image processing techniques to visualize the hearts in 4D and measure physiologic parameters such as cardiac volume, ejection fraction, and wall thickness. This technique is being developed to longitudinally investigate the physiology of intact embryonic hearts and events that lead to congenital heart defects.

  6. 4D flow cardiovascular magnetic resonance consensus statement.

    PubMed

    Dyverfeldt, Petter; Bissell, Malenka; Barker, Alex J; Bolger, Ann F; Carlhäll, Carl-Johan; Ebbers, Tino; Francios, Christopher J; Frydrychowicz, Alex; Geiger, Julia; Giese, Daniel; Hope, Michael D; Kilner, Philip J; Kozerke, Sebastian; Myerson, Saul; Neubauer, Stefan; Wieben, Oliver; Markl, Michael

    2015-01-01

    Pulsatile blood flow through the cavities of the heart and great vessels is time-varying and multidirectional. Access to all regions, phases and directions of cardiovascular flows has formerly been limited. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has enabled more comprehensive access to such flows, with typical spatial resolution of 1.5×1.5×1.5 - 3×3×3 mm(3), typical temporal resolution of 30-40 ms, and acquisition times in the order of 5 to 25 min. This consensus paper is the work of physicists, physicians and biomedical engineers, active in the development and implementation of 4D Flow CMR, who have repeatedly met to share experience and ideas. The paper aims to assist understanding of acquisition and analysis methods, and their potential clinical applications with a focus on the heart and greater vessels. We describe that 4D Flow CMR can be clinically advantageous because placement of a single acquisition volume is straightforward and enables flow through any plane across it to be calculated retrospectively and with good accuracy. We also specify research and development goals that have yet to be satisfactorily achieved. Derived flow parameters, generally needing further development or validation for clinical use, include measurements of wall shear stress, pressure difference, turbulent kinetic energy, and intracardiac flow components. The dependence of measurement accuracy on acquisition parameters is considered, as are the uses of different visualization strategies for appropriate representation of time-varying multidirectional flow fields. Finally, we offer suggestions for more consistent, user-friendly implementation of 4D Flow CMR acquisition and data handling with a view to multicenter studies and more widespread adoption of the approach in routine clinical investigations. PMID:26257141

  7. Phosphodiesterase 4D gene polymorphisms in sudden sensorineural hearing loss.

    PubMed

    Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wang, Hsun-Mo; Wu, Ming-Tsang; Ho, Kuen-Yao

    2016-09-01

    The phosphodiesterase 4D (PDE4D) gene has been reported as a risk gene for ischemic stroke. The vascular factors are between the hypothesized etiologies of sudden sensorineural hearing loss (SSNHL), and this genetic effect might be attributed for its role in SSNHL. We hypothesized that genetic variants of the PDE4D gene are associated with susceptibility to SSNHL. We conducted a case-control study with 362 SSNHL cases and 209 controls. Three single nucleotide polymorphisms (SNPs) were selected. The genotypes were determined using TaqMan technology. Hardy-Weinberg equilibrium (HWE) was tested for each SNP, and genetic effects were evaluated according to three inheritance modes. We carried out sex-specific analysis to analyze the overall data. All three SNPs were in HWE. When subjects were stratified by sex, the genetic effect was only evident in females but not in males. The TT genotype of rs702553 exhibited an adjusted odds ratio (OR) of 3.83 (95 % confidence interval = 1.46-11.18) (p = 0.006) in female SSNHL. The TT genotype of SNP rs702553 was associated with female SSNHL under the recessive model (p = 0.004, OR 3.70). In multivariate logistic regression analysis, TT genotype of rs702553 was significantly associated with female SSNHL (p = 0.0043, OR 3.70). These results suggest that PDE4D gene polymorphisms influence the susceptibility for the development of SSNHL in the southern Taiwanese female population.

  8. A 4D Hyperspherical Interpretation of q-Space

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Bendlin, Barbara B.; Alexander, Andrew L.

    2015-01-01

    3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 4D hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently modeling the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal basis, we derive several well-established q-space indices and numerically estimate the diffusion orientation distribution function (dODF). We also derive the integral transform describing the relationship between the diffusion signal and propagator on a hypersphere. Most importantly, we will demonstrate that for hybrid diffusion imaging (HYDI) acquisitions low order linear expansion of the HSH basis is sufficient to characterize diffusion in neural tissue. In fact, the HSH basis achieves comparable signal and better dODF reconstructions than other well-established methods, such as Bessel Fourier orientation reconstruction (BFOR), using fewer fitting parameters. All in all, this work provides a new way of looking at q-space. PMID:25624043

  9. 3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Shen, Shuwei; Yang, Jie; Dong, Erbao; Xu, Ronald

    2014-03-01

    The performance of biomedical optical imaging devices heavily relies on appropriate calibration. However, many of existing calibration phantoms for biomedical optical devices are based on homogenous materials without considering the multi-layer heterogeneous structures observed in biological tissue. Using such a phantom for optical calibration may result in measurement bias. To overcome this problem, we propose a 3D printing method for freeform fabrication of tissue simulating phantoms with multilayer heterogeneous structure. The phantom simulates not only the morphologic characteristics of biological tissue but also absorption and scattering properties. The printing system is based on a 3D motion platform with coordinated control of the DC motors. A special jet nozzle is designed to mix base, scattering, and absorption materials at different ratios. 3D tissue structures are fabricated through layer-by-layer printing with selective deposition of phantom materials of different ingredients. Different mixed ratios of base, scattering and absorption materials have been tested in order to optimize the printing outcome. A spectrometer and a tissue spectrophotometer are used for characterizing phantom absorption and scattering properties. The goal of this project is to fabricate skin tissue simulating phantoms as a traceable standard for the calibration of biomedical optical spectral devices.

  10. Imaging CDMAM phantom with tomosynthesis

    NASA Astrophysics Data System (ADS)

    Ren, Baorui; Smith, Andy; Ruth, Chris; Jing, Zhenxue

    2008-03-01

    We studied the use of the mammography contrast detail phantom (CDMAM) with tomosynthesis to evaluate the performance of our system as well as to explore the application of CDMAM in 3D breast imaging. The system was Hologic's 1st generation tomosynthesis machine. CDMAM phantom plus PMMA slabs were imaged at 3 cm, 5 cm, 7 cm, and 9 cm PMMA-equivalent thickness with 11 projections per scan and the scan angle selected from 0, 15 and 28 degrees. CDMAM images were reconstructed using the back projection method, and were scored with the CDCOM automatic analysis program. The threshold thickness of each disk size was obtained with psychometric curve fitting. We first studied errors and variability associated with the results when different numbers of images were used in contrast detail analysis, then studied factors that affected CDMAM results in tomosynthesis, including the x-ray dose, the scan angle, the in-plane reconstruction pixel size, the slice-to-slice step size, the location of the CDMAM inside the PMMA slabs, and the scatter effect. This paper will present results of CDMAM performance of our tomosynthesis system, as well as their dependence on the various factors, and the comparison with 2D mammography. Additionally we will discuss the novel processing and analysis methods developed during this study, and make proposals to modify the CDMAM phantom and the CDCOM analysis program to optimize the method for 3D tomosynthesis.

  11. Semiautomatic technique for defining the internal gross tumor volume of lung tumors close to liver/spleen cupola by 4D-CT

    SciTech Connect

    Mancosu, Pietro; Sghedoni, Roberto; Bettinardi, Valentino; Aquilina, Mark Anthony; Navarria, Piera; Cattaneo, Giovanni Mauro; Di Muzio, Nadia; Cozzi, Luca; Scorsetti, Marta

    2010-09-15

    Purpose: It has been shown that in cases of lung tumors close to the liver cupola, the four dimensional (4D)-CT postprocessing maximum intensity projection (MIP) algorithm does not fully recover the radiotherapy internal gross tumor volume (IGTV). In this work, a semiautomatic technique was evaluated by which the residual IGTV that was not included into the IGTV by MIP algorithm was actually added. Methods: A moving phantom and five selected patients were considered. The various IGTVs produced by the semiautomatic approach were compared to those generated by 4D-CT manual contouring. Results: In all cases, the radiation oncologist qualitatively concurred with the semiautomatic IGTV. A quantitative difference in volume of 2.6% was found in the phantom study, whereas a mean difference of 0.1{+-}4.6% was obtained in the patient studies. Conclusions: A semiautomatic technique to include the residual part of IGTV covered by liver/spleen cupola when using MIP algorithm was validated on phantom and on selected patients, revealing the possibility of defining the IGTV for patients with lesions located near liver/spleen cupola by performing only the contours on the MIP series.

  12. NMR structure and dynamics of Q4D059, a kinetoplastid-specific and conserved protein from Trypanosoma cruzi.

    PubMed

    López-Castilla, Aracelys; Pons, Tirso; Pires, José R

    2015-04-01

    Q4D059 (UniProt accession number), is an 86-residue protein from Trypanosoma cruzi, conserved in the related kinetoplastid parasites Trypanosoma brucei and Leishmania major. These pathogens are the causal agents of the neglected diseases: Chagas, sleeping sickness and leishmaniases respectively and had recently their genomes sequenced. Q4D059 shows low sequence similarity with mammal proteins and because of its essentiality demonstrated in T. brucei, it is a potential target for anti-parasitic drugs. The 11 hypothetical proteins homologous to Q4D059 are all uncharacterized proteins of unknown function. Here, the solution structure of Q4D059 was solved by NMR and its backbone dynamics was characterized by (15)N relaxation parameters. The structure is composed by a parallel/anti-parallel three-stranded β-sheet packed against four helical regions. The structure is well defined by ca. 9 NOEs per residue and a backbone rmsd of 0.50±0.05 Å for the representative ensemble of 20 lowest-energy structures. The structure is overall rigid except for N-terminal residues A(9) to D(11) at the beginning of β1, K(38), V(39) at the end of helix H3 with rapid motion in the ps-ns timescale and G(25) (helix H2), I(68) (β2) and V(78) (loop 3) undergoing internal motion in the μs-ms timescale. Limited structural similarities were found in protein structures deposited in the PDB, therefore functional inferences based on protein structure information are not clear. Q4D059 adopts a α/β fold that is slightly similar to the ATPase sub-domain IIB of the heat-shock protein 70 (HSP70) and to the N-terminal domain of the ribosomal protein L11. PMID:25748338

  13. Evaluation of dosimetric misrepresentations from 3D conventional planning of liver SBRT using 4D deformable dose integration.

    PubMed

    Yeo, Unjin A; Taylor, Michael L; Supple, Jeremy R; Siva, Shankar; Kron, Tomas; Pham, Daniel; Franich, Rick D

    2014-11-08

    affected by motion and deformation. Where the 4D approach is unavailable, contouring on the full expiration phase may yield more accurate dose calculations, most relevant in the case of the healthy liver, but the absolute dose differences are in general small for the other healthy organs. The technique has the potential to quantify under- and over-dosage and improve treatment plan evaluation, retrospective plan analysis, and clinical outcome correlation. 

  14. Psychophysical correlates of phantom limb experience.

    PubMed Central

    Katz, J

    1992-01-01

    Phantom limb phenomena were correlated with psychophysiological measures of peripheral sympathetic nervous system activity measured at the amputation stump and contralateral limb. Amputees were assigned to one of three groups depending on whether they reported phantom limb pain, non-painful phantom limb sensations, or no phantom limb at all. Skin conductance and skin temperature were recorded continuously during two 30 minute sessions while subjects continuously monitored and rated the intensity of any phantom limb sensation or pain they experienced. The results from both sessions showed that mean skin temperature was significantly lower at the stump than the contralateral limb in the groups with phantom limb pain and non-painful phantom limb sensations, but not among subjects with no phantom limb at all. In addition, stump skin conductance responses correlated significantly with the intensity of non-painful phantom limb paresthesiae but not other qualities of sensation or pain. Between-limb measures of pressure sensitivity were not significantly different in any group. The results suggest that the presence of a phantom limb, whether painful or painless, is related to the sympathetic-efferent outflow of cutaneous vasoconstrictor fibres in the stump and stump neuromas. The hypothesis of a sympathetic-efferent somatic-afferent mechanism involving both sudomotor and vasoconstrictor fibres is proposed to explain the relationship between stump skin conductance responses and non-painful phantom limb paresthesiae. It is suggested that increases in the intensity of phantom limb paresthesiae follow bursts of sympathetic activity due to neurotransmitter release onto apposing sprouts of large diameter primary afferents located in stump neuromas, and decreases correspond to periods of relative sympathetic inactivity. The results of the study agree with recent suggestions that phantom limb pain is not a unitary syndrome, but a symptom class with each class subserved by

  15. Localization of 4D gravity on pure geometrical thick branes

    SciTech Connect

    Barbosa-Cendejas, Nandinii; Herrera-Aguilar, Alfredo

    2006-04-15

    We consider the generation of thick brane configurations in a pure geometric Weyl integrable 5D spacetime which constitutes a non-Riemannian generalization of Kaluza-Klein (KK) theory. In this framework, we show how 4D gravity can be localized on a scalar thick brane which does not necessarily respect reflection symmetry, generalizing in this way several previous models based on the Randall-Sundrum (RS) system and avoiding both, the restriction to orbifold geometries and the introduction of the branes in the action by hand. We first obtain a thick brane solution that preserves 4D Poincare invariance and breaks Z{sub 2}-symmetry along the extra dimension which, indeed, can be either compact or extended, and supplements brane solutions previously found by other authors. In the noncompact case, this field configuration represents a thick brane with positive energy density centered at y=c{sub 2}, whereas pairs of thick branes arise in the compact case. Remarkably, the Weylian scalar curvature is nonsingular along the fifth dimension in the noncompact case, in contraposition to the RS thin brane system. We also recast the wave equations of the transverse traceless modes of the linear fluctuations of the classical background into a Schroedinger's equation form with a volcano potential of finite bottom in both the compact and the extended cases. We solve Schroedinger equation for the massless zero mode m{sup 2}=0 and obtain a single bound wave function which represents a stable 4D graviton. We also get a continuum gapless spectrum of KK states with m{sup 2}>0 that are suppressed at y=c{sub 2} and turn asymptotically into plane waves.

  16. Non-spherical particle generation from 4D optofluidic fabrication.

    PubMed

    Paulsen, Kevin S; Chung, Aram J

    2016-08-01

    Particles with non-spherical shapes can exhibit properties which are not available from spherical shaped particles. Complex shaped particles can provide unique benefits for areas such as drug delivery, tissue engineering, structural materials, and self-assembly building blocks. Current methods of creating complex shaped particles such as 3D printing, photolithography, and imprint lithography are limited by either slow speeds, shape limitations, or expensive processes. Previously, we presented a novel microfluidic flow lithography fabrication scheme combined with fluid inertia called optofluidic fabrication for the creation of complex shaped three-dimensional (3D) particles. This process was able to address the aforementioned limits and overcome two-dimensional shape limitations faced by traditional flow lithography methods; however, all of the created 3D particle shapes displayed top-down symmetry. Here, by introducing the time dimension into our existing optofluidic fabrication process, we break this top-down symmetry, generating fully asymmetric 3D particles where we termed the process: four-dimensional (4D) optofluidic fabrication. This 4D optofluidic fabrication is comprised of three sequential procedures. First, density mismatched precursor fluids flow past pillars within fluidic channels to manipulate the flow cross sections via fluid inertia. Next, the time dimension is incorporated by stopping the flow and allowing the denser fluids to settle by gravity to create asymmetric flow cross sections. Finally, the fluids are exposed to patterned ultraviolet (UV) light in order to polymerize fully asymmetric 3D-shaped particles. By varying inertial flow shaping, gravity-induced flow shaping, and UV light patterns, 4D optofluidic fabrication can create an infinite set of complex shaped asymmetric particles. PMID:27092661

  17. Non-spherical particle generation from 4D optofluidic fabrication.

    PubMed

    Paulsen, Kevin S; Chung, Aram J

    2016-08-01

    Particles with non-spherical shapes can exhibit properties which are not available from spherical shaped particles. Complex shaped particles can provide unique benefits for areas such as drug delivery, tissue engineering, structural materials, and self-assembly building blocks. Current methods of creating complex shaped particles such as 3D printing, photolithography, and imprint lithography are limited by either slow speeds, shape limitations, or expensive processes. Previously, we presented a novel microfluidic flow lithography fabrication scheme combined with fluid inertia called optofluidic fabrication for the creation of complex shaped three-dimensional (3D) particles. This process was able to address the aforementioned limits and overcome two-dimensional shape limitations faced by traditional flow lithography methods; however, all of the created 3D particle shapes displayed top-down symmetry. Here, by introducing the time dimension into our existing optofluidic fabrication process, we break this top-down symmetry, generating fully asymmetric 3D particles where we termed the process: four-dimensional (4D) optofluidic fabrication. This 4D optofluidic fabrication is comprised of three sequential procedures. First, density mismatched precursor fluids flow past pillars within fluidic channels to manipulate the flow cross sections via fluid inertia. Next, the time dimension is incorporated by stopping the flow and allowing the denser fluids to settle by gravity to create asymmetric flow cross sections. Finally, the fluids are exposed to patterned ultraviolet (UV) light in order to polymerize fully asymmetric 3D-shaped particles. By varying inertial flow shaping, gravity-induced flow shaping, and UV light patterns, 4D optofluidic fabrication can create an infinite set of complex shaped asymmetric particles.

  18. Inverse 4D conformal planning for lung SBRT using particle swarm optimization.

    PubMed

    Modiri, A; Gu, X; Hagan, A; Bland, R; Iyengar, P; Timmerman, R; Sawant, A

    2016-08-21

    A critical aspect of highly potent regimens such as lung stereotactic body radiation therapy (SBRT) is to avoid collateral toxicity while achieving planning target volume (PTV) coverage. In this work, we describe four dimensional conformal radiotherapy using a highly parallelizable swarm intelligence-based stochastic optimization technique. Conventional lung CRT-SBRT uses a 4DCT to create an internal target volume and then, using forward-planning, generates a 3D conformal plan. In contrast, we investigate an inverse-planning strategy that uses 4DCT data to create a 4D conformal plan, which is optimized across the three spatial dimensions (3D) as well as time, as represented by the respiratory phase. The key idea is to use respiratory motion as an additional degree of freedom. We iteratively adjust fluence weights for all beam apertures across all respiratory phases considering OAR sparing, PTV coverage and delivery efficiency. To demonstrate proof-of-concept, five non-small-cell lung cancer SBRT patients were retrospectively studied. The 4D optimized plans achieved PTV coverage comparable to the corresponding clinically delivered plans while showing significantly superior OAR sparing ranging from 26% to 83% for D max heart, 10%-41% for D max esophagus, 31%-68% for D max spinal cord and 7%-32% for V 13 lung. PMID:27476472

  19. Inverse 4D conformal planning for lung SBRT using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Modiri, A.; Gu, X.; Hagan, A.; Bland, R.; Iyengar, P.; Timmerman, R.; Sawant, A.

    2016-08-01

    A critical aspect of highly potent regimens such as lung stereotactic body radiation therapy (SBRT) is to avoid collateral toxicity while achieving planning target volume (PTV) coverage. In this work, we describe four dimensional conformal radiotherapy using a highly parallelizable swarm intelligence-based stochastic optimization technique. Conventional lung CRT-SBRT uses a 4DCT to create an internal target volume and then, using forward-planning, generates a 3D conformal plan. In contrast, we investigate an inverse-planning strategy that uses 4DCT data to create a 4D conformal plan, which is optimized across the three spatial dimensions (3D) as well as time, as represented by the respiratory phase. The key idea is to use respiratory motion as an additional degree of freedom. We iteratively adjust fluence weights for all beam apertures across all respiratory phases considering OAR sparing, PTV coverage and delivery efficiency. To demonstrate proof-of-concept, five non-small-cell lung cancer SBRT patients were retrospectively studied. The 4D optimized plans achieved PTV coverage comparable to the corresponding clinically delivered plans while showing significantly superior OAR sparing ranging from 26% to 83% for D max heart, 10%–41% for D max esophagus, 31%–68% for D max spinal cord and 7%–32% for V 13 lung.

  20. Inverse 4D conformal planning for lung SBRT using particle swarm optimization.

    PubMed

    Modiri, A; Gu, X; Hagan, A; Bland, R; Iyengar, P; Timmerman, R; Sawant, A

    2016-08-21

    A critical aspect of highly potent regimens such as lung stereotactic body radiation therapy (SBRT) is to avoid collateral toxicity while achieving planning target volume (PTV) coverage. In this work, we describe four dimensional conformal radiotherapy using a highly parallelizable swarm intelligence-based stochastic optimization technique. Conventional lung CRT-SBRT uses a 4DCT to create an internal target volume and then, using forward-planning, generates a 3D conformal plan. In contrast, we investigate an inverse-planning strategy that uses 4DCT data to create a 4D conformal plan, which is optimized across the three spatial dimensions (3D) as well as time, as represented by the respiratory phase. The key idea is to use respiratory motion as an additional degree of freedom. We iteratively adjust fluence weights for all beam apertures across all respiratory phases considering OAR sparing, PTV coverage and delivery efficiency. To demonstrate proof-of-concept, five non-small-cell lung cancer SBRT patients were retrospectively studied. The 4D optimized plans achieved PTV coverage comparable to the corresponding clinically delivered plans while showing significantly superior OAR sparing ranging from 26% to 83% for D max heart, 10%-41% for D max esophagus, 31%-68% for D max spinal cord and 7%-32% for V 13 lung.

  1. Inverse 4D conformal planning for lung SBRT using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Modiri, A.; Gu, X.; Hagan, A.; Bland, R.; Iyengar, P.; Timmerman, R.; Sawant, A.

    2016-08-01

    A critical aspect of highly potent regimens such as lung stereotactic body radiation therapy (SBRT) is to avoid collateral toxicity while achieving planning target volume (PTV) coverage. In this work, we describe four dimensional conformal radiotherapy using a highly parallelizable swarm intelligence-based stochastic optimization technique. Conventional lung CRT-SBRT uses a 4DCT to create an internal target volume and then, using forward-planning, generates a 3D conformal plan. In contrast, we investigate an inverse-planning strategy that uses 4DCT data to create a 4D conformal plan, which is optimized across the three spatial dimensions (3D) as well as time, as represented by the respiratory phase. The key idea is to use respiratory motion as an additional degree of freedom. We iteratively adjust fluence weights for all beam apertures across all respiratory phases considering OAR sparing, PTV coverage and delivery efficiency. To demonstrate proof-of-concept, five non-small-cell lung cancer SBRT patients were retrospectively studied. The 4D optimized plans achieved PTV coverage comparable to the corresponding clinically delivered plans while showing significantly superior OAR sparing ranging from 26% to 83% for D max heart, 10%-41% for D max esophagus, 31%-68% for D max spinal cord and 7%-32% for V 13 lung.

  2. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy.

    PubMed

    Carbone, Fabrizio; Kwon, Oh-Hoon; Zewail, Ahmed H

    2009-07-10

    Chemical bonding dynamics are fundamental to the understanding of properties and behavior of materials and molecules. Here, we demonstrate the potential of time-resolved, femtosecond electron energy loss spectroscopy (EELS) for mapping electronic structural changes in the course of nuclear motions. For graphite, it is found that changes of milli-electron volts in the energy range of up to 50 electron volts reveal the compression and expansion of layers on the subpicometer scale (for surface and bulk atoms). These nonequilibrium structural features are correlated with the direction of change from sp2 [two-dimensional (2D) graphene] to sp3 (3D-diamond) electronic hybridization, and the results are compared with theoretical charge-density calculations. The reported femtosecond time resolution of four-dimensional (4D) electron microscopy represents an advance of 10 orders of magnitude over that of conventional EELS methods. PMID:19589997

  3. Founding Gravitation in 4D Euclidean Space-Time Geometry

    SciTech Connect

    Winkler, Franz-Guenter

    2010-11-24

    The Euclidean interpretation of special relativity which has been suggested by the author is a formulation of special relativity in ordinary 4D Euclidean space-time geometry. The natural and geometrically intuitive generalization of this view involves variations of the speed of light (depending on location and direction) and a Euclidean principle of general covariance. In this article, a gravitation model by Jan Broekaert, which implements a view of relativity theory in the spirit of Lorentz and Poincare, is reconstructed and shown to fulfill the principles of the Euclidean approach after an appropriate reinterpretation.

  4. CMT4D (NDRG1 mutation): genotype-phenotype correlations.

    PubMed

    Ricard, Emilie; Mathis, Stéphane; Magdelaine, Corinne; Delisle, Marie-Bernadette; Magy, Laurent; Funalot, Benoît; Vallat, Jean-Michel

    2013-09-01

    Charcot-Marie-Tooth (CMT) disease is a heterogeneous condition with a large number of clinical, electrophysiological and pathological phenotypes. More than 40 genes are involved. We report a child of gypsy origin with an autosomal recessive demyelinating phenotype. Clinical data, familial history, and electrophysiological studies were in favor of a CMT4 sub-type. The characteristic N-Myc downstream-regulated gene 1 (NDRG1) mutation responsible for this CMT4D phenotype was confirmed: p.R148X. The exact molecular function of the NDRG1 protein has yet to be elucidated.

  5. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets.

    PubMed

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y; Du, Shengwang; Loy, M M T

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel ('non-diffracting') light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  6. Oblique sounding using the DPS-4D stations in Europe

    NASA Astrophysics Data System (ADS)

    Mosna, Zbysek; Kouba, Daniel; Koucka Knizova, Petra; Arikan, Feza; Arikan, Orhan; Gok, Gokhan; Rejfek, Lubos

    2016-07-01

    The DPS-4D Digisondes are capable of detection of echoes from neighbouring European stations. Currently, a campaign with high-temporal resolution of 5 min is being run. Further, ionograms from regular vertical sounding with 15 min resolution provide us with oblique reflections together with vertical reflections. We analyzed profiles of electron concentration and basic ionospheric parameters derived from the ionograms. We compared results derived from reflections from the ionosphere above the stations (vertical sounding) with information derived from oblique reflections between the stations. This study is supported by the Joint TUBITAK 114E092 and AS CR 14/001 projects.

  7. Lagrangian constraints and renormalization of 4D gravity

    NASA Astrophysics Data System (ADS)

    Park, I. Y.

    2015-04-01

    It has been proposed in [21] that 4D Einstein gravity becomes effectively reduced to 3D after solving the Lagrangian analogues of the Hamiltonian and momentum constraints of the Hamiltonian quantization. The analysis in [21] was carried out at the classical/operator level. We review the proposal and make a transition to the path integral account. We then set the stage for explicitly carrying out the two-loop renormalization procedure of the resulting 3D action. We also address a potentially subtle issue in the gravity context concerning whether renormalizability does not depend on the background around which the original action is expanded.

  8. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets

    PubMed Central

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y.; Du, Shengwang; Loy, M. M. T.

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel (‘non-diffracting’) light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  9. All the supersymmetric configurations of N=4, d=4 supergravity

    NASA Astrophysics Data System (ADS)

    Bellorín, Jorge; Ortín, Tomás

    2005-10-01

    All the supersymmetric configurations of pure, ungauged, N=4, d=4 supergravity are classified in a formalism that keeps manifest the S and T dualities of the theory. We also find simple equations that need to be satisfied by the configurations to be classical solutions of the theory. While the solutions associated to null Killing vectors were essentially classified by Tod (a classification that we refine), we find new configurations and solutions associated to timelike Killing vectors that do not satisfy Tod's rigidity hypothesis (hence, they have a nontrivial U(1) connection) and whose supersymmetry projector is associated to 1-dimensional objects (strings), although they have a trivial axion field.

  10. Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.

    2015-12-01

    Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based

  11. Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'ichi; Odintsov, Sergei D.

    2006-08-01

    The unifying approach to early-time and late-time universe based on phantom cosmology is proposed. We consider gravity-scalar system which contains usual potential and scalar coupling function in front of kinetic term. As a result, the possibility of phantom-non-phantom transition appears in such a way that universe could have effectively phantom equation of state at early time as well as at late time. In fact, the oscillating universe may have several phantom and non-phantom phases. Role in each of two phase and can be absorbed into the redefinition of the scalar field. Right on the transition point, however, the factor cannot be absorbed into the redefinition and play the role to connect two phases smoothly. Holographic dark energy where infrared cutoff is identified with combination of FRW parameters: Hubble constant, particle and future horizons, cosmological constant and universe life-time (if finite). Depending on the specific choice of the model the number of interesting effects occur: the possibility to solve the coincidence problem, crossing of phantom divide and unification of early-time inflationary and late-time accelerating phantom universe. The bound for holographic entropy which decreases in phantom era is also discussed.

  12. Functional organization of the human 4D Nucleome

    PubMed Central

    Chen, Haiming; Chen, Jie; Muir, Lindsey A.; Ronquist, Scott; Meixner, Walter; Ljungman, Mats; Ried, Thomas; Smale, Stephen; Rajapakse, Indika

    2015-01-01

    The 4D organization of the interphase nucleus, or the 4D Nucleome (4DN), reflects a dynamical interaction between 3D genome structure and function and its relationship to phenotype. We present initial analyses of the human 4DN, capturing genome-wide structure using chromosome conformation capture and 3D imaging, and function using RNA-sequencing. We introduce a quantitative index that measures underlying topological stability of a genomic region. Our results show that structural features of genomic regions correlate with function with surprising persistence over time. Furthermore, constructing genome-wide gene-level contact maps aided in identifying gene pairs with high potential for coregulation and colocalization in a manner consistent with expression via transcription factories. We additionally use 2D phase planes to visualize patterns in 4DN data. Finally, we evaluated gene pairs within a circadian gene module using 3D imaging, and found periodicity in the movement of clock circadian regulator and period circadian clock 2 relative to each other that followed a circadian rhythm and entrained with their expression. PMID:26080430

  13. Atlas construction for dynamic (4D) PET using diffeomorphic transformations.

    PubMed

    Bieth, Marie; Lombaert, Hervé; Reader, Andrew J; Siddiqi, Kaleem

    2013-01-01

    A novel dynamic (4D) PET to PET image registration procedure is proposed and applied to multiple PET scans acquired with the high resolution research tomograph (HRRT), the highest resolution human brain PET scanner available in the world. By extending the recent diffeomorphic log-demons (DLD) method and applying it to multiple dynamic [11C]raclopride scans from the HRRT, an important step towards construction of a PET atlas of unprecedented quality for [11C]raclopride imaging of the human brain has been achieved. Accounting for the temporal dimension in PET data improves registration accuracy when compared to registration of 3D to 3D time-averaged PET images. The DLD approach was chosen for its ease in providing both an intensity and shape template, through iterative sequential pair-wise registrations with fast convergence. The proposed method is applicable to any PET radiotracer, providing 4D atlases with useful applications in high accuracy PET data simulations and automated PET image analysis. PMID:24579121

  14. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    SciTech Connect

    Phifer, M.

    2014-11-17

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  15. 4D Dynamic Required Navigation Performance Final Report

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  16. Complete valvular heart apparatus model from 4D cardiac CT.

    PubMed

    Grbic, Sasa; Ionasec, Razvan; Vitanovski, Dime; Voigt, Ingmar; Wang, Yang; Georgescu, Bogdan; Navab, Nassir; Comaniciu, Dorin

    2012-07-01

    The cardiac valvular apparatus, composed of the aortic, mitral, pulmonary and tricuspid valves, is an essential part of the anatomical, functional and hemodynamic characteristics of the heart and the cardiovascular system as a whole. Valvular heart diseases often involve multiple dysfunctions and require joint assessment and therapy of the valves. In this paper, we propose a complete and modular patient-specific model of the cardiac valvular apparatus estimated from 4D cardiac CT data. A new constrained Multi-linear Shape Model (cMSM), conditioned by anatomical measurements, is introduced to represent the complex spatio-temporal variation of the heart valves. The cMSM is exploited within a learning-based framework to efficiently estimate the patient-specific valve parameters from cine images. Experiments on 64 4D cardiac CT studies demonstrate the performance and clinical potential of the proposed method. Our method enables automatic quantitative evaluation of the complete valvular apparatus based on non-invasive imaging techniques. In conjunction with existent patient-specific chamber models, the presented valvular model enables personalized computation modeling and realistic simulation of the entire cardiac system.

  17. Neutron dosimetry in solid water phantom

    SciTech Connect

    Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene

    2014-11-07

    The neutron spectra, the Kerma and the absorbed dose due to neutrons were estimated along the incoming beam in a solid water phantom. Calculations were carried out with the MCNP5 code, where the bunker, the phantom and the model of the15 MV LINAC head were modeled. As the incoming beam goes into the phantom the neutron spectrum is modified and the dosimetric values are reduced.

  18. Neutron dosimetry in solid water phantom

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene

    2014-11-01

    The neutron spectra, the Kerma and the absorbed dose due to neutrons were estimated along the incoming beam in a solid water phantom. Calculations were carried out with the MCNP5 code, where the bunker, the phantom and the model of the15 MV LINAC head were modeled. As the incoming beam goes into the phantom the neutron spectrum is modified and the dosimetric values are reduced.