Science.gov

Sample records for 4d pet reconstruction

  1. A sinogram warping strategy for pre-reconstruction 4D PET optimization.

    PubMed

    Gianoli, Chiara; Riboldi, Marco; Fontana, Giulia; Kurz, Christopher; Parodi, Katia; Baroni, Guido

    2016-03-01

    A novel strategy for 4D PET optimization in the sinogram domain is proposed, aiming at motion model application before image reconstruction ("sinogram warping" strategy). Compared to state-of-the-art 4D-MLEM reconstruction, the proposed strategy is able to optimize the image SNR, avoiding iterative direct and inverse warping procedures, which are typical of the 4D-MLEM algorithm. A full-count statistics sinogram of the motion-compensated 4D PET reference phase is generated by warping the sinograms corresponding to the different PET phases. This is achieved relying on a motion model expressed in the sinogram domain. The strategy was tested on the anthropomorphic 4D PET-CT NCAT phantom in comparison with the 4D-MLEM algorithm, with particular reference to robustness to PET-CT co-registrations artefacts. The MLEM reconstruction of the warped sinogram according to the proposed strategy exhibited better accuracy (up to +40.90 % with respect to the ideal value), whereas images reconstructed according to the 4D-MLEM reconstruction resulted in less noisy (down to -26.90 % with respect to the ideal value) but more blurred. The sinogram warping strategy demonstrates advantages with respect to 4D-MLEM algorithm. These advantages are paid back by introducing approximation of the deformation field, and further efforts are required to mitigate the impact of such an approximation in clinical 4D PET reconstruction. PMID:26126871

  2. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    NASA Astrophysics Data System (ADS)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10–40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  3. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR).

    PubMed

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET. PMID:27385378

  4. Fully 4D list-mode reconstruction applied to respiratory-gated PET scans

    NASA Astrophysics Data System (ADS)

    Grotus, N; Reader, A J; Stute, S; Rosenwald, J C; Giraud, P; Buvat, I

    2009-03-01

    18F-fluoro-deoxy-glucose (18F-FDG) positron emission tomography (PET) is one of the most sensitive and specific imaging modalities for the diagnosis of non-small cell lung cancer. A drawback of PET is that it requires several minutes of acquisition per bed position, which results in images being affected by respiratory blur. Respiratory gating techniques have been developed to deal with respiratory motion in the PET images. However, these techniques considerably increase the level of noise in the reconstructed images unless the acquisition time is increased. The aim of this paper is to evaluate a four-dimensional (4D) image reconstruction algorithm that combines the acquired events in all the gates whilst preserving the motion deblurring. This algorithm was compared to classic ordered subset expectation maximization (OSEM) reconstruction of gated and non-gated images, and to temporal filtering of gated images reconstructed with OSEM. Two datasets were used for comparing the different reconstruction approaches: one involving the NEMA IEC/2001 body phantom in motion, the other obtained using Monte-Carlo simulations of the NCAT breathing phantom. Results show that 4D reconstruction reaches a similar performance in terms of the signal-to-noise ratio (SNR) as non-gated reconstruction whilst preserving the motion deblurring. In particular, 4D reconstruction improves the SNR compared to respiratory-gated images reconstructed with the OSEM algorithm. Temporal filtering of the OSEM-reconstructed images helps improve the SNR, but does not achieve the same performance as 4D reconstruction. 4D reconstruction of respiratory-gated images thus appears as a promising tool to reach the same performance in terms of the SNR as non-gated acquisitions while reducing the motion blur, without increasing the acquisition time.

  5. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation–maximization reconstruction

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Casey, Michael E.; Lodge, Martin A.; Rahmim, Arman; Zaidi, Habib

    2016-08-01

    Whole-body (WB) dynamic PET has recently demonstrated its potential in translating the quantitative benefits of parametric imaging to the clinic. Post-reconstruction standard Patlak (sPatlak) WB graphical analysis utilizes multi-bed multi-pass PET acquisition to produce quantitative WB images of the tracer influx rate K i as a complimentary metric to the semi-quantitative standardized uptake value (SUV). The resulting K i images may suffer from high noise due to the need for short acquisition frames. Meanwhile, a generalized Patlak (gPatlak) WB post-reconstruction method had been suggested to limit K i bias of sPatlak analysis at regions with non-negligible 18F-FDG uptake reversibility; however, gPatlak analysis is non-linear and thus can further amplify noise. In the present study, we implemented, within the open-source software for tomographic image reconstruction platform, a clinically adoptable 4D WB reconstruction framework enabling efficient estimation of sPatlak and gPatlak images directly from dynamic multi-bed PET raw data with substantial noise reduction. Furthermore, we employed the optimization transfer methodology to accelerate 4D expectation–maximization (EM) convergence by nesting the fast image-based estimation of Patlak parameters within each iteration cycle of the slower projection-based estimation of dynamic PET images. The novel gPatlak 4D method was initialized from an optimized set of sPatlak ML-EM iterations to facilitate EM convergence. Initially, realistic simulations were conducted utilizing published 18F-FDG kinetic parameters coupled with the XCAT phantom. Quantitative analyses illustrated enhanced K i target-to-background ratio (TBR) and especially contrast-to-noise ratio (CNR) performance for the 4D versus the indirect methods and static SUV. Furthermore, considerable convergence acceleration was observed for the nested algorithms involving 10–20 sub-iterations. Moreover, systematic reduction in K i % bias and improved TBR were

  6. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction.

    PubMed

    Karakatsanis, Nicolas A; Casey, Michael E; Lodge, Martin A; Rahmim, Arman; Zaidi, Habib

    2016-08-01

    Whole-body (WB) dynamic PET has recently demonstrated its potential in translating the quantitative benefits of parametric imaging to the clinic. Post-reconstruction standard Patlak (sPatlak) WB graphical analysis utilizes multi-bed multi-pass PET acquisition to produce quantitative WB images of the tracer influx rate K i as a complimentary metric to the semi-quantitative standardized uptake value (SUV). The resulting K i images may suffer from high noise due to the need for short acquisition frames. Meanwhile, a generalized Patlak (gPatlak) WB post-reconstruction method had been suggested to limit K i bias of sPatlak analysis at regions with non-negligible (18)F-FDG uptake reversibility; however, gPatlak analysis is non-linear and thus can further amplify noise. In the present study, we implemented, within the open-source software for tomographic image reconstruction platform, a clinically adoptable 4D WB reconstruction framework enabling efficient estimation of sPatlak and gPatlak images directly from dynamic multi-bed PET raw data with substantial noise reduction. Furthermore, we employed the optimization transfer methodology to accelerate 4D expectation-maximization (EM) convergence by nesting the fast image-based estimation of Patlak parameters within each iteration cycle of the slower projection-based estimation of dynamic PET images. The novel gPatlak 4D method was initialized from an optimized set of sPatlak ML-EM iterations to facilitate EM convergence. Initially, realistic simulations were conducted utilizing published (18)F-FDG kinetic parameters coupled with the XCAT phantom. Quantitative analyses illustrated enhanced K i target-to-background ratio (TBR) and especially contrast-to-noise ratio (CNR) performance for the 4D versus the indirect methods and static SUV. Furthermore, considerable convergence acceleration was observed for the nested algorithms involving 10-20 sub-iterations. Moreover, systematic reduction in K i % bias and improved TBR were

  7. Non-rigid dual respiratory and cardiac motion correction methods after, during, and before image reconstruction for 4D cardiac PET

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Wang, Jizhe; Fung, George; Tsui, Benjamin

    2016-01-01

    Respiratory motion (RM) and cardiac motion (CM) degrade the quality and resolution in cardiac PET scans. We have developed non-rigid motion estimation methods to estimate both RM and CM based on 4D cardiac gated PET data alone, and compensate the dual respiratory and cardiac (R&C) motions after (MCAR), during (MCDR), and before (MCBR) image reconstruction. In all three R&C motion correction methods, attenuation-activity mismatch effect was modeled by using transformed attenuation maps using the estimated RM. The difference of using activity preserving and non-activity preserving models in R&C correction was also studied. Realistic Monte Carlo simulated 4D cardiac PET data using the 4D XCAT phantom and accurate models of the scanner design parameters and performance characteristics at different noise levels were employed as the known truth and for method development and evaluation. Results from the simulation study suggested that all three dual R&C motion correction methods provide substantial improvement in the quality of 4D cardiac gated PET images as compared with no motion correction. Specifically, the MCDR method yields the best performance for all different noise levels compared with the MCAR and MCBR methods. While MCBR reduces computational time dramatically but the resultant 4D cardiac gated PET images has overall inferior image quality when compared to that from the MCAR and MCDR approaches in the ‘almost’ noise free case. Also, the MCBR method has better noise handling properties when compared with MCAR and provides better quantitative results in high noise cases. When the goal is to reduce scan time or patient radiation dose, MCDR and MCBR provide a good compromise between image quality and computational times.

  8. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data.

    PubMed

    Kotasidis, F A; Mehranian, A; Zaidi, H

    2016-05-01

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image

  9. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data

    NASA Astrophysics Data System (ADS)

    Kotasidis, F. A.; Mehranian, A.; Zaidi, H.

    2016-05-01

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image

  10. Direct 4D PET MLEM reconstruction of parametric images using the simplified reference tissue model with the basis function method for [¹¹C]raclopride.

    PubMed

    Gravel, Paul; Reader, Andrew J

    2015-06-01

    This work assesses the one-step late maximum likelihood expectation maximization (OSL-MLEM) 4D PET reconstruction algorithm for direct estimation of parametric images from raw PET data when using the simplified reference tissue model with the basis function method (SRTM-BFM) for the kinetic analysis. To date, the OSL-MLEM method has been evaluated using kinetic models based on two-tissue compartments with an irreversible component. We extend the evaluation of this method for two-tissue compartments with a reversible component, using SRTM-BFM on simulated 3D + time data sets (with use of [(11)C]raclopride time-activity curves from real data) and on real data sets acquired with the high resolution research tomograph. The performance of the proposed method is evaluated by comparing voxel-level binding potential (BPND) estimates with those obtained from conventional post-reconstruction kinetic parameter estimation. For the commonly chosen number of iterations used in practice, our results show that for the 3D + time simulation, the direct method delivers results with lower (%)RMSE at the normal count level (decreases of 9-10 percentage points, corresponding to a 38-44% reduction), and also at low count levels (decreases of 17-21 percentage points, corresponding to a 26-36% reduction). As for the real 3D data set, the results obtained follow a similar trend, with the direct reconstruction method offering a 21% decrease in (%)CV compared to the post reconstruction method at low count levels. Thus, based on the results presented herein, using the SRTM-BFM kinetic model in conjunction with the OSL-MLEM direct 4D PET MLEM reconstruction method offers an improvement in performance when compared to conventional post reconstruction methods. PMID:25992999

  11. Clinical evaluation of 4D PET motion compensation strategies for treatment verification in ion beam therapy.

    PubMed

    Gianoli, Chiara; Kurz, Christopher; Riboldi, Marco; Bauer, Julia; Fontana, Giulia; Baroni, Guido; Debus, Jürgen; Parodi, Katia

    2016-06-01

    A clinical trial named PROMETHEUS is currently ongoing for inoperable hepatocellular carcinoma (HCC) at the Heidelberg Ion Beam Therapy Center (HIT, Germany). In this framework, 4D PET-CT datasets are acquired shortly after the therapeutic treatment to compare the irradiation induced PET image with a Monte Carlo PET prediction resulting from the simulation of treatment delivery. The extremely low count statistics of this measured PET image represents a major limitation of this technique, especially in presence of target motion. The purpose of the study is to investigate two different 4D PET motion compensation strategies towards the recovery of the whole count statistics for improved image quality of the 4D PET-CT datasets for PET-based treatment verification. The well-known 4D-MLEM reconstruction algorithm, embedding the motion compensation in the reconstruction process of 4D PET sinograms, was compared to a recently proposed pre-reconstruction motion compensation strategy, which operates in sinogram domain by applying the motion compensation to the 4D PET sinograms. With reference to phantom and patient datasets, advantages and drawbacks of the two 4D PET motion compensation strategies were identified. The 4D-MLEM algorithm was strongly affected by inverse inconsistency of the motion model but demonstrated the capability to mitigate the noise-break-up effects. Conversely, the pre-reconstruction warping showed less sensitivity to inverse inconsistency but also more noise in the reconstructed images. The comparison was performed by relying on quantification of PET activity and ion range difference, typically yielding similar results. The study demonstrated that treatment verification of moving targets could be accomplished by relying on the whole count statistics image quality, as obtained from the application of 4D PET motion compensation strategies. In particular, the pre-reconstruction warping was shown to represent a promising choice when combined with intra-reconstruction

  12. Clinical evaluation of 4D PET motion compensation strategies for treatment verification in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Gianoli, Chiara; Kurz, Christopher; Riboldi, Marco; Bauer, Julia; Fontana, Giulia; Baroni, Guido; Debus, Jürgen; Parodi, Katia

    2016-06-01

    A clinical trial named PROMETHEUS is currently ongoing for inoperable hepatocellular carcinoma (HCC) at the Heidelberg Ion Beam Therapy Center (HIT, Germany). In this framework, 4D PET-CT datasets are acquired shortly after the therapeutic treatment to compare the irradiation induced PET image with a Monte Carlo PET prediction resulting from the simulation of treatment delivery. The extremely low count statistics of this measured PET image represents a major limitation of this technique, especially in presence of target motion. The purpose of the study is to investigate two different 4D PET motion compensation strategies towards the recovery of the whole count statistics for improved image quality of the 4D PET-CT datasets for PET-based treatment verification. The well-known 4D-MLEM reconstruction algorithm, embedding the motion compensation in the reconstruction process of 4D PET sinograms, was compared to a recently proposed pre-reconstruction motion compensation strategy, which operates in sinogram domain by applying the motion compensation to the 4D PET sinograms. With reference to phantom and patient datasets, advantages and drawbacks of the two 4D PET motion compensation strategies were identified. The 4D-MLEM algorithm was strongly affected by inverse inconsistency of the motion model but demonstrated the capability to mitigate the noise-break-up effects. Conversely, the pre-reconstruction warping showed less sensitivity to inverse inconsistency but also more noise in the reconstructed images. The comparison was performed by relying on quantification of PET activity and ion range difference, typically yielding similar results. The study demonstrated that treatment verification of moving targets could be accomplished by relying on the whole count statistics image quality, as obtained from the application of 4D PET motion compensation strategies. In particular, the pre-reconstruction warping was shown to represent a promising choice when combined with intra-reconstruction

  13. Constrained reconstructions for 4D intervention guidance

    NASA Astrophysics Data System (ADS)

    Kuntz, J.; Flach, B.; Kueres, R.; Semmler, W.; Kachelrieß, M.; Bartling, S.

    2013-05-01

    Image-guided interventions are an increasingly important part of clinical minimally invasive procedures. However, up to now they cannot be performed under 4D (3D + time) guidance due to the exceedingly high x-ray dose. In this work we investigate the applicability of compressed sensing reconstructions for highly undersampled CT datasets combined with the incorporation of prior images in order to yield low dose 4D intervention guidance. We present a new reconstruction scheme prior image dynamic interventional CT (PrIDICT) that accounts for specific image features in intervention guidance and compare it to PICCS and ASD-POCS. The optimal parameters for the dose per projection and the numbers of projections per reconstruction are determined in phantom simulations and measurements. In vivo experiments in six pigs are performed in a cone-beam CT; measured doses are compared to current gold-standard intervention guidance represented by a clinical fluoroscopy system. Phantom studies show maximum image quality for identical overall doses in the range of 14 to 21 projections per reconstruction. In vivo studies reveal that interventional materials can be followed in 4D visualization and that PrIDICT, compared to PICCS and ASD-POCS, shows superior reconstruction results and fewer artifacts in the periphery with dose in the order of biplane fluoroscopy. These results suggest that 4D intervention guidance can be realized with today’s flat detector and gantry systems using the herein presented reconstruction scheme.

  14. 4D image reconstruction for emission tomography

    NASA Astrophysics Data System (ADS)

    Reader, Andrew J.; Verhaeghe, Jeroen

    2014-11-01

    An overview of the theory of 4D image reconstruction for emission tomography is given along with a review of the current state of the art, covering both positron emission tomography and single photon emission computed tomography (SPECT). By viewing 4D image reconstruction as a matter of either linear or non-linear parameter estimation for a set of spatiotemporal functions chosen to approximately represent the radiotracer distribution, the areas of so-called ‘fully 4D’ image reconstruction and ‘direct kinetic parameter estimation’ are unified within a common framework. Many choices of linear and non-linear parameterization of these functions are considered (including the important case where the parameters have direct biological meaning), along with a review of the algorithms which are able to estimate these often non-linear parameters from emission tomography data. The other crucial components to image reconstruction (the objective function, the system model and the raw data format) are also covered, but in less detail due to the relatively straightforward extension from their corresponding components in conventional 3D image reconstruction. The key unifying concept is that maximum likelihood or maximum a posteriori (MAP) estimation of either linear or non-linear model parameters can be achieved in image space after carrying out a conventional expectation maximization (EM) update of the dynamic image series, using a Kullback-Leibler distance metric (comparing the modeled image values with the EM image values), to optimize the desired parameters. For MAP, an image-space penalty for regularization purposes is required. The benefits of 4D and direct reconstruction reported in the literature are reviewed, and furthermore demonstrated with simple simulation examples. It is clear that the future of reconstructing dynamic or functional emission tomography images, which often exhibit high levels of spatially correlated noise, should ideally exploit these 4D

  15. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring.

    PubMed

    Tian, Y; Stützer, K; Enghardt, W; Priegnitz, M; Helmbrecht, S; Bert, C; Fiedler, F

    2016-01-21

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with ⩽ 4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed. PMID:26733104

  16. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Stützer, K.; Enghardt, W.; Priegnitz, M.; Helmbrecht, S.; Bert, C.; Fiedler, F.

    2016-01-01

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with  ⩽4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed.

  17. SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET

    SciTech Connect

    Cui, Y; Bowsher, J; Yan, S; Cai, J; Das, S; Yin, F

    2014-06-01

    Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with {sup 18}F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medical Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy.

  18. 4D reconstruction of the past

    NASA Astrophysics Data System (ADS)

    Doulamis, Anastasios; Ioannides, Marinos; Doulamis, Nikolaos; Hadjiprocopis, Andreas; Fritsch, Dieter; Balet, Olivier; Julien, Martine; Protopapadakis, Eftychios; Makantasis, Kostas; Weinlinger, Guenther; Johnsons, Paul S.; Klein, Michael; Fellner, Dieter; Stork, Andre; Santos, Pedro

    2013-08-01

    One of the main characteristics of the Internet era we are living in, is the free and online availability of a huge amount of data. This data is of varied reliability and accuracy and exists in various forms and formats. Often, it is cross-referenced and linked to other data, forming a nexus of text, images, animation and audio enabled by hypertext and, recently, by the Web3.0 standard. Search engines can search text for keywords using algorithms of varied intelligence and with limited success. Searching images is a much more complex and computationally intensive task but some initial steps have already been made in this direction, mainly in face recognition. This paper aims to describe our proposed pipeline for integrating data available on Internet repositories and social media, such as photographs, animation and text to produce 3D models of archaeological monuments as well as enriching multimedia of cultural / archaeological interest with metadata and harvesting the end products to EUROPEANA. Our main goal is to enable historians, architects, archaeologists, urban planners and affiliated professionals to reconstruct views of historical monuments from thousands of images floating around the web.

  19. PET Image Reconstruction Using Kernel Method

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2014-01-01

    Image reconstruction from low-count PET projection data is challenging because the inverse problem is ill-posed. Prior information can be used to improve image quality. Inspired by the kernel methods in machine learning, this paper proposes a kernel based method that models PET image intensity in each pixel as a function of a set of features obtained from prior information. The kernel-based image model is incorporated into the forward model of PET projection data and the coefficients can be readily estimated by the maximum likelihood (ML) or penalized likelihood image reconstruction. A kernelized expectation-maximization (EM) algorithm is presented to obtain the ML estimate. Computer simulations show that the proposed approach can achieve better bias versus variance trade-off and higher contrast recovery for dynamic PET image reconstruction than the conventional maximum likelihood method with and without post-reconstruction denoising. Compared with other regularization-based methods, the kernel method is easier to implement and provides better image quality for low-count data. Application of the proposed kernel method to a 4D dynamic PET patient dataset showed promising results. PMID:25095249

  20. PET image reconstruction using kernel method.

    PubMed

    Wang, Guobao; Qi, Jinyi

    2015-01-01

    Image reconstruction from low-count positron emission tomography (PET) projection data is challenging because the inverse problem is ill-posed. Prior information can be used to improve image quality. Inspired by the kernel methods in machine learning, this paper proposes a kernel based method that models PET image intensity in each pixel as a function of a set of features obtained from prior information. The kernel-based image model is incorporated into the forward model of PET projection data and the coefficients can be readily estimated by the maximum likelihood (ML) or penalized likelihood image reconstruction. A kernelized expectation-maximization algorithm is presented to obtain the ML estimate. Computer simulations show that the proposed approach can achieve better bias versus variance trade-off and higher contrast recovery for dynamic PET image reconstruction than the conventional maximum likelihood method with and without post-reconstruction denoising. Compared with other regularization-based methods, the kernel method is easier to implement and provides better image quality for low-count data. Application of the proposed kernel method to a 4-D dynamic PET patient dataset showed promising results. PMID:25095249

  1. Semiautomatic method to identify the best phase for gated RT in lung region by 4D-PET/CT acquisitions

    SciTech Connect

    Mancosu, Pietro; Danna, Massimo; Bettinardi, Valentino; Aquilina, Mark Anthony; Lobefalo, Francesca; Cozzi, Luca; Fogliata, Antonella; Scorsetti, Marta

    2011-01-15

    Purpose: Delineating tumor motion by four-dimensional positron emission tomography/computed tomography (4D-PET/CT) is a crucial step for gated radiotherapy (RT). This article quantitatively evaluates semiautomatic algorithms for tumor shift estimation in the lung region due to patient respiration by 4D-PET/CT, in order to support the selection of the best phases for gated RT, by considering the most stable phases of the breathing cycle. Methods: Three mobile spheres and ten selected lesions were included in this study. 4D-PET/CT data were reconstructed and classified into six/ten phases. The semiautomatic algorithms required the generation of single sets of images representative of the full target motion, used as masks for segmenting the phases. For 4D-CT, a pre-established HU range was used, whereas three thresholds (100%, 80%, and 40%) were evaluated for 4D-PET. By using these segmentations, the authors estimated the lesion motion from the shifting centroids, and the phases with the least motion were also deduced including the phases with a curve slope less than 2 mm/{Delta}phase. The proposed algorithms were validated by comparing the results to those generated entirely by manual contouring. Results: In the phantom study, the mean difference between the manual contour and the semiautomatic technique was 0.1{+-}0.1 mm for 4D-CT and 0.2{+-}0.1 mm for the 4D-PET based on 40% threshold. In the patients' series, the mean difference was 0.9{+-}0.6 mm for 4D-CT and 0.8{+-}0.2 mm for the 4D-PET based on 40% threshold. Conclusions: Estimation of lesion motion by the proposed semiautomatic algorithm can be used to evaluate tumor motion due to breathing.

  2. Comparison of an alternative and existing binning methods to reduce the acquisition duration of 4D PET/CT

    SciTech Connect

    Didierlaurent, David Ribes, Sophie; Caselles, Olivier; Jaudet, Cyril; Dierickx, Lawrence O.; Zerdoud, Slimane; Brillouet, Severine; Weits, Kathleen; Batatia, Hadj; Courbon, Frédéric

    2014-11-01

    than three bins were necessary for a more accurate measurement of the maximum amplitude of the tumor motion. However, the current 4D-CT technology limits the increase of the number of bins in 4D PET/CT because of missing CT slices. One can reconstruct 4D PET images with more bins but without attenuation/scatter correction.

  3. An innovative detector concept for hybrid 4D-PET/MRI imaging

    NASA Astrophysics Data System (ADS)

    Cerello, P.; Pennazio, F.; Bisogni, M. G.; Marino, N.; Marzocca, C.; Peroni, C.; Wheadon, R.; Del Guerra, A.

    2013-02-01

    The importance of a high-quality hybrid imaging, providing morphological and functional information with only one acquisition session, is widely acknowledged by the scientific community. The historical limitations to the quality of PET images are related to the unsatisfactory measurement of the depth of interaction (DOI) in the crystals and of the time of flight (TOF), that cause a parallax error and an unfavorable signal to background condition in the image reconstruction process, respectively. The 4DMPET project is developing a high performance PET block-detector featuring 4D image reconstruction capabilities. The detector module is based on a fast scintillating continuous crystal coupled on both sides to arrays of Silicon PhotoMultipliers (SiPM). The SiPMs collect the scintillation light and provide the trigger signal, the time and the energy released in the crystal at the pixel level. The photon depth of interaction (DOI) is reconstructed by measuring the cluster size asymmetry on the two faces of the crystal, thus obtaining a comparable spatial resolution in the three coordinates and removing the parallax error. The event position along the line of response can be measured with high precision by means of TOF techniques. We discuss the module design concept and the results of the detailed Monte Carlo detector simulation, which inspire the architectural solutions selected for the layout and the front-end The expected resolution for 3D spatial coordinates of the interaction point in the crystal (1 mm) and the TOF (about 110 ps) would provide a substantial improvement of the image quality. 4DMPET aims at building a prototype block detector demonstrating that the proposed layout meets the expected performance and is suitable for designing a detector focused on a specific application.

  4. 4D numerical observer for lesion detection in respiratory-gated PET

    SciTech Connect

    Lorsakul, Auranuch; Li, Quanzheng; Ouyang, Jinsong; El Fakhri, Georges; Trott, Cathryn M.; Hoog, Christopher; Petibon, Yoann; Laine, Andrew F.

    2014-10-15

    Purpose: Respiratory-gated positron emission tomography (PET)/computed tomography protocols reduce lesion smearing and improve lesion detection through a synchronized acquisition of emission data. However, an objective assessment of image quality of the improvement gained from respiratory-gated PET is mainly limited to a three-dimensional (3D) approach. This work proposes a 4D numerical observer that incorporates both spatial and temporal informations for detection tasks in pulmonary oncology. Methods: The authors propose a 4D numerical observer constructed with a 3D channelized Hotelling observer for the spatial domain followed by a Hotelling observer for the temporal domain. Realistic {sup 18}F-fluorodeoxyglucose activity distributions were simulated using a 4D extended cardiac torso anthropomorphic phantom including 12 spherical lesions at different anatomical locations (lower, upper, anterior, and posterior) within the lungs. Simulated data based on Monte Carlo simulation were obtained using GEANT4 application for tomographic emission (GATE). Fifty noise realizations of six respiratory-gated PET frames were simulated by GATE using a model of the Siemens Biograph mMR scanner geometry. PET sinograms of the thorax background and pulmonary lesions that were simulated separately were merged to generate different conditions of the lesions to the background (e.g., lesion contrast and motion). A conventional ordered subset expectation maximization (OSEM) reconstruction (5 iterations and 6 subsets) was used to obtain: (1) gated, (2) nongated, and (3) motion-corrected image volumes (a total of 3200 subimage volumes: 2400 gated, 400 nongated, and 400 motion-corrected). Lesion-detection signal-to-noise ratios (SNRs) were measured in different lesion-to-background contrast levels (3.5, 8.0, 9.0, and 20.0), lesion diameters (10.0, 13.0, and 16.0 mm), and respiratory motion displacements (17.6–31.3 mm). The proposed 4D numerical observer applied on multiple-gated images was

  5. 4D numerical observer for lesion detection in respiratory-gated PET

    PubMed Central

    Lorsakul, Auranuch; Li, Quanzheng; Trott, Cathryn M.; Hoog, Christopher; Petibon, Yoann; Ouyang, Jinsong; Laine, Andrew F.; El Fakhri, Georges

    2014-01-01

    Purpose: Respiratory-gated positron emission tomography (PET)/computed tomography protocols reduce lesion smearing and improve lesion detection through a synchronized acquisition of emission data. However, an objective assessment of image quality of the improvement gained from respiratory-gated PET is mainly limited to a three-dimensional (3D) approach. This work proposes a 4D numerical observer that incorporates both spatial and temporal informations for detection tasks in pulmonary oncology. Methods: The authors propose a 4D numerical observer constructed with a 3D channelized Hotelling observer for the spatial domain followed by a Hotelling observer for the temporal domain. Realistic 18F-fluorodeoxyglucose activity distributions were simulated using a 4D extended cardiac torso anthropomorphic phantom including 12 spherical lesions at different anatomical locations (lower, upper, anterior, and posterior) within the lungs. Simulated data based on Monte Carlo simulation were obtained using geant4 application for tomographic emission (GATE). Fifty noise realizations of six respiratory-gated PET frames were simulated by GATE using a model of the Siemens Biograph mMR scanner geometry. PET sinograms of the thorax background and pulmonary lesions that were simulated separately were merged to generate different conditions of the lesions to the background (e.g., lesion contrast and motion). A conventional ordered subset expectation maximization (OSEM) reconstruction (5 iterations and 6 subsets) was used to obtain: (1) gated, (2) nongated, and (3) motion-corrected image volumes (a total of 3200 subimage volumes: 2400 gated, 400 nongated, and 400 motion-corrected). Lesion-detection signal-to-noise ratios (SNRs) were measured in different lesion-to-background contrast levels (3.5, 8.0, 9.0, and 20.0), lesion diameters (10.0, 13.0, and 16.0 mm), and respiratory motion displacements (17.6–31.3 mm). The proposed 4D numerical observer applied on multiple-gated images was

  6. Application of adaptive kinetic modelling for bias propagation reduction in direct 4D image reconstruction

    NASA Astrophysics Data System (ADS)

    Kotasidis, F. A.; Matthews, J. C.; Reader, A. J.; Angelis, G. I.; Zaidi, H.

    2014-10-01

    Parametric imaging in thoracic and abdominal PET can provide additional parameters more relevant to the pathophysiology of the system under study. However, dynamic data in the body are noisy due to the limiting counting statistics leading to suboptimal kinetic parameter estimates. Direct 4D image reconstruction algorithms can potentially improve kinetic parameter precision and accuracy in dynamic PET body imaging. However, construction of a common kinetic model is not always feasible and in contrast to post-reconstruction kinetic analysis, errors in poorly modelled regions may spatially propagate to regions which are well modelled. To reduce error propagation from erroneous model fits, we implement and evaluate a new approach to direct parameter estimation by incorporating a recently proposed kinetic modelling strategy within a direct 4D image reconstruction framework. The algorithm uses a secondary more general model to allow a less constrained model fit in regions where the kinetic model does not accurately describe the underlying kinetics. A portion of the residuals then is adaptively included back into the image whilst preserving the primary model characteristics in other well modelled regions using a penalty term that trades off the models. Using fully 4D simulations based on dynamic [15O]H2O datasets, we demonstrate reduction in propagation-related bias for all kinetic parameters. Under noisy conditions, reductions in bias due to propagation are obtained at the cost of increased noise, which in turn results in increased bias and variance of the kinetic parameters. This trade-off reflects the challenge of separating the residuals arising from poor kinetic modelling fits from the residuals arising purely from noise. Nonetheless, the overall root mean square error is reduced in most regions and parameters. Using the adaptive 4D image reconstruction improved model fits can be obtained in poorly modelled regions, leading to reduced errors potentially propagating

  7. Application of adaptive kinetic modelling for bias propagation reduction in direct 4D image reconstruction.

    PubMed

    Kotasidis, F A; Matthews, J C; Reader, A J; Angelis, G I; Zaidi, H

    2014-10-21

    Parametric imaging in thoracic and abdominal PET can provide additional parameters more relevant to the pathophysiology of the system under study. However, dynamic data in the body are noisy due to the limiting counting statistics leading to suboptimal kinetic parameter estimates. Direct 4D image reconstruction algorithms can potentially improve kinetic parameter precision and accuracy in dynamic PET body imaging. However, construction of a common kinetic model is not always feasible and in contrast to post-reconstruction kinetic analysis, errors in poorly modelled regions may spatially propagate to regions which are well modelled. To reduce error propagation from erroneous model fits, we implement and evaluate a new approach to direct parameter estimation by incorporating a recently proposed kinetic modelling strategy within a direct 4D image reconstruction framework. The algorithm uses a secondary more general model to allow a less constrained model fit in regions where the kinetic model does not accurately describe the underlying kinetics. A portion of the residuals then is adaptively included back into the image whilst preserving the primary model characteristics in other well modelled regions using a penalty term that trades off the models. Using fully 4D simulations based on dynamic [(15)O]H2O datasets, we demonstrate reduction in propagation-related bias for all kinetic parameters. Under noisy conditions, reductions in bias due to propagation are obtained at the cost of increased noise, which in turn results in increased bias and variance of the kinetic parameters. This trade-off reflects the challenge of separating the residuals arising from poor kinetic modelling fits from the residuals arising purely from noise. Nonetheless, the overall root mean square error is reduced in most regions and parameters. Using the adaptive 4D image reconstruction improved model fits can be obtained in poorly modelled regions, leading to reduced errors potentially propagating

  8. Validation of a 4D-PET Maximum Intensity Projection for Delineation of an Internal Target Volume

    SciTech Connect

    Callahan, Jason; Kron, Tomas; Schneider-Kolsky, Michal; Dunn, Leon; Thompson, Mick; Siva, Shankar; Aarons, Yolanda; Binns, David; Hicks, Rodney J.

    2013-07-15

    Purpose: The delineation of internal target volumes (ITVs) in radiation therapy of lung tumors is currently performed by use of either free-breathing (FB) {sup 18}F-fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT) or 4-dimensional (4D)-CT maximum intensity projection (MIP). In this report we validate the use of 4D-PET-MIP for the delineation of target volumes in both a phantom and in patients. Methods and Materials: A phantom with 3 hollow spheres was prepared surrounded by air then water. The spheres and water background were filled with a mixture of {sup 18}F and radiographic contrast medium. A 4D-PET/CT scan was performed of the phantom while moving in 4 different breathing patterns using a programmable motion device. Nine patients with an FDG-avid lung tumor who underwent FB and 4D-PET/CT and >5 mm of tumor motion were included for analysis. The 3 spheres and patient lesions were contoured by 2 contouring methods (40% of maximum and PET edge) on the FB-PET, FB-CT, 4D-PET, 4D-PET-MIP, and 4D-CT-MIP. The concordance between the different contoured volumes was calculated using a Dice coefficient (DC). The difference in lung tumor volumes between FB-PET and 4D-PET volumes was also measured. Results: The average DC in the phantom using 40% and PET edge, respectively, was lowest for FB-PET/CT (DCAir = 0.72/0.67, DCBackground 0.63/0.62) and highest for 4D-PET/CT-MIP (DCAir = 0.84/0.83, DCBackground = 0.78/0.73). The average DC in the 9 patients using 40% and PET edge, respectively, was also lowest for FB-PET/CT (DC = 0.45/0.44) and highest for 4D-PET/CT-MIP (DC = 0.72/0.73). In the 9 lesions, the target volumes of the FB-PET using 40% and PET edge, respectively, were on average 40% and 45% smaller than the 4D-PET-MIP. Conclusion: A 4D-PET-MIP produces volumes with the highest concordance with 4D-CT-MIP across multiple breathing patterns and lesion sizes in both a phantom and among patients. Freebreathing PET/CT consistently

  9. TU-F-12A-05: Sensitivity of Textural Features to 3D Vs. 4D FDG-PET/CT Imaging in NSCLC Patients

    SciTech Connect

    Yang, F; Nyflot, M; Bowen, S; Kinahan, P; Sandison, G

    2014-06-15

    Purpose: Neighborhood Gray-level difference matrices (NGLDM) based texture parameters extracted from conventional (3D) 18F-FDG PET scans in patients with NSCLC have been previously shown to associate with response to chemoradiation and poorer patient outcome. However, the change in these parameters when utilizing respiratory-correlated (4D) FDG-PET scans has not yet been characterized for NSCLC. The Objectives: of this study was to assess the extent to which NGLDM-based texture parameters on 4D PET images vary with reference to values derived from 3D scans in NSCLC. Methods: Eight patients with newly diagnosed NSCLC treated with concomitant chemoradiotherapy were included in this study. 4D PET scans were reconstructed with OSEM-IR in 5 respiratory phase-binned images and corresponding CT data of each phase were employed for attenuation correction. NGLDM-based texture features, consisting of coarseness, contrast, busyness, complexity and strength, were evaluated for gross tumor volumes defined on 3D/4D PET scans by radiation oncologists. Variation of the obtained texture parameters over the respiratory cycle were examined with respect to values extracted from 3D scans. Results: Differences between texture parameters derived from 4D scans at different respiratory phases and those extracted from 3D scans ranged from −30% to 13% for coarseness, −12% to 40% for contrast, −5% to 50% for busyness, −7% to 38% for complexity, and −43% to 20% for strength. Furthermore, no evident correlations were observed between respiratory phase and 4D scan texture parameters. Conclusion: Results of the current study showed that NGLDM-based texture parameters varied considerably based on choice of 3D PET and 4D PET reconstruction of NSCLC patient images, indicating that standardized image acquisition and analysis protocols need to be established for clinical studies, especially multicenter clinical trials, intending to validate prognostic values of texture features for NSCLC.

  10. 4D offline PET-based treatment verification in scanned ion beam therapy: a phantom study

    NASA Astrophysics Data System (ADS)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Stützer, Kristin; Bert, Christoph; Parodi, Katia

    2015-08-01

    At the Heidelberg Ion-Beam Therapy Center, patient irradiation with scanned proton and carbon ion beams is verified by offline positron emission tomography (PET) imaging: the {β+} -activity measured within the patient is compared to a prediction calculated on the basis of the treatment planning data in order to identify potential delivery errors. Currently, this monitoring technique is limited to the treatment of static target structures. However, intra-fractional organ motion imposes considerable additional challenges to scanned ion beam radiotherapy. In this work, the feasibility and potential of time-resolved (4D) offline PET-based treatment verification with a commercial full-ring PET/CT (x-ray computed tomography) device are investigated for the first time, based on an experimental campaign with moving phantoms. Motion was monitored during the gated beam delivery as well as the subsequent PET acquisition and was taken into account in the corresponding 4D Monte-Carlo simulations and data evaluation. Under the given experimental conditions, millimeter agreement between the prediction and measurement was found. Dosimetric consequences due to the phantom motion could be reliably identified. The agreement between PET measurement and prediction in the presence of motion was found to be similar as in static reference measurements, thus demonstrating the potential of 4D PET-based treatment verification for future clinical applications.

  11. Clinical Utility of 4D FDG-PET/CT Scans in Radiation Treatment Planning

    SciTech Connect

    Aristophanous, Michalis; Sher, David J.; Allen, Aaron M.; Larson, Elysia; Chen, Aileen B.

    2012-01-01

    Purpose: The potential role of four-dimensional (4D) positron emission tomography (PET)/computed tomography (CT) in radiation treatment planning, relative to standard three-dimensional (3D) PET/CT, was examined. Methods and Materials: Ten patients with non-small-cell lung cancer had sequential 3D and 4D [{sup 18}F]fluorodeoxyglucose PET/CT scans in the treatment position prior to radiation therapy. The gross tumor volume and involved lymph nodes were contoured on the PET scan by use of three different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; a technique with a constant threshold of standardized uptake value (SUV) greater than 2.5; and an automatic segmentation technique. For each technique, the tumor volume was defined on the 3D scan (VOL3D) and on the 4D scan (VOL4D) by combining the volume defined on each of the five breathing phases individually. The range of tumor motion and the location of each lesion were also recorded, and their influence on the differences observed between VOL3D and VOL4D was investigated. Results: We identified and analyzed 22 distinct lesions, including 9 primary tumors and 13 mediastinal lymph nodes. Mean VOL4D was larger than mean VOL3D with all three techniques, and the difference was statistically significant (p < 0.01). The range of tumor motion and the location of the tumor affected the magnitude of the difference. For one case, all three tumor definition techniques identified volume of moderate uptake of approximately 1 mL in the hilar region on the 4D scan (SUV maximum, 3.3) but not on the 3D scan (SUV maximum, 2.3). Conclusions: In comparison to 3D PET, 4D PET may better define the full physiologic extent of moving tumors and improve radiation treatment planning for lung tumors. In addition, reduction of blurring from free-breathing images may reveal additional information regarding regional disease.

  12. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    SciTech Connect

    Wang, Jing; Gu, Xuejun

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  13. Impact of CT attenuation correction method on quantitative respiratory-correlated (4D) PET/CT imaging

    SciTech Connect

    Nyflot, Matthew J.; Lee, Tzu-Cheng; Alessio, Adam M.; Kinahan, Paul E.; Wollenweber, Scott D.; Stearns, Charles W.; Bowen, Stephen R.

    2015-01-15

    Purpose: Respiratory-correlated positron emission tomography (PET/CT) 4D PET/CT is used to mitigate errors from respiratory motion; however, the optimal CT attenuation correction (CTAC) method for 4D PET/CT is unknown. The authors performed a phantom study to evaluate the quantitative performance of CTAC methods for 4D PET/CT in the ground truth setting. Methods: A programmable respiratory motion phantom with a custom movable insert designed to emulate a lung lesion and lung tissue was used for this study. The insert was driven by one of five waveforms: two sinusoidal waveforms or three patient-specific respiratory waveforms. 3DPET and 4DPET images of the phantom under motion were acquired and reconstructed with six CTAC methods: helical breath-hold (3DHEL), helical free-breathing (3DMOT), 4D phase-averaged (4DAVG), 4D maximum intensity projection (4DMIP), 4D phase-matched (4DMATCH), and 4D end-exhale (4DEXH) CTAC. Recovery of SUV{sub max}, SUV{sub mean}, SUV{sub peak}, and segmented tumor volume was evaluated as RC{sub max}, RC{sub mean}, RC{sub peak}, and RC{sub vol}, representing percent difference relative to the static ground truth case. Paired Wilcoxon tests and Kruskal–Wallis ANOVA were used to test for significant differences. Results: For 4DPET imaging, the maximum intensity projection CTAC produced significantly more accurate recovery coefficients than all other CTAC methods (p < 0.0001 over all metrics). Over all motion waveforms, ratios of 4DMIP CTAC recovery were 0.2 ± 5.4, −1.8 ± 6.5, −3.2 ± 5.0, and 3.0 ± 5.9 for RC{sub max}, RC{sub peak}, RC{sub mean}, and RC{sub vol}. In comparison, recovery coefficients for phase-matched CTAC were −8.4 ± 5.3, −10.5 ± 6.2, −7.6 ± 5.0, and −13.0 ± 7.7 for RC{sub max}, RC{sub peak}, RC{sub mean}, and RC{sub vol}. When testing differences between phases over all CTAC methods and waveforms, end-exhale phases were significantly more accurate (p = 0.005). However, these differences were driven by

  14. 4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging.

    PubMed

    Reilhac, Anthonin; Charil, Arnaud; Wimberley, Catriona; Angelis, Georgios; Hamze, Hasar; Callaghan, Paul; Garcia, Marie-Paule; Boisson, Frederic; Ryder, Will; Meikle, Steven R; Gregoire, Marie-Claude

    2015-09-01

    Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity. PMID:26080302

  15. Region of interest motion compensation for PET image reconstruction.

    PubMed

    Qiao, Feng; Pan, Tinsu; Clark, John W; Mawlawi, Osama R

    2007-05-21

    A motion-incorporated reconstruction (MIR) method for gated PET imaging has recently been developed by several authors to correct for respiratory motion artifacts in PET imaging. This method however relies on a motion map derived from images (4D PET or 4D CT) of the entire field of view (FOV). In this study we present a region of interest (ROI)-based extension to this method, whereby only the motion map of a user-defined ROI is required and motion incorporation during image reconstruction is solely performed within the ROI. A phantom study and an NCAT computer simulation study were performed to test the feasibility of this method. The phantom study showed that the ROI-based MIR produced results that are within 1.26% of those obtained by the full image-based MIR approach when using the same accurate motion information. The NCAT phantom study on the other hand, further verified that motion of features of interest in an image can be estimated more efficiently and potentially more accurately using the ROI-based approach. A reduction of motion estimation time from 450 s to 30 and 73 s was achieved for two different ROIs respectively. In addition, the ROI-based approach showed a reduction in registration error of 43% for one ROI, which effectively reduced quantification bias by 44% and 32% using mean and maximum voxel values, respectively. PMID:17473344

  16. First Steps Toward Ultrasound-Based Motion Compensation for Imaging and Therapy: Calibration with an Optical System and 4D PET Imaging

    PubMed Central

    Schwaab, Julia; Kurz, Christopher; Sarti, Cristina; Bongers, André; Schoenahl, Frédéric; Bert, Christoph; Debus, Jürgen; Parodi, Katia; Jenne, Jürgen Walter

    2015-01-01

    Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound (US) represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking. The goal of this project is to develop an US-based motion tracking for real-time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET). In this work, a workflow is established to enable the transformation of US tracking data to the coordinates of the treatment delivery or imaging system – even if the US probe is moving due to respiration. It is shown that the US tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible. PMID:26649277

  17. Evaluation of a 4D cone-beam CT reconstruction approach using a simulation framework.

    PubMed

    Hartl, Alexander; Yaniv, Ziv

    2009-01-01

    Current image-guided navigation systems for thoracic abdominal interventions utilize three dimensional (3D) images acquired at breath-hold. As a result they can only provide guidance at a specific point in the respiratory cycle. The intervention is thus performed in a gated manner, with the physician advancing only when the patient is at the same respiratory cycle in which the 3D image was acquired. To enable a more continuous workflow we propose to use 4D image data. We describe an approach to constructing a set of 4D images from a diagnostic CT acquired at breath-hold and a set of intraoperative cone-beam CT (CBCT) projection images acquired while the patient is freely breathing. Our approach is based on an initial reconstruction of a gated 4D CBCT data set. The 3D CBCT images for each respiratory phase are then non-rigidly registered to the diagnostic CT data. Finally the diagnostic CT is deformed based on the registration results, providing a 4D data set with sufficient quality for navigation purposes. In this work we evaluate the proposed reconstruction approach using a simulation framework. A 3D CBCT dataset of an anthropomorphic phantom is deformed using internal motion data acquired from an animal model to create a ground truth 4D CBCT image. Simulated projection images are then created from the 4D image and the known CBCT scan parameters. Finally, the original 3D CBCT and the simulated X-ray images are used as input to our reconstruction method. The resulting 4D data set is then compared to the known ground truth by normalized cross correlation(NCC). We show that the deformed diagnostic CTs are of better quality than the gated reconstructions with a mean NCC value of 0.94 versus a mean 0.81 for the reconstructions. PMID:19964143

  18. 4-D reconstruction of fluorescence molecular tomography using re-assembled measurement data

    PubMed Central

    Liu, Xin; He, Xiaowe; Yan, Zhuangzhi; Lu, Hongbing

    2015-01-01

    Challenges remain in the reconstruction of dynamic (4-D) fluorescence molecular tomography (FMT). In our previous work, we implemented a fully 4-D FMT reconstruction approach using Karhunen-Loève (KL) transformation. However, in the reconstruction processes, the input data were scan-by-scan fluorescence projections. As a result, the reconstruction interval is limited by the data acquisition time for scanning one circle projections, leading to a long time (typically >1 min). In this paper, we propose a new method to reduce the reconstruction interval of dynamic FMT imaging, which is achieved by re-assembling the acquired fluorescence projection sequence. Further, to eliminate the temporal correlations within measurement data, the re-assembled projection sequence is reconstructed by the KL-based method. The numerical simulation and in vivo experiments are performed to evaluate the performance of the method. The experimental results indicate that after re-assembling measurement data, the reconstruction interval can be greatly reduced (~2.5 sec/frame). In addition, the proposed re-assembling method is helpful for improving reconstruction quality of the KL-based method. PMID:26114022

  19. Uniform distribution of projection data for improved reconstruction quality of 4D EPR imaging

    PubMed Central

    Ahmad, Rizwan; Vikram, Deepti S.; Clymer, Bradley; Potter, Lee C.; Deng, Yuanmu; Srinivasan, Parthasarathy; Zweier, Jay L.; Kuppusamy, Periannan

    2008-01-01

    In continuous wave (CW) electron paramagnetic resonance imaging (EPRI), high quality of reconstruction in a limited acquisition time is a high priority. It has been shown for the case of 3D EPRI, that a uniform distribution of the projection data generally enhances reconstruction quality. In this work, we have suggested two data acquisition techniques for which the gradient orientations are more evenly distributed over the 4D acquisition space as compared to the existing methods. The first sampling technique is based on equal solid angle partitioning of 4D space, while the second technique is based on Fekete points estimation in 4D to generate a more uniform distribution of data. After acquisition, filtered backprojection (FBP) is applied to carryout the reconstruction in a single stage. The single-stage reconstruction improves the spatial resolution by eliminating the necessity of data interpolation in multi-stage reconstructions. For the proposed data distributions, the simulations and experimental results indicate a higher fidelity to the true object configuration. Using the uniform distribution, we expect about 50% reduction in the acquisition time over the traditional method of equal linear angle acquisition. PMID:17562375

  20. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaginga)

    PubMed Central

    Yan, Hao; Zhen, Xin; Folkerts, Michael; Li, Yongbao; Pan, Tinsu; Cervino, Laura; Jiang, Steve B.; Jia, Xun

    2014-01-01

    Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase

  1. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging

    SciTech Connect

    Yan, Hao; Folkerts, Michael; Jiang, Steve B. E-mail: steve.jiang@UTSouthwestern.edu; Jia, Xun E-mail: steve.jiang@UTSouthwestern.edu; Zhen, Xin; Li, Yongbao; Pan, Tinsu; Cervino, Laura

    2014-07-15

    Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase

  2. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.

    PubMed

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations. PMID:26758496

  3. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    NASA Astrophysics Data System (ADS)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  4. Spatial-temporal total variation regularization (STTVR) for 4D-CT reconstruction

    NASA Astrophysics Data System (ADS)

    Wu, Haibo; Maier, Andreas; Fahrig, Rebecca; Hornegger, Joachim

    2012-03-01

    Four dimensional computed tomography (4D-CT) is very important for treatment planning in thorax or abdomen area, e.g. for guiding radiation therapy planning. The respiratory motion makes the reconstruction problem illposed. Recently, compressed sensing theory was introduced. It uses sparsity as a prior to solve the problem and improves image quality considerably. However, the images at each phase are reconstructed individually. The correlations between neighboring phases are not considered in the reconstruction process. In this paper, we propose the spatial-temporal total variation regularization (STTVR) method which not only employs the sparsity in the spatial domain but also in the temporal domain. The algorithm is validated with XCAT thorax phantom. The Euclidean norm of the reconstructed image and ground truth is calculated for evaluation. The results indicate that our method improves the reconstruction quality by more than 50% compared to standard ART.

  5. VMAT QA: Measurement-guided 4D dose reconstruction on a patient

    SciTech Connect

    Nelms, Benjamin E.; Opp, Daniel; Robinson, Joshua; Wolf, Theresa K.; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir

    2012-07-15

    Purpose: To develop and validate a volume-modulated arc therapy (VMAT) quality assurance (QA) tool that takes as input a time-resolved, low-density ({approx}10 mm) cylindrical surface dose map from a commercial helical diode array, and outputs a high density, volumetric, time-resolved dose matrix on an arbitrary patient dataset. This first validation study is limited to a homogeneous 'patient.'Methods: A VMAT treatment is delivered to a diode array phantom (ARCCHECK, Sun Nuclear Corp., Melbourne, FL). 3DVH software (Sun Nuclear) derives the high-density volumetric dose using measurement-guided dose reconstruction (MGDR). MGDR cylindrical phantom results are then used to perturb the three-dimensional (3D) treatment planning dose on the patient dataset, producing a semiempirical volumetric dose grid. Four-dimensional (4D) dose reconstruction on the patient is also possible by morphing individual sub-beam doses instead of the composite. For conventional (3D) dose comparison two methods were developed, using the four plans (Multi-Target, C-shape, Mock Prostate, and Head and Neck), including their structures and objectives, from the AAPM TG-119 report. First, 3DVH and treatment planning system (TPS) cumulative point doses were compared to ion chamber in a cube water-equivalent phantom ('patient'). The shape of the phantom is different from the ARCCHECK and furthermore the targets were placed asymmetrically. Second, coronal and sagittal absolute film dose distributions in the cube were compared with 3DVH and TPS. For time-resolved (4D) comparisons, three tests were performed. First, volumetric dose differences were calculated between the 3D MGDR and cumulative time-resolved patient (4D MGDR) dose at the end of delivery, where they ideally should be identical. Second, time-resolved (10 Hz sampling rate) ion chamber doses were compared to cumulative point dose vs time curves from 4D MGDR. Finally, accelerator output was varied to assess the linearity of the 4D MGDR with

  6. Registration based super-resolution reconstruction for lung 4D-CT.

    PubMed

    Wu, Xiuxiu; Xiao, Shan; Zhang, Yu

    2014-01-01

    Lung 4D-CT plays an important role in lung cancer radiotherapy for tumor localization and treatment planning. In lung 4D-CT data, the resolution in the slice direction is often much lower than the in-plane resolution. For multi-plane display, isotropic resolution is necessary, but the commonly used interpolation operation will blur the images. In this paper, we present a registration based method for super resolution enhancement of the 4D-CT multi-plane images. Our working premise is that the low-resolution images of different phases at the corresponding position can be regarded as input "frames" to reconstruct high resolution images. First, we employ the Demons registration algorithm to estimate the motion field between different "frames". Then, the projections onto convex sets (POCS) approach is employed to reconstruction high-resolution lung images. We show that our method can get clearer lung images and enhance image structure, compared with the cubic spline interpolation and back projection method. PMID:25570484

  7. Advanced image reconstruction strategies for 4D prostate DCE-MRI: steps toward clinical practicality

    NASA Astrophysics Data System (ADS)

    Stinson, Eric G.; Borisch, Eric A.; Froemming, Adam T.; Kawashima, Akira; Young, Phillip M.; Warndahl, Brent A.; Grimm, Roger C.; Manduca, Armando; Riederer, Stephen J.; Trzasko, Joshua D.

    2015-09-01

    Dynamic contrast-enhanced (DCE) MRI is an important tool for the detection and characterization of primary and recurring prostate cancer. Advanced reconstruction strategies (e.g., sparse or low-rank regression) provide improved depiction of contrast dynamics and pharmacokinetic parameters; however, the high computation cost of reconstructing 4D (3D+time, 50+ frames) datasets typically inhibits their routine clinical use. Here, a novel alternating direction method-of-multipliers (ADMM) optimization strategy is described that enables these methods to be executed in ∠5 minutes, and thus within the standard clinical workflow. After overviewing the mechanics of this approach, high-performance implementation strategies will be discussed and demonstrated through clinical cases.

  8. Towards 4d Virtual City Reconstruction from LIDAR Point Cloud Sequences

    NASA Astrophysics Data System (ADS)

    Józsa, O.; Börcs, A.; Benedek, C.

    2013-05-01

    In this paper we propose a joint approach on virtual city reconstruction and dynamic scene analysis based on point cloud sequences of a single car-mounted Rotating Multi-Beam (RMB) Lidar sensor. The aim of the addressed work is to create 4D spatio-temporal models of large dynamic urban scenes containing various moving and static objects. Standalone RMB Lidar devices have been frequently applied in robot navigation tasks and proved to be efficient in moving object detection and recognition. However, they have not been widely exploited yet for geometric approximation of ground surfaces and building facades due to the sparseness and inhomogeneous density of the individual point cloud scans. In our approach we propose an automatic registration method of the consecutive scans without any additional sensor information such as IMU, and introduce a process for simultaneously extracting reconstructed surfaces, motion information and objects from the registered dense point cloud completed with point time stamp information.

  9. Validation of percutaneous puncture trajectory during renal access using 4D ultrasound reconstruction

    NASA Astrophysics Data System (ADS)

    Rodrigues, Pedro L.; Rodrigues, Nuno F.; Fonseca, Jaime C.; Vilaça, João. L.

    2015-03-01

    An accurate percutaneous puncture is essential for disintegration and removal of renal stones. Although this procedure has proven to be safe, some organs surrounding the renal target might be accidentally perforated. This work describes a new intraoperative framework where tracked surgical tools are superimposed within 4D ultrasound imaging for security assessment of the percutaneous puncture trajectory (PPT). A PPT is first generated from the skin puncture site towards an anatomical target, using the information retrieved by electromagnetic motion tracking sensors coupled to surgical tools. Then, 2D ultrasound images acquired with a tracked probe are used to reconstruct a 4D ultrasound around the PPT under GPU processing. Volume hole-filling was performed in different processing time intervals by a tri-linear interpolation method. At spaced time intervals, the volume of the anatomical structures was segmented to ascertain if any vital structure is in between PPT and might compromise the surgical success. To enhance the volume visualization of the reconstructed structures, different render transfer functions were used. Results: Real-time US volume reconstruction and rendering with more than 25 frames/s was only possible when rendering only three orthogonal slice views. When using the whole reconstructed volume one achieved 8-15 frames/s. 3 frames/s were reached when one introduce the segmentation and detection if some structure intersected the PPT. The proposed framework creates a virtual and intuitive platform that can be used to identify and validate a PPT to safely and accurately perform the puncture in percutaneous nephrolithotomy.

  10. The use of a generalized reconstruction by inversion of coupled systems (GRICS) approach for generic respiratory motion correction in PET/MR imaging.

    PubMed

    Fayad, Hadi; Odille, Freddy; Schmidt, Holger; Würslin, Christian; Küstner, Thomas; Feblinger, Jacques; Visvikis, Dimitris

    2015-03-21

    Respiratory motion is a source of artifacts in multimodality imaging such as PET/MR. Solutions include retrospective or prospective gating. They have however found limited use in clinical practice, since their increased overall acquisition duration to maintain overall image quality. More elaborate methods consist of using 4D MR datasets to extract spatial deformations in order to correct for the respiratory motion in PET. The main drawbacks of such approaches is the relatively long acquisition times associated with 4D MR imaging which is often incompatible with clinical PET/MR protocols. The objective of this work was to overcome these limitations by exploiting a generalized reconstruction by inversion of coupled systems (GRICS) approach. The methodology is based on a joint estimation of motion during the MR image reconstruction process, providing internal structure motion and associated deformation matrices for retrospective use in PET respiratory motion correction. This method was first validated on four MR volunteers and two PET/MR patient datasets by comparing GRICS generated MR images to 4D MR series obtained by retrospective gating. In a second step 4D PET datasets corresponding to acquired 4D MR images were simulated using the GATE Monte Carlo simulation platform. GRICS generated deformation matrices were subsequently used to correct respiratory motion in comparison to the 4D MR image based deformations both for the simulated and the two 4D PET/MR patient datasets. Results confirm that GRICS synchronized MR images correlate well with the acquired 4D MR series. Similarly, the use of GRICS for respiratory motion correction allows an equivalent percentage improvement on lesion contrast, position and size, considering the PET simulated tumors as well as PET real tumors. This work demonstrates the potential interest of using GRICS for PET respiratory motion correction in combined PET/MR using shorter duration acquisitions without the need for 4D MRI and

  11. The use of a generalized reconstruction by inversion of coupled systems (GRICS) approach for generic respiratory motion correction in PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Fayad, Hadi; Odille, Freddy; Schmidt, Holger; Würslin, Christian; Küstner, Thomas; Feblinger, Jacques; Visvikis, Dimitris

    2015-03-01

    Respiratory motion is a source of artifacts in multimodality imaging such as PET/MR. Solutions include retrospective or prospective gating. They have however found limited use in clinical practice, since their increased overall acquisition duration to maintain overall image quality. More elaborate methods consist of using 4D MR datasets to extract spatial deformations in order to correct for the respiratory motion in PET. The main drawbacks of such approaches is the relatively long acquisition times associated with 4D MR imaging which is often incompatible with clinical PET/MR protocols. The objective of this work was to overcome these limitations by exploiting a generalized reconstruction by inversion of coupled systems (GRICS) approach. The methodology is based on a joint estimation of motion during the MR image reconstruction process, providing internal structure motion and associated deformation matrices for retrospective use in PET respiratory motion correction. This method was first validated on four MR volunteers and two PET/MR patient datasets by comparing GRICS generated MR images to 4D MR series obtained by retrospective gating. In a second step 4D PET datasets corresponding to acquired 4D MR images were simulated using the GATE Monte Carlo simulation platform. GRICS generated deformation matrices were subsequently used to correct respiratory motion in comparison to the 4D MR image based deformations both for the simulated and the two 4D PET/MR patient datasets. Results confirm that GRICS synchronized MR images correlate well with the acquired 4D MR series. Similarly, the use of GRICS for respiratory motion correction allows an equivalent percentage improvement on lesion contrast, position and size, considering the PET simulated tumors as well as PET real tumors. This work demonstrates the potential interest of using GRICS for PET respiratory motion correction in combined PET/MR using shorter duration acquisitions without the need for 4D MRI and

  12. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using {sup 68}Ga-labeled nanoparticles

    SciTech Connect

    Kipritidis, John Keall, Paul J.; Siva, Shankar; Hofman, Michael S.; Callahan, Jason; Hicks, Rodney J.

    2014-01-15

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with{sup 68}Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V{sub HU}) or Jacobian determinant of deformation (V{sub Jac}). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV{sub HU} and ρV{sub Jac}) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ{sub m} = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d{sub 20} for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV{sub HU}) with σ{sub m} = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d{sub 20} ⩽ 0.68, with r{sup ¯}=0.42±0.16 and d{sup ¯}{sub 20}=0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant

  13. An optical flow based method for improved reconstruction of 4D CT data sets acquired during free breathing

    SciTech Connect

    Ehrhardt, Jan; Werner, Rene; Saering, Dennis; Frenzel, Thorsten; Lu Wei; Low, Daniel; Handels, Heinz

    2007-02-15

    Respiratory motion degrades anatomic position reproducibility and leads to issues affecting image acquisition, treatment planning, and radiation delivery. Four-dimensional (4D) computer tomography (CT) image acquisition can be used to measure the impact of organ motion and to explicitly account for respiratory motion during treatment planning and radiation delivery. Modern CT scanners can only scan a limited region of the body simultaneously and patients have to be scanned in segments consisting of multiple slices. A respiratory signal (spirometer signal or surface tracking) is used to reconstruct a 4D data set by sorting the CT scans according to the couch position and signal coherence with predefined respiratory phases. But artifacts can occur if there are no acquired data segments for exactly the same respiratory state for all couch positions. These artifacts are caused by device-dependent limitations of gantry rotation, image reconstruction times and by the variability of the patient's respiratory pattern. In this paper an optical flow based method for improved reconstruction of 4D CT data sets from multislice CT scans is presented. The optical flow between scans at neighboring respiratory states is estimated by a non-linear registration method. The calculated velocity field is then used to reconstruct a 4D CT data set by interpolating data at exactly the predefined respiratory phase. Our reconstruction method is compared with the usually used reconstruction based on amplitude sorting. The procedures described were applied to reconstruct 4D CT data sets for four cancer patients and a qualitative and quantitative evaluation of the optical flow based reconstruction method was performed. Evaluation results show a relevant reduction of reconstruction artifacts by our technique. The reconstructed 4D data sets were used to quantify organ displacements and to visualize the abdominothoracic organ motion.

  14. Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction.

    PubMed

    Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R B; Bent, Julian; Withers, Philip J; Lee, Peter D

    2016-01-01

    X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding. PMID:27002902

  15. Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction

    PubMed Central

    Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R. B.; Bent, Julian; Withers, Philip J.; Lee, Peter D.

    2016-01-01

    X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding. PMID:27002902

  16. Reconstruction of a 4D Particle Distribution Using UnderdeterminedPhase-Space Data

    SciTech Connect

    Rostamizadeh, Afshin

    2005-08-10

    A well defined 4D distribution that describes the transverse spatial coordinates (x,y) and momenta (x',y') of the particles that make up an intense ion beam is of great value to theorists in the field of particle beam physics. If such a distribution truthfully captures the characteristic of the actual beam, it can be used to initialize an extensive simulation, and can yield insight into the processes that affect beam quality. Creating a proper representative distribution of particles is a challenge because the problem is, in general, quite underdetermined. Data is collected through a pair of ''optical slit'' diagnostics which provide two 3D distributions, f(x,y,x') and f(x,y,y'); the challenge is to coalesce these into a full 4D distribution f(x,y,x',y'). Further difficulties are introduced because the data is collected at different longitudinal planes and must be ''remapped'' to a common plane, taking into account the convergence or divergence of the beam as well as any off-centering. This challenge was met by developing a suitable algorithm and implementing it as a ''plug-in'' for the popular scientific image analysis program ImageJ, written entirely in the Java programming language. The algorithm accomplishes the desired remapping and synthesizes a 4D particle distribution, using Monte-Carlo techniques. Preliminary results show that this reconstructed distribution is consistent with actual data that was gathered from the same experiment using a different diagnostic. Also, ''forward'' particle-in-cell (PIC) simulations, that use the reconstructed distribution, match actual data gathered downstream in the experiment. Both these results give us some indication that the reconstruction is being done correctly. In addition to the multi-particle synthesis, the plug-in allows for the easy loading of digital data and the output of various plots that are useful to both experimenters and theorists. It also provides a framework by which its applicability can be extended to

  17. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    SciTech Connect

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J; Guo, X

    2015-06-15

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.

  18. Fast analytic simulation toolkit for generation of 4D PET-MR data from real dynamic MR acquisitions

    NASA Astrophysics Data System (ADS)

    Tsoumpas, C.; Buerger, C.; Mollet, P.; Marsden, P. K.

    2011-09-01

    This work introduces and evaluates a fast analytic simulation toolkit (FAST) for simulating dynamic PET-MR data from real MR acquisitions. Realistic radiotracer values are assigned to segmented MR images. PET data are generated using analytic forward-projections (including attenuation and Poisson statistics) with the reconstruction software STIR, which is also used to produce the PET images that are spatially and temporally correlated with the real MR images. The simulation is compared with the GATE Monte Carlo package, which has more accurate physical modelling but it is 150 times slower compared to FAST for ten respiratory positions and 7000× slower, when repeating the simulation. The region of interest for mean values and coefficients of variation obtained with FAST and GATE, from 65 million and 104 million coincidences, respectively, were compared. Agreement between the two different simulation methods is good. In particular, the percentage differences of the mean values are: 10% for liver, and 19% for the myocardium and a warm lesion. The utility of FAST is demonstrated with the simulation of multiple volunteers with different breathing patterns. The package will be used for studying the performance of reconstruction, motion correction and attenuation correction algorithms for dynamic simultaneous PET-MR data.

  19. Reconstruction of 4D-CT data sets acquired during free breathing for the analysis of respiratory motion

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Werner, Rene; Frenzel, Thorsten; Säring, Dennis; Lu, Wei; Low, Daniel; Handels, Heinz

    2006-03-01

    Respiratory motion is a significant source of error in radiotherapy treatment planning. 4D-CT data sets can be useful to measure the impact of organ motion caused by breathing. But modern CT scanners can only scan a limited region of the body simultaneously and patients have to be scanned in segments consisting of multiple slices. For studying free breathing motion multislice CT scans can be collected simultaneously with digital spirometry over several breathing cycles. The 4D data set is assembled by sorting the free breathing multislice CT scans according to the couch position and the tidal volume. But artifacts can occur because there are no data segments for exactly the same tidal volume and all couch positions. We present an optical flow based method for the reconstruction of 4D-CT data sets from multislice CT scans, which are collected simultaneously with digital spirometry. The optical flow between the scans is estimated by a non-linear registration method. The calculated velocity field is used to reconstruct a 4D-CT data set by interpolating data at user-defined tidal volumes. By this technique, artifacts can be reduced significantly. The reconstructed 4D-CT data sets are used for studying inner organ motion during the respiratory cycle. The procedures described were applied to reconstruct 4D-CT data sets for four tumour patients who have been scanned during free breathing. The reconstructed 4D data sets were used to quantify organ displacements and to visualize the abdominothoracic organ motion.

  20. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior

    NASA Astrophysics Data System (ADS)

    Ritschl, Ludwig; Sawall, Stefan; Knaup, Michael; Hess, Andreas; Kachelrieß, Marc

    2012-03-01

    Temporal-correlated image reconstruction, also known as 4D CT image reconstruction, is a big challenge in computed tomography. The reasons for incorporating the temporal domain into the reconstruction are motions of the scanned object, which would otherwise lead to motion artifacts. The standard method for 4D CT image reconstruction is extracting single motion phases and reconstructing them separately. These reconstructions can suffer from undersampling artifacts due to the low number of used projections in each phase. There are different iterative methods which try to incorporate some a priori knowledge to compensate for these artifacts. In this paper we want to follow this strategy. The cost function we use is a higher dimensional cost function which accounts for the sparseness of the measured signal in the spatial and temporal directions. This leads to the definition of a higher dimensional total variation. The method is validated using in vivo cardiac micro-CT mouse data. Additionally, we compare the results to phase-correlated reconstructions using the FDK algorithm and a total variation constrained reconstruction, where the total variation term is only defined in the spatial domain. The reconstructed datasets show strong improvements in terms of artifact reduction and low-contrast resolution compared to other methods. Thereby the temporal resolution of the reconstructed signal is not affected.

  1. Sparsity-constrained PET image reconstruction with learned dictionaries.

    PubMed

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging. PMID:27494441

  2. Sparsity-constrained PET image reconstruction with learned dictionaries

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.

  3. Automated 4D lung computed tomography reconstruction during free breathing for conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam M.; Low, Daniel A.; Christensen, Gary E.; Parikh, Parag J.; Song, Joo Hyun; Nystrom, Michelle M.; Lu, Wei; Deasy, Joseph O.; Hubenschmidt, James P.; Wahab, Sasha H.; Mutic, Sasa; Singh, Anurag K.; Bradley, Jeffrey D.

    2004-04-01

    We are developing 4D-CT to provide breathing motion information (trajectories) for radiation therapy treatment planning of lung cancer. Potential applications include optimization of intensity-modulated beams in the presence of breathing motion and intra-fraction target volume margin determination for conformal therapy. The images are acquired using a multi-slice CT scanner while the patient undergoes simultaneous quantitative spirometry. At each couch position, the CT scanner is operated in ciné mode and acquires up to 15 scans of 12 slices each. Each CT scan is associated with the measured tidal volume for retrospective reconstruction of 3D CT scans at arbitrary tidal volumes. The specific tasks of this project involves the development of automated registration of internal organ motion (trajectories) during breathing. A modified least-squares based optical flow algorithm tracks specific features of interest by modifying the eigenvalues of gradient matrix (gradient structural tensor). Good correlations between the measured motion and spirometry-based tidal volume are observed and evidence of internal hysteresis is also detected.

  4. Influence of Iterative Reconstruction Algorithms on PET Image Resolution

    NASA Astrophysics Data System (ADS)

    Karpetas, G. E.; Michail, C. M.; Fountos, G. P.; Valais, I. G.; Nikolopoulos, D.; Kandarakis, I. S.; Panayiotakis, G. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction. The simulated PET scanner was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the modulation transfer function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL, the ordered subsets separable paraboloidal surrogate (OSSPS), the median root prior (MRP) and OSMAPOSL with quadratic prior, algorithms. OSMAPOSL reconstruction was assessed by using fixed subsets and various iterations, as well as by using various beta (hyper) parameter values. MTF values were found to increase with increasing iterations. MTF also improves by using lower beta values. The simulated PET evaluation method, based on the TLC plane source, can be useful in the resolution assessment of PET scanners.

  5. Automatic 4D Reconstruction of Patient-Specific Cardiac Mesh with 1-to-1 Vertex Correspondence from Segmented Contours Lines

    PubMed Central

    Lim, Chi Wan; Su, Yi; Yeo, Si Yong; Ng, Gillian Maria; Nguyen, Vinh Tan; Zhong, Liang; Tan, Ru San; Poh, Kian Keong; Chai, Ping

    2014-01-01

    We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI) data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial–temporal) model of the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream computational simulation activities. PMID:24743555

  6. 5D respiratory motion model based image reconstruction algorithm for 4D cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jiulong; Zhang, Xue; Zhang, Xiaoqun; Zhao, Hongkai; Gao, Yu; Thomas, David; Low, Daniel A.; Gao, Hao

    2015-11-01

    4D cone-beam computed tomography (4DCBCT) reconstructs a temporal sequence of CBCT images for the purpose of motion management or 4D treatment in radiotherapy. However the image reconstruction often involves the binning of projection data to each temporal phase, and therefore suffers from deteriorated image quality due to inaccurate or uneven binning in phase, e.g., under the non-periodic breathing. A 5D model has been developed as an accurate model of (periodic and non-periodic) respiratory motion. That is, given the measurements of breathing amplitude and its time derivative, the 5D model parametrizes the respiratory motion by three time-independent variables, i.e., one reference image and two vector fields. In this work we aim to develop a new 4DCBCT reconstruction method based on 5D model. Instead of reconstructing a temporal sequence of images after the projection binning, the new method reconstructs time-independent reference image and vector fields with no requirement of binning. The image reconstruction is formulated as a optimization problem with total-variation regularization on both reference image and vector fields, and the problem is solved by the proximal alternating minimization algorithm, during which the split Bregman method is used to reconstruct the reference image, and the Chambolle's duality-based algorithm is used to reconstruct the vector fields. The convergence analysis of the proposed algorithm is provided for this nonconvex problem. Validated by the simulation studies, the new method has significantly improved image reconstruction accuracy due to no binning and reduced number of unknowns via the use of the 5D model.

  7. Adaptive patch-based POCS approach for super resolution reconstruction of 4D-CT lung data

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Cao, Lei; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu

    2015-08-01

    Image enhancement of lung four-dimensional computed tomography (4D-CT) data is highly important because image resolution remains a crucial point in lung cancer radiotherapy. In this paper, we proposed a method for lung 4D-CT super resolution (SR) by using an adaptive-patch-based projection onto convex sets (POCS) approach, which is in contrast with the global POCS SR algorithm, to recover fine details with lesser artifacts in images. The main contribution of this patch-based approach is that the interfering local structure from other phases can be rejected by employing a similar patch adaptive selection strategy. The effectiveness of our approach is demonstrated through experiments on simulated images and real lung 4D-CT datasets. A comparison with previously published SR reconstruction methods highlights the favorable characteristics of the proposed method.

  8. Incorporating anatomical side information into PET reconstruction using nonlocal regularization.

    PubMed

    Nguyen, Van-Giang; Lee, Soo-Jin

    2013-10-01

    With the introduction of combined positron emission tomography (PET)/computed tomography (CT) or PET/magnetic resonance imaging (MRI) scanners, there is an increasing emphasis on reconstructing PET images with the aid of the anatomical side information obtained from X-ray CT or MRI scanners. In this paper, we propose a new approach to incorporating prior anatomical information into PET reconstruction using the nonlocal regularization method. The nonlocal regularizer developed for this application is designed to selectively consider the anatomical information only when it is reliable. As our proposed nonlocal regularization method does not directly use anatomical edges or boundaries which are often used in conventional methods, it is not only free from additional processes to extract anatomical boundaries or segmented regions, but also more robust to the signal mismatch problem that is caused by the indirect relationship between the PET image and the anatomical image. We perform simulations with digital phantoms. According to our experimental results, compared to the conventional method based on the traditional local regularization method, our nonlocal regularization method performs well even with the imperfect prior anatomical information or in the presence of signal mismatch between the PET image and the anatomical image. PMID:23744678

  9. Bayesian PET image reconstruction incorporating anato-functional joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2009-12-01

    We developed a maximum a posterior (MAP) reconstruction method for positron emission tomography (PET) image reconstruction incorporating magnetic resonance (MR) image information, with the joint entropy between the PET and MR image features serving as the regularization constraint. A non-parametric method was used to estimate the joint probability density of the PET and MR images. Using realistically simulated PET and MR human brain phantoms, the quantitative performance of the proposed algorithm was investigated. Incorporation of the anatomic information via this technique, after parameter optimization, was seen to dramatically improve the noise versus bias tradeoff in every region of interest, compared to the result from using conventional MAP reconstruction. In particular, hot lesions in the FDG PET image, which had no anatomical correspondence in the MR image, also had improved contrast versus noise tradeoff. Corrections were made to figures 3, 4 and 6, and to the second paragraph of section 3.1 on 13 November 2009. The corrected electronic version is identical to the print version.

  10. An analytic reconstruction method for PET based on cubic splines

    NASA Astrophysics Data System (ADS)

    Kastis, George A.; Kyriakopoulou, Dimitra; Fokas, Athanasios S.

    2014-03-01

    PET imaging is an important nuclear medicine modality that measures in vivo distribution of imaging agents labeled with positron-emitting radionuclides. Image reconstruction is an essential component in tomographic medical imaging. In this study, we present the mathematical formulation and an improved numerical implementation of an analytic, 2D, reconstruction method called SRT, Spline Reconstruction Technique. This technique is based on the numerical evaluation of the Hilbert transform of the sinogram via an approximation in terms of 'custom made' cubic splines. It also imposes sinogram thresholding which restricts reconstruction only within object pixels. Furthermore, by utilizing certain symmetries it achieves a reconstruction time similar to that of FBP. We have implemented SRT in the software library called STIR and have evaluated this method using simulated PET data. We present reconstructed images from several phantoms. Sinograms have been generated at various Poison noise levels and 20 realizations of noise have been created at each level. In addition to visual comparisons of the reconstructed images, the contrast has been determined as a function of noise level. Further analysis includes the creation of line profiles when necessary, to determine resolution. Numerical simulations suggest that the SRT algorithm produces fast and accurate reconstructions at realistic noise levels. The contrast is over 95% in all phantoms examined and is independent of noise level.

  11. FIRST: Fast Iterative Reconstruction Software for (PET) tomography

    NASA Astrophysics Data System (ADS)

    Herraiz, J. L.; España, S.; Vaquero, J. J.; Desco, M.; Udías, J. M.

    2006-09-01

    Small animal PET scanners require high spatial resolution and good sensitivity. To reconstruct high-resolution images in 3D-PET, iterative methods, such as OSEM, are superior to analytical reconstruction algorithms, although their high computational cost is still a serious drawback. The higher performance of modern computers could make iterative image reconstruction fast enough to be viable, provided we are able to deal with the large number of probability coefficients for the system response matrix in high-resolution PET scanners, which is a difficult task that prevents the algorithms from reaching peak computing performance. Considering all possible axial and in-plane symmetries, as well as certain quasi-symmetries, we have been able to reduce the memory requirements to store the system response matrix (SRM) well below 1 GB, which allows us to keep the whole response matrix of the system inside RAM of ordinary industry-standard computers, so that the reconstruction algorithm can achieve near peak performance. The elements of the SRM are stored as cubic spline profiles and matched to voxel size during reconstruction. In this way, the advantages of 'on-the-fly' calculation and of fully stored SRM are combined. The on-the-fly part of the calculation (matching the profile functions to voxel size) of the SRM accounts for 10-30% of the reconstruction time, depending on the number of voxels chosen. We tested our approach with real data from a commercial small animal PET scanner. The results (image quality and reconstruction time) show that the proposed technique is a feasible solution.

  12. Iterative reconstruction for pet scanners with continuous scintillators.

    PubMed

    Iriarte, Ana; Caffarena, Gabriel; Lopez-Fernandez, Mariano; Garcia-Carmona, Rodrigo; Otero, Abraham; Sorzano, Carlos O S; Marabini, Roberto

    2015-08-01

    Several technical developments have led to a comeback of the continuous scintillators in positron emission tomography (PET). Important differences exist between the resurgent continuous scintillators and the prevailing pixelated devices, which can translate into certain advantages of the former over the latter. However, if the peculiarities of the continuous scintillators are not considered in the iterative reconstruction in which the measured data is converted to images, these advantages will not be fully exploited. In this paper, we review which those peculiarities are and how they have been considered in the literature of PET reconstruction. In light of this review, we propose a new method to compute one of the key elements of the iterative schemes, the system matrix. Specifically, we substitute the traditional Gaussian approach to the so-called uncertainty term by a more general Monte Carlo estimation, and account for the effect of the optical photons, which cannot be neglected in continuous-scintillators devices. Finally, we gather in a single scheme all the elements of the iterative reconstruction that have been individually reformulated, in this or previous works, for continuous scintillators, providing the first reconstruction framework fully adapted to this type of detectors. The preliminary images obtained for a commercially available PET scanner show the benefits of adjusting the reconstruction to the nature of the scintillators. PMID:26736742

  13. Super-resolution reconstruction for 4D computed tomography of the lung via the projections onto convex sets approach

    SciTech Connect

    Zhang, Yu E-mail: qianjinfeng08@gmail.com; Wu, Xiuxiu; Yang, Wei; Feng, Qianjin E-mail: qianjinfeng08@gmail.com; Chen, Wufan

    2014-11-01

    Purpose: The use of 4D computed tomography (4D-CT) of the lung is important in lung cancer radiotherapy for tumor localization and treatment planning. Sometimes, dense sampling is not acquired along the superior–inferior direction. This disadvantage results in an interslice thickness that is much greater than in-plane voxel resolutions. Isotropic resolution is necessary for multiplanar display, but the commonly used interpolation operation blurs images. This paper presents a super-resolution (SR) reconstruction method to enhance 4D-CT resolution. Methods: The authors assume that the low-resolution images of different phases at the same position can be regarded as input “frames” to reconstruct high-resolution images. The SR technique is used to recover high-resolution images. Specifically, the Demons deformable registration algorithm is used to estimate the motion field between different “frames.” Then, the projection onto convex sets approach is implemented to reconstruct high-resolution lung images. Results: The performance of the SR algorithm is evaluated using both simulated and real datasets. Their method can generate clearer lung images and enhance image structure compared with cubic spline interpolation and back projection (BP) method. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 40.8% relative to cubic spline interpolation and 10.2% versus BP. Conclusions: A new algorithm has been developed to improve the resolution of 4D-CT. The algorithm outperforms the cubic spline interpolation and BP approaches by producing images with markedly improved structural clarity and greatly reduced artifacts.

  14. PET image reconstruction: mean, variance, and optimal minimax criterion

    NASA Astrophysics Data System (ADS)

    Liu, Huafeng; Gao, Fei; Guo, Min; Xue, Liying; Nie, Jing; Shi, Pengcheng

    2015-04-01

    Given the noise nature of positron emission tomography (PET) measurements, it is critical to know the image quality and reliability as well as expected radioactivity map (mean image) for both qualitative interpretation and quantitative analysis. While existing efforts have often been devoted to providing only the reconstructed mean image, we present a unified framework for joint estimation of the mean and corresponding variance of the radioactivity map based on an efficient optimal min-max criterion. The proposed framework formulates the PET image reconstruction problem to be a transformation from system uncertainties to estimation errors, where the minimax criterion is adopted to minimize the estimation errors with possibly maximized system uncertainties. The estimation errors, in the form of a covariance matrix, express the measurement uncertainties in a complete way. The framework is then optimized by ∞-norm optimization and solved with the corresponding H∞ filter. Unlike conventional statistical reconstruction algorithms, that rely on the statistical modeling methods of the measurement data or noise, the proposed joint estimation stands from the point of view of signal energies and can handle from imperfect statistical assumptions to even no a priori statistical assumptions. The performance and accuracy of reconstructed mean and variance images are validated using Monte Carlo simulations. Experiments on phantom scans with a small animal PET scanner and real patient scans are also conducted for assessment of clinical potential.

  15. Joint model of motion and anatomy for PET image reconstruction

    SciTech Connect

    Qiao Feng; Pan Tinsu; Clark, John W. Jr.; Mawlawi, Osama

    2007-12-15

    Anatomy-based positron emission tomography (PET) image enhancement techniques have been shown to have the potential for improving PET image quality. However, these techniques assume an accurate alignment between the anatomical and the functional images, which is not always valid when imaging the chest due to respiratory motion. In this article, we present a joint model of both motion and anatomical information by integrating a motion-incorporated PET imaging system model with an anatomy-based maximum a posteriori image reconstruction algorithm. The mismatched anatomical information due to motion can thus be effectively utilized through this joint model. A computer simulation and a phantom study were conducted to assess the efficacy of the joint model, whereby motion and anatomical information were either modeled separately or combined. The reconstructed images in each case were compared to corresponding reference images obtained using a quadratic image prior based maximum a posteriori reconstruction algorithm for quantitative accuracy. Results of these studies indicated that while modeling anatomical information or motion alone improved the PET image quantitation accuracy, a larger improvement in accuracy was achieved when using the joint model. In the computer simulation study and using similar image noise levels, the improvement in quantitation accuracy compared to the reference images was 5.3% and 19.8% when using anatomical or motion information alone, respectively, and 35.5% when using the joint model. In the phantom study, these results were 5.6%, 5.8%, and 19.8%, respectively. These results suggest that motion compensation is important in order to effectively utilize anatomical information in chest imaging using PET. The joint motion-anatomy model presented in this paper provides a promising solution to this problem.

  16. Motion compensation for PET image reconstruction using deformable tetrahedral meshes

    NASA Astrophysics Data System (ADS)

    Manescu, P.; Ladjal, H.; Azencot, J.; Beuve, M.; Shariat, B.

    2015-12-01

    Respiratory-induced organ motion is a technical challenge to PET imaging. This motion induces displacements and deformation of the organs tissues, which need to be taken into account when reconstructing the spatial radiation activity. Classical image-based methods that describe motion using deformable image registration (DIR) algorithms cannot fully take into account the non-reproducibility of the respiratory internal organ motion nor the tissue volume variations that occur during breathing. In order to overcome these limitations, various biomechanical models of the respiratory system have been developed in the past decade as an alternative to DIR approaches. In this paper, we describe a new method of correcting motion artefacts in PET image reconstruction adapted to motion estimation models such as those based on the finite element method. In contrast with the DIR-based approaches, the radiation activity was reconstructed on deforming tetrahedral meshes. For this, we have re-formulated the tomographic reconstruction problem by introducing a time-dependent system matrix based calculated using tetrahedral meshes instead of voxelized images. The MLEM algorithm was chosen as the reconstruction method. The simulations performed in this study show that the motion compensated reconstruction based on tetrahedral deformable meshes has the capability to correct motion artefacts. Results demonstrate that, in the case of complex deformations, when large volume variations occur, the developed tetrahedral based method is more appropriate than the classical DIR-based one. This method can be used, together with biomechanical models controlled by external surrogates, to correct motion artefacts in PET images and thus reducing the need for additional internal imaging during the acquisition.

  17. Usefulness of four dimensional (4D) PET/CT imaging in the evaluation of thoracic lesions and in radiotherapy planning: Review of the literature.

    PubMed

    Sindoni, Alessandro; Minutoli, Fabio; Pontoriero, Antonio; Iatì, Giuseppe; Baldari, Sergio; Pergolizzi, Stefano

    2016-06-01

    In the past decade, Positron Emission Tomography (PET) has become a routinely used methodology for the assessment of solid tumors, which can detect functional abnormalities even before they become morphologically evident on conventional imaging. PET imaging has been reported to be useful in characterizing solitary pulmonary nodules, guiding biopsy, improving lung cancer staging, guiding therapy, monitoring treatment response and predicting outcome. This review focuses on the most relevant and recent literature findings, highlighting the current role of PET/CT and the evaluation of 4D-PET/CT modality for radiation therapy planning applications. Current evidence suggests that gross tumor volume delineation based on 4D-PET/CT information may be the best approach currently available for its delineation in thoracic cancers (lung and non-lung lesions). In our opinion, its use in this clinical setting is strongly encouraged, as it may improve patient treatment outcome in the setting of radiation therapy for cancers of the thoracic region, not only involving lung, but also lymph nodes and esophageal tissue. Literature results warrants further investigation in future prospective studies, especially in the setting of dose escalation. PMID:27133755

  18. Effect of filters and reconstruction algorithms on I-124 PET in Siemens Inveon PET scanner

    NASA Astrophysics Data System (ADS)

    Ram Yu, A.; Kim, Jin Su

    2015-10-01

    Purpose: To assess the effects of filtering and reconstruction on Siemens I-124 PET data. Methods: A Siemens Inveon PET was used. Spatial resolution of I-124 was measured to a transverse offset of 50 mm from the center FBP, 2D ordered subset expectation maximization (OSEM2D), 3D re-projection algorithm (3DRP), and maximum a posteriori (MAP) methods were tested. Non-uniformity (NU), recovery coefficient (RC), and spillover ratio (SOR) parameterized image quality. Mini deluxe phantom data of I-124 was also assessed. Results: Volumetric resolution was 7.3 mm3 from the transverse FOV center when FBP reconstruction algorithms with ramp filter was used. MAP yielded minimal NU with β =1.5. OSEM2D yielded maximal RC. SOR was below 4% for FBP with ramp, Hamming, Hanning, or Shepp-Logan filters. Based on the mini deluxe phantom results, an FBP with Hanning or Parzen filters, or a 3DRP with Hanning filter yielded feasible I-124 PET data.Conclusions: Reconstruction algorithms and filters were compared. FBP with Hanning or Parzen filters, or 3DRP with Hanning filter yielded feasible data for quantifying I-124 PET.

  19. Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging

    PubMed Central

    Yu, Xingjian; Chen, Shuhang; Hu, Zhenghui; Liu, Meng; Chen, Yunmei; Shi, Pengcheng; Liu, Huafeng

    2015-01-01

    In dynamic Positron Emission Tomography (PET), an estimate of the radio activity concentration is obtained from a series of frames of sinogram data taken at ranging in duration from 10 seconds to minutes under some criteria. So far, all the well-known reconstruction algorithms require known data statistical properties. It limits the speed of data acquisition, besides, it is unable to afford the separated information about the structure and the variation of shape and rate of metabolism which play a major role in improving the visualization of contrast for some requirement of the diagnosing in application. This paper presents a novel low rank-based activity map reconstruction scheme from emission sinograms of dynamic PET, termed as SLCR representing Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging. In this method, the stationary background is formulated as a low rank component while variations between successive frames are abstracted to the sparse. The resulting nuclear norm and l1 norm related minimization problem can also be efficiently solved by many recently developed numerical methods. In this paper, the linearized alternating direction method is applied. The effectiveness of the proposed scheme is illustrated on three data sets. PMID:26540274

  20. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    NASA Astrophysics Data System (ADS)

    Bowen, S. R.; Nyflot, M. J.; Herrmann, C.; Groh, C. M.; Meyer, J.; Wollenweber, S. D.; Stearns, C. W.; Kinahan, P. E.; Sandison, G. A.

    2015-05-01

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT

  1. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    PubMed Central

    Bowen, S R; Nyflot, M J; Hermann, C; Groh, C; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-01-01

    Effective positron emission tomography/computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by 6 different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy (VMAT) were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses (EUD), and 2%-2mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, < 5% in treatment planning, and < 2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT

  2. MAP reconstruction for Fourier rebinned TOF-PET data

    NASA Astrophysics Data System (ADS)

    Bai, Bing; Lin, Yanguang; Zhu, Wentao; Ren, Ran; Li, Quanzheng; Dahlbom, Magnus; DiFilippo, Frank; Leahy, Richard M.

    2014-02-01

    Time-of-flight (TOF) information improves the signal-to-noise ratio in positron emission tomography (PET). The computation cost in processing TOF-PET sinograms is substantially higher than for nonTOF data because the data in each line of response is divided among multiple TOF bins. This additional cost has motivated research into methods for rebinning TOF data into lower dimensional representations that exploit redundancies inherent in TOF data. We have previously developed approximate Fourier methods that rebin TOF data into either three-dimensional (3D) nonTOF or 2D nonTOF formats. We refer to these methods respectively as FORET-3D and FORET-2D. Here we describe maximum a posteriori (MAP) estimators for use with FORET rebinned data. We first derive approximate expressions for the variance of the rebinned data. We then use these results to rescale the data so that the variance and mean are approximately equal allowing us to use the Poisson likelihood model for MAP reconstruction. MAP reconstruction from these rebinned data uses a system matrix in which the detector response model accounts for the effects of rebinning. Using these methods we compare the performance of FORET-2D and 3D with TOF and nonTOF reconstructions using phantom and clinical data. Our phantom results show a small loss in contrast recovery at matched noise levels using FORET compared to reconstruction from the original TOF data. Clinical examples show FORET images that are qualitatively similar to those obtained from the original TOF-PET data but with a small increase in variance at matched resolution. Reconstruction time is reduced by a factor of 5 and 30 using FORET3D+MAP and FORET2D+MAP respectively compared to 3D TOF MAP, which makes these methods attractive for clinical applications.

  3. Evaluation of the spline reconstruction technique for PET

    SciTech Connect

    Kastis, George A. Kyriakopoulou, Dimitra; Gaitanis, Anastasios; Fernández, Yolanda; Hutton, Brian F.; Fokas, Athanasios S.

    2014-04-15

    Purpose: The spline reconstruction technique (SRT), based on the analytic formula for the inverse Radon transform, has been presented earlier in the literature. In this study, the authors present an improved formulation and numerical implementation of this algorithm and evaluate it in comparison to filtered backprojection (FBP). Methods: The SRT is based on the numerical evaluation of the Hilbert transform of the sinogram via an approximation in terms of “custom made” cubic splines. By restricting reconstruction only within object pixels and by utilizing certain mathematical symmetries, the authors achieve a reconstruction time comparable to that of FBP. The authors have implemented SRT in STIR and have evaluated this technique using simulated data from a clinical positron emission tomography (PET) system, as well as real data obtained from clinical and preclinical PET scanners. For the simulation studies, the authors have simulated sinograms of a point-source and three digital phantoms. Using these sinograms, the authors have created realizations of Poisson noise at five noise levels. In addition to visual comparisons of the reconstructed images, the authors have determined contrast and bias for different regions of the phantoms as a function of noise level. For the real-data studies, sinograms of an{sup 18}F-FDG injected mouse, a NEMA NU 4-2008 image quality phantom, and a Derenzo phantom have been acquired from a commercial PET system. The authors have determined: (a) coefficient of variations (COV) and contrast from the NEMA phantom, (b) contrast for the various sections of the Derenzo phantom, and (c) line profiles for the Derenzo phantom. Furthermore, the authors have acquired sinograms from a whole-body PET scan of an {sup 18}F-FDG injected cancer patient, using the GE Discovery ST PET/CT system. SRT and FBP reconstructions of the thorax have been visually evaluated. Results: The results indicate an improvement in FWHM and FWTM in both simulated and real

  4. Learning distance function for regression-based 4D pulmonary trunk model reconstruction estimated from sparse MRI data

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Tsymbal, Alexey; Ionasec, Razvan; Georgescu, Bogdan; Zhou, Shaohua K.; Hornegger, Joachim; Comaniciu, Dorin

    2011-03-01

    Congenital heart defect (CHD) is the most common birth defect and a frequent cause of death for children. Tetralogy of Fallot (ToF) is the most often occurring CHD which affects in particular the pulmonary valve and trunk. Emerging interventional methods enable percutaneous pulmonary valve implantation, which constitute an alternative to open heart surgery. While minimal invasive methods become common practice, imaging and non-invasive assessment tools become crucial components in the clinical setting. Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (cMRI) are techniques with complementary properties and ability to acquire multiple non-invasive and accurate scans required for advance evaluation and therapy planning. In contrary to CT which covers the full 4D information over the cardiac cycle, cMRI often acquires partial information, for example only one 3D scan of the whole heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. The data acquired in this way is called sparse cMRI. In this paper, we propose a regression-based approach for the reconstruction of the full 4D pulmonary trunk model from sparse MRI. The reconstruction approach is based on learning a distance function between the sparse MRI which needs to be completed and the 4D CT data with the full information used as the training set. The distance is based on the intrinsic Random Forest similarity which is learnt for the corresponding regression problem of predicting coordinates of unseen mesh points. Extensive experiments performed on 80 cardiac CT and MR sequences demonstrated the average speed of 10 seconds and accuracy of 0.1053mm mean absolute error for the proposed approach. Using the case retrieval workflow and local nearest neighbour regression with the learnt distance function appears to be competitive with respect to "black box" regression with immediate prediction of coordinates, while providing transparency to the

  5. Online 4d Reconstruction Using Multi-Images Available Under Open Access

    NASA Astrophysics Data System (ADS)

    Ioannides, M.; Hadjiprocopi, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E.; Makantasis, K.; Santos, P.; Fellner, D.; Stork, A.; Balet, O.; Julien, M.; Weinlinger, G.; Johnson, P. S.; Klein, M.; Fritsch, D.

    2013-07-01

    The advent of technology in digital cameras and their incorporation into virtually any smart mobile device has led to an explosion of the number of photographs taken every day. Today, the number of images stored online and available freely has reached unprecedented levels. It is estimated that in 2011, there were over 100 billion photographs stored in just one of the major social media sites. This number is growing exponentially. Moreover, advances in the fields of Photogrammetry and Computer Vision have led to significant breakthroughs such as the Structure from Motion algorithm which creates 3D models of objects using their twodimensional photographs. The existence of powerful and affordable computational machinery not only the reconstruction of complex structures but also entire cities. This paper illustrates an overview of our methodology for producing 3D models of Cultural Heritage structures such as monuments and artefacts from 2D data (pictures, video), available on Internet repositories, social media, Google Maps, Bing, etc. We also present new approaches to semantic enrichment of the end results and their subsequent export to Europeana, the European digital library, for integrated, interactive 3D visualisation within regular web browsers using WebGl and X3D. Our main goal is to enable historians, architects, archaeologists, urban planners and affiliated professionals to reconstruct views of historical structures from millions of images floating around the web and interact with them.

  6. Accelerated 4D Quantitative Single Point EPR Imaging Using Model-based Reconstruction

    PubMed Central

    Jang, Hyungseok; Matsumoto, Shingo; Devasahayam, Nallathamby; Subramanian, Sankaran; Zhuo, Jiachen; Krishna, Murali C.; McMillan, Alan B

    2014-01-01

    Purpose EPRI has surfaced as a promising non-invasive imaging modality that is capable of imaging tissue oxygenation. Due to extremely short spin-spin relaxation time, EPRI benefits from single point imaging and inherently suffers from limited spatial and temporal resolution, preventing localization of small hypoxic tissues and differentiation of hypoxia dynamics, making accelerated imaging a crucial issue. Method In this study, methods for accelerated single point imaging were developed by combining a bilateral k-space extrapolation technique with model-based reconstruction that benefits from dense sampling in the parameter domain (measurement of the T2* decay of an FID). In bilateral k-space extrapolation, more k-space samples are obtained in a sparsely sampled region by bilaterally extrapolating data from temporally neighboring k-spaces. To improve the accuracy of T2* estimation, a principal component analysis (PCA)-based method was implemented. Result In a computer simulation and a phantom experiment, the proposed methods showed its capability for reliable T2* estimation with high acceleration (8-fold, 15-fold, and 30-fold accelerations for 61×61×61, 95×95×95, and 127×127×127 matrix, respectively). Conclusion By applying bilateral k-space extrapolation and model-based reconstruction, improved scan times with higher spatial resolution can be achieved in the current SP-EPRI modality. PMID:24803382

  7. PET Image Reconstruction Using Information Theoretic Anatomical Priors

    PubMed Central

    Somayajula, Sangeetha; Panagiotou, Christos; Rangarajan, Anand; Li, Quanzheng; Arridge, Simon R.

    2011-01-01

    We describe a nonparametric framework for incorporating information from co-registered anatomical images into positron emission tomographic (PET) image reconstruction through priors based on information theoretic similarity measures. We compare and evaluate the use of mutual information (MI) and joint entropy (JE) between feature vectors extracted from the anatomical and PET images as priors in PET reconstruction. Scale-space theory provides a framework for the analysis of images at different levels of detail, and we use this approach to define feature vectors that emphasize prominent boundaries in the anatomical and functional images, and attach less importance to detail and noise that is less likely to be correlated in the two images. Through simulations that model the best case scenario of perfect agreement between the anatomical and functional images, and a more realistic situation with a real magnetic resonance image and a PET phantom that has partial volumes and a smooth variation of intensities, we evaluate the performance of MI and JE based priors in comparison to a Gaussian quadratic prior, which does not use any anatomical information. We also apply this method to clinical brain scan data using F18 Fallypride, a tracer that binds to dopamine receptors and therefore localizes mainly in the striatum. We present an efficient method of computing these priors and their derivatives based on fast Fourier transforms that reduce the complexity of their convolution-like expressions. Our results indicate that while sensitive to initialization and choice of hyperparameters, information theoretic priors can reconstruct images with higher contrast and superior quantitation than quadratic priors. PMID:20851790

  8. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G.; Liu, Chihray; Lu, Bo

    2015-12-01

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR). In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the

  9. Reconstruction of landslide movements by inversion of 4-D electrical resistivity tomography monitoring data

    NASA Astrophysics Data System (ADS)

    Wilkinson, Paul; Chambers, Jonathan; Uhlemann, Sebastian; Meldrum, Philip; Smith, Alister; Dixon, Neil; Loke, Meng Heng

    2016-02-01

    Reliable tomographic inversion of geoelectrical monitoring data from unstable slopes relies critically on knowing the electrode positions, which may move over time. We develop and present an innovative inverse method to recover movements in both surface directions from geoelectrical measurements made on a grid of monitoring electrodes. For the first time, we demonstrate this method using field data from an active landslide to recover sequences of movement over timescales of days to years. Comparison with GPS measurements demonstrated an accuracy of within 10% of the electrode spacing, sufficient to correct the majority of artifacts that would occur in subsequent image reconstructions if incorrect positions are used. Over short timescales where the corresponding subsurface resistivity changes were smaller, the constraints could be relaxed and an order-of-magnitude better accuracy was achievable. This enabled the onset and acceleration of landslide activity to be detected with a temporal resolution of a few days.

  10. 4D reconstruction of the past: the image retrieval and 3D model construction pipeline

    NASA Astrophysics Data System (ADS)

    Hadjiprocopis, Andreas; Ioannides, Marinos; Wenzel, Konrad; Rothermel, Mathias; Johnsons, Paul S.; Fritsch, Dieter; Doulamis, Anastasios; Protopapadakis, Eftychios; Kyriakaki, Georgia; Makantasis, Kostas; Weinlinger, Guenther; Klein, Michael; Fellner, Dieter; Stork, Andre; Santos, Pedro

    2014-08-01

    One of the main characteristics of the Internet era we are living in, is the free and online availability of a huge amount of data. This data is of varied reliability and accuracy and exists in various forms and formats. Often, it is cross-referenced and linked to other data, forming a nexus of text, images, animation and audio enabled by hypertext and, recently, by the Web3.0 standard. Our main goal is to enable historians, architects, archaeolo- gists, urban planners and affiliated professionals to reconstruct views of historical monuments from thousands of images floating around the web. This paper aims to provide an update of our progress in designing and imple- menting a pipeline for searching, filtering and retrieving photographs from Open Access Image Repositories and social media sites and using these images to build accurate 3D models of archaeological monuments as well as enriching multimedia of cultural / archaeological interest with metadata and harvesting the end products to EU- ROPEANA. We provide details of how our implemented software searches and retrieves images of archaeological sites from Flickr and Picasa repositories as well as strategies on how to filter the results, on two levels; a) based on their built-in metadata including geo-location information and b) based on image processing and clustering techniques. We also describe our implementation of a Structure from Motion pipeline designed for producing 3D models using the large collection of 2D input images (>1000) retrieved from Internet Repositories.

  11. Three-channel dynamic photometric stereo: a new method for 4D surface reconstruction and volume recovery

    NASA Astrophysics Data System (ADS)

    Schroeder, Walter; Schulze, Wolfram; Wetter, Thomas; Chen, Chi-Hsien

    2008-08-01

    Three-dimensional (3D) body surface reconstruction is an important field in health care. A popular method for this purpose is laser scanning. However, using Photometric Stereo (PS) to record lumbar lordosis and the surface contour of the back poses a viable alternative due to its lower costs and higher flexibility compared to laser techniques and other methods of three-dimensional body surface reconstruction. In this work, we extended the traditional PS method and proposed a new method for obtaining surface and volume data of a moving object. The principle of traditional Photometric Stereo uses at least three images of a static object taken under different light sources to obtain 3D information of the object. Instead of using normal light, the light sources in the proposed method consist of the RGB-Color-Model's three colors: red, green and blue. A series of pictures taken with a video camera can now be separated into the different color channels. Each set of the three images can then be used to calculate the surface normals as a traditional PS. This method waives the requirement that the object imaged must be kept still as in almost all the other body surface reconstruction methods. By putting two cameras opposite to a moving object and lighting the object with the colored light, the time-varying surface (4D) data can easily be calculated. The obtained information can be used in many medical fields such as rehabilitation, diabetes screening or orthopedics.

  12. 4D RECONSTRUCTIONS FROM LOW-COUNT SPECT DATA USING DEFORMABLE MODELS WITH SMOOTH INTERIOR INTENSITY VARIATIONS

    SciTech Connect

    G. S. CUNNINGHAM; A. LEHOVICH

    2000-01-01

    The Bayes Inference Engine (BIE) has been used to perform a 4D reconstruction of a first-pass radiotracer bolus distribution inside a CardioWest Total Artificial Heart, imaged with the University of Arizona's FastSPECT system. The BIE estimates parameter values that define the 3D model of the radiotracer distribution at each of 41 times spanning about two seconds. The 3D models have two components: a closed surface, composed of hi-quadratic Bezier triangular surface patches, that defines the interface between the part of the blood pool that contains radiotracer and the part that contains no radiotracer, and smooth voxel-to-voxel variations in intensity within the closed surface. Ideally, the surface estimates the ventricular wall location where the bolus is infused throughout the part of the blood pool contained by the right ventricle. The voxel-to-voxel variations are needed to model an inhomogeneously-mixed bolus. Maximum a posterior (MAP) estimates of the Bezier control points and voxel values are obtained for each time frame. We show new reconstructions using the Bezier surface models, and discuss estimates of ventricular volume as a function of time, ejection fraction, and wall motion. The computation time for our reconstruction process, which directly estimates complex 3D model parameters from the raw data, is performed in a time that is competitive with more traditional voxel-based methods (ML-EM, e.g.).

  13. Image reconstruction for PET/CT scanners: past achievements and future challenges

    PubMed Central

    Tong, Shan; Alessio, Adam M; Kinahan, Paul E

    2011-01-01

    PET is a medical imaging modality with proven clinical value for disease diagnosis and treatment monitoring. The integration of PET and CT on modern scanners provides a synergy of the two imaging modalities. Through different mathematical algorithms, PET data can be reconstructed into the spatial distribution of the injected radiotracer. With dynamic imaging, kinetic parameters of specific biological processes can also be determined. Numerous efforts have been devoted to the development of PET image reconstruction methods over the last four decades, encompassing analytic and iterative reconstruction methods. This article provides an overview of the commonly used methods. Current challenges in PET image reconstruction include more accurate quantitation, TOF imaging, system modeling, motion correction and dynamic reconstruction. Advances in these aspects could enhance the use of PET/CT imaging in patient care and in clinical research studies of pathophysiology and therapeutic interventions. PMID:21339831

  14. Dosimetric quality assurance of highly conformal external beam treatments: from 2D phantom comparisons to 4D patient dose reconstruction

    NASA Astrophysics Data System (ADS)

    Feygelman, V.; Nelms, B.

    2013-06-01

    As IMRT technology continues to evolve, so do the dosimetric QA methods. A historical review of those is presented, starting with longstanding techniques such as film and ion chamber in a phantom and progressing towards 3D and 4D dose reconstruction in the patient. Regarding patient-specific QA, we envision that the currently prevalent limited comparison of dose distributions in the phantom by γ-analysis will be eventually replaced by clinically meaningful patient dose analyses with improved sensitivity and specificity. In a larger sense, we envision a future of QA built upon lessons from the rich history of "quality" as a science and philosophy. This future will aim to improve quality (and ultimately reduce cost) via advanced commissioning processes that succeed in detecting and rooting out systematic errors upstream of patient treatment, thus reducing our reliance on, and the resource burden associated with, per-beam/per-plan inspection.

  15. Investigation of optimization-based reconstruction with an image-total-variation constraint in PET

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan

    2016-08-01

    Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.

  16. Investigation of optimization-based reconstruction with an image-total-variation constraint in PET.

    PubMed

    Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E; Rose, Sean; Sidky, Emil Y; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan

    2016-08-21

    Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications. PMID:27452653

  17. Iterative reconstruction methods for high-throughput PET tomographs.

    PubMed

    Hamill, James; Bruckbauer, Thomas

    2002-08-01

    A fast iterative method is described for processing clinical PET scans acquired in three dimensions, that is, with no inter-plane septa, using standard computers to replace dedicated processors used until the late 1990s. The method is based on sinogram resampling, Fourier rebinning, Monte Carlo scatter simulation and iterative reconstruction using the attenuation-weighted OSEM method and a projector based on a Gaussian pixel model. Resampling of measured sinogram values occurs before Fourier rebinning, to minimize parallax and geometric distortions due to the circular geometry, and also to reduce the size of the sinogram. We analyse the geometrical and statistical effects of resampling, showing that the lines of response are positioned correctly and that resampling is equivalent to about 4 mm of post-reconstruction filtering. We also present phantom and patient results. In this approach, multi-bed clinical oncology scans can be ready for diagnosis within minutes. PMID:12200928

  18. PET iterative reconstruction incorporating an efficient positron range correction method.

    PubMed

    Bertolli, Ottavia; Eleftheriou, Afroditi; Cecchetti, Matteo; Camarlinghi, Niccolò; Belcari, Nicola; Tsoumpas, Charalampos

    2016-02-01

    Positron range is one of the main physical effects limiting the spatial resolution of positron emission tomography (PET) images. If positrons travel inside a magnetic field, for instance inside a nuclear magnetic resonance (MR) tomograph, the mean range will be smaller but still significant. In this investigation we examined a method to correct for the positron range effect in iterative image reconstruction by including tissue-specific kernels in the forward projection operation. The correction method was implemented within STIR library (Software for Tomographic Image Reconstruction). In order to obtain the positron annihilation distribution of various radioactive isotopes in water and lung tissue, simulations were performed with the Monte Carlo package GATE [Jan et al. 2004 [1

  19. Data Acquisition and Image Reconstruction Systems from the miniPET Scanners to the CARDIOTOM Camera

    SciTech Connect

    Valastvan, I.; Imrek, J.; Hegyesi, G.; Molnar, J.; Novak, D.; Bone, D.; Kerek, A.

    2007-11-26

    Nuclear imaging devices play an important role in medical diagnosis as well as drug research. The first and second generation data acquisition systems and the image reconstruction library developed provide a unified hardware and software platform for the miniPET-I, miniPET-II small animal PET scanners and for the CARDIOTOM{sup TM}.

  20. TH-E-17A-02: High-Pitch and Sparse-View Helical 4D CT Via Iterative Image Reconstruction Method Based On Tensor Framelet

    SciTech Connect

    Guo, M; Nam, H; Li, R; Xing, L; Gao, H

    2014-06-15

    Purpose: 4D CT is routinely performed during radiation therapy treatment planning of thoracic and abdominal cancers. Compared with the cine mode, the helical mode is advantageous in temporal resolution. However, a low pitch (∼0.1) for 4D CT imaging is often required instead of the standard pitch (∼1) for static imaging, since standard image reconstruction based on analytic method requires the low-pitch scanning in order to satisfy the data sufficient condition when reconstructing each temporal frame individually. In comparison, the flexible iterative method enables the reconstruction of all temporal frames simultaneously, so that the image similarity among frames can be utilized to possibly perform high-pitch and sparse-view helical 4D CT imaging. The purpose of this work is to investigate such an exciting possibility for faster imaging with lower dose. Methods: A key for highpitch and sparse-view helical 4D CT imaging is the simultaneous reconstruction of all temporal frames using the prior that temporal frames are continuous along the temporal direction. In this work, such a prior is regularized through the sparsity transform based on spatiotemporal tensor framelet (TF) as a multilevel and high-order extension of total variation transform. Moreover, GPU-based fast parallel computing of X-ray transform and its adjoint together with split Bregman method is utilized for solving the 4D image reconstruction problem efficiently and accurately. Results: The simulation studies based on 4D NCAT phantoms were performed with various pitches (i.e., 0.1, 0.2, 0.5, and 1) and sparse views (i.e., 400 views per rotation instead of standard >2000 views per rotation), using 3D iterative individual reconstruction method based on 3D TF and 4D iterative simultaneous reconstruction method based on 4D TF respectively. Conclusion: The proposed TF-based simultaneous 4D image reconstruction method enables high-pitch and sparse-view helical 4D CT with lower dose and faster speed.

  1. SU-E-J-153: Reconstructing 4D Cone Beam CT Images for Clinical QA of Lung SABR Treatments

    SciTech Connect

    Beaudry, J; Bergman, A; Cropp, R

    2015-06-15

    Purpose: To verify that the planned Primary Target Volume (PTV) and Internal Gross Tumor Volume (IGTV) fully enclose a moving lung tumor volume as visualized on a pre-SABR treatment verification 4D Cone Beam CT. Methods: Daily 3DCBCT image sets were acquired immediately prior to treatment for 10 SABR lung patients using the on-board imaging system integrated into a Varian TrueBeam (v1.6: no 4DCBCT module available). Respiratory information was acquired during the scan using the Varian RPM system. The CBCT projections were sorted into 8 bins offline, both by breathing phase and amplitude, using in-house software. An iterative algorithm based on total variation minimization, implemented in the open source reconstruction toolkit (RTK), was used to reconstruct the binned projections into 4DCBCT images. The relative tumor motion was quantified by tracking the centroid of the tumor volume from each 4DCBCT image. Following CT-CBCT registration, the planning CT volumes were compared to the location of the CBCT tumor volume as it moves along its breathing trajectory. An overlap metric quantified the ability of the planned PTV and IGTV to contain the tumor volume at treatment. Results: The 4DCBCT reconstructed images visibly show the tumor motion. The mean overlap between the planned PTV (IGTV) and the 4DCBCT tumor volumes was 100% (94%), with an uncertainty of 5% from the 4DCBCT tumor volume contours. Examination of the tumor motion and overlap metric verify that the IGTV drawn at the planning stage is a good representation of the tumor location at treatment. Conclusion: It is difficult to compare GTV volumes from a 4DCBCT and a planning CT due to image quality differences. However, it was possible to conclude the GTV remained within the PTV 100% of the time thus giving the treatment staff confidence that SABR lung treatements are being delivered accurately.

  2. Optimizing modelling in iterative image reconstruction for preclinical pinhole PET

    NASA Astrophysics Data System (ADS)

    Goorden, Marlies C.; van Roosmalen, Jarno; van der Have, Frans; Beekman, Freek J.

    2016-05-01

    The recently developed versatile emission computed tomography (VECTor) technology enables high-energy SPECT and simultaneous SPECT and PET of small animals at sub-mm resolutions. VECTor uses dedicated clustered pinhole collimators mounted in a scanner with three stationary large-area NaI(Tl) gamma detectors. Here, we develop and validate dedicated image reconstruction methods that compensate for image degradation by incorporating accurate models for the transport of high-energy annihilation gamma photons. Ray tracing software was used to calculate photon transport through the collimator structures and into the gamma detector. Input to this code are several geometric parameters estimated from system calibration with a scanning 99mTc point source. Effects on reconstructed images of (i) modelling variable depth-of-interaction (DOI) in the detector, (ii) incorporating photon paths that go through multiple pinholes (‘multiple-pinhole paths’ (MPP)), and (iii) including various amounts of point spread function (PSF) tail were evaluated. Imaging 18F in resolution and uniformity phantoms showed that including large parts of PSFs is essential to obtain good contrast-noise characteristics and that DOI modelling is highly effective in removing deformations of small structures, together leading to 0.75 mm resolution PET images of a hot-rod Derenzo phantom. Moreover, MPP modelling reduced the level of background noise. These improvements were also clearly visible in mouse images. Performance of VECTor can thus be significantly improved by accurately modelling annihilation gamma photon transport.

  3. Optimizing modelling in iterative image reconstruction for preclinical pinhole PET.

    PubMed

    Goorden, Marlies C; van Roosmalen, Jarno; van der Have, Frans; Beekman, Freek J

    2016-05-21

    The recently developed versatile emission computed tomography (VECTor) technology enables high-energy SPECT and simultaneous SPECT and PET of small animals at sub-mm resolutions. VECTor uses dedicated clustered pinhole collimators mounted in a scanner with three stationary large-area NaI(Tl) gamma detectors. Here, we develop and validate dedicated image reconstruction methods that compensate for image degradation by incorporating accurate models for the transport of high-energy annihilation gamma photons. Ray tracing software was used to calculate photon transport through the collimator structures and into the gamma detector. Input to this code are several geometric parameters estimated from system calibration with a scanning (99m)Tc point source. Effects on reconstructed images of (i) modelling variable depth-of-interaction (DOI) in the detector, (ii) incorporating photon paths that go through multiple pinholes ('multiple-pinhole paths' (MPP)), and (iii) including various amounts of point spread function (PSF) tail were evaluated. Imaging (18)F in resolution and uniformity phantoms showed that including large parts of PSFs is essential to obtain good contrast-noise characteristics and that DOI modelling is highly effective in removing deformations of small structures, together leading to 0.75 mm resolution PET images of a hot-rod Derenzo phantom. Moreover, MPP modelling reduced the level of background noise. These improvements were also clearly visible in mouse images. Performance of VECTor can thus be significantly improved by accurately modelling annihilation gamma photon transport. PMID:27082049

  4. SU-E-J-02: 4D Digital Tomosynthesis Based On Algebraic Image Reconstruction and Total-Variation Minimization for the Improvement of Image Quality

    SciTech Connect

    Kim, D; Kang, S; Kim, T; Suh, T; Kim, S

    2014-06-01

    Purpose: In this paper, we implemented the four-dimensional (4D) digital tomosynthesis (DTS) imaging based on algebraic image reconstruction technique and total-variation minimization method in order to compensate the undersampled projection data and improve the image quality. Methods: The projection data were acquired as supposed the cone-beam computed tomography system in linear accelerator by the Monte Carlo simulation and the in-house 4D digital phantom generation program. We performed 4D DTS based upon simultaneous algebraic reconstruction technique (SART) among the iterative image reconstruction technique and total-variation minimization method (TVMM). To verify the effectiveness of this reconstruction algorithm, we performed systematic simulation studies to investigate the imaging performance. Results: The 4D DTS algorithm based upon the SART and TVMM seems to give better results than that based upon the existing method, or filtered-backprojection. Conclusion: The advanced image reconstruction algorithm for the 4D DTS would be useful to validate each intra-fraction motion during radiation therapy. In addition, it will be possible to give advantage to real-time imaging for the adaptive radiation therapy. This research was supported by Leading Foreign Research Institute Recruitment Program (Grant No.2009-00420) and Basic Atomic Energy Research Institute (BAERI); (Grant No. 2009-0078390) through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP)

  5. SU-E-J-246: A Deformation-Field Map Based Liver 4D CBCT Reconstruction Method Using Gold Nanoparticles as Constraints

    SciTech Connect

    Harris, W; Zhang, Y; Ren, L; Yin, F

    2014-06-01

    Purpose: To investigate the feasibility of using nanoparticle markers to validate liver tumor motion together with a deformation field map-based four dimensional (4D) cone-beam computed tomography (CBCT) reconstruction method. Methods: A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In this method, each phase of the 4D-CBCT is considered as a deformation of a prior CT volume. The DFM is solved by a motion modeling and free-form deformation (MM-FD) technique, using a data fidelity constraint and the deformation energy minimization. For liver imaging, there is low contrast of a liver tumor in on-board projections. A validation of liver tumor motion using implanted gold nanoparticles, along with the MM-FD deformation technique is implemented to reconstruct onboard 4D CBCT liver radiotherapy images. These nanoparticles were placed around the liver tumor to reflect the tumor positions in both CT simulation and on-board image acquisition. When reconstructing each phase of the 4D-CBCT, the migrations of the gold nanoparticles act as a constraint to regularize the deformation field, along with the data fidelity and the energy minimization constraints. In this study, multiple tumor diameters and positions were simulated within the liver for on-board 4D-CBCT imaging. The on-board 4D-CBCT reconstructed by the proposed method was compared with the “ground truth” image. Results: The preliminary data, which uses reconstruction for lung radiotherapy suggests that the advanced reconstruction algorithm including the gold nanoparticle constraint will Resultin volume percentage differences (VPD) between lesions in reconstructed images by MM-FD and “ground truth” on-board images of 11.5% (± 9.4%) and a center of mass shift of 1.3 mm (± 1.3 mm) for liver radiotherapy. Conclusion: The advanced MM-FD technique enforcing the additional constraints from gold nanoparticles, results in improved accuracy

  6. Fast fully 3-D image reconstruction in PET using planograms.

    PubMed

    Brasse, D; Kinahan, P E; Clackdoyle, R; Defrise, M; Comtat, C; Townsend, D W

    2004-04-01

    We present a method of performing fast and accurate three-dimensional (3-D) backprojection using only Fourier transform operations for line-integral data acquired by planar detector arrays in positron emission tomography. This approach is a 3-D extension of the two-dimensional (2-D) linogram technique of Edholm. By using a special choice of parameters to index a line of response (LOR) for a pair of planar detectors, rather than the conventional parameters used to index a LOR for a circular tomograph, all the LORs passing through a point in the field of view (FOV) lie on a 2-D plane in the four-dimensional (4-D) data space. Thus, backprojection of all the LORs passing through a point in the FOV corresponds to integration of a 2-D plane through the 4-D "planogram." The key step is that the integration along a set of parallel 2-D planes through the planogram, that is, backprojection of a plane of points, can be replaced by a 2-D section through the origin of the 4-D Fourier transform of the data. Backprojection can be performed as a sequence of Fourier transform operations, for faster implementation. In addition, we derive the central-section theorem for planogram format data, and also derive a reconstruction filter for both backprojection-filtering and filtered-backprojection reconstruction algorithms. With software-based Fourier transform calculations we provide preliminary comparisons of planogram backprojection to standard 3-D backprojection and demonstrate a reduction in computation time by a factor of approximately 15. PMID:15084067

  7. Image reconstruction

    SciTech Connect

    Defrise, Michel; Gullberg, Grant T.

    2006-04-05

    We give an overview of the role of Physics in Medicine andBiology in development of tomographic reconstruction algorithms. We focuson imaging modalities involving ionizing radiation, CT, PET and SPECT,and cover a wide spectrum of reconstruction problems, starting withclassical 2D tomogra tomography in the 1970s up to 4D and 5D problemsinvolving dynamic imaging of moving organs.

  8. SU-D-201-07: Exploring the Utility of 4D FDG-PET/CT Scans in Design of Radiation Therapy Planning Compared with 3D PET/CT: A Prospective Study

    SciTech Connect

    Ma, C; Yin, Y

    2015-06-15

    Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using a constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.

  9. SU-D-17A-01: Geometric and Dosimetric Evaluation of a 4D-CBCT Reconstruction Technique Using Prior Knowledge

    SciTech Connect

    Zhang, Y; Yin, F; Ren, L

    2014-06-01

    Purpose: To evaluate a 4D-CBCT reconstruction technique both geometrically and dosimetrically Methods: A prior-knowledge guided 4DC-BCT reconstruction method named the motion-modeling and free-form deformation (MM-FD) has been developed. MM-FD views each phase of the 4D-CBCT as a deformation of a prior CT volume. The deformation field is first solved by principal component analysis based motion modeling, followed by constrained free-form deformation.The 4D digital extended-cardiac- torso (XCAT) phantom was used for comprehensive evaluation. Based on a simulated 4D planning CT of a lung patient, 8 different scenarios were simulated to cover the typical on-board anatomical and respiratory variations: (1) synchronized and (2) unsynchronized motion amplitude change for body and tumor; tumor (3) shrinkage and (4) expansion; tumor average position shift in (5) superior-inferior (SI) direction, (6) anterior-posterior (AP) direction and (7) SI, AP and lateral directions altogether; and (8) tumor phase shift relative to the respiratory cycle of the body. Orthogonal-view 30° projections were simulated based on the eight patient scenarios to reconstruct on-board 4D-CBCTs. For geometric evaluation, the volume-percentage-difference (VPD) was calculated to assess the volumetric differences between the reconstructed and the ground-truth tumor.For dosimetric evaluation, a gated treatment plan was designed for the prior 4D-CT. The dose distributions were calculated on the reconstructed 4D-CBCTs and the ground-truth images for comparison. The MM-FD technique was compared with MM-only and FD-only techniques. Results: The average (±s.d.) VPD values of reconstructed tumors for MM-only, FDonly and MM-FD methods were 59.16%(± 26.66%), 75.98%(± 27.21%) and 5.22%(± 2.12%), respectively. The average min/max/mean dose (normalized to prescription) of the reconstructed tumors by MM-only, FD-only, MM-FD methods and ground-truth tumors were 78.0%/122.2%/108.2%, 13%/117.7%/86%, 58

  10. Edge-Preserving PET Image Reconstruction Using Trust Optimization Transfer

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2014-01-01

    Iterative image reconstruction for positron emission tomography (PET) can improve image quality by using spatial regularization. The most commonly used quadratic penalty often over-smoothes sharp edges and fine features in reconstructed images, while non-quadratic penalties can preserve edges and achieve higher contrast recovery. Existing optimization algorithms such as the expectation maximization (EM) and preconditioned conjugate gradient (PCG) algorithms work well for the quadratic penalty, but are less efficient for high-curvature or non-smooth edge-preserving regularizations. This paper proposes a new algorithm to accelerate edge-preserving image reconstruction by using two strategies: trust surrogate and optimization transfer descent. Trust surrogate approximates the original penalty by a smoother function at each iteration, but guarantees the algorithm to descend monotonically; Optimization transfer descent accelerates a conventional optimization transfer algorithm by using conjugate gradient and line search. Results of computer simulations and real 3D data show that the proposed algorithm converges much faster than the conventional EM and PCG for smooth edge-preserving regularization and can also be more efficient than the current state-of-art algorithms for the non-smooth ℓ1 regularization. PMID:25438302

  11. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  12. Task-Based Evaluation of a 4D MAP-RBI-EM Image Reconstruction Method for Gated Myocardial Perfusion SPECT using a Human Observer Study

    PubMed Central

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-01-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  13. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study.

    PubMed

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M; Tsui, Benjamin M W

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  14. Impact of scanning parameters and breathing patterns on image quality and accuracy of tumor motion reconstruction in 4D CBCT: a phantom study.

    PubMed

    Lee, Soyoung; Yan, Guanghua; Lu, Bo; Kahler, Darren; Li, Jonathan G; Sanjiv, Samat S

    2015-01-01

    Four-dimensional, cone-beam CT (4D CBCT) substantially reduces respiration-induced motion blurring artifacts in three-dimension (3D) CBCT. However, the image quality of 4D CBCT is significantly degraded which may affect its accuracy in localizing a mobile tumor for high-precision, image-guided radiation therapy (IGRT). The purpose of this study was to investigate the impact of scanning parameters hereinafter collectively referred to as scanning sequence) and breathing patterns on the image quality and the accuracy of computed tumor trajectory for a commercial 4D CBCT system, in preparation for its clinical implementation. We simulated a series of periodic and aperiodic sinusoidal breathing patterns with a respiratory motion phantom. The aperiodic pattern was created by varying the period or amplitude of individual sinusoidal breathing cycles. 4D CBCT scans of the phantom were acquired with a manufacturer-supplied scanning sequence (4D-S-slow) and two in-house modified scanning sequences (4D-M-slow and 4D-M-fast). While 4D-S-slow used small field of view (FOV), partial rotation (200°), and no imaging filter, 4D-M-slow and 4D-M-fast used medium FOV, full rotation, and the F1 filter. The scanning speed was doubled in 4D-M-fast (100°/min gantry rotation). The image quality of the 4D CBCT scans was evaluated using contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and motion blurring ratio (MBR). The trajectory of the moving target was reconstructed by registering each phase of the 4D CBCT with a reference CT. The root-mean-squared-error (RMSE) analysis was used to quantify its accuracy. Significant decrease in CNR and SNR from 3D CBCT to 4D CBCT was observed. The 4D-S-slow and 4D-M-fast scans had comparable image quality, while the 4D-M-slow scans had better performance due to doubled projections. Both CNR and SNR decreased slightly as the breathing period increased, while no dependence on the amplitude was observed. The difference of both CNR and SNR

  15. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    PubMed Central

    Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanner. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present an LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3-D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the nonnegative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  16. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    NASA Astrophysics Data System (ADS)

    Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  17. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    PubMed Central

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Kuncic, Zdenka; Keall, Paul J.

    2014-01-01

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR

  18. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    SciTech Connect

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Keall, Paul J.; Kuncic, Zdenka

    2014-04-15

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR

  19. Initial experience in primal-dual optimization reconstruction from sparse-PET patient data

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan

    2016-03-01

    There exists interest in designing a PET system with reduced detectors due to cost concerns, while not significantly compromising the PET utility. Recently developed optimization-based algorithms, which have demonstrated the potential clinical utility in image reconstruction from sparse CT data, may be used for enabling such design of innovative PET systems. In this work, we investigate a PET configuration with reduced number of detectors, and carry out preliminary studies from patient data collected by use of such sparse-PET configuration. We consider an optimization problem combining Kullback-Leibler (KL) data fidelity with an image TV constraint, and solve it by using a primal-dual optimization algorithm developed by Chambolle and Pock. Results show that advanced algorithms may enable the design of innovative PET configurations with reduced number of detectors, while yielding potential practical PET utilities.

  20. SU-D-17A-03: 5D Respiratory Motion Model Based Iterative Reconstruction Method for 4D Cone-Beam CT

    SciTech Connect

    Gao, Y; Thomas, D; Low, D; Gao, H

    2014-06-01

    Purpose: The purpose of this work is to develop a new iterative reconstruction method for 4D cone-beam CT (CBCT) based on a published time-independent 5D respiratory motion model. The proposed method will offer a single high-resolution image at a user-selected breathing phase and the 5D motion model parameters, which could be used to generate the breathing pattern during the CT acquisition. Methods: 5D respiratory motion model was proposed for accurately modeling the motion of lung and lung tumor tissues. 4D images are then parameterized by a reference image, measured breathing amplitude, breathing rate, two time-independent vector fields that describe the 5D model parameters, and a scalar field that describes the change in HU as a function of breathing amplitude. In contrast with the traditional method of reconstructing multiple temporal image phases to reduce respiratory artifact, 5D model based method simplify the problem into the reconstruction of a single reference image and the 5D motion model parameters. The reconstruction formulation of the reference image and scalar and vector fields is a nonlinear least-square optimization problem that consists of solving the reference image and fields alternately, in which the reference image is regularized with the total variation sparsity transform and the vector fields are solved through linearizations regularized by the H1 norm. 2D lung simulations were performed in this proof-of-concept study. Results: The breathing amplitude, its rate, and the corresponding scalar and vector fields were generated from a patient case. Compared with filtered backprojection method and sparsity regularized iterative method for the phase-by-phase reconstruction, the proposed 5D motion model based method yielded improved image quality. Conclusion: Based on 5D respiratory motion model, we have developed a new iterative reconstruction method for 4D CBCT that has the potential for improving image quality while providing needed on

  1. Motion-compensated PET image reconstruction with respiratory-matched attenuation correction using two low-dose inhale and exhale CT images

    NASA Astrophysics Data System (ADS)

    Nam, Woo Hyun; Ahn, Il Jun; Kim, Kyeong Min; Kim, Byung Il; Ra, Jong Beom

    2013-10-01

    Positron emission tomography (PET) is widely used for diagnosis and follow up assessment of radiotherapy. However, thoracic and abdominal PET suffers from false staging and incorrect quantification of the radioactive uptake of lesion(s) due to respiratory motion. Furthermore, respiratory motion-induced mismatch between a computed tomography (CT) attenuation map and PET data often leads to significant artifacts in the reconstructed PET image. To solve these problems, we propose a unified framework for respiratory-matched attenuation correction and motion compensation of respiratory-gated PET. For the attenuation correction, the proposed algorithm manipulates a 4D CT image virtually generated from two low-dose inhale and exhale CT images, rather than a real 4D CT image which significantly increases the radiation burden on a patient. It also utilizes CT-driven motion fields for motion compensation. To realize the proposed algorithm, we propose an improved region-based approach for non-rigid registration between body CT images, and we suggest a selection scheme of 3D CT images that are respiratory-matched to each respiratory-gated sinogram. In this work, the proposed algorithm was evaluated qualitatively and quantitatively by using patient datasets including lung and/or liver lesion(s). Experimental results show that the method can provide much clearer organ boundaries and more accurate lesion information than existing algorithms by utilizing two low-dose CT images.

  2. SU-E-J-74: Impact of Respiration-Correlated Image Quality On Tumor Motion Reconstruction in 4D-CBCT: A Phantom Study

    SciTech Connect

    Lee, S; Lu, B; Samant, S

    2014-06-01

    Purpose: To investigate the effects of scanning parameters and respiratory patterns on the image quality for 4-dimensional cone-beam computed tomography(4D-CBCT) imaging, and assess the accuracy of computed tumor trajectory for lung imaging using registration of phased 4D-CBCT imaging with treatment planning-CT. Methods: We simulated a periodic and non-sinusoidal respirations with various breathing periods and amplitudes using a respiratory phantom(Quasar, Modus Medical Devices Inc) to acquire respiration-correlated 4D-CBCT images. 4D-CBCT scans(Elekta Oncology Systems Ltd) were performed with different scanning parameters for collimation size(e.g., small and medium field-of-views) and scanning speed(e.g., slow 50°·min{sup −1}, fast 100°·min{sup −1}). Using a standard CBCT-QA phantom(Catphan500, The Phantom Laboratory), the image qualities of all phases in 4D-CBCT were evaluated with contrast-to-noise ratio(CNR) for lung tissue and uniformity in each module. Using a respiratory phantom, the target imaging in 4D-CBCT was compared to 3D-CBCT target image. The target trajectory from 10-respiratory phases in 4D-CBCT was extracted using an automatic image registration and subsequently assessed the accuracy by comparing with actual motion of the target. Results: Image analysis indicated that a short respiration with a small amplitude resulted in superior CNR and uniformity. Smaller variation of CNR and uniformity was present amongst different respiratory phases. The small field-of-view with a partial scan using slow scan can improve CNR, but degraded uniformity. Large amplitude of respiration can degrade image quality. RMS of voxel densities in tumor area of 4D-CBCT images between sinusoidal and non-sinusoidal motion exhibited no significant difference. The maximum displacement errors of motion trajectories were less than 1.0 mm and 13.5 mm, for sinusoidal and non-sinusoidal breathings, respectively. The accuracy of motion reconstruction showed good overall

  3. Evaluation of the reliability of the maximum entropy method for reconstructing 3D and 4D NOESY-type NMR spectra of proteins.

    PubMed

    Shigemitsu, Yoshiki; Ikeya, Teppei; Yamamoto, Akihiro; Tsuchie, Yuusuke; Mishima, Masaki; Smith, Brian O; Güntert, Peter; Ito, Yutaka

    2015-02-01

    Despite their advantages in analysis, 4D NMR experiments are still infrequently used as a routine tool in protein NMR projects due to the long duration of the measurement and limited digital resolution. Recently, new acquisition techniques for speeding up multidimensional NMR experiments, such as nonlinear sampling, in combination with non-Fourier transform data processing methods have been proposed to be beneficial for 4D NMR experiments. Maximum entropy (MaxEnt) methods have been utilised for reconstructing nonlinearly sampled multi-dimensional NMR data. However, the artefacts arising from MaxEnt processing, particularly, in NOESY spectra have not yet been clearly assessed in comparison with other methods, such as quantitative maximum entropy, multidimensional decomposition, and compressed sensing. We compared MaxEnt with other methods in reconstructing 3D NOESY data acquired with variously reduced sparse sampling schedules and found that MaxEnt is robust, quick and competitive with other methods. Next, nonlinear sampling and MaxEnt processing were applied to 4D NOESY experiments, and the effect of the artefacts of MaxEnt was evaluated by calculating 3D structures from the NOE-derived distance restraints. Our results demonstrated that sufficiently converged and accurate structures (RMSD of 0.91Å to the mean and 1.36Å to the reference structures) were obtained even with NOESY spectra reconstructed from 1.6% randomly selected sampling points for indirect dimensions. This suggests that 3D MaxEnt processing in combination with nonlinear sampling schedules is still a useful and advantageous option for rapid acquisition of high-resolution 4D NOESY spectra of proteins. PMID:25545060

  4. Four-dimensional cardiac reconstruction from rotational x-ray sequences: first results for 4D coronary angiography

    NASA Astrophysics Data System (ADS)

    Hansis, Eberhard; Schomberg, Hermann; Erhard, Klaus; Dössel, Olaf; Grass, Michael

    2009-02-01

    The tomographic reconstruction of the beating heart requires dedicated methods. One possibility is gated reconstruction, where only data corresponding to a certain motion state are incorporated. Another one is motioncompensated reconstruction with a pre-computed motion vector field, which requires a preceding estimation of the motion. Here, results of a new approach are presented: simultaneous reconstruction of a three-dimensional object and its motion over time, yielding a fully four-dimensional representation. The object motion is modeled by a time-dependent elastic transformation. The reconstruction is carried out with an iterative gradient-descent algorithm which simultaneously optimizes the three-dimensional image and the motion parameters. The method was tested on a simulated rotational X-ray acquisition of a dynamic coronary artery phantom, acquired on a C-arm system with a slowly rotating C-arm. Accurate reconstruction of both absorption coefficient and motion could be achieved. First results from experiments on clinical rotational X-ray coronary angiography data are shown. The resulting reconstructions enable the analysis of both static properties, such as vessel geometry and cross-sectional areas, and dynamic properties, like magnitude, speed, and synchrony of motion during the cardiac cycle.

  5. Wobbling and LSF-based maximum likelihood expectation maximization reconstruction for wobbling PET

    NASA Astrophysics Data System (ADS)

    Kim, Hang-Keun; Son, Young-Don; Kwon, Dae-Hyuk; Joo, Yohan; Cho, Zang-Hee

    2016-04-01

    Positron emission tomography (PET) is a widely used imaging modality; however, the PET spatial resolution is not yet satisfactory for precise anatomical localization of molecular activities. Detector size is the most important factor because it determines the intrinsic resolution, which is approximately half of the detector size and determines the ultimate PET resolution. Detector size, however, cannot be made too small because both the decreased detection efficiency and the increased septal penetration effect degrade the image quality. A wobbling and line spread function (LSF)-based maximum likelihood expectation maximization (WL-MLEM) algorithm, which combined the MLEM iterative reconstruction algorithm with wobbled sampling and LSF-based deconvolution using the system matrix, was proposed for improving the spatial resolution of PET without reducing the scintillator or detector size. The new algorithm was evaluated using a simulation, and its performance was compared with that of the existing algorithms, such as conventional MLEM and LSF-based MLEM. Simulations demonstrated that the WL-MLEM algorithm yielded higher spatial resolution and image quality than the existing algorithms. The WL-MLEM algorithm with wobbling PET yielded substantially improved resolution compared with conventional algorithms with stationary PET. The algorithm can be easily extended to other iterative reconstruction algorithms, such as maximum a priori (MAP) and ordered subset expectation maximization (OSEM). The WL-MLEM algorithm with wobbling PET may offer improvements in both sensitivity and resolution, the two most sought-after features in PET design.

  6. Full 3-D cluster-based iterative image reconstruction tool for a small animal PET camera

    NASA Astrophysics Data System (ADS)

    Valastyán, I.; Imrek, J.; Molnár, J.; Novák, D.; Balkay, L.; Emri, M.; Trón, L.; Bükki, T.; Kerek, A.

    2007-02-01

    Iterative reconstruction methods are commonly used to obtain images with high resolution and good signal-to-noise ratio in nuclear imaging. The aim of this work was to develop a scalable, fast, cluster based, fully 3-D iterative image reconstruction package for our small animal PET camera, the miniPET. The reconstruction package is developed to determine the 3-D radioactivity distribution from list mode type of data sets and it can also simulate noise-free projections of digital phantoms. We separated the system matrix generation and the fully 3-D iterative reconstruction process. As the detector geometry is fixed for a given camera, the system matrix describing this geometry is calculated only once and used for every image reconstruction, making the process much faster. The Poisson and the random noise sensitivity of the ML-EM iterative algorithm were studied for our small animal PET system with the help of the simulation and reconstruction tool. The reconstruction tool has also been tested with data collected by the miniPET from a line and a cylinder shaped phantom and also a rat.

  7. Inter-update Metz filtering as regularization for variable block-ART in PET reconstruction

    NASA Astrophysics Data System (ADS)

    Sadki, Mustapha; San-Martin, Maite T.

    2005-03-01

    Positron Emission Tomography (PET) is a technology that uses short-lived radio nuclides altered by disease and precede changes that can be visualized by cross-sectional imaging. Over the last decade, this technique has become an important clinical tool for detection of tumors, follow-up treatment and drug research, providing an understanding of dynamic physiological processes. Since PET needs improved reconstruction algorithms to facilitate clinical diagnosis, we will investigate an improved iterative algorithm. Amongst current algorithms applied for PET reconstruction, ART was first proposed as a method of reconstruction from CT projections. With appropriate tuning, the convergence of these algorithms could be very fast indeed. However, the quality of reconstruction using these methods has not been thoroughly investigated. We study a variant of these algorithms. We present the state of the art, review well-known ART and investigate an optimum dynamically-changing block structure for the not yet fully explored variable-Block ART, which uses jointly the Inter-Update Metz filter for regularization and exploits the full symmetries in PET scanners. This reveals significant acceleration of initial convergence to an acceptable reconstruction of inconsistent cases. To assess the quality and analyze any discrepancy of the reconstructed images, two figures of merit (FOMs) are used to evaluate two 3D Data phantoms acquired on a GE-Advance scanner for high statistics.

  8. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    SciTech Connect

    Brady, Samuel L.; Shulkin, Barry L.

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.

  9. Bias in iterative reconstruction of low-statistics PET data: benefits of a resolution model

    NASA Astrophysics Data System (ADS)

    Walker, M. D.; Asselin, M.-C.; Julyan, P. J.; Feldmann, M.; Talbot, P. S.; Jones, T.; Matthews, J. C.

    2011-02-01

    Iterative image reconstruction methods such as ordered-subset expectation maximization (OSEM) are widely used in PET. Reconstructions via OSEM are however reported to be biased for low-count data. We investigated this and considered the impact for dynamic PET. Patient listmode data were acquired in [11C]DASB and [15O]H2O scans on the HRRT brain PET scanner. These data were subsampled to create many independent, low-count replicates. The data were reconstructed and the images from low-count data were compared to the high-count originals (from the same reconstruction method). This comparison enabled low-statistics bias to be calculated for the given reconstruction, as a function of the noise-equivalent counts (NEC). Two iterative reconstruction methods were tested, one with and one without an image-based resolution model (RM). Significant bias was observed when reconstructing data of low statistical quality, for both subsampled human and simulated data. For human data, this bias was substantially reduced by including a RM. For [11C]DASB the low-statistics bias in the caudate head at 1.7 M NEC (approx. 30 s) was -5.5% and -13% with and without RM, respectively. We predicted biases in the binding potential of -4% and -10%. For quantification of cerebral blood flow for the whole-brain grey- or white-matter, using [15O]H2O and the PET autoradiographic method, a low-statistics bias of <2.5% and <4% was predicted for reconstruction with and without the RM. The use of a resolution model reduces low-statistics bias and can hence be beneficial for quantitative dynamic PET.

  10. Single-Cell Tracking with PET using a Novel Trajectory Reconstruction Algorithm

    PubMed Central

    Lee, Keum Sil; Kim, Tae Jin

    2015-01-01

    Virtually all biomedical applications of positron emission tomography (PET) use images to represent the distribution of a radiotracer. However, PET is increasingly used in cell tracking applications, for which the “imaging” paradigm may not be optimal. Here we investigate an alternative approach, which consists in reconstructing the time-varying position of individual radiolabeled cells directly from PET measurements. As a proof of concept, we formulate a new algorithm for reconstructing the trajectory of one single moving cell directly from list-mode PET data. We model the trajectory as a 3D B-spline function of the temporal variable and use non-linear optimization to minimize the mean-square distance between the trajectory and the recorded list-mode coincidence events. Using Monte Carlo simulations (GATE), we show that this new algorithm can track a single source moving within a small-animal PET system with <3 mm accuracy provided that the activity of the cell [Bq] is greater than four times its velocity [mm/s]. The algorithm outperforms conventional ML-EM as well as the “minimum distance” method used for positron emission particle tracking (PEPT). The new method was also successfully validated using experimentally acquired PET data. In conclusion, we demonstrated the feasibility of a new method for tracking a single moving cell directly from PET list-mode data, at the whole-body level, for physiologically relevant activities and velocities. PMID:25423651

  11. Image reconstructions from super-sampled data sets with resolution modeling in PET imaging

    PubMed Central

    Li, Yusheng; Matej, Samuel; Metzler, Scott D.

    2014-01-01

    Purpose: Spatial resolution in positron emission tomography (PET) is still a limiting factor in many imaging applications. To improve the spatial resolution for an existing scanner with fixed crystal sizes, mechanical movements such as scanner wobbling and object shifting have been considered for PET systems. Multiple acquisitions from different positions can provide complementary information and increased spatial sampling. The objective of this paper is to explore an efficient and useful reconstruction framework to reconstruct super-resolution images from super-sampled low-resolution data sets. Methods: The authors introduce a super-sampling data acquisition model based on the physical processes with tomographic, downsampling, and shifting matrices as its building blocks. Based on the model, we extend the MLEM and Landweber algorithms to reconstruct images from super-sampled data sets. The authors also derive a backprojection-filtration-like (BPF-like) method for the super-sampling reconstruction. Furthermore, they explore variant methods for super-sampling reconstructions: the separate super-sampling resolution-modeling reconstruction and the reconstruction without downsampling to further improve image quality at the cost of more computation. The authors use simulated reconstruction of a resolution phantom to evaluate the three types of algorithms with different super-samplings at different count levels. Results: Contrast recovery coefficient (CRC) versus background variability, as an image-quality metric, is calculated at each iteration for all reconstructions. The authors observe that all three algorithms can significantly and consistently achieve increased CRCs at fixed background variability and reduce background artifacts with super-sampled data sets at the same count levels. For the same super-sampled data sets, the MLEM method achieves better image quality than the Landweber method, which in turn achieves better image quality than the BPF-like method. The

  12. A Robust State-Space Kinetics-Guided Framework for Dynamic PET Image Reconstruction

    PubMed Central

    Tong, S; Alessio, A M; Kinahan, P E; Liu, H; Shi, P

    2011-01-01

    Dynamic PET image reconstruction is a challenging issue due to the low SNR and the large quantity of spatio-temporal data. We propose a robust state-space image reconstruction (SSIR) framework for activity reconstruction in dynamic PET. Unlike statistically-based frame-by-frame methods, tracer kinetic modeling is incorporated to provide physiological guidance for the reconstruction, harnessing the temporal information of the dynamic data. Dynamic reconstruction is formulated in a state-space representation, where a compartmental model describes the kinetic processes in a continuous-time system equation, and the imaging data is expressed in a discrete measurement equation. Tracer activity concentrations are treated as the state variables, and are estimated from the dynamic data. Sampled-data H∞ filtering is adopted for robust estimation. H∞ filtering makes no assumptions on the system and measurement statistics, and guarantees bounded estimation error for finite-energy disturbances, leading to robust performance for dynamic data with low SNR and/or errors. This alternative reconstruction approach could help to deal with unpredictable situations in imaging (e.g. data corruption from failed detector blocks) or inaccurate noise models. Experiments on synthetic phantom and patient PET data are performed to demonstrate feasibility of the SSIR framework, and to explore its potential advantages over frame-by-frame statistical reconstruction approaches. PMID:21441650

  13. Reconstruction for 3D PET Based on Total Variation Constrained Direct Fourier Method

    PubMed Central

    Yu, Haiqing; Chen, Zhi; Zhang, Heye; Loong Wong, Kelvin Kian; Chen, Yunmei; Liu, Huafeng

    2015-01-01

    This paper presents a total variation (TV) regularized reconstruction algorithm for 3D positron emission tomography (PET). The proposed method first employs the Fourier rebinning algorithm (FORE), rebinning the 3D data into a stack of ordinary 2D data sets as sinogram data. Then, the resulted 2D sinogram are ready to be reconstructed by conventional 2D reconstruction algorithms. Given the locally piece-wise constant nature of PET images, we introduce the total variation (TV) based reconstruction schemes. More specifically, we formulate the 2D PET reconstruction problem as an optimization problem, whose objective function consists of TV norm of the reconstructed image and the data fidelity term measuring the consistency between the reconstructed image and sinogram. To solve the resulting minimization problem, we apply an efficient methods called the Bregman operator splitting algorithm with variable step size (BOSVS). Experiments based on Monte Carlo simulated data and real data are conducted as validations. The experiment results show that the proposed method produces higher accuracy than conventional direct Fourier (DF) (bias in BOSVS is 70% of ones in DF, variance of BOSVS is 80% of ones in DF). PMID:26398232

  14. Comparison of reconstruction methods and quantitative accuracy in Siemens Inveon PET scanner

    NASA Astrophysics Data System (ADS)

    Ram Yu, A.; Kim, Jin Su; Kang, Joo Hyun; Moo Lim, Sang

    2015-04-01

    PET reconstruction is key to the quantification of PET data. To our knowledge, no comparative study of reconstruction methods has been performed to date. In this study, we compared reconstruction methods with various filters in terms of their spatial resolution, non-uniformities (NU), recovery coefficients (RCs), and spillover ratios (SORs). In addition, the linearity of reconstructed radioactivity between linearity of measured and true concentrations were also assessed. A Siemens Inveon PET scanner was used in this study. Spatial resolution was measured with NEMA standard by using a 1 mm3 sized 18F point source. Image quality was assessed in terms of NU, RC and SOR. To measure the effect of reconstruction algorithms and filters, data was reconstructed using FBP, 3D reprojection algorithm (3DRP), ordered subset expectation maximization 2D (OSEM 2D), and maximum a posteriori (MAP) with various filters or smoothing factors (β). To assess the linearity of reconstructed radioactivity, image quality phantom filled with 18F was used using FBP, OSEM and MAP (β =1.5 & 5 × 10-5). The highest achievable volumetric resolution was 2.31 mm3 and the highest RCs were obtained when OSEM 2D was used. SOR was 4.87% for air and 3.97% for water, obtained OSEM 2D reconstruction was used. The measured radioactivity of reconstruction image was proportional to the injected one for radioactivity below 16 MBq/ml when FBP or OSEM 2D reconstruction methods were used. By contrast, when the MAP reconstruction method was used, activity of reconstruction image increased proportionally, regardless of the amount of injected radioactivity. When OSEM 2D or FBP were used, the measured radioactivity concentration was reduced by 53% compared with true injected radioactivity for radioactivity <16 MBq/ml. The OSEM 2D reconstruction method provides the highest achievable volumetric resolution and highest RC among all the tested methods and yields a linear relation between the measured and true

  15. Joint surface reconstruction and 4D deformation estimation from sparse data and prior knowledge for marker-less Respiratory motion tracking

    SciTech Connect

    Berkels, Benjamin; Rumpf, Martin; Bauer, Sebastian; Ettl, Svenja; Arold, Oliver; Hornegger, Joachim

    2013-09-15

    Purpose: The intraprocedural tracking of respiratory motion has the potential to substantially improve image-guided diagnosis and interventions. The authors have developed a sparse-to-dense registration approach that is capable of recovering the patient's external 3D body surface and estimating a 4D (3D + time) surface motion field from sparse sampling data and patient-specific prior shape knowledge.Methods: The system utilizes an emerging marker-less and laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement field is recovered, which describes the spatio-temporal 4D deformation of the complete patient body surface, depending on the type and state of respiration. It yields both a reconstruction of the instantaneous patient shape and a high-dimensional respiratory surrogate for respiratory motion tracking. The method is validated on a 4D CT respiration phantom and evaluated on both real data from an AT prototype and synthetic data sampled from dense surface scans acquired with a structured-light scanner.Results: In the experiments, the authors estimated surface motion fields with the proposed algorithm on 256 datasets from 16 subjects and in different respiration states, achieving a mean surface reconstruction accuracy of ±0.23 mm with respect to ground truth data—down from a mean initial surface mismatch of 5.66 mm. The 95th percentile of the local residual mesh-to-mesh distance after registration did not exceed 1.17 mm for any subject. On average, the total runtime of our proof of concept CPU implementation is 2.3 s per frame, outperforming related work substantially.Conclusions: In external beam radiation therapy, the approach holds potential for patient monitoring during treatment using the reconstructed surface, and for motion-compensated dose delivery using

  16. High-resolution image reconstruction for PET using estimated detector response functions

    NASA Astrophysics Data System (ADS)

    Tohme, Michel S.; Qi, Jinyi

    2007-02-01

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed PET images. For efficient computation in reconstruction, the system model in PET can be factored into a product of geometric projection matrix and detector blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. In this work, we propose a method to estimate the 2D detector blurring matrix from experimental measurements. Point source data were acquired with high-count statistics in the microPET II scanner using a computer-controlled 2-D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner with the modeling of the detector block structure. Since the resulting blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo simulation. Reconstructed images of a line source phantom show improved resolution with the new detector blurring matrix compared to the original one from the Monte Carlo simulation. This method can be applied to other small-animal and clinical scanners.

  17. SU-E-J-123: Assessing Segmentation Accuracy of Internal Volumes and Sub-Volumes in 4D PET/CT of Lung Tumors Using a Novel 3D Printed Phantom

    SciTech Connect

    Soultan, D; Murphy, J; James, C; Hoh, C; Moiseenko, V; Cervino, L; Gill, B

    2015-06-15

    Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images were binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing.

  18. Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework

    NASA Astrophysics Data System (ADS)

    Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.

    2016-05-01

    Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of time-of-flight (TOF) scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (DIRECT: direct image reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias versus variance performance to iterative TOF reconstruction with a matched resolution model.

  19. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.

    PubMed

    Novosad, Philip; Reader, Andrew J

    2016-06-21

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  20. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    NASA Astrophysics Data System (ADS)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  1. List mode reconstruction for PET with motion compensation: A simulation study

    SciTech Connect

    Qi, Jinyi; Huesman, Ronald H.

    2002-07-03

    Motion artifacts can be a significant factor that limits the image quality in high-resolution PET. Surveillance systems have been developed to track the movements of the subject during a scan. Development of reconstruction algorithms that are able to compensate for the subject motion will increase the potential of PET. In this paper we present a list mode likelihood reconstruction algorithm with the ability of motion compensation. The subject moti is explicitly modeled in the likelihood function. The detections of each detector pair are modeled as a Poisson process with time vary ingrate function. The proposed method has several advantages over the existing methods. It uses all detected events and does not introduce any interpolation error. Computer simulations show that the proposed method can compensate simulated subject movements and that the reconstructed images have no visible motion artifacts.

  2. List mode reconstruction for PET with motion compensation: A simulation study

    SciTech Connect

    Qi, Jinyi; Huesman, Ronald H.

    2002-07-01

    Motion artifacts can be a significant factor that limits the image quality in high-resolution PET. Surveillance systems have been developed to track the movements of the subject during a scan. Development of reconstruction algorithms that are able to compensate for the subject motion will increase the potential of PET. In this paper we present a list mode likelihood reconstruction algorithm with the ability of motion compensation. The subject motion is explicitly modeled in the likelihood function. The detections of each detector pair are modeled as a Poisson process with time-varying rate function. The proposed method has several advantages over the existing methods. It uses all detected events and does not introduce any interpolation error. Computer simulations show that the proposed method can compensate simulated subject movements and that the reconstructed images have no visible motion artifacts.

  3. Regional MLEM reconstruction strategy for PET-based treatment verification in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Gianoli, Chiara; Bauer, Julia; Riboldi, Marco; De Bernardi, Elisabetta; Fattori, Giovanni; Baselli, Giuseppe; Debus, Jürgen; Parodi, Katia; Baroni, Guido

    2014-11-01

    In ion beam radiotherapy, PET-based treatment verification provides a consistency check of the delivered treatment with respect to a simulation based on the treatment planning. In this work the region-based MLEM reconstruction algorithm is proposed as a new evaluation strategy in PET-based treatment verification. The comparative evaluation is based on reconstructed PET images in selected regions, which are automatically identified on the expected PET images according to homogeneity in activity values. The strategy was tested on numerical and physical phantoms, simulating mismatches between the planned and measured β+ activity distributions. The region-based MLEM reconstruction was demonstrated to be robust against noise and the sensitivity of the strategy results were comparable to three voxel units, corresponding to 6 mm in numerical phantoms. The robustness of the region-based MLEM evaluation outperformed the voxel-based strategies. The potential of the proposed strategy was also retrospectively assessed on patient data and further clinical validation is envisioned.

  4. Conditional entropy maximization for PET image reconstruction using adaptive mesh model.

    PubMed

    Zhu, Hongqing; Shu, Huazhong; Zhou, Jian; Dai, Xiubin; Luo, Limin

    2007-04-01

    Iterative image reconstruction algorithms have been widely used in the field of positron emission tomography (PET). However, such algorithms are sensitive to noise artifacts so that the reconstruction begins to degrade when the number of iterations is high. In this paper, we propose a new algorithm to reconstruct an image from the PET emission projection data by using the conditional entropy maximization and the adaptive mesh model. In a traditional tomography reconstruction method, the reconstructed image is directly computed in the pixel domain. Unlike this kind of methods, the proposed approach is performed by estimating the nodal values from the observed projection data in a mesh domain. In our method, the initial Delaunay triangulation mesh is generated from a set of randomly selected pixel points, and it is then modified according to the pixel intensity value of the estimated image at each iteration step in which the conditional entropy maximization is used. The advantage of using the adaptive mesh model for image reconstruction is that it provides a natural spatially adaptive smoothness mechanism. In experiments using the synthetic and clinical data, it is found that the proposed algorithm is more robust to noise compared to the common pixel-based MLEM algorithm and mesh-based MLEM with a fixed mesh structure. PMID:17368841

  5. Event-by-event PET image reconstruction using list-mode origin ensembles algorithm

    NASA Astrophysics Data System (ADS)

    Andreyev, Andriy

    2016-03-01

    There is a great demand for real time or event-by-event (EBE) image reconstruction in emission tomography. Ideally, as soon as event has been detected by the acquisition electronics, it needs to be used in the image reconstruction software. This would greatly speed up the image reconstruction since most of the data will be processed and reconstructed while the patient is still undergoing the scan. Unfortunately, the current industry standard is that the reconstruction of the image would not start until all the data for the current image frame would be acquired. Implementing an EBE reconstruction for MLEM family of algorithms is possible, but not straightforward as multiple (computationally expensive) updates to the image estimate are required. In this work an alternative Origin Ensembles (OE) image reconstruction algorithm for PET imaging is converted to EBE mode and is investigated whether it is viable alternative for real-time image reconstruction. In OE algorithm all acquired events are seen as points that are located somewhere along the corresponding line-of-responses (LORs), together forming a point cloud. Iteratively, with a multitude of quasi-random shifts following the likelihood function the point cloud converges to a reflection of an actual radiotracer distribution with the degree of accuracy that is similar to MLEM. New data can be naturally added into the point cloud. Preliminary results with simulated data show little difference between regular reconstruction and EBE mode, proving the feasibility of the proposed approach.

  6. On the assessment of spatial resolution of PET systems with iterative image reconstruction

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Cherry, Simon R.; Qi, Jinyi

    2016-03-01

    Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.

  7. High resolution image reconstruction method for a double-plane PET system with changeable spacing

    NASA Astrophysics Data System (ADS)

    Gu, Xiao-Yue; Zhou, Wei; Li, Lin; Wei, Long; Yin, Peng-Fei; Shang, Lei-Min; Yun, Ming-Kai; Lu, Zhen-Rui; Huang, Xian-Chao

    2016-05-01

    Breast-dedicated positron emission tomography (PET) imaging techniques have been developed in recent years. Their capacities to detect millimeter-sized breast tumors have been the subject of many studies. Some of them have been confirmed with good results in clinical applications. With regard to biopsy application, a double-plane detector arrangement is practicable, as it offers the convenience of breast immobilization. However, the serious blurring effect of the double-plane PET, with changeable spacing for different breast sizes, should be studied. We investigated a high resolution reconstruction method applicable for a double-plane PET. The distance between the detector planes is changeable. Geometric and blurring components were calculated in real-time for different detector distances, and accurate geometric sensitivity was obtained with a new tube area model. Resolution recovery was achieved by estimating blurring effects derived from simulated single gamma response information. The results showed that the new geometric modeling gave a more finite and smooth sensitivity weight in the double-plane PET. The blurring component yielded contrast recovery levels that could not be reached without blurring modeling, and improved visual recovery of the smallest spheres and better delineation of the structures in the reconstructed images were achieved with the blurring component. Statistical noise had lower variance at the voxel level with blurring modeling at matched resolution, compared to without blurring modeling. In distance-changeable double-plane PET, finite resolution modeling during reconstruction achieved resolution recovery, without noise amplification. Supported by Knowledge Innovation Project of The Chinese Academy of Sciences (KJCX2-EW-N06)

  8. The SRT reconstruction algorithm for semiquantification in PET imaging

    SciTech Connect

    Kastis, George A.; Gaitanis, Anastasios; Samartzis, Alexandros P.; Fokas, Athanasios S.

    2015-10-15

    Purpose: The spline reconstruction technique (SRT) is a new, fast algorithm based on a novel numerical implementation of an analytic representation of the inverse Radon transform. The mathematical details of this algorithm and comparisons with filtered backprojection were presented earlier in the literature. In this study, the authors present a comparison between SRT and the ordered-subsets expectation–maximization (OSEM) algorithm for determining contrast and semiquantitative indices of {sup 18}F-FDG uptake. Methods: The authors implemented SRT in the software for tomographic image reconstruction (STIR) open-source platform and evaluated this technique using simulated and real sinograms obtained from the GE Discovery ST positron emission tomography/computer tomography scanner. All simulations and reconstructions were performed in STIR. For OSEM, the authors used the clinical protocol of their scanner, namely, 21 subsets and two iterations. The authors also examined images at one, four, six, and ten iterations. For the simulation studies, the authors analyzed an image-quality phantom with cold and hot lesions. Two different versions of the phantom were employed at two different hot-sphere lesion-to-background ratios (LBRs), namely, 2:1 and 4:1. For each noiseless sinogram, 20 Poisson realizations were created at five different noise levels. In addition to making visual comparisons of the reconstructed images, the authors determined contrast and bias as a function of the background image roughness (IR). For the real-data studies, sinograms of an image-quality phantom simulating the human torso were employed. The authors determined contrast and LBR as a function of the background IR. Finally, the authors present plots of contrast as a function of IR after smoothing each reconstructed image with Gaussian filters of six different sizes. Statistical significance was determined by employing the Wilcoxon rank-sum test. Results: In both simulated and real studies, SRT

  9. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    PubMed Central

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2014-01-01

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracer A which is a pure positron emitter (such as 18F or 11C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as 38K or 60Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and staggered injections improves

  10. Quantitative comparison of FBP, EM, and Bayesian reconstruction algorithms for the IndyPET scanner.

    PubMed

    Frese, Thomas; Rouze, Ned C; Bouman, Charles A; Sauer, Ken; Hutchins, Gary D

    2003-02-01

    We quantitatively compare filtered backprojection (FBP), expectation-maximization (EM), and Bayesian reconstruction algorithms as applied to the IndyPET scanner--a dedicated research scanner which has been developed for small and intermediate field of view imaging applications. In contrast to previous approaches that rely on Monte Carlo simulations, a key feature of our investigation is the use of an empirical system kernel determined from scans of line source phantoms. This kernel is incorporated into the forward model of the EM and Bayesian algorithms to achieve resolution recovery. Three data sets are used, data collected on the IndyPET scanner using a bar phantom and a Hoffman three-dimensional brain phantom, and simulated data containing a hot lesion added to a uniform background. Reconstruction quality is analyzed quantitatively in terms of bias-variance measures (bar phantom) and mean square error (lesion phantom). We observe that without use of the empirical system kernel, the FBP, EM, and Bayesian algorithms give similar performance. However, with the inclusion of the empirical kernel, the iterative algorithms provide superior reconstructions compared with FBP, both in terms of visual quality and quantitative measures. Furthermore, Bayesian methods outperform EM. We conclude that significant improvements in reconstruction quality can be realized by combining accurate models of the system response with Bayesian reconstruction algorithms. PMID:12716002

  11. Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Kinahan, Paul E.; Fessler, Jeffrey A.; Miyaoka, Robert S.; Janes, Marie; Lewellen, Tom K.

    2004-10-01

    We present a pragmatic approach to image reconstruction for data from the micro crystal elements system (MiCES) fully 3D mouse imaging positron emission tomography (PET) scanner under construction at the University of Washington. Our approach is modelled on fully 3D image reconstruction used in clinical PET scanners, which is based on Fourier rebinning (FORE) followed by 2D iterative image reconstruction using ordered-subsets expectation-maximization (OSEM). The use of iterative methods allows modelling of physical effects (e.g., statistical noise, detector blurring, attenuation, etc), while FORE accelerates the reconstruction process by reducing the fully 3D data to a stacked set of independent 2D sinograms. Previous investigations have indicated that non-stationary detector point-spread response effects, which are typically ignored for clinical imaging, significantly impact image quality for the MiCES scanner geometry. To model the effect of non-stationary detector blurring (DB) in the FORE+OSEM(DB) algorithm, we have added a factorized system matrix to the ASPIRE reconstruction library. Initial results indicate that the proposed approach produces an improvement in resolution without an undue increase in noise and without a significant increase in the computational burden. The impact on task performance, however, remains to be evaluated.

  12. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction

    NASA Astrophysics Data System (ADS)

    Liang, Yicheng; Peng, Hao

    2015-02-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  13. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction.

    PubMed

    Liang, Yicheng; Peng, Hao

    2015-02-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity. PMID:25591118

  14. Evaluating image reconstruction methods for tumor detection performance in whole-body PET oncology imaging

    NASA Astrophysics Data System (ADS)

    Lartizien, Carole; Kinahan, Paul E.; Comtat, Claude; Lin, Michael; Swensson, Richard G.; Trebossen, Regine; Bendriem, Bernard

    2000-04-01

    This work presents initial results from observer detection performance studies using the same volume visualization software tools that are used in clinical PET oncology imaging. Research into the FORE+OSEM and FORE+AWOSEM statistical image reconstruction methods tailored to whole- body 3D PET oncology imaging have indicated potential improvements in image SNR compared to currently used analytic reconstruction methods (FBP). To assess the resulting impact of these reconstruction methods on the performance of human observers in detecting and localizing tumors, we use a non- Monte Carlo technique to generate multiple statistically accurate realizations of 3D whole-body PET data, based on an extended MCAT phantom and with clinically realistic levels of statistical noise. For each realization, we add a fixed number of randomly located 1 cm diam. lesions whose contrast is varied among pre-calibrated values so that the range of true positive fractions is well sampled. The observer is told the number of tumors and, similar to the AFROC method, asked to localize all of them. The true positive fraction for the three algorithms (FBP, FORE+OSEM, FORE+AWOSEM) as a function of lesion contrast is calculated, although other protocols could be compared. A confidence level for each tumor is also recorded for incorporation into later AFROC analysis.

  15. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    PubMed Central

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE

  16. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE

  17. Direct reconstruction of cardiac PET kinetic parametric images using a preconditioned conjugate gradient approach

    PubMed Central

    Rakvongthai, Yothin; Ouyang, Jinsong; Guerin, Bastien; Li, Quanzheng; Alpert, Nathaniel M.; El Fakhri, Georges

    2013-01-01

    Purpose: Our research goal is to develop an algorithm to reconstruct cardiac positron emission tomography (PET) kinetic parametric images directly from sinograms and compare its performance with the conventional indirect approach. Methods: Time activity curves of a NCAT phantom were computed according to a one-tissue compartmental kinetic model with realistic kinetic parameters. The sinograms at each time frame were simulated using the activity distribution for the time frame. The authors reconstructed the parametric images directly from the sinograms by optimizing a cost function, which included the Poisson log-likelihood and a spatial regularization terms, using the preconditioned conjugate gradient (PCG) algorithm with the proposed preconditioner. The proposed preconditioner is a diagonal matrix whose diagonal entries are the ratio of the parameter and the sensitivity of the radioactivity associated with parameter. The authors compared the reconstructed parametric images using the direct approach with those reconstructed using the conventional indirect approach. Results: At the same bias, the direct approach yielded significant relative reduction in standard deviation by 12%–29% and 32%–70% for 50 × 106 and 10 × 106 detected coincidences counts, respectively. Also, the PCG method effectively reached a constant value after only 10 iterations (with numerical convergence achieved after 40–50 iterations), while more than 500 iterations were needed for CG. Conclusions: The authors have developed a novel approach based on the PCG algorithm to directly reconstruct cardiac PET parametric images from sinograms, and yield better estimation of kinetic parameters than the conventional indirect approach, i.e., curve fitting of reconstructed images. The PCG method increases the convergence rate of reconstruction significantly as compared to the conventional CG method. PMID:24089922

  18. Optimization, evaluation, and comparison of standard algorithms for image reconstruction with the VIP-PET

    PubMed Central

    Mikhaylova, E.; Kolstein, M.; De Lorenzo, G.; Chmeissani, M.

    2014-01-01

    A novel positron emission tomography (PET) scanner design based on a room-temperature pixelated CdTe solid-state detector is being developed within the framework of the Voxel Imaging PET (VIP) Pathfinder project [1]. The simulation results show a great potential of the VIP to produce high-resolution images even in extremely challenging conditions such as the screening of a human head [2]. With unprecedented high channel density (450 channels/cm3) image reconstruction is a challenge. Therefore optimization is needed to find the best algorithm in order to exploit correctly the promising detector potential. The following reconstruction algorithms are evaluated: 2-D Filtered Backprojection (FBP), Ordered Subset Expectation Maximization (OSEM), List-Mode OSEM (LM-OSEM), and the Origin Ensemble (OE) algorithm. The evaluation is based on the comparison of a true image phantom with a set of reconstructed images obtained by each algorithm. This is achieved by calculation of image quality merit parameters such as the bias, the variance and the mean square error (MSE). A systematic optimization of each algorithm is performed by varying the reconstruction parameters, such as the cutoff frequency of the noise filters and the number of iterations. The region of interest (ROI) analysis of the reconstructed phantom is also performed for each algorithm and the results are compared. Additionally, the performance of the image reconstruction methods is compared by calculating the modulation transfer function (MTF). The reconstruction time is also taken into account to choose the optimal algorithm. The analysis is based on GAMOS [3] simulation including the expected CdTe and electronic specifics. PMID:25018777

  19. Optimization, evaluation, and comparison of standard algorithms for image reconstruction with the VIP-PET.

    PubMed

    Mikhaylova, E; Kolstein, M; De Lorenzo, G; Chmeissani, M

    2014-07-01

    A novel positron emission tomography (PET) scanner design based on a room-temperature pixelated CdTe solid-state detector is being developed within the framework of the Voxel Imaging PET (VIP) Pathfinder project [1]. The simulation results show a great potential of the VIP to produce high-resolution images even in extremely challenging conditions such as the screening of a human head [2]. With unprecedented high channel density (450 channels/cm(3)) image reconstruction is a challenge. Therefore optimization is needed to find the best algorithm in order to exploit correctly the promising detector potential. The following reconstruction algorithms are evaluated: 2-D Filtered Backprojection (FBP), Ordered Subset Expectation Maximization (OSEM), List-Mode OSEM (LM-OSEM), and the Origin Ensemble (OE) algorithm. The evaluation is based on the comparison of a true image phantom with a set of reconstructed images obtained by each algorithm. This is achieved by calculation of image quality merit parameters such as the bias, the variance and the mean square error (MSE). A systematic optimization of each algorithm is performed by varying the reconstruction parameters, such as the cutoff frequency of the noise filters and the number of iterations. The region of interest (ROI) analysis of the reconstructed phantom is also performed for each algorithm and the results are compared. Additionally, the performance of the image reconstruction methods is compared by calculating the modulation transfer function (MTF). The reconstruction time is also taken into account to choose the optimal algorithm. The analysis is based on GAMOS [3] simulation including the expected CdTe and electronic specifics. PMID:25018777

  20. Reconstruction of an input function from a dynamic PET water image using multiple tissue curves.

    PubMed

    Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro

    2016-08-01

    Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. When CBF is assessed using PET with [Formula: see text] (15)O or C(15)O2, its calculation requires an arterial input function, which generally requires invasive arterial blood sampling. The aim of the present study was to develop a new technique to reconstruct an image derived input function (IDIF) from a dynamic [Formula: see text] (15)O PET image as a completely non-invasive approach. Our technique consisted of using a formula to express the input using tissue curve with rate constant parameter. For multiple tissue curves extracted from the dynamic image, the rate constants were estimated so as to minimize the sum of the differences of the reproduced inputs expressed by the extracted tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects (n  =  29) and was compared to the blood sampling method. Simulation studies were performed to examine the magnitude of potential biases in CBF and to optimize the number of multiple tissue curves used for the input reconstruction. In the PET study, the estimated IDIFs were well reproduced against the measured ones. The difference between the calculated CBF values obtained using the two methods was small as around  <8% and the calculated CBF values showed a tight correlation (r  =  0.97). The simulation showed that errors associated with the assumed parameters were  <10%, and that the optimal number of tissue curves to be used was around 500. Our results demonstrate that IDIF can be reconstructed directly from tissue curves obtained through [Formula: see text] (15)O PET imaging. This suggests the possibility of using a completely non-invasive technique to assess CBF in patho-physiological studies. PMID:27401833

  1. Reconstruction of an input function from a dynamic PET water image using multiple tissue curves

    NASA Astrophysics Data System (ADS)

    Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro

    2016-08-01

    Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. When CBF is assessed using PET with {{\\text{H}}2} 15O or C15O2, its calculation requires an arterial input function, which generally requires invasive arterial blood sampling. The aim of the present study was to develop a new technique to reconstruct an image derived input function (IDIF) from a dynamic {{\\text{H}}2} 15O PET image as a completely non-invasive approach. Our technique consisted of using a formula to express the input using tissue curve with rate constant parameter. For multiple tissue curves extracted from the dynamic image, the rate constants were estimated so as to minimize the sum of the differences of the reproduced inputs expressed by the extracted tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects (n  =  29) and was compared to the blood sampling method. Simulation studies were performed to examine the magnitude of potential biases in CBF and to optimize the number of multiple tissue curves used for the input reconstruction. In the PET study, the estimated IDIFs were well reproduced against the measured ones. The difference between the calculated CBF values obtained using the two methods was small as around  <8% and the calculated CBF values showed a tight correlation (r  =  0.97). The simulation showed that errors associated with the assumed parameters were  <10%, and that the optimal number of tissue curves to be used was around 500. Our results demonstrate that IDIF can be reconstructed directly from tissue curves obtained through {{\\text{H}}2} 15O PET imaging. This suggests the possibility of using a completely non-invasive technique to assess CBF in patho-physiological studies.

  2. Three-dimensional image reconstruction for PET by multi-slice rebinning and axial image filtering.

    PubMed

    Lewittt, R M; Muehllehner, G; Karpt, J S

    1994-03-01

    A fast method is described for reconstructing volume images from three-dimensional (3D) coincidence data in positron emission tomography (PET). The reconstruction method makes use of all coincidence data acquired by high-sensitivity PET systems that do not have inter-slice absorbers (septa) to restrict the axial acceptance angle. The reconstruction method requires only a small amount of storage and computation, making it well suited for dynamic and whole-body studies. The method consists of three steps: (i) rebinning of coincidence data into a stack of 2D sinograms; (ii) slice-by-slice reconstruction of the sinogram associated with each slice to produce a preliminary 3D image having strong blurring in the axial (z) direction, but with different blurring at different z positions; and (iii) spatially variant filtering of the 3D image in the axial direction (i.e. 1D filtering in z for each x-y column) to produce the final image. The first step involves a new form of the rebinning operation in which multiple sinograms are incremented for each oblique coincidence line (multi-slice rebinning). The axial filtering step is formulated and implemented using the singular value decomposition (SVD). The method has been applied successfully to simulated data and to measured data for different kinds of phantom (multiple point sources, multiple discs, a cylinder with cold spheres, and a 3D brain phantom). PMID:15551583

  3. Improving lesion detectability in PET imaging with a penalized likelihood reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Wangerin, Kristen A.; Ahn, Sangtae; Ross, Steven G.; Kinahan, Paul E.; Manjeshwar, Ravindra M.

    2015-03-01

    Ordered Subset Expectation Maximization (OSEM) is currently the most widely used image reconstruction algorithm for clinical PET. However, OSEM does not necessarily provide optimal image quality, and a number of alternative algorithms have been explored. We have recently shown that a penalized likelihood image reconstruction algorithm using the relative difference penalty, block sequential regularized expectation maximization (BSREM), achieves more accurate lesion quantitation than OSEM, and importantly, maintains acceptable visual image quality in clinical wholebody PET. The goal of this work was to evaluate lesion detectability with BSREM versus OSEM. We performed a twoalternative forced choice study using 81 patient datasets with lesions of varying contrast inserted into the liver and lung. At matched imaging noise, BSREM and OSEM showed equivalent detectability in the lungs, and BSREM outperformed OSEM in the liver. These results suggest that BSREM provides not only improved quantitation and clinically acceptable visual image quality as previously shown but also improved lesion detectability compared to OSEM. We then modeled this detectability study, applying both nonprewhitening (NPW) and channelized Hotelling (CHO) model observers to the reconstructed images. The CHO model observer showed good agreement with the human observers, suggesting that we can apply this model to future studies with varying simulation and reconstruction parameters.

  4. LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms

    PubMed Central

    Kadrmas, Dan J

    2010-01-01

    Iterative statistical reconstruction methods are becoming the standard in positron emission tomography (PET). Conventional maximum-likelihood expectation-maximization (MLEM) and ordered-subsets (OSEM) algorithms act on data which has been pre-processed into corrected, evenly-spaced histograms; however, such pre-processing corrupts the Poisson statistics. Recent advances have incorporated attenuation, scatter, and randoms compensation into the iterative reconstruction. The objective of this work was to incorporate the remaining preprocessing steps, including arc correction, to reconstruct directly from raw unevenly-spaced line-of-response (LOR) histograms. This exactly preserves Poisson statistics and full spatial information in a manner closely related to listmode ML, making full use of the ML statistical model. The LOR-OSEM algorithm was implemented using a rotation-based projector which maps directly to the unevenly-spaced LOR grid. Simulation and phantom experiments were performed to characterize resolution, contrast, and noise properties for 2D PET. LOR-OSEM provided a beneficial noise-resolution tradeoff, outperforming AW-OSEM by about the same margin that AW-OSEM outperformed pre-corrected OSEM. The relationship between LOR-ML and listmode ML algorithms was explored, and implementation differences are discussed. LOR-OSEM is a viable alternative to AW-OSEM for histogram-based reconstruction with improved spatial resolution and noise properties. PMID:15566171

  5. Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels

    NASA Astrophysics Data System (ADS)

    Comtat, Claude; Kinahan, Paul E.; Fessler, Jeffrey A.; Beyer, Thomas; Townsend, David W.; Defrise, Michel; Michel, Christian

    2002-01-01

    We present the results of utilizing aligned anatomical information from CT images to locally adjust image smoothness during the reconstruction of three-dimensional (3D) whole-body positron emission tomography (PET) data. The ability of whole-body PET imaging to detect malignant neoplasms is becoming widely recognized. Potentially useful, however, is the role of whole-body PET in quantitative estimation of tracer uptake. The utility of PET in oncology is often limited by the high level of statistical noise in the images. Reduction in noise can be obtained by incorporating a priori image smoothness information from correlated anatomical information during the reconstruction of PET data. A combined PET/CT scanner allows the acquisition of accurately aligned PET and x-ray CT whole-body data. We use the Fourier rebinning algorithm (FORE) to accurately convert the 3D PET data to two-dimensional (2D) data to accelerate the image reconstruction process. The 2D datasets are reconstructed with successive over-relaxation of a penalized weighted least squares (PWLS) objective function to model the statistics of the acquisition, data corrections, and rebinning. A 3D voxel label model is presented that incorporates the anatomical information via the penalty weights of the PWLS objective function. This combination of FORE + PWLS + labels was developed as it allows for both reconstruction of 3D whole-body data sets in clinically feasible times and also the inclusion of anatomical information in such a way that convergence can be guaranteed. Since mismatches between anatomical (CT) and functional (PET) data are unavoidable in practice, the labels are 'blurred' to reflect the uncertainty associated with the anatomical information. Simulated and experimental results show the potential advantage of incorporating anatomical information by using blurred labels to calculate the penalty weights. We conclude that while the effect of this method on detection tasks is complicated and unclear

  6. Sinogram bow-tie filtering in FBP PET reconstruction.

    PubMed

    Abella, M; Vaquero, J J; Soto-Montenegro, M L; Lage, E; Desco, M

    2009-05-01

    Low-pass filtering of sinograms in the radial direction is the most common practice to limit noise amplification in filtered back projection (FBP) reconstruction of positron emission tomography studies. Other filtering strategies have been proposed to prevent the loss in resolution due to low-pass radial filters, although results have been diverse. Using the well-known properties of the Fourier transform of a sinogram, the authors defined a binary mask that matches the expected shape of the support region in the Fourier domain of the sinogram ("bow tie"). This mask was smoothed by a convolution with a ten-point Gaussian kernel which not only avoids ringing but also introduces a pre-emphasis at low frequencies. A new filtering scheme for FBP is proposed, comprising this smoothed bow-tie filter combined with a standard radial filter and an axial filter. The authors compared the performance of the bow-tie filtering scheme with that of other previously reported methods: Standard radial filtering, angular filtering, and stackgram-domain filtering. All the quantitative data in the comparisons refer to a baseline reconstruction using a ramp filter only. When using the smallest size of the Gaussian kernel in the stackgram domain, the authors achieved a noise reduction of 33% at the cost of degrading radial and tangential resolutions (14.5% and 16%, respectively, for cubic interpolation). To reduce the noise by 30%, the angular filter produced a larger degradation of contrast (3%) and tangential resolution (46% at 10 mm from the center of the field of view) and showed noticeable artifacts in the form of circular blurring dependent on the distance to the center of the field of view. For a similar noise reduction (33%), the proposed bow-tie filtering scheme yielded optimum results in resolution (gain in radial resolution of 10%) and contrast (1% increase) when compared with any of the other filters alone. Experiments with rodent images showed noticeable image quality

  7. Optimization of Rb-82 PET acquisition and reconstruction protocols for myocardial perfusion defect detection

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman; Lautamäki, Riikka; Lodge, Martin A.; Bengel, Frank M.; Tsui, Benjamin M. W.

    2009-05-01

    The purpose of this study is to optimize the dynamic Rb-82 cardiac PET acquisition and reconstruction protocols for maximum myocardial perfusion defect detection using realistic simulation data and task-based evaluation. Time activity curves (TACs) of different organs under both rest and stress conditions were extracted from dynamic Rb-82 PET images of five normal patients. Combined SimSET-GATE Monte Carlo simulation was used to generate nearly noise-free cardiac PET data from a time series of 3D NCAT phantoms with organ activities modeling different pre-scan delay times (PDTs) and total acquisition times (TATs). Poisson noise was added to the nearly noise-free projections and the OS-EM algorithm was applied to generate noisy reconstructed images. The channelized Hotelling observer (CHO) with 32× 32 spatial templates corresponding to four octave-wide frequency channels was used to evaluate the images. The area under the ROC curve (AUC) was calculated from the CHO rating data as an index for image quality in terms of myocardial perfusion defect detection. The 0.5 cycle cm-1 Butterworth post-filtering on OS-EM (with 21 subsets) reconstructed images generates the highest AUC values while those from iteration numbers 1 to 4 do not show different AUC values. The optimized PDTs for both rest and stress conditions are found to be close to the cross points of the left ventricular chamber and myocardium TACs, which may promote an individualized PDT for patient data processing and image reconstruction. Shortening the TATs for <~3 min from the clinically employed acquisition time does not affect the myocardial perfusion defect detection significantly for both rest and stress studies.

  8. Iterative reconstruction of Fourier-rebinned PET data using sinogram blurring function estimated from point source scans

    PubMed Central

    Tohme, Michel S.; Qi, Jinyi

    2010-01-01

    Purpose: The accuracy of the system model that governs the transformation from the image space to the projection space in positron emission tomography (PET) greatly affects the quality of reconstructed images. For efficient computation in iterative reconstructions, the system model in PET can be factored into a product of geometric projection and sinogram blurring function. To further speed up reconstruction, fully 3D PET data can be rebinned into a stack of 2D sinograms and then be reconstructed using 2D iterative algorithms. The purpose of this work is to develop a method to estimate the sinogram blurring function to be used in reconstruction of Fourier-rebinned data. Methods: In a previous work, the authors developed an approach to estimating the sinogram blurring function of nonrebinned PET data from experimental scans of point sources. In this study, the authors extend this method to the estimation of sinogram blurring function for Fourier-rebinned PET data. A point source was scanned at a set of sampled positions in the microPET II scanner. The sinogram blurring function is considered to be separable between the transaxial and axial directions. A radially and angularly variant 2D blurring function is estimated from Fourier-rebinned point source scans to model the transaxial blurring with consideration of the detector block structure of the scanner; a space-variant 1D blurring kernel along the axial direction is estimated separately to model the correlation between neighboring planes due to detector intrinsic blurring and Fourier rebinning. The estimated sinogram blurring function is incorporated in a 2D maximum a posteriori (MAP) reconstruction algorithm for image reconstruction. Results: Physical phantom experiments were performed on the microPET II scanner to validate the proposed method. The authors compared the proposed method to 2D MAP reconstruction without sinogram blurring model and 2D MAP reconstruction with a Monte Carlo based blurring model. The

  9. Reconstruction of signal in plastic scintillator of PET using Tikhonov regularization.

    PubMed

    Raczynski, Lech

    2015-08-01

    The new concept of Time of Flight Positron Emission Tomography (TOF-PET) detection system, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The Jagiellonian-PET (J-PET) detector improves the TOF resolution due to the use of fast plastic scintillators. Since registration of the waveform of signals with duration times of few nanoseconds is not feasible, a novel front-end electronics allowing for sampling in a voltage domain at four thresholds was developed. To take fully advantage of these fast signals a novel scheme of recovery of the waveform of the signal, based on idea from the Tikhonov regularization method, is presented. From the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This step is crucial to introduce and prove the formula for calculations of the signal recovery error. The method is tested using signals registered by means of the single detection module of the J-PET detector built out from the 30 cm long plastic scintillator strip. It is shown that using the recovered waveform of the signals, instead of samples at four voltage levels alone, improves the spatial resolution of the hit position reconstruction from 1.05 cm to 0.94 cm. Moreover, the obtained result is only slightly worse than the one evaluated using the original raw-signal. The spatial resolution calculated under these conditions is equal to 0.93 cm. PMID:26736869

  10. Statistical image reconstruction methods for simultaneous emission/transmission PET scans

    SciTech Connect

    Erdogan, H.; Fessler, J.A.

    1996-12-31

    Transmission scans are necessary for estimating the attenuation correction factors (ACFs) to yield quantitatively accurate PET emission images. To reduce the total scan time, post-injection transmission scans have been proposed in which one can simultaneously acquire emission and transmission data using rod sources and sinogram windowing. However, since the post-injection transmission scans are corrupted by emission coincidences, accurate correction for attenuation becomes more challenging. Conventional methods (emission subtraction) for ACF computation from post-injection scans are suboptimal and require relatively long scan times. We introduce statistical methods based on penalized-likelihood objectives to compute ACFs and then use them to reconstruct lower noise PET emission images from simultaneous transmission/emission scans. Simulations show the efficacy of the proposed methods. These methods improve image quality and SNR of the estimates as compared to conventional methods.

  11. Assessment of a fully 3D Monte Carlo reconstruction method for preclinical PET with iodine-124

    NASA Astrophysics Data System (ADS)

    Moreau, M.; Buvat, I.; Ammour, L.; Chouin, N.; Kraeber-Bodéré, F.; Chérel, M.; Carlier, T.

    2015-03-01

    Iodine-124 is a radionuclide well suited to the labeling of intact monoclonal antibodies. Yet, accurate quantification in preclinical imaging with I-124 is challenging due to the large positron range and a complex decay scheme including high-energy gammas. The aim of this work was to assess the quantitative performance of a fully 3D Monte Carlo (MC) reconstruction for preclinical I-124 PET. The high-resolution small animal PET Inveon (Siemens) was simulated using GATE 6.1. Three system matrices (SM) of different complexity were calculated in addition to a Siddon-based ray tracing approach for comparison purpose. Each system matrix accounted for a more or less complete description of the physics processes both in the scanned object and in the PET scanner. One homogeneous water phantom and three heterogeneous phantoms including water, lungs and bones were simulated, where hot and cold regions were used to assess activity recovery as well as the trade-off between contrast recovery and noise in different regions. The benefit of accounting for scatter, attenuation, positron range and spurious coincidences occurring in the object when calculating the system matrix used to reconstruct I-124 PET images was highlighted. We found that the use of an MC SM including a thorough modelling of the detector response and physical effects in a uniform water-equivalent phantom was efficient to get reasonable quantitative accuracy in homogeneous and heterogeneous phantoms. Modelling the phantom heterogeneities in the SM did not necessarily yield the most accurate estimate of the activity distribution, due to the high variance affecting many SM elements in the most sophisticated SM.

  12. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET

    NASA Astrophysics Data System (ADS)

    Ahn, Sangtae; Ross, Steven G.; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D.; Manjeshwar, Ravindra M.

    2015-08-01

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.

  13. Linear array implementation of the EM algorithm for PET image reconstruction

    SciTech Connect

    Rajan, K.; Patnaik, L.M.; Ramakrishna, J.

    1995-08-01

    The PET image reconstruction based on the EM algorithm has several attractive advantages over the conventional convolution back projection algorithms. However, the PET image reconstruction based on the EM algorithm is computationally burdensome for today`s single processor systems. In addition, a large memory is required for the storage of the image, projection data, and the probability matrix. Since the computations are easily divided into tasks executable in parallel, multiprocessor configurations are the ideal choice for fast execution of the EM algorithms. In tis study, the authors attempt to overcome these two problems by parallelizing the EM algorithm on a multiprocessor systems. The parallel EM algorithm on a linear array topology using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PE`s) has been implemented. The performance of the EM algorithm on a 386/387 machine, IBM 6000 RISC workstation, and on the linear array system is discussed and compared. The results show that the computational speed performance of a linear array using 8 DSP chips as PE`s executing the EM image reconstruction algorithm is about 15.5 times better than that of the IBM 6000 RISC workstation. The novelty of the scheme is its simplicity. The linear array topology is expandable with a larger number of PE`s. The architecture is not dependant on the DSP chip chosen, and the substitution of the latest DSP chip is straightforward and could yield better speed performance.

  14. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET.

    PubMed

    Ahn, Sangtae; Ross, Steven G; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D; Manjeshwar, Ravindra M

    2015-08-01

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs. PMID:26158503

  15. SU-D-201-05: Phantom Study to Determine Optimal PET Reconstruction Parameters for PET/MR Imaging of Y-90 Microspheres Following Radioembolization

    SciTech Connect

    Maughan, N; Conti, M; Parikh, P; Faul, D; Laforest, R

    2015-06-15

    Purpose: Imaging Y-90 microspheres with PET/MRI following hepatic radioembolization has the potential for predicting treatment outcome and, in turn, improving patient care. The positron decay branching ratio, however, is very small (32 ppm), yielding images with poor statistics even when therapy doses are used. Our purpose is to find PET reconstruction parameters that maximize the PET recovery coefficients and minimize noise. Methods: An initial 7.5 GBq of Y-90 chloride solution was used to fill an ACR phantom for measurements with a PET/MRI scanner (Siemens Biograph mMR). Four hot cylinders and a warm background activity volume of the phantom were filled with a 10:1 ratio. Phantom attenuation maps were derived from scaled CT images of the phantom and included the MR phased array coil. The phantom was imaged at six time points between 7.5–1.0 GBq total activity over a period of eight days. PET images were reconstructed via OP-OSEM with 21 subsets and varying iteration number (1–5), post-reconstruction filter size (5–10 mm), and either absolute or relative scatter correction. Recovery coefficients, SNR, and noise were measured as well as total activity in the phantom. Results: For the 120 different reconstructions, recovery coefficients ranged from 0.1–0.6 and improved with increasing iteration number and reduced post-reconstruction filter size. SNR, however, improved substantially with lower iteration numbers and larger post-reconstruction filters. From the phantom data, we found that performing 2 iterations, 21 subsets, and applying a 5 mm Gaussian post-reconstruction filter provided optimal recovery coefficients at a moderate noise level for a wide range of activity levels. Conclusion: The choice of reconstruction parameters for Y-90 PET images greatly influences both the accuracy of measurements and image quality. We have found reconstruction parameters that provide optimal recovery coefficients with minimized noise. Future work will include the effects

  16. Multi-ray-based system matrix generation for 3D PET reconstruction.

    PubMed

    Moehrs, Sascha; Defrise, Michel; Belcari, Nicola; Guerra, Alberto Del; Bartoli, Antonietta; Fabbri, Serena; Zanetti, Gianluigi

    2008-12-01

    Iterative image reconstruction algorithms for positron emission tomography (PET) require a sophisticated system matrix (model) of the scanner. Our aim is to set up such a model offline for the YAP-(S)PET II small animal imaging tomograph in order to use it subsequently with standard ML-EM (maximum-likelihood expectation maximization) and OSEM (ordered subset expectation maximization) for fully three-dimensional image reconstruction. In general, the system model can be obtained analytically, via measurements or via Monte Carlo simulations. In this paper, we present the multi-ray method, which can be considered as a hybrid method to set up the system model offline. It incorporates accurate analytical (geometric) considerations as well as crystal depth and crystal scatter effects. At the same time, it has the potential to model seamlessly other physical aspects such as the positron range. The proposed method is based on multiple rays which are traced from/to the detector crystals through the image volume. Such a ray-tracing approach itself is not new; however, we derive a novel mathematical formulation of the approach and investigate the positioning of the integration (ray-end) points. First, we study single system matrix entries and show that the positioning and weighting of the ray-end points according to Gaussian integration give better results compared to equally spaced integration points (trapezoidal integration), especially if only a small number of integration points (rays) are used. Additionally, we show that, for a given variance of the single matrix entries, the number of rays (events) required to calculate the whole matrix is a factor of 20 larger when using a pure Monte-Carlo-based method. Finally, we analyse the quality of the model by reconstructing phantom data from the YAP-(S)PET II scanner. PMID:19001696

  17. Simultaneous reconstruction of the activity image and registration of the CT image in TOF-PET

    NASA Astrophysics Data System (ADS)

    Rezaei, Ahmadreza; Michel, Christian; Casey, Michael E.; Nuyts, Johan

    2016-02-01

    Previously, maximum-likelihood methods have been proposed to jointly estimate the activity image and the attenuation image or the attenuation sinogram from time-of-flight (TOF) positron emission tomography (PET) data. In this contribution, we propose a method that addresses the possible alignment problem of the TOF-PET emission data and the computed tomography (CT) attenuation data, by combining reconstruction and registration. The method, called MLRR, iteratively reconstructs the activity image while registering the available CT-based attenuation image, so that the pair of activity and attenuation images maximise the likelihood of the TOF emission sinogram. The algorithm is slow to converge, but some acceleration could be achieved by using Nesterov’s momentum method and by applying a multi-resolution scheme for the non-rigid displacement estimation. The latter also helps to avoid local optima, although convergence to the global optimum cannot be guaranteed. The results are evaluated on 2D and 3D simulations as well as a respiratory gated clinical scan. Our experiments indicate that the proposed method is able to correct for possible misalignment of the CT-based attenuation image, and is therefore a very promising approach to suppressing attenuation artefacts in clinical PET/CT. When applied to respiratory gated data of a patient scan, it produced deformations that are compatible with breathing motion and which reduced the well known attenuation artefact near the dome of the liver. Since the method makes use of the energy-converted CT attenuation image, the scale problem of joint reconstruction is automatically solved.

  18. Maximum-likelihood joint image reconstruction and motion estimation with misaligned attenuation in TOF-PET/CT

    NASA Astrophysics Data System (ADS)

    Bousse, Alexandre; Bertolli, Ottavia; Atkinson, David; Arridge, Simon; Ourselin, Sébastien; Hutton, Brian F.; Thielemans, Kris

    2016-02-01

    This work is an extension of our recent work on joint activity reconstruction/motion estimation (JRM) from positron emission tomography (PET) data. We performed JRM by maximization of the penalized log-likelihood in which the probabilistic model assumes that the same motion field affects both the activity distribution and the attenuation map. Our previous results showed that JRM can successfully reconstruct the activity distribution when the attenuation map is misaligned with the PET data, but converges slowly due to the significant cross-talk in the likelihood. In this paper, we utilize time-of-flight PET for JRM and demonstrate that the convergence speed is significantly improved compared to JRM with conventional PET data.

  19. Fat-constrained 18F-FDG PET reconstruction using Dixon MR imaging and the origin ensemble algorithm

    NASA Astrophysics Data System (ADS)

    Wülker, Christian; Heinzer, Susanne; Börnert, Peter; Renisch, Steffen; Prevrhal, Sven

    2015-03-01

    Combined PET/MR imaging allows to incorporate the high-resolution anatomical information delivered by MRI into the PET reconstruction algorithm for improvement of PET accuracy beyond standard corrections. We used the working hypothesis that glucose uptake in adipose tissue is low. Thus, our aim was to shift 18F-FDG PET signal into image regions with a low fat content. Dixon MR imaging can be used to generate fat-only images via the water/fat chemical shift difference. On the other hand, the Origin Ensemble (OE) algorithm, a novel Markov chain Monte Carlo method, allows to reconstruct PET data without the use of forward- and back projection operations. By adequate modifications to the Markov chain transition kernel, it is possible to include anatomical a priori knowledge into the OE algorithm. In this work, we used the OE algorithm to reconstruct PET data of a modified IEC/NEMA Body Phantom simulating body water/fat composition. Reconstruction was performed 1) natively, 2) informed with the Dixon MR fat image to down-weight 18F-FDG signal in fatty tissue compartments in favor of adjacent regions, and 3) informed with the fat image to up-weight 18F-FDG signal in fatty tissue compartments, for control purposes. Image intensity profiles confirmed the visibly improved contrast and reduced partial volume effect at water/fat interfaces. We observed a 17+/-2% increased SNR of hot lesions surrounded by fat, while image quality was almost completely retained in fat-free image regions. An additional in vivo experiment proved the applicability of the presented technique in practice, and again verified the beneficial impact of fat-constrained OE reconstruction on PET image quality.

  20. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    SciTech Connect

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  1. Accuracy and Utility of Deformable Image Registration in {sup 68}Ga 4D PET/CT Assessment of Pulmonary Perfusion Changes During and After Lung Radiation Therapy

    SciTech Connect

    Hardcastle, Nicholas; Hofman, Michael S.; Hicks, Rodney J.; Callahan, Jason; Kron, Tomas; MacManus, Michael P.; Ball, David L.; Jackson, Price; Siva, Shankar

    2015-09-01

    Purpose: Measuring changes in lung perfusion resulting from radiation therapy dose requires registration of the functional imaging to the radiation therapy treatment planning scan. This study investigates registration accuracy and utility for positron emission tomography (PET)/computed tomography (CT) perfusion imaging in radiation therapy for non–small cell lung cancer. Methods: {sup 68}Ga 4-dimensional PET/CT ventilation-perfusion imaging was performed before, during, and after radiation therapy for 5 patients. Rigid registration and deformable image registration (DIR) using B-splines and Demons algorithms was performed with the CT data to obtain a deformation map between the functional images and planning CT. Contour propagation accuracy and correspondence of anatomic features were used to assess registration accuracy. Wilcoxon signed-rank test was used to determine statistical significance. Changes in lung perfusion resulting from radiation therapy dose were calculated for each registration method for each patient and averaged over all patients. Results: With B-splines/Demons DIR, median distance to agreement between lung contours reduced modestly by 0.9/1.1 mm, 1.3/1.6 mm, and 1.3/1.6 mm for pretreatment, midtreatment, and posttreatment (P<.01 for all), and median Dice score between lung contours improved by 0.04/0.04, 0.05/0.05, and 0.05/0.05 for pretreatment, midtreatment, and posttreatment (P<.001 for all). Distance between anatomic features reduced with DIR by median 2.5 mm and 2.8 for pretreatment and midtreatment time points, respectively (P=.001) and 1.4 mm for posttreatment (P>.2). Poorer posttreatment results were likely caused by posttreatment pneumonitis and tumor regression. Up to 80% standardized uptake value loss in perfusion scans was observed. There was limited change in the loss in lung perfusion between registration methods; however, Demons resulted in larger interpatient variation compared with rigid and B-splines registration

  2. The impact of reconstruction algorithms and time of flight information on PET/CT image quality

    PubMed Central

    Suljic, Alen; Tomse, Petra; Jensterle, Luka; Skrk, Damijan

    2015-01-01

    Background The aim of the study was to explore the influence of various time-of-flight (TOF) and non-TOF reconstruction algorithms on positron emission tomography/computer tomography (PET/CT) image quality. Materials and methods. Measurements were performed with a triple line source phantom, consisting of capillaries with internal diameter of ∼ 1 mm and standard Jaszczak phantom. Each of the data sets was reconstructed using analytical filtered back projection (FBP) algorithm, iterative ordered subsets expectation maximization (OSEM) algorithm (4 iterations, 24 subsets) and iterative True-X algorithm incorporating a specific point spread function (PSF) correction (4 iterations, 21 subsets). Baseline OSEM (2 iterations, 8 subsets) was included for comparison. Procedures were undertaken following the National Electrical Manufacturers Association (NEMA) NU-2-2001 protocol. Results Measurement of spatial resolution in full width at half maximum (FWHM) was 5.2 mm, 4.5 mm and 2.9 mm for FBP, OSEM and True-X; and 5.1 mm, 4.5 mm and 2.9 mm for FBP+TOF, OSEM+TOF and True-X+TOF respectively. Assessment of reconstructed Jaszczak images at different concentration ratios showed that incorporation of TOF information improves cold contrast, while hot contrast only slightly, however the most prominent improvement could be seen in background variability - noise reduction. Conclusions On the basis of the results of investigation we concluded, that incorporation of TOF information in reconstruction algorithm mostly affects reduction of the background variability (levels of noise in the image), while the improvement of spatial resolution due to incorporation of TOF information is negligible. Comparison of traditional and modern reconstruction algorithms showed that analytical FBP yields comparable results in some parameter measurements, such as cold contrast and relative count error. Iterative methods show highest levels of hot contrast, when TOF and PSF corrections were applied

  3. A regularized relaxed ordered subset list-mode reconstruction algorithm and its preliminary application to undersampling PET imaging

    NASA Astrophysics Data System (ADS)

    Cao, Xiaoqing; Xie, Qingguo; Xiao, Peng

    2015-01-01

    List mode format is commonly used in modern positron emission tomography (PET) for image reconstruction due to certain special advantages. In this work, we proposed a list mode based regularized relaxed ordered subset (LMROS) algorithm for static PET imaging. LMROS is able to work with regularization terms which can be formulated as twice differentiable convex functions. Such a versatility would make LMROS a convenient and general framework for fulfilling different regularized list mode reconstruction methods. LMROS was applied to two simulated undersampling PET imaging scenarios to verify its effectiveness. Convex quadratic function, total variation constraint, non-local means and dictionary learning based regularization methods were successfully realized for different cases. The results showed that the LMROS algorithm was effective and some regularization methods greatly reduced the distortions and artifacts caused by undersampling.

  4. A volume of intersection approach for on-the-fly system matrix calculation in 3D PET image reconstruction

    NASA Astrophysics Data System (ADS)

    Lougovski, A.; Hofheinz, F.; Maus, J.; Schramm, G.; Will, E.; van den Hoff, J.

    2014-02-01

    The aim of this study is the evaluation of on-the-fly volume of intersection computation for system’s geometry modelling in 3D PET image reconstruction. For this purpose we propose a simple geometrical model in which the cubic image voxels on the given Cartesian grid are approximated with spheres and the rectangular tubes of response (ToRs) are approximated with cylinders. The model was integrated into a fully 3D list-mode PET reconstruction for performance evaluation. In our model the volume of intersection between a voxel and the ToR is only a function of the impact parameter (the distance between voxel centre to ToR axis) but is independent of the relative orientation of voxel and ToR. This substantially reduces the computational complexity of the system matrix calculation. Based on phantom measurements it was determined that adjusting the diameters of the spherical voxel size and the ToR in such a way that the actual voxel and ToR volumes are conserved leads to the best compromise between high spatial resolution, low noise, and suppression of Gibbs artefacts in the reconstructed images. Phantom as well as clinical datasets from two different PET systems (Siemens ECAT HR+ and Philips Ingenuity-TF PET/MR) were processed using the developed and the respective vendor-provided (line of intersection related) reconstruction algorithms. A comparison of the reconstructed images demonstrated very good performance of the new approach. The evaluation showed the respective vendor-provided reconstruction algorithms to possess 34-41% lower resolution compared to the developed one while exhibiting comparable noise levels. Contrary to explicit point spread function modelling our model has a simple straight-forward implementation and it should be easy to integrate into existing reconstruction software, making it competitive to other existing resolution recovery techniques.

  5. Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals

    PubMed Central

    Cheng, Ju-Chieh (Kevin); Shoghi, Kooresh; Laforest, Richard

    2012-01-01

    Purpose: Iterative reconstruction algorithms are becoming more commonly employed in positron emission tomography (PET) imaging; however, the quantitative accuracy of the reconstructed images still requires validation for various levels of contrast and counting statistics. Methods: The authors present an evaluation of the quantitative accuracy of the 3D maximum a posteriori (3D-MAP) image reconstruction algorithm for dynamic PET imaging with comparisons to two of the most widely used reconstruction algorithms: the 2D filtered-backprojection (2D-FBP) and 2D-ordered subsets expectation maximization (2D-OSEM) on the Siemens microPET scanners. The study was performed for various levels of count density encountered in typical dynamic scanning as well as the imaging of cardiac activity concentration in small animal studies on the Focus 120. Specially designed phantoms were used for evaluation of the spatial resolution, image quality, and quantitative accuracy. A normal mouse was employed to evaluate the accuracy of the blood time activity concentration extracted from left ventricle regions of interest (ROIs) within the images as compared to the actual blood activity concentration measured from arterial blood sampling. Results: For MAP reconstructions, the spatial resolution and contrast have been found to reach a stable value after 20 iterations independent of the β values (i.e., hyper parameter which controls the weight of the penalty term) and count density within the frame. The spatial resolution obtained with 3D-MAP reaches values of ∼1.0 mm with a β of 0.01 while the 2D-FBP has value of 1.8 mm and 2D-OSEM has a value of 1.6 mm. It has been observed that the lower the hyper parameter β used in MAP, more iterations are needed to reach the stable noise level (i.e., image roughness). The spatial resolution is improved by using a lower β value at the expense of higher image noise. However, with similar noise level the spatial resolution achieved by 3D-MAP was

  6. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-09-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose

  7. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms.

    PubMed

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M; Asma, Evren; Kinahan, Paul E; De Man, Bruno

    2015-10-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition.We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality.With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  8. Bayesian reconstruction of photon interaction sequences for high-resolution PET detectors

    PubMed Central

    Pratx, Guillem

    2013-01-01

    Realizing the full potential of high-resolution positron emission tomography (PET) systems involves accurately positioning events in which the annihilation photon deposits all its energy across multiple detector elements. Reconstructing the complete sequence of interactions of each photon provides a reliable way to select the earliest interaction because it ensures that all the interactions are consistent with one another. Bayesian estimation forms a natural framework to maximize the consistency of the sequence with the measurements while taking into account the physics of γ-ray transport. An inherently statistical method, it accounts for the uncertainty in the measured energy and position of each interaction. An algorithm based on maximum a posteriori (MAP) was evaluated for computer simulations. For a high-resolution PET system based on cadmium zinc telluride detectors, 93.8% of the recorded coincidences involved at least one photon multiple-interactions event (PMIE). The MAP estimate of the first interaction was accurate for 85.2% of the single photons. This represents a two-fold reduction in the number of mispositioned events compared to minimum pair distance, a simpler yet efficient positioning method. The point-spread function of the system presented lower tails and higher peak value when MAP was used. This translated into improved image quality, which we quantified by studying contrast and spatial resolution gains. PMID:19652293

  9. Accelerated time-of-flight (TOF) PET image reconstruction using TOF bin subsetization and TOF weighting matrix pre-computation

    NASA Astrophysics Data System (ADS)

    Mehranian, Abolfazl; Kotasidis, Fotis; Zaidi, Habib

    2016-02-01

    Time-of-flight (TOF) positron emission tomography (PET) technology has recently regained popularity in clinical PET studies for improving image quality and lesion detectability. Using TOF information, the spatial location of annihilation events is confined to a number of image voxels along each line of response, thereby the cross-dependencies of image voxels are reduced, which in turns results in improved signal-to-noise ratio and convergence rate. In this work, we propose a novel approach to further improve the convergence of the expectation maximization (EM)-based TOF PET image reconstruction algorithm through subsetization of emission data over TOF bins as well as azimuthal bins. Given the prevalence of TOF PET, we elaborated the practical and efficient implementation of TOF PET image reconstruction through the pre-computation of TOF weighting coefficients while exploiting the same in-plane and axial symmetries used in pre-computation of geometric system matrix. In the proposed subsetization approach, TOF PET data were partitioned into a number of interleaved TOF subsets, with the aim of reducing the spatial coupling of TOF bins and therefore to improve the convergence of the standard maximum likelihood expectation maximization (MLEM) and ordered subsets EM (OSEM) algorithms. The comparison of on-the-fly and pre-computed TOF projections showed that the pre-computation of the TOF weighting coefficients can considerably reduce the computation time of TOF PET image reconstruction. The convergence rate and bias-variance performance of the proposed TOF subsetization scheme were evaluated using simulated, experimental phantom and clinical studies. Simulations demonstrated that as the number of TOF subsets is increased, the convergence rate of MLEM and OSEM algorithms is improved. It was also found that for the same computation time, the proposed subsetization gives rise to further convergence. The bias-variance analysis of the experimental NEMA phantom and a clinical

  10. Poster — Thur Eve — 07: Simultaneous reconstruction of both true and scattered coincidences using a Generalized Scatter reconstruction algorithm in PET

    SciTech Connect

    Sun, H; Pistorious, S

    2014-08-15

    Introduction: Scattered coincidences in PET are generally taken as noise, which reduces image contrast and compromises quantification. We have developed a method, with promising results, to reconstruct activity distribution from scattered PET events instead of simply correcting for them. The implementation of this method on clinical PET scanners is however limited by the currently available detector energy resolution. With low energy resolution we lose the ability to distinguish scattered coincidences from true events based on the measured photon energy. In addition the two circular arcs used to confine the source position for a scattered event cannot be accurately defined. Method: This paper presents a modification to this approach which accounts for limited energy resolution. A measured event is split into a true and a scattered component each with different probabilities based on the position of the pair of photon energies in the energy spectrum. For the scattered component, we model the photon energy with a Gaussian distribution and the upper and lower energy limits can be estimated and used to define inner and outer circular arcs to confine the source position. The true and scattered components for each measured event were reconstructed using our Generalized Scatter reconstruction algorithm. Results and Conclusion: The results show that the contrast and noise properties were improved by 6–9% and 2–4% respectively. This demonstrates that the performance of the algorithm is less sensitive to the energy resolution and that incorporating scattered photons into reconstruction brings more benefits than simply rejecting them.

  11. A novel partial volume effects correction technique integrating deconvolution associated with denoising within an iterative PET image reconstruction

    SciTech Connect

    Merlin, Thibaut; Visvikis, Dimitris; Fernandez, Philippe; Lamare, Frederic

    2015-02-15

    Purpose: Partial volume effect (PVE) plays an important role in both qualitative and quantitative PET image accuracy, especially for small structures. A previously proposed voxelwise PVE correction method applied on PET reconstructed images involves the use of Lucy–Richardson deconvolution incorporating wavelet-based denoising to limit the associated propagation of noise. The aim of this study is to incorporate the deconvolution, coupled with the denoising step, directly inside the iterative reconstruction process to further improve PVE correction. Methods: The list-mode ordered subset expectation maximization (OSEM) algorithm has been modified accordingly with the application of the Lucy–Richardson deconvolution algorithm to the current estimation of the image, at each reconstruction iteration. Acquisitions of the NEMA NU2-2001 IQ phantom were performed on a GE DRX PET/CT system to study the impact of incorporating the deconvolution inside the reconstruction [with and without the point spread function (PSF) model] in comparison to its application postreconstruction and to standard iterative reconstruction incorporating the PSF model. The impact of the denoising step was also evaluated. Images were semiquantitatively assessed by studying the trade-off between the intensity recovery and the noise level in the background estimated as relative standard deviation. Qualitative assessments of the developed methods were additionally performed on clinical cases. Results: Incorporating the deconvolution without denoising within the reconstruction achieved superior intensity recovery in comparison to both standard OSEM reconstruction integrating a PSF model and application of the deconvolution algorithm in a postreconstruction process. The addition of the denoising step permitted to limit the SNR degradation while preserving the intensity recovery. Conclusions: This study demonstrates the feasibility of incorporating the Lucy–Richardson deconvolution associated with a

  12. Effect of culture complex of BMSCs and sodium hydroxide- and GRGDSPC-treated PET on the reconstruction of injured anterior cruciate ligament in a rabbit model.

    PubMed

    Huang, Jianming; Chen, Fengrong; Jian, Guojian; Ye, Zhiyang; Wang, Zimin; Liu, Haoyuan; Kang, Yifan

    2015-01-01

    Ligament reconstruction is an effective therapy for anterior cruciate ligament (ACL) rupture. Polyethylene terephthalate (PET) artificial ligaments have recently gained popularity in clinical ACL reconstruction for its advantage in the improvement of keen function. However, the application of PET in clinical treatment is limited by its poor bioactivity and biocompatibility. Recently, bone marrow-derived mesenchymal stem cells (BMSCs) have been widely studied in regenerative medical therapy due to their multi-lineage differentiation. Previous study also indicated that BMSCs may promote the healing of tendon-bone interface of injured ligament. We speculate that BMSCs may enhance the curative effect of PET artificial ligament on the tendon-bone-healing in ligament reconstruction. In this study, the PET materials were first modified with sodium hydroxide hydrolysis and GRGDSPC peptide which was able to improve its bioactivity and biocompatibility. Then, the effects of modified PET materials on the adhesion, proliferation and differentiation of BMSCs were examined. The in vitro co-culture of BMSCs and modified PET showed the modified PET promoted the adhesion, proliferation and differentiation of BMSCs. Further, the effect of culture complex of BMSCs and modified PET artificial ligament co-culture system on the injured ligament reconstruction was investigated in vivo. Results showed not only better growth and differentiation of BMSCs but also satisfactory healing of the injured ligament was observed after implantation of this culture complex into the injured ligament of rabbits. Our study provides a brand-new solution for ACL reconstruction. PMID:26221227

  13. High-speed computation of the EM algorithm for PET image reconstruction

    SciTech Connect

    Rajan, K.; Patnaik, L.M.; Ramakrishna, J. )

    1994-10-01

    The PET image reconstruction based on the EM algorithm has several attractive advantages over the conventional convolution backprojection algorithms. However, two major drawbacks have impeded the routine use of the EM algorithm, namely, the long computational time due to slow convergence and the large memory required for the storage of the image, projection data and the probability matrix. In this study, the authors attempts to solve these two problems by parallelizing the EM algorithm on a multiprocessor system. The authors have implemented an extended hypercube (EH) architecture for the high-speed computation of the EM algorithm using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PEs). The authors discuss and compare the performance of the EM algorithm on a 386/387 machine, CD 4360 mainframe, and on the EH system. The results show that the computational speed performance of an EH using DSP chips as PEs executing the EM image reconstruction algorithm is about 130 times better than that of the CD 4360 mainframe. The EH topology is expandable with more number of PEs.

  14. PET-CT imaging in patients with chronic sternal wound infections prior to reconstructive surgery: A case series.

    PubMed

    Read, Charlotte; Branford, Olivier A; Verjee, Liaquat S; Wood, Simon H

    2015-08-01

    Late presenting and recurrent sternal wound infections post-sternotomy are difficult to treat, with the clinical picture not necessarily reflecting the underlying problem. As a result of our experience, we suggest that these chronic cases should be managed using a different algorithm to acute sternal wound infection. Positron emission tomography combined with computerized tomography (PET-CT) imaging may be potentially useful in enabling accurate localization of disease sites, which guides adequate debridement prior to definitive reconstruction. It may also allow for disease surveillance and monitoring of the response to antimicrobial treatment. We present three cases which support the need for pre-operative imaging using PET-CT. PMID:25986418

  15. Effect of Post-Reconstruction Gaussian Filtering on Image Quality and Myocardial Blood Flow Measurement with N-13 Ammonia PET

    PubMed Central

    Kim, Hyeon Sik; Cho, Sang-Geon; Kim, Ju Han; Kwon, Seong Young; Lee, Byeong-il; Bom, Hee-Seung

    2014-01-01

    Objective(s): In order to evaluate the effect of post-reconstruction Gaussian filtering on image quality and myocardial blood flow (MBF) measurement by dynamic N-13 ammonia positron emission tomography (PET), we compared various reconstruction and filtering methods with image characteristics. Methods: Dynamic PET images of three patients with coronary artery disease (male-female ratio of 2:1; age: 57, 53, and 76 years) were reconstructed, using filtered back projection (FBP) and ordered subset expectation maximization (OSEM) methods. OSEM reconstruction consisted of OSEM_2I, OSEM_4I, and OSEM_6I with 2, 4, and 6 iterations, respectively. The images, reconstructed and filtered by Gaussian filters of 5, 10, and 15 mm, were obtained, as well as non-filtered images. Visual analysis of image quality (IQ) was performed using a 3-grade scoring system by 2 independent readers, blinded to the reconstruction and filtering methods of stress images. Then, signal-to-noise ratio (SNR) was calculated by noise and contrast recovery (CR). Stress and rest MBF and coronary flow reserve (CFR) were obtained for each method. IQ scores, stress and rest MBF, and CFR were compared between the methods, using Chi-square and Kruskal-Wallis tests. Results: In the visual analysis, IQ was significantly higher by 10 mm Gaussian filtering, compared to other sizes of filter (P<0.001 for both readers). However, no significant difference of IQ was found between FBP and various numbers of iteration in OSEM (P=0.923 and 0.855 for readers 1 and 2, respectively). SNR was significantly higher in 10 mm Gaussian filter. There was a significant difference in stress and rest MBF between several vascular territories. However CFR was not significantly different according to various filtering methods. Conclusion: Post-reconstruction Gaussian filtering with a filter size of 10 mm significantly enhances the IQ of N-13 ammonia PET-CT, without changing the results of CFR calculation. PMID:27408866

  16. Trilateration-based reconstruction of ortho-positronium decays into three photons with the J-PET detector

    NASA Astrophysics Data System (ADS)

    Gajos, A.; Kamińska, D.; Czerwiński, E.; Alfs, D.; Bednarski, T.; Białas, P.; Głowacz, B.; Gorgol, M.; Jasińska, B.; Kapłon, Ł.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pałka, M.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Sharma, N. G.; Silarski, M.; Słomski, A.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-05-01

    This work reports on a new reconstruction algorithm allowing us to reconstruct the decays of ortho-positronium atoms into three photons using the places and times of photons recorded in the detector. The method is based on trilateration and allows for a simultaneous reconstruction of both location and time of the decay. Results of resolution tests of the new reconstruction in the J-PET detector based on Monte Carlo simulations are presented, which yield a spatial resolution at the level of 2 cm (FWHM) for X and Y and at the level of 1 cm (FWHM) for Z available with the present resolution of J-PET after application of a kinematic fit. Prospects of employment of this method for studying angular correlations of photons in decays of polarized ortho-positronia for the needs of tests of CP and CPT discrete symmetries are also discussed. The new reconstruction method allows for discrimination of background from random three-photon coincidences as well as for application of a novel method for determination of the linear polarization of ortho-positronium atoms, which is also introduced in this work.

  17. A 4D sedimentological approach to reconstruct the flood frequency and intensity of Rhône River (Lake Bourget, NW European Alps)

    NASA Astrophysics Data System (ADS)

    Wilhelm, Bruno; Jenny, Jean-Philippe; Arnaud, Fabien; Sabatier, Pierre; Giguet-Covex, Charline; Mélo, Alain; Fanget, Bernard; Malet, Emmanuel; Perga, Marie-Elodie

    2014-05-01

    A high-resolution sedimentological study of the large Lake Bourget (French Alps, 231m a.s.l., 45°45'55N, 5°51'45E) was conducted to reconstruct the flood frequency and intensity (or magnitude) in the area over the last 350 years. Particular emphasis was placed on investigating the spatio-temporal distribution of flood deposits in this large lake basin. The thicknesses of deposits resulting from 30 flood events of the Rhône River were collected over a set of 24 short sediment cores. Deposit thicknesses were compared with instrumental data for the Rhône River discharge for the period from 1853 to 2010. The results show that flood frequency and intensity cannot be reliably reconstructed from a single core because of the inhomogeneous flood-deposit geometry in such a large lake. From all documented flood-deposit thicknesses, volumes of sediment brought into the lake during each flood event were computed through a kriging procedure and compared with the historical instrumental data. The results show that reconstructed sediment volumes are well correlated to maximal flood discharges. This significant correlation suggests that the increase of embankment and dam settlements on the Rhône River during the last 150 years has not significantly affected the transport of the smallest sediment fraction during major flood events. Hence, assessment of the flood-sediment volumes deposited in the large Lake Bourget allowed to reliably reconstruct the flood frequency and intensity of the past Rhône River floods.

  18. Clinical Impact of Time-of-Flight and Point Response Modeling in PET Reconstructions: A Lesion Detection Study

    PubMed Central

    Schaefferkoetter, Joshua; Casey, Michael; Townsend, David; Fakhri, Georges El

    2013-01-01

    Time-of-flight (TOF) and point spread function (PSF) modeling have been shown to improve PET reconstructions, but the impact on physicians in the clinical setting has not been thoroughly investigated. A lesion detection and localization study was performed using simulated lesions in real patient images. Four reconstruction schemes were considered: ordinary Poisson OSEM (OP) alone and combined with TOF, PSF, and TOF+PSF. The images were presented to physicians experienced in reading PET images, and the performance of each was quantified using localization receiver operating characteristic (LROC). Numerical observers (non-prewhitening and Hotelling) were used to identify optimal reconstruction parameters, and observer SNR was compared to the performance of the physicians. The numerical models showed good agreement with human performance, and best performance was achieved by both when using TOF+PSF. These findings suggest a large potential benefit of TOF+PSF for oncology PET studies, especially in the detection of small, low-intensity, focal disease in larger patients. PMID:23403399

  19. Object dependency of resolution in reconstruction algorithms with interiteration filtering applied to PET data.

    PubMed

    Mustafovic, Sanida; Thielemans, Kris

    2004-04-01

    In this paper, we study the resolution properties of those algorithms where a filtering step is applied after every iteration. As concrete examples we take filtered preconditioned gradient descent algorithms for the Poisson log likelihood for PET emission data. For nonlinear estimators, resolution can be characterized in terms of the linearized local impulse response (LLIR). We provide analytic approximations for the LLIR for the class of algorithms mentioned above. Our expressions clearly show that when interiteration filtering (with linear filters) is used, the resolution properties are, in most cases, spatially varying, object dependent and asymmetric. These nonuniformities are solely due to the interaction between the filtering step and the Poisson noise model. This situation is similar to penalized likelihood reconstructions as studied previously in the literature. In contrast, nonregularized and postfiltered maximum-likelihood expectation maximization (MLEM) produce images with nearly "perfect" uniform resolution when convergence is reached. We use the analytic expressions for the LLIR to propose three different approaches to obtain nearly object independent and uniform resolution. Two of them are based on calculating filter coefficients on a pixel basis, whereas the third one chooses an appropriate preconditioner. These three approaches are tested on simulated data for the filtered MLEM algorithm or the filtered separable paraboloidal surrogates algorithm. The evaluation confirms that images obtained using our proposed regularization methods have nearly object independent and uniform resolution. PMID:15084069

  20. Applications of the line-of-response probability density function resolution model in PET list mode reconstruction

    NASA Astrophysics Data System (ADS)

    Jian, Y.; Yao, R.; Mulnix, T.; Jin, X.; Carson, R. E.

    2015-01-01

    Resolution degradation in PET image reconstruction can be caused by inaccurate modeling of the physical factors in the acquisition process. Resolution modeling (RM) is a common technique that takes into account the resolution degrading factors in the system matrix. Our previous work has introduced a probability density function (PDF) method of deriving the resolution kernels from Monte Carlo simulation and parameterizing the LORs to reduce the number of kernels needed for image reconstruction. In addition, LOR-PDF allows different PDFs to be applied to LORs from different crystal layer pairs of the HRRT. In this study, a thorough test was performed with this new model (LOR-PDF) applied to two PET scanners—the HRRT and Focus-220. A more uniform resolution distribution was observed in point source reconstructions by replacing the spatially-invariant kernels with the spatially-variant LOR-PDF. Specifically, from the center to the edge of radial field of view (FOV) of the HRRT, the measured in-plane FWHMs of point sources in a warm background varied slightly from 1.7 mm to 1.9 mm in LOR-PDF reconstructions. In Minihot and contrast phantom reconstructions, LOR-PDF resulted in up to 9% higher contrast at any given noise level than image-space resolution model. LOR-PDF also has the advantage in performing crystal-layer-dependent resolution modeling. The contrast improvement by using LOR-PDF was verified statistically by replicate reconstructions. In addition, [11C]AFM rats imaged on the HRRT and [11C]PHNO rats imaged on the Focus-220 were utilized to demonstrated the advantage of the new model. Higher contrast between high-uptake regions of only a few millimeter diameter and the background was observed in LOR-PDF reconstruction than in other methods.

  1. 3D PET image reconstruction including both motion correction and registration directly into an MR or stereotaxic spatial atlas

    NASA Astrophysics Data System (ADS)

    Gravel, Paul; Verhaeghe, Jeroen; Reader, Andrew J.

    2013-01-01

    This work explores the feasibility and impact of including both the motion correction and the image registration transformation parameters from positron emission tomography (PET) image space to magnetic resonance (MR), or stereotaxic, image space within the system matrix of PET image reconstruction. This approach is motivated by the fields of neuroscience and psychiatry, where PET is used to investigate differences in activation patterns between different groups of participants, requiring all images to be registered to a common spatial atlas. Currently, image registration is performed after image reconstruction which introduces interpolation effects into the final image. Furthermore, motion correction (also requiring registration) introduces a further level of interpolation, and the overall result of these operations can lead to resolution degradation and possibly artifacts. It is important to note that performing such operations on a post-reconstruction basis means, strictly speaking, that the final images are not ones which maximize the desired objective function (e.g. maximum likelihood (ML), or maximum a posteriori reconstruction (MAP)). To correctly seek parameter estimates in the desired spatial atlas which are in accordance with the chosen reconstruction objective function, it is necessary to include the transformation parameters for both motion correction and registration within the system modeling stage of image reconstruction. Such an approach not only respects the statistically chosen objective function (e.g. ML or MAP), but furthermore should serve to reduce the interpolation effects. To evaluate the proposed method, this work investigates registration (including motion correction) using 2D and 3D simulations based on the high resolution research tomograph (HRRT) PET scanner geometry, with and without resolution modeling, using the ML expectation maximization (MLEM) reconstruction algorithm. The quality of reconstruction was assessed using bias

  2. Respiratory motion compensation for simultaneous PET/MR based on a 3D-2D registration of strongly undersampled radial MR data: a simulation study

    NASA Astrophysics Data System (ADS)

    Rank, Christopher M.; Heußer, Thorsten; Flach, Barbara; Brehm, Marcus; Kachelrieß, Marc

    2015-03-01

    We propose a new method for PET/MR respiratory motion compensation, which is based on a 3D-2D registration of strongly undersampled MR data and a) runs in parallel with the PET acquisition, b) can be interlaced with clinical MR sequences, and c) requires less than one minute of the total MR acquisition time per bed position. In our simulation study, we applied a 3D encoded radial stack-of-stars sampling scheme with 160 radial spokes per slice and an acquisition time of 38 s. Gated 4D MR images were reconstructed using a 4D iterative reconstruction algorithm. Based on these images, motion vector fields were estimated using our newly-developed 3D-2D registration framework. A 4D PET volume of a patient with eight hot lesions in the lungs and upper abdomen was simulated and MoCo 4D PET images were reconstructed based on the motion vector fields derived from MR. For evaluation, average SUVmean values of the artificial lesions were determined for a 3D, a gated 4D, a MoCo 4D and a reference (with ten-fold measurement time) gated 4D reconstruction. Compared to the reference, 3D reconstructions yielded an underestimation of SUVmean values due to motion blurring. In contrast, gated 4D reconstructions showed the highest variation of SUVmean due to low statistics. MoCo 4D reconstructions were only slightly affected by these two sources of uncertainty resulting in a significant visual and quantitative improvement in terms of SUVmean values. Whereas temporal resolution was comparable to the gated 4D images, signal-to-noise ratio and contrast-to-noise ratio were close to the 3D reconstructions.

  3. Complementary frame reconstruction: a low-biased dynamic PET technique for low count density data in projection space

    NASA Astrophysics Data System (ADS)

    Hong, Inki; Cho, Sanghee; Michel, Christian J.; Casey, Michael E.; Schaefferkoetter, Joshua D.

    2014-09-01

    A new data handling method is presented for improving the image noise distribution and reducing bias when reconstructing very short frames from low count dynamic PET acquisition. The new method termed ‘Complementary Frame Reconstruction’ (CFR) involves the indirect formation of a count-limited emission image in a short frame through subtraction of two frames with longer acquisition time, where the short time frame data is excluded from the second long frame data before the reconstruction. This approach can be regarded as an alternative to the AML algorithm recently proposed by Nuyts et al, as a method to reduce the bias for the maximum likelihood expectation maximization (MLEM) reconstruction of count limited data. CFR uses long scan emission data to stabilize the reconstruction and avoids modification of algorithms such as MLEM. The subtraction between two long frame images, naturally allows negative voxel values and significantly reduces bias introduced in the final image. Simulations based on phantom and clinical data were used to evaluate the accuracy of the reconstructed images to represent the true activity distribution. Applicability to determine the arterial input function in human and small animal studies is also explored. In situations with limited count rate, e.g. pediatric applications, gated abdominal, cardiac studies, etc., or when using limited doses of short-lived isotopes such as 15O-water, the proposed method will likely be preferred over independent frame reconstruction to address bias and noise issues.

  4. SU-D-17A-04: The Impact of Audiovisual Biofeedback On Image Quality During 4D Functional and Anatomic Imaging: Results of a Prospective Clinical Trial

    SciTech Connect

    Keall, P; Pollock, S; Yang, J; Diehn, M; Berger, J; Graves, E; Loo, B; Yamamoto, T

    2014-06-01

    comprehension and capability. Supported by NIH/NCI R01 CA 093626, Stanford BioX Interdisciplinary Initiatives Program, NHMRC Australia Fellowship, and Kwanjeong Educational Foundation. GE Healthcare provided the Respiratory Gating Toolbox for 4D-PET image reconstruction. Stanford University owns US patent #E7955270 which is unlicensed to any commercial entity.

  5. 4-D Photoacoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy. PMID:23346370

  6. 4-D Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  7. Integrating respiratory-gated PET-based target volume delineation in liver SBRT planning, a pilot study

    PubMed Central

    2014-01-01

    Background To assess the feasibility and benefit of integrating four-dimensional (4D) Positron Emission Tomography (PET) – computed tomography (CT) for liver stereotactic body radiation therapy (SBRT) planning. Methods 8 patients with 14 metastases were accrued in the study. They all underwent a non-gated PET and a 4D PET centered on the liver. The same CT scan was used for attenuation correction, registration, and considered the planning CT for SBRT planning. Six PET phases were reconstructed for each 4D PET. By applying an individualized threshold to the 4D PET, a Biological Internal Target Volume (BITV) was generated for each lesion. A gated Planning Target Volume (PTVg) was created by adding 3 mm to account for set-up margins. This volume was compared to a manual Planning Target Volume (PTV) delineated with the help of a semi-automatic Biological Target Volume (BTV) obtained from the non-gated exam. A 5 mm radial and a 10 mm craniocaudal margins were applied to account for tumor motion and set-up margins to create the PTV. Results One undiagnosed liver metastasis was discovered thanks to the 4D PET. The semi-automatic BTV were significantly smaller than the BITV (p = 0.0031). However, after applying adapted margins, 4D PET allowed a statistically significant decrease in the PTVg as compared to the PTV (p = 0.0052). Conclusions In comparison to non-gated PET, 4D PET may better define the respiratory movements of liver targets and improve SBRT planning for liver metastases. Furthermore, non respiratory-gated PET exams can both misdiagnose liver metastases and underestimate the real internal target volumes. PMID:24885897

  8. Maximum likelihood reconstruction in fully 3D PET via the SAGE algorithm

    SciTech Connect

    Ollinger, J.M.; Goggin, A.S.

    1996-12-31

    The SAGE and ordered subsets algorithms have been proposed as fast methods to compute penalized maximum likelihood estimates in PET. We have implemented both for use in fully 3D PET and completed a preliminary evaluation. The technique used to compute the transition matrix is fully described. The evaluation suggests that the ordered subsets algorithm converges much faster than SAGE, but that it stops short of the optimal solution.

  9. Dynamic PET reconstruction using temporal patch-based low rank penalty for ROI-based brain kinetic analysis

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsang; Son, Young Don; Bresler, Yoram; Cho, Zang Hee; Ra, Jong Beom; Ye, Jong Chul

    2015-03-01

    Dynamic positron emission tomography (PET) is widely used to measure changes in the bio-distribution of radiopharmaceuticals within particular organs of interest over time. However, to retain sufficient temporal resolution, the number of photon counts in each time frame must be limited. Therefore, conventional reconstruction algorithms such as the ordered subset expectation maximization (OSEM) produce noisy reconstruction images, thus degrading the quality of the extracted time activity curves (TACs). To address this issue, many advanced reconstruction algorithms have been developed using various spatio-temporal regularizations. In this paper, we extend earlier results and develop a novel temporal regularization, which exploits the self-similarity of patches that are collected in dynamic images. The main contribution of this paper is to demonstrate that the correlation of patches can be exploited using a low-rank constraint that is insensitive to global intensity variations. The resulting optimization framework is, however, non-Lipschitz and non-convex due to the Poisson log-likelihood and low-rank penalty terms. Direct application of the conventional Poisson image deconvolution by an augmented Lagrangian (PIDAL) algorithm is, however, problematic due to its large memory requirements, which prevents its parallelization. Thus, we propose a novel optimization framework using the concave-convex procedure (CCCP) by exploiting the Legendre-Fenchel transform, which is computationally efficient and parallelizable. In computer simulation and a real in vivo experiment using a high-resolution research tomograph (HRRT) scanner, we confirm that the proposed algorithm can improve image quality while also extracting more accurate region of interests (ROI) based kinetic parameters. Furthermore, we show that the total reconstruction time for HRRT PET is significantly accelerated using our GPU implementation, which makes the algorithm very practical in clinical environments.

  10. ROC (Receiver Operating Characteristics) study of maximum likelihood estimator human brain image reconstructions in PET (Positron Emission Tomography) clinical practice

    SciTech Connect

    Llacer, J.; Veklerov, E.; Nolan, D. ); Grafton, S.T.; Mazziotta, J.C.; Hawkins, R.A.; Hoh, C.K.; Hoffman, E.J. )

    1990-10-01

    This paper will report on the progress to date in carrying out Receiver Operating Characteristics (ROC) studies comparing Maximum Likelihood Estimator (MLE) and Filtered Backprojection (FBP) reconstructions of normal and abnormal human brain PET data in a clinical setting. A previous statistical study of reconstructions of the Hoffman brain phantom with real data indicated that the pixel-to-pixel standard deviation in feasible MLE images is approximately proportional to the square root of the number of counts in a region, as opposed to a standard deviation which is high and largely independent of the number of counts in FBP. A preliminary ROC study carried out with 10 non-medical observers performing a relatively simple detectability task indicates that, for the majority of observers, lower standard deviation translates itself into a statistically significant detectability advantage in MLE reconstructions. The initial results of ongoing tests with four experienced neurologists/nuclear medicine physicians are presented. Normal cases of {sup 18}F -- fluorodeoxyglucose (FDG) cerebral metabolism studies and abnormal cases in which a variety of lesions have been introduced into normal data sets have been evaluated. We report on the results of reading the reconstructions of 90 data sets, each corresponding to a single brain slice. It has become apparent that the design of the study based on reading single brain slices is too insensitive and we propose a variation based on reading three consecutive slices at a time, rating only the center slice. 9 refs., 2 figs., 1 tab.

  11. List-mode PET image reconstruction for motion correction using the Intel XEON PHI co-processor

    NASA Astrophysics Data System (ADS)

    Ryder, W. J.; Angelis, G. I.; Bashar, R.; Gillam, J. E.; Fulton, R.; Meikle, S.

    2014-03-01

    List-mode image reconstruction with motion correction is computationally expensive, as it requires projection of hundreds of millions of rays through a 3D array. To decrease reconstruction time it is possible to use symmetric multiprocessing computers or graphics processing units. The former can have high financial costs, while the latter can require refactoring of algorithms. The Xeon Phi is a new co-processor card with a Many Integrated Core architecture that can run 4 multiple-instruction, multiple data threads per core with each thread having a 512-bit single instruction, multiple data vector register. Thus, it is possible to run in the region of 220 threads simultaneously. The aim of this study was to investigate whether the Xeon Phi co-processor card is a viable alternative to an x86 Linux server for accelerating List-mode PET image reconstruction for motion correction. An existing list-mode image reconstruction algorithm with motion correction was ported to run on the Xeon Phi coprocessor with the multi-threading implemented using pthreads. There were no differences between images reconstructed using the Phi co-processor card and images reconstructed using the same algorithm run on a Linux server. However, it was found that the reconstruction runtimes were 3 times greater for the Phi than the server. A new version of the image reconstruction algorithm was developed in C++ using OpenMP for mutli-threading and the Phi runtimes decreased to 1.67 times that of the host Linux server. Data transfer from the host to co-processor card was found to be a rate-limiting step; this needs to be carefully considered in order to maximize runtime speeds. When considering the purchase price of a Linux workstation with Xeon Phi co-processor card and top of the range Linux server, the former is a cost-effective computation resource for list-mode image reconstruction. A multi-Phi workstation could be a viable alternative to cluster computers at a lower cost for medical imaging

  12. A new virtual ring-based system matrix generator for iterative image reconstruction in high resolution small volume PET systems.

    PubMed

    Li, K; Safavi-Naeini, M; Franklin, D R; Han, Z; Rosenfeld, A B; Hutton, B; Lerch, M L F

    2015-09-01

    A common approach to improving the spatial resolution of small animal PET scanners is to reduce the size of scintillation crystals and/or employ high resolution pixellated semiconductor detectors. The large number of detector elements results in the system matrix--an essential part of statistical iterative reconstruction algorithms--becoming impractically large. In this paper, we propose a methodology for system matrix modelling which utilises a virtual single-layer detector ring to greatly reduce the size of the system matrix without sacrificing precision. Two methods for populating the system matrix are compared; the first utilises a geometrically-derived system matrix based on Siddon's ray tracer method with the addition of an accurate detector response function, while the second uses Monte Carlo simulation to populate the system matrix. The effectiveness of both variations of the proposed technique is demonstrated via simulations of PETiPIX, an ultra high spatial resolution small animal PET scanner featuring high-resolution DoI capabilities, which has previously been simulated and characterised using classical image reconstruction methods. Compression factors of 5 x 10(7) and 2.5 x 10(7)are achieved using this methodology for the system matrices produced using the geometric and Monte Carlo-based approaches, respectively, requiring a total of 0.5-1.2 GB of memory-resident storage. Images reconstructed from Monte Carlo simulations of various point source and phantom models, produced using system matrices generated via both geometric and simulation methods, are used to evaluate the quality of the resulting system matrix in terms of achievable spatial resolution and the CRC, CoV and CW-SSIM index image quality metrics. The Monte Carlo-based system matrix is shown to provide the best image quality at the cost of substantial one-off computational effort and a lower (but still practical) compression factor. Finally, a straightforward extension of the virtual ring

  13. Fast and efficient fully 3D PET image reconstruction using sparse system matrix factorization with GPU acceleration

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Qi, Jinyi

    2011-10-01

    Statistically based iterative image reconstruction has been widely used in positron emission tomography (PET) imaging. The quality of reconstructed images depends on the accuracy of the system matrix that defines the mapping from the image space to the data space. However, an accurate system matrix is often associated with high computation cost and huge storage requirement. In this paper, we present a method to address this problem using sparse matrix factorization and graphics processor unit (GPU) acceleration. We factor the accurate system matrix into three highly sparse matrices: a sinogram blurring matrix, a geometric projection matrix and an image blurring matrix. The geometrical projection matrix is precomputed based on a simple line integral model, while the sinogram and image blurring matrices are estimated from point-source measurements. The resulting factored system matrix has far less nonzero elements than the original system matrix, which substantially reduces the storage and computation cost. The smaller matrix size also allows an efficient implementation of the forward and backward projectors on a GPU, which often has a limited memory space. Our experimental studies show that the proposed method can dramatically reduce the computation cost of high-resolution iterative image reconstruction, while achieving better performance than existing factorization methods.

  14. SU-E-I-86: Ultra-Low Dose Computed Tomography Attenuation Correction for Pediatric PET CT Using Adaptive Statistical Iterative Reconstruction (ASiR™)

    SciTech Connect

    Brady, S; Shulkin, B

    2015-06-15

    Purpose: To develop ultra-low dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultra-low doses (10–35 mAs). CT quantitation: noise, low-contrast resolution, and CT numbers for eleven tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% CTDIvol (0.39/3.64; mGy) radiation dose from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUVbw) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation organ dose, as derived from patient exam size specific dose estimate (SSDE), was converted to effective dose using the standard ICRP report 103 method. Effective dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative patient population dose reduction and noise control. Results: CT numbers were constant to within 10% from the non-dose reduced CTAC image down to 90% dose reduction. No change in SUVbw, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols reconstructed with ASiR and down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62%–86% (3.2/8.3−0.9/6.2; mSv). Noise magnitude in dose-reduced patient images increased but was not statistically different from pre dose-reduced patient images. Conclusion: Using ASiR allowed for aggressive reduction in CTAC dose with no change in PET reconstructed images while maintaining sufficient image quality for co

  15. High Performance 3D PET Reconstruction Using Spherical Basis Functions on a Polar Grid

    PubMed Central

    Cabello, J.; Gillam, J. E.; Rafecas, M.

    2012-01-01

    Statistical iterative methods are a widely used method of image reconstruction in emission tomography. Traditionally, the image space is modelled as a combination of cubic voxels as a matter of simplicity. After reconstruction, images are routinely filtered to reduce statistical noise at the cost of spatial resolution degradation. An alternative to produce lower noise during reconstruction is to model the image space with spherical basis functions. These basis functions overlap in space producing a significantly large number of non-zero elements in the system response matrix (SRM) to store, which additionally leads to long reconstruction times. These two problems are partly overcome by exploiting spherical symmetries, although computation time is still slower compared to non-overlapping basis functions. In this work, we have implemented the reconstruction algorithm using Graphical Processing Unit (GPU) technology for speed and a precomputed Monte-Carlo-calculated SRM for accuracy. The reconstruction time achieved using spherical basis functions on a GPU was 4.3 times faster than the Central Processing Unit (CPU) and 2.5 times faster than a CPU-multi-core parallel implementation using eight cores. Overwriting hazards are minimized by combining a random line of response ordering and constrained atomic writing. Small differences in image quality were observed between implementations. PMID:22548047

  16. SU-E-T-189: First Experimental Verification of the Accuracy of Absolute Dose Reconstruction From PET-CT Imaging of Yttrium 90 Microspheres

    SciTech Connect

    Veltchev, I; Fourkal, E; Doss, M; Ma, C; Meyer, J; Yu, M; Horwitz, E

    2014-06-01

    Purpose: In the past few years there have been numerous proposals for 3D dose reconstruction from the PET-CT imaging of patients undergoing radioembolization treatment of the liver with yttrium-90 microspheres. One of the most promising techniques uses convolution of the measured PET activity distribution with a pre-calculated Monte Carlo dose deposition kernel. The goal of the present study is to experimentally verify the accuracy of this method and to analyze the significance of various error sources. Methods: Optically stimulated luminescence detectors (OSLD) were used (NanoDot, Landauer) in this experiment. Two detectors were mounted on the central axis of a cylinder filled with water solution of yttrium-90 chloride. The total initial activity was 90mCi. The cylinder was inserted in a larger water phantom and scanned on a Siemens Biograph 16 Truepoint PET-CT scanner. Scans were performed daily over a period of 20 days to build a calibration curve for the measured absolute activity spanning 7 yttrium-90 half-lives. The OSLDs were mounted in the phantom for a predetermined period of time in order to record 2Gy dose. The measured dose was then compared to the dose reconstructed from the activity density at the location of each dosimeter. Results: Thorough error analysis of the dose reconstruction algorithm takes into account the uncertainties in the absolute PET activity, branching ratios, and nonlinearity of the calibration curve. The measured dose for 105-minute exposure on day 10 of the experiment was 219(11)cGy, while the reconstructed dose at the location of the detector was 215(47)cGy. Conclusion: We present the first experimental verification of the accuracy of the convolution algorithm for absolute dose reconstruction of yttrium-90 microspheres. The excellent agreement between the measured and calculated point doses will encourage the broad clinical adoption of the convolution-based dose reconstruction algorithm, making future quantitative dose

  17. Preclinical evaluation of parametric image reconstruction of [18F]FMISO PET: correlation with ex vivo immunohistochemistry.

    PubMed

    Cheng, Xiaoyin; Bayer, Christine; Maftei, Constantin-Alin; Astner, Sabrina T; Vaupel, Peter; Ziegler, Sibylle I; Shi, Kuangyu

    2014-01-20

    Compared to indirect methods, direct parametric image reconstruction (PIR) has the advantage of high quality and low statistical errors. However, it is not yet clear if this improvement in quality is beneficial for physiological quantification. This study aimed to evaluate direct PIR for the quantification of tumor hypoxia using the hypoxic fraction (HF) assessed from immunohistological data as a physiological reference. Sixteen mice with xenografted human squamous cell carcinomas were scanned with dynamic [18F]FMISO PET. Afterward, tumors were sliced and stained with H&E and the hypoxia marker pimonidazole. The hypoxic signal was segmented using k-means clustering and HF was specified as the ratio of the hypoxic area over the viable tumor area. The parametric Patlak slope images were obtained by indirect voxel-wise modeling on reconstructed images using filtered back projection and ordered-subset expectation maximization (OSEM) and by direct PIR (e.g., parametric-OSEM, POSEM). The mean and maximum Patlak slopes of the tumor area were investigated and compared with HF. POSEM resulted in generally higher correlations between slope and HF among the investigated methods. A strategy for the delineation of the hypoxic tumor volume based on thresholding parametric images at half maximum of the slope is recommended based on the results of this study. PMID:24351879

  18. Preclinical evaluation of parametric image reconstruction of [18F]FMISO PET: correlation with ex vivo immunohistochemistry

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoyin; Bayer, Christine; Maftei, Constantin-Alin; Astner, Sabrina T.; Vaupel, Peter; Ziegler, Sibylle I.; Shi, Kuangyu

    2014-01-01

    Compared to indirect methods, direct parametric image reconstruction (PIR) has the advantage of high quality and low statistical errors. However, it is not yet clear if this improvement in quality is beneficial for physiological quantification. This study aimed to evaluate direct PIR for the quantification of tumor hypoxia using the hypoxic fraction (HF) assessed from immunohistological data as a physiological reference. Sixteen mice with xenografted human squamous cell carcinomas were scanned with dynamic [18F]FMISO PET. Afterward, tumors were sliced and stained with H&E and the hypoxia marker pimonidazole. The hypoxic signal was segmented using k-means clustering and HF was specified as the ratio of the hypoxic area over the viable tumor area. The parametric Patlak slope images were obtained by indirect voxel-wise modeling on reconstructed images using filtered back projection and ordered-subset expectation maximization (OSEM) and by direct PIR (e.g., parametric-OSEM, POSEM). The mean and maximum Patlak slopes of the tumor area were investigated and compared with HF. POSEM resulted in generally higher correlations between slope and HF among the investigated methods. A strategy for the delineation of the hypoxic tumor volume based on thresholding parametric images at half maximum of the slope is recommended based on the results of this study.

  19. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning.

    PubMed

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus; Coche, Emmanuel

    2010-09-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and

  20. Local and Non-local Regularization Techniques in Emission (PET/SPECT) Tomographic Image Reconstruction Methods.

    PubMed

    Ahmad, Munir; Shahzad, Tasawar; Masood, Khalid; Rashid, Khalid; Tanveer, Muhammad; Iqbal, Rabail; Hussain, Nasir; Shahid, Abubakar; Fazal-E-Aleem

    2016-06-01

    Emission tomographic image reconstruction is an ill-posed problem due to limited and noisy data and various image-degrading effects affecting the data and leads to noisy reconstructions. Explicit regularization, through iterative reconstruction methods, is considered better to compensate for reconstruction-based noise. Local smoothing and edge-preserving regularization methods can reduce reconstruction-based noise. However, these methods produce overly smoothed images or blocky artefacts in the final image because they can only exploit local image properties. Recently, non-local regularization techniques have been introduced, to overcome these problems, by incorporating geometrical global continuity and connectivity present in the objective image. These techniques can overcome drawbacks of local regularization methods; however, they also have certain limitations, such as choice of the regularization function, neighbourhood size or calibration of several empirical parameters involved. This work compares different local and non-local regularization techniques used in emission tomographic imaging in general and emission computed tomography in specific for improved quality of the resultant images. PMID:26714680

  1. Bias reduction for low-statistics PET: maximum likelihood reconstruction with a modified Poisson distribution.

    PubMed

    Van Slambrouck, Katrien; Stute, Simon; Comtat, Claude; Sibomana, Merence; van Velden, Floris H P; Boellaard, Ronald; Nuyts, Johan

    2015-01-01

    Positron emission tomography data are typically reconstructed with maximum likelihood expectation maximization (MLEM). However, MLEM suffers from positive bias due to the non-negativity constraint. This is particularly problematic for tracer kinetic modeling. Two reconstruction methods with bias reduction properties that do not use strict Poisson optimization are presented and compared to each other, to filtered backprojection (FBP), and to MLEM. The first method is an extension of NEGML, where the Poisson distribution is replaced by a Gaussian distribution for low count data points. The transition point between the Gaussian and the Poisson regime is a parameter of the model. The second method is a simplification of ABML. ABML has a lower and upper bound for the reconstructed image whereas AML has the upper bound set to infinity. AML uses a negative lower bound to obtain bias reduction properties. Different choices of the lower bound are studied. The parameter of both algorithms determines the effectiveness of the bias reduction and should be chosen large enough to ensure bias-free images. This means that both algorithms become more similar to least squares algorithms, which turned out to be necessary to obtain bias-free reconstructions. This comes at the cost of increased variance. Nevertheless, NEGML and AML have lower variance than FBP. Furthermore, randoms handling has a large influence on the bias. Reconstruction with smoothed randoms results in lower bias compared to reconstruction with unsmoothed randoms or randoms precorrected data. However, NEGML and AML yield both bias-free images for large values of their parameter. PMID:25137726

  2. OSSI-PET: Open-Access Database of Simulated [(11)C]Raclopride Scans for the Inveon Preclinical PET Scanner: Application to the Optimization of Reconstruction Methods for Dynamic Studies.

    PubMed

    Garcia, Marie-Paule; Charil, Arnaud; Callaghan, Paul; Wimberley, Catriona; Busso, Florian; Gregoire, Marie-Claude; Bardies, Manuel; Reilhac, Anthonin

    2016-07-01

    A wide range of medical imaging applications benefits from the availability of realistic ground truth data. In the case of positron emission tomography (PET), ground truth data is crucial to validate processing algorithms and assessing their performances. The design of such ground truth data often relies on Monte-Carlo simulation techniques. Since the creation of a large dataset is not trivial both in terms of computing time and realism, we propose the OSSI-PET database containing 350 simulated [(11)C]Raclopride dynamic scans for rats, created specifically for the Inveon pre-clinical PET scanner. The originality of this database lies on the availability of several groups of scans with controlled biological variations in the striata. Besides, each group consists of a large number of realizations (i.e., noise replicates). We present the construction methodology of this database using rat pharmacokinetic and anatomical models. A first application using the OSSI-PET database is presented. Several commonly used reconstruction techniques were compared in terms of image quality, accuracy and variability of the activity estimates and of the computed kinetic parameters. The results showed that OP-OSEM3D iterative reconstruction method outperformed the other tested methods. Analytical methods such as FBP2D and 3DRP also produced satisfactory results. However, FORE followed by OSEM2D reconstructions should be avoided. Beyond the illustration of the potential of the database, this application will help scientists to understand the different sources of noise and bias that can occur at the different steps in the processing and will be very useful for choosing appropriate reconstruction methods and parameters. PMID:26863655

  3. The performance of monotonic and new non-monotonic gradient ascent reconstruction algorithms for high-resolution neuroreceptor PET imaging.

    PubMed

    Angelis, G I; Reader, A J; Kotasidis, F A; Lionheart, W R; Matthews, J C

    2011-07-01

    Iterative expectation maximization (EM) techniques have been extensively used to solve maximum likelihood (ML) problems in positron emission tomography (PET) image reconstruction. Although EM methods offer a robust approach to solving ML problems, they usually suffer from slow convergence rates. The ordered subsets EM (OSEM) algorithm provides significant improvements in the convergence rate, but it can cycle between estimates converging towards the ML solution of each subset. In contrast, gradient-based methods, such as the recently proposed non-monotonic maximum likelihood (NMML) and the more established preconditioned conjugate gradient (PCG), offer a globally convergent, yet equally fast, alternative to OSEM. Reported results showed that NMML provides faster convergence compared to OSEM; however, it has never been compared to other fast gradient-based methods, like PCG. Therefore, in this work we evaluate the performance of two gradient-based methods (NMML and PCG) and investigate their potential as an alternative to the fast and widely used OSEM. All algorithms were evaluated using 2D simulations, as well as a single [(11)C]DASB clinical brain dataset. Results on simulated 2D data show that both PCG and NMML achieve orders of magnitude faster convergence to the ML solution compared to MLEM and exhibit comparable performance to OSEM. Equally fast performance is observed between OSEM and PCG for clinical 3D data, but NMML seems to perform poorly. However, with the addition of a preconditioner term to the gradient direction, the convergence behaviour of NMML can be substantially improved. Although PCG is a fast convergent algorithm, the use of a (bent) line search increases the complexity of the implementation, as well as the computational time involved per iteration. Contrary to previous reports, NMML offers no clear advantage over OSEM or PCG, for noisy PET data. Therefore, we conclude that there is little evidence to replace OSEM as the algorithm of choice for

  4. Comparison of basis functions for 3D PET reconstruction using a Monte Carlo system matrix

    NASA Astrophysics Data System (ADS)

    Cabello, Jorge; Rafecas, Magdalena

    2012-04-01

    In emission tomography, iterative statistical methods are accepted as the reconstruction algorithms that achieve the best image quality. The accuracy of these methods relies partly on the quality of the system response matrix (SRM) that characterizes the scanner. The more physical phenomena included in the SRM, the higher the SRM quality, and therefore higher image quality is obtained from the reconstruction process. High-resolution small animal scanners contain as many as 103-104 small crystal pairs, while the field of view (FOV) is divided into hundreds of thousands of small voxels. These two characteristics have a significant impact on the number of elements to be calculated in the SRM. Monte Carlo (MC) methods have gained popularity as a way of calculating the SRM, due to the increased accuracy achievable, at the cost of introducing some statistical noise and long simulation times. In the work presented here the SRM is calculated using MC methods exploiting the cylindrical symmetries of the scanner, significantly reducing the simulation time necessary to calculate a high statistical quality SRM and the storage space necessary. The use of cylindrical symmetries makes polar voxels a convenient basis function. Alternatively, spherically symmetric basis functions result in improved noise properties compared to cubic and polar basis functions. The quality of reconstructed images using polar voxels, spherically symmetric basis functions on a polar grid, cubic voxels and post-reconstruction filtered polar and cubic voxels is compared from a noise and spatial resolution perspective. This study demonstrates that polar voxels perform as well as cubic voxels, reducing the simulation time necessary to calculate the SRM and the disk space necessary to store it. Results showed that spherically symmetric functions outperform polar and cubic basis functions in terms of noise properties, at the cost of slightly degraded spatial resolution, larger SRM file size and longer

  5. Spatially Variant Resolution Modelling for Iterative List-Mode PET Reconstruction.

    PubMed

    Bickell, Matthew G; Zhou, Lin; Nuyts, Johan

    2016-07-01

    A spatially variant resolution modelling technique is presented which estimates the system matrix on-the-fly during iterative list-mode reconstruction. This is achieved by redistributing the endpoints of each list-mode event according to derived probability density functions describing the detector response function and photon acollinearity, at each iteration during the reconstruction. Positron range is modelled using an image-based convolution. When applying this technique it is shown that the maximum-likelihood expectation maximisation (MLEM) algorithm is not compatible with an obvious acceleration strategy. The image space reconstruction algorithm (ISRA), however, after being adapted to a list-mode based implementation, is well-suited to the implementation of the model. A comparison of ISRA and MLEM is made to confirm that ISRA is a suitable alternative to MLEM. We demonstrate that this model agrees with measured point spread functions and we present results showing an improvement in resolution recovery, particularly for off-centre objects, as compared to commercially available software, as well as the standard technique of using a stationary Gaussian convolution to model the resolution, for equal iterations and only slightly higher computation time. PMID:26886967

  6. Interactive animation of 4D performance capture.

    PubMed

    Casas, Dan; Tejera, Margara; Guillemaut, Jean-Yves; Hilton, Adrian

    2013-05-01

    A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple mesh sequences of related motions. A real-time mesh sequence blending approach is introduced, which combines the realistic deformation of previous nonlinear solutions with efficient online computation. Transitions between different parametric motion spaces are evaluated in real time based on surface shape and motion similarity. Four-dimensional parametric motion graphs allow real-time interactive character animation while preserving the natural dynamics of the captured performance. PMID:23492379

  7. 3D inpatient dose reconstruction from the PET-CT imaging of {sup 90}Y microspheres for metastatic cancer to the liver: Feasibility study

    SciTech Connect

    Fourkal, E.; Veltchev, I.; Lin, M.; Meyer, J.; Koren, S.; Doss, M.; Yu, J. Q.

    2013-08-15

    Purpose: The introduction of radioembolization with microspheres represents a significant step forward in the treatment of patients with metastatic disease to the liver. This technique uses semiempirical formulae based on body surface area or liver and target volumes to calculate the required total activity for a given patient. However, this treatment modality lacks extremely important information, which is the three-dimensional (3D) dose delivered by microspheres to different organs after their administration. The absence of this information dramatically limits the clinical efficacy of this modality, specifically the predictive power of the treatment. Therefore, the aim of this study is to develop a 3D dose calculation technique that is based on the PET imaging of the infused microspheres.Methods: The Fluka Monte Carlo code was used to calculate the voxel dose kernel for {sup 90}Y source with voxel size equal to that of the PET scan. The measured PET activity distribution was converted to total activity distribution for the subsequent convolution with the voxel dose kernel to obtain the 3D dose distribution. In addition, dose-volume histograms were generated to analyze the dose to the tumor and critical structures.Results: The 3D inpatient dose distribution can be reconstructed from the PET data of a patient scanned after the infusion of microspheres. A total of seven patients have been analyzed so far using the proposed reconstruction method. Four patients underwent treatment with SIR-Spheres for liver metastases from colorectal cancer and three patients were treated with Therasphere for hepatocellular cancer. A total of 14 target tumors were contoured on post-treatment PET-CT scans for dosimetric evaluation. Mean prescription activity was 1.7 GBq (range: 0.58–3.8 GBq). The resulting mean maximum measured dose to targets was 167 Gy (range: 71–311 Gy). Mean minimum dose to 70% of target (D70) was 68 Gy (range: 25–155 Gy). Mean minimum dose to 90% of target

  8. Wavelet-based regularization and edge preservation for submillimetre 3D list-mode reconstruction data from a high resolution small animal PET system

    NASA Astrophysics Data System (ADS)

    de Jesús Ochoa Domínguez, Humberto; Máynez, Leticia Ortega; Villegas, Osslan Osiris Vergara; Castillo, Nelly Gordillo; Sánchez, Vianey Guadalupe Cruz; Casas, Efrén David Gutiérrez

    2011-10-01

    The data obtained from a PET system tend to be noisy because of the limitations of the current instrumentation and the detector efficiency. This problem is particularly severe in images of small animals as the noise contaminates areas of interest within small organs. Therefore, denoising becomes a challenging task. In this paper, a novel wavelet-based regularization and edge preservation method is proposed to reduce such noise. To demonstrate this method, image reconstruction using a small mouse 18F NEMA phantom and a 18F mouse was performed. Investigation on the effects of the image quality was addressed for each reconstruction case. Results show that the proposed method drastically reduces the noise and preserves the image details.

  9. R4D on Ramp

    NASA Technical Reports Server (NTRS)

    1956-01-01

    This Photograph taken in 1956 shows the first of three R4D Skytrain aircraft on the ramp behind the NACA High-Speed Flight Station. Note the designation 'United States NACA' on the side of the aircraft. NACA stood for the National Advisory Committee for Aeronautics, which evolved into the National Aeronautics and Space Administration (NASA) in 1958. The R4D Skytrain was one of the early workhorses for NACA and NASA at Edwards Air Force Base, California, from 1952 to 1984. Designated the R4D by the U.S. Navy, the aircraft was called the C-47 by the U.S. Army and U.S. Air Force and the DC-3 by its builder, Douglas Aircraft. Nearly everyone called it the 'Gooney Bird.' In 1962, Congress consolidated the military-service designations and called all of them the C-47. After that date, the R4D at NASA's Flight Research Center (itself redesignated the Dryden Flight Research Center in 1976) was properly called a C-47. Over the 32 years it was used at Edwards, three different R4D/C-47s were used to shuttle personnel and equipment between NACA/NASA Centers and test locations throughout the country and for other purposes. One purpose was landing on 'dry' lakebeds used as alternate landing sites for the X-15, to determine whether their surfaces were hard (dry) enough for the X-15 to land on in case an emergency occurred after its launch and before it could reach Rogers Dry Lake at Edwards Air Force Base. The R4D/C-47 served a variety of needs, including serving as the first air-tow vehicle for the M2-F1 lifting body (which was built of mahogany plywood). The C-47 (as it was then called) was used for 77 tows before the M2-F1 was retired for more advanced lifting bodies that were dropped from the NASA B-52 'Mothership.' The R4D also served as a research aircraft. It was used to conduct early research on wing-tip-vortex flow visualization as well as checking out the NASA Uplink Control System. The first Gooney Bird was at the NACA High-Speed Flight Research Station (now the Dryden

  10. Development and evaluation of a LOR-based image reconstruction with 3D system response modeling for a PET insert with dual-layer offset crystal design

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhu; Stortz, Greg; Sossi, Vesna; Thompson, Christopher J.; Retière, Fabrice; Kozlowski, Piotr; Thiessen, Jonathan D.; Goertzen, Andrew L.

    2013-12-01

    In this study we present a method of 3D system response calculation for analytical computer simulation and statistical image reconstruction for a magnetic resonance imaging (MRI) compatible positron emission tomography (PET) insert system that uses a dual-layer offset (DLO) crystal design. The general analytical system response functions (SRFs) for detector geometric and inter-crystal penetration of coincident crystal pairs are derived first. We implemented a 3D ray-tracing algorithm with 4π sampling for calculating the SRFs of coincident pairs of individual DLO crystals. The determination of which detector blocks are intersected by a gamma ray is made by calculating the intersection of the ray with virtual cylinders with radii just inside the inner surface and just outside the outer-edge of each crystal layer of the detector ring. For efficient ray-tracing computation, the detector block and ray to be traced are then rotated so that the crystals are aligned along the X-axis, facilitating calculation of ray/crystal boundary intersection points. This algorithm can be applied to any system geometry using either single-layer (SL) or multi-layer array design with or without offset crystals. For effective data organization, a direct lines of response (LOR)-based indexed histogram-mode method is also presented in this work. SRF calculation is performed on-the-fly in both forward and back projection procedures during each iteration of image reconstruction, with acceleration through use of eight-fold geometric symmetry and multi-threaded parallel computation. To validate the proposed methods, we performed a series of analytical and Monte Carlo computer simulations for different system geometry and detector designs. The full-width-at-half-maximum of the numerical SRFs in both radial and tangential directions are calculated and compared for various system designs. By inspecting the sinograms obtained for different detector geometries, it can be seen that the DLO crystal

  11. Soft Route to 4D Tomography

    NASA Astrophysics Data System (ADS)

    Taillandier-Thomas, Thibault; Roux, Stéphane; Hild, François

    2016-07-01

    Based on the assumption that the time evolution of a sample observed by computed tomography requires many less parameters than the definition of the microstructure itself, it is proposed to reconstruct these changes based on the initial state (using computed tomography) and very few radiographs acquired at fixed intervals of time. This Letter presents a proof of concept that for a fatigue cracked sample its kinematics can be tracked from no more than two radiographs in situations where a complete 3D view would require several hundreds of radiographs. This 2 order of magnitude gain opens the way to a "computed" 4D tomography, which complements the recent progress achieved in fast or ultrafast computed tomography, which is based on beam brightness, detector sensitivity, and signal acquisition technologies.

  12. Influence of the partial volume correction method on 18F-fluorodeoxyglucose brain kinetic modelling from dynamic PET images reconstructed with resolution model based OSEM

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer L.; Byars, Larry G.; Michel, Christian J.; Chonde, Daniel B.; Catana, Ciprian

    2013-10-01

    Kinetic parameters estimated from dynamic 18F-fluorodeoxyglucose (18F-FDG) PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For ordered subsets expectation maximization (OSEM), image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting 18F-FDG dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation geometric transfer matrix PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in cerebral metabolic rate of glucose estimates, although by less than 5% in most

  13. 4D-DSA and 4D fluoroscopy: preliminary implementation

    NASA Astrophysics Data System (ADS)

    Mistretta, C. A.; Oberstar, E.; Davis, B.; Brodsky, E.; Strother, C. M.

    2010-04-01

    We have described methods that allow highly accelerated MRI using under-sampled acquisitions and constrained reconstruction. One is a hybrid acquisition involving the constrained reconstruction of time dependent information obtained from a separate scan of longer duration. We have developed reconstruction algorithms for DSA that allow use of a single injection to provide the temporal data required for flow visualization and the steady state data required for construction of a 3D-DSA vascular volume. The result is time resolved 3D volumes with typical resolution of 5123 at frame rates of 20-30 fps. Full manipulation of these images is possible during each stage of vascular filling thereby allowing for simplified interpretation of vascular dynamics. For intravenous angiography this time resolved 3D capability overcomes the vessel overlap problem that greatly limited the use of conventional intravenous 2D-DSA. Following further hardware development, it will be also be possible to rotate fluoroscopic volumes for use as roadmaps that can be viewed at arbitrary angles without a need for gantry rotation. The most precise implementation of this capability requires availability of biplane fluoroscopy data. Since the reconstruction of 3D volumes presently suppresses the contrast in the soft tissue, the possibility of using these techniques to derive complete indications of perfusion deficits based on cerebral blood volume (CBV), mean transit time (MTT) and time to peak (TTP) parameters requires further investigation. Using MATLAB post-processing, successful studies in animals and humans done in conjunction with both intravenous and intra-arterial injections have been completed. Real time implementation is in progress.

  14. Pulmonary imaging using respiratory motion compensated simultaneous PET/MR

    PubMed Central

    Dutta, Joyita; Huang, Chuan; Li, Quanzheng; El Fakhri, Georges

    2015-01-01

    Purpose: Pulmonary positron emission tomography (PET) imaging is confounded by blurring artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative accuracy. In this paper, the authors present a complete data acquisition and processing framework for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies. Methods: The authors have developed an MCIR framework based on maximum a posteriori or MAP estimation. For fast acquisition of high quality 4D MR images, the authors developed a novel Golden-angle RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it in conjunction with sparsity-enforcing k-t FOCUSS reconstruction. The authors use a 1D slice-projection navigator signal encapsulated within this pulse sequence along with a histogram-based gate assignment technique to retrospectively sort the MR and PET data into individual gates. The authors compute deformation fields for each gate via nonrigid registration. The deformation fields are incorporated into the PET data model as well as utilized for generating dynamic attenuation maps. The framework was validated using simulation studies on the 4D XCAT phantom and three clinical patient studies that were performed on the Biograph mMR, a simultaneous whole body PET/MR scanner. Results: The authors compared MCIR (MC) results with ungated (UG) and one-gate (OG) reconstruction results. The XCAT study revealed contrast-to-noise ratio (CNR) improvements for MC relative to UG in the range of 21%–107% for 14 mm diameter lung lesions and 39%–120% for 10 mm diameter lung lesions. A strategy for regularization parameter selection was proposed, validated using XCAT simulations, and applied to the clinical studies. The authors’ results show that the MC image yields 19%–190% increase in the CNR of high-intensity features of interest affected by

  15. SU-E-J-141: Activity-Equivalent Path Length Approach for the 3D PET-Based Dose Reconstruction in Proton Therapy

    SciTech Connect

    Attili, A; Vignati, A; Giordanengo, S; Kraan, A; Dalmasso, F; Battistoni, G

    2015-06-15

    Purpose: Ion beam therapy is sensitive to uncertainties from treatment planning and dose delivery. PET imaging of induced positron emitter distributions is a practical approach for in vivo, in situ verification of ion beam treatments. Treatment verification is usually done by comparing measured activity distributions with reference distributions, evaluated in nominal conditions. Although such comparisons give valuable information on treatment quality, a proper clinical evaluation of the treatment ultimately relies on the knowledge of the actual delivered dose. Analytical deconvolution methods relating activity and dose have been studied in this context, but were not clinically applied. In this work we present a feasibility study of an alternative approach for dose reconstruction from activity data, which is based on relating variations in accumulated activity to tissue density variations. Methods: First, reference distributions of dose and activity were calculated from the treatment plan and CT data. Then, the actual measured activity data were cumulatively matched with the reference activity distributions to obtain a set of activity-equivalent path lengths (AEPLs) along the rays of the pencil beams. Finally, these AEPLs were used to deform the original dose distribution, yielding the actual delivered dose. The method was tested by simulating a proton therapy treatment plan delivering 2 Gy on a homogeneous water phantom (the reference), which was compared with the same plan delivered on a phantom containing inhomogeneities. Activity and dose distributions were were calculated by means of the FLUKA Monte Carlo toolkit. Results: The main features of the observed dose distribution in the inhomogeneous situation were reproduced using the AEPL approach. Variations in particle range were reproduced and the positions, where these deviations originated, were properly identified. Conclusions: For a simple inhomogeneous phantom the 3D dose reconstruction from PET

  16. High performance volume-of-intersection projectors for 3D-PET image reconstruction based on polar symmetries and SIMD vectorisation

    NASA Astrophysics Data System (ADS)

    Scheins, J. J.; Vahedipour, K.; Pietrzyk, U.; Shah, N. J.

    2015-12-01

    For high-resolution, iterative 3D PET image reconstruction the efficient implementation of forward-backward projectors is essential to minimise the calculation time. Mathematically, the projectors are summarised as a system response matrix (SRM) whose elements define the contribution of image voxels to lines-of-response (LORs). In fact, the SRM easily comprises billions of non-zero matrix elements to evaluate the tremendous number of LORs as provided by state-of-the-art PET scanners. Hence, the performance of iterative algorithms, e.g. maximum-likelihood-expectation-maximisation (MLEM), suffers from severe computational problems due to the intensive memory access and huge number of floating point operations. Here, symmetries occupy a key role in terms of efficient implementation. They reduce the amount of independent SRM elements, thus allowing for a significant matrix compression according to the number of exploitable symmetries. With our previous work, the PET REconstruction Software TOolkit (PRESTO), very high compression factors (>300) are demonstrated by using specific non-Cartesian voxel patterns involving discrete polar symmetries. In this way, a pre-calculated memory-resident SRM using complex volume-of-intersection calculations can be achieved. However, our original ray-driven implementation suffers from addressing voxels, projection data and SRM elements in disfavoured memory access patterns. As a consequence, a rather limited numerical throughput is observed due to the massive waste of memory bandwidth and inefficient usage of cache respectively. In this work, an advantageous symmetry-driven evaluation of the forward-backward projectors is proposed to overcome these inefficiencies. The polar symmetries applied in PRESTO suggest a novel organisation of image data and LOR projection data in memory to enable an efficient single instruction multiple data vectorisation, i.e. simultaneous use of any SRM element for symmetric LORs. In addition, the calculation

  17. A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals

    NASA Astrophysics Data System (ADS)

    Moskal, P.; Zoń, N.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Kamińska, D.; Kapłon, Ł.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz.; Pałka, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.

    2015-03-01

    A novel method of hit time and hit position reconstruction in scintillator detectors is described. The method is based on comparison of detector signals with results stored in a library of synchronized model signals registered for a set of well-defined positions of scintillation points. The hit position is reconstructed as the one corresponding to the signal from the library which is most similar to the measurement signal. The time of the interaction is determined as a relative time between the measured signal and the most similar one in the library. A degree of similarity of measured and model signals is defined as the distance between points representing the measurement- and model-signal in the multi-dimensional measurement space. Novelty of the method lies also in the proposed way of synchronization of model signals enabling direct determination of the difference between time-of-flights (TOF) of annihilation quanta from the annihilation point to the detectors. The introduced method was validated using experimental data obtained by means of the double strip prototype of the J-PET detector and 22Na sodium isotope as a source of annihilation gamma quanta. The detector was built out from plastic scintillator strips with dimensions of 5 mm×19 mm×300 mm, optically connected at both sides to photomultipliers, from which signals were sampled by means of the Serial Data Analyzer. Using the introduced method, the spatial and TOF resolution of about 1.3 cm (σ) and 125 ps (σ) were established, respectively.

  18. 4-D OCT in Developmental Cardiology

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  19. GPU-Accelerated Forward and Back-Projections with Spatially Varying Kernels for 3D DIRECT TOF PET Reconstruction

    PubMed Central

    Ha, S.; Matej, S.; Ispiryan, M.; Mueller, K.

    2013-01-01

    We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with. PMID:23531763

  20. Monte-Carlo simulations of clinically realistic respiratory gated (18)F-FDG PET: application to lesion detectability and volume measurements.

    PubMed

    Vauclin, S; Michel, C; Buvat, I; Doyeux, K; Edet-Sanson, A; Vera, P; Gardin, I; Hapdey, S

    2015-01-01

    In PET/CT thoracic imaging, respiratory motion reduces image quality. A solution consists in performing respiratory gated PET acquisitions. The aim of this study was to generate clinically realistic Monte-Carlo respiratory PET data, obtained using the 4D-NCAT numerical phantom and the GATE simulation tool, to assess the impact of respiratory motion and respiratory-motion compensation in PET on lesion detection and volume measurement. To obtain reconstructed images as close as possible to those obtained in clinical conditions, a particular attention was paid to apply to the simulated data the same correction and reconstruction processes as those applied to real clinical data. The simulations required 140,000h (CPU) generating 1.5 To of data (98 respiratory gated and 49 ungated scans). Calibration phantom and patient reconstructed images from the simulated data were visually and quantitatively very similar to those obtained in clinical studies. The lesion detectability was higher when the better trade-off between lesion movement limitation (compared to ungated acquisitions) and image statistic preservation is considered (respiratory cycle sampling in 3 frames). We then compared the lesion volumes measured on conventional PET acquisitions versus respiratory gated acquisitions, using an automatic segmentation method and a 40%-threshold approach. A time consuming initial manual exclusion of noisy structures needed with the 40%-threshold was not necessary when the automatic method was used. The lesion detectability along with the accuracy of tumor volume estimates was largely improved with the gated compared to ungated PET images. PMID:25459525

  1. TU-C-BRD-01: Image Guided SBRT I: Multi-Modality 4D Imaging

    SciTech Connect

    Cai, J; Mageras, G; Pan, T

    2014-06-15

    Motion management is one of the critical technical challenges for radiation therapy. 4D imaging has been rapidly adopted as essential tool to assess organ motion associated with respiratory breathing. A variety of 4D imaging techniques have been developed and are currently under development based on different imaging modalities such as CT, MRI, PET, and CBCT. Each modality provides specific and complementary information about organ and tumor respiratory motion. Effective use of each different technique or combined use of different techniques can introduce a comprehensive management of tumor motion. Specifically, these techniques have afforded tremendous opportunities to better define and delineate tumor volumes, more accurately perform patient positioning, and effectively apply highly conformal therapy techniques such as IMRT and SBRT. Successful implementation requires good understanding of not only each technique, including unique features, limitations, artifacts, imaging acquisition and process, but also how to systematically apply the information obtained from different imaging modalities using proper tools such as deformable image registration. Furthermore, it is important to understand the differences in the effects of breathing variation between different imaging modalities. A comprehensive motion management strategy using multi-modality 4D imaging has shown promise in improving patient care, but at the same time faces significant challenges. This session will focuses on the current status and advances in imaging respiration-induced organ motion with different imaging modalities: 4D-CT, 4D-MRI, 4D-PET, and 4D-CBCT/DTS. Learning Objectives: Understand the need and role of multimodality 4D imaging in radiation therapy. Understand the underlying physics behind each 4D imaging technique. Recognize the advantages and limitations of each 4D imaging technique.

  2. A scatter-corrected list-mode reconstruction and a practical scatter/random approximation technique for dynamic PET imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Ju-Chieh Kevin; Rahmim, Arman; Blinder, Stephan; Camborde, Marie-Laure; Raywood, Kelvin; Sossi, Vesna

    2007-04-01

    We describe an ordinary Poisson list-mode expectation maximization (OP-LMEM) algorithm with a sinogram-based scatter correction method based on the single scatter simulation (SSS) technique and a random correction method based on the variance-reduced delayed-coincidence technique. We also describe a practical approximate scatter and random-estimation approach for dynamic PET studies based on a time-averaged scatter and random estimate followed by scaling according to the global numbers of true coincidences and randoms for each temporal frame. The quantitative accuracy achieved using OP-LMEM was compared to that obtained using the histogram-mode 3D ordinary Poisson ordered subset expectation maximization (3D-OP) algorithm with similar scatter and random correction methods, and they showed excellent agreement. The accuracy of the approximated scatter and random estimates was tested by comparing time activity curves (TACs) as well as the spatial scatter distribution from dynamic non-human primate studies obtained from the conventional (frame-based) approach and those obtained from the approximate approach. An excellent agreement was found, and the time required for the calculation of scatter and random estimates in the dynamic studies became much less dependent on the number of frames (we achieved a nearly four times faster performance on the scatter and random estimates by applying the proposed method). The precision of the scatter fraction was also demonstrated for the conventional and the approximate approach using phantom studies. This work was supported by the Canadian Institute of Health Research, a TRIUMF Life Science Grant, the Natural Sciences and Engineering Research Council of Canada UFA (V Sossi) and the Michael Smith Foundation for Health Research Scholarship (V Sossi).

  3. A 4D Hyperspherical Interpretation of q-Space

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Bendlin, Barbara B.; Alexander, Andrew L.

    2015-01-01

    3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 4D hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently modeling the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal basis, we derive several well-established q-space indices and numerically estimate the diffusion orientation distribution function (dODF). We also derive the integral transform describing the relationship between the diffusion signal and propagator on a hypersphere. Most importantly, we will demonstrate that for hybrid diffusion imaging (HYDI) acquisitions low order linear expansion of the HSH basis is sufficient to characterize diffusion in neural tissue. In fact, the HSH basis achieves comparable signal and better dODF reconstructions than other well-established methods, such as Bessel Fourier orientation reconstruction (BFOR), using fewer fitting parameters. All in all, this work provides a new way of looking at q-space. PMID:25624043

  4. Brain tissue segmentation in 4D CT using voxel classification

    NASA Astrophysics Data System (ADS)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  5. Founding Gravitation in 4D Euclidean Space-Time Geometry

    SciTech Connect

    Winkler, Franz-Guenter

    2010-11-24

    The Euclidean interpretation of special relativity which has been suggested by the author is a formulation of special relativity in ordinary 4D Euclidean space-time geometry. The natural and geometrically intuitive generalization of this view involves variations of the speed of light (depending on location and direction) and a Euclidean principle of general covariance. In this article, a gravitation model by Jan Broekaert, which implements a view of relativity theory in the spirit of Lorentz and Poincare, is reconstructed and shown to fulfill the principles of the Euclidean approach after an appropriate reinterpretation.

  6. Los Alamos National Laboratory 4D Database

    SciTech Connect

    Atencio, Julian J.

    2014-05-02

    4D is an integrated development platform - a single product comprised of the components you need to create and distribute professional applications. You get a graphical design environment, SQL database, a programming language, integrated PHP execution, HTTP server, application server, executable generator, and much more. 4D offers multi-platform development and deployment, meaning whatever you create on a Mac can be used on Windows, and vice-versa. Beyond productive development, 4D is renowned for its great flexibility in maintenance and modification of existing applications, and its extreme ease of implementation in its numerous deployment options. Your professional application can be put into production more quickly, at a lower cost, and will always be instantly scalable. 4D makes it easy, whether you're looking to create a classic desktop application, a client-server system, a distributed solution for Web or mobile clients - or all of the above!

  7. Computing Myocardial Motion in 4D Echocardiography

    PubMed Central

    Mukherjee, Ryan; Sprouse, Chad; Pinheiro, Aurélio; Abraham, Theodore; Burlina, Philippe

    2012-01-01

    4D (3D spatial+time) echocardiography is gaining widespread acceptance at clinical institutions for its high temporal resolution and relatively low cost. We describe a novel method for computing dense 3D myocardial motion with high accuracy. The method is based on a classical variational optical flow technique, but exploits modern developments in optical flow research to utilize the full capabilities of 4D echocardiography. Using a variety of metrics, we present an in-depth performance evaluation of the method on synthetic, phantom, and intraoperative 4D Transesophageal Echocardiographic (TEE) data. When compared with state-of-the-art optical flow and speckle tracking techniques currently found in 4D echocardiography, the method we present shows notable improvements in error. We believe the performance improvements shown can have a positive impact when the method is used as input for various applications, such as strain computation, biomechanical modeling, or automated diagnostics. PMID:22677256

  8. On "new massive" 4D gravity

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric A.; Fernández-Melgarejo, J. J.; Rosseel, Jan; Townsend, Paul K.

    2012-04-01

    We construct a four-dimensional (4D) gauge theory that propagates, unitarily, the five polarization modes of a massive spin-2 particle. These modes are described by a "dual" graviton gauge potential and the Lagrangian is 4th-order in derivatives. As the construction mimics that of 3D "new massive gravity", we call this 4D model (linearized) "new massive dual gravity". We analyse its massless limit, and discuss similarities to the Eddington-Schrödinger model.

  9. 4D flow mri post-processing strategies for neuropathologies

    NASA Astrophysics Data System (ADS)

    Schrauben, Eric Mathew

    double-gated flow acquisition and reconstruction scheme demonstrates respiratory-induced changes in internal jugular vein flow. Finally, a semi-automated intracranial vessel segmentation and flow parameter measurement software tool for fast and consistent 4D flow post-processing analysis is developed, validated, and exhibited an in-vivo.

  10. Helical 4D CT and Comparison with Cine 4D CT

    NASA Astrophysics Data System (ADS)

    Pan, Tinsu

    4D CT was one of the most important developments in radiation oncology in the last decade. Its early development in single slice CT and commercialization in multi-slice CT has radically changed our practice in radiation treatment of lung cancer, and has enabled the stereotactic radiosurgery of early stage lung cancer. In this chapter, we will document the history of 4D CT development, detail the data sufficiency condition governing the 4D CT data collection; present the design of the commercial helical 4D CTs from Philips and Siemens; compare the differences between the helical 4D CT and the GE cine 4D CT in data acquisition, slice thickness, acquisition time and work flow; review the respiratory monitoring devices; and understand the causes of image artifacts in 4D CT.

  11. Professor Pet.

    ERIC Educational Resources Information Center

    Pet Information Bureau, New York, NY.

    This manual outlines ways in which observation and care of classroom pet animals may be used to enrich the education of elementary school children. Part one deals with the benefits of having pets in the classroom. Part two illustrates ways in which pets can serve as valuable teaching tools and gives examples of lessons in which the use of pets can…

  12. The effects of respiration motion in PET/CT studies

    NASA Astrophysics Data System (ADS)

    Wan, Lu; Wu, Zhijian; Zhou, Fengyin; Ye, Sheng; Zeng, Shaoqun; Kao, Chien-Min; Chen, Chin-Tu; Zhang, Yongxue; Xie, Qingguo

    2008-03-01

    In recent years, the clinical status of positron emission tomography(PET)/computed tomography(CT) in achieving more accurate staging of lung cancer has been established and the technology has been enthusiastically accepted by the medical community. However, its capability in chest imaging is still limited by several physical factors. As a result of typical PET/CT imaging protocol, respiration-averaged PET data and free of respiration-averaged CT data are collected in a PET/CT scanning. In this work, we investigate the effects of respiration motion. We employ mathematical and Monte-Carlo simulations for generating PET/CT data. We scale a Zubal phantom to generate 30 phantoms having various sizes in order to represent different torso anatomic states during respiration. Images reconstructed from selected scaling PET data using the respective scaling PET attenuation maps serve as baseline results. PET/CT imaging protocol is simulated by reconstruction from respiration-averaged PET data with the selected PET attenuation maps. We also reconstruct PET images from respiratory-averaged PET data with respiration-averaged PET attenuation maps, which simulates conventional PET imaging protocol. We will compare the resulting images reconstructed from the above-mentioned approaches to evaluate the effects of respiration motion in PET/CT.

  13. Cloning and expression of the 4D8 gene from Hyalomma asiaticum tick.

    PubMed

    Liu, Z Q; Xia, J; Wang, G L; Kuermanali, N

    2016-01-01

    Hyalomma asiaticum tick, an important ectozoic parasite causes tickle, pain, anemia, weight loss, and paralysis in its hosts, which include humans, cattle, sheep, horses, camels, and hares. The 4D8 gene can be a potential vaccine candidate antigen for H. asiaticum. In the present study, we cloned and expressed the 4D8 gene of H. asiaticum from Xinjiang Province. Primers were designed according to the H. asiaticum tick 4D8 gene sequence available in GenBank. The gene was amplified by reverse transcription-polymerase chain reaction and the fragments were subcloned into the prokaryotic expression vector pET30a and the recombinant vector pET30a-4D8 was constructed. The expressed recombinant protein was purified and its biological activity was investigated by western blot. Results revealed that the recombinant protein was a biologically active fusion protein with a molecular weight of 20 kDa. The purified 4D8 protein would provide a strong foundation for further studies on this protein. PMID:27323189

  14. Actively triggered 4d cone-beam CT acquisition

    SciTech Connect

    Fast, Martin F.; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  15. 4D Bioprinting for Biomedical Applications.

    PubMed

    Gao, Bin; Yang, Qingzhen; Zhao, Xin; Jin, Guorui; Ma, Yufei; Xu, Feng

    2016-09-01

    3D bioprinting has been developed to effectively and rapidly pattern living cells and biomaterials, aiming to create complex bioconstructs. However, placing biocompatible materials or cells into direct contact via bioprinting is necessary but insufficient for creating these constructs. Therefore, '4D bioprinting' has emerged recently, where 'time' is integrated with 3D bioprinting as the fourth dimension, and the printed objects can change their shapes or functionalities when an external stimulus is imposed or when cell fusion or postprinting self-assembly occurs. In this review, we highlight recent developments in 4D bioprinting technology. Additionally, we review the uses of 4D bioprinting in tissue engineering and drug delivery. Finally, we discuss the major roadblocks to this approach, together with possible solutions, to provide future perspectives on this technology. PMID:27056447

  16. Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research

    PubMed Central

    Panta, Raj K.; Segars, Paul; Yin, Fang-Fang; Cai, Jing

    2015-01-01

    Aims To establish a framework to implement the 4D integrated extended cardiac torso (XCAT) digital phantom for 4D radiotherapy (RT) research. Materials and Methods A computer program was developed to facilitate the characterization and implementation of the 4D XCAT phantom. The program can (1) generate 4D XCAT images with customized parameter files; (2) review 4D XCAT images; (3) generate composite images from 4D XCAT images; (4) track motion of selected region-of-interested (ROI); (5) convert XCAT raw binary images into DICOM format; (6) analyse clinically acquired 4DCT images and real-time position management (RPM) respiratory signal. Motion tracking algorithm was validated by comparing with manual method. Major characteristics of the 4D XCAT phantom were studied. Results The comparison between motion tracking and manual measurements of lesion motion trajectory showed a small difference between them (mean difference in motion amplitude: 1.2 mm). The maximum lesion motion decreased nearly linearly (R2 = 0.97) as its distance to the diaphragm (DD) increased. At any given DD, lesion motion amplitude increased nearly linearly (R 2 range: 0.89 to 0.95) as the inputted diaphragm motion increased. For a given diaphragm motion, the lesion motion is independent of the lesion size at any given DD. The 4D XCAT phantom can closely reproduce irregular breathing profile. The end-to-end test showed that clinically comparable treatment plans can be generated successfully based on 4D XCAT images. Conclusions An integrated computer program has been developed to generate, review, analyse, process, and export the 4D XCAT images. A framework has been established to implement the 4D XCAT phantom for 4D RT research. PMID:23361276

  17. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    NASA Astrophysics Data System (ADS)

    Wang, Mengjiao; Sharp, Gregory C.; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-05-01

    Tumor motion caused by respiration is an important issue in image-guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and a streak-free 3DCBCT volume are combined to improve the image quality of the digitally reconstructed radiographs (DRRs). Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and one-minute and two-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. The diaphragm matching accuracy was 1.88 ± 1.35 mm in the isocenter plane and the 2D tumor tracking accuracy was 2.13 ± 1.26 mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purposes.

  18. 4D-Var Developement at GMAO

    NASA Technical Reports Server (NTRS)

    Pelc, Joanna S.; Todling, Ricardo; Akkraoui, Amal El

    2014-01-01

    The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.

  19. Generation and Evaluation of a Simultaneous Cardiac and Respiratory Gated Rb-82 PET Simulation

    PubMed Central

    Park, Min Jae; Chen, Si; Lee, Taek-Soo; Fung, George S. K.; Lodge, Martin; Tsui, Benjamin M. W.

    2012-01-01

    The goal is to generate and evaluate a simulated 4D Rb-82 PET dataset that realistically models simultaneous respiratory and cardiac motions for use to study the effects of the motions and their compensation using various gating schemes. Normal cardiac and respiratory (C&R) motions were simulated separately using the realistic 4D XCAT phantoms. The C&R motion cycles were divided into 24 and 48 equally-spaced time points, respectively. The simultaneous dual motions were modeled by 24 × 48 phantoms with different combinations of C&R motion phases. Almost noise-free projections of the heart, blood pool, lungs, liver, stomach, spleen, and the remaining body were simulated separately using the combined SimSET and GATE Monte Carlo simulation program which is 12 times faster than GATE alone. The projections were scaled and combined to simulate a typical Rb-82 myocardial perfusion (MP) PET patient study. The no gating, 6-frame respiratory gating only, 8-frame cardiac gating only, and simultaneous 6-frame respiratory and 8-frame cardiac gating schemes were applied. Each gated projection dataset was reconstructed using a 2D OS-EM without and with attenuation correction (AC) using an averaged and gated attenuation maps. The reconstructed images were evaluated in terms of artifactual non-uniformity in the MP polar map. Significant artifactual non-uniformity was found in the MP polar map over all gating scheme without AC. With AC, the artifactual decreases in both the anterior and inferior regions were reduced with respiratory gating. Cardiac motion alone did not cause significant artifactual non-uniformity. In addition, the combination of dual gating and AC using the gated attenuation map provided the most uniform MP polar map. We demonstrated the flexibility and utility of the 4D XCAT phantom set with simultaneous C&R motions. It is a powerful tool to study motion effects on MP PET studies and to evaluate C&R gating schemes, AC and quantitative 4D PET image reconstruction

  20. R4D Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1956-01-01

    This Photograph taken in 1956 shows the first of three R4D Skytrain aircraft on the ramp behind the NACA High-Speed Flight Station. NACA stood for the National Advisory Committee for Aeronautics, which evolved into the National Aeronautics and Space Administration (NASA) in 1958. The R4D Skytrain was one of the early workhorses for NACA and NASA at Edwards Air Force Base, California, from 1952 to 1984. Designated the R4D by the U.S. Navy, the aircraft was called the C-47 by the U.S. Army and U.S. Air Force and the DC-3 by its builder, Douglas Aircraft. Nearly everyone called it the 'Gooney Bird.' In 1962, Congress consolidated the military-service designations and called all of them the C-47. After that date, the R4D at NASA's Flight Research Center (itself redesignated the Dryden Flight Research Center in 1976) was properly called a C-47. Over the 32 years it was used at Edwards, three different R4D/C-47s were used to shuttle personnel and equipment between NACA/NASA Centers and test locations throughout the country and for other purposes. One purpose was landing on 'dry' lakebeds used as alternate landing sites for the X-15, to determine whether their surfaces were hard (dry) enough for the X-15 to land on in case an emergency occurred after its launch and before it could reach Rogers Dry Lake at Edwards Air Force Base. The R4D/C-47 served a variety of needs, including serving as the first air-tow vehicle for the M2-F1 lifting body (which was built of mahogany plywood). The C-47 (as it was then called) was used for 77 tows before the M2-F1 was retired for more advanced lifting bodies that were dropped from the NASA B-52 'Mothership.' The R4D also served as a research aircraft. It was used to conduct early research on wing-tip-vortex flow visualization as well as checking out the NASA Uplink Control System. The first Gooney Bird was at the NACA High-Speed Flight Research Station (now the Dryden Flight Research Center) from 1952 to 1956 and flew at least one cross

  1. The development of a population of 4D pediatric XCAT phantoms for CT imaging research and optimization

    NASA Astrophysics Data System (ADS)

    Norris, Hannah; Zhang, Yakun; Frush, Jack; Sturgeon, Gregory M.; Minhas, Anum; Tward, Daniel J.; Ratnanather, J. Tilak; Miller, M. I.; Frush, Donald; Samei, Ehsan; Segars, W. Paul

    2014-03-01

    With the increased use of CT examinations, the associated radiation dose has become a large concern, especially for pediatrics. Much research has focused on reducing radiation dose through new scanning and reconstruction methods. Computational phantoms provide an effective and efficient means for evaluating image quality, patient-specific dose, and organ-specific dose in CT. We previously developed a set of highly-detailed 4D reference pediatric XCAT phantoms at ages of newborn, 1, 5, 10, and 15 years with organ and tissues masses matched to ICRP Publication 89 values. We now extend this reference set to a series of 64 pediatric phantoms of a variety of ages and height and weight percentiles, representative of the public at large. High resolution PET-CT data was reviewed by a practicing experienced radiologist for anatomic regularity and was then segmented with manual and semi-automatic methods to form a target model. A Multi-Channel Large Deformation Diffeomorphic Metric Mapping (MC-LDDMM) algorithm was used to calculate the transform from the best age matching pediatric reference phantom to the patient target. The transform was used to complete the target, filling in the non-segmented structures and defining models for the cardiac and respiratory motions. The complete phantoms, consisting of thousands of structures, were then manually inspected for anatomical accuracy. 3D CT data was simulated from the phantoms to demonstrate their ability to generate realistic, patient quality imaging data. The population of pediatric phantoms developed in this work provides a vital tool to investigate dose reduction techniques in 3D and 4D pediatric CT.

  2. Pet Health

    MedlinePlus

    ... Before getting a pet, think carefully about which animal is best for your family. What is each ... Does anyone have pet allergies? What type of animal suits your lifestyle and budget? Once you own ...

  3. Nondipole Effects in Xe 4d Photoemission

    SciTech Connect

    Hemmers, O; Guillemin, R; Wolska, A; Lindle, D W; Rolles, D; Cheng, K T; Johnson, W R; Zhou, H L; Manson, S T

    2004-07-14

    We measured the nondipole parameters for the spin-orbit doublets Xe 4d{sub 5/2} and Xe 4d{sub 3/2} over a photon-energy range from 100 eV to 250 eV at beamline 8.0.1.3 of the Advanced Light Source at the Lawrence Berkeley National Laboratory. Significant nondipole effects are found at relatively low energies as a result of Cooper minima in dipole channels and interchannel coupling in quadrupole channels. Most importantly, sharp disagreement between experiment and theory, when otherwise excellent agreement was expected, has provided the first evidence of satellite two-electron quadrupole photoionization transitions, along with their crucial importance for a quantitatively accurate theory.

  4. A residual correction method for high-resolution PET reconstruction with application to on-the-fly Monte Carlo based model of positron range

    PubMed Central

    Fu, Lin; Qi, Jinyi

    2010-01-01

    Purpose: The quality of tomographic images is directly affected by the system model being used in image reconstruction. An accurate system matrix is desirable for high-resolution image reconstruction, but it often leads to high computation cost. In this work the authors present a maximum a posteriori reconstruction algorithm with residual correction to alleviate the tradeoff between the model accuracy and the computation efficiency in image reconstruction. Methods: Unlike conventional iterative methods that assume that the system matrix is accurate, the proposed method reconstructs an image with a simplified system matrix and then removes the reconstruction artifacts through residual correction. Since the time-consuming forward and back projection operations using the accurate system matrix are not required in every iteration, image reconstruction time can be greatly reduced. Results: The authors apply the new algorithm to high-resolution positron emission tomography reconstruction with an on-the-fly Monte Carlo (MC) based positron range model. Computer simulations show that the new method is an order of magnitude faster than the traditional MC-based method, whereas the visual quality and quantitative accuracy of the reconstructed images are much better than that obtained by using the simplified system matrix alone. Conclusions: The residual correction method can reconstruct high-resolution images and is computationally efficient. PMID:20229880

  5. Data representation and visualization in 4-D microscopy

    NASA Astrophysics Data System (ADS)

    Kriete, Andres; Rohrbach, Steffen; Schwebel, Tim; Wagner, Hans-Joachim; Behrens, Uwe

    1992-09-01

    Computer representation in biological microscopy is progressing from the well established modeling of three-dimensional (3-D) structural information towards the visualization of spatio- temporal (4-D) information. This paper describes two new methods to process sequential volumes, where each data set corresponds to a time sample. The first technique is based on surface rendering to study organ and tissue development. Contour stacks are rendered and in- between stages are interpolated. This technique allows the analysis and simulation of growth following different mathematical models and relates them with experimental findings. The second technique got appreciation for volume rendering of morphogenesis in living tissue. Sequences scanned with a confocal microscope are packed. The combination of ray-casting reconstructions within a color model allows for a rendering of morphogenetic activity.

  6. Geometric validation of self-gating k-space-sorted 4D-MRI vs 4D-CT using a respiratory motion phantom

    SciTech Connect

    Yue, Yong Yang, Wensha; McKenzie, Elizabeth; Tuli, Richard; Wallace, Robert; Fraass, Benedick; Fan, Zhaoyang; Pang, Jianing; Deng, Zixin; Li, Debiao

    2015-10-15

    Purpose: MRI is increasingly being used for radiotherapy planning, simulation, and in-treatment-room motion monitoring. To provide more detailed temporal and spatial MR data for these tasks, we have recently developed a novel self-gated (SG) MRI technique with advantage of k-space phase sorting, high isotropic spatial resolution, and high temporal resolution. The current work describes the validation of this 4D-MRI technique using a MRI- and CT-compatible respiratory motion phantom and comparison to 4D-CT. Methods: The 4D-MRI sequence is based on a spoiled gradient echo-based 3D projection reconstruction sequence with self-gating for 4D-MRI at 3 T. Respiratory phase is resolved by using SG k-space lines as the motion surrogate. 4D-MRI images are reconstructed into ten temporal bins with spatial resolution 1.56 × 1.56 × 1.56 mm{sup 3}. A MRI-CT compatible phantom was designed to validate the performance of the 4D-MRI sequence and 4D-CT imaging. A spherical target (diameter 23 mm, volume 6.37 ml) filled with high-concentration gadolinium (Gd) gel is embedded into a plastic box (35 × 40 × 63 mm{sup 3}) and stabilized with low-concentration Gd gel. The phantom, driven by an air pump, is able to produce human-type breathing patterns between 4 and 30 respiratory cycles/min. 4D-CT of the phantom has been acquired in cine mode, and reconstructed into ten phases with slice thickness 1.25 mm. The 4D images sets were imported into a treatment planning software for target contouring. The geometrical accuracy of the 4D MRI and CT images has been quantified using target volume, flattening, and eccentricity. The target motion was measured by tracking the centroids of the spheres in each individual phase. Motion ground-truth was obtained from input signals and real-time video recordings. Results: The dynamic phantom has been operated in four respiratory rate (RR) settings, 6, 10, 15, and 20/min, and was scanned with 4D-MRI and 4D-CT. 4D-CT images have target

  7. MO-G-17A-07: Improved Image Quality in Brain F-18 FDG PET Using Penalized-Likelihood Image Reconstruction Via a Generalized Preconditioned Alternating Projection Algorithm: The First Patient Results

    SciTech Connect

    Schmidtlein, CR; Beattie, B; Humm, J; Li, S; Wu, Z; Xu, Y; Zhang, J; Shen, L; Vogelsang, L; Feiglin, D; Krol, A

    2014-06-15

    Purpose: To investigate the performance of a new penalized-likelihood PET image reconstruction algorithm using the 1{sub 1}-norm total-variation (TV) sum of the 1st through 4th-order gradients as the penalty. Simulated and brain patient data sets were analyzed. Methods: This work represents an extension of the preconditioned alternating projection algorithm (PAPA) for emission-computed tomography. In this new generalized algorithm (GPAPA), the penalty term is expanded to allow multiple components, in this case the sum of the 1st to 4th order gradients, to reduce artificial piece-wise constant regions (“staircase” artifacts typical for TV) seen in PAPA images penalized with only the 1st order gradient. Simulated data were used to test for “staircase” artifacts and to optimize the penalty hyper-parameter in the root-mean-squared error (RMSE) sense. Patient FDG brain scans were acquired on a GE D690 PET/CT (370 MBq at 1-hour post-injection for 10 minutes) in time-of-flight mode and in all cases were reconstructed using resolution recovery projectors. GPAPA images were compared PAPA and RMSE-optimally filtered OSEM (fully converged) in simulations and to clinical OSEM reconstructions (3 iterations, 32 subsets) with 2.6 mm XYGaussian and standard 3-point axial smoothing post-filters. Results: The results from the simulated data show a significant reduction in the 'staircase' artifact for GPAPA compared to PAPA and lower RMSE (up to 35%) compared to optimally filtered OSEM. A simple power-law relationship between the RMSE-optimal hyper-parameters and the noise equivalent counts (NEC) per voxel is revealed. Qualitatively, the patient images appear much sharper and with less noise than standard clinical images. The convergence rate is similar to OSEM. Conclusions: GPAPA reconstructions using the 1{sub 1}-norm total-variation sum of the 1st through 4th-order gradients as the penalty show great promise for the improvement of image quality over that currently achieved

  8. Characterization and optimization of image quality as a function of reconstruction algorithms and parameter settings in a Siemens Inveon small-animal PET scanner using the NEMA NU 4-2008 standards

    NASA Astrophysics Data System (ADS)

    Visser, Eric P.; Disselhorst, Jonathan A.; van Lier, Monique G. J. T. B.; Laverman, Peter; de Jong, Gabie M.; Oyen, Wim J. G.; Boerman, Otto C.

    2011-02-01

    The image reconstruction algorithms provided with the Siemens Inveon small-animal PET scanner are filtered backprojection (FBP), 3-dimensional reprojection (3DRP), ordered subset expectation maximization in 2 or 3 dimensions (OSEM2D/3D) and maximum a posteriori (MAP) reconstruction. This study aimed at optimizing the reconstruction parameter settings with regard to image quality (IQ) as defined by the NEMA NU 4-2008 standards. The NEMA NU 4-2008 image quality phantom was used to determine image noise, expressed as percentage standard deviation in the uniform phantom region (%STD unif), activity recovery coefficients for the FDG-filled rods (RC rod), and spill-over ratios for the non-radioactive water- and air-filled phantom compartments (SOR wat and SOR air). Although not required by NEMA NU 4, we also determined a contrast-to-noise ratio for each rod (CNR rod), expressing the trade-off between activity recovery and image noise. For FBP and 3DRP the cut-off frequency of the applied filters, and for OSEM2D and OSEM3D, the number of iterations was varied. For MAP, the "smoothing parameter" β and the type of uniformity constraint (variance or resolution) were varied. Results of these analyses were demonstrated in images of an FDG-injected rat showing tumours in the liver, and of a mouse injected with an 18F-labeled peptide, showing a small subcutaneous tumour and the cortex structure of the kidneys. Optimum IQ in terms of CNR rod for the small-diameter rods was obtained using MAP with uniform variance and β=0.4. This setting led to RC rod,1 mm=0.21, RC rod,2 mm=0.57, %STD unif=1.38, SOR wat=0.0011, and SOR air=0.00086. However, the highest activity recovery for the smallest rods with still very small %STD unif was obtained using β=0.075, for which these IQ parameters were 0.31, 0.74, 2.67, 0.0041, and 0.0030, respectively. The different settings of reconstruction parameters were clearly reflected in the rat and mouse images as the trade-off between the recovery of

  9. 4D XCAT phantom for multimodality imaging research

    SciTech Connect

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-09-15

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ''Basic anatomical and physiological data for use in radiological protection: reference values,'' ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  10. 4D XCAT phantom for multimodality imaging research

    PubMed Central

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-01-01

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ‘‘Basic anatomical and physiological data for use in radiological protection: reference values,” ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  11. Abdominal and pancreatic motion correlation using 4D CT, 4D transponders, and a gating belt.

    PubMed

    Betancourt, Ricardo; Zou, Wei; Plastaras, John P; Metz, James M; Teo, Boon-Keng; Kassaee, Alireza

    2013-01-01

    The correlation between the pancreatic and external abdominal motion due to respiration was investigated on two patients. These studies utilized four dimensional computer tomography (4D CT), a four dimensional (4D) electromagnetic transponder system, and a gating belt system. One 4D CT study was performed during simulation to quantify the pancreatic motion using computer tomography images at eight breathing phases. The motion under free breathing and breath-hold were analyzed for the 4D electromagnetic transponder system and the gating belt system during treatment. A linear curve was fitted for all data sets and correlation factors were evaluated between the 4D electromagnetic transponder system and the gating belt system data. The 4D CT study demonstrated a modest correlation between the external marker and the pancreatic motion with R-square values larger than 0.8 for the inferior-superior (inf-sup). Then, the relative pressure from the belt gating system correlated well with the 4D electromagnetic transponder system's motion in the anterior-posterior (ant-post) and the inf-post directions. These directions have a correlation value of -0.93 and 0.76, while the lateral only had a 0.03 correlation coefficient. Based on our limited study, external surrogates can be used as predictors of the pancreatic motion in the inf-sup and the ant-post directions. Although there is a low correlation on the lateral direction, its motion is significantly shorter. In conclusion, an appropriate treatment delivery can be used for pancreatic cancer when an internal tracking system, such as the 4D electromagnetic transponder system, is unavailable. PMID:23652242

  12. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    PubMed Central

    Wang, Mengjiao; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-01-01

    Tumor motion caused by respiration is an important issue in image guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and streak free 3DCBCT volume are combined to improve the image quality of the DRRs. Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and 1-minute and 2-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. Diaphragm matching accuracy was 1.88±1.35mm in the isocenter plane, the 2D tumor tracking accuracy was 2.13±1.26mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purpose. PMID:24710793

  13. Active origami by 4D printing

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  14. Quantitative simultaneous PET-MR imaging

    NASA Astrophysics Data System (ADS)

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G.; Kolnick, Aleksandra L.; El Fakhri, Georges

    2014-06-01

    Whole-body PET is currently limited by the degradation due to patient motion. Respiratory motion degrades imaging studies of the abdomen. Similarly, both respiratory and cardiac motions significantly hamper the assessment of myocardial ischemia and/or metabolism in perfusion and viability cardiac PET studies. Based on simultaneous PET-MR, we have developed robust and accurate MRI methods allowing the tracking and measurement of both respiratory and cardiac motions during abdominal or cardiac studies. Our list-mode iterative PET reconstruction framework incorporates the measured motion fields into PET emission system matrix as well as the time-dependent PET attenuation map and the position dependent point spread function. Our method significantly enhances the PET image quality as compared to conventional methods.

  15. Long Span DNA Paired-End-Tag (DNA-PET) Sequencing Strategy for the Interrogation of Genomic Structural Mutations and Fusion-Point-Guided Reconstruction of Amplicons

    PubMed Central

    Hillmer, Axel M.; Lee, Wah Heng; Li, Guoliang; Teo, Audrey S. M.; Woo, Xing Yi; Zhang, Zhenshui; Chen, Jieqi P.; Poh, Wan Ting; Zawack, Kelson F. B.; Chan, Chee Seng; Leong, See Ting; Neo, Say Chuan; Choi, Poh Sum D.; Gao, Song; Nagarajan, Niranjan; Thoreau, Hervé; Shahab, Atif; Ruan, Xiaoan; Cacheux-Rataboul, Valère; Wei, Chia-Lin; Bourque, Guillaume; Sung, Wing-Kin; Liu, Edison T.; Ruan, Yijun

    2012-01-01

    Structural variations (SVs) contribute significantly to the variability of the human genome and extensive genomic rearrangements are a hallmark of cancer. While genomic DNA paired-end-tag (DNA-PET) sequencing is an attractive approach to identify genomic SVs, the current application of PET sequencing with short insert size DNA can be insufficient for the comprehensive mapping of SVs in low complexity and repeat-rich genomic regions. We employed a recently developed procedure to generate PET sequencing data using large DNA inserts of 10–20 kb and compared their characteristics with short insert (1 kb) libraries for their ability to identify SVs. Our results suggest that although short insert libraries bear an advantage in identifying small deletions, they do not provide significantly better breakpoint resolution. In contrast, large inserts are superior to short inserts in providing higher physical genome coverage for the same sequencing cost and achieve greater sensitivity, in practice, for the identification of several classes of SVs, such as copy number neutral and complex events. Furthermore, our results confirm that large insert libraries allow for the identification of SVs within repetitive sequences, which cannot be spanned by short inserts. This provides a key advantage in studying rearrangements in cancer, and we show how it can be used in a fusion-point-guided-concatenation algorithm to study focally amplified regions in cancer. PMID:23029419

  16. Simultaneous water activation and glucose metabolic rate imaging with PET

    NASA Astrophysics Data System (ADS)

    Verhaeghe, Jeroen; Reader, Andrew J.

    2013-02-01

    A novel imaging and signal separation strategy is proposed to be able to separate [18F]FDG and multiple [15O]H2O signals from a simultaneously acquired dynamic PET acquisition of the two tracers. The technique is based on the fact that the dynamics of the two tracers are very distinct. By adopting an appropriate bolus injection strategy and by defining tailored sets of basis functions that model either the FDG or water component, it is possible to separate the FDG and water signal. The basis functions are inspired from the spectral analysis description of dynamic PET studies and are defined as the convolution of estimated generating functions (GFs) with a set of decaying exponential functions. The GFs are estimated from the overall measured head curve, while the decaying exponential functions are pre-determined. In this work, the time activity curves (TACs) are modelled post-reconstruction but the model can be incorporated in a global 4D reconstruction strategy. Extensive PET simulation studies are performed considering single [18F]FDG and 6 [15O]H2O bolus injections for a total acquisition time of 75 min. The proposed method is evaluated at multiple noise levels and different parameters were estimated such as [18F]FDG uptake and blood flow estimated from the [15O]H2O component, requiring a full dynamic analysis of the two components, static images of [18F]FDG and the water components as well as [15O]H2O activation. It is shown that the resulting images and parametric values in ROIs are comparable to images obtained from separate imaging, illustrating the feasibility of simultaneous imaging of [18F]FDG and [15O]H2O components. For more information on this article, see medicalphysicsweb.org

  17. Joint PET-MR respiratory motion models for clinical PET motion correction.

    PubMed

    Manber, Richard; Thielemans, Kris; Hutton, Brian F; Wan, Simon; McClelland, Jamie; Barnes, Anna; Arridge, Simon; Ourselin, Sébastien; Atkinson, David

    2016-09-01

    Patient motion due to respiration can lead to artefacts and blurring in positron emission tomography (PET) images, in addition to quantification errors. The integration of PET with magnetic resonance (MR) imaging in PET-MR scanners provides complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this paper we build on previous work to form a methodology for respiratory motion correction of PET data, and show it can improve PET image quality whilst having minimal impact on clinical PET-MR protocols. We introduce a joint PET-MR motion model, using only 1 min per PET bed position of simultaneously acquired PET and MR data to provide a respiratory motion correspondence model that captures inter-cycle and intra-cycle breathing variations. In the model setup, 2D multi-slice MR provides the dynamic imaging component, and PET data, via low spatial resolution framing and principal component analysis, provides the model surrogate. We evaluate different motion models (1D and 2D linear, and 1D and 2D polynomial) by computing model-fit and model-prediction errors on dynamic MR images on a data set of 45 patients. Finally we apply the motion model methodology to 5 clinical PET-MR oncology patient datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual analysis, and quantitative improvements are calculated using standardised uptake value (SUV(peak) and SUV(max)) changes in avid lesions. We demonstrate the capability of a joint PET-MR motion model to predict respiratory motion by showing significantly improved image quality of PET data acquired before the motion model data. The method can be used to incorporate motion into the reconstruction of any length of PET acquisition, with only 1 min of extra scan time, and with no external hardware required. PMID:27524409

  18. ICT4D: A Computer Science Perspective

    NASA Astrophysics Data System (ADS)

    Sutinen, Erkki; Tedre, Matti

    The term ICT4D refers to the opportunities of Information and Communication Technology (ICT) as an agent of development. Research in that field is often focused on evaluating the feasibility of existing technologies, mostly of Western or Far East Asian origin, in the context of developing regions. A computer science perspective is complementary to that agenda. The computer science perspective focuses on exploring the resources, or inputs, of a particular context and on basing the design of a technical intervention on the available resources, so that the output makes a difference in the development context. The modus operandi of computer science, construction, interacts with evaluation and exploration practices. An analysis of a contextualized information technology curriculum of Tumaini University in southern Tanzania shows the potential of the computer science perspective for designing meaningful information and communication technology for a developing region.

  19. Controlled Source 4D Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Morency, C.; Tromp, J.

    2009-12-01

    Earth's material properties may change after significant tectonic events, e.g., volcanic eruptions, earthquake ruptures, landslides, and hydrocarbon migration. While many studies focus on how to interpret observations in terms of changes in wavespeeds and attenuation, the oil industry is more interested in how we can identify and locate such temporal changes using seismic waves generated by controlled sources. 4D seismic analysis is indeed an important tool to monitor fluid movement in hydrocarbon reservoirs during production, improving fields management. Classic 4D seismic imaging involves comparing images obtained from two subsequent seismic surveys. Differences between the two images tell us where temporal changes occurred. However, when the temporal changes are small, it may be quite hard to reliably identify and characterize the differences between the two images. We propose to back-project residual seismograms between two subsequent surveys using adjoint methods, which results in images highlighting temporal changes. We use the SEG/EAGE salt dome model to illustrate our approach. In two subsequent surveys, the wavespeeds and density within a target region are changed, mimicking possible fluid migration. Due to changes in material properties induced by fluid migration, seismograms recorded in the two surveys differ. By back propagating these residuals, the adjoint images identify the location of the affected region. An important issue involves the nature of model. For instance, are we characterizing only changes in wavespeed, or do we also consider density and attenuation? How many model parameters characterize the model, e.g., is our model isotropic or anisotropic? Is acoustic wave propagation accurate enough or do we need to consider elastic or poroelastic effects? We will investigate how imaging strategies based upon acoustic, elastic and poroelastic simulations affect our imaging capabilities.

  20. Resolution enhancement of lung 4D-CT data using multiscale interphase iterative nonlocal means

    SciTech Connect

    Zhang Yu; Yap, Pew-Thian; Wu Guorong; Feng Qianjin; Chen Wufan; Lian Jun; Shen Dinggang

    2013-05-15

    Purpose: Four-dimensional computer tomography (4D-CT) has been widely used in lung cancer radiotherapy due to its capability in providing important tumor motion information. However, the prolonged scanning duration required by 4D-CT causes considerable increase in radiation dose. To minimize the radiation-related health risk, radiation dose is often reduced at the expense of interslice spatial resolution. However, inadequate resolution in 4D-CT causes artifacts and increases uncertainty in tumor localization, which eventually results in extra damages of healthy tissues during radiotherapy. In this paper, the authors propose a novel postprocessing algorithm to enhance the resolution of lung 4D-CT data. Methods: The authors' premise is that anatomical information missing in one phase can be recovered from the complementary information embedded in other phases. The authors employ a patch-based mechanism to propagate information across phases for the reconstruction of intermediate slices in the longitudinal direction, where resolution is normally the lowest. Specifically, the structurally matching and spatially nearby patches are combined for reconstruction of each patch. For greater sensitivity to anatomical details, the authors employ a quad-tree technique to adaptively partition the image for more fine-grained refinement. The authors further devise an iterative strategy for significant enhancement of anatomical details. Results: The authors evaluated their algorithm using a publicly available lung data that consist of 10 4D-CT cases. The authors' algorithm gives very promising results with significantly enhanced image structures and much less artifacts. Quantitative analysis shows that the authors' algorithm increases peak signal-to-noise ratio by 3-4 dB and the structural similarity index by 3%-5% when compared with the standard interpolation-based algorithms. Conclusions: The authors have developed a new algorithm to improve the resolution of 4D-CT. It outperforms

  1. Four-dimensional (4D) tracking of high-temperature microparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.

    2016-11-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  2. Opening the Black Box of ICT4D: Advancing Our Understanding of ICT4D Partnerships

    ERIC Educational Resources Information Center

    Park, Sung Jin

    2013-01-01

    The term, Information and Communication Technologies for Development (ICT4D), pertains to programs or projects that strategically use ICTs (e.g. mobile phones, computers, and the internet) as a means toward the socio-economic betterment for the poor in developing contexts. Gaining the political and financial support of the international community…

  3. PET scan

    MedlinePlus

    You may feel a sharp sting when the needle with the tracer is placed into your vein. A PET scan causes no pain. The table may be ... The amount of radiation used in a PET scan is about the same amount as used in most CT scans. These scans use ...

  4. 4D motion animation of coronary arteries from rotational angiography

    NASA Astrophysics Data System (ADS)

    Holub, Wolfgang; Rohkohl, Christopher; Schuldhaus, Dominik; Prümmer, Marcus; Lauritsch, Günter; Hornegger, Joachim

    2011-03-01

    Time-resolved 3-D imaging of the heart is a major research topic in the medical imaging community. Recent advances in the interventional cardiac 3-D imaging from rotational angiography (C-arm CT) are now also making 4-D imaging feasible during procedures in the catheter laboratory. State-of-the-art reconstruction algorithms try to estimate the cardiac motion and utilize the motion field to enhance the reconstruction of a stable cardiac phase (diastole). The available data offers a handful of opportunities during interventional procedures, e.g. the ECG-synchronized dynamic roadmapping or the computation and analysis of functional parameters. In this paper we will demonstrate that the motion vector field (MVF) that is output by motion compensated image reconstruction algorithms is in general not directly usable for animation and motion analysis. Dependent on the algorithm different defects are investigated. A primary issue is that the MVF needs to be inverted, i.e. the wrong direction of motion is provided. A second major issue is the non-periodicity of cardiac motion. In algorithms which compute a non-periodic motion field from a single rotation the in depth motion information along viewing direction is missing, since this cannot be measured in the projections. As a result, while the MVF improves reconstruction quality, it is insufficient for motion animation and analysis. We propose an algorithm to solve both problems, i.e. inversion and missing in-depth information in a unified framework. A periodic version of the MVF is approximated. The task is formulated as a linear optimization problem where a parametric smooth motion model based on B-splines is estimated from the MVF. It is shown that the problem can be solved using a sparse QR factorization within a clinical feasible time of less than one minute. In a phantom experiment using the publicly available CAVAREV platform, the average quality of a non-periodic animation could be increased by 39% by applying the

  5. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  6. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  7. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  8. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2011 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  9. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2014 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  10. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2011 CFR

    2005-04-01

    ... 17 Commodity and Securities Exchanges 3 2005-04-01 2005-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  11. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2014 CFR

    2000-04-01

    ... 17 Commodity and Securities Exchanges 3 2000-04-01 2000-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a) Each application for an order under section 304(d)...

  12. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2010 CFR

    2015-04-01

    ... 17 Commodity and Securities Exchanges 4 2015-04-01 2015-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  13. From Wheatstone to Cameron and beyond: overview in 3-D and 4-D imaging technology

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine

    2012-02-01

    This paper reviews three-dimensional (3-D) and four-dimensional (4-D) imaging technology, from Wheatstone through today, with some prognostications for near future applications. This field is rich in variety, subject specialty, and applications. A major trend, multi-view stereoscopy, is moving the field forward to real-time wide-angle 3-D reconstruction as breakthroughs in parallel processing and multi-processor computers enable very fast processing. Real-time holography meets 4-D imaging reconstruction at the goal of achieving real-time, interactive, 3-D imaging. Applications to telesurgery and telemedicine as well as to the needs of the defense and intelligence communities are also discussed.

  14. Lung PET scan

    MedlinePlus

    ... emission tomography; PET - chest; PET - lung; PET - tumor imaging ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2015: ...

  15. Analysis of free breathing motion using artifact reduced 4D CT image data

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Werner, Rene; Frenzel, Thorsten; Lu, Wei; Low, Daniel; Handels, Heinz

    2007-03-01

    The mobility of lung tumors during the respiratory cycle is a source of error in radiotherapy treatment planning. Spatiotemporal CT data sets can be used for studying the motion of lung tumors and inner organs during the breathing cycle. We present methods for the analysis of respiratory motion using 4D CT data in high temporal resolution. An optical flow based reconstruction method was used to generate artifact-reduced 4D CT data sets of lung cancer patients. The reconstructed 4D CT data sets were segmented and the respiratory motion of tumors and inner organs was analyzed. A non-linear registration algorithm is used to calculate the velocity field between consecutive time frames of the 4D data. The resulting velocity field is used to analyze trajectories of landmarks and surface points. By this technique, the maximum displacement of any surface point is calculated, and regions with large respiratory motion are marked. To describe the tumor mobility the motion of the lung tumor center in three orthogonal directions is displayed. Estimated 3D appearance probabilities visualize the movement of the tumor during the respiratory cycle in one static image. Furthermore, correlations between trajectories of the skin surface and the trajectory of the tumor center are determined and skin regions are identified which are suitable for prediction of the internal tumor motion. The results of the motion analysis indicate that the described methods are suitable to gain insight into the spatiotemporal behavior of anatomical and pathological structures during the respiratory cycle.

  16. Vessels as 4-D curves: global minimal 4-D paths to extract 3-D tubular surfaces and centerlines.

    PubMed

    Li, Hua; Yezzi, Anthony

    2007-09-01

    In this paper, we propose an innovative approach to the segmentation of tubular structures. This approach combines all of the benefits of minimal path techniques such as global minimizers, fast computation, and powerful incorporation of user input, while also having the capability to represent and detect vessel surfaces directly which so far has been a feature restricted to active contour and surface techniques. The key is to represent the trajectory of a tubular structure not as a 3-D curve but to go up a dimension and represent the entire structure as a 4-D curve. Then we are able to fully exploit minimal path techniques to obtain global minimizing trajectories between two user supplied endpoints in order to reconstruct tubular structures from noisy or low contrast 3-D data without the sensitivity to local minima inherent in most active surface techniques. In contrast to standard purely spatial 3-D minimal path techniques, however, we are able to represent a full tubular surface rather than just a curve which runs through its interior. Our representation also yields a natural notion of a tube's "central curve." We demonstrate and validate the utility of this approach on magnetic resonance (MR) angiography and computed tomography (CT) images of coronary arteries. PMID:17896594

  17. Challenges of radiotherapy: report on the 4D treatment planning workshop 2013.

    PubMed

    Knopf, Antje; Nill, Simeon; Yohannes, Indra; Graeff, Christian; Dowdell, Stephen; Kurz, Christopher; Sonke, Jan-Jakob; Biegun, Aleksandra K; Lang, Stephanie; McClelland, Jamie; Champion, Benjamin; Fast, Martin; Wölfelschneider, Jens; Gianoli, Chiara; Rucinski, Antoni; Baroni, Guido; Richter, Christian; van de Water, Steven; Grassberger, Clemens; Weber, Damien; Poulsen, Per; Shimizu, Shinichi; Bert, Christoph

    2014-11-01

    This report, compiled by experts on the treatment of mobile targets with advanced radiotherapy, summarizes the main conclusions and innovations achieved during the 4D treatment planning workshop 2013. This annual workshop focuses on research aiming to advance 4D radiotherapy treatments, including all critical aspects of time resolved delivery, such as in-room imaging, motion detection, motion managing, beam application, and quality assurance techniques. The report aims to revise achievements in the field and to discuss remaining challenges and potential solutions. As main achievements advances in the development of a standardized 4D phantom and in the area of 4D-treatment plan optimization were identified. Furthermore, it was noticed that MR imaging gains importance and high interest for sequential 4DCT/MR data sets was expressed, which represents a general trend of the field towards data covering a longer time period of motion. A new point of attention was work related to dose reconstructions, which may play a major role in verification of 4D treatment deliveries. The experimental validation of results achieved by 4D treatment planning and the systematic evaluation of different deformable image registration methods especially for inter-modality fusions were identified as major remaining challenges. A challenge that was also suggested as focus for future 4D workshops was the adaptation of image guidance approaches from conventional radiotherapy into particle therapy. Besides summarizing the last workshop, the authors also want to point out new evolving demands and give an outlook on the focus of the next workshop. PMID:25172392

  18. A proposal of an open PET geometry.

    PubMed

    Yamaya, Taiga; Inaniwa, Taku; Minohara, Shinichi; Yoshida, Eiji; Inadama, Naoko; Nishikido, Fumihiko; Shibuya, Kengo; Lam, Chih Fung; Murayama, Hideo

    2008-02-01

    The long patient port of a PET scanner tends to put stress on patients, especially patients with claustrophobia. It also prevents doctors and technicians from taking care of patients during scanning. In this paper, we proposed an 'open PET' geometry, which consists of two axially separated detector rings. A long and continuous field-of-view (FOV) including a 360 degrees opened gap between two detector rings can be imaged enabling a fully 3D image reconstruction of all the possible lines-of-response. The open PET will become practical if iterative image reconstruction methods are applied even though image reconstruction of the open PET is analytically an incomplete problem. First we implemented a 'masked' 3D ordered subset expectation maximization (OS-EM) in which the system matrix was obtained from a long 'gapless' scanner by applying a mask to detectors corresponding to the open space. Next, in order to evaluate imaging performance of the proposed open PET geometry, we simulated a dual HR+ scanner (ring diameter of D = 827 mm, axial length of W = 154 mm x 2) separated by a variable gap. The gap W was the maximum limit to have axially continuous FOV of 3W though the maximum diameter of FOV at the central slice was limited to D/2. Artifacts, observed on both sides of the open space when the gap exceeded W, were effectively reduced by inserting detectors partially into unnecessary open spaces. We also tested the open PET geometry using experimental data obtained by the jPET-D4. The jPET-D4 is a prototype brain scanner, which has 5 rings of 24 detector blocks. We simulated the open jPET-D4 with a gap of 66 mm by eliminating 1 block-ring from experimental data. Although some artifacts were seen at both ends of the opened gap, very similar images were obtained with and without the gap. The proposed open PET geometry is expected to lead to realization of in-beam PET, which is a method for an in situ monitoring of charged particle therapy, by letting the beams pass

  19. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  20. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  1. TH-E-17A-04: Geometric Validation of K-Space Self-Gated 4D-MRI Vs. 4D-CT Using A Respiratory Motion Phantom

    SciTech Connect

    Yue, Y; Fan, Z; Yang, W; Pang, J; McKenzie, E; Deng, Z; Tuli, R; Sandler, H; Li, D; Fraass, B

    2014-06-15

    Purpose: 4D-CT is often limited by motion artifacts, low temporal resolution, and poor phase-based target definition. We recently developed a novel k-space self-gated 4D-MRI technique with high spatial and temporal resolution. The goal here is to geometrically validate 4D-MRI using a MRI-CT compatible respiratory motion phantom and comparison to 4D-CT. Methods: 4D-MRI was acquired using 3T spoiled gradient echo-based 3D projection sequences. Respiratory phases were resolved using self-gated k-space lines as the motion surrogate. Images were reconstructed into 10 temporal bins with 1.56×1.56×1.56mm3. A MRI-CT compatible phantom was designed with a 23mm diameter ball target filled with highconcentration gadolinium(Gd) gel embedded in a 35×40×63mm3 plastic box stabilized with low-concentration Gd gel. The whole phantom was driven by an air pump. Human respiratory motion was mimicked using the controller from a commercial dynamic phantom (RSD). Four breathing settings (rates/depths: 10s/20mm, 6s/15mm, 4s/10mm, 3s/7mm) were scanned with 4D-MRI and 4D-CT (slice thickness 1.25mm). Motion ground-truth was obtained from input signals and real-time video recordings. Reconstructed images were imported into Eclipse(Varian) for target contouring. Volumes and target positions were compared with ground-truth. Initial human study was investigated on a liver patient. Results: 4D-MRI and 4D-CT scans for the different breathing cycles were reconstructed with 10 phases. Target volume in each phase was measured for both 4D-CT and 4D-MRI. Volume percentage difference for the 6.37ml target ranged from 6.67±5.33 to 11.63±5.57 for 4D-CT and from 1.47±0.52 to 2.12±1.60 for 4D-MRI. The Mann-Whitney U-test shows the 4D-MRI is significantly superior to 4D-CT (p=0.021) for phase-based target definition. Centroid motion error ranges were 1.35–1.25mm (4D-CT), and 0.31–0.12mm (4D-MRI). Conclusion: The k-space self-gated 4D-MRI we recently developed can accurately determine phase

  2. Motion4D-library extended

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2011-06-01

    The new version of the Motion4D-library now also includes the integration of a Sachs basis and the Jacobi equation to determine gravitational lensing of pointlike sources for arbitrary spacetimes.New version program summaryProgram title: Motion4D-libraryCatalogue identifier: AEEX_v3_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v3_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 219 441No. of bytes in distributed program, including test data, etc.: 6 968 223Distribution format: tar.gzProgramming language: C++Computer: All platforms with a C++ compilerOperating system: Linux, WindowsRAM: 61 MbytesClassification: 1.5External routines: Gnu Scientic Library (GSL) (http://www.gnu.org/software/gsl/)Catalogue identifier of previous version: AEEX_v2_0Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 703Does the new version supersede the previous version?: YesNature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes. Determine gravitational lensing by integration of Jacobi equation and parallel transport of Sachs basis.Solution method: Integration of ordinary differential equations.Reasons for new version: The main novelty of the current version is the extension to integrate the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. In combination, the change of the cross section of a light bundle and thus the gravitational lensing effect of a spacetime can be determined. Furthermore, we have implemented several new metrics.Summary of revisions: The main novelty of the current version is the integration of the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. The corresponding set of equations readd2xμdλ2=-Γρ

  3. Optimization of resolution and sensitivity of 4D NOESY using multi-dimensional decomposition.

    PubMed

    Luan, T; Jaravine, V; Yee, A; Arrowsmith, C H; Orekhov, V Yu

    2005-09-01

    Highly resolved multi-dimensional NOE data are essential for rapid and accurate determination of spatial protein structures such as in structural genomics projects. Four-dimensional spectra contain almost no spectral overlap inherently present in lower dimensionality spectra and are highly amenable to application of automated routines for spectral resonance location and assignment. However, a high resolution 4D data set using conventional uniform sampling usually requires unacceptably long measurement time. Recently we have reported that the use of non-uniform sampling and multi-dimensional decomposition (MDD) can remedy this problem. Here we validate accuracy and robustness of the method, and demonstrate its usefulness for fully protonated protein samples. The method was applied to 11 kDa protein PA1123 from structural genomics pipeline. A systematic evaluation of spectral reconstructions obtained using 15-100% subsets of the complete reference 4D 1H-13C-13C-1H NOESY spectrum has been performed. With the experimental time saving of up to six times, the resolution and the sensitivity per unit time is shown to be similar to that of the fully recorded spectrum. For the 30% data subset we demonstrate that the intensities in the reconstructed and reference 4D spectra correspond with a correlation coefficient of 0.997 in the full range of spectral amplitudes. Intensities of the strong, middle and weak cross-peaks correlate with coefficients 0.9997, 0.9965, and 0.83. The method does not produce false peaks. 2% of weak peaks lost in the 30% reconstruction is in line with theoretically expected noise increase for the shorter measurement time. Together with good accuracy in the relative line-widths these translate to reliable distance constrains derived from sparsely sampled, high resolution 4D NOESY data. PMID:16222553

  4. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2011 CFR

    1998-04-01

    ... 17 Commodity and Securities Exchanges 3 1998-04-01 1998-04-01 false Content. 260.4d-8 Section 260.4d-8 GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a) Each application for an order under section 304(d) of the Act (15 U.S.C. 77ddd(d))...

  5. The 4D-TECS integration for NASA TSRV airplane

    NASA Technical Reports Server (NTRS)

    Kaminer, I.; Oshaughnessy, P. R.

    1989-01-01

    The integration of the Total Energy Control System (TECS) concept with 4D navigation is described. This integration was made to increase the operational capacity of modern aircraft and encourage incorporation of this increased capability with the evolving National Airspace System (NAS). Described herein is: 4D smoothing, the basic concepts of TECS, the spoiler integration concept, an algorithm for nulling out time error, speed and altitude profile modes, manual spoiler implementation, 4D logic, and the results of linear and nonlinear analysis.

  6. Killing Weeds with 2,4-D. Extension Bulletin 389.

    ERIC Educational Resources Information Center

    Lee, Oliver C.

    Discussed is the use of the herbicide 2,4-D. Though written for farmers and agricultural workers, the pamphlet considers turf weed control and use of 2,4-D near ornamental plants. Aspects of the use of this herbicide covered are: (1) the common forms of 2,4-D; (2) plant responses and tolerances to the herbicide; (3) dilution and concentration of…

  7. Pros and cons for C4d as a biomarker.

    PubMed

    Cohen, Danielle; Colvin, Robert B; Daha, Mohamed R; Drachenberg, Cinthia B; Haas, Mark; Nickeleit, Volker; Salmon, Jane E; Sis, Banu; Zhao, Ming-Hui; Bruijn, Jan A; Bajema, Ingeborg M

    2012-04-01

    The introduction of C4d in daily clinical practice in the late nineties aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. As a marker of classical complement activation, C4d made it possible to visualize the direct link between anti-donor antibodies and tissue injury at sites of antibody binding in a graft. With the expanding use of C4d worldwide several limitations of C4d were identified. For instance, in ABO-incompatible transplantations C4d is present in the majority of grafts but this seems to point at 'graft accommodation' rather than antibody-mediated rejection. C4d is now increasingly recognized as a potential biomarker in other fields where antibodies can cause tissue damage, such as systemic autoimmune diseases and pregnancy. In all these fields, C4d holds promise to detect patients at risk for the consequences of antibody-mediated disease. Moreover, the emergence of new therapeutics that block complement activation makes C4d a marker with potential to identify patients who may possibly benefit from these drugs. This review provides an overview of the past, present, and future perspectives of C4d as a biomarker, focusing on its use in solid organ transplantation and discussing its possible new roles in autoimmunity and pregnancy. PMID:22297669

  8. Advances in time-of-flight PET.

    PubMed

    Surti, Suleman; Karp, Joel S

    2016-01-01

    This paper provides a review and an update on time-of-flight PET imaging with a focus on PET instrumentation, ranging from hardware design to software algorithms. We first present a short introduction to PET, followed by a description of TOF PET imaging and its history from the early days. Next, we introduce the current state-of-art in TOF PET technology and briefly summarize the benefits of TOF PET imaging. This is followed by a discussion of the various technological advancements in hardware (scintillators, photo-sensors, electronics) and software (image reconstruction) that have led to the current widespread use of TOF PET technology, and future developments that have the potential for further improvements in the TOF imaging performance. We conclude with a discussion of some new research areas that have opened up in PET imaging as a result of having good system timing resolution, ranging from new algorithms for attenuation correction, through efficient system calibration techniques, to potential for new PET system designs. PMID:26778577

  9. SU-E-J-148: Tools for Development of 4D Proton CT

    SciTech Connect

    Dou, T; Ramos-Mendez, J; Piersimoni, P; Giacometti, V; Penfold, S; Censor, Y; Faddegon, B; Low, D; Schulte, R

    2015-06-15

    Purpose: To develop tools for performing 4D proton computed tomography (CT). Methods: A suitable patient with a tumor in the right lower lobe was selected from a set of 4D CT scans. The volumetric CT images formed the basis for calculating the parameters of a breathing model that allows reconstruction of a static reference CT and CT images in each breathing phase. The images were imported into the TOPAS Monte Carlo simulation platform for simulating an experimental proton CT scan with 45 projections spaced by 4 degree intervals. Each projection acquired data for 2 seconds followed by a gantry rotation for 2 seconds without acquisition. The scan covered 180 degrees with individual protons passing through a 9-cm slab of the patient’s lung covering the moving tumor. An initial proton energy sufficient for penetrating the patient from all directions was determined. Performing the proton CT simulation, TOPAS provided output of the proton energy and coordinates registered in two planes before and after the patient, respectively. The set of projection data was then used with an iterative reconstruction algorithm to generate a volumetric proton CT image set of the static reference image and the image obtained under breathing motion, respectively. Results: An initial proton energy of 230 MeV was found to be sufficient, while for an initial energy of 200 MeV a substantial number of protons did not penetrate the patient. The reconstruction of the static reference image set provided sufficient detail for treatment planning. Conclusion: We have developed tools to perform studies of proton CT in the presence of lung motion based on the TOPAS simulation toolkit. This will allow to optimize 4D reconstruction algorithms by synchronizing the acquired proton CT data with a breathing signal and utilizing a breathing model obtained prior to the proton CT scan. This research has been supported by the National Institute Of Biomedical Imaging And Bioengineering of the National

  10. Phosphodiesterase 4D Inhibitors Limit Prostate Cancer Growth Potential

    PubMed Central

    Powers, Ginny L.; Hammer, Kimberly D.P.; Domenech, Maribella; Frantskevich, Katsiaryna; Malinowski, Rita L.; Bushman, Wade; Beebe, David J.; Marker, Paul C.

    2014-01-01

    Phosphodiesterase 4D (PDE4D) has recently been implicated as a proliferation-promoting factor in prostate cancer and is over-expressed in human prostate carcinoma. However, the effects of PDE4D inhibition using pharmacological inhibitors have not been examined in prostate cancer. These studies examined the effects of selective PDE4D inhibitors, NVP-ABE171 and cilomilast, as anti-prostate cancer therapies in both in vitro and in vivo models. The effects of PDE4D inhibitors on pathways that are critical in prostate cancer and/or downstream of cyclic AMP (cAMP) were examined. Both NVP-ABE171 and cilomilast decreased cell growth. In vitro, PDE4D inhibitors lead to decreased signaling of the sonic hedgehog (SHH), Androgen Receptor (AR), and MAPK pathways, but growth inhibition was best correlated to the sonic hedgehog pathway. PDE4D inhibition also reduced proliferation of epithelial cells induced by paracrine signaling from co-cultured stromal cells that had activated hedgehog signaling. In addition, PDE4D inhibitors decreased the weight of the prostate in wild-type mice. Prostate cancer xenografts grown in nude mice that were treated with cilomilast or NVP-ABE171 had decreased wet weight and increased apoptosis compared to vehicle treated controls. These studies suggest the pharmacological inhibition of PDE4D using small molecule inhibitors is an effective option for prostate cancer therapy. Implications PDE4D inhibitors decrease the growth of prostate cancer cells in vivo and in vitro, and PDE4D inhibition has therapeutic potential in prostate cancer. PMID:25149359

  11. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy

    SciTech Connect

    Ahmad, Moiz; Balter, Peter; Pan, Tinsu

    2011-10-15

    Purpose: Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4-6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. Methods: The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Results: Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3-8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction

  12. Feasibility of reduced-dose 3D/4D-DSA using a weighted edge preserving filter

    NASA Astrophysics Data System (ADS)

    Oberstar, Erick L.; Speidel, Michael A.; Davis, Brian J.; Strother, Charles; Mistretta, Charles

    2016-03-01

    A conventional 3D/4D digital subtraction angiogram (DSA) requires two rotational acquisitions (mask and fill) to compute the log-subtracted projections that are used to reconstruct a 3D/4D volume. Since all of the vascular information is contained in the fill acquisition, it is hypothesized that it is possible to reduce the x-ray dose of the mask acquisition substantially and still obtain subtracted projections adequate to reconstruct a 3D/4D volume with noise level comparable to a full dose acquisition. A full dose mask and fill acquisition were acquired from a clinical study to provide a known full dose reference reconstruction. Gaussian noise was added to the mask acquisition to simulate a mask acquisition acquired at 10% relative dose. Noise in the low-dose mask projections was reduced with a weighted edge preserving (WEP) filter designed to preserve bony edges while suppressing noise. 2D log-subtracted projections were computed from the filtered low-dose mask and full-dose fill projections, and then 3D/4D-DSA reconstruction algorithms were applied. Additional bilateral filtering was applied to the 3D volumes. The signal-to-noise ratio measured in the filtered 3D/4D-DSA volumes was compared to the full dose case. The average ratio of filtered low-dose SNR to full-dose SNR was 1.07 for the 3D-DSA and 1.05 for the 4D-DSA, indicating the method is a feasible approach to restoring SNR in DSA scans acquired with a low-dose mask. The method was also tested in a phantom study with full dose fill and 22% dose mask.

  13. On the relation between Kaiser-Bessel blob and tube of response based modelling of the system matrix in iterative PET image reconstruction

    NASA Astrophysics Data System (ADS)

    Lougovski, Alexandr; Hofheinz, Frank; Maus, Jens; Schramm, Georg; van den Hoff, Jörg

    2015-05-01

    We investigate the question of how the blob approach is related to tube of response based modelling of the system matrix. In our model, the tube of response (TOR) is approximated as a cylinder with constant density (TOR-CD) and the cubic voxels are replaced by spheres. Here we investigate a modification of the TOR model that makes it effectively equivalent to the blob model, which models the intersection of lines of response (LORs) with radially variant basis functions (‘blobs’) replacing the cubic voxels. Implications of the achieved equivalence regarding the necessity of final resampling in blob-based reconstructions are considered. We extended TOR-CD to a variable density tube model (TOR-VD) that yields a weighting function (defining all system matrix elements) which is essentially identical to that of the blob model. The variable density of TOR-VD was modelled by a Gaussian and a Kaiser-Bessel function, respectively. The free parameters of both model functions were determined by fitting the corresponding weighting function to the weighting function of the blob model. TOR-CD and the best-fitting TOR-VD were compared to the blob model with a final resampling step (BLOB-RS) and without resampling (BLOB-NRS) in phantom studies. For three different contrast ratios and two different voxel sizes, resolution noise curves were generated. TOR-VD and BLOB-NRS lead to nearly identical images for all investigated contrast ratios and voxel sizes. Both models showed strong Gibbs artefacts at 4 mm voxel size, while at 2 mm voxel size there were no Gibbs artefacts visible. The spatial resolution was similar to the resolution with TOR-CD in all cases. The resampling step removed most of the Gibbs artefacts and reduced the noise level but also degraded the spatial resolution substantially. We conclude that the blob model can be considered just as a special case of a TOR-based reconstruction. The latter approach provides a more natural description of the detection process and

  14. Seeing the unseen--bioturbation in 4D: tracing bioirrigation in marine sediment using positron emission tomography and computed tomography.

    PubMed

    Delefosse, Matthieu; Kristensen, Erik; Crunelle, Diane; Braad, Poul Erik; Dam, Johan Hygum; Thisgaard, Helge; Thomassen, Anders; Høilund-Carlsen, Poul Flemming

    2015-01-01

    Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities and behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images of porewater advection induced by the well-studied lugworm (Arenicola marina). Our results show that PET/CT allows more comprehensive studies on ventilation and bioirrigation than possible using techniques traditionally applied in marine ecology. We provide a dynamic three-dimensional description of bioirrigation by the lugworm at very high temporal and spatial resolution. Results obtained with the PET/CT are in agreement with literature data on lugworm ventilation and bioirrigation. Major advantages of PET/CT over methods commonly used are its non-invasive and non-destructive approach and its capacity to provide information that otherwise would require multiple methods. Furthermore, PET/CT scan is versatile as it can be used for a variety of benthic macrofauna species and sediment types and it provides information on burrow morphology or animal behavior. The lack of accessibility to the expensive equipment is its major drawback which can only be overcome through collaboration among several institutions. PMID:25837626

  15. Seeing the Unseen—Bioturbation in 4D: Tracing Bioirrigation in Marine Sediment Using Positron Emission Tomography and Computed Tomography

    PubMed Central

    Delefosse, Matthieu; Kristensen, Erik; Crunelle, Diane; Braad, Poul Erik; Dam, Johan Hygum; Thisgaard, Helge; Thomassen, Anders; Høilund-Carlsen, Poul Flemming

    2015-01-01

    Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities and behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images of porewater advection induced by the well-studied lugworm (Arenicola marina). Our results show that PET/CT allows more comprehensive studies on ventilation and bioirrigation than possible using techniques traditionally applied in marine ecology. We provide a dynamic three-dimensional description of bioirrigation by the lugworm at very high temporal and spatial resolution. Results obtained with the PET/CT are in agreement with literature data on lugworm ventilation and bioirrigation. Major advantages of PET/CT over methods commonly used are its non-invasive and non-destructive approach and its capacity to provide information that otherwise would require multiple methods. Furthermore, PET/CT scan is versatile as it can be used for a variety of benthic macrofauna species and sediment types and it provides information on burrow morphology or animal behavior. The lack of accessibility to the expensive equipment is its major drawback which can only be overcome through collaboration among several institutions. PMID:25837626

  16. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  17. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  18. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  19. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  20. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  1. Pet Health

    MedlinePlus

    ... Know the signs of medical problems. Take your pet to the veterinarian if you notice: Loss of appetite Drinking a lot of water Gaining or losing a lot of weight quickly Strange behavior Being sluggish and tired Trouble getting up or down Strange lumps

  2. Biomedical Imaging: SPECT and PET

    SciTech Connect

    Lecomte, Roger

    2007-11-26

    Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) are non-invasive nuclear imaging techniques relying on the use of tomographic reconstruction methods to provide 3D representations of the distribution of radiolabeled molecules in vivo. Differences in the underlying physical principles determine the achievable spatial resolution, sensitivity, specificity and observation time span of these two imaging modalities. Their specific characteristics are described and the current technology developments and design tradeoffs are reviewed.

  3. Fast 4D segmentation of large datasets using graph cuts

    NASA Astrophysics Data System (ADS)

    Lombaert, Herve; Sun, Yiyong; Cheriet, Farida

    2011-03-01

    In this paper, we propose to use 4D graph cuts for the segmentation of large spatio-temporal (4D) datasets. Indeed, as 4D datasets grow in popularity in many clinical areas, so will the demand for efficient general segmentation algorithms. The graph cuts method1 has become a leading method for complex 2D and 3D image segmentation in many applications. Despite a few attempts2-5 in 4D, the use of graph cuts on typical medical volume quickly exceeds today's computer capacities. Among all existing graph cuts based methods6-10 the multilevel banded graph cuts9 is the fastest and uses the least amount of memory. Nevertheless, this method has its limitation. Memory becomes an issue when using large 4D volume sequences, and small structures become hardly recoverable when using narrow bands. We thus improve the boundary refinement efficiency by using a 4D competitive region growing. First, we construct a coarse graph at a low resolution with strong temporal links to prevent the shrink bias inherent to the graph cuts method. Second, we use a competitive region growing using a priority queue to capture all fine details. Leaks are prevented by constraining the competitive region growing within a banded region and by adding a viscosity term. This strategy yields results comparable to the multilevel banded graph cuts but is faster and allows its application to large 4D datasets. We applied our method on both cardiac 4D MRI and 4D CT datasets with promising results.

  4. SU-D-201-06: Random Walk Algorithm Seed Localization Parameters in Lung Positron Emission Tomography (PET) Images

    SciTech Connect

    Soufi, M; Asl, A Kamali; Geramifar, P

    2015-06-15

    Purpose: The objective of this study was to find the best seed localization parameters in random walk algorithm application to lung tumor delineation in Positron Emission Tomography (PET) images. Methods: PET images suffer from statistical noise and therefore tumor delineation in these images is a challenging task. Random walk algorithm, a graph based image segmentation technique, has reliable image noise robustness. Also its fast computation and fast editing characteristics make it powerful for clinical purposes. We implemented the random walk algorithm using MATLAB codes. The validation and verification of the algorithm have been done by 4D-NCAT phantom with spherical lung lesions in different diameters from 20 to 90 mm (with incremental steps of 10 mm) and different tumor to background ratios of 4:1 and 8:1. STIR (Software for Tomographic Image Reconstruction) has been applied to reconstruct the phantom PET images with different pixel sizes of 2×2×2 and 4×4×4 mm{sup 3}. For seed localization, we selected pixels with different maximum Standardized Uptake Value (SUVmax) percentages, at least (70%, 80%, 90% and 100%) SUVmax for foreground seeds and up to (20% to 55%, 5% increment) SUVmax for background seeds. Also, for investigation of algorithm performance on clinical data, 19 patients with lung tumor were studied. The resulted contours from algorithm have been compared with nuclear medicine expert manual contouring as ground truth. Results: Phantom and clinical lesion segmentation have shown that the best segmentation results obtained by selecting the pixels with at least 70% SUVmax as foreground seeds and pixels up to 30% SUVmax as background seeds respectively. The mean Dice Similarity Coefficient of 94% ± 5% (83% ± 6%) and mean Hausdorff Distance of 1 (2) pixels have been obtained for phantom (clinical) study. Conclusion: The accurate results of random walk algorithm in PET image segmentation assure its application for radiation treatment planning and

  5. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOEpatents

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  6. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  7. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT.

    PubMed

    Lee, Taek-Soo; Frey, Eric C; Tsui, Benjamin M W

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of (99m)Tc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman's rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  8. 4D Visualization of Experimental Procedures in Rock Physics

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; di Bonito, C.

    2010-12-01

    Engaging students in laboratory classes in geophysics is becoming more and more difficult. This is primarily because of an ever-widening gap between the less appealing aspects that characterize these courses (e.g., lengthiness of the experimental operations, high student/instrument ratio, limited time associated with lack of previous hands-on experiences, and logistical and safety concerns) and the life style of the 21st century generations (i.e., extensive practice to high-tech tools, high-speed communications and computing, 3D graphics and HD videos). To bridge the gap and enhance the teaching strategy of laboratory courses in geophysics, we have created simulator-training tools for use in preparation for the actual experimental phase. We are using a modeling, animation, and rendering package to create (a) 3D models that accurately reproduce actual scenarios and instruments used for the measurement of rock physics properties and (b) 4D interactive animations that simulate hands-on demonstrations of the experimental procedures. We present here a prototype describing step-by-step the experimental protocol and the principles behind the measurement of rock porosity. The tool reproduces an actual helium porosimeter and makes use of interactive animations, guided text, and a narrative voice guiding the audience through the different phases of the experimental process. Our strategy is to make the most of new technologies while preserving the accuracy of classical laboratory methods and practices. These simulations are not intended to replace traditional lab work; rather they provide students with the opportunity for review and repetition. The primary goal is thus to help students familiarize themselves during their earlier curricula with lab methodologies, thus minimizing apparent hesitation and frustration in later classes. This may also increase the level of interest and involvement of undergraduate students and, in turn, enhance their keenness to pursue their

  9. Predicting lower mantle heterogeneity from 4-D Earth models

    NASA Astrophysics Data System (ADS)

    Flament, Nicolas; Williams, Simon; Müller, Dietmar; Gurnis, Michael; Bower, Dan J.

    2016-04-01

    basal layer ˜ 4% denser than ambient mantle. Increasing convective vigour (Ra ≈ 5 x 108) or decreasing the density of the basal layer decreases both the accuracy and sensitivity of the predicted lower mantle structure. References: D. J. Bower, M. Gurnis, N. Flament, Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8-22 (2015). V. Lekic, S. Cottaar, A. Dziewonski, B. Romanowicz, Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68-77 (2012).

  10. SU-E-J-06: A Feasibility Study On Clinical Implementation of 4D-CBCT in Lung Cancer Treatment

    SciTech Connect

    Hu, Y; Stanford, J; Duggar, W; Ruan, C; He, R; Yang, C

    2014-06-01

    Purpose: Four-dimensional cone-beam CT (4D-CBCT) is a novel imaging technique to setup patients with pulmonary lesions in radiation therapy. This paper is to perform a feasibility study on the implementation of 4D-CBCT as image guidance for (1) SBRT and (2) Low Modulation (Low-Mod) IMRT in lung cancer treatment. Methods: Image artifacts and observers variability are evaluated by analyzing the 4D-CT QA phantom and patient 4D image data. There are two 4D-CBCT image artifacts: (1) Spatial artifact caused by the patient irregular breathing pattern will generate blurring and anatomy gap/overlap; (2) Cone beam scattering and hardening artifact will affect the image spatial and contrast resolution. The couch shift varies between 1mm to 3mm from different observers during the 4D-CBCT registration. Breath training is highly recommended to improve the respiratory regularity during CT simulation and treatment, especially for SBRT. Elekta XVI 4.5 Symmetry protocol is adopted in the patient 4DCBCT scanning and intensity-based registration. Physician adjustments on the auto-registration are involved prior to the treatment. Physician peer review on 4D-CBCT image acquisition and registration is also recommended to reduce the inter-observer variability. The average 4D-CT in reference volume coordinates is exported to MIM Vista 5.6.2 to manually fuse to the planning CT for further evaluation. Results: (1) SBRT: 4DCBCT is performed in dry-run and in each treatment fraction. Image registration and couch shift are reviewed by another physician on the 1st fraction before the treatment starts. (2) Low-Mod IMRT: 4D-CBCT is performed and peer reviewed on weekly basis. Conclusion: 4D-CBCT in SBRT dry-run can discover the ITV discrepancies caused by the low quality 4D-CT simulation. 4D-CBCT during SBRT and Low-Mod IMRT treatment provides physicians more confidence to target lung tumor and capability to evaluate inter-fractional ITV changes. More advanced 4D-CBCT scan protocol and

  11. Graph-based retrospective 4D image construction from free-breathing MRI slice acquisitions

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Ciesielski, Krzysztof C.; McDonough, Joseph M.; Mong, Andrew; Campbell, Robert M.

    2014-03-01

    4D or dynamic imaging of the thorax has many potential applications [1, 2]. CT and MRI offer sufficient speed to acquire motion information via 4D imaging. However they have different constraints and requirements. For both modalities both prospective and retrospective respiratory gating and tracking techniques have been developed [3, 4]. For pediatric imaging, x-ray radiation becomes a primary concern and MRI remains as the de facto choice. The pediatric subjects we deal with often suffer from extreme malformations of their chest wall, diaphragm, and/or spine, as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort. Moreover, we are interested in the mechanical function of their thorax in its natural form in tidal breathing. Therefore free-breathing MRI acquisition is the ideal modality of imaging for these patients. In our set up, for each coronal (or sagittal) slice position, slice images are acquired at a rate of about 200-300 ms/slice over several natural breathing cycles. This produces typically several thousands of slices which contain both the anatomic and dynamic information. However, it is not trivial to form a consistent and well defined 4D volume from these data. In this paper, we present a novel graph-based combinatorial optimization solution for constructing the best possible 4D scene from such data entirely in the digital domain. Our proposed method is purely image-based and does not need breath holding or any external surrogates or instruments to record respiratory motion or tidal volume. Both adult and children patients' data are used to illustrate the performance of the proposed method. Experimental results show that the reconstructed 4D scenes are smooth and consistent spatially and temporally, agreeing with known shape and motion of the lungs.

  12. MR-based Motion Correction for PET Imaging

    PubMed Central

    Ouyang, Jinsong; Li, Quanzheng; Fakhri, Georges El

    2012-01-01

    PET image quality is limited by patient motion. Emission data are blurred due to cardiac and/or respiratory motion. Although spatial resolution is 4 mm for standard clinical whole-body PET scanners, the effective resolution can be a low as 1 cm due to motion. Additionally, the deformation of attenuation medium causes image artifacts. Previously, gating is used to “freeze” the motion, but leads to significantly increased noise level. Simultaneous PET-MR modality offers a new way to perform PET motion correction. MR can be used to measure 3D motion fields, which can then be incorporated into the iterative PET reconstruction to obtain motion corrected PET images. In this report, we present MR imaging techniques to acquire dynamic images, a non-rigid image registration algorithm to extract motion fields from acquired MR images, and a PET reconstruction algorithm with motion correction. We also present results from both phantom and in-vivo animal PET-MR studies. We demonstrate that MR-based PET motion correction using simultaneous PET-MR improves image quality and lesion detectability compared to gating and to no motion correction. PMID:23178089

  13. 4D-Var or Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Kalnay, E.; Li, H.; Yang, S.; Miyoshi, T.; Ballabrera, J.

    2007-05-01

    We consider the relative advantages of two advanced data assimilation systems, 4D-Var and ensemble Kalman filter (EnKF), currently in use or considered for operational implementation. We explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4D-Var, the variance inflation in EnKF, and the effect of model errors and reduced observation coverage in both systems. For short assimilation windows EnKF gives more accurate analyses. Both systems reach similar levels of accuracy if long windows are used for 4D-Var, and for infrequent observations, when ensemble perturbations grow nonlinearly and become non-Gaussian, 4D-Var attains lower errors than EnKF. Results obtained with variations of EnKF using operational models and both simulated and real observations are reviewed. A table summarizes the pros and cons of the two methods.

  14. 4-D-Var or ensemble Kalman filter?

    NASA Astrophysics Data System (ADS)

    Kalnay, Eugenia; Li, Hong; Miyoshi, Takemasa; Yang, Shu-Chih; Ballabrera-Poy, Joaquim

    2007-10-01

    We consider the relative advantages of two advanced data assimilation systems, 4-D-Var and ensemble Kalman filter (EnKF), currently in use or under consideration for operational implementation. With the Lorenz model, we explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4-D-Var, variance inflation in EnKF, and the effect of model errors and reduced observation coverage. For short assimilation windows EnKF gives more accurate analyses. Both systems reach similar levels of accuracy if long windows are used for 4-D-Var. For infrequent observations, when ensemble perturbations grow non-linearly and become non-Gaussian, 4-D-Var attains lower errors than EnKF. If the model is imperfect, the 4-D-Var with long windows requires weak constraint. Similar results are obtained with a quasi-geostrophic channel model. EnKF experiments made with the primitive equations SPEEDY model provide comparisons with 3-D-Var and guidance on model error and `observation localization'. Results obtained using operational models and both simulated and real observations indicate that currently EnKF is becoming competitive with 4-D-Var, and that the experience acquired with each of these methods can be used to improve the other. A table summarizes the pros and cons of the two methods.

  15. Substitutional 4d and 5d impurities in graphene.

    PubMed

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2016-08-21

    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The adsorption energies and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which are also well-known characteristics of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar adsorption energies, distances and magnetic moments to the 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3 μB for manganese is reduced to 1 μB for technetium and rhenium. We find that compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree of hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different if 4d or 5d impurities are used instead of 3d impurities. PMID:27439363

  16. Hybrid registration of PET/CT in thoracic region with pre-filtering PET sinogram

    NASA Astrophysics Data System (ADS)

    Mokri, S. S.; Saripan, M. I.; Marhaban, M. H.; Nordin, A. J.; Hashim, S.

    2015-11-01

    The integration of physiological (PET) and anatomical (CT) images in cancer delineation requires an accurate spatial registration technique. Although hybrid PET/CT scanner is used to co-register these images, significant misregistrations exist due to patient and respiratory/cardiac motions. This paper proposes a hybrid feature-intensity based registration technique for hybrid PET/CT scanner. First, simulated PET sinogram was filtered with a 3D hybrid mean-median before reconstructing the image. The features were then derived from the segmented structures (lung, heart and tumor) from both images. The registration was performed based on modified multi-modality demon registration with multiresolution scheme. Apart from visual observations improvements, the proposed registration technique increased the normalized mutual information index (NMI) between the PET/CT images after registration. All nine tested datasets show marked improvements in mutual information (MI) index than free form deformation (FFD) registration technique with the highest MI increase is 25%.

  17. Soil matrix and macropore biodegradation of 2,4-D

    SciTech Connect

    Pivetz, B.E.; Steenhuis, T.S.

    1995-07-01

    Preferential flow of pesticides in macropores can lead to decreased travel times through the vadose zone and increased groundwater contamination. Macropores, however, may present a favorable environment for biodegradation because of greater oxygen, nutrient, and substrate supply, and higher microbial populations in earthworm burrows, compared to the soil matrix. The biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was measured in macropores and soil matrix of packed soil columns (7.0-cm diam., 10-cm length) and undisturbed cores contained as well-defined artificial macropore and the undisturbed cores contained earthworm-burrow macropores. A 50 {mu}g/L 2,4-D solution was continuously applied to the unsaturated soil surface and breakthrough curves (BTCs) indicating pesticide loss in the effluent were obtained from the soil matrix and macropore flow paths. Biodegradation rates were calculated separately for each flow path by comparing the BTCs to BTCs representing abiotic conditions, and dividing the 2,4-D loss by the travel time through each flow path. The biodegradation rates increased with time in both flow paths, and the final biodegradation rate in the macropore region surpassed that of the matrix, presumably because of increased microbial populations in the macropore. Complete loss of the 2,4-D in both flow paths was observed after continuous application of 2,4-D for 400 h, with maximum column-averaged 2,4-D loss rates of 0.879 {mu}g/(L h) in the matrix and 1.073 {mu}g/(L h) in the macropore. Biodegradation of 2,4-D was also observed in the macropore and matrix regions of the undisturbed soil cores. 19 refs., 7 figs., 2 tabs.

  18. Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer

    PubMed Central

    Yang, Ying-Hua; Buhamrah, Asma; Schneider, Abraham; Lin, Yi-Ling; Zhou, Hua; Bugshan, Amr; Basile, John R.

    2016-01-01

    Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects. PMID:26910109

  19. Does the Novel Integrated PET/MRI Offer the Same Diagnostic Performance as PET/CT for Oncological Indications?

    PubMed Central

    Yin, Dayi; Zhang, Jinming; Chen, Yingmao; An, Ningyu; Xu, Baixuan

    2014-01-01

    Background We compared PET/MRI with PET/CT in terms of lesion detection and quantitative measurement to verify the feasibility of the novel integrated imaging modality for oncological applications. Methodology/Principal Findings In total, 285 patients referred to our PET/CT center for oncological indications voluntarily participated in this same-day PET/CT and PET/MRI comparative study. PET/CT images were acquired and reconstructed following routine protocols, and then PET/MRI was performed at a mean time interval of 28±11 min (range 15–45 min). PET/MRI covered the body trunk with a sequence combination of transverse T1WI 3D-volumetric interpolated breath-hold, T2WI turbo spin echo with fat saturation, diffusion-weighted imaging with double b values (50 and 800 s/mm2), and simultaneous PET acquisition over 45 min/5 bed positions. The maximum standardized uptake value (SUVmax) was assessed by manually drawn regions of interest over fluorodeoxyglucose-positive lesions. Among 285 cases, 57 showed no abnormalities, and 368 lesions (278 malignant, 68 benign and 22 undetermined) were detected in 228 patients. When stand-alone modalities were evaluated, PET revealed 31 and 12 lesions missed by CT and MRI, respectively, and CT and MRI revealed 38 and 61 more lesions, respectively, than PET. Compared to CT, MRI detected 40 more lesions and missed 8. In the integrated mode, PET/CT correctly detected 6 lesions misdiagnosed by PET/MRI, but was false-negative in 30 cases that were detected by PET/MRI. The overall diagnosis did not differ between integrated PET/MRI and PET/CT. SUVmax for lesions were slightly higher from PET/MRI than PET/CT but correlated well (ρ = 0.85–0.91). Conclusions/Significance The novel integrated PET/MRI performed comparatively to PET/CT in lesion detection and quantitative measurements. PET from either scanner modality offered almost the same information despite differences in hardware. Further study is needed to explore features of

  20. Pet Problems at Home: Pet Problems in the Community.

    ERIC Educational Resources Information Center

    Soltow, Willow

    1984-01-01

    Discusses problems of pets in the community, examining the community's role related to disruptive pets and pet overpopulation. Also discusses pet problems at home, offering advice on selecting a pet, meeting a pet's needs, and disciplining pets. Includes a list of books, films/filmstrips, teaching materials, and various instructional strategies.…

  1. Pet Bonding and Pet Bereavement among Adolescents.

    ERIC Educational Resources Information Center

    Brown, Brenda H.; And Others

    1996-01-01

    Studied adolescent-pet bonding and bereavement following pet loss (n=55). Hypothesized that highly-bonded adolescents experience more intense grief when a pet dies than do those less bonded; degree of bonding is greater for girls than for boys; and intensity of bereavement is greater for girls than for boys. Results supported the hypotheses. (RB)

  2. 4D rotational x-ray imaging of wrist joint dynamic motion

    SciTech Connect

    Carelsen, Bart; Bakker, Niels H.; Strackee, Simon D.; Boon, Sjirk N.; Maas, Mario; Sabczynski, Joerg; Grimbergen, Cornelis A.; Streekstra, Geert J.

    2005-09-15

    Current methods for imaging joint motion are limited to either two-dimensional (2D) video fluoroscopy, or to animated motions from a series of static three-dimensional (3D) images. 3D movement patterns can be detected from biplane fluoroscopy images matched with computed tomography images. This involves several x-ray modalities and sophisticated 2D to 3D matching for the complex wrist joint. We present a method for the acquisition of dynamic 3D images of a moving joint. In our method a 3D-rotational x-ray (3D-RX) system is used to image a cyclically moving joint. The cyclic motion is synchronized to the x-ray acquisition to yield multiple sets of projection images, which are reconstructed to a series of time resolved 3D images, i.e., four-dimensional rotational x ray (4D-RX). To investigate the obtained image quality parameters the full width at half maximum (FWHM) of the point spread function (PSF) via the edge spread function and the contrast to noise ratio between air and phantom were determined on reconstructions of a bullet and rod phantom, using 4D-RX as well as stationary 3D-RX images. The CNR in volume reconstructions based on 251 projection images in the static situation and on 41 and 34 projection images of a moving phantom were 6.9, 3.0, and 2.9, respectively. The average FWHM of the PSF of these same images was, respectively, 1.1, 1.7, and 2.2 mm orthogonal to the motion and parallel to direction of motion 0.6, 0.7, and 1.0 mm. The main deterioration of 4D-RX images compared to 3D-RX images is due to the low number of projection images used and not to the motion of the object. Using 41 projection images seems the best setting for the current system. Experiments on a postmortem wrist show the feasibility of the method for imaging 3D dynamic joint motion. We expect that 4D-RX will pave the way to improved assessment of joint disorders by detection of 3D dynamic motion patterns in joints.

  3. The study of integration about measurable image and 4D production

    NASA Astrophysics Data System (ADS)

    Zhang, Chunsen; Hu, Pingbo; Niu, Weiyun

    2008-12-01

    In this paper, we create the geospatial data of three-dimensional (3D) modeling by the combination of digital photogrammetry and digital close-range photogrammetry. For large-scale geographical background, we make the establishment of DEM and DOM combination of three-dimensional landscape model based on the digital photogrammetry which uses aerial image data to make "4D" (DOM: Digital Orthophoto Map, DEM: Digital Elevation Model, DLG: Digital Line Graphic and DRG: Digital Raster Graphic) production. For the range of building and other artificial features which the users are interested in, we realize that the real features of the three-dimensional reconstruction adopting the method of the digital close-range photogrammetry can come true on the basis of following steps : non-metric cameras for data collection, the camera calibration, feature extraction, image matching, and other steps. At last, we combine three-dimensional background and local measurements real images of these large geographic data and realize the integration of measurable real image and the 4D production.The article discussed the way of the whole flow and technology, achieved the three-dimensional reconstruction and the integration of the large-scale threedimensional landscape and the metric building.

  4. New C4D Sensor with a Simulated Inductor

    PubMed Central

    Lyu, Yingchao; Ji, Haifeng; Yang, Shijie; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2016-01-01

    A new capacitively coupled contactless conductivity detection (C4D) sensor with an improved simulated inductor is developed in this work. The improved simulated inductor is designed on the basis of the Riordan-type floating simulated inductor. With the improved simulated inductor, the negative influence of the coupling capacitances is overcome and the conductivity measurement is implemented by the series resonance principle. The conductivity measurement experiments are carried out in three pipes with different inner diameters of 3.0 mm, 4.6 mm and 6.4 mm, respectively. The experimental results show that the designs of the new C4D sensor and the improved simulated inductor are successful. The maximum relative error of the conductivity measurement is less than 5%. Compared with the C4D sensors using practical inductors, the measurement accuracy of the new C4D sensor is comparable. The research results also indicate that the adjustability of a simulated inductor can reduce the requirement for the AC source and guarantee the interchangeableness. Meanwhile, it is recommended that making the potential of one terminal of a simulated inductor stable is beneficial to the running stability. Furthermore, this work indirectly verifies the possibility and feasibility of the miniaturization of the C4D sensor by using the simulated inductor technique and lays a good foundation for future research work. PMID:26828493

  5. Edge preserving smoothing and segmentation of 4-D images via transversely isotropic scale-space processing and fingerprint analysis

    SciTech Connect

    Reutter, Bryan W.; Algazi, V. Ralph; Gullberg, Grant T; Huesman, Ronald H.

    2004-01-19

    Enhancements are described for an approach that unifies edge preserving smoothing with segmentation of time sequences of volumetric images, based on differential edge detection at multiple spatial and temporal scales. Potential applications of these 4-D methods include segmentation of respiratory gated positron emission tomography (PET) transmission images to improve accuracy of attenuation correction for imaging heart and lung lesions, and segmentation of dynamic cardiac single photon emission computed tomography (SPECT) images to facilitate unbiased estimation of time-activity curves and kinetic parameters for left ventricular volumes of interest. Improved segmentation of lung surfaces in simulated respiratory gated cardiac PET transmission images is achieved with a 4-D edge detection operator composed of edge preserving 1-D operators applied in various spatial and temporal directions. Smoothing along the axis of a 1-D operator is driven by structure separation seen in the scale-space fingerprint, rather than by image contrast. Spurious noise structures are reduced with use of small-scale isotropic smoothing in directions transverse to the 1-D operator axis. Analytic expressions are obtained for directional derivatives of the smoothed, edge preserved image, and the expressions are used to compose a 4-D operator that detects edges as zero-crossings in the second derivative in the direction of the image intensity gradient. Additional improvement in segmentation is anticipated with use of multiscale transversely isotropic smoothing and a novel interpolation method that improves the behavior of the directional derivatives. The interpolation method is demonstrated on a simulated 1-D edge and incorporation of the method into the 4-D algorithm is described.

  6. 4D micro-CT for cardiac and perfusion applications with view under sampling

    NASA Astrophysics Data System (ADS)

    Badea, Cristian T.; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan

    2011-06-01

    Micro-CT is commonly used in preclinical studies to provide anatomical information. There is growing interest in obtaining functional measurements from 4D micro-CT. We report here strategies for 4D micro-CT with a focus on two applications: (i) cardiac imaging based on retrospective gating and (ii) pulmonary perfusion using multiple contrast injections/rotations paradigm. A dual source micro-CT system is used for image acquisition with a sampling rate of 20 projections per second. The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent. Fast scanning of free breathing mice is achieved using retrospective gating. The ECG and respiratory signals are used to sort projections into ten cardiac phases. The pulmonary perfusion protocol uses a conventional contrast agent (Isovue 370) delivered by a micro-injector in four injections separated by 2 min intervals to allow for clearance. Each injection is synchronized with the rotation of the animal, and each of the four rotations is started with an angular offset of 22.5 from the starting angle of the previous rotation. Both cardiac and perfusion protocols result in an irregular angular distribution of projections that causes significant streaking artifacts in reconstructions when using traditional filtered backprojection (FBP) algorithms. The reconstruction involves the use of the point spread function of the micro-CT system for each time point, and the analysis of the distribution of the reconstructed data in the Fourier domain. This enables us to correct for angular inconsistencies via deconvolution and identify regions where data is missing. The missing regions are filled with data from a high quality but temporally averaged prior image reconstructed with all available projections. Simulations indicate that deconvolution successfully removes the streaking artifacts while preserving temporal information. 4D cardiac micro-CT in a mouse was performed with adequate image quality at isotropic

  7. 4D Tumorigenesis Model for Quantitating Coalescence, Directed Cell Motility and Chemotaxis, Identifying Unique Cell Behaviors, and Testing Anticancer Drugs.

    PubMed

    Kuhl, Spencer; Voss, Edward; Scherer, Amanda; Lusche, Daniel F; Wessels, Deborah; Soll, David R

    2016-01-01

    A 4D high-resolution computer-assisted reconstruction and motion analysis system has been developed and applied to the long-term (14-30 days) analysis of cancer cells migrating and aggregating within a 3D matrix. 4D tumorigenesis models more closely approximate the tumor microenvironment than 2D substrates and, therefore, are improved tools for elucidating the interactions within the tumor microenvironment that promote growth and metastasis. The model we describe here can be used to analyze the growth of tumor cells, aggregate coalescence, directed cell motility and chemotaxis, matrix degradation, the effects of anticancer drugs, and the behavior of immune and endothelial cells mixed with cancer cells. The information given in this chapter is also intended to acquaint the reader with computer-assisted methods and algorithms that can be used for high-resolution 3D reconstruction and quantitative motion analysis. PMID:27271907

  8. Scatter correction of vessel dropout behind highly attenuating structures in 4D-DSA

    NASA Astrophysics Data System (ADS)

    Hermus, James; Mistretta, Charles; Szczykutowicz, Timothy P.

    2015-03-01

    In Computed Tomographic (CT) image reconstruction for 4 dimensional digital subtraction angiography (4D-DSA), loss of vessel contrast has been observed behind highly attenuating anatomy, such as large contrast filled aneurysms. Although this typically occurs only in a limited range of projection angles, the observed contrast time course can be altered. In this work we propose an algorithm to correct for highly attenuating anatomy within the fill projection data, i.e. aneurysms. The algorithm uses a 3D-SA volume to create a correction volume that is multiplied by the 4D-DSA volume in order to correct for signal dropout within the 4D-DSA volume. The algorithm was designed to correct for highly attenuating material in the fill volume only, however with alterations to a single step of the algorithm, artifacts due to highly attenuating materials in the mask volume (i.e. dental implants) can be mitigated as well. We successfully applied our algorithm to a case of vessel dropout due to the presence of a large attenuating aneurysm. The performance was qualified visually as the affected vessel no longer dropped out on corrected 4D-DSA time frames. The correction was quantified by plotting the signal intensity along the vessel. Our analysis demonstrated our correction does not alter vessel signal values outside of the vessel dropout region but does increase the vessel values within the dropout region as expected. We have demonstrated that this correction algorithm acts to correct vessel dropout in areas with highly attenuating materials.

  9. Denoising of 4D Cardiac Micro-CT Data Using Median-Centric Bilateral Filtration

    PubMed Central

    Clark, D.; Johnson, G.A.; Badea, C.T.

    2012-01-01

    Bilateral filtration has proven an effective tool for denoising CT data. The classic filter utilizes Gaussian domain and range weighting functions in 2D. More recently, other distributions have yielded more accurate results in specific applications, and the bilateral filtration framework has been extended to higher dimensions. In this study, brute-force optimization is employed to evaluate the use of several alternative distributions for both domain and range weighting: Andrew's Sine Wave, El Fallah Ford, Gaussian, Flat, Lorentzian, Huber's Minimax, Tukey's Bi-weight, and Cosine. Two variations on the classic bilateral filter which use median filtration to reduce bias in range weights are also investigated: median-centric and hybrid bilateral filtration. Using the 4D MOBY mouse phantom reconstructed with noise (stdev. ~ 65 HU), hybrid bilateral filtration, a combination of the classic and median-centric filters, with Flat domain and range weighting is shown to provide optimal denoising results (PSNRs: 31.69, classic; 31.58 median-centric; 32.25, hybrid). To validate these phantom studies, the optimal filters are also applied to in vivo, 4D cardiac micro-CT data acquired in the mouse. In a constant region of the left ventricle, hybrid bilateral filtration with Flat domain and range weighting is shown to provide optimal smoothing (stdev: original, 72.2 HU; classic, 20.3 HU; median-centric, 24.1 HU; hybrid, 15.9 HU). While the optimal results were obtained using 4D filtration, the 3D hybrid filter is ultimately recommended for denoising 4D cardiac micro-CT data because it is more computationally tractable and less prone to artifacts (MOBY PSNR: 32.05; left ventricle stdev: 20.5 HU). PMID:24386540

  10. High temporal and high spatial resolution MR angiography (4D-MRA).

    PubMed

    Hadizadeh, D R; Marx, C; Gieseke, J; Schild, H H; Willinek, W A

    2014-09-01

    In the first decade of the twenty-first century, whole-body magnetic resonance scanners with high field strengths (and thus potentially better signal-to-noise ratios) were developed. At the same time, parallel imaging and "echo-sharing" techniques were refined to allow for increasingly high spatial and temporal resolution in dynamic magnetic resonance angiography ("time-resolved" = TR-MRA). This technological progress facilitated tracking the passage of intra-venously administered contrast agent boluses as well as the acquisition of volume data sets at high image refresh rates ("4D-MRA"). This opened doors for many new applications in non-invasive vascular imaging, including simultaneous anatomic and functional analysis of many vascular pathologies including arterio-venous malformations. Different methods were established to acquire 4D-MRA using various strategies to acquire k-space trajectories over time in order to optimize imaging according to clinical needs. These include "keyhole"-based techniques (e. g. 4D-TRAK), TRICKS - both with and without projection - and HYPR-reconstruction, TREAT, and TWIST. Some of these techniques were first introduced in the 1980 s and 1990 s, were later enhanced and modified, and finally implemented in the products of major vendors. In the last decade, a large number of studies on the clinical applications of TR-MRA was published. This manuscript provides an overview of the development of TR-MRA methods and the 4D-MRA techniques as they are currently used in the diagnosis, treatment and follow-up of vascular diseases in various parts of the body. PMID:24955647

  11. Resolution enhancement of lung 4D-CT via group-sparsity

    SciTech Connect

    Bhavsar, Arnav; Wu, Guorong; Shen, Dinggang; Lian, Jun

    2013-12-15

    Purpose: 4D-CT typically delivers more accurate information about anatomical structures in the lung, over 3D-CT, due to its ability to capture visual information of the lung motion across different respiratory phases. This helps to better determine the dose during radiation therapy for lung cancer. However, a critical concern with 4D-CT that substantially compromises this advantage is the low superior-inferior resolution due to less number of acquired slices, in order to control the CT radiation dose. To address this limitation, the authors propose an approach to reconstruct missing intermediate slices, so as to improve the superior-inferior resolution.Methods: In this method the authors exploit the observation that sampling information across respiratory phases in 4D-CT can be complimentary due to lung motion. The authors’ approach uses this locally complimentary information across phases in a patch-based sparse-representation framework. Moreover, unlike some recent approaches that treat local patches independently, the authors’ approach employs the group-sparsity framework that imposes neighborhood and similarity constraints between patches. This helps in mitigating the trade-off between noise robustness and structure preservation, which is an important consideration in resolution enhancement. The authors discuss the regularizing ability of group-sparsity, which helps in reducing the effect of noise and enables better structural localization and enhancement.Results: The authors perform extensive experiments on the publicly available DIR-Lab Lung 4D-CT dataset [R. Castillo, E. Castillo, R. Guerra, V. Johnson, T. McPhail, A. Garg, and T. Guerrero, “A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets,” Phys. Med. Biol. 54, 1849–1870 (2009)]. First, the authors carry out empirical parametric analysis of some important parameters in their approach. The authors then demonstrate, qualitatively as well as

  12. SU-D-18C-01: A Novel 4D-MRI Technology Based On K-Space Retrospective Sorting

    SciTech Connect

    Liu, Y; Yin, F; Cai, J

    2014-06-01

    Purpose: Current 4D-MRI techniques lack sufficient temporal/spatial resolution and consistent tumor contrast. To overcome these limitations, this study presents the development and initial evaluation of an entirely new framework of 4D-MRI based on k-space retrospective sorting. Methods: An important challenge of the proposed technique is to determine the number of repeated scans(NR) required to obtain sufficient k-space data for 4D-MRI. To do that, simulations using 29 cancer patients' respiratory profiles were performed to derive the relationship between data acquisition completeness(Cp) and NR, also relationship between NR(Cp=95%) and the following factors: total slice(NS), respiratory phase bin length(Lb), frame rate(fr), resolution(R) and image acquisition starting-phase(P0). To evaluate our technique, a computer simulation study on a 4D digital human phantom (XCAT) were conducted with regular breathing (fr=0.5Hz; R=256×256). A 2D echo planer imaging(EPI) MRI sequence were assumed to acquire raw k-space data, with respiratory signal and acquisition time for each k-space data line recorded simultaneously. K-space data was re-sorted based on respiratory phases. To evaluate 4D-MRI image quality, tumor trajectories were measured and compared with the input signal. Mean relative amplitude difference(D) and cross-correlation coefficient(CC) are calculated. Finally, phase-sharing sliding window technique was applied to investigate the feasibility of generating ultra-fast 4D-MRI. Result: Cp increased with NR(Cp=100*[1-exp(-0.19*NR)], when NS=30, Lb=100%/6). NR(Cp=95%) was inversely-proportional to Lb (r=0.97), but independent of other factors. 4D-MRI on XCAT demonstrated highly accurate motion information (D=0.67%, CC=0.996) with much less artifacts than those on image-based sorting 4D-MRI. Ultra-fast 4D-MRI with an apparent temporal resolution of 10 frames/second was reconstructed using the phase-sharing sliding window technique. Conclusions: A novel 4D

  13. Relative charge transfer cross section from Rb (4d)

    NASA Astrophysics Data System (ADS)

    Shah, M. H.; Camp, H. A.; Trachy, M. L.; Fléchard, X.; Gearba, M. A.; Nguyen, H.; Brédy, R.; Lundeen, S. R.; Depaola, B. D.

    2005-08-01

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7keV Na+ is reported. The specific channels reported are Na++Rb(4d5/2)→Na(nl)+Rb+ , where the dominant transfer cross sections channels were nl=3d and 4s . Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na++Rb(5s,5p) systems at the same collision energy.

  14. Relative charge transfer cross section from Rb(4d)

    SciTech Connect

    Shah, M.H.; Camp, H.A.; Trachy, M.L.; De Paola, B.D.; Flechard, X.; Gearba, M.A.; Nguyen, H.; Bredy, R.; Lundeen, S.R.

    2005-08-15

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7 keV Na{sup +} is reported. The specific channels reported are Na{sup +}+Rb(4d{sub 5/2}){yields}Na(nl)+Rb{sup +}, where the dominant transfer cross sections channels were nl=3d and 4s. Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na{sup +}+Rb(5s,5p) systems at the same collision energy.

  15. The 4-D approach to visual control of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dickmanns, Ernst D.

    1994-01-01

    Development of a 4-D approach to dynamic machine vision is described. Core elements of this method are spatio-temporal models oriented towards objects and laws of perspective projection in a foward mode. Integration of multi-sensory measurement data was achieved through spatio-temporal models as invariants for object recognition. Situation assessment and long term predictions were allowed through maintenance of a symbolic 4-D image of processes involving objects. Behavioral capabilities were easily realized by state feedback and feed-foward control.

  16. Emerging Applications of Abdominal 4D Flow MRI

    PubMed Central

    Roldán-Alzate, Alejandro; Francois, Christopher J.; Wieben, Oliver; Reeder, Scott B.

    2016-01-01

    OBJECTIVE Comprehensive assessment of abdominal hemodynamics is crucial for many clinical diagnoses but is challenged by a tremendous complexity of anatomy, normal physiology, and a wide variety of pathologic abnormalities. This article introduces 4D flow MRI as a powerful technique for noninvasive assessment of the hemodynamics of abdominal vascular territories. CONCLUSION Four-dimensional flow MRI provides clinicians with a more extensive and straightforward approach to evaluate disorders that affect blood flow in the abdomen. This review presents a series of clinical cases to illustrate the utility of 4D flow MRI in the comprehensive assessment of the abdominal circulation. PMID:27187681

  17. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation.

    PubMed

    España, S; Herraiz, J L; Vicente, E; Vaquero, J J; Desco, M; Udias, J M

    2009-03-21

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones. PMID:19242053

  18. A molecular imprinting-based turn-on Ratiometric fluorescence sensor for highly selective and sensitive detection of 2,4-dichlorophenoxyacetic acid (2,4-D).

    PubMed

    Wang, Xiaoyan; Yu, Jialuo; Wu, Xiaqing; Fu, Junqing; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin

    2016-07-15

    A novel molecular imprinting-based turn-on ratiometric fluorescence sensor was constructed via a facile sol-gel polymerization for detection of 2,4-dichlorophenoxyacetic acid (2,4-D) on the basis of photoinduced electron transfer (PET) by using nitrobenzoxadiazole (NBD) as detection signal source and quantum dots (QDs) as reference signal source. With the presence and increase of 2,4-D, the amine groups on the surface of QDs@SiO2 could bind with 2,4-D and thereby the NBD fluorescence intensities could be significantly enhanced since the PET process was inhibited, while the QDs maintained constant intensities. Accordingly, the ratio of the dual-emission intensities of green NBD and red QDs could be utilized for turn-on fluorescent detection of 2,4-D, along with continuous color changes from orange-red to green readily observed by the naked eye. The as-prepared fluorescence sensor obtained high sensitivity with a low detection limit of 0.14μM within 5min, and distinguished recognition selectivity for 2,4-D over its analogs. Moreover, the sensor was successfully applied to determine 2,4-D in real water samples, and high recoveries at three spiking levels of 2,4-D ranged from 95.0% to 110.1% with precisions below 4.5%. The simple, rapid and reliable visual sensing strategy would not only provide potential applications for high selective ultratrace analysis of complicated matrices, but also greatly enrich the research connotations of molecularly imprinted sensors. PMID:27015146

  19. 2,4-Dichlorophenoxyacetic acid (2,4-D)

    Integrated Risk Information System (IRIS)

    2,4 - Dichlorophenoxyacetic acid ( 2,4 - D ) ; CASRN 94 - 75 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asses

  20. 4D microvascular imaging based on ultrafast Doppler tomography.

    PubMed

    Demené, Charlie; Tiran, Elodie; Sieu, Lim-Anna; Bergel, Antoine; Gennisson, Jean Luc; Pernot, Mathieu; Deffieux, Thomas; Cohen, Ivan; Tanter, Mickael

    2016-02-15

    4D ultrasound microvascular imaging was demonstrated by applying ultrafast Doppler tomography (UFD-T) to the imaging of brain hemodynamics in rodents. In vivo real-time imaging of the rat brain was performed using ultrasonic plane wave transmissions at very high frame rates (18,000 frames per second). Such ultrafast frame rates allow for highly sensitive and wide-field-of-view 2D Doppler imaging of blood vessels far beyond conventional ultrasonography. Voxel anisotropy (100 μm × 100 μm × 500 μm) was corrected for by using a tomographic approach, which consisted of ultrafast acquisitions repeated for different imaging plane orientations over multiple cardiac cycles. UFT-D allows for 4D dynamic microvascular imaging of deep-seated vasculature (up to 20 mm) with a very high 4D resolution (respectively 100 μm × 100 μm × 100 μm and 10 ms) and high sensitivity to flow in small vessels (>1 mm/s) for a whole-brain imaging technique without requiring any contrast agent. 4D ultrasound microvascular imaging in vivo could become a valuable tool for the study of brain hemodynamics, such as cerebral flow autoregulation or vascular remodeling after ischemic stroke recovery, and, more generally, tumor vasculature response to therapeutic treatment. PMID:26555279

  1. 4D MR imaging using robust internal respiratory signal

    NASA Astrophysics Data System (ADS)

    Hui, CheukKai; Wen, Zhifei; Stemkens, Bjorn; Tijssen, R. H. N.; van den Berg, C. A. T.; Hwang, Ken-Pin; Beddar, Sam

    2016-05-01

    The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D.

  2. An MRI-based attenuation correction method for combined PET/MRI applications

    NASA Astrophysics Data System (ADS)

    Fei, Baowei; Yang, Xiaofeng; Wang, Hesheng

    2009-02-01

    We are developing MRI-based attenuation correction methods for PET images. PET has high sensitivity but relatively low resolution and little anatomic details. MRI can provide excellent anatomical structures with high resolution and high soft tissue contrast. MRI can be used to delineate tumor boundaries and to provide an anatomic reference for PET, thereby improving quantitation of PET data. Combined PET/MRI can offer metabolic, functional and anatomic information and thus can provide a powerful tool to study the mechanism of a variety of diseases. Accurate attenuation correction represents an essential component for the reconstruction of artifact-free, quantitative PET images. Unfortunately, the present design of hybrid PET/MRI does not offer measured attenuation correction using a transmission scan. This problem may be solved by deriving attenuation maps from corresponding anatomic MR images. Our approach combines image registration, classification, and attenuation correction in a single scheme. MR images and the preliminary reconstruction of PET data are first registered using our automatic registration method. MRI images are then classified into different tissue types using our multiscale fuzzy C-mean classification method. The voxels of classified tissue types are assigned theoretical tissue-dependent attenuation coefficients to generate attenuation correction factors. Corrected PET emission data are then reconstructed using a threedimensional filtered back projection method and an order subset expectation maximization method. Results from simulated images and phantom data demonstrated that our attenuation correction method can improve PET data quantitation and it can be particularly useful for combined PET/MRI applications.

  3. PET Imaging: Basics and New Trends

    NASA Astrophysics Data System (ADS)

    Dahlbom, Magnus

    Positron Emission Tomography or PET is a noninvasive molecular imaging method used both in research to study biology and disease, and clinically as a routine diagnostic imaging tool. In PET imaging, the subject is injected with a tracer labeled with a positron-emitting isotope and is then placed in a scanner to localize the radioactive tracer in the body. The localization of the tracer utilizes the unique decay characteristics of isotopes decaying by positron emission. In the PET scanner, a large number of scintillation detectors use coincidence detection of the annihilation radiation that is emitted as a result of the positron decay. By collecting a large number of these coincidence events, together with tomographic image reconstruction methods, the 3-D distribution of the radioactive tracer in the body can be reconstructed. Depending on the type of tracer used, the distribution will reflect a particular biological process, such as glucose metabolism when fluoro-deoxyglucose is used. PET has evolved from a relatively inefficient single-slice imaging system with relatively poor spatial resolution to an efficient, high-resolution imaging modality which can acquire a whole-body scan in a few minutes. This chapter will describe the basic physics and instrumentation used in PET. The various corrections that are necessary to apply to the acquired data in order to produce quantitative images are also described. Finally, some of the latest trends in instrumentation development are also discussed.

  4. Nonrigid PET motion compensation in the lower abdomen using simultaneous tagged-MRI and PET imaging

    PubMed Central

    Guérin, B.; Cho, S.; Chun, S. Y.; Zhu, X.; Alpert, N. M.; El Fakhri, G.; Reese, T.; Catana, C.

    2011-01-01

    Purpose: We propose a novel approach for PET respiratory motion correction using tagged-MRI and simultaneous PET-MRI acquisitions.Methods: We use a tagged-MRI acquisition followed by motion tracking in the phase domain to estimate the nonrigid deformation of biological tissues during breathing. In order to accurately estimate motion even in the presence of noise and susceptibility artifacts, we regularize the traditional HARP tracking strategy using a quadratic roughness penalty on neighboring displacement vectors (R-HARP). We then incorporate the motion fields estimated with R-HARP in the system matrix of an MLEM PET reconstruction algorithm formulated both for sinogram and list-mode data representations. This approach allows reconstruction of all detected coincidences in a single image while modeling the effect of motion both in the emission and the attenuation maps. At present, tagged-MRI does not allow estimation of motion in the lungs and our approach is therefore limited to motion correction in soft tissues. Since it is difficult to assess the accuracy of motion correction approaches in vivo, we evaluated the proposed approach in numerical simulations of simultaneous PET-MRI acquisitions using the NCAT phantom. We also assessed its practical feasibility in PET-MRI acquisitions of a small deformable phantom that mimics the complex deformation pattern of a lung that we imaged on a combined PET-MRI brain scanner.Results: Simulations showed that the R-HARP tracking strategy accurately estimated realistic respiratory motion fields for different levels of noise in the tagged-MRI simulation. In simulations of tumors exhibiting increased uptake, contrast estimation was 20% more accurate with motion correction than without. Signal-to-noise ratio (SNR) was more than 100% greater when performing motion-corrected reconstruction which included all counts, compared to when reconstructing only coincidences detected in the first of eight gated frames. These results were

  5. Impact of incorporating visual biofeedback in 4D MRI.

    PubMed

    To, David T; Kim, Joshua P; Price, Ryan G; Chetty, Indrin J; Glide-Hurst, Carri K

    2016-01-01

    Precise radiation therapy (RT) for abdominal lesions is complicated by respiratory motion and suboptimal soft tissue contrast in 4D CT. 4D MRI offers improved con-trast although long scan times and irregular breathing patterns can be limiting. To address this, visual biofeedback (VBF) was introduced into 4D MRI. Ten volunteers were consented to an IRB-approved protocol. Prospective respiratory-triggered, T2-weighted, coronal 4D MRIs were acquired on an open 1.0T MR-SIM. VBF was integrated using an MR-compatible interactive breath-hold control system. Subjects visually monitored their breathing patterns to stay within predetermined tolerances. 4D MRIs were acquired with and without VBF for 2- and 8-phase acquisitions. Normalized respiratory waveforms were evaluated for scan time, duty cycle (programmed/acquisition time), breathing period, and breathing regularity (end-inhale coefficient of variation, EI-COV). Three reviewers performed image quality assessment to compare artifacts with and without VBF. Respiration-induced liver motion was calculated via centroid difference analysis of end-exhale (EE) and EI liver contours. Incorporating VBF reduced 2-phase acquisition time (4.7 ± 1.0 and 5.4 ± 1.5 min with and without VBF, respectively) while reducing EI-COV by 43.8% ± 16.6%. For 8-phase acquisitions, VBF reduced acquisition time by 1.9 ± 1.6 min and EI-COVs by 38.8% ± 25.7% despite breathing rate remaining similar (11.1 ± 3.8 breaths/min with vs. 10.5 ± 2.9 without). Using VBF yielded higher duty cycles than unguided free breathing (34.4% ± 5.8% vs. 28.1% ± 6.6%, respectively). Image grading showed that out of 40 paired evaluations, 20 cases had equivalent and 17 had improved image quality scores with VBF, particularly for mid-exhale and EI. Increased liver excursion was observed with VBF, where superior-inferior, anterior-posterior, and left-right EE-EI displacements were 14.1± 5.8, 4.9 ± 2.1, and 1.5 ± 1.0 mm, respectively, with VBF compared to 11.9

  6. Trends in PET imaging

    SciTech Connect

    Moses, William W.

    2000-11-01

    Positron Emission Tomography (PET) imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of recent trends PET instrumentation. Significant effort is being expended to develop new PET detector modules, especially those capable of measuring depth of interaction. This is aided by recent advances in scintillator and pixellated photodetector technology. The other significant area of effort is development of special purpose PET cameras (such as for imaging breast cancer or small animals) or cameras that have the ability to image in more than one modality (such as PET / SPECT or PET / X-Ray CT).

  7. Advances in SPECT and PET Hardware.

    PubMed

    Slomka, Piotr J; Pan, Tinsu; Berman, Daniel S; Germano, Guido

    2015-01-01

    There have been significant recent advances in single photon emission computed tomography (SPECT) and positron emission tomography (PET) hardware. Novel collimator designs, such as multi-pinhole and locally focusing collimators arranged in geometries that are optimized for cardiac imaging have been implemented to reduce imaging time and radiation dose. These new collimators have been coupled with solid state photon detectors to further improve image quality and reduce scanner size. The new SPECT scanners demonstrate up to a 7-fold increase in photon sensitivity and up to 2 times improvement in image resolution. Although PET scanners are used primarily for oncological imaging, cardiac imaging can benefit from the improved PET sensitivity of 3D systems without inter-plane septa and implementation of the time-of-flight reconstruction. Additionally, resolution recovery techniques are now implemented by all major PET vendors. These new methods improve image contrast, image resolution, and reduce image noise. Simultaneous PET/magnetic resonance (MR) hybrid systems have been developed. Solid state detectors with avalanche photodiodes or digital silicon photomultipliers have also been utilized in PET. These new detectors allow improved image resolution, higher count rate, as well as a reduced sensitivity to electromagnetic MR fields. PMID:25721706

  8. Poster — Thur Eve — 71: A 4D Multimodal Lung Phantom for Regmentation Evaluation

    SciTech Connect

    Markel, D; Levesque, I R; El Naqa, I

    2014-08-15

    Segmentation and registration of medical imaging data are two processes that can be integrated (a process termed regmentation) to iteratively reinforce each other, potentially improving efficiency and overall accuracy. A significant challenge is presented when attempting to validate the joint process particularly with regards to minimizing geometric uncertainties associated with the ground truth while maintaining anatomical realism. This work demonstrates a 4D MRI, PET, and CT compatible tissue phantom with a known ground truth for evaluating registration and segmentation accuracy. The phantom consists of a preserved swine lung connected to an air pump via a PVC tube for inflation. Mock tumors were constructed from sea sponges contained within two vacuum-sealed compartments with catheters running into each one for injection of radiotracer solution. The phantom was scanned using a GE Discovery-ST PET/CT scanner and a 0.23T Phillips MRI, and resulted in anatomically realistic images. A bifurcation tracking algorithm was implemented to provide a ground truth for evaluating registration accuracy. This algorithm was validated using known deformations of up to 7.8 cm using a separate CT scan of a human thorax. Using the known deformation vectors to compare against, 76 bifurcation points were selected. The tracking accuracy was found to have maximum mean errors of −0.94, 0.79 and −0.57 voxels in the left-right, anterior-posterior and inferior-superior directions, respectively. A pneumatic control system is under development to match the respiratory profile of the lungs to a breathing trace from an individual patient.

  9. Intelligent Vehicle Systems: A 4D/RCS Approach

    SciTech Connect

    Madhavan, Raj

    2007-04-01

    This book presents new research on autonomous mobility capabilities and shows how technological advances can be anticipated in the coming two decades. An in-depth description is presented on the theoretical foundations and engineering approaches that enable these capabilities. Chapter 1 provides a brief introduction to the 4D/RCS reference model architecture and design methodology that has proven successful in guiding the development of autonomous mobility systems. Chapters 2 through 7 provide more detailed descriptions of research that has been conducted and algorithms that have been developed to implement the various aspects of the 4D/RCS reference model architecture and design methodology. Chapters 8 and 9 discuss applications, performance measures, and standards. Chapter 10 provides a history of Army and DARPA research in autonomous ground mobility. Chapter 11 provides a perspective on the potential future developments in autonomous mobility.

  10. Quantication and analysis of respiratory motion from 4D MRI

    NASA Astrophysics Data System (ADS)

    Aizzuddin Abd Rahni, Ashrani; Lewis, Emma; Wells, Kevin

    2014-11-01

    It is well known that respiratory motion affects image acquisition and also external beam radiotherapy (EBRT) treatment planning and delivery. However often the existing approaches for respiratory motion management are based on a generic view of respiratory motion such as the general movement of organ, tissue or fiducials. This paper thus aims to present a more in depth analysis of respiratory motion based on 4D MRI for further integration into motion correction in image acquisition or image based EBRT. Internal and external motion was first analysed separately, on a per-organ basis for internal motion. Principal component analysis (PCA) was then performed on the internal and external motion vectors separately and the relationship between the two PCA spaces was analysed. The motion extracted from 4D MRI on general was found to be consistent with what has been reported in literature.

  11. Exome sequencing identifies PDE4D mutations in acrodysostosis.

    PubMed

    Lee, Hane; Graham, John M; Rimoin, David L; Lachman, Ralph S; Krejci, Pavel; Tompson, Stuart W; Nelson, Stanley F; Krakow, Deborah; Cohn, Daniel H

    2012-04-01

    Acrodysostosis is a dominantly-inherited, multisystem disorder characterized by skeletal, endocrine, and neurological abnormalities. To identify the molecular basis of acrodysostosis, we performed exome sequencing on five genetically independent cases. Three different missense mutations in PDE4D, which encodes cyclic AMP (cAMP)-specific phosphodiesterase 4D, were found to be heterozygous in three of the cases. Two of the mutations were demonstrated to have occurred de novo, providing strong genetic evidence of causation. Two additional cases were heterozygous for de novo missense mutations in PRKAR1A, which encodes the cAMP-dependent regulatory subunit of protein kinase A and which has been recently reported to be the cause of a form of acrodysostosis resistant to multiple hormones. These findings demonstrate that acrodysostosis is genetically heterogeneous and underscore the exquisite sensitivity of many tissues to alterations in cAMP homeostasis. PMID:22464252

  12. 4D, Script N = 1 supersymmetry genomics (I)

    NASA Astrophysics Data System (ADS)

    Gates, S. James, Jr.; Gonzales, James; MacGregor, Boanne; Parker, James; Polo-Sherk, Ruben; Rodgers, Vincent G. J.; Wassink, Luke

    2009-12-01

    Presented in this paper the nature of the supersymmetrical representation theory behind 4D, Script N = 1 theories, as described by component fields, is investigated using the tools of Adinkras and Garden Algebras. A survey of familiar matter multiplets using these techniques reveals they are described by two fundamental valise Adinkras that are given the names of the cis-Valise (c-V) and the trans-Valise (t-V). A conjecture is made that all off-shell 4D, Script N = 1 component descriptions of supermultiplets are associated with two integers (nc, nt) — the numbers of c-V and t-V Adinkras that occur in the representation.

  13. Phosphodiesterase 4D gene polymorphisms in sudden sensorineural hearing loss.

    PubMed

    Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wang, Hsun-Mo; Wu, Ming-Tsang; Ho, Kuen-Yao

    2016-09-01

    The phosphodiesterase 4D (PDE4D) gene has been reported as a risk gene for ischemic stroke. The vascular factors are between the hypothesized etiologies of sudden sensorineural hearing loss (SSNHL), and this genetic effect might be attributed for its role in SSNHL. We hypothesized that genetic variants of the PDE4D gene are associated with susceptibility to SSNHL. We conducted a case-control study with 362 SSNHL cases and 209 controls. Three single nucleotide polymorphisms (SNPs) were selected. The genotypes were determined using TaqMan technology. Hardy-Weinberg equilibrium (HWE) was tested for each SNP, and genetic effects were evaluated according to three inheritance modes. We carried out sex-specific analysis to analyze the overall data. All three SNPs were in HWE. When subjects were stratified by sex, the genetic effect was only evident in females but not in males. The TT genotype of rs702553 exhibited an adjusted odds ratio (OR) of 3.83 (95 % confidence interval = 1.46-11.18) (p = 0.006) in female SSNHL. The TT genotype of SNP rs702553 was associated with female SSNHL under the recessive model (p = 0.004, OR 3.70). In multivariate logistic regression analysis, TT genotype of rs702553 was significantly associated with female SSNHL (p = 0.0043, OR 3.70). These results suggest that PDE4D gene polymorphisms influence the susceptibility for the development of SSNHL in the southern Taiwanese female population. PMID:26521189

  14. MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner

    PubMed Central

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC

  15. 4D-Flow validation, numerical and experimental framework

    NASA Astrophysics Data System (ADS)

    Sansom, Kurt; Liu, Haining; Canton, Gador; Aliseda, Alberto; Yuan, Chun

    2015-11-01

    This work presents a group of assessment metrics of new 4D MRI flow sequences, an imaging modality that allows for visualization of three-dimensional pulsatile flow in the cardiovascular anatomy through time-resolved three-dimensional blood velocity measurements from cardiac-cycle synchronized MRI acquisition. This is a promising tool for clinical assessment but lacks a robust validation framework. First, 4D-MRI flow in a subject's stenotic carotid bifurcation is compared with a patient-specific CFD model using two different boundary condition methods. Second, Particle Image Velocimetry in a patient-specific phantom is used as a benchmark to compare the 4D-MRI in vivo measurements and CFD simulations under the same conditions. Comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, Lagrangian particle residence time, will be discussed, with justification for their biomechanics relevance and the insights they can provide on the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new sequence to provide a quantitative assessment. A parametric analysis on the carotid bifurcation pulsatile flow conditions will be presented and an accuracy assessment provided.

  16. 4D remote sensing image coding with JPEG2000

    NASA Astrophysics Data System (ADS)

    Muñoz-Gómez, Juan; Bartrina-Rapesta, Joan; Blanes, Ian; Jiménez-Rodríguez, Leandro; Aulí-Llinàs, Francesc; Serra-Sagristà, Joan

    2010-08-01

    Multicomponent data have become popular in several scientific fields such as forest monitoring, environmental studies, or sea water temperature detection. Nowadays, this multicomponent data can be collected more than one time per year for the same region. This generates different instances in time of multicomponent data, also called 4D-Data (1D Temporal + 1D Spectral + 2D Spatial). For multicomponent data, it is important to take into account inter-band redundancy to produce a more compact representation of the image by packing the energy into fewer number of bands, thus enabling a higher compression performance. The principal decorrelators used to compact the inter-band correlation redundancy are the Karhunen Loeve Transform (KLT) and Discrete Wavelet Transform (DWT). Because of the Temporal Dimension added, the inter-band redundancy among different multicomponent images is increased. In this paper we analyze the influence of the Temporal Dimension (TD) and the Spectral Dimension (SD) in 4D-Data in terms of coding performance for JPEG2000, because it has support to apply different decorrelation stages and transforms to the components through the different dimensions. We evaluate the influence to perform different decorrelators techniques to the different dimensions. Also we will assess the performance of the two main decorrelation techniques, KLT and DWT. Experimental results are provided, showing rate-distortion performances encoding 4D-Data using KLT and WT techniques to the different dimensions TD and SD.

  17. 4D flow imaging: current status to future clinical applications.

    PubMed

    Markl, Michael; Schnell, Susanne; Barker, Alex J

    2014-05-01

    4D flow MRI permits a comprehensive in-vivo assessment of three-directional blood flow within 3-dimensional vascular structures throughout the cardiac cycle. Given the large coverage permitted from a 4D flow acquisition, the distribution of vessel wall and flow parameters along an entire vessel of interest can thus be derived from a single measurement without being dependent on multiple predefined 2D acquisitions. In addition to qualitative 3D visualizations of complex cardiac and vascular flow patterns, quantitative flow analysis can be performed and is complemented by the ability to compute sophisticated hemodynamic parameters, such as wall shear stress or 3D pressure difference maps. These metrics can provide information previously unavailable with conventional modalities regarding the impact of cardiovascular disease or therapy on global and regional changes in hemodynamics. This review provides an introduction to the methodological aspects of 4D flow MRI to assess vascular hemodynamics and describes its potential for the assessment and understanding of altered hemodynamics in the presence of cardiovascular disease. PMID:24700368

  18. Probing Invisible, Excited Protein States by Non-Uniformly Sampled Pseudo-4D CEST Spectroscopy.

    PubMed

    Long, Dong; Delaglio, Frank; Sekhar, Ashok; Kay, Lewis E

    2015-09-01

    Chemical exchange saturation transfer (CEST) NMR spectroscopy is a powerful tool for studies of slow timescale protein dynamics. Typical experiments are based on recording a large number of 2D data sets and quantifying peak intensities in each of the resulting planes. A weakness of the method is that peaks must be resolved in 2D spectra, limiting applications to relatively small proteins. Resolution is significantly improved in 3D spectra but recording uniformly sampled data is time-prohibitive. Here we describe non-uniformly sampled HNCO-based pseudo-4D CEST that provides excellent resolution in reasonable measurement times. Data analysis is done through fitting in the time domain, without the need of reconstructing the frequency dimensions, exploiting previously measured accurate peak positions in reference spectra. The methodology is demonstrated on several protein systems, including a nascent form of superoxide dismutase that is implicated in neurodegenerative disease. PMID:26178142

  19. Development of 4D jaw movement visualization system for dental diagnosis support

    NASA Astrophysics Data System (ADS)

    Aoki, Yoshimitsu; Terajima, Masahiko; Nakasima, Akihiko

    2004-10-01

    A person with an asymmetric morphology of maxillofacial skeleton reportedly possesses an asymmetric jaw function and the risk to express temporomandibular disorder is high. A comprehensive analysis from the point of view of both the morphology and the function such as maxillofacial or temporomandibular joint morphology, dental occlusion, and features of mandibular movement pathways is essential. In this study, the 4D jaw movement visualization system was developed to visually understand the characteristic jaw movement, 3D maxillofacial skeleton structure, and the alignment of the upper and lower teeth of a patient. For this purpose, the 3D reconstructed images of the cranial and mandibular bones, obtained by computed tomography, were measured using a non-contact 3D measuring device, and the obtained morphological images of teeth model were integrated and activated on the 6 DOF jaw movement data. This system was experimentally applied and visualized in a jaw deformity patient and its usability as a clinical diagnostic support system was verified.

  20. Application of unified array calculus to connect 4-D spacetime sensing with string theory and relativity

    NASA Astrophysics Data System (ADS)

    Rauhala, U. A.

    2013-12-01

    Array algebra of photogrammetry and geodesy unified multi-linear matrix and tensor operators in an expansion of Gaussian adjustment calculus to general matrix inverses and solutions of inverse problems to find all, or some optimal, parametric solutions that satisfy the available observables. By-products in expanding array and tensor calculus to handle redundant observables resulted in general theories of estimation in mathematical statistics and fast transform technology of signal processing. Their applications in gravity modeling and system automation of multi-ray digital image and terrain matching evolved into fast multi-nonlinear differential and integral array calculus. Work since 1980's also uncovered closed-form inverse Taylor and least squares Newton-Raphson-Gauss perturbation solutions of nonlinear systems of equations. Fast nonlinear integral matching of array wavelets enabled an expansion of the bundle adjustment to 4-D stereo imaging and range sensing where real-time stereo sequence and waveform phase matching enabled data-to-info conversion and compression on-board advanced sensors. The resulting unified array calculus of spacetime sensing is applicable in virtually any math and engineering science, including recent work in spacetime physics. The paper focuses on geometric spacetime reconstruction from its image projections inspired by unified relativity and string theories. The collinear imaging equations of active object space shutter of special relativity are expanded to 4-D Lorentz transform. However, regular passive imaging and shutter inside the sensor expands the law of special relativity by a quantum geometric explanation of 4-D photogrammetry. The collinear imaging equations provide common sense explanations to the 10 (and 26) dimensional hyperspace concepts of a purely geometric string theory. The 11-D geometric M-theory is interpreted as a bundle adjustment of spacetime images using 2-D or 5-D membrane observables of image, string and

  1. Selective 4D modelling framework for spatial-temporal land information management system

    NASA Astrophysics Data System (ADS)

    Doulamis, Anastasios; Soile, Sofia; Doulamis, Nikolaos; Chrisouli, Christina; Grammalidis, Nikos; Dimitropoulos, Kosmas; Manesis, Charalambos; Potsiou, Chryssy; Ioannidis, Charalabos

    2015-06-01

    This paper introduces a predictive (selective) 4D modelling framework where only the spatial 3D differences are modelled at the forthcoming time instances, while regions of no significant spatial-temporal alterations remain intact. To accomplish this, initially spatial-temporal analysis is applied between 3D digital models captured at different time instances. So, the creation of dynamic change history maps is made. Change history maps indicate spatial probabilities of regions needed further 3D modelling at forthcoming instances. Thus, change history maps are good examples for a predictive assessment, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 4D Land Information Management System (LIMS) is implemented using open interoperable standards based on the CityGML framework. CityGML allows the description of the semantic metadata information and the rights of the land resources. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 4D LIMS digital parcels and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics. An application is made to detect the change through time of a 3D block of plots in an urban area of Athens, Greece. Starting with an accurate 3D model of the buildings in 1983, a change history map is created using automated dense image matching on aerial photos of 2010. For both time instances meshes are created and through their comparison the changes are detected.

  2. Heart PET scan

    MedlinePlus

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  3. Breast PET scan

    MedlinePlus

    ... medlineplus.gov/ency/article/007469.htm Breast PET scan To use the sharing features on this page, ... enable JavaScript. A breast positron emission tomography (PET) scan is an imaging test that uses a radioactive ...

  4. 2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil.

    PubMed

    Gonod, Laure Vieublé; Martin-Laurent, Fabrice; Chenu, Claire

    2006-12-01

    The key role of telluric microorganisms in pesticide degradation is well recognized but the possible relationships between the biodiversity of soil microbial communities and their functions still remain poorly documented. If microorganisms influence the fate of pesticides, pesticide application may reciprocally affect soil microorganisms. The objective of our work was to estimate the impact of 2,4-D application on the genetic structure of bacterial communities and the 2,4-D-degrading genetic potential in relation to 2,4-D mineralization. Experiments combined isotope measurements with molecular analyses. The impact of 2,4-D on soil bacterial populations was followed with ribosomal intergenic spacer analysis. The 2,4-D degrading genetic potential was estimated by real-time PCR targeted on tfdA sequences coding an enzyme specifically involved in 2,4-D mineralization. The genetic structure of bacterial communities was significantly modified in response to 2,4-D application, but only during the intense phase of 2,4-D biodegradation. This effect disappeared 7 days after the treatment. The 2,4-D degrading genetic potential increased rapidly following 2,4-D application. There was a concomitant increase between the tfdA copy number and the 14C microbial biomass. The maximum of tfdA sequences corresponded to the maximum rate of 2,4-D mineralization. In this soil, 2,4-D degrading microbial communities seem preferentially to use the tfd pathway to degrade 2,4-D. PMID:17117994

  5. An OpenPET scanner with bridged detectors to compensate for incomplete data.

    PubMed

    Tashima, Hideaki; Yamaya, Taiga; Kinahan, Paul E

    2014-10-21

    We are developing an open-type PET 'OpenPET' geometry. One possible geometry is a dual-ring OpenPET, which consists of two detector rings separated by a gap for entrance of a radiotherapy beam or for inserting other modalities. In our previous simulations and experiments the OpenPET imaging geometry was shown to be feasible by applying iterative reconstruction methods. However, the gap violates Orlov's completeness condition for accurate tomographic reconstruction. In this study, we propose a solution for the incompleteness problem by adding bridge detectors to fill in parts of the gaps of the OpenPET geometry; we call this bridged OpenPET. Although this geometry was considered previously, its analytical property was not discussed. Therefore, we applied the direct Fourier method as an analytical reconstruction method to the bridged OpenPET, dual-ring OpenPET and conventional cylindrical PET for comparison. Numerical simulations showed that the additional bridge detectors compensate for the incompleteness of the OpenPET by covering one direction perpendicular to the transaxial slices of the imaging subjects. PMID:25255296

  6. Local respiratory motion correction for PET/CT imaging: Application to lung cancer

    SciTech Connect

    Lamare, F. Fernandez, P.; Fayad, H.; Visvikis, D.

    2015-10-15

    Purpose: Despite multiple methodologies already proposed to correct respiratory motion in the whole PET imaging field of view (FOV), such approaches have not found wide acceptance in clinical routine. An alternative can be the local respiratory motion correction (LRMC) of data corresponding to a given volume of interest (VOI: organ or tumor). Advantages of LRMC include the use of a simple motion model, faster execution times, and organ specific motion correction. The purpose of this study was to evaluate the performance of LMRC using various motion models for oncology (lung lesion) applications. Methods: Both simulated (NURBS based 4D cardiac-torso phantom) and clinical studies (six patients) were used in the evaluation of the proposed LRMC approach. PET data were acquired in list-mode and synchronized with respiration. The implemented approach consists first in defining a VOI on the reconstructed motion average image. Gated PET images of the VOI are subsequently reconstructed using only lines of response passing through the selected VOI and are used in combination with a center of gravity or an affine/elastic registration algorithm to derive the transformation maps corresponding to the respiration effects. Those are finally integrated in the reconstruction process to produce a motion free image over the lesion regions. Results: Although the center of gravity or affine algorithm achieved similar performance for individual lesion motion correction, the elastic model, applied either locally or to the whole FOV, led to an overall superior performance. The spatial tumor location was altered by 89% and 81% for the elastic model applied locally or to the whole FOV, respectively (compared to 44% and 39% for the center of gravity and affine models, respectively). This resulted in similar associated overall tumor volume changes of 84% and 80%, respectively (compared to 75% and 71% for the center of gravity and affine models, respectively). The application of the nonrigid

  7. Birds Kept as Pets

    MedlinePlus

    ... restricts the importation of pet birds from certain countries and enforces a 30-day quarantine for all imported birds except those that come from Canada. People interested in importing pet birds should visit the USDA non-US Origin Pet Bird Importation website . Choosing a bird Match ...

  8. MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research

    PubMed Central

    Paul Segars, W.; Tsui, Benjamin M. W.

    2012-01-01

    Recent work in the development of computerized phantoms has focused on the creation of ideal “hybrid” models that seek to combine the realism of a patient-based voxelized phantom with the flexibility of a mathematical or stylized phantom. We have been leading the development of such computerized phantoms for use in medical imaging research. This paper will summarize our developments dating from the original four-dimensional (4-D) Mathematical Cardiac-Torso (MCAT) phantom, a stylized model based on geometric primitives, to the current 4-D extended Cardiac-Torso (XCAT) and Mouse Whole-Body (MOBY) phantoms, hybrid models of the human and laboratory mouse based on state-of-the-art computer graphics techniques. This paper illustrates the evolution of computerized phantoms toward more accurate models of anatomy and physiology. This evolution was catalyzed through the introduction of nonuniform rational b-spline (NURBS) and subdivision (SD) surfaces, tools widely used in computer graphics, as modeling primitives to define a more ideal hybrid phantom. With NURBS and SD surfaces as a basis, we progressed from a simple geometrically based model of the male torso (MCAT) containing only a handful of structures to detailed, whole-body models of the male and female (XCAT) anatomies (at different ages from newborn to adult), each containing more than 9000 structures. The techniques we applied for modeling the human body were similarly used in the creation of the 4-D MOBY phantom, a whole-body model for the mouse designed for small animal imaging research. From our work, we have found the NURBS and SD surface modeling techniques to be an efficient and flexible way to describe the anatomy and physiology for realistic phantoms. Based on imaging data, the surfaces can accurately model the complex organs and structures in the body, providing a level of realism comparable to that of a voxelized phantom. In addition, they are very flexible. Like stylized models, they can easily be

  9. Performance evaluation of the CT component of the IRIS PET/CT preclinical tomograph

    NASA Astrophysics Data System (ADS)

    Panetta, Daniele; Belcari, Nicola; Tripodi, Maria; Burchielli, Silvia; Salvadori, Piero A.; Del Guerra, Alberto

    2016-01-01

    In this paper, we evaluate the physical performance of the CT component of the IRIS scanner, a novel combined PET/CT scanner for preclinical imaging. The performance assessment is based on phantom measurement for the determination of image quality parameters (spatial resolution, linearity, geometric accuracy, contrast to noise ratio) and reproducibility in dynamic (4D) imaging. The CTDI100 has been measured free in air with a pencil ionization chamber, and the animal dose was calculated using Monte Carlo derived conversion factors taken from the literature. The spatial resolution at the highest quality protocol was 6.9 lp/mm at 10% of the MTF, using the smallest reconstruction voxel size of 58.8 μm. The accuracy of the reconstruction voxel size was within 0.1%. The linearity of the CT numbers as a function of the concentration of iodine was very good, with R2>0.996 for all the tube voltages. The animal dose depended strongly on the scanning protocol, ranging from 158 mGy for the highest quality protocol (2 min, 80 kV) to about 12 mGy for the fastest protocol (7.3 s, 80 kV). In 4D dynamic modality, the maximum scanning rate reached was 3.1 frames per minute, using a short-scan protocol with 7.3 s of scan time per frame at the isotropic voxel size of 235 μm. The reproducibility of the system was high throughout the 10 frames acquired in dynamic modality, with a standard deviation of the CT values of all frames <8 HU and an average spatial reproducibility within 30% of the voxel size across all the field of view. Example images obtained during animal experiments are also shown.

  10. Monitoring proton radiation therapy with in-room PET imaging

    PubMed Central

    Zhu, Xuping; España, Samuel; Daartz, Juliane; Liebsch, Norbert; Ouyang, Jinsong; Paganetti, Harald; Bortfeld, Thomas R; El Fakhri, Georges

    2011-01-01

    Purpose We used a mobile PET scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Methods and materials Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 minutes during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. Results The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 min to <5 min. Features in deep-site, soft-tissue regions were better retained with in-room short PET acquisitions because of the collection of 15O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. Conclusions In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary. PMID:21677366

  11. Dynamic neurotransmitter interactions measured with PET

    SciTech Connect

    Schiffer, W.K.; Dewey, S.L.

    2001-04-02

    biologically distinct neurochemical systems that interact to produce a variety of behaviors and disorders. Neurotransmitters are neither static nor isolated in their distribution. In fact, it is through interactions with other neurochemically distinct systems that the central nervous system (CNS) performs its vital role in sustaining life. Exclusive quantitative capabilities intrinsic to PET make this technology a suitable experimental tool to measure not only the regional distribution of specific receptors and their subtypes, but also the dynamic properties of neuroreceptors and their inherent influence on related neurotransmitter pathways. The ability to investigate dynamic properties in a non-invasive and reproducible manner provides a powerful tool that can extend our current knowledge of these interactions. Coupled with innovative paradigms including pharmacologic manipulations, physiologic models and reconstruction theories, knowledge derived from PET studies can greatly advance our understanding of normal and abnormal brain function.

  12. Non-spherical particle generation from 4D optofluidic fabrication.

    PubMed

    Paulsen, Kevin S; Chung, Aram J

    2016-08-01

    Particles with non-spherical shapes can exhibit properties which are not available from spherical shaped particles. Complex shaped particles can provide unique benefits for areas such as drug delivery, tissue engineering, structural materials, and self-assembly building blocks. Current methods of creating complex shaped particles such as 3D printing, photolithography, and imprint lithography are limited by either slow speeds, shape limitations, or expensive processes. Previously, we presented a novel microfluidic flow lithography fabrication scheme combined with fluid inertia called optofluidic fabrication for the creation of complex shaped three-dimensional (3D) particles. This process was able to address the aforementioned limits and overcome two-dimensional shape limitations faced by traditional flow lithography methods; however, all of the created 3D particle shapes displayed top-down symmetry. Here, by introducing the time dimension into our existing optofluidic fabrication process, we break this top-down symmetry, generating fully asymmetric 3D particles where we termed the process: four-dimensional (4D) optofluidic fabrication. This 4D optofluidic fabrication is comprised of three sequential procedures. First, density mismatched precursor fluids flow past pillars within fluidic channels to manipulate the flow cross sections via fluid inertia. Next, the time dimension is incorporated by stopping the flow and allowing the denser fluids to settle by gravity to create asymmetric flow cross sections. Finally, the fluids are exposed to patterned ultraviolet (UV) light in order to polymerize fully asymmetric 3D-shaped particles. By varying inertial flow shaping, gravity-induced flow shaping, and UV light patterns, 4D optofluidic fabrication can create an infinite set of complex shaped asymmetric particles. PMID:27092661

  13. 4D Proton treatment planning strategy for mobile lung tumors

    SciTech Connect

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei . E-mail: ldong@mdanderson.org

    2007-03-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE{sub R}IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE{sub R}IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE{sub R}IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors.

  14. Phase and amplitude binning for 4D-CT imaging.

    PubMed

    Abdelnour, A F; Nehmeh, S A; Pan, T; Humm, J L; Vernon, P; Schöder, H; Rosenzweig, K E; Mageras, G S; Yorke, E; Larson, S M; Erdi, Y E

    2007-06-21

    We compare the consistency and accuracy of two image binning approaches used in 4D-CT imaging. One approach, phase binning (PB), assigns each breathing cycle 2pi rad, within which the images are grouped. In amplitude binning (AB), the images are assigned bins according to the breathing signal's full amplitude. To quantitate both approaches we used a NEMA NU2-2001 IEC phantom oscillating in the axial direction and at random frequencies and amplitudes, approximately simulating a patient's breathing. 4D-CT images were obtained using a four-slice GE Lightspeed CT scanner operating in cine mode. We define consistency error as a measure of ability to correctly bin over repeated cycles in the same field of view. Average consistency error mue+/-sigmae in PB ranged from 18%+/-20% to 30%+/-35%, while in AB the error ranged from 11%+/-14% to 20%+/-24%. In PB nearly all bins contained sphere slices. AB was more accurate, revealing empty bins where no sphere slices existed. As a proof of principle, we present examples of two non-small cell lung carcinoma patients' 4D-CT lung images binned by both approaches. While AB can lead to gaps in the coronal images, depending on the patient's breathing pattern, PB exhibits no gaps but suffers visible artifacts due to misbinning, yielding images that cover a relatively large amplitude range. AB was more consistent, though often resulted in gaps when no data existed due to patients' breathing pattern. We conclude AB is more accurate than PB. This has important consequences to treatment planning and diagnosis. PMID:17664557

  15. Localization of 4D gravity on pure geometrical thick branes

    SciTech Connect

    Barbosa-Cendejas, Nandinii; Herrera-Aguilar, Alfredo

    2006-04-15

    We consider the generation of thick brane configurations in a pure geometric Weyl integrable 5D spacetime which constitutes a non-Riemannian generalization of Kaluza-Klein (KK) theory. In this framework, we show how 4D gravity can be localized on a scalar thick brane which does not necessarily respect reflection symmetry, generalizing in this way several previous models based on the Randall-Sundrum (RS) system and avoiding both, the restriction to orbifold geometries and the introduction of the branes in the action by hand. We first obtain a thick brane solution that preserves 4D Poincare invariance and breaks Z{sub 2}-symmetry along the extra dimension which, indeed, can be either compact or extended, and supplements brane solutions previously found by other authors. In the noncompact case, this field configuration represents a thick brane with positive energy density centered at y=c{sub 2}, whereas pairs of thick branes arise in the compact case. Remarkably, the Weylian scalar curvature is nonsingular along the fifth dimension in the noncompact case, in contraposition to the RS thin brane system. We also recast the wave equations of the transverse traceless modes of the linear fluctuations of the classical background into a Schroedinger's equation form with a volcano potential of finite bottom in both the compact and the extended cases. We solve Schroedinger equation for the massless zero mode m{sup 2}=0 and obtain a single bound wave function which represents a stable 4D graviton. We also get a continuum gapless spectrum of KK states with m{sup 2}>0 that are suppressed at y=c{sub 2} and turn asymptotically into plane waves.

  16. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets

    PubMed Central

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y.; Du, Shengwang; Loy, M. M. T.

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel (‘non-diffracting’) light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  17. Oblique sounding using the DPS-4D stations in Europe

    NASA Astrophysics Data System (ADS)

    Mosna, Zbysek; Kouba, Daniel; Koucka Knizova, Petra; Arikan, Feza; Arikan, Orhan; Gok, Gokhan; Rejfek, Lubos

    2016-07-01

    The DPS-4D Digisondes are capable of detection of echoes from neighbouring European stations. Currently, a campaign with high-temporal resolution of 5 min is being run. Further, ionograms from regular vertical sounding with 15 min resolution provide us with oblique reflections together with vertical reflections. We analyzed profiles of electron concentration and basic ionospheric parameters derived from the ionograms. We compared results derived from reflections from the ionosphere above the stations (vertical sounding) with information derived from oblique reflections between the stations. This study is supported by the Joint TUBITAK 114E092 and AS CR 14/001 projects.

  18. All the supersymmetric configurations of N=4, d=4 supergravity

    NASA Astrophysics Data System (ADS)

    Bellorín, Jorge; Ortín, Tomás

    2005-10-01

    All the supersymmetric configurations of pure, ungauged, N=4, d=4 supergravity are classified in a formalism that keeps manifest the S and T dualities of the theory. We also find simple equations that need to be satisfied by the configurations to be classical solutions of the theory. While the solutions associated to null Killing vectors were essentially classified by Tod (a classification that we refine), we find new configurations and solutions associated to timelike Killing vectors that do not satisfy Tod's rigidity hypothesis (hence, they have a nontrivial U(1) connection) and whose supersymmetry projector is associated to 1-dimensional objects (strings), although they have a trivial axion field.

  19. Multielectron Spectroscopy: The Xenon 4d Hole Double Auger Decay

    SciTech Connect

    Penent, F.; Palaudoux, J.; Lablanquie, P.; Andric, L.; Feifel, R.; Eland, J.H.D.

    2005-08-19

    A magnetic bottle spectrometer of the type recently developed by Eland et al. [Phys. Rev. Lett. 90, 053003 (2003).] has been implemented for use with synchrotron radiation, allowing multidimensional electron spectroscopy. Its application to the Xe 4d double Auger decay reveals all the energy pathways involved. The dominant path is a cascade process with a rapid (6 fs) ejection of a first Auger electron followed by the slower (>23 fs) emission of a second Auger electron. Weaker processes implying 3 electron processes are also revealed, namely, direct double Auger and associated Rydberg series.

  20. 4D micro-CT using fast prospective gating

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  1. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets.

    PubMed

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y; Du, Shengwang; Loy, M M T

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel ('non-diffracting') light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  2. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections

    SciTech Connect

    Zhang, You; Yin, Fang-Fang; Ren, Lei; Segars, W. Paul

    2013-12-15

    Purpose: To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy.Methods: Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes to the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and “ground-truth” onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy.Results: For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)/COMS (±S.D.) between lesions in prior images and “ground-truth” onboard images were 136.11% (±42.76%)/15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD/COMS between the lesion

  3. Functional organization of the human 4D Nucleome

    PubMed Central

    Chen, Haiming; Chen, Jie; Muir, Lindsey A.; Ronquist, Scott; Meixner, Walter; Ljungman, Mats; Ried, Thomas; Smale, Stephen; Rajapakse, Indika

    2015-01-01

    The 4D organization of the interphase nucleus, or the 4D Nucleome (4DN), reflects a dynamical interaction between 3D genome structure and function and its relationship to phenotype. We present initial analyses of the human 4DN, capturing genome-wide structure using chromosome conformation capture and 3D imaging, and function using RNA-sequencing. We introduce a quantitative index that measures underlying topological stability of a genomic region. Our results show that structural features of genomic regions correlate with function with surprising persistence over time. Furthermore, constructing genome-wide gene-level contact maps aided in identifying gene pairs with high potential for coregulation and colocalization in a manner consistent with expression via transcription factories. We additionally use 2D phase planes to visualize patterns in 4DN data. Finally, we evaluated gene pairs within a circadian gene module using 3D imaging, and found periodicity in the movement of clock circadian regulator and period circadian clock 2 relative to each other that followed a circadian rhythm and entrained with their expression. PMID:26080430

  4. Perspective: 4D ultrafast electron microscopy--Evolutions and revolutions.

    PubMed

    Shorokhov, Dmitry; Zewail, Ahmed H

    2016-02-28

    In this Perspective, the evolutionary and revolutionary developments of ultrafast electron imaging are overviewed with focus on the "single-electron concept" for probing methodology. From the first electron microscope of Knoll and Ruska [Z. Phys. 78, 318 (1932)], constructed in the 1930s, to aberration-corrected instruments and on, to four-dimensional ultrafast electron microscopy (4D UEM), the developments over eight decades have transformed humans' scope of visualization. The changes in the length and time scales involved are unimaginable, beginning with the micrometer and second domains, and now reaching the space and time dimensions of atoms in matter. With these advances, it has become possible to follow the elementary structural dynamics as it unfolds in real time and to provide the means for visualizing materials behavior and biological functions. The aim is to understand emergent phenomena in complex systems, and 4D UEM is now central for the visualization of elementary processes involved, as illustrated here with examples from past achievements and future outlook. PMID:26931672

  5. Complete valvular heart apparatus model from 4D cardiac CT.

    PubMed

    Grbic, Sasa; Ionasec, Razvan; Vitanovski, Dime; Voigt, Ingmar; Wang, Yang; Georgescu, Bogdan; Navab, Nassir; Comaniciu, Dorin

    2012-07-01

    The cardiac valvular apparatus, composed of the aortic, mitral, pulmonary and tricuspid valves, is an essential part of the anatomical, functional and hemodynamic characteristics of the heart and the cardiovascular system as a whole. Valvular heart diseases often involve multiple dysfunctions and require joint assessment and therapy of the valves. In this paper, we propose a complete and modular patient-specific model of the cardiac valvular apparatus estimated from 4D cardiac CT data. A new constrained Multi-linear Shape Model (cMSM), conditioned by anatomical measurements, is introduced to represent the complex spatio-temporal variation of the heart valves. The cMSM is exploited within a learning-based framework to efficiently estimate the patient-specific valve parameters from cine images. Experiments on 64 4D cardiac CT studies demonstrate the performance and clinical potential of the proposed method. Our method enables automatic quantitative evaluation of the complete valvular apparatus based on non-invasive imaging techniques. In conjunction with existent patient-specific chamber models, the presented valvular model enables personalized computation modeling and realistic simulation of the entire cardiac system. PMID:22481023

  6. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    SciTech Connect

    Phifer, M.

    2014-11-17

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  7. Perspective: 4D ultrafast electron microscopy—Evolutions and revolutions

    NASA Astrophysics Data System (ADS)

    Shorokhov, Dmitry; Zewail, Ahmed H.

    2016-02-01

    In this Perspective, the evolutionary and revolutionary developments of ultrafast electron imaging are overviewed with focus on the "single-electron concept" for probing methodology. From the first electron microscope of Knoll and Ruska [Z. Phys. 78, 318 (1932)], constructed in the 1930s, to aberration-corrected instruments and on, to four-dimensional ultrafast electron microscopy (4D UEM), the developments over eight decades have transformed humans' scope of visualization. The changes in the length and time scales involved are unimaginable, beginning with the micrometer and second domains, and now reaching the space and time dimensions of atoms in matter. With these advances, it has become possible to follow the elementary structural dynamics as it unfolds in real time and to provide the means for visualizing materials behavior and biological functions. The aim is to understand emergent phenomena in complex systems, and 4D UEM is now central for the visualization of elementary processes involved, as illustrated here with examples from past achievements and future outlook.

  8. 4D Dynamic Required Navigation Performance Final Report

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  9. Positive Energy Conditions in 4D Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    Farnsworth, Kara; Luty, Markus; Prilepina, Valentina

    2016-03-01

    We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality avgT00 >= - C /L4 , where L is the size of the smearing region, and C is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the ``conformal collider'' constraints of Hofman and Maldacena. We speculate that there may be theories that violate the Hofman-Maldacena bounds, but satisfy our bounds. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarkably simple functions of momenta, and may be of interest in their own right.

  10. Abdominal organ motion measured using 4D CT

    SciTech Connect

    Brandner, Edward D.; Wu, Andrew . E-mail: andrew.wu@jefferson.edu; Chen, Hungcheng; Heron, Dwight; Kalnicki, Shalom; Komanduri, Krishna; Gerszten, Kristina; Burton, Steve; Ahmed, Irfan; Shou, Zhenyu

    2006-06-01

    Purpose: To measure respiration-induced abdominal organ motion using four-dimensional computed tomography (4D CT) scanning and to examine the organ paths. Methods and Materials: During 4D CT scanning, consecutive CT images are acquired of the patient at each couch position. Simultaneously, the patient's respiratory pattern is recorded using an external marker block taped to the patient's abdomen. This pattern is used to retrospectively organize the CT images into multiple three-dimensional images, each representing one breathing phase. These images are analyzed to measure organ motion between each phase. The displacement from end expiration is compared to a displacement limit that represents acceptable dosimetric results (5 mm). Results: The organs measured in 13 patients were the liver, spleen, and left and right kidneys. Their average superior to inferior absolute displacements were 1.3 cm for the liver, 1.3 cm for the spleen, 1.1 cm for the left kidney, and 1.3 cm for the right kidney. Although the organ paths varied among patients, 5 mm of superior to inferior displacement from end expiration resulted in less than 5 mm of displacement in the other directions for 41 of 43 organs measured. Conclusions: Four-dimensional CT scanning can accurately measure abdominal organ motion throughout respiration. This information may result in greater organ sparing and planning target volume coverage.

  11. Functional organization of the human 4D Nucleome.

    PubMed

    Chen, Haiming; Chen, Jie; Muir, Lindsey A; Ronquist, Scott; Meixner, Walter; Ljungman, Mats; Ried, Thomas; Smale, Stephen; Rajapakse, Indika

    2015-06-30

    The 4D organization of the interphase nucleus, or the 4D Nucleome (4DN), reflects a dynamical interaction between 3D genome structure and function and its relationship to phenotype. We present initial analyses of the human 4DN, capturing genome-wide structure using chromosome conformation capture and 3D imaging, and function using RNA-sequencing. We introduce a quantitative index that measures underlying topological stability of a genomic region. Our results show that structural features of genomic regions correlate with function with surprising persistence over time. Furthermore, constructing genome-wide gene-level contact maps aided in identifying gene pairs with high potential for coregulation and colocalization in a manner consistent with expression via transcription factories. We additionally use 2D phase planes to visualize patterns in 4DN data. Finally, we evaluated gene pairs within a circadian gene module using 3D imaging, and found periodicity in the movement of clock circadian regulator and period circadian clock 2 relative to each other that followed a circadian rhythm and entrained with their expression. PMID:26080430

  12. 4-D XRD for strain in many grains using triangulation

    SciTech Connect

    Bale, Hrishikesh A.; Hanan, Jay C.; Tamura, Nobumichi

    2006-12-31

    Determination of the strains in a polycrystalline materialusing 4-D XRD reveals sub-grain and grain-to-grain behavior as a functionof stress. Here 4-D XRD involves an experimental procedure usingpolychromatic micro-beam X-radiation (micro-Laue) to characterizepolycrystalline materials in spatial location as well as with increasingstress. The in-situ tensile loading experiment measured strain in a modelaluminum-sapphire metal matrix composite using the Advanced Light Source,Beam-line 7.3.3. Micro-Laue resolves individual grains in thepolycrystalline matrix. Results obtained from a list of grains sorted bycrystallographic orientation depict the strain states within and amongindividual grains. Locating the grain positions in the planeperpendicular to the incident beam is trivial. However, determining theexact location of grains within a 3-D space is challenging. Determiningthe depth of the grains within the matrix (along the beam direction)involved a triangulation method tracing individual rays that producespots on the CCD back to the point of origin. Triangulation wasexperimentally implemented by simulating a 3-D detector capturingmultiple diffraction images while increasing the camera to sampledistance. Hence by observing the intersection of rays from multiple spotsbelonging to the corresponding grain, depth is calculated. Depthresolution is a function of the number of images collected, grain to beamsize ratio, and the pixel resolution of the CCD. The 4DXRD methodprovides grain morphologies, strain behavior of each grain, andinteractions of the matrix grains with each other and the centrallylocated single crystal fiber.

  13. Lung deformation estimation and four-dimensional CT lung reconstruction.

    PubMed

    Xu, Sheng; Taylor, Russell H; Fichtinger, Gabor; Cleary, Kevin

    2005-01-01

    Four-dimensional (4D) computed tomography (CT) image acquisition is a useful technique in radiation treatment planning and interventional radiology in that it can account for respiratory motion of lungs. Current 4D lung reconstruction techniques have limitations in either spatial or temporal resolution. In addition, most of these techniques rely on auxiliary surrogates to relate the time of CT scan to the patient's respiratory phase. In this paper, we propose a novel 4D CT lung reconstruction and deformation estimation algorithm. Our algorithm is purely image based. The algorithm can reconstruct high quality 4D images even if the original images are acquired under irregular respiratory motion. The algorithm is validated using synthetic 4D lung data. Experimental results from a swine study data are also presented. PMID:16685974

  14. Evaluation of intrinsic respiratory signal determination methods for 4D CBCT adapted for mice

    SciTech Connect

    Martin, Rachael; Pan, Tinsu; Rubinstein, Ashley; Court, Laurence; Ahmad, Moiz

    2015-01-15

    Purpose: 4D CT imaging in mice is important in a variety of areas including studies of lung function and tumor motion. A necessary step in 4D imaging is obtaining a respiratory signal, which can be done through an external system or intrinsically through the projection images. A number of methods have been developed that can successfully determine the respiratory signal from cone-beam projection images of humans, however only a few have been utilized in a preclinical setting and most of these rely on step-and-shoot style imaging. The purpose of this work is to assess and make adaptions of several successful methods developed for humans for an image-guided preclinical radiation therapy system. Methods: Respiratory signals were determined from the projection images of free-breathing mice scanned on the X-RAD system using four methods: the so-called Amsterdam shroud method, a method based on the phase of the Fourier transform, a pixel intensity method, and a center of mass method. The Amsterdam shroud method was modified so the sharp inspiration peaks associated with anesthetized mouse breathing could be detected. Respiratory signals were used to sort projections into phase bins and 4D images were reconstructed. Error and standard deviation in the assignment of phase bins for the four methods compared to a manual method considered to be ground truth were calculated for a range of region of interest (ROI) sizes. Qualitative comparisons were additionally made between the 4D images obtained using each of the methods and the manual method. Results: 4D images were successfully created for all mice with each of the respiratory signal extraction methods. Only minimal qualitative differences were noted between each of the methods and the manual method. The average error (and standard deviation) in phase bin assignment was 0.24 ± 0.08 (0.49 ± 0.11) phase bins for the Fourier transform method, 0.09 ± 0.03 (0.31 ± 0.08) phase bins for the modified Amsterdam shroud method, 0

  15. Image-domain motion compensated time resolved 4D cardiac CT

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuyuki; Sun, Zhihui; Segars, W. Paul; Fishman, Elliot K.; Tsui, Benjamin M. W.

    2007-03-01

    Two major problems with the current electrocardiogram-gated cardiac computed tomography (CT) imaging technique are a large patient radiation dose (10-15 mSv) and insufficient temporal resolution (83-165 ms). Our long-term goal is to develop new time resolved and low dose cardiac CT imaging techniques that consist of image reconstruction algorithms and estimation methods of the time-dependent motion vector field (MVF) of the heart from the acquired CT data. Toward this goal, we developed a method that estimates the 2D components of the MVF from a sequence of cardiac CT images and used it to "reconstruct" cardiac images at rapidly moving phases. First, two sharp image frames per heart beat (cycle) obtained at slow motion phases (i.e., mid-diastole and end-systole) were chosen. Nodes were coarsely placed among images; and the temporal motion of each node was modeled by B-splines. Our cost function consisted of 3 terms: mean-squared-error with the block-matching, and smoothness constraints in space and time. The time-dependent MVF was estimated by minimizing the cost function. We then warped images at slow motion phases using the estimated vector fields to "reconstruct" images at rapidly moving phase. The warping algorithm was evaluated using true time-dependent motion vector fields and images both provided by the NCAT phantom program. Preliminary results from ongoing quantitative and qualitative evaluation using the 4D NCAT phantom and patient data are encouraging. Major motion artifact is much reduced. We conclude the new image-based motion estimation technique is an important step toward the development of the new cardiac CT imaging techniques.

  16. 4D Light Field Imaging System Using Programmable Aperture

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam

    2012-01-01

    Complete depth information can be extracted from analyzing all angles of light rays emanated from a source. However, this angular information is lost in a typical 2D imaging system. In order to record this information, a standard stereo imaging system uses two cameras to obtain information from two view angles. Sometimes, more cameras are used to obtain information from more angles. However, a 4D light field imaging technique can achieve this multiple-camera effect through a single-lens camera. Two methods are available for this: one using a microlens array, and the other using a moving aperture. The moving-aperture method can obtain more complete stereo information. The existing literature suggests a modified liquid crystal panel [LC (liquid crystal) panel, similar to ones commonly used in the display industry] to achieve a moving aperture. However, LC panels cannot withstand harsh environments and are not qualified for spaceflight. In this regard, different hardware is proposed for the moving aperture. A digital micromirror device (DMD) will replace the liquid crystal. This will be qualified for harsh environments for the 4D light field imaging. This will enable an imager to record near-complete stereo information. The approach to building a proof-ofconcept is using existing, or slightly modified, off-the-shelf components. An SLR (single-lens reflex) lens system, which typically has a large aperture for fast imaging, will be modified. The lens system will be arranged so that DMD can be integrated. The shape of aperture will be programmed for single-viewpoint imaging, multiple-viewpoint imaging, and coded aperture imaging. The novelty lies in using a DMD instead of a LC panel to move the apertures for 4D light field imaging. The DMD uses reflecting mirrors, so any light transmission lost (which would be expected from the LC panel) will be minimal. Also, the MEMS-based DMD can withstand higher temperature and pressure fluctuation than a LC panel can. Robotics need

  17. An OpenPET scanner with bridged detectors to compensate for incomplete data

    NASA Astrophysics Data System (ADS)

    Tashima, Hideaki; Yamaya, Taiga; Kinahan, Paul E.

    2014-10-01

    We are developing an open-type PET ‘OpenPET’ geometry. One possible geometry is a dual-ring OpenPET, which consists of two detector rings separated by a gap for entrance of a radiotherapy beam or for inserting other modalities. In our previous simulations and experiments the OpenPET imaging geometry was shown to be feasible by applying iterative reconstruction methods. However, the gap violates Orlov’s completeness condition for accurate tomographic reconstruction. In this study, we propose a solution for the incompleteness problem by adding bridge detectors to fill in parts of the gaps of the OpenPET geometry; we call this bridged OpenPET. Although this geometry was considered previously, its analytical property was not discussed. Therefore, we applied the direct Fourier method as an analytical reconstruction method to the bridged OpenPET, dual-ring OpenPET and conventional cylindrical PET for comparison. Numerical simulations showed that the additional bridge detectors compensate for the incompleteness of the OpenPET by covering one direction perpendicular to the transaxial slices of the imaging subjects.

  18. Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: A technical feasibility study

    SciTech Connect

    Boye, Dirk; Lomax, Tony; Knopf, Antje

    2013-06-15

    Purpose: Target sites affected by organ motion require a time resolved (4D) dose calculation. Typical 4D dose calculations use 4D-CT as a basis. Unfortunately, 4D-CT images have the disadvantage of being a 'snap-shot' of the motion during acquisition and of assuming regularity of breathing. In addition, 4D-CT acquisitions involve a substantial additional dose burden to the patient making many, repeated 4D-CT acquisitions undesirable. Here the authors test the feasibility of an alternative approach to generate patient specific 4D-CT data sets. Methods: In this approach motion information is extracted from 4D-MRI. Simulated 4D-CT data sets [which the authors call 4D-CT(MRI)] are created by warping extracted deformation fields to a static 3D-CT data set. The employment of 4D-MRI sequences for this has the advantage that no assumptions on breathing regularity are made, irregularities in breathing can be studied and, if necessary, many repeat imaging studies (and consequently simulated 4D-CT data sets) can be performed on patients and/or volunteers. The accuracy of 4D-CT(MRI)s has been validated by 4D proton dose calculations. Our 4D dose algorithm takes into account displacements as well as deformations on the originating 4D-CT/4D-CT(MRI) by calculating the dose of each pencil beam based on an individual time stamp of when that pencil beam is applied. According to corresponding displacement and density-variation-maps the position and the water equivalent range of the dose grid points is adjusted at each time instance. Results: 4D dose distributions, using 4D-CT(MRI) data sets as input were compared to results based on a reference conventional 4D-CT data set capturing similar motion characteristics. Almost identical 4D dose distributions could be achieved, even though scanned proton beams are very sensitive to small differences in the patient geometry. In addition, 4D dose calculations have been performed on the same patient, but using 4D-CT(MRI) data sets based on

  19. 4D phase-space multiplexing for fluorescent microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2016-03-01

    Phase-space measurements enable characterization of second-order spatial coherence properties and can be used for digital aberration removal or 3D position reconstruction. Previous methods use a scanning aperture to measure the phase space spectrogram, which is slow and light inefficient, while also attenuating information about higher-order correlations. We demonstrate a significant improvement of speed and light throughput by incorporating multiplexing techniques into our phase-space imaging system. The scheme implements 2D coded aperture patterning in the Fourier (pupil) plane of a microscope using a Spatial Light Modulator (SLM), while capturing multiple intensity images in real space. We compare various multiplexing schemes to scanning apertures and show that our phase-space reconstructions are accurate for experimental data with biological samples containing many 3D fluorophores.

  20. 4D prediction of protein (1)H chemical shifts.

    PubMed

    Lehtivarjo, Juuso; Hassinen, Tommi; Korhonen, Samuli-Petrus; Peräkylä, Mikael; Laatikainen, Reino

    2009-12-01

    A 4D approach for protein (1)H chemical shift prediction was explored. The 4th dimension is the molecular flexibility, mapped using molecular dynamics simulations. The chemical shifts were predicted with a principal component model based on atom coordinates from a database of 40 protein structures. When compared to the corresponding non-dynamic (3D) model, the 4th dimension improved prediction by 6-7%. The prediction method achieved RMS errors of 0.29 and 0.50 ppm for Halpha and HN shifts, respectively. However, for individual proteins the RMS errors were 0.17-0.34 and 0.34-0.65 ppm for the Halpha and HN shifts, respectively. X-ray structures gave better predictions than the corresponding NMR structures, indicating that chemical shifts contain invaluable information about local structures. The (1)H chemical shift prediction tool 4DSPOT is available from http://www.uku.fi/kemia/4dspot . PMID:19876601

  1. Chaos in a 4D dissipative nonlinear fermionic model

    NASA Astrophysics Data System (ADS)

    Aydogmus, Fatma

    2015-12-01

    Gursey Model is the only possible 4D conformally invariant pure fermionic model with a nonlinear self-coupled spinor term. It has been assumed to be similar to the Heisenberg's nonlinear generalization of Dirac's equation, as a possible basis for a unitary description of elementary particles. Gursey Model admits particle-like solutions for the derived classical field equations and these solutions are instantonic in character. In this paper, the dynamical nature of damped and forced Gursey Nonlinear Differential Equations System (GNDES) are studied in order to get more information on spinor type instantons. Bifurcation and chaos in the system are observed by constructing the bifurcation diagrams and Poincaré sections. Lyapunov exponent and power spectrum graphs of GNDES are also constructed to characterize the chaotic behavior.

  2. 4D Script N = 2 supergravity and projective superspace

    NASA Astrophysics Data System (ADS)

    Kuzenko, S. M.; Lindström, U.; Rocek, M.; Tartaglino-Mazzucchelli, G.

    2008-09-01

    This paper presents a projective superspace formulation for 4D Script N = 2 matter-coupled supergravity. We first describe a variant superspace realization for the Script N = 2 Weyl multiplet. It differs from that proposed by Howe in 1982 by the choice of the structure group (SO(3,1) × SU(2) versus SO(3,1) × U(2)), which implies that the super-Weyl transformations are generated by a covariantly chiral parameter instead of a real unconstrained one. We introduce various off-shell supermultiplets which are curved superspace analogues of the superconformal projective multiplets in global supersymmetry and which describe matter fields coupled to supergravity. A manifestly locally supersymmetric and super-Weyl invariant action principle is given. Off-shell locally supersymmetric nonlinear sigma models are presented in this new superspace.

  3. Mechanical properties of 4d transition metals in molten state

    NASA Astrophysics Data System (ADS)

    Singh, Deobrat; Sonvane, Yogesh; Thakor, P. B.

    2016-05-01

    Mechanical properties of 4d transition metals in molten state have been studied in the present study. We have calculated mechanical properties such as isothermal bulk modulus (B), modulus of rigidity (G), Young's modulus (Y) and Hardness have also been calculated from the elastic part of the Phonon dispersion curve (PDC). To describe the structural information, we have used different structure factor S(q) using Percus-Yevick hard sphere (PYHS) reference systems along with our newly constructed parameter free model potential.To see the influence of exchange and correlation effect on the above said properties of 3d liquid transition metals, we have used Sarkar et al (S)local field correction functions. Present results have been found good in agreement with available experimental data.

  4. Immersive 4-D Interactive Visualization of Large-Scale Simulations

    NASA Astrophysics Data System (ADS)

    Teuben, P. J.; Hut, P.; Levy, S.; Makino, J.; McMillan, S.; Portegies Zwart, S.; Shara, M.; Emmart, C.

    In dense clusters a bewildering variety of interactions between stars can be observed, ranging from simple encounters to collisions and other mass-transfer encounters. With faster and special-purpose computers like GRAPE, the amount of data per simulation is now exceeding 1 TB. Visualization of such data has now become a complex 4-D data-mining problem, combining space and time, and finding interesting events in these large datasets. We have recently starting using the virtual reality simulator, installed in the Hayden Planetarium in the American Museum for Natural History, to tackle some of these problem. This work reports on our first ``observations,'' modifications needed for our specific experiments, and perhaps field ideas for other fields in science which can benefit from such immersion. We also discuss how our normal analysis programs can be interfaced with this kind of visualization.

  5. Effect of heart rate on CT angiography using the enhanced cardiac model of the 4D NCAT

    NASA Astrophysics Data System (ADS)

    Segars, W. P.; Taguchi, K.; Fung, G. S. K.; Fishman, E. K.; Tsui, B. M. W.

    2006-03-01

    We investigate the effect of heart rate on the quality and artifact generation in coronary artery images obtained using multi-slice computed tomography (MSCT) with the purpose of finding the optimal time resolution for data acquisition. To perform the study, we used the 4D NCAT phantom, a computer model of the normal human anatomy and cardiac and respiratory motions developed in our laboratory. Although capable of being far more realistic, the 4D NCAT cardiac model was originally designed for low-resolution imaging research, and lacked the anatomical detail to be applicable to high-resolution CT. In this work, we updated the cardiac model to include a more detailed anatomy and physiology based on high-resolution clinical gated MSCT data. To demonstrate its utility in high-resolution dynamic CT imaging research, the enhanced 4D NCAT was then used in a pilot simulation study to investigate the effect of heart rate on CT angiography. The 4D NCAT was used to simulate patients with different heart rates (60-120 beats/minute) and with various cardiac plaques of known size and location within the coronary arteries. For each simulated patient, MSCT projection data was generated with data acquisition windows ranging from 100 to 250 ms centered within the quiet phase (mid-diastole) of the heart using an analytical CT projection algorithm. CT images were reconstructed from the projection data, and the contrast of the plaques was then measured to assess the effect of heart rate and to determine the optimal time resolution required for each case. The 4D NCAT phantom with its realistic model for the cardiac motion was found to provide a valuable tool from which to optimize CT cardiac applications. Our results indicate the importance of optimizing the time resolution with regard to heart rate and plaque location for improved CT images at a reduced patient dose.

  6. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    NASA Astrophysics Data System (ADS)

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V.; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L.; Beauchemin, Steven S.; Rodrigues, George; Gaede, Stewart

    2015-02-01

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  7. Quantitative evaluation of PET image using event information bootstrap

    NASA Astrophysics Data System (ADS)

    Song, Hankyeol; Kwak, Shin Hye; Kim, Kyeong Min; Kang, Joo Hyun; Chung, Yong Hyun; Woo, Sang-Keun

    2016-04-01

    The purpose of this study was to enhance the effect in the PET image quality according to event bootstrap of small animal PET data. In order to investigate the time difference condition, realigned sinograms were generated from randomly sampled data set using bootstrap. List-mode data was obtained from small animal PET scanner for Ge-68 30 sec, Y-90 20 min and Y-90 60 min. PET image was reconstructed by Ordered Subset Expectation Maximization(OSEM) 2D with the list-mode format. Image analysis was investigated by Signal to Noise Ratio(SNR) of Ge-68 and Y-90 image. Non-parametric resampled PET image SNR percent change for the Ge-68 30 sec, Y-90 60 min, and Y-90 20 min was 1.69 %, 7.03 %, and 4.78 %, respectively. SNR percent change of non-parametric resampled PET image with time difference condition was 1.08 % for the Ge-68 30 sec, 6.74 % for the Y-90 60 min and 10.94 % for the Y-90 29 min. The result indicated that the bootstrap with time difference condition had a potential to improve a noisy Y-90 PET image quality. This method should be expected to reduce Y-90 PET measurement time and to enhance its accuracy.

  8. Parallel Wavefront Analysis for a 4D Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  9. Direct Estimation of Kinetic Parametric Images for Dynamic PET

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2013-01-01

    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed. PMID:24396500

  10. 4D Dynamic RNP Annual Interim Report-Year 1

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Chung, William W.; Salvano, Daniel; Klooster, Joel; Hochwarth, Joachim K.

    2010-01-01

    This Annual Interim Report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results obtained during the first year of this research effort to expand the RNP concept to 4 dimensions relative to a dynamic frame of reference. Joint Program Development Office (JPDO)Concepts of Operations for the Next Generation Air Transportation System (NextGen) considers 4 Dimension Trajectory (4DT) procedures a key enabler to Trajectory Based Operations (TBO). The JPDO defines 4DT as a precise description of an aircraft path in space and time . While NextGen assumes that this path is defined within an Earth-reference frame, many 4DT procedure implementations will require an aircraft to precisely navigate relative to a moving reference such as another aircraft to form aggregate flows or a weather cell to allow for flows to shift. Current methods of implementing routes and flight paths rely on aircraft meeting a Required Navigation Performance (RNP) specification and being equipped with a monitoring and alerting capability to annunciate when the aircraft system is unable to meet the performance specification required for the operation. Since all aircraft today operate within the NAS relative to fixed reference points, the current RNP definition is deemed satisfactory. However, it is not well understood how the current RNP construct will support NextGen 4DT procedures where aircraft operate relative to each other or to other dynamic frames of reference. The objective of this research effort is to analyze candidate 4DT procedures from both an Air Navigation Service Provider (ANSP) and aircraft perspective, to identify their specific navigational requirements, assess the shortcomings of the current RNP construct to meet these requirements, to propose an extended 4 Dimensional Dynamic RNP (4D Dynamic RNP) construct that accounts for the dynamic spatial and temporal nature of the selected 4DT procedures, and finally, to design an

  11. Extracting a respiratory signal from raw dynamic PET data that contain tracer kinetics

    NASA Astrophysics Data System (ADS)

    Schleyer, P. J.; Thielemans, K.; Marsden, P. K.

    2014-08-01

    Data driven gating (DDG) methods provide an alternative to hardware based respiratory gating for PET imaging. Several existing DDG approaches obtain a respiratory signal by observing the change in PET-counts within specific regions of acquired PET data. Currently, these methods do not allow for tracer kinetics which can interfere with the respiratory signal and introduce error. In this work, we produced a DDG method for dynamic PET studies that exhibit tracer kinetics. Our method is based on an existing approach that uses frequency-domain analysis to locate regions within raw PET data that are subject to respiratory motion. In the new approach, an optimised non-stationary short-time Fourier transform was used to create a time-varying 4D map of motion affected regions. Additional processing was required to ensure that the relationship between the sign of the respiratory signal and the physical direction of movement remained consistent for each temporal segment of the 4D map. The change in PET-counts within the 4D map during the PET acquisition was then used to generate a respiratory curve. Using 26 min dynamic cardiac NH3 PET acquisitions which included a hardware derived respiratory measurement, we show that tracer kinetics can severely degrade the respiratory signal generated by the original DDG method. In some cases, the transition of tracer from the liver to the lungs caused the respiratory signal to invert. The new approach successfully compensa