Science.gov

Sample records for 4d photoionization states

  1. Quasibound continuum states in SiF4 (D~ 2A1) photoionization: Photoelectron-vibrational coupling

    NASA Astrophysics Data System (ADS)

    Montuoro, Raffaele; Lucchese, Robert R.; Bozek, John D.; Das, Aloke; Poliakoff, E. D.

    2007-06-01

    The authors report a fully vibrationally resolved photoelectron spectroscopy investigation of a nonplanar molecule studied over a range of excitation energies. Experimental results for all four fundamental vibrational modes are presented. In each case significant non-Franck-Condon effects are seen. The vibrational branching ratio for the totally symmetric mode ν1+ is found to be strongly affected by resonant excitation in the SiF4+ (D˜A12) photoionization channel. This is shown to be the result of two distinct shape resonances, which for the first time have been both confirmed by theoretical calculations. Vibrationally resolved Schwinger photoionization calculations are used to understand the vibronic coupling for the photoelectrons, both using ab initio and harmonic vibrational wave functions.

  2. Double Photoionization into Double Core-Hole States in Xe

    SciTech Connect

    Hikosaka, Y.; Kaneyasu, T.; Shigemasa, E.; Lablanquie, P.; Penent, F.; Eland, J. H. D.; Aoto, T.; Ito, K.

    2007-05-04

    Double photoionization (DPI) leading to double core-hole states of Xe{sup 2+} 4d{sup -2} has been studied using a magnetic bottle time-of-flight spectrometer. The assignments of the Xe{sup 2+} 4d{sup -2} states are confirmed by the Auger lines extracted from fourfold coincidences including two photoelectrons and two Auger electrons. It is estimated that the core-core DPI into Xe{sup 2+} 4d{sup -2} at a photon energy of 301.6 eV has a favored cross section of about 0.3 MB. The intense core-core DPI is due to mixing of the 4d{sup -2} continuum with the 4p single photoionization, which is manifested in the relative intensities of the Xe{sup 2+} 4d{sup -2} components.

  3. Significant Redistribution of Ce 4d Oscillator Strength Observed in Photoionization of Endohedral Ce-C{sub 82}{sup +} Ions

    SciTech Connect

    Mueller, A.; Schippers, S.; Habibi, M.; Esteves, D.; Wang, J. C.; Phaneuf, R. A.; Kilcoyne, A. L. D.; Aguilar, A.; Dunsch, L.

    2008-09-26

    Mass-selected beams of atomic Ce{sup q+} ions (q=2, 3, 4), of C{sub 82}{sup +} and of endohedral Ce-C{sub 82}{sup +} ions were employed to study photoionization of free and encaged cerium atoms. The Ce 4d inner-shell contributions to single and double ionization of the endohedral Ce-C{sub 82}{sup +} fullerene have been extracted from the data and compared with expectations based on theory and the experiments with atomic Ce ions. Dramatic reduction and redistribution of the ionization contributions to 4d photoabsorption is observed. More than half of the Ce 4d oscillator strength appears to be diverted to the additional decay channels opened by the fullerene cage surrounding the Ce atom.

  4. Photoionization of aligned molecular excited states

    NASA Astrophysics Data System (ADS)

    Appling, J. R.; White, M. G.; Kessler, W. J.; Fernandez, R.; Poliakoff, E. D.

    1988-02-01

    Photoelectron angular distributions of several excited states of NO have been measured in an effort to better elucidate the role of alignment in resonant multiphoton excitation processes of molecules. In contrast to previous molecular REMPI measurements on NO, (2+1) angular distributions taken for low rotational levels of the E 2Σ+ (4sσ) Rydberg state of NO exhibit complex angular behavior which is characteristic of strong spatial alignment of the optically prepared levels. Photoelectron angular distributions were also found to be strongly branch and J dependent with the lowest rotational levels of the R21+S11 branch exhibiting the full anisotropy expected for an overall three-photon process. Fluorescence anisotropies extracted from complementary two-photon fluorescence angular distribution measurements reveal small, but nonzero alignment in all rotational levels with J>1/2, in contrast to the photoelectron results. Additional photoelectron angular distributions taken for (1+1) REMPI via the A 2Σ+ (3sσ), v=0 state exhibit near ``cos2θ'' distributions characteristic of photoionization of unaligned target states. The observed photoelectron data are qualitatively interpreted on the basis of the angular momentum constraints of the excitation-induced alignment and photoionization dynamics which determine the observable moments in the angular distribution.

  5. A theoretical CMS-X α treatment of CH 3I photoionization dynamics: outer valence shell and iodine 4d levels

    NASA Astrophysics Data System (ADS)

    Powis, Ivan

    1995-12-01

    Continuum multiple scattering (CMS-X α) calculations are used to investigate methyl iodide photoionization dynamics. The validity of atomic versus molecular models of behaviour for the localised iodine 4d and 5p (lone pair) electrons, where conflicting experimental interpretations have been offered, is examined. A good account of all the available experimental data is obtained. While the calculations provide some limited support for an atomic-like description of the iodine 4d -1 phenomenological cross-section, the atomic picture has little validity for the 5p -1 ionization. Variations in both cross-section and β parameter which were previously ascribed to the Cooper minimum are identified to be more likely a core-valence shell interaction, opening above the 4d -1 threshold. The other valence shell channels are similarly affected. Significant l-wave mixing, induced by the molecular anisotropy, is found to result in the creation of mixed parity final states, contrary to the atomic model. In these circumstances odd and even harmonic components can interfere to create orientation (odd harmonic terms) in the photoelectron angular distribution (PAD). Molecule frame PADs are calculated and compared to experimental data for the ionization of oriented molecules, confirming an intuitive expectation of asymmetric electron emission from an asymmetric molecule. The CH 3 group therefore acts as a non-negligible perturbation, even on quite localised iodine 5p electrons, and the molecular environment is a paramount factor.

  6. On the electron wavepacket dynamics of photoionizing states

    NASA Astrophysics Data System (ADS)

    Takatsuka, Kazuo

    2014-06-01

    To study electron wavepacket dynamics of photoionizing states in polyatomic molecules, we discuss two crucial issues to be overcome in the theory of molecular electronic wavepacket dynamics in an intense laser field (Takatsuka and Yonehara 2011 Phys. Chem. Chem. Phys. 13 4987). One is about the description of the ionization process from electronically excited states composed of many multiply excited configuration-state functions. The other is how to reconstruct the electronic states remaining in the molecular site while electrons are flowing out of the molecular bounds. These are both critical to extend the realm of the theories of electron dynamics based on the so-called expansion (algebraic) method in terms of basis functions. To calculate the photoionization amplitude and thereby to estimate the time-dependent amount of electron loss from a molecule, we extract the electron flux (probability current density) from the electron wavepackets without use of scattering theory. This is justified by the success of the recent works by Bandrauk’s group for attosecond photoionization dynamics from the hydrogen molecule ion, who performed numerical integration of the relevant Schrödinger equation (Yuan et al 2013 J. Chem. Phys. 138 134316). A key feature in the present study, on the other hand, is to calculate the electron flux in terms of complex-valued NOs, which arise from the complex electronic wavepackets. Through the change of these NOs, we reconstruct the involved electronic configurations during the flow of electrons out of molecular regions. These repopulated electronic wavefunctions are (non-adiabatically) evolved in time under laser fields.

  7. State-resolved molecular photoionization dynamics of polyatomic systems: Effects of non-linear changes in molecular geometry

    NASA Astrophysics Data System (ADS)

    Miller, James Scott

    An important topic in the absorption of vacuum ultraviolet photons by molecules is the correlation between electronic and nuclear degrees of freedom during photoionization. However, no previous investigations have probed the correlation between bending excitation and photoejection dynamics over a wide spectral range. We present the first such studies by reporting the influence of bending excitation following CO2 3σu -1 and N2O 7σ-1 photoionization over the photon energy range (15 eV < hvexc < 200 eV). Using dispersed fluorescence spectroscopy in conjunction with synchrotron radiation, we determine the vibrational branching ratio v+ = (0,1,0)( 0,0,0) for the CO2+ (B 2Σu+) and N2O+ (A 2Σ+) electronic states. The relative rate of production of the υ2 = 1 upper vibrational state varies over a broad ionization energy range, and in ways that are largely unanticipated. These branching ratios exhibit a strong thermal dependence, and we are able to separate out effects due to hot-band excitation from those that are due to vibronic coupling. The data indicate that the continuum electron is responsible for the observed energy dependence in CO2 3σ u-1 photoionization. This is a previously unobserved result. Additional studies examine the influence of simultaneous excitation in the bending and symmetric stretching modes in N2O+ [A 2Σ+, v + = (1,1,0)] to determine the effect of changing the energy separation of vibronically coupled potential surfaces. Finally, the CF4 + [D 2A1, v+ = (1,0,0,0)/(0,0,0,0)] branching ratio is studied, which provides the first experimental observation of a predicted low-energy shape resonance in this photoionization pathway.

  8. State-to-State Spectroscopy and Dynamics of Ions and Neutrals by Photoionization and Photoelectron Methods

    NASA Astrophysics Data System (ADS)

    Ng, Cheuk-Yiu

    2014-04-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  9. State-to-state spectroscopy and dynamics of ions and neutrals by photoionization and photoelectron methods.

    PubMed

    Ng, Cheuk-Yiu

    2014-01-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  10. Photoionization cross sections of the excited 3s3p 3Po state for atomic Mg

    NASA Astrophysics Data System (ADS)

    Wang, Guoli; Wan, Jianjie; Zhou, Xiaoxin

    2017-01-01

    The photoionization cross sections of the excited levels (3s3p 0,1,2,o 3P) of atomic Mg have been studied theoretically using both the nonrelativistic and fully relativistic R-matrix method. For the threshold cross sections, as previous nonrelativistic studies, present calculations show significant differences (a factor of 3) from former experimental values. Large discrepancies with experiment calls for additional measurements of the photoionization cross sections from the excited states of Mg.

  11. GaAs-oxide interface states - A gigantic photoionization effect and its implications to the origin of these states

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Walukiewicz, W.; Kazior, T. E.; Gatos, H. C.; Siejka, J.

    1981-01-01

    Gigantic photoionization was discovered on GaAs-oxide interfaces leading to the discharge of deep surface states with rates exceeding 1000 times those of photoionization transitions to the conduction band. It exhibits a peak similar to acceptor-donor transitions and is explained as due to energy transfer from photo-excited donor-acceptor pairs to deep surface states. This new process indicates the presence of significant concentrations of shallow donor and acceptor levels not recognized in previous interface models.

  12. Photoionization from the 5p {sup 2}P{sub 3/2} state of rubidium

    SciTech Connect

    Nadeem, Ali; Haq, S. U.

    2011-06-15

    We report two-step photoionization studies from the 5p {sup 2}P{sub 3/2} excited state of rubidium using two dye lasers simultaneously pumped by a common Nd:YAG laser in conjunction with a thermionic diode ion detector. The photoionization cross section at the first ionization threshold is measured as 18.8 {+-} 3 Mb and at excess energies of 0.013, 0.106, 0.229, and 0.329 eV is measured as 15, 13.6, 12.6, and 12.5 Mb, respectively. The measured value of the photoionization cross section at the threshold is used to calibrate the oscillator strengths of the 5p {sup 2}P{sub 3/2}{yields}nd {sup 2}D{sub 5/2} (22 {<=}n{<=} 52) Rydberg transitions.

  13. Trauma-related altered states of consciousness: exploring the 4-D model.

    PubMed

    Frewen, Paul A; Lanius, Ruth A

    2014-01-01

    Frewen and Lanius (in press) recently articulated a 4-D model as a framework for classifying symptoms of posttraumatic stress into those that potentially occur within normal waking consciousness (NWC) versus those that intrinsically represent dissociative experiences of trauma-related altered states of consciousness (TRASC). Four dimensions were specified: time-memory, thought, body, and emotion. The 4-D model further hypothesizes that in traumatized persons, symptoms of TRASC, compared with NWC forms of distress, will be (a) observed less frequently; (b) less intercorrelated, especially as measured as moment-to-moment states; (c) observed more frequently in people with high dissociative symptomatology as measured independently; and (d) observed more often in people who have experienced repeated traumatization, particularly early developmental trauma. The aim of the present research was to begin to evaluate these 4 predictions of the 4-D model. Within a sample of 74 women with posttraumatic stress disorder (PTSD) primarily due to histories of childhood trauma, as well as within a 2nd sample of 504 undergraduates (384 females), the 1st 2 hypotheses of the 4-D model were supported. In addition, within the PTSD sample, the 3rd hypothesis was supported. However, inconsistent with the 4th hypothesis, severity of childhood trauma history was not strongly associated with TRASC. We conclude that the hypotheses articulated by the 4-D model were generally supported, although further research in different trauma-related disorders is needed, and the role of childhood trauma history in the etiology of TRASC requires further research.

  14. Using vibrational branching ratios to probe initial and final state effects in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Lucchese, Robert R.; Bozek, John D.; Das, Aloke; Poliakoff, E. D.

    2009-11-01

    Recent computed and experimental results for ICN, BF3 and C6F6 will be presented. In ICN we consider the ionization leading to the X2 Π1/2,3/2 states of ICN+. We show how the geometry dependence of the initial state orbital can be studied using vibrational branching ratios. In C6F6, we consider the excitation of the effects of two prominent shape resonances on the symmetric stretching modes in the photoionization leading to the C 3B2u state of the ion. In BF3, the excitation of both the symmetric stretching and the degenerate asymmetric stretching modes are considered in the photoionization leading to the E2A1' state of the ion.

  15. State-To Spectroscopy and Dynamics of Ions and Neutrals by Photoionization and Photoelectron Methods

    NASA Astrophysics Data System (ADS)

    Ng, Cheuk-Yiu

    2014-06-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (VIS)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. We show that VUV laser photoionization coupled with velocity-map-imaging (VMI)-threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolutions, but higher detection sensitivities than those observed in VUV laser pulsed field ionization-photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and VIS-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE and VIS-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI-photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  16. Trauma-Related Altered States of Consciousness: Exploring the 4-D Model

    PubMed Central

    Frewen, Paul A.; Lanius, Ruth A.

    2014-01-01

    Frewen and Lanius (in press) recently articulated a 4-D model as a framework for classifying symptoms of posttraumatic stress into those that potentially occur within normal waking consciousness (NWC) versus those that intrinsically represent dissociative experiences of trauma-related altered states of consciousness (TRASC). Four dimensions were specified: time-memory, thought, body, and emotion. The 4-D model further hypothesizes that in traumatized persons, symptoms of TRASC, compared with NWC forms of distress, will be (a) observed less frequently; (b) less intercorrelated, especially as measured as moment-to-moment states; (c) observed more frequently in people with high dissociative symptomatology as measured independently; and (d) observed more often in people who have experienced repeated traumatization, particularly early developmental trauma. The aim of the present research was to begin to evaluate these 4 predictions of the 4-D model. Within a sample of 74 women with posttraumatic stress disorder (PTSD) primarily due to histories of childhood trauma, as well as within a 2nd sample of 504 undergraduates (384 females), the 1st 2 hypotheses of the 4-D model were supported. In addition, within the PTSD sample, the 3rd hypothesis was supported. However, inconsistent with the 4th hypothesis, severity of childhood trauma history was not strongly associated with TRASC. We conclude that the hypotheses articulated by the 4-D model were generally supported, although further research in different trauma-related disorders is needed, and the role of childhood trauma history in the etiology of TRASC requires further research. PMID:24650122

  17. Vertical D4-D2-D0 Bound States on K3 Fibrations and Modularity

    NASA Astrophysics Data System (ADS)

    Bouchard, Vincent; Creutzig, Thomas; Diaconescu, Duiliu-Emanuel; Doran, Charles; Quigley, Callum; Sheshmani, Artan

    2017-03-01

    An explicit formula is derived for the generating function of vertical D4-D2-D0 bound states on smooth K3 fibered Calabi-Yau threefolds, generalizing previous results of Gholampour and Sheshmani. It is also shown that this formula satisfies strong modularity properties, as predicted by string theory. This leads to a new construction of vector valued modular forms which exhibit some of the features of a generalized Hecke transform.

  18. Photoionization cross section measurements of the excited states of cobalt in the near-threshold region

    SciTech Connect

    Zheng, Xianfeng Zhou, Xiaoyu; Cheng, Zaiqi; Jia, Dandan; Qu, Zehua; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2014-10-15

    We present measurements of photoionization cross-sections of the excited states of cobalt using a two-color, two-step resonance ionization technique in conjunction with a molecular beam time of flight (TOF) mass spectrometer. The atoms were produced by the laser vaporization of a cobalt rod, coupled with a supersonic gas jet. The absolute photoionization cross-sections at threshold and near-threshold regions (0-1.2 eV) were measured, and the measured values ranged from 4.2±0.7 Mb to 10.5±1.8 Mb. The lifetimes of four odd parity energy levels are reported for the first time.

  19. Competition between ultrafast relaxation and photoionization in excited prefluorescent states of tryptophan and indole

    NASA Astrophysics Data System (ADS)

    Sherin, P. S.; Snytnikova, O. A.; Tsentalovich, Yu. P.; Sagdeev, R. Z.

    2006-10-01

    The quantum yield of photoionization of TrpH and IndH from the nonrelaxed prefluorescent state S* increases with the temperature decrease. This effect is attributed to the competition between temperature independent ionization and ultrafast thermal relaxation S*→S1. The rate constant of the relaxation does not depend on the solvent and on the presence of the amino acid side chain: the temperature dependences of photoionization quantum yield, obtained for TrpH and IndH in different solvents, practically coincide. The activation energy for the relaxation rate constant Er≈4.5kJ/mol probably corresponds to intramolecular process or to the formation of the vibronically excited transient complex between photoexcited molecule and solvent molecules.

  20. 3D and 4D Seismic Imaging in the Oilfield; the state of the art

    NASA Astrophysics Data System (ADS)

    Strudley, A.

    2005-05-01

    Seismic imaging in the oilfield context has seen enormous changes over the last 20 years driven by a combination of improved subsurface illumination (2D to 3D), increased computational power and improved physical understanding. Today Kirchhoff Pre-stack migration (in time or depth) is the norm with anisotropic parameterisation and finite difference methods being increasingly employed. In the production context Time-Lapse (4D) Seismic is of growing importance as a tool for monitoring reservoir changes to facilitate increased productivity and recovery. In this paper we present an overview of state of the art technology in 3D and 4D seismic and look at future trends. Pre-stack Kirchhoff migration in time or depth is the imaging tool of choice for the majority of contemporary 3D datasets. Recent developments in 3D pre-stack imaging have been focussed around finite difference solutions to the acoustic wave equation, the so-called Wave Equation Migration methods (WEM). Application of finite difference solutions to imaging is certainly not new, however 3D pre-stack migration using these schemes is a relatively recent development driven by the need for imaging complex geologic structures such as sub salt, and facilitated by increased computational resources. Finally there are a class of imaging methods referred to as beam migration. These methods may be based on either the wave equation or rays, but all operate on a localised (in space and direction) part of the wavefield. These methods offer a bridge between the computational efficiency of Kirchhoff schemes and the improved image quality of WEM methods. Just as 3D seismic has had a radical impact on the quality of the static model of the reservoir, 4D seismic is having a dramatic impact on the dynamic model. Repeat shooting of seismic surveys after a period of production (typically one to several years) reveals changes in pressure and saturation through changes in the seismic response. The growth in interest in 4D seismic

  1. GaAs-oxide interface states - Gigantic photoionization via Auger-like process

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Kazior, T. E.; Gatos, H. C.; Walukiewicz, W.; Siejka, J.

    1981-01-01

    Spectral and transient responses of photostimulated current in MOS structures were employed for the study of GaAs-anodic oxide interface states. Discrete deep traps at 0.7 and 0.85 eV below the conduction band were found with concentrations of 5 x 10 to the 12th/sq cm and 7 x 10 to the 11th/sq cm, respectively. These traps coincide with interface states induced on clean GaAs surfaces by oxygen and/or metal adatoms (submonolayer coverage). In contrast to surfaces with low oxygen coverage, the GaAs-thick oxide interfaces exhibited a high density (about 10 to the 14th/sq cm) of shallow donors and acceptors. Photoexcitation of these donor-acceptor pairs led to a gigantic photoionization of deep interface states with rates 1000 times greater than direct transitions into the conduction band. The gigantic photoionization is explained on the basis of energy transfer from excited donor-acceptor pairs to deep states.

  2. Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy.

    PubMed

    Bose, Riya; Bera, Ashok; Parida, Manas R; Adhikari, Aniruddha; Shaheen, Basamat S; Alarousu, Erkki; Sun, Jingya; Wu, Tom; Bakr, Osman M; Mohammed, Omar F

    2016-07-13

    Surface trap states in copper indium gallium selenide semiconductor nanocrystals (NCs), which serve as undesirable channels for nonradiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with subpicosecond temporal and nanometer spatial resolutions. Here, we precisely map the collective surface charge carrier dynamics of copper indium gallium selenide NCs as a function of the surface trap states before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, the removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  3. Charge state distributions after K-shell photoionization of K and Ar atoms

    NASA Astrophysics Data System (ADS)

    Hertlein, Marcus; Belkacem, Ali; Cole, Kyra; Feinberg, Benedict; Maddi, Jason; Prior, Michael; Schriel, Ralf

    2003-05-01

    We have investigated K-shell photoionization of Ar and K at the Advanced Light Source to unravel the effect of the 4s electron of K on the relaxation of the K-shell hole. We measured the charge state distribution as a function of photon energy as it is varied across the respective K-edges of both atoms. Both Ar and K exhibit a very similar mean charge state after the interaction with the photons, with 4+ being the most probable charge state. However our first analysis shows a markedly different envelope of the charge state distribution. We will present the ratio of probabilities Ar(q+)/K(q+) for each charge state q as a function of the x-ray energy normalized to the K-edge energy of each atom.

  4. Communication: State-to-state photoionization and photoelectron study of vanadium methylidyne radical (VCH)

    SciTech Connect

    Luo, Zhihong; Zhang, Zheng; Huang, Huang; Chang, Yih-Chung; Ng, C. Y.

    2014-05-14

    By employing the infrared (IR)-ultraviolet (UV) laser excitation scheme, we have obtained rotationally selected and resolved pulsed field ionization-photoelectron (PFI-PE) spectra for vanadium methylidyne cation (VCH{sup +}). This study supports that the ground state electronic configuration for VCH{sup +} is …7σ{sup 2}8σ{sup 2}3π{sup 4}9σ{sup 1} (X{sup ~2}Σ{sup +}), and is different from that of …7σ{sup 2}8σ{sup 2}3π{sup 4}1δ{sup 1} (X{sup ~2}Δ) for the isoelectronic TiO{sup +} and VN{sup +} ions. This observation suggests that the addition of an H atom to vanadium carbide (VC) to form VCH has the effect of stabilizing the 9σ orbital relative to the 1δ orbital. The analysis of the state-to-state IR-UV-PFI-PE spectra has provided precise values for the ionization energy of VCH, IE(VCH) = 54 641.9 ± 0.8 cm{sup −1} (6.7747 ± 0.0001 eV), the rotational constant B{sup +} = 0.462 ± 0.002 cm{sup −1}, and the v{sub 2}{sup +} bending (626 ± 1 cm{sup −1}) and v{sub 3}{sup +} V–CH stretching (852 ± 1 cm{sup −1}) vibrational frequencies for VCH{sup +}(X{sup ~2}Σ{sup +}). The IE(VCH) determined here, along with the known IE(V) and IE(VC), allows a direct measure of the change in dissociation energy for the V–CH as well as the VC–H bond upon removal of the 1δ electron of VCH(X{sup ~3}Δ{sub 1}). The formation of VCH{sup +}(X{sup ~2}Σ{sup +}) from VCH(X{sup ~3}Δ{sub 1}) by photoionization is shown to strengthen the VC–H bond by 0.3559 eV, while the strength of the V–CH bond remains nearly unchanged. This measured change of bond dissociation energies reveals that the highest occupied 1δ orbital is nonbonding for the V–CH bond; but has anti-bonding or destabilizing character for the VC–H bond of VCH(X{sup ~3}Δ{sub 1})

  5. Vibrationally specific photoionization cross sections of acrolein leading to the X̃²A' ionic state.

    PubMed

    López-Domínguez, Jesús A; Lucchese, Robert R; Fulfer, K D; Hardy, David; Poliakoff, E D; Aguilar, A A

    2014-09-07

    The vibrational branching ratios in the photoionization of acrolein for ionization leading to the X̃²A' ion state were studied. Computed logarithmic derivatives of the cross section and the corresponding experimental data derived from measured vibrational branching ratios for several normal modes (ν9, ν10, ν11, and ν12) were found to be in relatively good agreement, particularly for the lower half of the 11-100 eV photon energy range considered. Two shape resonances have been found near photon energies of 15.5 and 23 eV in the photoionization cross section and have been demonstrated to originate from the partial cross section of the A' scattering symmetry. The wave functions computed at the resonance complex energies are delocalized over the whole molecule. By looking at the dependence of the cross section on the different normal mode displacements together with the wave function at the resonant energy, a qualitative explanation is given for the change of the cross sections with respect to changing geometry.

  6. Controlling Two-Electron Threshold Dynamics in Double Photoionization of Lithium by Initial-State Preparation

    NASA Astrophysics Data System (ADS)

    Zhu, G.; Schuricke, M.; Steinmann, J.; Albrecht, J.; Ullrich, J.; Ben-Itzhak, I.; Zouros, T. J. M.; Colgan, J.; Pindzola, M. S.; Dorn, A.

    2009-09-01

    Double photoionization (DPI) and ionization-excitation (IE) of Li(2s) and Li(2p), state-prepared and aligned in a magneto-optical trap, were explored in a reaction microscope at the free-electron laser in Hamburg (FLASH). From 6 to 12 eV above threshold (ℏω=85, 91 eV), total as well as differential DPI cross sections were observed to critically depend on the initial state and, in particular, on the alignment of the 2p orbital with respect to the VUV-light polarization, whereas no effect is seen for IE. The alignment sensitivity is traced back to dynamical electron correlation at threshold.

  7. Controlling Two-Electron Threshold Dynamics in Double Photoionization of Lithium by Initial-State Preparation

    SciTech Connect

    Zhu, G.; Schuricke, M.; Steinmann, J.; Albrecht, J.; Dorn, A.; Ullrich, J.; Ben-Itzhak, I.; Zouros, T. J. M.; Colgan, J.; Pindzola, M. S.

    2009-09-04

    Double photoionization (DPI) and ionization-excitation (IE) of Li(2s) and Li(2p), state-prepared and aligned in a magneto-optical trap, were explored in a reaction microscope at the free-electron laser in Hamburg (FLASH). From 6 to 12 eV above threshold ((Planck constant/2pi)omega=85, 91 eV), total as well as differential DPI cross sections were observed to critically depend on the initial state and, in particular, on the alignment of the 2p orbital with respect to the VUV-light polarization, whereas no effect is seen for IE. The alignment sensitivity is traced back to dynamical electron correlation at threshold.

  8. A dissociative photoionization study of the c4Σu- state in O+2 using the TPEPICO technique

    NASA Astrophysics Data System (ADS)

    Padmanabhan, A.; MacDonald, M. A.; Ryan, C. H.; Zuin, L.; Reddish, T. J.

    2012-11-01

    In the dissociative photoionization (DPI) process, hν + O2 → O + O+ + e-, ionisation and dissociation both occur (either as a direct or indirect process) following photoabsorption. The Threshold Photoelectron Photoion Coincidence (TPEPICO) technique, i.e. measuring the coincidence yield between threshold photoelec-trons and photoions is a powerful way of studying the dynamics involved. The c4Σu- state in O+2 at ~ 24.56 eV has a shallow minimum in its potential that supports two distinct quasi-bound vibrational levels (v = 0, 1). We have investigated the angular distributions of 2 eV O+(4S) ions produced from DPI of O +2 c4Σu- (v = 0, 1) using the TPEPICO technique.

  9. Observation of Interference between Two Distinct Autoionizing States in Dissociative Photoionization of H2

    NASA Astrophysics Data System (ADS)

    Reddish, T. J.; Padmanabhan, A.; MacDonald, M. A.; Zuin, L.; Fernández, J.; Palacios, A.; Martín, F.

    2012-01-01

    Dissociative photoionization (DPI) of randomly oriented H2 molecules has been studied using linearly polarized synchrotron radiation at selected photon energies of 31, 33, and 35 eV. Large amplitude oscillations in the photoelectron asymmetry parameter β, as a function of electron energy, have been observed. The phase of these β oscillations are in excellent agreement with the results of recent close coupling calculations [Fernández and Martín, New J. Phys. 11, 043020 (2009)NJOPFM1367-263010.1088/1367-2630/11/4/043020]. We show that the oscillations are the signature of interferences between the 1Q1Σu+1 and 1Q2Πu1 doubly excited states decaying at different internuclear distances. The oscillations thus provide information about the classical paths followed by the nuclei. The presence of such oscillations is predicted to be a general phenomenon in DPI.

  10. Photoionization of the cerium isonuclear sequence and cerium endohedral fullerene

    NASA Astrophysics Data System (ADS)

    Habibi, Mustapha

    This dissertation presents an experimental photoionization study of the cerium isonuclear sequence ions in the energy range of the 4d inner-shell giant resonance. In addition, single and double photoionization and photofragmentation cross sections of the cerium endohedral ion Ce C+82 were also measured and studied in the 4d excitation-ionization energy range of cerium. Relative and absolute cross-section measurements were performed at undulator beamline 10.0.1 of the Advanced Light Source (ALS) for nine parent cerium ions: Ce+ - Ce9+. Double-to-single ionization cross-section ratios were measured for photoionization of the endohedral Ce C+82 and empty fullerene C C+82 molecular ions. The merged ion and photon beams technique was used to conduct the experiments. Multiconfiguration Hartree-Fock calculations were performed as an aid to interpret the experimental data. Four Rydberg series for 4d → nf (n ≥ 4) and 4d → np (n ≥ 6) autoionizing excitations were assigned using the quantum defect theory for the Ce3+ photoionization cross section. The experimental data show the collapse of the nf wavefunctions (n ≥ 4) with increasing ionization stage as outer-shell electrons are stripped from the parent ion. The nf orbital collapse occurs partially for Ce2+ and Ce3+ ion and completely for Ce4+, where these wavefunctions penetrate the core region of the ion. A strong contribution to the total oscillator strength was observed in the double and triple photoionization channels for low charge states (Ce +, Ce2+, and Ce3+), whereas most of the 4d excitations of the higher charge states decay by ejection of one electron.

  11. Toward Rotational State-Selective Photoionization of ThF+ Ions

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Ng, Kia Boon; Gresh, Dan; Cairncross, William; Grau, Matt; Ni, Yiqi; Cornell, Eric; Ye, Jun

    2016-06-01

    ThF+ has been chosen to replace HfF+ for a second-generation measurement of the electric dipole moment of the electron (eEDM). Compared to the currently running HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time [1]; (ii) its effective electric field (35 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity [2]; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states [3]. In this talk, we first present our strategy of preparing and utilizing core-nonpenetrating Rydberg states for rotational state-selective ionization. Then, we report spectroscopic data of laser-induced fluorescence of neutral ThF, which provides critical information for multi-photon ionization spectroscopy. [1] D. N. Gresh, K. C. Cossel, Y. Zhou, J. Ye, E. A. Cornell, Journal of Molecular Spectroscopy, 319 (2016), 1-9 [2] M. Denis, M. S. Nørby, H. J. A. Jensen, A. S. P. Gomes, M. K. Nayak, S. Knecht, T. Fleig, New Journal of Physics, 17 (2015) 043005. [3] Z. J. Jakubek, R. W. Field, Journal of Molecular Spectroscopy 205 (2001) 197-220.

  12. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method

    NASA Astrophysics Data System (ADS)

    Ruberti, M.; Yun, R.; Gokhberg, K.; Kopelke, S.; Cederbaum, L. S.; Tarantelli, F.; Averbukh, V.

    2014-05-01

    Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.

  13. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method.

    PubMed

    Ruberti, M; Yun, R; Gokhberg, K; Kopelke, S; Cederbaum, L S; Tarantelli, F; Averbukh, V

    2014-05-14

    Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.

  14. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  15. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  16. Rovibrational-state-selected photoionization of acetylene by the two-color IR+VUV scheme: observation of rotationally resolved Rydberg transitions.

    PubMed

    Qian, X-M; Kung, A H; Zhang, Tao; Lau, K C; Ng, C Y

    2003-12-05

    We have demonstrated a rovibrational-state-selected photoionization experiment using an IR laser and high-resolution VUV-synchrotron radiation. The VUV photoionization of acetylene [C2H2(Xtilde; (1)Sigma(+)(g);nu(3)=1,J(')=8 or 10)] prepared by IR excitation reveals three strong autoionizing Rydberg series converging to C2H+2(Xtilde; (2)Pi(u);nu(+)(3)=1) with little ion background interference. Rotational transitions resolved for the Rydberg states provide an estimate of approximately 1.8 ps for their lifetimes. This experiment opens the way for state-selective photoionization studies of polyatomic molecules using VUV-synchrotron radiation.

  17. Steady-state benchmarks of DK4D: A time-dependent, axisymmetric drift-kinetic equation solver

    SciTech Connect

    Lyons, B. C.; Jardin, S. C.; Ramos, J. J.

    2015-05-15

    The DK4D code has been written to solve a set of time-dependent, axisymmetric, finite-Larmor-radius drift-kinetic equations (DKEs) for the non-Maxwellian part of the electron and ion distribution functions using the full, linearized Fokker–Planck–Landau collision operator. The plasma is assumed to be in the low- to finite-collisionality regime, as is found in the cores of modern and future magnetic confinement fusion experiments. Each DKE is formulated such that the perturbed distribution function carries no net density, parallel momentum, or kinetic energy. Rather, these quantities are contained within the background Maxwellians and would be evolved by an appropriate set of extended magnetohydrodynamic (MHD) equations. This formulation allows for straight-forward coupling of DK4D to existing extended MHD time evolution codes. DK4D uses a mix of implicit and explicit temporal representations and finite element and spectral spatial representations. These, along with other computational methods used, are discussed extensively. Steady-state benchmarks are then presented comparing the results of DK4D to expected analytic results at low collisionality, qualitatively, and to the Sauter analytic fits for the neoclassical conductivity and bootstrap current, quantitatively. These benchmarks confirm that DK4D is capable of solving for the correct, gyroaveraged distribution function in stationary magnetic equilibria. Furthermore, the results presented demonstrate how the exact drift-kinetic solution varies with collisionality as a function of the magnetic moment and the poloidal angle.

  18. Improved efficiency of selective photoionization of palladium isotopes via autoionizing Rydberg states

    NASA Astrophysics Data System (ADS)

    Locke, Clayton R.; Kobayashi, Tohru; Midorikawa, Katsumi

    2017-01-01

    Odd-mass-selective ionization of palladium for purposes of resource recycling and management of long-lived fission products can be achieved by exploiting transition selection rules in a well-established three-step excitation process. In this conventional scheme, circularly polarized lasers of the same handedness excite isotopes via two intermediate 2D5/2 core states, and a third laser is then used for ionization via autoionizing Rydberg states. We propose an alternative excitation scheme via intermediate 2D3/2 core states before the autoionizing Rydberg state, improving ionization efficiency by over 130 times. We confirm high selectivity and measure odd-mass isotopes of >99.7(3)% of the total ionized product. We have identified and measured the relative ionization efficiency of the series of Rydberg states that converge to upper ionization limit of the 4 d 9(2D3/2) level, and identify the most efficient excitation is via the Rydberg state at 67668.18(10) cm-1.

  19. Spin-orbit driven magnetic insulating state with Jeff=1/2 character in a 4d oxide

    DOE PAGES

    Calder, S.; Li, Ling; Okamoto, Satoshi; ...

    2015-11-30

    The unusual magnetic and electronic ground states of 5d iridates has been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here we present experimental and theoretical results on Sr4RhO6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogous Jeff=1/2 Mottmore » iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy and find a magnetic insulating ground state with Jeff =1/2 character.The unusual magnetic and electronic ground states of 5d iridates have been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here, we present experimental and theoretical results on Sr4RhO6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogous Jeff=1/2 Mott iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy, and find a magnetic insulating ground state with Jeff=12 character.« less

  20. Non-adiabatic molecular dynamics investigation of photoionization state formation and lifetime in Mn²⁺-doped ZnO quantum dots.

    PubMed

    Fischer, Sean A; Lingerfelt, David B; May, Joseph W; Li, Xiaosong

    2014-09-07

    The unique electronic structure of Mn(2+)-doped ZnO quantum dots gives rise to photoionization states that can be used to manipulate the magnetic state of the material and to generate zero-reabsorption luminescence. Fast formation and long non-radiative decay of this photoionization state is a necessary requirement for these important applications. In this work, surface hopping based non-adiabatic molecular dynamics are used to demonstrate the fast formation of a metal-to-ligand charge transfer state in a Mn(2+)-doped ZnO quantum dot. The formation occurs on an ultrafast timescale and is aided by the large density of states and significant mixing of the dopant Mn(2+) 3dt2 levels with the valence-band levels of the ZnO lattice. The non-radiative lifetime of the photoionization states is also investigated.

  1. Photoionization of FE3+ Ions

    SciTech Connect

    Ovchinnikov, O.; Schlachter, F.

    2003-01-01

    Photoionization of Fe3+ ions was studied for the first time using synchrotron radiation from the Advanced Light Source (ALS) and the merged-beams technique. Fe3+ ions were successfully produced using ferrocene in an electron cyclotron resonance ion source (ECR). The measured yield of Fe4+ photoions as a function of photon energy revealed the presence of resonances that correspond to excitation of autoionizing states. These resonances are superimposed upon the photoion yield produced by direct photoionization, which is a smooth, slowly decreasing function of energy. The spectra for the photoionization of Fe3+ will be analyzed and compared with theory. The data collected will also serve to test models for the propagation of light through ionized matter.

  2. Excited-state decay of hydrocarbon radicals, investigated by femtosecond time-resolved photoionization: Ethyl, propargyl, and benzyl

    NASA Astrophysics Data System (ADS)

    Zierhut, Matthias; Noller, Bastian; Schultz, Thomas; Fischer, Ingo

    2005-03-01

    The excited state decay of the hydrocarbon radicals ethyl, C2H5; propargyl, C3H3; and benzyl, C7H7 was investigated by femtosecond time-resolved photoionization. Radicals were generated by flash pyrolysis of n-propyl nitrite, propargyl bromide, and toluene, respectively. It is shown that the 2A'2(3s) Rydberg state of ethyl excited at 250nm decays with a time constant of 20fs. No residual signal was observed at longer delay times. For the 3B12 state of propargyl excited at 255nm a slower decay with a time constant 50±10fs was determined. The 4B22 state of benzyl excited at 255nm decays within 150±30fs.

  3. Vibrationally specific photoionization cross sections of acrolein leading to the tilde{X} {}^2 A^' } ionic state

    NASA Astrophysics Data System (ADS)

    López-Domínguez, Jesús A.; Lucchese, Robert R.; Fulfer, K. D.; Hardy, David; Poliakoff, E. D.; Aguilar, A. A.

    2014-09-01

    The vibrational branching ratios in the photoionization of acrolein for ionization leading to the tilde{X} {}^2 A^' } ion state were studied. Computed logarithmic derivatives of the cross section and the corresponding experimental data derived from measured vibrational branching ratios for several normal modes (ν9, ν10, ν11, and ν12) were found to be in relatively good agreement, particularly for the lower half of the 11-100 eV photon energy range considered. Two shape resonances have been found near photon energies of 15.5 and 23 eV in the photoionization cross section and have been demonstrated to originate from the partial cross section of the A' scattering symmetry. The wave functions computed at the resonance complex energies are delocalized over the whole molecule. By looking at the dependence of the cross section on the different normal mode displacements together with the wave function at the resonant energy, a qualitative explanation is given for the change of the cross sections with respect to changing geometry.

  4. Observation of even-parity autoionization states of uranium by three-colour photoionization optogalvanic spectroscopy in U-Ne hollow cathode discharges

    NASA Astrophysics Data System (ADS)

    Mandal, P. K.; Seema, A. U.; Das, R. C.; Shah, M. L.; Dev, Vas; Suri, B. M.

    2013-07-01

    Three-colour three-step photoionization spectroscopy of uranium has been performed in a U-Ne hollow cathode discharge tube by temporally resolving three-colour photoionization optogalvanic (PIOG) signal from the normal optogalvanic (OG) signal using three tunable pulsed dye lasers. U-Ne hollow cathode discharge tube has been used as a source of uranium atomic vapours and photoionization detector. Using this technique, photoionization spectra of uranium have been investigated systematically in the energy region 52,150-52,590cm-1, through three different excitation pathways, originating from its ground state, 0cm-1(5Lo6). By analysing the three-colour photoionization spectra sixty new even-parity autoionization resonances of uranium have been identified and their probable total angular momentum (J) values have been assigned according to the J-momentum selection rule. The J-value of five autoionization resonances, which have been observed either through all three excitation pathways or through two different excitation pathways where J-value of the second excited levels differs by two, has been assigned uniquely.

  5. Photoelectron photoion molecular beam spectroscopy

    SciTech Connect

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  6. Gadolinium photoionization process

    DOEpatents

    Paisner, Jeffrey A.; Comaskey, Brian J.; Haynam, Christopher A.; Eggert, Jon H.

    1993-01-01

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  7. Gadolinium photoionization process

    DOEpatents

    Paisner, J.A.; Comaskey, B.J.; Haynam, C.A.; Eggert, J.H.

    1993-04-13

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  8. Communication: State-to-state photodissociation study by the two-color VUV-VUV laser pump-probe time-slice velocity-map-imaging-photoion method.

    PubMed

    Gao, Hong; Song, Yu; Jackson, William M; Ng, C Y

    2013-05-21

    We demonstrate that combining two independently tunable vacuum ultraviolet (VUV) lasers and the time-slice velocity-map-imaging-photoion (VMI-PI) method allows the rovibronically state-selected photodissociation study of CO in the VUV region along with the state-selective detection of product C((3)P(0,1,2)) using the VUV-UV (1+1') resonance-enhanced photoionization and the VUV Rydberg autoionization methods. Both tunable VUV lasers are generated based on the two-photon resonance-enhanced four-wave mixing scheme using a pulsed rare gas jet as the nonlinear medium. The observed fine-structure distributions of product C((3)P(J)), J = 0, 1, and 2, are found to depend on the CO rovibronic state populated by VUV photoexcitation. The branching ratios for C((3)P0) + O((3)P(J)): C((3)P0) + O((1)D2), C((3)P1) + O((3)P(J)): C((3)P1) + O((1)D2), and C((3)P2) + O((3)PJ): C((3)P2) + O((1)D2), which were determined based on the time-slice VMI-PI measurements of C(+) ions formed by J-state selective photoionization sampling of C((3)P(0,1,2)), also reveal strong dependences on the spin-orbit state of C((3)P(0,1,2)). By combining the measured branching ratios and fine-structure distributions of C((3)P(0,1,2)), we have determined the correlated distributions of C((3)P(0,1,2)) accompanying the formation of O((1)D2) and O((3)P(J)) produced in the VUV photodissociation of CO. The success of this demonstration experiment shows that the VUV photodissociation pump-VUV photoionization probe method is promising for state-to-state photodissociation studies of many small molecules, which are relevant to planetary atmospheres as well as fundamental understanding of photodissociation dynamics.

  9. Solid-State NMR Structure Determination from Diagonal-Compensated, Sparsely Nonuniform-Sampled 4D Proton–Proton Restraints

    PubMed Central

    2015-01-01

    We report acquisition of diagonal-compensated protein structural restraints from four-dimensional solid-state NMR spectra on extensively deuterated and 1H back-exchanged proteins. To achieve this, we use homonuclear 1H–1H correlations with diagonal suppression and nonuniform sampling (NUS). Suppression of the diagonal allows the accurate identification of cross-peaks which are otherwise obscured by the strong autocorrelation or whose intensity is biased due to partial overlap with the diagonal. The approach results in unambiguous spectral interpretation and relatively few but reliable restraints for structure calculation. In addition, the diagonal suppression produces a spectrum with low dynamic range for which ultrasparse NUS data sets can be readily reconstructed, allowing straightforward application of NUS with only 2% sampling density with the advantage of more heavily sampling time-domain regions of high signal intensity. The method is demonstrated here for two proteins, α-spectrin SH3 microcrystals and hydrophobin functional amyloids. For the case of SH3, suppression of the diagonal results in facilitated identification of unambiguous restraints and improvement of the quality of the calculated structural ensemble compared to nondiagonal-suppressed 4D spectra. For the only partly assigned hydrophobin rodlets, the structure is yet unknown. Applied to this protein of biological significance with large inhomogeneous broadening, the method allows identification of unambiguous crosspeaks that are otherwise obscured by the diagonal. PMID:24988008

  10. Joint CO2 state and flux estimation with the 4D-Var system EURAD-IM

    NASA Astrophysics Data System (ADS)

    Klimpt, Johannes; Elbern, Hendrik

    2016-04-01

    Atmospheric CO2 inversion studies seek to improve CO2 surface-atmosphere fluxes with the usage of adjoint transport models and CO2 concentration measurements. Terrestrial CO2 fluxes -anthropogenic emissions, photosynthesis, and respiration- bear large spatial and temporal variability and are highly uncertain. Additionally to the high uncertainty of the three CO2 fluxes itself, regional inversion studies suffer from uncertainty of the boundary layer height and atmospheric transport especially during night, leading to uncertainty of atmospheric CO2 mixing ratios during sunrise. This study assesses the potential of the 4-dimensional variational (4D-Var) method to estimate CO2 fluxes and atmospheric CO2 concentrations jointly at each grid cell on a regional scale. Identical twin experiments are executed with the nested EURopean Air pollution Dispersion-Inverse Model (EURAD-IM) with 5 km resolution in Central Europe with synthetic half hourly measurements from eleven concentration towers. The assimilation window is chosen to start from sunrise for 12 hours. We find that joint estimation of CO2 fluxes and initial states requires a more careful balance of the background error covariance matrices but enables a more detailed analysis of atmospheric CO2 and the surface-atmosphere fluxes.

  11. Vacuum Ultraviolet Laser Photoion and Pulsed Field Ionization-Photoion Study of Rydberg Series of Chlorine Atoms Prepared in the 2PJ (J = 3/2 and 1/2) Fine-structure States

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Gao, Hong; Zhou, Jingang; Ng, C. Y.

    2015-09-01

    We have measured the high-resolution vacuum ultraviolet (VUV) photoion (VUV-PI) and VUV pulsed-field ionization-photoion (VUV-PFI-PI) spectra of chlorine atoms (Cl) in the VUV energy range 103,580-105,600 cm-1 (12.842-13.093 eV) using a tunable VUV laser as the photoexcitation and photoionization source. Here, Cl atoms are prepared in the Cl(2P3/2) and Cl(2P1/2) fine-structure states by 193.3 nm laser photodissociation of chlorobenzene. The employment of VUV-PFI-PI detection has allowed the identification of Rydberg transitions that are not observed in VUV-PI measurements. More than 180 new Rydberg transition lines with principal quantum number up to n = 61 have been identified and assigned to members of nine Rydberg series originating from the neutral Cl(2P3/2) and Cl(2P1/2) fine-structure states. Two of these Rydberg series are found to converge to the Cl+(3P2), four to the Cl+(3P1), and three to the Cl+(3P0) ionization limits. Based on the convergence limits determined by least-squares fits of the observed Rydberg transitions to the modified Ritz formula, we have obtained a more precise ionization energy (IE) for the formation of the ionic Cl+(3P2) from the ground Cl(2P3/2) state to be 104,591.01 ± 0.13 cm-1. This is consistent with previous IE measurements, but has a smaller uncertainty. The analysis of the quantum defects obtained for the Rydberg transitions reveals that many high-n Rydberg transitions are perturbed.

  12. The effect of vibrational motion on the dynamics of shape resonant photoionization of BF3 leading to the ? state of ?

    NASA Astrophysics Data System (ADS)

    Lucchese, Robert R.; Montuoro, Raffaele; Kotsis, Konstantinos; Tashiro, Motomichi; Ehara, Masahiro; Bozek, John D.; Das, Aloke; Landry, April; Rathbone, Jeff; Poliakoff, E. D.

    2010-04-01

    We present the results of an experimental and theoretical investigation of vibrationally resolved valence shell photoionization of BF3 leading to the ? state of ? , where vibronic coupling and shape resonances are known to be important. The experimental vibrational branching ratios for multiple quantum excitations of the symmetric stretching mode of the ion ? as well as for the single vibrational excitation of the asymmetric stretching mode ? are compared with the predictions of single-channel Schwinger variational calculations performed within the Chase adiabatic approximation to obtain vibrational-state specific cross sections. The presence of a shape resonance in the continuum of ? symmetry is seen to lead to significant non-Franck-Condon intrachannel vibronic coupling effects. The breakdown in the Franck-Condon approximation is due to the sensitivity to the asymmetric stretching mode of the energy of the resonance and the magnitude of the transition moment for exciting the resonance. However, there are indications that interchannel vibronic coupling effects may also be significant in this system.

  13. Effect of electron correlation and shape resonance on photoionization from the S1 and S2 states of pyrazine.

    PubMed

    Suzuki, Yoshi-Ichi; Suzuki, Toshinori

    2012-11-21

    In a previous study [T. Horio, T. Fuji, Y.-I. Suzuki, and T. Suzuki, J. Am. Chem. Soc. 131, 10392 (2009)], we demonstrated that the time-energy map of photoelectron angular anisotropy enables unambiguous identification of ultrafast S(2)(ππ*)-S(1)(nπ*) internal conversion in pyrazine. A notable characteristic of this map is that the forbidden ionization process of D(0)(n(-1)) ← S(2)(ππ*) gives a negative photoelectron anisotropy parameter. In the present study, we elucidate the mechanism of this process by calculating the photoionization transition dipole moments and photoelectron angular distribution using the first-order configuration interaction method and the continuum multiple scattering Xα approximation; these calculations at the S(0) equilibrium geometry reproduce the observed anisotropy parameters for D(0) ← S(2) and D(0) ← S(1) ionizations, respectively. On the other hand, they do not reproduce the small difference in the photoelectron anisotropy parameters for the D(1)(π(-1)) ← S(2) and D(0) ← S(1) ionizations, both of which correspond to removal of an electron from the same π* orbital in the excited states. We show that these ionizations are affected by the ka(g) shape resonance and that the difference between their photoelectron anisotropy parameters originates from the difference in the molecular geometry in D(1) ← S(2) and D(0) ← S(1).

  14. Analysis of 1s(2s2p {sup 3}P)nl Rydberg states in the K-shell photoionization of the Be atom

    SciTech Connect

    Yoshida, Fumiko; Matsuoka, Leo; Takashima, Ryuta; Hasegawa, Shuichi; Nagata, Tetsuo; Azuma, Yoshiro; Obara, Satoshi; Koike, Fumihiro

    2006-06-15

    We have observed inner-shell photoionization of Be using synchrotron radiation in the energy region of the 1s(2s2p {sup 3}P)nl Rydberg states. We used a time-of-flight method to distinguish singly and doubly charged photoions and obtained the Be{sup +} [ns; n=5-12 ({sup 1}P)3s] and Be{sup 2+} [ns; n=5-8, nd=5,6 ({sup 1}P)3s] ion spectra with high resolution corresponding to an instrumental bandpass of 13 meV. Detailed analysis enabled the autoionization parameters, resonance energy position E{sub 0}, resonance width {gamma}, and Fano parameter q, to be obtained. From the resonance positions of the {sup 3}Pnl series members, the series limit was determined to be 127.97 eV, which is in good agreement with previous experiments.

  15. Rotationally resolved state-to-state photoionization and photoelectron study of titanium carbide and its cation (TiC/TiC⁺).

    PubMed

    Luo, Zhihong; Huang, Huang; Chang, Yih-Chung; Zhang, Zheng; Yin, Qing-Zhu; Ng, C Y

    2014-10-14

    Titanium carbide and its cation (TiC/TiC(+)) have been investigated by the two-color visible (VIS)-ultraviolet (UV) resonance-enhanced photoionization and pulsed field ionization-photoelectron (PFI-PE) methods. Two visible excitation bands for neutral TiC are observed at 16,446 and 16,930 cm(-1). Based on rotational analyses, these bands are assigned as the respective TiC((3)Π1) ← TiC(X(3)Σ(+)) and TiC((3)Σ(+)) ← TiC(X(3)Σ(+)) transition bands. This assignment supports that the electronic configuration and term symmetry for the neutral TiC ground state are …7σ(2)8σ(1)9σ(1)3π(4) (X(3)Σ(+)). The rotational constant and the corresponding bond distance of TiC(X(3)Σ(+); v″ = 0) are determined to be B0″ = 0.6112(10) cm(-1) and r0″ = 1.695(2) Å, respectively. The rotational analyses of the VIS-UV-PFI-PE spectra for the TiC(+)(X; v(+) = 0 and 1) vibrational bands show that the electronic configuration and term symmetry for the ionic TiC(+) ground state are …7σ(2)8σ(1)3π(4) (X(2)Σ(+)) with the v(+) = 0 → 1 vibrational spacing of 870.0(8) cm(-1) and the rotational constants of B(e)(+) = 0.6322(28) cm(-1), and α(e)(+) = 0.0085(28) cm(-1). The latter rotational constants yield the equilibrium bond distance of r(e)(+) = 1.667(4) Å for TiC(+)(X(2)Σ(+)). The cleanly rotationally resolved VIS-UV-PFI-PE spectra have also provided a highly precise value of 53 200.2(8) cm(-1) [6.5960(1) eV] for the adiabatic ionization energy (IE) of TiC. This IE(TiC) value along with the known IE(Ti) has made possible the determination of the difference between the 0 K bond dissociation energy (D0) of TiC(+)(X(2)Σ(+)) and that of TiC(X(3)Σ(+)) to be D0(Ti(+)-C) - D0(Ti-C) = 0.2322(2) eV. Similar to previous experimental observations, the present state-to-state PFI-PE study of the photoionization transitions, TiC(+)(X(2)Σ(+); v(+) = 0 and 1, N(+)) ← TiC((3)Π1; v', J'), reveals a strong decreasing trend for the photoionization cross section as |ΔN(+)| = |N

  16. Rotationally resolved state-to-state photoionization and photoelectron study of titanium carbide and its cation (TiC/TiC+)

    NASA Astrophysics Data System (ADS)

    Luo, Zhihong; Huang, Huang; Chang, Yih-Chung; Zhang, Zheng; Yin, Qing-Zhu; Ng, C. Y.

    2014-10-01

    Titanium carbide and its cation (TiC/TiC+) have been investigated by the two-color visible (VIS)-ultraviolet (UV) resonance-enhanced photoionization and pulsed field ionization-photoelectron (PFI-PE) methods. Two visible excitation bands for neutral TiC are observed at 16 446 and 16 930 cm-1. Based on rotational analyses, these bands are assigned as the respective TiC(3Π1) ← TiC(X3Σ+) and TiC(3Σ+) ← TiC(X3Σ+) transition bands. This assignment supports that the electronic configuration and term symmetry for the neutral TiC ground state are …7σ28σ19σ13π4 (X3Σ+). The rotational constant and the corresponding bond distance of TiC(X3Σ+; v″ = 0) are determined to be B0″ = 0.6112(10) cm-1 and r0″ = 1.695(2) Å, respectively. The rotational analyses of the VIS-UV-PFI-PE spectra for the TiC+(X; v+ = 0 and 1) vibrational bands show that the electronic configuration and term symmetry for the ionic TiC+ ground state are …7σ28σ13π4 (X2Σ+) with the v+ = 0 → 1 vibrational spacing of 870.0(8) cm-1 and the rotational constants of Be+ = 0.6322(28) cm-1, and αe+ = 0.0085(28) cm-1. The latter rotational constants yield the equilibrium bond distance of re+ = 1.667(4) Å for TiC+(X2Σ+). The cleanly rotationally resolved VIS-UV-PFI-PE spectra have also provided a highly precise value of 53 200.2(8) cm-1 [6.5960(1) eV] for the adiabatic ionization energy (IE) of TiC. This IE(TiC) value along with the known IE(Ti) has made possible the determination of the difference between the 0 K bond dissociation energy (D0) of TiC+(X2Σ+) and that of TiC(X3Σ+) to be D0(Ti+-C) - D0(Ti-C) = 0.2322(2) eV. Similar to previous experimental observations, the present state-to-state PFI-PE study of the photoionization transitions, TiC+(X2Σ+; v+ = 0 and 1, N+) ← TiC(3Π1; v', J'), reveals a strong decreasing trend for the photoionization cross section as |ΔN+| = |N+ - J'| is increased. The maximum |ΔN+| change of 7 observed here is also consistent with the previous

  17. The ionic states of iodobenzene studied by photoionization and ab initio configuration interaction and DFT computations

    SciTech Connect

    Palmer, Michael H. E-mail: tr01@staffmail.ed.ac.uk E-mail: nykj@phys.au.dk E-mail: desimone@iom.cnr.it Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C.; Coreno, Marcello; Grazioli, Cesare; Biczysko, Malgorzata; Baiardi, Alberto

    2015-04-07

    New valence electron photoelectron spectra of iodobenzene obtained using synchrotron radiation have been recorded. Ionization energies (IEs) determined using multi-configuration SCF calculation (MCSCF) procedures confirmed the adiabatic IE order as: X{sup 2}B{sub 1}state. The fifth ionization process shown to be D{sup 2}A{sub 1} exhibits dissociation to C{sub 6}H{sub 5}{sup +} + I both in the experimental and theoretical studies. The calculated Franck-Condon vibrational spectral envelopes, including hot band contributions, for the first four ionic states reproduce the observed peak positions and intensities with reasonable accuracy. In order to simulate the observed spectra, different bandwidths are required for different states. The increase in the required bandwidths for the A{sup 2}A{sub 2} and B{sup 2}B{sub 2} states is attributed to internal conversion to lower-lying states. The presence of relatively high intensity sequence bands leads to asymmetry of each of the X{sup 2}B{sub 1} state bands.

  18. Vibrationally resolved photoionization dynamics of CF4 in the D 2A1 state

    NASA Astrophysics Data System (ADS)

    Das, Aloke; Scott Miller, J.; Poliakoff, E. D.; Lucchese, R. R.; Bozek, John D.

    2007-07-01

    Vibrationally resolved photoelectron spectroscopy of the CF4+ (DA12) state is studied for the first time over an extended energy range, 26.5⩽hν ⩽50eV. It is found that the energy dependence of the totally symmetric stretching vibration is qualitatively different from all of the other vibrational modes. Moreover, the vibrational branching ratio curves for all of the symmetry forbidden vibrations are nearly identical. Qualitative arguments are used to show that it is likely that at least two shape resonances are present in the continuum, and that their characteristics, such as energy dependence and spatial localization, are distinctly different.

  19. PHOTOIONIZATION IN THE SOLAR WIND

    SciTech Connect

    Landi, E.; Lepri, S. T.

    2015-10-20

    In this work we investigate the effects of photoionization on the charge state composition of the solar wind. Using measured solar EUV and X-ray irradiance, the Michigan Ionization Code and a model for the fast and slow solar wind, we calculate the evolution of the charge state distribution of He, C, N, O, Ne, Mg, Si, S, and Fe with and without including photoionization for both types of wind. We find that the solar radiation has significant effects on the charge state distribution of C, N, and O, causing the ionization levels of these elements to be higher than without photoionization; differences are largest for oxygen. The ions commonly observed for elements heavier than O are much less affected, except in ICMEs where Fe ions more ionized than 16+ can also be affected by the solar radiation. We also show that the commonly used O{sup 7+}/O{sup 6+} density ratio is the most sensitive to photoionization; this sensitivity also causes the value of this ratio to depend on the phase of the solar cycle. We show that the O{sup 7+}/O{sup 6+} ratio needs to be used with caution for solar wind classification and coronal temperature estimates, and recommend the C{sup 6+}/C{sup 4+} ratio for these purposes.

  20. Dissociation of vibrational state-selected O2(+) Ions in the B(2)Σ(g)¯ state using threshold photoelectron-photoion coincidence velocity imaging.

    PubMed

    Tang, Xiaofeng; Zhou, Xiaoguo; Niu, Mingli; Liu, Shilin; Sheng, Liusi

    2011-06-23

    Using the recently developed threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging mass spectrometer (Tang et al. Rev. Sci. Instrum.2009, 80, 113101), dissociation of vibrational state-selected O(2)(+)(B(2)Σ(g)(¯), v(+) = 0-6) ions was investigated. Both the speed and angular distributions of the O(+) fragments dissociated from individually vibronic levels of the B(2)Σ(g)(¯) state were obtained directly from the three-dimensional time-sliced TPEPICO velocity images. Two dissociation channels, O(+)((4)S) + O((3)P) and O(+)((4)S) + O((1)D), were respectively observed, and their branching ratios were found to be heavily dependent on the vibrational states. A new intersection mechanism was suggested for the predissociation of O(2)(+)(B(2)Σ(g)(¯)) ions, especially for dissociation at the energy of the v(+) = 4 level. In addition, the anisotropic parameters for O(+) fragments from different dissociative pathways were determined to be close to zero, indicating that the v(+) = 0-6 levels of B(2)Σ(g)(¯) predissociate on a time scale that is much slower than that of molecular rotation.

  1. Spin-orbit driven magnetic insulating state with Jeff=1/2 character in a 4d oxide

    SciTech Connect

    Calder, S.; Li, Ling; Okamoto, Satoshi; Choi, Yongseong; Mukherjee, Rupam; Haskel, Daniel; Mandrus, D.

    2015-11-30

    The unusual magnetic and electronic ground states of 5d iridates has been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here we present experimental and theoretical results on Sr4RhO6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogous Jeff=1/2 Mott iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy and find a magnetic insulating ground state with Jeff =1/2 character.The unusual magnetic and electronic ground states of 5d iridates have been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here, we present experimental and theoretical results on Sr4RhO6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogous Jeff=1/2 Mott iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy, and find a magnetic insulating ground state with Jeff=12 character.

  2. Rotationally resolved state-to-state photoionization and photoelectron study of titanium carbide and its cation (TiC/TiC{sup +})

    SciTech Connect

    Luo, Zhihong; Huang, Huang; Chang, Yih-Chung; Zhang, Zheng; Ng, C. Y.; Yin, Qing-Zhu

    2014-10-14

    Titanium carbide and its cation (TiC/TiC{sup +}) have been investigated by the two-color visible (VIS)-ultraviolet (UV) resonance-enhanced photoionization and pulsed field ionization-photoelectron (PFI-PE) methods. Two visible excitation bands for neutral TiC are observed at 16 446 and 16 930 cm{sup −1}. Based on rotational analyses, these bands are assigned as the respective TiC({sup 3}Π{sub 1}) ← TiC(X{sup 3}Σ{sup +}) and TiC({sup 3}Σ{sup +}) ← TiC(X{sup 3}Σ{sup +}) transition bands. This assignment supports that the electronic configuration and term symmetry for the neutral TiC ground state are …7σ{sup 2}8σ{sup 1}9σ{sup 1}3π{sup 4} (X{sup 3}Σ{sup +}). The rotational constant and the corresponding bond distance of TiC(X{sup 3}Σ{sup +}; v″ = 0) are determined to be B{sub 0}″ = 0.6112(10) cm{sup −1} and r{sub 0}″ = 1.695(2) Å, respectively. The rotational analyses of the VIS-UV-PFI-PE spectra for the TiC{sup +}(X; v{sup +} = 0 and 1) vibrational bands show that the electronic configuration and term symmetry for the ionic TiC{sup +} ground state are …7σ{sup 2}8σ{sup 1}3π{sup 4} (X{sup 2}Σ{sup +}) with the v{sup +} = 0 → 1 vibrational spacing of 870.0(8) cm{sup −1} and the rotational constants of B{sub e}{sup +} = 0.6322(28) cm{sup −1}, and α{sub e}{sup +} = 0.0085(28) cm{sup −1}. The latter rotational constants yield the equilibrium bond distance of r{sub e}{sup +} = 1.667(4) Å for TiC{sup +}(X{sup 2}Σ{sup +}). The cleanly rotationally resolved VIS-UV-PFI-PE spectra have also provided a highly precise value of 53 200.2(8) cm{sup −1} [6.5960(1) eV] for the adiabatic ionization energy (IE) of TiC. This IE(TiC) value along with the known IE(Ti) has made possible the determination of the difference between the 0 K bond dissociation energy (D{sub 0}) of TiC{sup +}(X{sup 2}Σ{sup +}) and that of TiC(X{sup 3}Σ{sup +}) to be D{sub 0}(Ti{sup +}−C) − D{sub 0}(Ti−C) = 0.2322(2) eV. Similar to previous experimental

  3. Photoionization of atoms and molecules. [of hydrogen, helium, and xenon

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed.

  4. 4-D photoacoustic tomography.

    PubMed

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  5. 4-D Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  6. Photoionization of molecular clusters

    NASA Astrophysics Data System (ADS)

    Andres, R. P.; Calo, J. M.

    1981-12-01

    An experimental apparatus consisting of a novel multiple expansion cluster source coupled with a molecular beam system and photoionization mass spectrometer has been designed and constructed. This apparatus has been thoroughly tested and preliminary measurements of the growth kinetics of water clusters and the photoionization cross section of the water dimer have been carried out.

  7. Photoionization of Ar VIII

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Jiang, Wen-xian; Zhou, Chao

    2017-01-01

    The photoionization cross section, energy levels and widths of 22 Rydberg series (in the autoionization region) for Na-like Ar VIII were investigated by using of R-matrix method. The relativistic distorted-wave method is used to calculate the radial functions, and QB method of Quigly-Berrington [Quigley et al. 1998] is employed to calculate the resonance levels and widths. We have identified the formant in the figure of the photoionization cross section.

  8. Correlation between photoeletron and photoion in ultrafast multichannel photoionization of Ar

    SciTech Connect

    Itakura, R.; Fushitani, M.; Hishikawa, A.; Sako, T.

    2015-12-31

    We theoretically investigate coherent dynamics of ions created through ultrafast multichannel photoionization from a viewpoint of photoelectron-photoion correlation. The model calculation on single-photon ionization of Ar reveals that the coherent hole dynamics in Ar{sup +} associated with a superposition of the spin-orbit states {sup 2}PJ (J = 3/2 and 1/2) can be identified by monitoring only the photoion created by a Fourier-transform limited extreme ultraviolet (EUV) pulse with the fs pulse duration, while the coherence is lost by a chirped EUV pulse. It is demonstrated that by coincidence detection of the photoelectron and photoion the coherent hole dynamics can be extracted even in the case of ionization by a chirped EUV pulse with the sufficiently wide bandwidth.

  9. Optimization of 4D vessel‐selective arterial spin labeling angiography using balanced steady‐state free precession and vessel‐encoding

    PubMed Central

    Schmitt, Peter; Bi, Xiaoming; Chappell, Michael A.; Tijssen, Rob H. N.; Sheerin, Fintan; Miller, Karla L.; Jezzard, Peter

    2016-01-01

    Vessel‐selective dynamic angiograms provide a wealth of useful information about the anatomical and functional status of arteries, including information about collateral flow and blood supply to lesions. Conventional x‐ray techniques are invasive and carry some risks to the patient, so non‐invasive alternatives are desirable. Previously, non‐contrast dynamic MRI angiograms based on arterial spin labeling (ASL) have been demonstrated using both spoiled gradient echo (SPGR) and balanced steady‐state free precession (bSSFP) readout modules, but no direct comparison has been made, and bSSFP optimization over a long readout period has not been fully explored. In this study bSSFP and SPGR are theoretically and experimentally compared for dynamic ASL angiography. Unlike SPGR, bSSFP was found to have a very low ASL signal attenuation rate, even when a relatively large flip angle and short repetition time were used, leading to a threefold improvement in the measured signal‐to‐noise ratio (SNR) efficiency compared with SPGR. For vessel‐selective applications, SNR efficiency can be further improved over single‐artery labeling methods by using a vessel‐encoded pseudo‐continuous ASL (VEPCASL) approach. The combination of a VEPCASL preparation with a time‐resolved bSSFP readout allowed the generation of four‐dimensional (4D; time‐resolved three‐dimensional, 3D) vessel‐selective cerebral angiograms in healthy volunteers with 59 ms temporal resolution. Good quality 4D angiograms were obtained in all subjects, providing comparable structural information to 3D time‐of‐flight images, as well as dynamic information and vessel selectivity, which was shown to be high. A rapid 1.5 min dynamic two‐dimensional version of the sequence yielded similar image features and would be suitable for a busy clinical protocol. Preliminary experiments with bSSFP that included the extracranial vessels showed signal loss in regions of poor magnetic field

  10. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  11. Density-matrix formalism for the photoion-electron entanglement in atomic photoionization

    SciTech Connect

    Radtke, T.; Fritzsche, S.; Surzhykov, A.

    2006-09-15

    The density-matrix theory, based on Dirac's relativistic equation, is applied for studying the entanglement between the photoelectron and residual ion in the course of the photoionization of atoms and ions. In particular, emphasis is placed on deriving the final-state density matrix of the overall system 'photoion+electron', including interelectronic effects and the higher multipoles of the radiation field. This final-state density matrix enables one immediately to analyze the change of entanglement as a function of the energy, angle and the polarization of the incoming light. Detailed computations have been carried out for the 5s photoionization of neutral strontium, leading to a photoion in a 5s {sup 2}S J{sub f}=1/2 level. It is found that the photoion-electron entanglement decreases significantly near the ionization threshold and that, in general, it depends on both the photon energy and angle. The possibility to extract photoion-electron pairs with a well-defined degree of entanglement may have far-reaching consequences for quantum information and elsewhere.

  12. Double Photoionization Near Threshold

    NASA Technical Reports Server (NTRS)

    Wehlitz, Ralf

    2007-01-01

    The threshold region of the double-photoionization cross section is of particular interest because both ejected electrons move slowly in the Coulomb field of the residual ion. Near threshold both electrons have time to interact with each other and with the residual ion. Also, different theoretical models compete to describe the double-photoionization cross section in the threshold region. We have investigated that cross section for lithium and beryllium and have analyzed our data with respect to the latest results in the Coulomb-dipole theory. We find that our data support the idea of a Coulomb-dipole interaction.

  13. Photoionization-photoelectron research

    SciTech Connect

    Berkowitz, J.; Ruscic, B.

    1993-12-01

    The photoionization research program is aimed at understanding the basic processes of interaction of vacuum ultraviolet (VUV) light with atoms and molecules. This research provides valuable information on both thermochemistry and dynamics. Recent studies include atoms, clusters, hydrides, sulfides and an important fluoride.

  14. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  15. Photoionization studies of oxygen and hydrogen

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Arathi

    A toroidal spectrometer designed to perform (gamma, 2e) studies, was for the first time employed for Threshold Photoelectron Photoion Coincidence (TPEPICO) study. The angular distributions of O+(4S) ions produced from dissociative photoionization (DPI) of O2 + c4Sigma-u(nu =0,1) using the TPEPICO technique, i.e. by measuring the coincidence yield between threshold photoelectrons and photoions have been investigated. The results for lifetimes, taunu, corresponding to the vibrational levels nu = 0,1, along with the value obtained for inherent anisotropic photoion angular distribution betaO+, are presented. Recently, Fernandez and Martin (New J Phys 11 34 (2009)), have performed an extensive ab initio study of DPI in H2, in which large oscillatory behaviour in the electron angular distribution, as a function of electron energy, has been predicted. The result of their ab anitio calculations reveal that the electron angular, theta, distributions oscillate between a cos2theta pattern and isotropic with less than a 1 eV.change in electron energy. Due to the very low cross section and the requirement for high energy resolution in the electron detection system, these measurements require sensitive instrumentation that is now available at the Canadian Light Source. For this particular H 2 study, the electron angular distributions as a function of electron energy are the signature of quantum mechanical interference between, essentially, two specific doubly excited states (namely, 1Q11Sigma u+ and 1Q21piu) decaying at different internuclear distances. While interference between 'direct' photoionization and autoionization is well-known, the first unambiguous observation of interference between two autoionization processes, occurring on the femtosecond timescale is presented. A simple semi-classical model captures the essence of both our experimental observations and the results of full ab initio calculations. It does this through explicitly linking the electron angular

  16. Double Photoionization of Atomic Beryllium

    NASA Astrophysics Data System (ADS)

    Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.

    2010-03-01

    One-photon double ionization (DPI) of beryllium represents the next step in the evolution of DPI investigations that began with helium in order to sensitively probe electron correlation. Beryllium is the simplest atomic species of the alkaline earth elements which, in general, possess two electrons outside of a fully occupied inner shell that spherically screens the nucleus. This provides a natural basis for comparison to 1s^2 helium DPI. However, the valence state of beryllium has n=2, thus making the valence excited target 2s2p more accessible relative to the 2s^2 ground state as compared to ground-state and metastable helium. Also, the symmetry of photoionizing from either the ^1S or ^1P initial state will have consequences for the angular distributions for double ionization. Triply differential cross sections (TDCS) are presented for DPI from both ground state 2s^2 and excited state 2s2p beryllium calculated using exterior complex scaling (ECS) for the valence electrons.

  17. Time-dependent Cooling in Photoionized Plasma

    NASA Astrophysics Data System (ADS)

    Gnat, Orly

    2017-02-01

    I explore the thermal evolution and ionization states in gas cooling from an initially hot state in the presence of external photoionizing radiation. I compute the equilibrium and nonequilibrium cooling efficiencies, heating rates, and ion fractions for low-density gas cooling while exposed to the ionizing metagalactic background radiation at various redshifts (z = 0 ‑ 3), for a range of temperatures (108–104 K), densities (10‑7–103 cm‑3), and metallicities (10‑3–2 times solar). The results indicate the existence of a threshold ionization parameter, above which the cooling efficiencies are very close to those in photoionization equilibrium (so that departures from equilibrium may be neglected), and below which the cooling efficiencies resemble those in collisional time-dependent gas cooling with no external radiation (and are thus independent of density).

  18. Photoionization cross sections, electron-impact inverse mean free paths, and stopping powers for each subshell of silvera)

    NASA Astrophysics Data System (ADS)

    Lin, D. L.; Strickland, D. J.

    1980-03-01

    Using the Herman-Skillman potentials and bound wave functions for each subshell of silver, we have computed the continuum wave functions, and subshell-by-subshell photoionization cross sections with photoelectron energies up to 10 keV. Applying a relationship between photoionization and electron impact ionization, we have obtained inverse mean free paths and stopping powers, again by subshell, for electrons penetrating through silver. The maximum electron energy considered is 100 keV. For the total photoionization cross section, comparison of our work with experiment shows excellent agreement for photon energies down to 100 eV, below which solid-state effects should be included. Theoretical total inverse mean free paths, being strongly dominated by contributions from 4d electrons, are in good agreement with data around 1 keV, but about a factor of 2 larger at energies below 100eV. Our stopping power is in good agreement with other theoretical work above 400 eV and approaches the relativistic Bethe formula above 10 keV. Range is also computed and is in good agreement with other theoretical work.

  19. Alignment of Ar{sup +} [{sup 3}P]4p{sup 2}P{sup 0}{sub 3/2} satellite state from the polarization analysis of fluorescent radiation after photoionization

    SciTech Connect

    Yenen, O.; McLaughlin, K.W.; Jaecks, D.H.

    1997-04-01

    The measurement of the polarization of radiation from satellite states of Ar{sup +} formed after the photoionization of Ar provides detailed information about the nature of doubly excited states, magnetic sublevel cross sections and partial wave ratios of the photo-ejected electrons. Since the formation of these satellite states is a weak process, it is necessary to use a high flux beam of incoming photons. In addition, in order to resolve the many narrow doubly excited Ar resonances, the incoming photons must have a high resolution. The characteristics of the beam line 9.0.1 of the Advanced Light Source fulfill these requirements. The authors determined the polarization of 4765 {Angstrom} fluorescence from the Ar{sup +} [{sup 3}P] 4p {sup 2}P{sub 3/2}{sup 0} satellite state formed after photoionization of Ar by photons from the 9.0.1 beam line of ALS in the 35.620-38.261 eV energy range using a resolution of approximately 12,700. This is accomplished by measuring the intensities of the fluorescent light polarized parallel (I{parallel}) and perpendicular (I{perpendicular}) to the polarization axis of the incident synchrotron radiation using a Sterling Optics 105MB polarizing filter. The optical system placed at 90{degrees} with respect to the polarization axis of the incident light had a narrow band interference filter ({delta}{lambda}=0.3 nm) to isolate the fluorescent radiation.

  20. Photoionization of P+: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Nahar, S. N.; Hernández, E. M.; Hernández, L.; Antillón, A.; Morales-Mori, A.; González, O.; Covington, A. M.; Chartkunchand, K. C.; Hanstorp, D.; Juárez, A. M.; Hinojosa, G.

    2017-01-01

    An experimental and theoretical study of the single photoionization cross section of the P+ cation of phosphorus is presented. Photoionization (PI) cross sections are instrumental for the determination of abundances in the interstellar medium. The experiment was performed by merging an ion beam with a photon beam. The photon beam was nearly monochromatic and had an energy resolution of 24 meV. Calculations were carried out using the Breit-Pauli R-matrix method. The combined study was developed in the photon energy interval from 18 eV (68.9 nm) to 50 eV (24.8 nm). Comparison between the measured and the calculated cross section shows good agreement in general and identifies features of the process and existence of states in the experimental beam. The present results should provide for more accurate modeling of P+.

  1. Photoionization-photoelectron research.

    SciTech Connect

    Ruscic, B.

    1998-03-06

    In the broad sense of a general definition, the fundamental goal of this research program is to explore, understand, and utilize the basic processes of interaction of vacuum UV light with atoms and molecules. In practical terms, this program uses photoionization mass spectrometry and other related techniques to study chemically relevant transient and metastable species that are intimately connected to energy-producing processes, such as combustion, or play-prominent roles in the associated environmental issues. Some recent examples of species that have been studied are: CH{sub 3}, CH{sub 2}, CH{sub 3}O, CH{sub 2}OH, CH{sub 3}S, CH{sub 2}SH, HCS, HNCO, NCO, HNCS, NCS, the isomers of C{sub 2}H{sub 5}O, HOBr, CF{sub 3} and CF{sub 3}OH. The ephemeral species of interest are produced in situ using various suitable techniques, such as sublimation, pyrolysis, microwave discharge, chemical abstraction reactions with H or F atoms, laser photodissociation, on-line synthesis, and others. The desired information is obtained by applying a variety of suitable photoionization methods, which use both conventional and coherent light sources in the vacuum W region. The spiritus movens of our studies is the need to provide the chemical community with essential information on the species of interest, such as accurate and reliable thermochemical, spectroscopic and structural data, and thus contribute to the global comprehension of the underlying chemical processes. The scientific motivation is also fueled by the necessity to unveil useful generalities, such as bonding patterns within a class of related compounds, or systematic behavior in the ubiquitous autoionization processes. In addition, the nature of the results obtained in this program is such that it generates a significant impetus for further theoretical work. The experimental work of this program is coordinated with other related experimental and theoretical efforts of the Chemical Dynamics Group to provide a broad perspective

  2. 2008 Photoions, Photoionization & Photodetachment Gordon Research Conference January 27-February 1, 2008

    SciTech Connect

    Klaus Muller-Dethefs Nancy Ryan GRay

    2009-03-31

    This conference brings together scientists interested in a range of basic phenomena linked to the ejection and scattering of electrons from atoms, molecules, clusters, liquids and solids by absorption of light. Photoionization, a highly sensitive probe of both structure and dynamics, can range from perturbative single-photon processes to strong-field highly non-perturbative interactions. It is responsible for the formation and destruction of molecules in astrophysical and plasma environments and successfully used in advanced analytical techniques. Positive ions, which can be produced and studied most effectively using photoionization, are the major components of all plasmas, vital constituents of flames and important intermediates in many chemical reactions. Negative ions are significant as transient species and, when photodetached, the corresponding neutral species often undergoes remarkable, otherwise non-observable, dynamics. The scope of the meeting spans from novel observations in atomic and molecular physics, such as Coulomb Crystals, highly excited states and cold Rydberg plasmas, to novel energy resolved or ultrafast time-resolved experiments, photoionization in strong laser fields, theoretical method development for electron scattering, photoionization and photodetachment and more complex phenomena such as charge transfer and DNA and protein conductivity, important for biological and analytical applications.

  3. Neon photoionized plasma experiment at Z

    NASA Astrophysics Data System (ADS)

    Mayes, D. C.; Mancini, R. C.; Bailey, J. E.; Loisel, G. P.; Rochau, G. A.

    2016-10-01

    We discuss an experimental effort to study the atomic kinetics in neon photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at various distances from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma from about 3 to 80 erg*cm/s. An x-ray crystal spectrometer capable of collecting both time-integrated and time-gated spectra is used to collect absorption spectra. A suite of IDL programs has been developed to process the experimental data to produce transmission spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal-densities and charge state distributions, which can be compared with results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas. This work was sponsored in part by the DOE National Nuclear Security Administration Grant DE-FG52-09NA29551, DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  4. Dynamics of photoionization of hydrogenlike ions in Debye plasmas

    SciTech Connect

    Qi, Y. Y.; Wang, J. G.; Janev, R. K.

    2009-12-15

    Photoionization processes for the ground state and n<=3 excited states of hydrogenlike ions embedded in a weakly coupled plasma are investigated in the entire energy range of a nonrelativistic regime. The plasma screening of the Coulomb interaction between charged particles is described by the Debye-Hueckel model. The energy levels and wave functions for both the bound and continuum states are calculated by solving the Schroedinger equation numerically by the symplectic integrator. The screening of Coulomb interactions reduces the number of bound electron states, decreases their binding energies, broadens the radial distribution of electron wave functions of these states, and changes significantly the phases and the amplitudes of continuum wave functions. These changes strongly affect the dipole matrix elements between the bound and continuum states and, hence, the photoionization cross sections. The most significant effects of the screened Coulomb interactions on the energy behavior of photoionization cross sections are manifested in its low-energy behavior (Wigner threshold law), the appearance of multiple shape and virtual-state resonances when the energy levels of upper bound states enter the continuum after certain critical strength of the screening, and in the (slight) reduction of the cross section at high photon energies. All these features of the photoionization cross section are related to the short-range character of the Debye-Hueckel potential. The effects of the potential screening on the Combet-Farnoux and Cooper minima in the photoionization cross section are also investigated. Comparison of calculated photoionization cross sections with the results of other authors, when available, is made.

  5. Photoionization of Ar2 at high resolution

    SciTech Connect

    Dehmer, Patricia M.

    1982-01-01

    The relative photoionization cross section of Ar2 was determined at a resolution of 0.07 Â in the wavelength region from 800 to 850 Â using a new photoionization mass spectrometer that combines a high intensity helium continuum lamp with a free supersonic molecular beam source. In the region studied, the photoionization cross section is dominated by autoionization of molecular Rydberg states, and the structure is diffuse owing to the combined effects of autoionization and predissociation. The molecular photoionization spectrum is extremely complex and shows little resemblence either to the corresponding atomic spectrum (indicating that the spectrum of the dimer is not simply a perturbed atomic spectrum) or to the molecular absorption spectrum at longer wavelengths. The regular vibrational progressions seen at longer wavelengths are absent above the first ionization potential. Detailed spectroscopic analysis is possible for only a small fraction of the observed features; however, vibrational intervals of 50--100 cm⁻¹ suggest that some of the Rydberg states have B ²Π3/2g ionic cores. A comparison of the absorption and photoionization spectra shows that, at wavelengths shorter than -835 Â, many of the excited states decay via mechanisms other than autoionization

  6. Double K-shell photoionization and universal scaling laws

    NASA Astrophysics Data System (ADS)

    Hoszowska, J.; Kheifets, A. K.; Dousse, J.-Cl; Berset, M.; Bray, I.; Cao, W.; Fennane, K.; Kayser, Y.; Kavčič, M.; Szlachetko, J.; Szlachetko, M.

    2009-11-01

    The photon energy dependence of the double K-shell ionization cross sections for light atoms and He-like ions is reported. The K-shell double photoionization DPI cross-sections for hollow atom production are compared to those of the corresponding He-like counterparts. The relative contribution of the initial-state correlations and final-state electron-electron interactions to the K-shell DPI is addressed. A semiempirical universal scaling of the double photoionization cross sections with the effective nuclear charge for neutral atoms in the range 2 <= Z <= 47 is established.

  7. Helium 23S photoionization up to the N = 5 threshold

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Moccia, Roberto

    2008-02-01

    We present the results of an accurate B-spline K-matrix calculation of total and partial cross sections and asymmetry parameters for the photoionization of the metastable 23Se state of helium up to the N = 5 threshold. The effect of the [040]+5 intruder state below N = 4 is shown.

  8. Advances in 4D radiation therapy for managing respiration: part II - 4D treatment planning.

    PubMed

    Rosu, Mihaela; Hugo, Geoffrey D

    2012-12-01

    The development of 4D CT imaging technology made possible the creation of patient models that are reflective of respiration-induced anatomical changes by adding a temporal dimension to the conventional 3D, spatial-only, patient description. This had opened a new venue for treatment planning and radiation delivery, aimed at creating a comprehensive 4D radiation therapy process for moving targets. Unlike other breathing motion compensation strategies (e.g. breath-hold and gating techniques), 4D radiotherapy assumes treatment delivery over the entire respiratory cycle - an added bonus for both patient comfort and treatment time efficiency. The time-dependent positional and volumetric information holds the promise for optimal, highly conformal, radiotherapy for targets experiencing movements caused by respiration, with potentially elevated dose prescriptions and therefore higher cure rates, while avoiding the uninvolved nearby structures. In this paper, the current state of the 4D treatment planning is reviewed, from theory to the established practical routine. While the fundamental principles of 4D radiotherapy are well defined, the development of a complete, robust and clinically feasible process still remains a challenge, imposed by limitations in the available treatment planning and radiation delivery systems.

  9. Double photoionization of doubly-excited lithium

    NASA Astrophysics Data System (ADS)

    Armstrong, G.; Pindzola, M. S.; Kheifets, A.; Schuricke, M.; Veeravalli, G.; Dornes, Ch.; Zhu, G.; Joachimsmeyer, K.; Treusch, R.; Dorn, A.; Colgan, J.

    2012-06-01

    We present triple differential cross sections and recoil ion momentum distributions for double photoionization of the 1s2s2p state of lithium. Double ionization of lithium may be treated as a two-active-electron process, where the ``active'' 2s and 2p electrons move in the field of the ``frozen-core'' Li^2+ 1s state.The time-dependent close-coupling (TDCC) method is used to solve the two-electron time-dependent Schr"odinger equation in full dimensionality. This work is motivated by recent FLASH experiments, which have obtained recoil-ion momentum distributions at a photon energy of 59 eV, where the 1s2s2p state is first reached via a 1s-2p photoexcitation from the initial ground state, and may then be doubly-ionized after the absorption of a second photon. The TDCC calculations in this work treat the subsequent photoionization of this doubly-excited state. The results are compared to those obtained by the convergent close-coupling method and to measurement, and provide a first comparison between theory and experiment in this fundamental few-photon few-body problem.

  10. Photoionization Dynamics of Small Molecules

    SciTech Connect

    Dehmer, Joseph L.; Dill, Dan; Parr, Albert C.

    1985-01-01

    The last decade has witnessed remarkable progress in characterizing dynamical aspects of the molecular photoionization process. The general challenge is to gain physical insight into those processes occuring during photo excitation and eventual escape of the photoelectron through the anisotropic molecular field, in terms of various observables such as photoionization cross-sections and branching ratios, photoelectron angular distributions and even newer probes mentioned below. Much of the progress in this field has mirrored earlier work in atomic photoionization dynamics where many key ideas were developed (e.g., channel interaction, quantum defect analysis, potential barrier phenomena and experimental techniques). However, additional concepts and techniques were required to deal with the strictly molecular aspects of the problem, particularly the anisotropy of the multicenter molecular field and the interaction among rovibronic modes.

  11. Double Photoionization of Aligned Molecular Hydrogen

    SciTech Connect

    Vanroose, Wim; Horner, Daniel A.; Martin, Fernando; Rescigno,Thomas N.; McCurdy, C. William

    2006-07-21

    We present converged, completely ab initio calculations ofthe triple differential cross sections for double photoionization ofaligned H2 molecules for a photon energy of 75.0 eV. The method ofexterior complex scaling, implemented with both the discrete variablerepresentation and B-splines, is used to solve the Schroedinger equationfor a correlated continuum wave function corresponding to a single photonhaving been absorbed by a correlated initial state. Results for a fixedinternuclear distance are compared with recent experiments and show thatintegration over experimental angular and energy resolutions is necessaryto produce good qualitative agreement, but does not eliminate somediscrepancies. Limitations of current experimental resolution are shownto sometimes obscure interesting details of the crosssection.

  12. Photoionization of Ca XV with high energy features

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2017-02-01

    Photoionization cross sections of (Ca XV + hν → Ca XVI + e), with high energy resonant photo-absorption phenomena, of a large number of bound states, 701 in total with n ≤ 10 and l ≤ 9, are reported. They are obtained using the R-matrix method with a close coupling (CC) wavefunction expansion of 29 states of n = 2,3 complexes of the core ion Ca XVI. Characteristic features found in photoionization of the ion are illustrated with examples. The cross section (σPI) of the ground 2s22p2(3P) state is found to be unaffected by the size of the wavefunction expansion except for weak sparse resonances in high energy region. However, effects on excited states are considerable as the core excitations to n = 3 states are manifested in huge resonant absorption in high energy photoionization. They show existence of prominent high peak resonant features and enhancement in the background that were not studied before for Ca XV. In addition photoionization of the excited states with a single valence electron is dominated by Seaton resonant structures formed by the photo-excitation-of-core in the high energy region. These features will impact other quantities, such as the opacity, electron-ion recombination in high temperature plasmas where the ion exists, and hence will play important role in determination of elemental abundances in the astronomical objects.

  13. VUV state-selected photoionization of thermally-desorbed biomolecules by coupling an aerosol source to an imaging photoelectron/photoion coincidence spectrometer: case of the amino acids tryptophan and phenylalanine.

    PubMed

    Gaie-Levrel, François; Garcia, Gustavo A; Schwell, Martin; Nahon, Laurent

    2011-04-21

    Gas phase studies of biological molecules provide structural and dynamical information on isolated systems. The lack of inter- or intra-molecular interactions facilitates the interpretation of the experimental results through theoretical calculations, and constitutes an informative complement to the condensed phase. However advances in the field are partially hindered by the difficulty of vaporising these systems, most of which are thermally unstable. In this work we present a newly developed aerosol mass thermodesorption setup, which has been coupled to a Velocity Map Imaging (VMI) analyzer operated in coincidence with a Wiley-McLaren Time of Flight spectrometer, using synchrotron radiation as a single photon ionization source. Although it has been previously demonstrated that thermolabile molecules such as amino acids can be produced intact by the aerosol vaporisation technique, we show how its non-trivial coupling to a VMI analyzer plus the use of electron/ion coincidences greatly improves the concept in terms of the amount of spectroscopic and dynamic information that can be extracted. In this manner, we report on the valence shell ionization of two amino acids, tryptophan and phenylalanine, for which threshold photoelectron spectra have been recorded within the first 3 eV above the first ionization energy using synchrotron radiation emitted from the DESIRS beamline located at SOLEIL in France. Their adiabatic ionization energies (IEs) have been measured at 7.40 ± 0.05 and 8.65 ± 0.02 eV, respectively, and their spectra analyzed using existing theoretical data from the literature. The IE values agree well with previously published ones, but are given here with a considerably reduced uncertainty by up to a factor of 5. The photostability of both amino acids is also described in detail, through the measurement of the state-selected fragmentation pathways via the use of threshold electron/ion coincidences (TPEPICO), with appearance energies for the different

  14. Relativistic theory of the double photoionization of heliumlike atoms

    SciTech Connect

    Yerokhin, Vladimir A.; Surzhykov, Andrey

    2011-09-15

    A fully relativistic calculation of the double photoionization of heliumlike atoms is presented. The approach is based on the partial-wave representation of the Dirac continuum states and accounts for the retardation in the electron-electron interaction as well as the higher-order multipoles of the absorbed photon. The electron-electron interaction is taken into account to the leading order of the perturbation theory. The relativistic effects are shown to become prominent already for the medium-Z ions, changing the shape and the asymptotic behavior of the photon energy dependence of the ratio of the double-to-single photoionization cross section.

  15. Mass-Selective Laser Photoionization.

    ERIC Educational Resources Information Center

    Smalley, R. E.

    1982-01-01

    Discusses the nature and applications of mass-selective laser photoionization. The ionization can be done with a single intense laser pulse lasting a few billionths of a second with no molecular fragmentation. Applications focus on: (1) benzene clusters, excimers, and exciplexes; (2) metal clusters; and (3) triplet formation and decay. (Author/JN)

  16. Soft Route to 4D Tomography

    NASA Astrophysics Data System (ADS)

    Taillandier-Thomas, Thibault; Roux, Stéphane; Hild, François

    2016-07-01

    Based on the assumption that the time evolution of a sample observed by computed tomography requires many less parameters than the definition of the microstructure itself, it is proposed to reconstruct these changes based on the initial state (using computed tomography) and very few radiographs acquired at fixed intervals of time. This Letter presents a proof of concept that for a fatigue cracked sample its kinematics can be tracked from no more than two radiographs in situations where a complete 3D view would require several hundreds of radiographs. This 2 order of magnitude gain opens the way to a "computed" 4D tomography, which complements the recent progress achieved in fast or ultrafast computed tomography, which is based on beam brightness, detector sensitivity, and signal acquisition technologies.

  17. Decoherence in attosecond photoionization.

    PubMed

    Pabst, Stefan; Greenman, Loren; Ho, Phay J; Mazziotti, David A; Santra, Robin

    2011-02-04

    The creation of superpositions of hole states via single-photon ionization using attosecond extreme-ultraviolet pulses is studied with the time-dependent configuration-interaction singles (TDCIS) method. Specifically, the degree of coherence between hole states in atomic xenon is investigated. We find that interchannel coupling not only affects the hole populations, but it also enhances the entanglement between the photoelectron and the remaining ion, thereby reducing the coherence within the ion. As a consequence, even if the spectral bandwidth of the ionizing pulse exceeds the energy splittings among the hole states involved, perfectly coherent hole wave packets cannot be formed. For sufficiently large spectral bandwidth, the coherence can only be increased by increasing the mean photon energy.

  18. Decoherence in Attosecond Photoionization

    SciTech Connect

    Pabst, Stefan; Santra, Robin; Greenman, Loren; Mazziotti, David A.; Ho, Phay J.

    2011-02-04

    The creation of superpositions of hole states via single-photon ionization using attosecond extreme-ultraviolet pulses is studied with the time-dependent configuration-interaction singles (TDCIS) method. Specifically, the degree of coherence between hole states in atomic xenon is investigated. We find that interchannel coupling not only affects the hole populations, but it also enhances the entanglement between the photoelectron and the remaining ion, thereby reducing the coherence within the ion. As a consequence, even if the spectral bandwidth of the ionizing pulse exceeds the energy splittings among the hole states involved, perfectly coherent hole wave packets cannot be formed. For sufficiently large spectral bandwidth, the coherence can only be increased by increasing the mean photon energy.

  19. Investigation of fragmentation processes following core photoionization of organometallic molecules in the vapor phase

    NASA Astrophysics Data System (ADS)

    Nagaoka, Shin-ichi; Suzuki, Shinzo; Koyano, Inosuke

    1988-04-01

    Ionic fragmentation processes following ( n - 1)d core level photoionization of organometallic molecules have been studied in the vapor phase using synchrotron radiation. Results on tetramethyllead, tetramethyltin and tetramethylgermanium are reported. The threshold electron spectra and the photoionization efficiency curves of these molecules are presented and discussed. It is concluded that the ( n - 1)d 9 core-hole state of M(CH 3) 4 (M  Pb, Sn or Ge) is split into five sublevels owing to both the spin-orbi and the electrostatic perturbations by the methyl groups, and that the M + ions are predominantly produced following ( n - 1)d photoionization.

  20. 4-D OCT in Developmental Cardiology

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  1. Nondipole Effects in Double Photoionization of He

    SciTech Connect

    Istomin, A. Y.; Starace, A. F.; Manakov, N. L.; Meremianin, A. V.

    2006-01-09

    Lowest-order nondipole effects are studied in double photoionization (DPI) of the He atom. Ab initio parametrizations of the quadrupole transition amplitude for DPI from the 1S0-state are presented in terms of the exact two-electron reduced matrix elements. Parametrizations for the dipole-quadrupole triply differential cross section (TDCS) and doubly differential cross section (DDCS) are presented in terms of polarization-independent amplitudes for the case of an elliptically polarized photon. Expressions for the DDCS in terms of the reduced two-electron matrix elements are also given. A general analysis of retardation-induced asymmetries of the TDCS including the circular dichroism effect at equal energy sharing is presented. Our numerical results exhibit a nondipole forward-backward asymmetry in the TDCS for DPI of He at an excess energy of 450 eV that is in qualitative agreement with existing experimental data.

  2. Electron localization following attosecond molecular photoionization.

    PubMed

    Sansone, G; Kelkensberg, F; Pérez-Torres, J F; Morales, F; Kling, M F; Siu, W; Ghafur, O; Johnsson, P; Swoboda, M; Benedetti, E; Ferrari, F; Lépine, F; Sanz-Vicario, J L; Zherebtsov, S; Znakovskaya, I; L'huillier, A; Ivanov, M Yu; Nisoli, M; Martín, F; Vrakking, M J J

    2010-06-10

    For the past several decades, we have been able to directly probe the motion of atoms that is associated with chemical transformations and which occurs on the femtosecond (10(-15)-s) timescale. However, studying the inner workings of atoms and molecules on the electronic timescale has become possible only with the recent development of isolated attosecond (10(-18)-s) laser pulses. Such pulses have been used to investigate atomic photoexcitation and photoionization and electron dynamics in solids, and in molecules could help explore the prompt charge redistribution and localization that accompany photoexcitation processes. In recent work, the dissociative ionization of H(2) and D(2) was monitored on femtosecond timescales and controlled using few-cycle near-infrared laser pulses. Here we report a molecular attosecond pump-probe experiment based on that work: H(2) and D(2) are dissociatively ionized by a sequence comprising an isolated attosecond ultraviolet pulse and an intense few-cycle infrared pulse, and a localization of the electronic charge distribution within the molecule is measured that depends-with attosecond time resolution-on the delay between the pump and probe pulses. The localization occurs by means of two mechanisms, where the infrared laser influences the photoionization or the dissociation of the molecular ion. In the first case, charge localization arises from quantum mechanical interference involving autoionizing states and the laser-altered wavefunction of the departing electron. In the second case, charge localization arises owing to laser-driven population transfer between different electronic states of the molecular ion. These results establish attosecond pump-probe strategies as a powerful tool for investigating the complex molecular dynamics that result from the coupling between electronic and nuclear motions beyond the usual Born-Oppenheimer approximation.

  3. Photoionization of Synchrotron-Radiation-Excited Atoms: Separating Partial Cross Sections by Full Polarization Control

    SciTech Connect

    Aloiese, S.; Meyer, M.; Cubaynes, D.; Grum-Grzhimailo, A. N.

    2005-06-10

    Resonant atomic excitation by synchrotron radiation and subsequent ionization by a tunable dye laser is used to study the photoionization of short-lived Rydberg states in Xe. By combining circular and linear polarization of the synchrotron as well as of the laser photons the partial photoionization cross sections were separated in the region of overlapping autoionizing resonances of different symmetry and the parameters of the resonances were extracted.

  4. Biomedical applications of laser photoionization

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Moore, Larry J.; Fassett, John R.; O'Haver, Thomas C.

    1991-07-01

    Trace elements are important for many essential metabolic functions. Zinc is a structural/functional component in more than 200 enzymes active in the biochemistry of cell division and tissue growth, neurology and endocrine control. Calcium is involved in intracellular control mechanisms and in skeletal bone building and resorption processes related to osteoporosis. Sensitive and selective laser photoionization is being developed to understand mechanisms in smaller samples and biological units approaching the cellular domain. Zinc has an ionization potential of 9.4 eV, or 75766.8 cm-1. Several processes are being explored, including two-photon resonant, three- photon ionization utilizing sequential UV transitions, e.g., 4s2 1S0 yields 4s4p 3P1 and 4s4p 3P1 yields 4s5d 3D1. Preliminary zinc stable isotope ratio data obtained by thermal atomization and laser photoionization agree with accepted values within 2 to 5%, except for anomalous 67Zn. Photoionization of calcium is being studied for isotope enrichment and ratio measurement using narrow and medium bandwidth lasers. Several ionization pathways, e.g., 4s2 1S0 - 2hv1 yields 4s10s - hv2 yields Ca+ (4s2S), are being investigated for isotopically selective ionization. Auto-ionization pathways are explored for greater efficiency in isotopic analysis. All studies have utilized a Nd:YAG- pumped laser system with one or two frequency-doubled tunable dye lasers coupled either to a magnetic sector or time-of-flight mass spectrometer.

  5. Advances in 4D radiation therapy for managing respiration: part I - 4D imaging.

    PubMed

    Hugo, Geoffrey D; Rosu, Mihaela

    2012-12-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available "first generation" 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are described, including necessity of breathing surrogates for 4D image reconstruction, assumptions made in acquisition and reconstruction about the breathing pattern, and commonly-observed artifacts. Both established and developmental methods to deal with these limitations are detailed. Finally, strategies to construct 4D targets and images and, alternatively, to compress 4D information into static targets and images for radiation therapy planning are described.

  6. Communication: The influence of vibrational parity in chiral photoionization dynamics

    SciTech Connect

    Powis, Ivan

    2014-03-21

    A pronounced vibrational state dependence of photoelectron angular distributions observed in chiral photoionization experiments is explored using a simple, yet realistic, theoretical model based upon the transiently chiral molecule H{sub 2}O{sub 2}. The adiabatic approximation is used to separate vibrational and electronic wavefunctions. The full ionization matrix elements are obtained as an average of the electronic dipole matrix elements over the vibrational coordinate, weighted by the product of neutral and ion state vibrational wavefunctions. It is found that the parity of the vibrational Hermite polynomials influences not just the amplitude, but also the phase of the transition matrix elements, and the latter is sufficient, even in the absence of resonant enhancements, to account for enhanced vibrational dependencies in the chiral photoionization dynamics.

  7. Relativistic Photoionization Computations with the Time Dependent Dirac Equation

    DTIC Science & Technology

    2016-10-12

    fields often occurs in the relativistic regime. A complete description of this phenomenon requires both relativistic and quantum mechanical treatment...photoionization, or other relativis- tic quantum electronics problems. While the Klein-Gordon equation captures much of the relevant physics, especially... quantum number. The orbital angular momentum is a bad quantum number because the stationary states have `0 6= `3 and `1 6= `2, so that they are not

  8. Nonperturbative theory of double photoionization of the hydrogen molecule

    SciTech Connect

    Vanroose, W.; Martin, F.; Rescigno, T.N.; McCurdy, C.W.

    2004-10-01

    We present completely ab initio nonperturbative calculations of the integral and single differential cross sections for double photoionization of H2 for photon energies from 53.9 to 75.7 eV. The method of exterior complex scaling, implemented with B-splines, is used to solve the Schrodinger equation for a correlated continuum wave function corresponding to a single photon having been absorbed by a correlated initial state. The results are in good agreement with experimental integral cross sections.

  9. Optimized PET imaging for 4D treatment planning in radiotherapy: the virtual 4D PET strategy.

    PubMed

    Gianoli, Chiara; Riboldi, Marco; Fontana, Giulia; Giri, Maria G; Grigolato, Daniela; Ferdeghini, Marco; Cavedon, Carlo; Baroni, Guido

    2015-02-01

    The purpose of the study is to evaluate the performance of a novel strategy, referred to as "virtual 4D PET", aiming at the optimization of hybrid 4D CT-PET scan for radiotherapy treatment planning. The virtual 4D PET strategy applies 4D CT motion modeling to avoid time-resolved PET image acquisition. This leads to a reduction of radioactive tracer administered to the patient and to a total acquisition time comparable to free-breathing PET studies. The proposed method exploits a motion model derived from 4D CT, which is applied to the free-breathing PET to recover respiratory motion and motion blur. The free-breathing PET is warped according to the motion model, in order to generate the virtual 4D PET. The virtual 4D PET strategy was tested on images obtained from a 4D computational anthropomorphic phantom. The performance was compared to conventional motion compensated 4D PET. Tests were also carried out on clinical 4D CT-PET scans coming from seven lung and liver cancer patients. The virtual 4D PET strategy was able to recover lesion motion, with comparable performance with respect to the motion compensated 4D PET. The compensation of the activity blurring due to motion was successfully achieved in terms of spill out removal. Specific limitations were highlighted in terms of partial volume compensation. Results on clinical 4D CT-PET scans confirmed the efficacy in 4D PET count statistics optimization, as equal to the free-breathing PET, and recovery of lesion motion. Compared to conventional motion compensation strategies that explicitly require 4D PET imaging, the virtual 4D PET strategy reduces clinical workload and computational costs, resulting in significant advantages for radiotherapy treatment planning.

  10. Multichannel interactions in the resonant photoionization of HCl

    NASA Astrophysics Data System (ADS)

    White, M. G.; Leroi, G. E.; Ho, M.-H.; Poliakoff, E. D.

    1987-12-01

    Vibrational state distributions of the A 2Σ+ excited state of HCl+ were measured by dispersed fluorescence following resonant photoionization. Autoionization of levels excited at the NeI resonance line strongly influence the vibrational branching ratios of the A 2Σ+ state although not in accord with the propensity rule expected for vibrational autoionization. Other measurements utilizing total fluorescence yields and synchrotron radiation confirm the presence of competing dissociation channels for autoionizing Rydberg states converging to the A 2Σ+ limit. These results are discussed in terms of the multichannel interactions responsible for determining the observed ion and fragment product distributions.

  11. Photoionization of Cl+ from the 3s23p4 3P2,1,0 and the 3s23p4 1D2,1S0 states in the energy range 19-28 eV

    NASA Astrophysics Data System (ADS)

    McLaughlin, Brendan M.

    2017-01-01

    Absolute photoionization cross-sections for the Cl+ ion in its ground and the metastable states, 3s23p4 3P2,1,0 and 3s23p4 1D2,1S0, were measured recently at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged beams photon-ion technique at a photon energy resolution of 15 meV in the energy range 19-28 eV. These measurements are compared with large-scale Dirac-Coulomb R-matrix calculations in the same energy range. Photoionization of this sulphur-like chlorine ion is characterized by multiple Rydberg series of auto-ionizing resonances superimposed on a direct photoionization continuum. A wealth of resonance features observed in the experimental spectra is spectroscopically assigned, and their resonance parameters are tabulated and compared with the recent measurements. Metastable fractions in the parent ion beam are determined from this study. Theoretical resonance energies and quantum defects of the prominent Rydberg series 3s23p3nd, identified in the spectra as 3p → nd transitions, are compared with the available measurements made on this element. Weaker Rydberg series 3s23p3ns, identified as 3p → ns transitions and window resonances 3s3p4(4P)np features, due to 3s → np transitions, are also found in the spectra.

  12. Photoionization of rare gas clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhen

    This thesis concentrates on the study of photoionization of van der Waals clusters with different cluster sizes. The goal of the experimental investigation is to understand the electronic structure of van der Waals clusters and the electronic dynamics. These studies are fundamental to understand the interaction between UV-X rays and clusters. The experiments were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory. The experimental method employs angle-resolved time-of-flight photoelectron spectrometry, one of the most powerful methods for probing the electronic structure of atoms, molecules, clusters and solids. The van der Waals cluster photoionization studies are focused on probing the evolution of the photoelectron angular distribution parameter as a function of photon energy and cluster size. The angular distribution has been known to be a sensitive probe of the electronic structure in atoms and molecules. However, it has not been used in the case of van der Waals clusters. We carried out outer-valence levels, inner-valence levels and core-levels cluster photoionization experiments. Specifically, this work reports on the first quantitative measurements of the angular distribution parameters of rare gas clusters as a function of average cluster sizes. Our findings for xenon clusters is that the overall photon-energy-dependent behavior of the photoelectrons from the clusters is very similar to that of the corresponding free atoms. However, distinct differences in the angular distribution point at cluster-size-dependent effects were found. For krypton clusters, in the photon energy range where atomic photoelectrons have a high angular anisotropy, our measurements show considerably more isotropic angular distributions for the cluster photoelectrons, especially right above the 3d and 4p thresholds. For the valence electrons, a surprising difference between the two spin-orbit components was found. For argon clusters, we found that the

  13. Los Alamos National Laboratory 4D Database

    SciTech Connect

    Atencio, Julian J.

    2014-05-02

    4D is an integrated development platform - a single product comprised of the components you need to create and distribute professional applications. You get a graphical design environment, SQL database, a programming language, integrated PHP execution, HTTP server, application server, executable generator, and much more. 4D offers multi-platform development and deployment, meaning whatever you create on a Mac can be used on Windows, and vice-versa. Beyond productive development, 4D is renowned for its great flexibility in maintenance and modification of existing applications, and its extreme ease of implementation in its numerous deployment options. Your professional application can be put into production more quickly, at a lower cost, and will always be instantly scalable. 4D makes it easy, whether you're looking to create a classic desktop application, a client-server system, a distributed solution for Web or mobile clients - or all of the above!

  14. K -shell double photoionization of Be, Mg, and Ca

    NASA Astrophysics Data System (ADS)

    Kheifets, A. S.; Bray, Igor; Hoszowska, J.

    2009-04-01

    We perform convergent close-coupling calculations of double photoionization (DPI) of the K -shell of alkaline-earth metal atoms (Be, Mg, and Ca) from the threshold to the nonrelativistic limit of infinite photon energy. Theoretical double-to-single photoionization cross-section ratios for Mg and Ca are compared with experimental values derived from high-resolution x-ray spectra following the radiative decay of the K -shell double vacancy. We investigate the role of many-electron correlations in the ground and doubly-ionized final states played in the DPI process. Universal scaling of DPI cross section with an effective nuclear charge is examined in neutral atoms in comparison with corresponding heliumlike ions.

  15. The 4-D approach to visual control of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dickmanns, Ernst D.

    1994-01-01

    Development of a 4-D approach to dynamic machine vision is described. Core elements of this method are spatio-temporal models oriented towards objects and laws of perspective projection in a foward mode. Integration of multi-sensory measurement data was achieved through spatio-temporal models as invariants for object recognition. Situation assessment and long term predictions were allowed through maintenance of a symbolic 4-D image of processes involving objects. Behavioral capabilities were easily realized by state feedback and feed-foward control.

  16. Double photoionization of halogenated benzene

    SciTech Connect

    AlKhaldi, Mashaal Q.; Wehlitz, Ralf

    2016-01-28

    We have experimentally investigated the double-photoionization process in C{sub 6}BrF{sub 5} using monochromatized synchrotron radiation. We compare our results with previously published data for partially deuterated benzene (C{sub 6}H{sub 3}D{sub 3}) over a wide range of photon energies from threshold to 270 eV. A broad resonance in the ratio of doubly to singly charged parent ions at about 65 eV appears shifted in energy compared to benzene data. This shift is due to the difference in the bond lengths in two molecules. A simple model can explain the shape of this resonance. At higher photon energies, we observe another broad resonance that can be explained as a second harmonic of the first resonance.

  17. Nondipole effects in helium photoionization

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Moccia, Roberto

    2010-12-01

    An accurate calculation of the nondipole anisotropy parameter γ in the photoionization of helium below the N = 2 threshold is presented. The calculated results are in fairly good agreement with the experimental results of Krässig et al (2002 Phys. Rev. Lett. 88 203002), but not as good as the accuracy of the calculation should have warranted. A careful examination of the possible causes for the observed discrepancies between theory and experiment seems to rule out any role either of the multipolar terms higher than the electric quadrupole, or of the singlet-triplet spin-orbit mixing. It is argued that such discrepancies might have an instrumental origin, due to the difficulty of measuring vanishingly small total cross sections σtot with the required accuracy. In such eventuality, it might be more appropriate to use a parameter other than γ, such as for instance the drag current, to measure the nondipole anisotropy of the photoelectron angular distribution.

  18. Photoionization of ClII

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana; Hernández, E.; Antillón, A.; Morales, A.; González, O.; Macaluso, D.; Hanstorp, D.; Aguilar, A.; Juárez, A.; Hinojosa, G.

    2014-05-01

    The cross section and spectrum for the process of single photoionization of the chlorine cation was measured in the energy range of 19.5 to 28.0 eV with a photon energy resolution of 20 meV. Over a non resonant cross section, resonant structures originated from initinal Cl+ 3P(J=0,1,2) manifold converging mainly to 2P(J=3/2) and 2D(J=5/2) are identified. A theoretical calculation based on the close coupling R-matrix is under progress. CONACYT CB-2011 167631. US National Science Fundation, DGAPA IN106813, The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE Cntrct. DE-AC02-05CH11231. Montana Space Grant Consortium, Swedish Research Council.

  19. 2006 Photoions, Photoionization & Photodetachment held on January 29-February 3, 2006

    SciTech Connect

    Robert Continetti Nancy Ryan Gray

    2006-09-06

    The 4th Gordon Conference on Photoions, Photoionization and Photodetachment will be held January 29-February 3, 2006 at the Santa Ynez Valley Marriott in Buellton, California. This meeting will continue to cover fundamentals and applications of photoionization and photodetachment, including valence and core-level phenomena and applications to reaction dynamics, ultrashort laser pulses and the study of exotic molecules and anions. Further information will be available soon at the Gordon Conference Website, and will be announced.

  20. Excitation of the symmetry forbidden bending mode in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Miller, J. Scott; Poliakoff, E. D.; Miller, Thomas F.; Natalense, Alexandra P. P.; Lucchese, Robert R.

    2001-03-01

    We present results on the energy dependence of the vibrational branching ratio for the bending mode in CO2 3σu-1 photoionization. Specifically, we determine the v+=(0,1,0)/v+=(0,0,0) intensity ratio by detecting dispersed fluorescence from the electronically excited photoions. The results exhibit large deviations over a very wide energy range, 18state is forbidden by symmetry, and while observations of such features are well established in photoelectron spectroscopy, their appearance is normally ascribed to vibronic coupling in the ionic hole state. In this case, we find that such explanations fail to account for the energy dependence of the branching ratio. These deviations indicate that the continuum photoelectron participates in transferring oscillator strength to the nominally forbidden vibrational transition. A theoretical framework is developed for interpreting the experimental data, and Schwinger variational calculations are performed. These calculations demonstrate that the continuum electron is responsible for the observation of the excited bending mode as well as its energy dependence. This is an intrachannel effect that is best described as photoelectron-induced vibronic symmetry breaking. This appears to be a general phenomenon, and it may be useful in illuminating connections between bond angle and photoionization spectroscopies. The magnitude of these deviations display the utility of vibrationally resolved studies, and the extent over which these changes occur underscores the necessity of broad range studies to elucidate slowly varying characteristics in photoionization continua.

  1. Femtosecond pump-probe photoionization-photofragmentation spectroscopy: Photoionization-induced twisting and coherent vibrational motion of azobenzene cation

    NASA Astrophysics Data System (ADS)

    Ho-Wei, Jr.; Chen, Wei-Kan; Cheng, Po-Yuan

    2009-10-01

    We report studies of ultrafast dynamics of azobenzene cation using femtosecond photoionization-photofragmentation spectroscopy. In our experiments, a femtosecond pump pulse first produces an ensemble of azobenzene cations via photoionization of the neutrals. A delayed probe pulse then brings the evolving ionic system to excited states that ultimately undergo ion fragmentation. The dynamics is followed by monitoring either the parent-ion depletion or fragment-ion formation as a function of the pump-probe delay time. The observed transients for azobenzene cation are characterized by a constant ion depletion modulated by a rapidly damped oscillatory signal with a period of about 1 ps. Theoretical calculations suggest that the oscillation arises from a vibration motion along the twisting inversion coordinate involving displacements in CNNC and phenyl-ring torsions. The oscillation is damped rapidly with a time constant of about 1.2 ps, suggesting that energy dissipation from the active mode to bath modes takes place in this time scale.

  2. 4D flow imaging with MRI

    PubMed Central

    Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.

    2014-01-01

    Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414

  3. Double K-shell photoionization of atomic beryllium

    SciTech Connect

    Yip, F. L.; Martin, F.; McCurdy, C. W.; Rescigno, T. N.

    2011-11-15

    Double photoionization of the core 1s electrons in atomic beryllium is theoretically studied using a hybrid approach that combines orbital and grid-based representations of the Hamiltonian. The {sup 1} S ground state and {sup 1} P final state contain a double occupancy of the 2s valence shell in all configurations used to represent the correlated wave function. Triply differential cross sections are evaluated, with particular attention focused on a comparison of the effects of scattering the ejected electrons through the spherically symmetric valence shell with similar cross sections for helium, representing a purely two-electron target with an analogous initial-state configuration.

  4. GL4D: a GPU-based architecture for interactive 4D visualization.

    PubMed

    Chu, Alan; Fu, Chi-Wing; Hanson, Andrew J; Heng, Pheng-Ann

    2009-01-01

    This paper describes GL4D, an interactive system for visualizing 2-manifolds and 3-manifolds embedded in four Euclidean dimensions and illuminated by 4D light sources. It is a tetrahedron-based rendering pipeline that projects geometry into volume images, an exact parallel to the conventional triangle-based rendering pipeline for 3D graphics. Novel features include GPU-based algorithms for real-time 4D occlusion handling and transparency compositing; we thus enable a previously impossible level of quality and interactivity for exploring lit 4D objects. The 4D tetrahedrons are stored in GPU memory as vertex buffer objects, and the vertex shader is used to perform per-vertex 4D modelview transformations and 4D-to-3D projection. The geometry shader extension is utilized to slice the projected tetrahedrons and rasterize the slices into individual 2D layers of voxel fragments. Finally, the fragment shader performs per-voxel operations such as lighting and alpha blending with previously computed layers. We account for 4D voxel occlusion along the 4D-to-3D projection ray by supporting a multi-pass back-to-front fragment composition along the projection ray; to accomplish this, we exploit a new adaptation of the dual depth peeling technique to produce correct volume image data and to simultaneously render the resulting volume data using 3D transfer functions into the final 2D image. Previous CPU implementations of the rendering of 4D-embedded 3-manifolds could not perform either the 4D depth-buffered projection or manipulation of the volume-rendered image in real-time; in particular, the dual depth peeling algorithm is a novel GPU-based solution to the real-time 4D depth-buffering problem. GL4D is implemented as an integrated OpenGL-style API library, so that the underlying shader operations are as transparent as possible to the user.

  5. Photoionization of endohedral fullerenes using soft x-ray coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Obaid, Razib; Xiong, Hui; Ablikim, Utuq; Augustin, Sven; Schnorr, Kirsten; Battistoni, Andrea; Wolf, Thomas; Carroll, Ann Marie; Bilodeau, Rene; Osipov, Timur; Rolles, Daniel; Berrah, Nora

    2016-05-01

    Endohedral fullerenes are a model system to understand the reorganization dynamics of highly charged molecular systems with delocalized electronic clouds in the multiphoton excitation regime. Previous experiments at the Linac Coherent Light Source (LCLS) using free-electron laser (FEL) and ultrafast IR laser pulses studied this feature in Ho3N@C80. The question remains whether these dynamics can be studied in the site-specific single photo-ionization regime. Ho3N@C80 is particularly interesting since the inner molecule, Ho3N, is unstable in its natural form. The presence of the encapsulating cage, with the charge exchange characteristics of Holmium, stabilizes the whole molecule. In this study, we will present the charge fragmentation dynamics of this species in the single photoionization process of inner shell electrons (4d) of Holmium using the Advanced Light Source (ALS) at LBNL. Photoion-photoion correlation data, alongside with qualitative electron data will be presented. Funded by the DoE-BES, Grant No. DE-SC0012376.

  6. Alignment of photoions far from threshold

    NASA Astrophysics Data System (ADS)

    Das, Romith; Wu, Chuanyong; Mihill, A. G.; Poliakoff, E. D.; Wang, Kwanghsi; McKoy, V.

    1994-09-01

    We present results of measurements and calculations of the alignment for CO+(B 2Σ+) photoions over an extended energy range (0≤Ek≤210 eV). The polarization of CO+(B 2Σ+→X 2Σ+) fluorescence indicates that the photoions retain significant alignment even at high energies. Agreement between the measured and calculated polarization of the fluorescence is excellent.

  7. Influence of shape resonances on minima in cross sections for photoionization of excited atoms

    SciTech Connect

    Felfli, Z.; Manson, S.T. Department of Astronomy, Georgia State University, Atlanta, Georgia 30303 )

    1990-02-01

    A relationship between the location of Cooper minima and the difference between the quantum defect of the initial state and the threshold phase shift (in units of {pi}) of the final state in excited photoionization has been suggested earlier (Phys. Rev. Lett. 48, 473 (1982)). The existence of a shape resonance in the final state is shown to modify this relationship.

  8. Photoionization sensors for non-invasive medical diagnostics

    NASA Astrophysics Data System (ADS)

    Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia

    2016-09-01

    The analysis of biomarkers can help to identify the significant number of diseases: lung cancer, tuberculosis, diabetes, high levels of stress, psychosomatic disorders etc. To implement continuous monitoring of the state of human health, compact VUV photoionization detector with current-voltage measurement is designed by Saint-Petersburg Mining University Plasma Research Group. This sensor is based on the patented method of stabilization of electric parameters - CES (Collisional Electron Spectroscopy). During the operation at atmospheric pressure VUV photoionization sensor measures the energy of electrons, produced in the ionization with the resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). A special software was developed to obtain the second-order derivative of the I-U characteristics, taken by the VUV sensor, to construct the energy spectra of the characteristic electrons. VUV photoionization detector has an unique set of parameters: small size (10*10*1 mm), low cost, wide range of recognizable molecules, as well as accuracy, sufficient for using this instrument for the medical purposes. This device can be used for non-invasive medical diagnostics without compromising the quality of life, for control of environment and human life. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.

  9. Shadow-driven 4D haptic visualization.

    PubMed

    Zhang, Hui; Hanson, Andrew

    2007-01-01

    Just as we can work with two-dimensional floor plans to communicate 3D architectural design, we can exploit reduced-dimension shadows to manipulate the higher-dimensional objects generating the shadows. In particular, by taking advantage of physically reactive 3D shadow-space controllers, we can transform the task of interacting with 4D objects to a new level of physical reality. We begin with a teaching tool that uses 2D knot diagrams to manipulate the geometry of 3D mathematical knots via their projections; our unique 2D haptic interface allows the user to become familiar with sketching, editing, exploration, and manipulation of 3D knots rendered as projected imageson a 2D shadow space. By combining graphics and collision-sensing haptics, we can enhance the 2D shadow-driven editing protocol to successfully leverage 2D pen-and-paper or blackboard skills. Building on the reduced-dimension 2D editing tool for manipulating 3D shapes, we develop the natural analogy to produce a reduced-dimension 3D tool for manipulating 4D shapes. By physically modeling the correct properties of 4D surfaces, their bending forces, and their collisions in the 3D haptic controller interface, we can support full-featured physical exploration of 4D mathematical objects in a manner that is otherwise far beyond the experience accessible to human beings. As far as we are aware, this paper reports the first interactive system with force-feedback that provides "4D haptic visualization" permitting the user to model and interact with 4D cloth-like objects.

  10. Dirac R-matrix calculations of photoionization cross-sections of Ni XIII

    NASA Astrophysics Data System (ADS)

    Sardar, S.; Bilal, M.; Bari, M. A.; Nazir, R. T.; Hannan, A.; Salahuddin, M.; Nasim, M. H.

    2016-05-01

    In this paper, we report total photoionization cross-sections of Ni XIII in the ground state (3P2) and four excited states (3P1,0, 1D2, 1S0) for the first time over the photon energy range 380-480 eV. The target wavefunctions are constructed with fully relativistic atomic structure GRASP code. Our calculated energy levels and oscillator strengths of core ion Ni XIV agree well with available experimental and theoretical results. The ionization threshold value of ground state of Ni XIII is found to be more closer to the experimental ionization energy and improved over the previous calculations. The photoionization cross-sections are calculated using the fully relativistic DARC code with an appropriate energy step of 0.01 eV to delineate the resonance structures. The calculated ionization cross-sections are important for the modelling of features of photoionized plasmas and for stellar opacities.

  11. 4D-Var Developement at GMAO

    NASA Technical Reports Server (NTRS)

    Pelc, Joanna S.; Todling, Ricardo; Akkraoui, Amal El

    2014-01-01

    The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.

  12. 2001 Gordon Research Conference on Photoions, Photoionization and Photodetachment. Final progress report [agenda and attendees list

    SciTech Connect

    Johnson, Mark

    2001-07-13

    The Gordon Research Conference on Photoions, Photoionization and Photodetachment was held at Williams College, Williamstown, Massachusetts, July 8-13, 2001. The 72 conference attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and including US and foreign scientists, senior researchers, young investigators, and students. Emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate discussion about the key issues in the field today. Time for formal presentations was limited. Sessions included the following topics: Vibrational structure, Time resolved studies: nuclear wavepackets, Valence photoionization, Clusters and networks, Resonance structures and decay mechanisms, Ultrafast photoionization, Threshold photoionization, Molecule fixed properties, and Collisional phenomena.

  13. Experimental absolute cross section for photoionization of Xe^7+

    NASA Astrophysics Data System (ADS)

    Schippers, S.; Müller, A.; Esteves, D.; Habibi, M.; Aguilar, A.; Kilcoyne, A. L. D.

    2010-03-01

    Collision processes with highly charged xenon ions are of interest for UV-radiation generation in plasma discharges, for fusion research and for space craft propulsion. Here we report results for the photoionization of Xe^7+ ionsootnotetextS. Schippers et al., J. Phys.: Conf. Ser. (in print) which were measured at the photon-ion end station of ALS beamline 10.0.1. As compared with the only previous experimental studyootnotetextJ. M. Bizau et al., Phys. Rev. Lett. 84, 435 (2000) of this reaction, the present cross sections were obtained at higher energy resolution (50--80 meV vs. 200--500 meV) and on an absolute cross section scale. In the experimental photon energy range of 95--145 eV the cross section is dominated by resonances associated with 4d->5f excitation and subsequent autoionization. The most prominent feature in the measured spectrum is the 4d^9,s,f, resonance at 121.14±0.02 eV which reaches a peak cross section of 1.2 Gb at 50 meV photon energy spread. The experimental resonance strength of 160 Mb eV (corresponding to an absorption oscillator strength of 1.46) is in fair agreement with the theoretical result^2.

  14. Study of X-ray photoionized Fe plasma and comparisons with astrophysical modeling codes

    SciTech Connect

    Foord, M E; Heeter, R F; Chung, H; vanHoof, P M; Bailey, J E; Cuneo, M E; Liedahl, D A; Fournier, K B; Jonauskas, V; Kisielius, R; Ramsbottom, C; Springer, P T; Keenan, K P; Rose, S J; Goldstein, W H

    2005-04-29

    The charge state distributions of Fe, Na and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate the ionization parameter {zeta} in the plasma reaches values {zeta} = 20-25 erg cm s{sup -1} under near steady-state conditions. A curve-of-growth analysis, which includes the effects of velocity gradients in a one-dimensional expanding plasma, fits the observed line opacities. Absorption lines are tabulated in the wavelength region 8-17 {angstrom}. Initial comparisons with a number of astrophysical x-ray photoionization models show reasonable agreement.

  15. Configuration-interaction relativistic-many-body-perturbation-theory calculations of photoionization cross sections from quasicontinuum oscillator strengths

    NASA Astrophysics Data System (ADS)

    Savukov, I. M.; Filin, D. V.

    2014-12-01

    Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreement with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. The demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions.

  16. Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction

    SciTech Connect

    Xie, L. Y.; Wang, J. G.; Janev, R. K.

    2014-06-15

    The relativistic effects in the photoionization of hydrogen-like ion with screened Coulomb interaction of Yukawa type are studied for a broad range of screening lengths and photoelectron energies. The bound and continuum wave functions have been determined by solving the Dirac equation. The study is focused on the relativistic effects manifested in the characteristic features of photoionization cross section for electric dipole nl→ε,l±1 transitions: shape resonances, Cooper minima and cross section enhancements due to near-zero-energy states. It is shown that the main source of relativistic effects in these cross section features is the fine-structure splitting of bound state energy levels. The relativistic effects are studied in the photoionization of Fe{sup 25+} ion, as an example.

  17. Theory of attosecond delays in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Baykusheva, Denitsa; Wörner, Hans Jakob

    2017-03-01

    We present a theoretical formalism for the calculation of attosecond delays in molecular photoionization. It is shown how delays relevant to one-photon-ionization, also known as Eisenbud-Wigner-Smith delays, can be obtained from the complex dipole matrix elements provided by molecular quantum scattering theory. These results are used to derive formulae for the delays measured by two-photon attosecond interferometry based on an attosecond pulse train and a dressing femtosecond infrared pulse. These effective delays are first expressed in the molecular frame where maximal information about the molecular photoionization dynamics is available. The effects of averaging over the emission direction of the electron and the molecular orientation are introduced analytically. We illustrate this general formalism for the case of two polyatomic molecules. N2O serves as an example of a polar linear molecule characterized by complex photoionization dynamics resulting from the presence of molecular shape resonances. H2O illustrates the case of a non-linear molecule with comparably simple photoionization dynamics resulting from a flat continuum. Our theory establishes the foundation for interpreting measurements of the photoionization dynamics of all molecules by attosecond metrology.

  18. Interactive animation of 4D performance capture.

    PubMed

    Casas, Dan; Tejera, Margara; Guillemaut, Jean-Yves; Hilton, Adrian

    2013-05-01

    A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple mesh sequences of related motions. A real-time mesh sequence blending approach is introduced, which combines the realistic deformation of previous nonlinear solutions with efficient online computation. Transitions between different parametric motion spaces are evaluated in real time based on surface shape and motion similarity. Four-dimensional parametric motion graphs allow real-time interactive character animation while preserving the natural dynamics of the captured performance.

  19. Respiratory gating and 4-D tomotherapy

    SciTech Connect

    Zhang Tiezhi

    2004-12-01

    Helical tomotherapy is a new intensity-modulated radiotherapy (IMRT) delivery process developed at the University of Wisconsin and TomoTherapy Inc. Tomotherapy may be of advantage in lung cancer treatment due to its rotational delivery mode. As with conventional IMRT delivery, however, intrafraction respiratory motion during a tomotherapy treatment causes unnecessary radiation to the healthy tissue. Possible solutions to these problems associated with intrafraction motion have been studied in this thesis. A spirometer is useful for monitoring breathing because of its direct correlation with lung volume changes. However, its inherent drift prevents its application in long-term breathing monitoring. With calibration and stabilization algorithms, a spirometer is able to provide accurate, long-term lung volume change measurements. Such a spirometer system is most suited for deep inspiration breath-hold (DIBH) treatments. An improved laser-spirometer combined system has also been developed for target tracking in 4-D treatment. Spirometer signals are used to calibrate the displacement measurements into lung volume changes, thereby eliminating scaling errors from daily setup variations. The laser displacement signals may also be used to correct spirometer drifts during operation. A new 4-D treatment technique has been developed to account for intrafraction motion in treatment planning. The patient's breathing and the beam delivery are synchronized, and the target motion/deformation is incorporated into treatment plan optimization. Results show that this new 4D treatment technique significantly reduces motion effects and provides improved patient tolerance.

  20. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-01

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  1. Correspondence of electron spectra from photoionization and nuclear internal conversion

    SciTech Connect

    Wark, D.L.; Bartlett, R.; Bowles, T.J.; Robertson, R.G.H.; Sivia, D.S.; Trela, W.; Wilkerson, J.F. ); Brown, G.S. ); Crasemann, B.; Sorensen, S.L.; Schaphorst, S.J. ); Knapp, D.A.; Henderson, J. ); Tulkki, J.; Aberg, T. )

    1991-10-21

    Electron energy spectra have been measured that result from {ital K}-shell ionization of Kr by two different mechanisms: (1) photoionization and (2) internal conversion in the decay of the isomeric state of {sup 83}Kr. It is demonstrated experimentally that these spectra, including satellites on the low-energy side of the primary 1{ital s}-electron peak, are identical. A theoretical interpretation of the identity of the spectra is given. The spectra agree well with a relativistic many-electron calculation in which the satellites are attributed to excitation and ionization of {ital M} and {ital N} electrons during the {ital K}-ionization process.

  2. Interference effects in L-shell atomic double photoionization

    NASA Astrophysics Data System (ADS)

    Kheifets, A. S.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2011-01-01

    Angular correlation pattern in two-electron continuum is very similar in double photoionization (DPI) of a neutral atom γ + A → A2 + + 2e- and electron-impact ionization of the corresponding singly charged ion e- + A+ → A2 + + 2e-. This allows us to identify and interpret interference effects in DPI of various L-shell atomic targets such as the metastable He* 1s 2s 1S and the ground state Li 1s22s and Be 1s22s2.

  3. Double Photoionization of Helium Atom using effective Charges

    NASA Astrophysics Data System (ADS)

    Saha, Hari P.

    2012-06-01

    We will report the results of our investigation on double photoionization of helium atom using the recently extended MCHF method [1] for double photoionization of atoms. Calculation will be performed using wave functions for the initial and the final states with and without the electron correlation. The initial state wave function will be calculated using both the HF and MCHF methods The final state wave functions will be obtained using the asymptotic effective charge [2,3] to represent the electron correlation between the two final state continuum electrons. Using these wave functions, the triple differential cross sections will be calculated for 30 eV excess photon energy. The single and total integral cross sections will be obtained for photon energies from threshold to 300 eV. The results will be compared with the available experimental and the theoretical data. [4pt] [1] Hari P. Saha, J.Phys. B (submitted) [0pt] [2] M.R.H. Rudge, Rev. Mod. Phys. 40, 564 (1968) [0pt] [3] C.Pan and A.F Starace, Phys. Rev. Lett. 67, 185 (1991); Phys. Rev. A45, 4588 (1992)

  4. Double photoionization of hydrocarbons and aromatic molecules

    NASA Astrophysics Data System (ADS)

    Wehlitz, R.

    2016-11-01

    This article reviews the recent progress in the field of double photoionization of hydrocarbons and aromatic molecules using synchrotron radiation. First I will describe the importance of carbon-based molecules, which are all around us and are literally part of our life. They exhibit intriguing properties some of which can be probed via double photoionization, i.e., the simultaneous emission of two electrons. Furthermore, I will discuss the different mechanisms that can lead to a doubly charged organic molecule and will highlight those findings by comparing them with the results for atoms and other (simple) molecules. Finally, I will give an outlook on future directions on this subject.

  5. Experimental study of linear magnetic dichroism in photoionization satellite transitions of atomic rubidium

    SciTech Connect

    Jaenkaelae, K.; Alagia, M.; Feyer, V.; Richter, R.; Prince, K. C.

    2011-11-15

    Laser orientation in the initial state has been used to study the properties of satellite transitions in inner-shell photoionization of rubidium atoms. The linear magnetic dichroism in the angular distribution (LMDAD) has been utilized to probe the continuum waves of orbital angular momentum conserving monopole, and angular momentum changing conjugate satellites, accompanying the 4p ionization of atomic Rb. We show experimentally that LMDAD of both types of satellite transitions is nonzero and that LMDAD of monopole satellites, measured as a function of photon energy, mimics the LMDAD of direct photoionization, whereas the LMDAD of conjugate transitions deviates drastically from that trend. The results indicate that conjugate transitions cannot be described theoretically without explicit inclusion of electron-electron interaction. The present data can thus be used as a very precise test of current models for photoionization.

  6. Confinement Resonances in Photoionization of Xe-C{sub 60}{sup +}

    SciTech Connect

    Kilcoyne, A. L. D.; Aguilar, A.; Mueller, A.; Schippers, S.; Cisneros, C.; Alna'Washi, G.; Aryal, N. B.; Baral, K. K.; Esteves, D. A.; Thomas, C. M.; Phaneuf, R. A.

    2010-11-19

    Experimental evidence is presented for confinement resonances associated with photoabsorption by a Xe atom in a C{sub 60} cage. The giant 4d resonance in photoionization of Xe is predicted to be redistributed into four components due to multipath interference of photoelectron waves reflected by the cage. The measurements were made in the photon energy range 60-150 eV by merging a beam of synchrotron radiation with a mass/charge selected Xe-C{sub 60}{sup +} ion beam. The phenomenon was observed in the Xe-C{sub 583}{sup +} product ion channel.

  7. Rotational distributions of molecular photoions following resonant excitation

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Chan, Jeffrey C. K.; White, M. G.

    1986-11-01

    We demonstrate that the photoelectron energy mediates the rotational energy distribution of N+2 ions created by photoionization, and conversely, that rotational energy determinations probe resonant excitation in molecular photoionization. Experimentally, this is accomplished by monitoring the dispersed fluorescence from N+2 (B 2Σ+u) photoions to determine their rotational energy distribution. These results demonstrate that while dipole selection rules constrain the total angular momentum of the electron-ion complex, the partitioning of angular momentum between the photoelectron and photoion depends on the photoejection dynamics. Implications for photoionization and electron impact ionizatin studies are discussed.

  8. Active origami by 4D printing

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  9. 4d Spectra from BPS Quiver Dualities

    NASA Astrophysics Data System (ADS)

    Espahbodi, Sam

    We attack the question of BPS occupancy in a wide class of 4d N = 2 quantum field theories. We first review the Seiberg-Witten approach to finding the low energy Wilsonian effective action actions of such theories. In particular, we analyze the case of Gaiotto theories, which provide a large number of non-trivial examples in a unified framework. We then turn to understanding the massive BPS spectrum of such theories, and in particular their relation to BPS quivers. We present a purely 4d characterization of BPS quivers, and explain how a quiver's representation theory encodes the solution to the BPS occupancy problem. Next, we derive a so called mutation method, based on exploiting quiver dualities, to solve the quiver's representation theory. This method makes previously intractable calculations nearly trivial in many examples. As a particular highlight, we apply our methods to understand strongly coupled chambers in ADE SYM gauge theories with matter. Following this, we turn to the general story of quivers for theories of the Gaiotto class. We present a geometric approach to attaining quivers for the rank 2 theories, leading to a very elegant solution which includes a specification of quiver superpotentials. Finally, we solve these theories by an unrelated method based on gauging flavor symmetries in their various dual weakly coupled Lagrangian descriptions. After seeing that this method agrees in the rank 2 case, we will apply our new approach to the case of rank n.

  10. Photoionization research on atomic radiation. 3: The ionization cross section of atomic nitrogen

    NASA Astrophysics Data System (ADS)

    Comes, F. J.; Elzer, A.

    1982-08-01

    The photoionization cross section of atomic nitrogen was measured between the ionization limit and 432 A. The experimental values are well fitted by those from a calculation of HENRY due to the dipole velocity approximation. A Rydberg series converging to the 5S-state of the ion is clearly identified from the ionization measurements and is shown to ionize.

  11. Absolute single-photoionization cross sections of Se2 +: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Macaluso, D. A.; Aguilar, A.; Kilcoyne, A. L. D.; Red, E. C.; Bilodeau, R. C.; Phaneuf, R. A.; Sterling, N. C.; McLaughlin, B. M.

    2015-12-01

    Absolute single-photoionization cross-section measurements for Se2 + ions were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged-beams photo-ion technique. Measurements were made at a photon energy resolution of 24 ±3 meV in the photon energy range 23.5-42.5 eV, spanning the ground state and low-lying metastable state ionization thresholds. To clearly resolve the resonant structure near the ground-state threshold, high-resolution measurements were made from 30.0 to 31.9 eV at a photon energy resolution of 6.7 ±0.7 meV. Numerous resonance features observed in the experimental spectra are assigned and their energies and quantum defects tabulated. The high-resolution cross-section measurements are compared with large-scale, state-of-the-art theoretical cross-section calculations obtained from the Dirac Coulomb R -matrix method. Suitable agreement is obtained over the entire photon energy range investigated. These results are an experimental determination of the absolute photoionization cross section of doubly ionized selenium and include a detailed analysis of the photoionization resonance spectrum of this ion.

  12. Molecular photoionization as a probe of vibrational-rotational-electronic correlations

    NASA Astrophysics Data System (ADS)

    Rao, R. M.; Poliakoff, E. D.; Wang, Kwanghsi; McKoy, V.

    1996-06-01

    We determine the rotationally state-resolved 2σu-1 photoionization of N2 into alternative vibrational channels as a function of energy over a 200 eV range. Experiment and theory reveal that Cooper minima highlight the coupling between electronic, vibrational, and rotational degrees of freedom over this very wide range.

  13. Time-energy mapping of photoelectron angular distribution: application to photoionization stereodynamics of nitric oxide.

    PubMed

    Suzuki, Yoshi-Ichi; Tang, Ying; Suzuki, Toshinori

    2012-05-28

    The time-energy mapping of the photoionization integral cross section and laboratory-frame photoelectron angular distribution is used to study photoionization stereodynamics of a diatomic molecule. The general theoretical formalism [Y. Suzuki and T. Suzuki, Mol. Phys., 2007, 105, 1675] is simplified for application to a diatomic molecule, and a high-resolution photoelectron imaging apparatus is used to determine the transition dipole moments and phase shifts of photoelectron partial waves in near-threshold and non-dissociative photoionization of NO from the A(2)Σ(+) state. The transition dipoles and phase shifts thus determined are in reasonable agreement with those by state-to-state photoionization experiment and Schwinger variational calculations. The difference of the phase shifts from those expected from the quantum defects of Rydberg states suggests occurrence of weak hybridization of different l-waves, in addition to the well-known s-d super complex. The circular dichroism in photoelectron angular distribution is also simulated from our results.

  14. Inner-shell Photoionization Studies of Neutral Atomic Nitrogen

    NASA Astrophysics Data System (ADS)

    Stolte, W. C.; Jonauskas, V.; Lindle, D. W.; Sant'Anna, M. M.; Savin, D. W.

    2016-02-01

    Inner-shell ionization of a 1s electron by either photons or electrons is important for X-ray photoionized objects such as active galactic nuclei and electron-ionized sources such as supernova remnants. Modeling and interpreting observations of such objects requires accurate predictions for the charge state distribution (CSD), which results as the 1s-hole system stabilizes. Due to the complexity of the complete stabilization process, few modern calculations exist and the community currently relies on 40-year-old atomic data. Here, we present a combined experimental and theoretical study for inner-shell photoionization of neutral atomic nitrogen for photon energies of 403-475 eV. Results are reported for the total ion yield cross section, for the branching ratios for formation of N+, {{{N}}}2+, and {{{N}}}3+, and for the average charge state. We find significant differences when comparing to the data currently available to the astrophysics community. For example, while the branching ratio to {{{N}}}2+ is somewhat reduced, that for N+ is greatly increased, and that to {{{N}}}3+, which was predicted to be zero, grows to ≈ 10% at the higher photon energies studied. This work demonstrates some of the shortcomings in the theoretical CSD data base for inner-shell ionization and points the way for the improvements needed to more reliably model the role of inner-shell ionization of cosmic plasmas.

  15. A sinogram warping strategy for pre-reconstruction 4D PET optimization.

    PubMed

    Gianoli, Chiara; Riboldi, Marco; Fontana, Giulia; Kurz, Christopher; Parodi, Katia; Baroni, Guido

    2016-03-01

    A novel strategy for 4D PET optimization in the sinogram domain is proposed, aiming at motion model application before image reconstruction ("sinogram warping" strategy). Compared to state-of-the-art 4D-MLEM reconstruction, the proposed strategy is able to optimize the image SNR, avoiding iterative direct and inverse warping procedures, which are typical of the 4D-MLEM algorithm. A full-count statistics sinogram of the motion-compensated 4D PET reference phase is generated by warping the sinograms corresponding to the different PET phases. This is achieved relying on a motion model expressed in the sinogram domain. The strategy was tested on the anthropomorphic 4D PET-CT NCAT phantom in comparison with the 4D-MLEM algorithm, with particular reference to robustness to PET-CT co-registrations artefacts. The MLEM reconstruction of the warped sinogram according to the proposed strategy exhibited better accuracy (up to +40.90 % with respect to the ideal value), whereas images reconstructed according to the 4D-MLEM reconstruction resulted in less noisy (down to -26.90 % with respect to the ideal value) but more blurred. The sinogram warping strategy demonstrates advantages with respect to 4D-MLEM algorithm. These advantages are paid back by introducing approximation of the deformation field, and further efforts are required to mitigate the impact of such an approximation in clinical 4D PET reconstruction.

  16. Controlled Source 4D Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Morency, C.; Tromp, J.

    2009-12-01

    Earth's material properties may change after significant tectonic events, e.g., volcanic eruptions, earthquake ruptures, landslides, and hydrocarbon migration. While many studies focus on how to interpret observations in terms of changes in wavespeeds and attenuation, the oil industry is more interested in how we can identify and locate such temporal changes using seismic waves generated by controlled sources. 4D seismic analysis is indeed an important tool to monitor fluid movement in hydrocarbon reservoirs during production, improving fields management. Classic 4D seismic imaging involves comparing images obtained from two subsequent seismic surveys. Differences between the two images tell us where temporal changes occurred. However, when the temporal changes are small, it may be quite hard to reliably identify and characterize the differences between the two images. We propose to back-project residual seismograms between two subsequent surveys using adjoint methods, which results in images highlighting temporal changes. We use the SEG/EAGE salt dome model to illustrate our approach. In two subsequent surveys, the wavespeeds and density within a target region are changed, mimicking possible fluid migration. Due to changes in material properties induced by fluid migration, seismograms recorded in the two surveys differ. By back propagating these residuals, the adjoint images identify the location of the affected region. An important issue involves the nature of model. For instance, are we characterizing only changes in wavespeed, or do we also consider density and attenuation? How many model parameters characterize the model, e.g., is our model isotropic or anisotropic? Is acoustic wave propagation accurate enough or do we need to consider elastic or poroelastic effects? We will investigate how imaging strategies based upon acoustic, elastic and poroelastic simulations affect our imaging capabilities.

  17. Photoionizing Trapped Highly Charged Ions with Synchrotron Radiation

    SciTech Connect

    Crespo, J R; Simon, M; Beilmann, C; Rudolph, J; Steinbruegge, R; Eberle, S; Schwarz, M; Baumann, T; Schmitt, B; Brunner, F; Ginzel, R; Klawitter, R; Kubicek, K; Epp, S; Mokler, P; Maeckel, V; Ullrich, J; Brown, G V; Graf, A; Leutenegger, M; Beiersdorfer, P; Behar, E; Follath, R; Reichardt, G; Schwarzkopf, O

    2011-09-12

    Photoabsorption by highly charged ions plays an essential role in astrophysical plasmas. Diagnostics of photoionized plasmas surrounding binary systems rely heavily on precise identification of absorption lines and on the knowledge of their cross sections and widths. Novel experiments using an electron beam ion trap, FLASH EBIT, in combination with monochromatic synchrotron radiation allow us to investigate ions in charge states hitherto out of reach. Trapped ions can be prepared in any charge state at target densities sufficient to measure absorption cross sections below 0.1 Mb. The results benchmark state-of-the-art predictions of the transitions wavelengths, widths, and absolute cross sections. Recent high resolution results on Fe{sup 14+}, Fe{sup 15+}, and Ar{sup 12+} at photon energies up to 1 keV are presented.

  18. Opening the Black Box of ICT4D: Advancing Our Understanding of ICT4D Partnerships

    ERIC Educational Resources Information Center

    Park, Sung Jin

    2013-01-01

    The term, Information and Communication Technologies for Development (ICT4D), pertains to programs or projects that strategically use ICTs (e.g. mobile phones, computers, and the internet) as a means toward the socio-economic betterment for the poor in developing contexts. Gaining the political and financial support of the international community…

  19. Quantum beat oscillations in the two-color-photoionization continuum of neon and their dependence on the intensity of the ionizing laser pulse

    SciTech Connect

    Geiseler, Henning; Rottke, Horst; Steinmeyer, Guenter; Sandner, Wolfgang

    2011-09-15

    We investigate quantum beat oscillations in the photoionization continuum of Ne atoms that are photoionized by absorption of two photons via a group of excited bound states using ultrashort extreme ultraviolet and infrared laser pulses. The extreme ultraviolet pulse starts an excited-state wave packet that is photoionized by a high-intensity infrared pulse after a variable time delay. We analyze the continuum quantum beats from this two-step photoionization process and their dependence on the photoelectron kinetic energy. We find a pronounced dependence of the quantum beat amplitudes on the photoelectron kinetic energy. The dependence changes significantly with the applied infrared laser-pulse intensity. The experimental results are in good qualitative agreement with a model calculation that is adapted to the experimental situation. It accounts for the intensity dependence of the quantum beat structure through the coupling of the excited-state wave packet to other bound Ne states induced by the high-intensity infrared laser pulse.

  20. Photodissociation of Small Molecules and Photoionization of Free Radicals Using the VUV Velocity-Map Imaging Photoion and Photoelectron Method

    NASA Astrophysics Data System (ADS)

    Gao, Hong

    The tunable vacuum ultraviolet (VUV) laser generated through the two-photon resonance-enhanced four-wave mixing scheme is combined with the newly developed time-slice velocity map imaging photoion method to study the photodissociation of small molecules in the VUV region, and with the velocity map imaging photoelectron method to study the photoionization of free radicals. The photodissociation dynamics of NO in the energy region around 13.5 eV has been investigated. Branching ratios of the three lowest dissociation channels of 12C 16O that produce C(3P) + O(3P), C( 1D) + O(3P) and C(3P) + O(1D) are measured for the first time in the VUV region from 102,500 cm-1 to 110,500 cm-1, valuable information of the dissociation dynamics for this prototype system has been deduced. We demonstrated an experiment that has two independently tunable VUV lasers and a time-slice velocity map imaging setup, this provides us a global way to perform systematic state-selected photodissociation of small molecules via state-selected detection of the atomic products in the VUV region. The velocity map imaging photoelectron method was successfully used to obtain the photoelectron spectrum of the propargyl radical (C3H3) via a single VUV photoionization process. The propargyl radical is generated by the 193 nm laser photodissociation of the precursor C3H3Cl. This is the first time that the velocity map imaging photoelectron method is used to get the photoelectron spectra of free radicals, indicating that it is a powerful technique for studying the photoionization of free radicals which are always hard to be produced with high enough number densities for spectroscopic studies. This dissertation is mainly based on the following peer-reviewed journal articles: 1. Hong Gao, Yang Pan, Lei Yang, Jingang Zhou, C. Y. Ng and William M. Jackson. "Time-slice velocity-map ion imaging studies of the Photodissociation of NO in the vacuum ultraviolet region", the Journal of Chemical Physics, 136, 134302

  1. Photoionization capable, extreme and vacuum ultraviolet emission in developing low temperature plasmas in air

    NASA Astrophysics Data System (ADS)

    Stephens, J.; Fierro, A.; Beeson, S.; Laity, G.; Trienekens, D.; Joshi, R. P.; Dickens, J.; Neuber, A.

    2016-04-01

    Experimental observation of photoionization capable extreme ultraviolet and vacuum ultraviolet emission from nanosecond timescale, developing low temperature plasmas (i.e. streamer discharges) in atmospheric air is presented. Applying short high voltage pulses enabled the observation of the onset of plasma formation exclusively by removing the external excitation before spark development was achieved. Contrary to the common assumption that radiative transitions from the b{{}1}{{\\Pi}u} (Birge-Hopfield I) and b{{}\\prime 1}Σu+ (Birge-Hopfield II) singlet states of N2 are the primary contributors to photoionization events, these results indicate that radiative transitions from the c{{4\\prime}1}Σu+ (Carroll-Yoshino) singlet state of N2 are dominant in developing low temperature plasmas in air. In addition to c{}4\\prime transitions, photoionization capable transitions from atomic and singly ionized atomic oxygen were also observed. The inclusion of c{{4\\prime}1}Σu+ transitions into a statistical photoionization model coupled with a fluid model enabled streamer growth in the simulation of positive streamers.

  2. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  3. Double-photoionization of CO few eV above threshold

    NASA Astrophysics Data System (ADS)

    Belkacem, A.; Osipov, T.; Hertlein, M.; Prior, M.; Adaniya, H.; Feinberg, B.; Weber, Th.; Jahnke, T.; Dorner, R.; Schmidt, L.; Schoffler, M.; Jagutzki, O.; Cocke, C. L.; Landers, A.

    2006-05-01

    We measured double photoionization of CO molecules at 48 eV photon energy. The double ionization of CO produces mostly C^+ + O^+ fragments with non-measurable amounts of CO^2+. The formation of C^+ + O^+ can proceed through two possible channels: a) Direct ionization of two electron into the continuum -- similar to the H2 double ionization -- direct channel. b) Ionization of one electron into the continuum followed by autoionization of a second electron -- Indirect channel. The electron distribution measured with a COLTRIMS shows a very clear distinction of the direct and indirect channels. The kinetic energy release spectrum shows a series of peaks corresponding to the transient vibrational states of the various electronic states of (CO^2+)*. These states are similar to previous measurements at higher energies (K-shell photoionization). (CO^2+)* is found to predissociate through a ^3σ^- and ^1δ dissociative states leading to considerably faster dissociation times than natural lifetimes of the electronic bound states.

  4. Spatiotemporal directional analysis of 4D echocardiography

    NASA Astrophysics Data System (ADS)

    Angelini-Casadevall, Elsa D.; Laine, Andrew F.; Takuma, Shin; Homma, Shunichi

    2000-12-01

    Speckle noise corrupts ultrasonic data by introducing sharp changes in an echocardiographic image intensity profile, while attenuation alters the intensity of equally significant cardiac structures. These properties introduce inhomogeneity in the spatial domain and suggests that measures based on phase information rather than intensity are more appropriate for denoising and cardiac border detection. The present analysis method relies on the expansion of temporal ultrasonic volume data on complex exponential wavelet-like basis functions called Brushlets. These basis functions decompose a signal into distinct patterns of oriented textures. Projected coefficients are associated with distinct 'brush strokes' of a particular size and orientation. 4D overcomplete brushlet analysis is applied to temporal echocardiographic values. We show that adding the time dimension in the analysis dramatically improves the quality and robustness of the method without adding complexity in the design of a segmentation tool. We have investigated mathematical and empirical methods for identifying the most 'efficient' brush stroke sizes and orientations for decomposition and reconstruction on both phantom and clinical data. In order to determine the 'best tiling' or equivalently, the 'best brushlet basis', we use an entorpy-based information cost metric function. Quantitative validation and clinical applications of this new spatio-temporal analysis tool are reported for balloon phantoms and clinical data sets.

  5. Photoionization of atomic hydrogen in electric field

    SciTech Connect

    Gorlov, Timofey V; Danilov, Viatcheslav V

    2010-01-01

    Laser assisted ionization of high energy hydrogen beams in magnetic fields opens wide application possibilities in accelerator physics and other fields. The key theoretical problem of the method is the calculation of the ionization probability of a hydrogen atom affected by laser and static electric fields in the particle rest frame. A method of solving this problem with the temporal Schr dinger equation including a continuum spectrum is presented in this paper in accurate form for the first time. This method allows finding the temporal evolution of the wave function of the hydrogen atom as a function of laser and static electric fields. Solving the problem of photoionization reveals quantum effects that cannot be described by the cross sectional approach. The effects play a key role in the problems of photoionization of H0 beams with the large angular or energy spread.

  6. Positive Energy Conditions in 4D Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    Farnsworth, Kara; Luty, Markus; Prilepina, Valentina

    2016-03-01

    We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality avgT00 >= - C /L4 , where L is the size of the smearing region, and C is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the ``conformal collider'' constraints of Hofman and Maldacena. We speculate that there may be theories that violate the Hofman-Maldacena bounds, but satisfy our bounds. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarkably simple functions of momenta, and may be of interest in their own right.

  7. Positive energy conditions in 4D conformal field theory

    NASA Astrophysics Data System (ADS)

    Farnsworth, Kara; Luty, Markus A.; Prilepina, Valentina

    2016-10-01

    We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality < T 00> ≥ - C/L 4, where L is the size of the smearing region, and C is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the "conformal collider" constraints of Hofman and Maldacena. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarkably simple functions of momenta, and may be of interest in their own right.

  8. Intermanifold similarities in partial photoionization cross sections of helium

    NASA Astrophysics Data System (ADS)

    Schneider, Tobias; Liu, Chien-Nan; Rost, Jan-Michael

    2002-04-01

    Using the eigenchannel R-matrix method we calculate partial photoionization cross sections from the ground state of the helium atom for incident photon energies up to the N=9 manifold. The wide energy range covered by our calculations permits a thorough investigation of general patterns in the cross sections which were first discussed by Menzel and coworkers [Phys. Rev. A 54, 2080 (1996)]. The existence of these patterns can easily be understood in terms of propensity rules for autoionization. As the photon energy is increased the regular patterns are locally interrupted by perturber states until they fade out indicating the progressive breakdown of the propensity rules and the underlying approximate quantum numbers. We demonstrate that the destructive influence of isolated perturbers can be compensated with an energy-dependent quantum defect.

  9. Photoionization Cross Section of Xe{sup +} Ion in the Pure 5p{sup 5} {sup 2}P{sub 3/2} Ground Level

    SciTech Connect

    Thissen, R.; Bizau, J. M.; Blancard, C.; Coreno, M.; Franceschi, P.; Giuliani, A.; Nicolas, C.

    2008-06-06

    Coupling an ion trap with synchrotron radiation is shown here to be a powerful approach to measure photoionization cross sections on ionic species relaxed in their ground state. The photoionization efficiency curve of Xe{sup +} ions stored in a Fourier transform ion cyclotron resonance ion trap was recorded at ELETTRA in the 20-23 eV photon energy range. Absolute cross sections were derived by comparison of the photoionization yield of Xe{sup +} with measurements from the ASTRID merged-beam experiment. Multiconfiguration Dirac-Fock calculations were performed for the interpretation of these new data.

  10. Electron correlations in the L-shell photoionization of heavy elements

    NASA Astrophysics Data System (ADS)

    Jitschin, W.; Werner, U.; Materlik, G.; Doolen, G. D.

    1987-06-01

    The photoionization of the individual L subshells of 72Hf, 74W, 78Pt, 79Au, and 82Pb in the energy regime of the L edges has been studied in detail. Experimentally, the x-ray absorption spectra of thin sample foils were recorded using monochromatized synchrotron radiation. The energy dependence of the absorption is governed in its gross structure by the atomic photoionization with some superimposed oscillatory structure due to solid-state effects. The experimental data are compared to various theoretical predictions for atomic photoionization. Calculations in the framework of an independent-electron approach predict a smooth, power-law-like energy dependence. In contrast, the experimental data show small but significant deviations from such a behavior. The dispersionlike deviations are attributed to electron-correlation effects, as is confirmed by comparative calculations of photoionization with inclusion or omission of the correlations using the computer code of Liberman and Zangwill [Comput. Phys. Commun. 32, 75 (1984)]. The main influence of the correlation effects on the subshell ionization cross sections originates from the dielectric (anti-) screening of the external radiation field. Calculations in the local-density approximation for the response of the atom to the radiation field yield an even quantitative description of the experimental data in a large fraction of the investigated energy range.

  11. Excitation energies, photoionization cross sections, and asymmetry parameters of the methyl and silyl radicals

    SciTech Connect

    Velasco, A. M.; Lavín, C.; Dolgounitcheva, O.; Ortiz, J. V.

    2014-08-21

    Vertical excitation energies of the methyl and silyl radicals were inferred from ab initio electron propagator calculations on the electron affinities of CH{sub 3}{sup +} and SiH{sub 3}{sup +}. Photoionization cross sections and angular distribution of photoelectrons for the outermost orbitals of both CH{sub 3} and SiH{sub 3} radicals have been obtained with the Molecular Quantum Defect Orbital method. The individual ionization cross sections corresponding to the Rydberg channels to which the excitation of the ground state's outermost electron gives rise are reported. Despite the relevance of methyl radical in atmospheric chemistry and combustion processes, only data for the photon energy range of 10–11 eV seem to be available. Good agreement has been found with experiment for photoionization cross section of this radical. To our knowledge, predictions of the above mentioned photoionization parameters on silyl radical are made here for the first time, and we are not aware of any reported experimental measurements. An analysis of our results reveals the presence of a Cooper minimum in the photoionization of the silyl radical. The adequacy of the two theoretical procedures employed in the present work is discussed.

  12. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2010 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  13. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2010 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  14. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2010 CFR

    2000-04-01

    ... 17 Commodity and Securities Exchanges 3 2000-04-01 2000-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a) Each application for an order under section 304(d)...

  15. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2010 CFR

    2005-04-01

    ... 17 Commodity and Securities Exchanges 3 2005-04-01 2005-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  16. Photoionization cross-section of isotropic defects or impurity centers in isolators

    NASA Astrophysics Data System (ADS)

    Lima, H.; Batista, J. V.; Couto dos Santos, M. A.

    2016-08-01

    An analytical expression to calculate the photoionization cross-section of isotropic defects or impurity centers is being proposed by using the time-dependent perturbation theory. The ground-state wave function of the electron captured in the impurity state is described by a three-dimensional isotropic harmonic oscillator and the electron excited state in the continuum conduction band is described by a plane wave. The expression has been obtained considering all multipoles terms in the Hamiltonian, and that the radiation field which interacts with electrons is semi-classical and linearly polarized. This approximation is assumed because the effects of the linear contribution are dominant. The available data of the Al2O3:C and Lu2SiO5:Ce systems are in good agreement with our predictions. Such satisfactory comparison is a strong indication that the present model can be used to provide good predictions of the photoionization cross-section in several areas.

  17. Absolute single photoionization cross-section measurements of Rb2+ ions: experiment and theory

    NASA Astrophysics Data System (ADS)

    Macaluso, D. A.; Bogolub, K.; Johnson, A.; Aguilar, A.; Kilcoyne, A. L. D.; Bilodeau, R. C.; Bautista, M.; Kerlin, A. B.; Sterling, N. C.

    2016-12-01

    Absolute single photoionization cross-section measurements of Rb2+ ions were performed using synchrotron radiation and the photo-ion, merged-beams technique at the Advanced Light Source at Lawrence Berkeley National Laboratory. Measurements were made at a photon energy resolution of 13.5 ± 2.5 meV from 37.31 to 44.08 eV spanning the 2P{}3/2o ground state and 2P{}1/2o metastable state ionization thresholds. Multiple autoionizing resonance series arising from each initial state are identified using quantum defect theory. The measurements are compared to Breit-Pauli R-matrix calculations with excellent agreement between theory and experiment.

  18. Relative Photoionization Cross Sections of Super-Atom Molecular Orbitals (SAMOs) in C60.

    PubMed

    Bohl, Elvira; Sokół, Katarzyna P; Mignolet, Benoit; Thompson, James O F; Johansson, J Olof; Remacle, Francoise; Campbell, Eleanor E B

    2015-11-25

    The electronic structure and photoinduced dynamics of fullerenes, especially C60, is of great interest because these molecules are model systems for more complex molecules and nanomaterials. In this work we have used Rydberg Fingerprint Spectroscopy to determine the relative ionization intensities from excited SAMO (Rydberg-like) states in C60 as a function of laser wavelength. The relative ionization intensities are then compared to the ratio of the photoionization widths of the Rydberg-like states, computed in time-dependent density functional theory (TD-DFT). The agreement is remarkably good when the same photon order is required to energetically access the excited states. This illustrates the predictive potential of quantum chemistry for studying photoionization of large, complex molecules as well as confirming the assumption that is often made concerning the multiphoton excitation and rapid energy redistribution in the fullerenes.

  19. Laser resonance photoionization spectroscopy of Rydberg levels in Fr

    SciTech Connect

    Andreev, S.V.; Letokhov, V.S.; Mishin, V.I.

    1987-09-21

    We investigated for the first time the high-lying Rydberg levels in the rare radioactive element francium (Fr). The investigations were conducted by the highly sensitive laser resonance atomic photoionization technique with Fr atoms produced at a rate of about 10/sup 3/ atoms/s in a hot cavity. We measured the wave numbers of the 7p/sup 2/P/sub 3/2/..-->..nd/sup 2/D (n = 22--33) and 7p/sup 2/P/sub 3/2/..-->..ns/sup 2/S (n = 23, 25--27,29--31) transitions and found the binding energy of the 7p/sup 2/P/sub 3/2/ state to be T = -18 924.8(3) cm/sup -1/, which made it possible to establish accurately the ionization potential of Fr.

  20. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    PubMed Central

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O'Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-01-01

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources. PMID:25854939

  1. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    SciTech Connect

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O’Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.

  2. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    DOE PAGES

    Mazza, T.; Karamatskou, A.; Ilchen, M.; ...

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pavemore » the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.« less

  3. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    NASA Astrophysics Data System (ADS)

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O'Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-04-01

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.

  4. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation.

    PubMed

    Mazza, T; Karamatskou, A; Ilchen, M; Bakhtiarzadeh, S; Rafipoor, A J; O'Keeffe, P; Kelly, T J; Walsh, N; Costello, J T; Meyer, M; Santra, R

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.

  5. 4D electron microscopy: principles and applications.

    PubMed

    Flannigan, David J; Zewail, Ahmed H

    2012-10-16

    achievable with short intense pulses containing a large number of electrons, however, are limited to tens of nanometers and nanoseconds, respectively. This is because Coulomb repulsion is significant in such a pulse, and the electrons spread in space and time, thus limiting the beam coherence. It is therefore not possible to image the ultrafast elementary dynamics of complex transformations. The challenge was to retain the high spatial resolution of a conventional TEM while simultaneously enabling the temporal resolution required to visualize atomic-scale motions. In this Account, we discuss the development of four-dimensional ultrafast electron microscopy (4D UEM) and summarize techniques and applications that illustrate the power of the approach. In UEM, images are obtained either stroboscopically with coherent single-electron packets or with a single electron bunch. Coulomb repulsion is absent under the single-electron condition, thus permitting imaging, diffraction, and spectroscopy, all with high spatiotemporal resolution, the atomic scale (sub-nanometer and femtosecond). The time resolution is limited only by the laser pulse duration and energy carried by the electron packets; the CCD camera has no bearing on the temporal resolution. In the regime of single pulses of electrons, the temporal resolution of picoseconds can be attained when hundreds of electrons are in the bunch. The applications given here are selected to highlight phenomena of different length and time scales, from atomic motions during structural dynamics to phase transitions and nanomechanical oscillations. We conclude with a brief discussion of emerging methods, which include scanning ultrafast electron microscopy (S-UEM), scanning transmission ultrafast electron microscopy (ST-UEM) with convergent beams, and time-resolved imaging of biological structures at ambient conditions with environmental cells.

  6. Entropy of 4D extremal black holes

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.; Khuri, Ramzi R.; Myers, Robert C.

    1996-02-01

    We derive the Bekenstein-Hawking entropy formula for four-dimensional Reissner-Nordström extremal black holes in type II string theory. The derivation is performed in two separate (T-dual) weak coupling pictures. One uses a type IIB bound state problem of D5- and D1-branes, while the other uses a bound state problem of D0- and D4-branes with macroscopic fundamental type IIA strings. In both cases, the D-brane systems are also bound to a Kaluza-Klein monopole, which then yields the four-dimensional black hole at strong coupling.

  7. Holography and Emergent 4d Gravity

    NASA Astrophysics Data System (ADS)

    Nitti, Francesco

    We review recent work toward constructing, via five-dimensional holographic duals, four-dimensional theories in which spin-2 states (gravitons) are emergent. The basic idea is to extend to gravity model-building the applications of holographic duality to phenomenology construction.

  8. Deformable registration of 4D computed tomography data.

    PubMed

    Rietzel, Eike; Chen, George T Y

    2006-11-01

    Four-dimensional radiotherapy requires deformable registration to track delivered dose across varying anatomical states. Deformable registration based on B-splines was implemented to register 4D computed tomography data to a reference respiratory phase. To assess registration performance, anatomical landmarks were selected across ten respiratory phases in five patients. These point landmarks were transformed according to global registration parameters between different respiratory phases. Registration uncertainties were computed by subtraction of transformed and reference landmark positions. The selection of appropriate registration masks to separate independently moving anatomical subunits is crucial to registration performance. The average registration error for five landmarks for each of five patients was 2.1 mm. This level of accuracy is acceptable for most radiotherapy applications.

  9. K-shell photoionization cross-sections.

    NASA Technical Reports Server (NTRS)

    Daltabuit, E.; Cox, D. P.

    1972-01-01

    Approximate values for the threshold energies, threshold cross sections, and energy dependence of the cross sections for K-shell photoionization are tabulated for H, He, C, N, O, Ne, Mg, Si, and S in all stages of ionization. The approximation of these data is based on the assumptions that the threshold energy is a simple function of the nuclear charge and the number of electrons present in the atom, and that the threshold values and energy dependence of the cross sections are determined only by the threshold energy.

  10. Complete characterization of double photoionization processes

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2011-06-01

    We analyze correlated photoelectron spectra of single-photon two-electron ionization [double photoionization (DPI)] of helium to reconstruct the phase of the spectral amplitude of this process. The phase can be reconstructed reliably in a wide range of photoelectron momenta, thus allowing one to retrieve information about the wave function of the DPI process and its temporal evolution. Our simulation indicates that the proposed phase reconstruction technique can be applied in experiment to trace dynamics of the DPI process with attosecond precision.

  11. Spin effects in double photoionization of lithium

    NASA Astrophysics Data System (ADS)

    Kheifets, A. S.; Fursa, D. V.; Hines, C. W.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2010-02-01

    We apply the nonperturbative convergent close-coupling (CCC) and time-dependent close coupling (TDCC) formalisms to calculate fully differential energy and angular resolved cross sections of double photoionization (DPI) of lithium. The equal energy sharing case is considered in which dynamics of the DPI process can be adequately described by two symmetrized singlet and triplet amplitudes. The angular width of these amplitudes serves as a measure of the strength of the angular correlation between the two ejected electrons. This width is interpreted in terms of the spin of the photoelectron pair.

  12. Spin effects in double photoionization of lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Hines, C. W.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2010-02-15

    We apply the nonperturbative convergent close-coupling (CCC) and time-dependent close coupling (TDCC) formalisms to calculate fully differential energy and angular resolved cross sections of double photoionization (DPI) of lithium. The equal energy sharing case is considered in which dynamics of the DPI process can be adequately described by two symmetrized singlet and triplet amplitudes. The angular width of these amplitudes serves as a measure of the strength of the angular correlation between the two ejected electrons. This width is interpreted in terms of the spin of the photoelectron pair.

  13. Complete characterization of double photoionization processes

    SciTech Connect

    Ivanov, I. A.; Kheifets, A. S.

    2011-06-15

    We analyze correlated photoelectron spectra of single-photon two-electron ionization [double photoionization (DPI)] of helium to reconstruct the phase of the spectral amplitude of this process. The phase can be reconstructed reliably in a wide range of photoelectron momenta, thus allowing one to retrieve information about the wave function of the DPI process and its temporal evolution. Our simulation indicates that the proposed phase reconstruction technique can be applied in experiment to trace dynamics of the DPI process with attosecond precision.

  14. Motion4D-library extended

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2011-06-01

    The new version of the Motion4D-library now also includes the integration of a Sachs basis and the Jacobi equation to determine gravitational lensing of pointlike sources for arbitrary spacetimes.New version program summaryProgram title: Motion4D-libraryCatalogue identifier: AEEX_v3_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v3_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 219 441No. of bytes in distributed program, including test data, etc.: 6 968 223Distribution format: tar.gzProgramming language: C++Computer: All platforms with a C++ compilerOperating system: Linux, WindowsRAM: 61 MbytesClassification: 1.5External routines: Gnu Scientic Library (GSL) (http://www.gnu.org/software/gsl/)Catalogue identifier of previous version: AEEX_v2_0Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 703Does the new version supersede the previous version?: YesNature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes. Determine gravitational lensing by integration of Jacobi equation and parallel transport of Sachs basis.Solution method: Integration of ordinary differential equations.Reasons for new version: The main novelty of the current version is the extension to integrate the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. In combination, the change of the cross section of a light bundle and thus the gravitational lensing effect of a spacetime can be determined. Furthermore, we have implemented several new metrics.Summary of revisions: The main novelty of the current version is the integration of the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. The corresponding set of equations readd2xμdλ2=-Γρ

  15. Atomic photoionization experiment by harmonic-generation spectroscopy

    NASA Astrophysics Data System (ADS)

    Frolov, M. V.; Sarantseva, T. S.; Manakov, N. L.; Fulfer, K. D.; Wilson, B. P.; Troß, J.; Ren, X.; Poliakoff, E. D.; Silaev, A. A.; Vvedenskii, N. V.; Starace, Anthony F.; Trallero-Herrero, C. A.

    2016-03-01

    Measurements of the high-order-harmonic generation yield of the argon (Ar) atom driven by a strong elliptically polarized laser field are shown to completely determine the field-free differential photoionization cross section of Ar, i.e., the energy dependence of both the angle-integrated photoionization cross section and the angular distribution asymmetry parameter.

  16. Determining the partial photoionization cross-sections of ethyl radicals.

    PubMed

    FitzPatrick, B L; Maienschein-Cline, M; Butler, L J; Lee, S-H; Lin, J J

    2007-12-13

    Using a crossed laser-molecular beam scattering apparatus, these experiments photodissociate ethyl chloride at 193 nm and detect the Cl and ethyl products, resolved by their center-of-mass recoil velocities, with vacuum ultraviolet photoionization. The data determine the relative partial cross-sections for the photoionization of ethyl radicals to form C2H5+, C2H4+, and C2H3+ at 12.1 and 13.8 eV. The data also determine the internal energy distribution of the ethyl radical prior to photoionization, so we can assess the internal energy dependence of the photoionization cross-sections. The results show that the C2H4++H and C2H3++H2 dissociative photoionization cross-sections strongly depend on the photoionization energy. Calibrating the ethyl radical partial photoionization cross-sections relative to the bandwidth-averaged photoionization cross-section of Cl atoms near 13.8 eV allows us to use these data in conjunction with literature estimates of the Cl atom photoionization cross-sections to put the present bandwidth-averaged cross-sections on an absolute scale. The resulting bandwidth-averaged cross-section for the photoionization of ethyl radicals to C2H5+ near 13.8 eV is 8+/-2 Mb. Comparison of our 12.1 eV data with high-resolution ethyl radical photoionization spectra allows us to roughly put the high-resolution spectrum on the same absolute scale. Thus, one obtains the photoionization cross-section of ethyl radicals to C2H5+ from threshold to 12.1 eV. The data show that the onset of the C2H4++H dissociative photoionization channel is above 12.1 eV; this result offers a simple way to determine whether the signal observed in photoionization experiments on complex mixtures is due to ethyl radicals. We discuss an application of the results for resolving the product branching in the O+allyl bimolecular reaction.

  17. Double photoionization of helium with synchrotron x-rays: Proceedings

    SciTech Connect

    Not Available

    1994-01-01

    This report contains papers on the following topics: Overview and comparison of photoionization with charged particle impact; The ratio of double to single ionization of helium: the relationship of photon and bare charged particle impact ionization; Double photoionization of helium at high energies; Compton scattering of photons from electrons bound in light elements; Electron ionization and the Compton effect in double ionization of helium; Elimination of two atomic electrons by a single energy photon; Double photoionization of helium at intermediate energies; Double Photoionization: Gauge Dependence, Coulomb Explosion; Single and Double Ionization by high energy photon impact; The effect of Compton Scattering on the double to single ionization ratio in helium; and Double ionization of He by photoionization and Compton scattering. These papers have been cataloged separately for the database.

  18. Relativistic R-Matrix Close-Coupling Calculations for Photoionization of Si-Like Ni XV

    NASA Astrophysics Data System (ADS)

    Singh, Jagjit; Jha, A. K. S.; Mohan, Man

    2010-02-01

    We present relativistic close-coupling photoionization calculations of Ni XV using the Breit-Pauli R-matrix method to obtain photoionization cross section of Ni XV from the ground state 3s 23p 2(3 P 0) and the lowest four 3s 23p 2 (3 P 1,2, 1 D 2, 1 S 0) excited states. A multiconfiguration eigenfunction expansion of the core Ni XVI is employed with configurations 3s 23p, 3s3p 2, 3s 23d, 3p 3, 3s3p3d, 3p 23d, 3s3d 2, 3p3d 2. We have included the lowest 40 target level states of Ni XVI in the photoionization calculations of Ni XV. Cross sections are determined by the Rydberg series of autoionizing resonances converging to several ionic states of Ni XVI. In our calculations, we have taken into account all the important physical effects such as exchange, channel coupling, and short-range correlation. Further, relativistic effects are incorporated by including mass correction, Darwin term, and spin-orbit interaction terms. The present calculations using the lowest 40 target levels of Ni XVI are presented for the first time and can be useful for modeling the ionization balance of Ni XV in laboratory and astrophysical plasmas.

  19. RELATIVISTIC R-MATRIX CLOSE-COUPLING CALCULATIONS FOR PHOTOIONIZATION OF Si-LIKE Ni XV

    SciTech Connect

    Singh, Jagjit; Jha, A. K. S.; Mohan, Man

    2010-02-01

    We present relativistic close-coupling photoionization calculations of Ni XV using the Breit-Pauli R-matrix method to obtain photoionization cross section of Ni XV from the ground state 3s {sup 2}3p {sup 2}({sup 3} P {sub 0}) and the lowest four 3s {sup 2}3p {sup 2} ({sup 3} P {sub 1,2}, {sup 1} D {sub 2}, {sup 1} S {sub 0}) excited states. A multiconfiguration eigenfunction expansion of the core Ni XVI is employed with configurations 3s {sup 2}3p, 3s3p {sup 2}, 3s {sup 2}3d, 3p {sup 3}, 3s3p3d, 3p {sup 2}3d, 3s3d {sup 2}, 3p3d {sup 2}. We have included the lowest 40 target level states of Ni XVI in the photoionization calculations of Ni XV. Cross sections are determined by the Rydberg series of autoionizing resonances converging to several ionic states of Ni XVI. In our calculations, we have taken into account all the important physical effects such as exchange, channel coupling, and short-range correlation. Further, relativistic effects are incorporated by including mass correction, Darwin term, and spin-orbit interaction terms. The present calculations using the lowest 40 target levels of Ni XVI are presented for the first time and can be useful for modeling the ionization balance of Ni XV in laboratory and astrophysical plasmas.

  20. Using vibrational branching ratios to probe shape resonances in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Lucchese, Robert; Das, Aloke; Poliakoff, Erwin; Bozek, John

    2009-05-01

    The measurement of vibrational branching ratios in molecular photoionization can be used as a probe of the nature of resonant states, since such states are often sensitive to the geometry of the molecule. Recent computed results for BF3 and C6F6 will be presented. In C6F6, we consider the excitation of the two symmetric stretching modes in the photoionization leading to the C ^3B2u state of the ion. Two prominent shape resonances at photon energies between 18 and 20 eV respond quite differently to the excitation of the symmetric ring-breathing mode and to the symmetric C-F stretching mode. In BF3, the excitation of both the symmetric stretching and the degenerate asymmetric stretching modes are considered in the photoionization leading to the E ^2A1' state of the ion. The symmetric stretching mode shows a relatively weak resonant enhancement in the branching ratio, whereas the asymmetric stretching mode has a much more prominent feature.

  1. Physical Mechanisms and Scaling Laws of K-Shell Double Photoionization

    SciTech Connect

    Hoszowska, J.; Dousse, J.-Cl.; Berset, M.; Cao, W.; Fennane, K.; Kayser, Y.; Szlachetko, J.; Szlachetko, M.; Kheifets, A. K.; Bray, I.; Kavcic, M.

    2009-02-20

    We report on the photon energy dependence of the K-shell double photoionization (DPI) of Mg, Al, and Si. The DPI cross sections were derived from high-resolution measurements of x-ray spectra following the radiative decay of the K-shell double vacancy states. Our data evince the relative importance of the final-state electron-electron interaction to the DPI. By comparing the double-to-single K-shell photoionization cross-section ratios for neutral atoms with convergent close-coupling calculations for He-like ions, the effect of outer shell electrons on the K-shell DPI process is assessed. Universal scaling of the DPI cross sections with the effective nuclear charge for neutral atoms is revealed.

  2. Physical Mechanisms and Scaling Laws of K-Shell Double Photoionization

    NASA Astrophysics Data System (ADS)

    Hoszowska, J.; Kheifets, A. K.; Dousse, J.-Cl.; Berset, M.; Bray, I.; Cao, W.; Fennane, K.; Kayser, Y.; Kavčič, M.; Szlachetko, J.; Szlachetko, M.

    2009-02-01

    We report on the photon energy dependence of the K-shell double photoionization (DPI) of Mg, Al, and Si. The DPI cross sections were derived from high-resolution measurements of x-ray spectra following the radiative decay of the K-shell double vacancy states. Our data evince the relative importance of the final-state electron-electron interaction to the DPI. By comparing the double-to-single K-shell photoionization cross-section ratios for neutral atoms with convergent close-coupling calculations for He-like ions, the effect of outer shell electrons on the K-shell DPI process is assessed. Universal scaling of the DPI cross sections with the effective nuclear charge for neutral atoms is revealed.

  3. Shining a light on galactic outflows: photoionized outflows

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida

    2016-04-01

    We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.

  4. Gas-Phase Photoionization Of A Protein

    NASA Astrophysics Data System (ADS)

    Milosavljevic, A. R.; Giuliani, A.; Nicolas, C.; Gil, J.-F.; Lemaire, J.; Refregiers, M.; Nahon, L.

    2010-07-01

    We present preliminary results on gas phase photoionization of electrosprayproduced multiply protonated cytochrome c protein (104 amino acids; ˜12.4 kDa), which has been achieved with a newly developed experimental system for spectroscopy of electrosprayed ions in a linear quadrupole ion trap using a monochromatized vacuum ultraviolet (VUV) synchrotron radiation and tandem mass spectrometry method. The investigation of proteins in the gas phase, where they are free of the influence of counterions and solvent molecules, offer a possibility to understand their intrinsic molecular properties. However, due to limited both ion densities and available number of photons, the use of synchrotron radiation for the trapped ions spectroscopy is a rather challenging task. The feasibility of coupling a Fourier transform ion cyclotron resonance ion trap with soft x-ray synchrotron beamline and the first successful use of synchrotron radiation for spectroscopy of electrosprayed negative ions stored in a three-dimensional quadrupole ion trap have been demonstrated only recently (R. Thissen et al., 2008, Phys. Rev. Lett., 100, 223001; A. Giulliani et al., Proc. 57th ASMS Conf., Philadelphia, 2009). The present results are the first reported on photoionization of kDa species in the gas phase and are valuable regarding both a fundamental interest of accessing physical properties of large biological ions isolated in vacuo and potential development of a new technique for proteomics.

  5. Mode specific photoionization dynamics in polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Rathbone, Gerald Jeffery

    2002-11-01

    The work presented in this dissertation presents new work on polyatomic photoionization. In these investigations, the broad range behavior of both allowed and forbidden vibrational modes in linear triatomic systems were studied to understand mode specific aspects of photoionization. The current study is made possible by the experimental strategy of exploiting high resolution photoelectron spectroscopy and the high brightness of third generation synchrotron radiation sources. The data is taken typically tens of eV's past the ionization potential. The strategy that I employ is to probe alternative vibrational modes which are frequently affected differently following resonant ionization. Such vibrationally resolved data can be used to understand how the correlation between vibration and electron energy reveals microscopic insights into the photoelectron scattering process. Moreover, the mode specific behavior contains a wealth of information not only regarding allowed transitions, but also contains information on how forbidden transitions gain surprising amounts of intensity. A previously overlooked mechanism for the appearance of forbidden nontotally symmetric vibrations was discovered---resonantly amplified vibronic symmetry breaking. The photoelectron the culprit for the symmetry breaking which induces the excitation of nominally forbidden vibrational excitations. In a more general sense, these results will demonstrate that some fundamental spectroscopic approximations are not always valid, and can lead to surprising consequences.

  6. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a) Each application for an order under section 304(d)...

  7. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a) Each application for an order under section 304(d)...

  8. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a) Each application for an order under section 304(d)...

  9. Killing Weeds with 2,4-D. Extension Bulletin 389.

    ERIC Educational Resources Information Center

    Lee, Oliver C.

    Discussed is the use of the herbicide 2,4-D. Though written for farmers and agricultural workers, the pamphlet considers turf weed control and use of 2,4-D near ornamental plants. Aspects of the use of this herbicide covered are: (1) the common forms of 2,4-D; (2) plant responses and tolerances to the herbicide; (3) dilution and concentration of…

  10. Photoionization of optically trapped ultracold atoms with a high-power light-emitting diode

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Amthor, Thomas; Weidemueller, Matthias

    2013-04-15

    Photoionization of laser-cooled atoms using short pulses of a high-power light-emitting diode (LED) is demonstrated. Light pulses as short as 30 ns have been realized with the simple LED driver circuit. We measure the ionization cross section of {sup 85}Rb atoms in the first excited state, and show how this technique can be used for calibrating efficiencies of ion detector assemblies.

  11. K-shell Photoionization of Na-like to Cl-like Ions of Mg, Si, S, Ar, and Ca

    NASA Technical Reports Server (NTRS)

    Witthoeft, M. C.; Garcia, J.; Kallman, T. R.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2010-01-01

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of Mg, Si, S, Ar, and Ca ions with more than 10 electrons. The calculations include the effects of radiative and Auger damping by means of an optical potential. The wave functions are constructed from single-electron. orbital bases obtained using a Thomas-Fermi-Dirac statistical model potential. Configuration interaction is considered among all states up to n = 3. The damping processes affect the resonances converging to the K-thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  12. K-SHELL PHOTOIONIZATION OF Na-LIKE TO Cl-LIKE IONS OF Mg, Si, S, Ar, AND Ca

    SciTech Connect

    Witthoeft, M. C.; Garcia, J.; Kallman, T. R.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2011-01-15

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of Mg, Si, S, Ar, and Ca ions with more than 10 electrons. The calculations include the effects of radiative and Auger damping by means of an optical potential. The wave functions are constructed from single-electron orbital bases obtained using a Thomas-Fermi-Dirac statistical model potential. Configuration interaction is considered among all states up to n = 3. The damping processes affect the resonances converging to the K-thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  13. Photoionization and electrostatic multipoles properties of spherical core/shell/shell quantum nanolayer with off-center impurity

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. A.; Kazaryan, E. M.; Sarkisyan, H. A.

    2017-04-01

    The electronic, optical and electrostatic properties of the spherical core/shell/shell quantum nanolayer with an off-centered impurity have been studied. Spherical nanolayers of both "small" and "large" radii have been considered in the framework of perturbation theory and the variational method. Photoionization cross-section that corresponds to the electron transitions from the impurity ground state to the size-quantized levels have been studied. The dependence of the photoionization cross section on the photon energy, impurity position and the geometrical parameters of the spherical nanolayer have been obtained. The electrostatic multipoles of the considered system have been investigated.

  14. Dirac R-matrix calculations of photoionization cross-sections of Ca IV

    NASA Astrophysics Data System (ADS)

    Nazir, R. T.; Bari, M. A.; Sardar, S.; Bilal, M.; Salahuddin, M.; Nasim, M. H.

    2016-11-01

    In this paper total photoionization cross-sections in the ground (^2P^o_{3/2}) and two meta-stable states (^2P^o_{1/2},^2S_{1/2}) of Ca IV are reported using the relativistic Dirac Atomic R-matrix Codes (DARC) in the photon energy range 67-122 eV. The target wavefunctions are constructed with fully relativistic atomic structure GRASP package. A total of lowest lying 48 fine-structure levels arising from the four main configuration (3s23p4, 3s3p5 3s23p33d, 3p6) are considered for the target wavefunctions expansion. Our calculated eigenvalues of the core ion Ca V show reasonable agreement with available experimental and theoretical results. It is found that present ionization threshold energies of first three levels of Ca IV are in excellent agreement with NIST energies and experimental measurements. The photoionization cross-sections of Ca IV are calculated with an appropriate energy step (0.1 × 10-3 eV) to describe the resonance structures in vivid details. A comparison for the statistically weighted mixture of states (^2P^o_{3/2},^2P^o_{1/2}) with other experimental measurements including term-resolved ground state theoretical calculations is presented. Our computed photoionization cross-sections agree better with the measured cross-sections than the other theoretical approaches and are potentially more accurate.

  15. Exploring the universe in the laboratory: photoionized plasma experiments at Z relevant to astrophysics

    NASA Astrophysics Data System (ADS)

    Mancini, Roberto

    2014-08-01

    Many astrophysical environments such as x-ray binaries, active galactic nuclei, and accretion disks of compact objects have photoionized plasmas. Detailed x-ray spectral observations performed with the Chandra and XMM-Newton orbiting telescopes provide critical information on the state of photoionized plasmas. However, the complexity of the astrophysical environment makes the spectral analysis challenging, and thus laboratory experiments are important for data interpretation and testing of modeling codes. The Z facility at Sandia National Laboratories is a powerful source of x-rays to produce and study in the laboratory photoionized plasmas relevant for astrophysics. We discuss an experimental and theory/modeling effort in which the intense x-ray flux emitted at the collapse of a z-pinch implosion conducted at the Z pulsed-power machine is employed to produce a neon photoionized plasma. The broadband x-ray radiation flux from the z-pinch is used to both create the photoionized plasma and provide a source of backlighting photons to study the atomic kinetics through K-shell line absorption spectroscopy. The plasma is contained in a cm-scale gas cell that can be located at different distances from the z-pinch, thus effectively controlling the x-ray flux producing the plasma. Time-integrated transmission spectra have been observed with a spectrometer equipped with two elliptically-bent KAP crystals from photoionized plasmas covering an order of magnitude range in ionization parameter. The transmission data shows a rich line absorption spectrum that spans over several ionization stages of neon including Be-, Li-, He- and H-like ions. Modeling calculations are used to interpret the transmission spectra recorded in the Z experiments with the goal of extracting the charge- state distribution, electron temperature and the radiation flux driving the plasma, as well as to determine the ionization parameter of the plasma. This work is sponsored in part by the National Nuclear

  16. Synchrotron-based valence shell photoionization of CH radical

    NASA Astrophysics Data System (ADS)

    Gans, B.; Holzmeier, F.; Krüger, J.; Falvo, C.; Röder, A.; Lopes, A.; Garcia, G. A.; Fittschen, C.; Loison, J.-C.; Alcaraz, C.

    2016-05-01

    We report the first experimental observations of X+ 1Σ+←X 2Π and a+ 3Π←X 2Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.

  17. Synchrotron-based valence shell photoionization of CH radical.

    PubMed

    Gans, B; Holzmeier, F; Krüger, J; Falvo, C; Röder, A; Lopes, A; Garcia, G A; Fittschen, C; Loison, J-C; Alcaraz, C

    2016-05-28

    We report the first experimental observations of X(+) (1)Σ(+)←X (2)Π and a(+) (3)Π←X (2)Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.

  18. The 2.5-Dimensional Photoionization Code ``PAN'' for Modeling of Axially Symmetric Nebulae: The Distinctive Features

    NASA Astrophysics Data System (ADS)

    Rokach, Oleg V.

    2005-11-01

    A multi-purpose spectrum synthesis code ``PAN'' (``Photoionized Axisymmetric Nebula'') is presented. The code allows computing of self-consistent steady-state models of morphologically-realistic axisymmetric gaseous, dust or gas+dust envelopes. Only the main features of the code ``PAN'' are enumerated here.

  19. Photoionization research on atomic beams. 2: The photoionization cross section of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Comes, F. J.; Speier, F.; Elzer, A.

    1982-01-01

    An experiment to determine the absolute value of the photo-ionization cross section of atomic oxygen is described. The atoms are produced in an electrical discharge in oxygen gas with 1% hydrogen added. In order to prevent recombination a crossed beam technique is employed. The ions formed are detected by a time-of-flight mass spectrometer. The concentration of oxygen atoms in the beam is 57%. The measured photoionization cross section of atomic oxygen is compared with theoretical data. The results show the participation of autoionization processes in ionization. The cross section at the autoionizing levels detected is considerably higher than the absorption due to the unperturbed continuum. Except for wavelengths where autoionization occurs, the measured ionization cross section is in fair agreement with theory. This holds up to 550 A whereas for shorter wavelengths the theoretical values are much higher.

  20. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  1. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  2. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels.

    PubMed

    Bakarich, Shannon E; Gorkin, Robert; in het Panhuis, Marc; Spinks, Geoffrey M

    2015-06-01

    A smart valve is created by 4D printing of hydrogels that are both mechanically robust and thermally actuating. The printed hydrogels are made up of an interpenetrating network of alginate and poly(N-isopropylacrylamide). 4D structures are created by printing the "dynamic" hydrogel ink alongside other static materials.

  3. A High-resolution Vacuum Ultraviolet Laser Photoionization and Photoelectron Study of the Co Atom

    NASA Astrophysics Data System (ADS)

    Huang, Huang; Wang, Hailing; Luo, Zhihong; Shi, Xiaoyu; Chang, Yih-Chung; Ng, C. Y.

    2016-12-01

    We have measured the vacuum ultraviolet-photoionization efficiency (VUV-PIE) spectrum of Co in the energy range of 63,500-67,000 cm-1, which covers the photoionization transitions of Co(3d74s2 4F9/2) \\to Co+(3d8 3F4), Co(3d74s2 4F7/2) \\to Co+(3d8 3F3), Co(3d74s2 4F9/2) \\to Co+(3d8 3F3), Co(3d74s2 4F9/2) \\to Co+(3d8 3F2), and Co(3d74s2 4F9/2) \\to Co+(3d74s1 5F5). We have also recorded the pulsed field ionization photoelectron spectrum of Co in the same energy range, allowing accurate determinations of ionization energies (IEs) for the photoionization transitions from the Co(3d74s2 4F9/2) ground neutral state to the Co+(3F J ) (J = 4 and 3) and Co+(5F5) ionic states, as well as from the Co(3d74s2 4F7/2) excited neural state to the Co+(3d8 3F3) ionic state. The high-resolution nature of the VUV laser used has allowed the observation of many well-resolved autoionizing resonances in the VUV-PIE spectrum, among which an autoionizing Rydberg series, 3d74s1(5F5)np (n = 19-38), converging to the Co+(3d74s1 5F5) ionic state from the Co(3d74s2 4F9/2) ground neutral state is identified. The fact that no discernible step-like structures are present at these ionization thresholds in the VUV-PIE spectrum indicates that direct photoionization of Co is minor compared to autoionization in this energy range. The IE values, the autoionizing Rydberg series, and the photoionization cross sections obtained in this experiment are valuable for understanding the VUV opacity and abundance measurement of the Co atom in stars and solar atmospheres, as well as for benchmarking the theoretical results calculated in the Opacity Project and the IRON Project, and thus are of relevance to astrophysics.

  4. Influence of uniaxial pressure on the photoionization of h-centers in semiconductors

    NASA Astrophysics Data System (ADS)

    Abramov, A. A.; Akimov, V. I.; Dalakyan, A. T.; Firsov, D. A.; Tulupenko, Victor N.; Vasko, Fedir T.

    1999-11-01

    Photoionization cross section of holes localization on deep centers with short distance potential at their transitions to the valence band of the uniaxially deformed semiconductor like Ge has been calculated. Because of splitting both acceptor level and extremum of hole subbands, photoionization threshold splits also - four kinds of such transitions appear. While growing temperature, the alteration of population of splitted impurity states occurs. It result in changing contribution of each kind of transitions to the absorption coefficient. As deformation disturbs spherical symmetry of the problem, appreciable polarization dependence of absorption coefficient appears. The calculation is based on the general quantum mechanic formula with transition matrix element using wave function of impurity center under deformation.

  5. Shape resonances in the photoionization of CF4

    SciTech Connect

    Stephens, J. A.; Dill, Dan; Dehmer, Joseph L.

    1986-01-01

    Calculations of photoionization cross sections and photoelectron angular distributions have been performed for all occupied orbitals of CF4 using the multiple-scattering model. Results are compared with very recent experiments which employ synchrotron radiation to measure these quantities, namely the measurements of Truesdale e t a l. for the carbonK shell, and measurements of Carlson e t a l. and Novak e t a l. for the five outermost valence levels. The calculations predict intense shape resonances below 3 eV in continua of a1 and t2 final state symmetry. Qualitative agreement is attained on comparing much of the theory with experiment, notably the five outer valence levels, which serves to establish a one-electron picture of the photoionization dynamics of CF4.

  6. Photoionization-pumped, Ne II, x-ray laser studies project. Final report

    SciTech Connect

    Richardson, M.C.; Hagelstein, P.L.; Eckart, M.J.; Forsyth, J.M.; Gerrassimenko, M.; Soures, J.M.

    1984-01-01

    The energetics of this pumping scheme are shown. Short-pulse (50 to 100 ps) laser irradiation of an appropriate x-ray flashlamp medium generates broad-band emission in the range of 300 to 800 eV which preferentially photoionizes Ne to the /sup 2/S state of Ne II creating an inversion at approximately 27 eV. Although this approach does not depend on precise spectral overlap between the x-ray pump radiation and the medium to be pumped, it does require that the x-ray medium remain un-ionized prior to photoionization by the soft x-ray emission. Well-controlled focus conditions are required to ensure that the x-ray medium is not subjected to electron or x-ray preheat prior to irradiation by the soft x-ray source. The magnitude of the population inversion is predicted to be critically dependent upon rapid photoionization of the two states; therefore, ultra-short pulse irradiation of the laser flashlamps is required.

  7. Photodetachment and photoionization rainbows and glories

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kalaitzis, P.; Danakas, S.; Lépine, F.; Bordas, C.

    2017-03-01

    Quantum scattering has many similarities with the physics of the atmospheric rainbow. Diffraction effects, including rainbows and glories, have long been introduced in the physics of scattering, and particularly in nuclear, atomic and molecular physics. In this paper we describe the striking similarity between the optics of the primary rainbow and supernumerary bows and photodetachment microscopy, with the latter term referring to the photodetachment of a structureless anion in the presence of a static electric field. Further, we extend the aforementioned analogy to the more complex and fertile case of photoionization microscopy. Despite the fact that in the latter situation the analogy is only approximate, we demonstrate the emergence of additional features that are also found in classical optics, like higher-order bows and glories. Finally, based on the conclusions drawn from the above analyses, we discuss the significant contribution of glories in threshold photoelectron spectroscopy.

  8. X-ray emissions in 3d, 4d, and 5d ranges for uranium ions

    SciTech Connect

    Bonnelle, C.; Jonnard, P.; Barre, C.; Giorgi, G.; Bruneau, J.

    1997-05-01

    Radiative decay of nd{sup {minus}1}5f{sup m+1} excited states in UO{sub 2} induced by electron collisions is studied theoretically and experimentally. Energies, transition probabilities, and photoexcitation cross sections for the relevant configurations of U{sup 4+} are calculated by using the multiconfiguration Dirac-Fock method. Experimental observations are made in the 4d range. Direct recombination of the excited 5f electron to the 4d hole and 4d-6p emission in the presence of the spectator excited 5f electron are observed. From the theoretical results, the spectra are simulated and compared to the observed spectra in the three nd regions. The agreement is correct and describes the evolution of the coupling scheme in the nd{sup {minus}1}5f{sup 3} excited states from n=3 to n=5. {copyright} {ital 1997} {ital The American Physical Society}

  9. 4D Dynamic RNP Annual Interim Report-Year 1

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Chung, William W.; Salvano, Daniel; Klooster, Joel; Hochwarth, Joachim K.

    2010-01-01

    experiment using the Airspace and Traffic Operations Simulation (ATOS) system to validate the 4D Dynamic RNP construct. This Annual Interim Report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results obtained during the first year of this research effort to expand the RNP concept to 4 dimensions relative to a dynamic frame of reference. A comprehensive assessment of the state-of-the-art international implementation of current RNP was completed and presented in the Contractor Report RNP State-of-the-Art Assessment, Version 4, 17 December 2008 . The team defined in detail two 4DT operations, Airborne Precision Spacing and Self-Separation, that are ideally suited to be supported by 4D Dynamic RNP and developed their respective conceptual frameworks, Required Interval Management Performance (RIMP) Version 1.1, 13 April 2009 and Required Self Separation Performance (RSSP) Version 1.1, 13 April 2009 . Finally, the team started the development of a mathematical model and simulation tool for RIMP and RSSP scheduled to be delivered during the second year of this research effort.

  10. Resonant ionization spectroscopy of autoionizing Rydberg states in cobalt and redetermination of its ionization potential

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gottwald, T.; Mattolat, C.; Wendt, K.

    2017-04-01

    Multi-step resonance ionization spectroscopy of cobalt has been performed using a hot-cavity laser ion source and three Ti:Sapphire lasers. The photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F9/2, 3d 74s4d f 4G11/2, and 3d 74s4d f 4H13/2 and converge to the first four excited states of singly ionized Co. The analyses of the Rydberg series yield 63 564.689 ± 0.036 cm‑1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonance ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co. ).

  11. Photoionization of psoralen derivatives in micelles: Imperatorin and alloimperatorin

    NASA Astrophysics Data System (ADS)

    El-Gogary, Sameh R.

    2010-11-01

    The fluorescence properties of psoralen derivatives, 8-methoxypsoralen (8-MOP), imperatorin (IMP) and alloimperatorin (ALLOI), were investigated in various solvent and micellar solutions. The variation in intensity and maxima of the fluorescence in micellar solutions suggest that psoralens are located in the micelle-water interface region. Radical cations and hydrated electrons were generated by photoionization in micellar solution upon excitation at 266 nm. A nonlinear relationship between transient yield and photon fluency was obtained for each compound, indicating that a two-photon mechanism is predominant in the photoionization of the sensitizers. The photoionization efficiencies are significantly higher in anionic sodium dodecyl sulfate (SDS) than in cationic cetyltrimethylammonium bromide (CTAB) micelles, reflecting the influence of micelle charge on the efficiency of the separation of the photoproduced charge carriers. The photoionization efficiencies of IMP and ALLOI are similar.

  12. Experimental validation of a 4D elastic registration algorithm.

    PubMed

    Leung, Corina; Hashtrudi-Zaad, Keyvan; Foroughi, Pezhman; Abolmaesumi, Purang

    2008-01-01

    This paper presents an extensive validation study of an elastic registration algorithm for dynamic 3D ultrasound images (also known as a 4D image). The registration algorithm uses attribute vectors from both a fixed and previous moving images to perform feature-based alignment of a series of images. The 4D method reduces computational requirements and increases the effective search space for the location of corresponding features, resulting in enhanced registration speed when compared to a static 3D registration technique. Experimental analysis revealed up to 32% improvement in speed when using the 4D method, which makes the algorithm attractive for real-time applications.

  13. An Atomic Photoionization Experiment by Harmonic Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trallero, Carlos; Frolov, Mikhail; Sarantseva, Tatiana S.; Manakov, Nikolay; Fulfer, Kristen D.; Wilson, Benjamin; Troß, Jan; Ren, Xiaoming; Poliakoff, Erwin; Silaev, Alexander A.; Vvedenskii, Nikolay; Starace, Anthony

    2016-05-01

    Measurements of the high-order harmonic generation yield of the argon (Ar) atom driven by a strong elliptically polarized laser field are shown to completely determine the field-free differential photoionization cross section of Ar, i.e., the energy dependence of both the angle-integrated photoionization cross section and the angular distribution asymmetry parameter. NSF EPSCoR Track II Nebraska-Kansas Awards No. 1430519 and No. 1430493.

  14. Photoionization of noble-gas atoms by ultrashort electromagnetic pulses

    SciTech Connect

    Astapenko, V. A. Svita, S. Yu.

    2014-11-15

    The photoionization of atoms of noble gases (Ar, Kr, and Xe) by ultrashort electromagnetic pulses of a corrected Gaussian shape is studied theoretically. Computations are performed in the context of perturbation theory using a simple expression for the total probability of photoionization of an atom by electromagnetic pulses. The features of this process are revealed and analyzed for various ranges of the parameters of the problem.

  15. Effect of strongly coupled plasma on photoionization cross section

    SciTech Connect

    Das, Madhusmita

    2014-01-15

    The effect of strongly coupled plasma on the ground state photoionization cross section is studied. In the non relativistic dipole approximation, cross section is evaluated from bound-free transition matrix element. The bound and free state wave functions are obtained by solving the radial Schrodinger equation with appropriate plasma potential. We have used ion sphere potential (ISP) to incorporate the plasma effects in atomic structure calculation. This potential includes the effect of static plasma screening on nuclear charge as well as the effect of confinement due to the neighbouring ions. With ISP, the radial equation is solved using Shooting method approach for hydrogen like ions (Li{sup +2}, C{sup +5}, Al{sup +12}) and lithium like ions (C{sup +3}, O{sup +5}). The effect of strong screening and confinement is manifested as confinement resonances near the ionization threshold for both kinds of ions. The confinement resonances are very much dependent on the edge of the confining potential and die out as the plasma density is increased. Plasma effect also results in appearance of Cooper minimum in lithium like ions, which was not present in case of free lithium like ions. With increasing density the position of Cooper minimum shifts towards higher photoelectron energy. The same behaviour is also true for weakly coupled plasma where plasma effect is modelled by Debye-Huckel potential.

  16. Vibrationally resolved cross sections for the photoionization of CS2

    NASA Astrophysics Data System (ADS)

    Stratmann, R. E.; Lucchese, Robert R.

    1994-12-01

    We have performed vibrationally resolved calculations of the excitation of the symmetric stretch in the photoionization of CS2 leading to the X 2Πg, A 2Πu, B 2Σ+u, and C 2Σ+g states of CS+2. Previous theoretical work has determined that the kπg shape resonance in the (5σu)-1 channel consists mainly of a linear combination of low lying virtual d orbitals on sulfur and is thus essentially atomic in nature. This conclusion was primarily based on the shape of the resonant wave function and the insensitivity of the energy of the resonance to bond stretching. Here, we have determined that the energies of the kπ shape resonances located well above threshold and the σ bound states just below threshold are insensitive to bond length. We have also found nearly constant vibrational branching ratios in all channels and polarization components. This is in qualitative agreement with experimental vibrationally resolved cross sections [S. Kakar, H. C. Choi, and E. D. Poliakoff, J. Chem. Phys. 97, 4690 (1992)] which show nearly constant vibrational branching ratios. Our present results indicate that caution must be exercised when using bond length sensitivity as an exclusive means to determine the existence of shape resonances.

  17. Configuration-interaction relativistic-many-body-perturbation-theory calculations of photoionization cross sections from quasicontinuum oscillator strengths

    DOE PAGES

    Savukov, I. M.; Filin, D. V.

    2014-12-29

    Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreementmore » with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions.« less

  18. Configuration-interaction relativistic-many-body-perturbation-theory calculations of photoionization cross sections from quasicontinuum oscillator strengths

    SciTech Connect

    Savukov, I. M.; Filin, D. V.

    2014-12-29

    Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreement with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions.

  19. Photoionization of chlorine-like potassium and calcium ions

    NASA Astrophysics Data System (ADS)

    Alna'Washi, Ghassan A.

    Absolute photoionization cross-section measurements were performed for a mixture of 2Po 3/2 ground state and 2Po 1/2 metastable state Cl-like K2+ and Ca3+ ions over the photon energy range 44.240-69.741 eV for K2+ and 65.7-104.6 eV for Ca3+. The measurements were performed by merging an ion beam with a beam of synchrotron radiation from an undulator magnet using the ion-photon merged-beams endstation on beamline 10.0.1 of the Advanced Light Source (ALS) at Lawrence Berkley National Laboratory. High resolution measurements were performed near the 2P o 3/2 ground-state ionization threshold for both ions. The ground-state ionization thresholds of K2+ and Ca 3+ was measured to be 45.740 +/- 0.015 eV and 67.070 +/- 0.018 eV, respectively. These energies are respectively 0.066 eV and 0.200 eV lower than the tabulated values in the NIST database. These data are compared to previous measurements for Cl-like Ar+. Most of the observed resonance features belong to multiple Rydberg series of transitions to autoionizing states. These features were assigned spectroscopically using the quantum defect form of the Rydberg formula, guided by calculations of the energies and oscillator strengths of transitions to autoionizing states performed using the pseudo-relativistic Cowan Hartree-Fock atomic structure code. The measurements for Ca3+ compare favorably with recent unpublished R-matrix calculations performed by McLaughlin in a close-coupling expansion within the semi-relativistic Breit-Pauli approximation. This includes the energy positions of the calculated resonances and the magnitudes of the resonant and nonresonant components of the cross section.

  20. Sturmian approach to the study of photoionization of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Granados Castro, Carlos Mario; Ancarani, Lorenzo Ugo; Gasaneo, Gustavo; Mitnik, Dario M.

    2013-09-01

    In this presentation we study the photoionization of atoms and molecules using ultrashort laser pulses, solving the time-independent Schrödinger equation (TISE) in a first order perturbation theory. The interaction laser-matter is described with the dipolar operator in the velocity gauge. Generalized Sturmian functions are used to solve the driven equation for a scattering wave function which includes all the information about the ionization problem. For the atomic case, we study the photoionization of He atom using the Hermann-Skillman potential together with the one-active electron approximation. For molecular systems (CH4 in this work), we use first a spherically symmetric potential Ui(r), and then a more realistic potential that includes all the nuclei and other electrons interaction, as in. For each molecular orbital we use Moccia's wave functions, solve the TISE with an initial molecular orbital i of the ground state and extract the corresponding photoionization cross sections. For both atomic and molecular systems we compare our results with previous calculations and available experimental data.

  1. TPCI: the PLUTO-CLOUDY Interface . A versatile coupled photoionization hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Salz, M.; Banerjee, R.; Mignone, A.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M.

    2015-04-01

    We present an interface between the (magneto-) hydrodynamics code PLUTO and the plasma simulation and spectral synthesis code CLOUDY. By combining these codes, we constructed a new photoionization hydrodynamics solver: the PLUTO-CLOUDY Interface (TPCI), which is well suited to simulate photoevaporative flows under strong irradiation. The code includes the electromagnetic spectrum from X-rays to the radio range and solves the photoionization and chemical network of the 30 lightest elements. TPCI follows an iterative numerical scheme: first, the equilibrium state of the medium is solved for a given radiation field by CLOUDY, resulting in a net radiative heating or cooling. In the second step, the latter influences the (magneto-) hydrodynamic evolution calculated by PLUTO. Here, we validated the one-dimensional version of the code on the basis of four test problems: photoevaporation of a cool hydrogen cloud, cooling of coronal plasma, formation of a Strömgren sphere, and the evaporating atmosphere of a hot Jupiter. This combination of an equilibrium photoionization solver with a general MHD code provides an advanced simulation tool applicable to a variety of astrophysical problems. A copy of the code is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A21

  2. Molecular Frame Photoemission: Probe of the Photoionization Dynamics for Molecules in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Dowek, D.; Picard, Y. J.; Billaud, P.; Elkharrat, C.; Houver, J. C.

    2009-04-01

    Molecular frame photoemission is a very sensitive probe of the photoionization (PI) dynamics of molecules. This paper reports a comparative study of non-resonant and resonant photoionization of D2 induced by VUV circularly polarized synchrotron radiation at SOLEIL at the level of the molecular frame photoelectron angular distributions (MFPADs). We use the vector correlation method which combines imaging and time-of-flight resolved electron-ion coincidence techniques, and a generalized formalism for the expression of the I(χ, θe, varphie) MFPADs, where χ is the orientation of the molecular axis with respect to the light quantization axis and (θe, varphie) the electron emission direction in the molecular frame. Selected MFPADs for a molecule aligned parallel or perpendicular to linearly polarized light, or perpendicular to the propagation axis of circularly polarized light, are presented for dissociative photoionization (DPI) of D2 at two photon excitation energies, hν = 19 eV, where direct PI is the only channel opened, and hν = 32.5 eV, i.e. in the region involving resonant excitation of Q1 and Q2 doubly excited state series. We discuss in particular the properties of the circular dichroism characterizing photoemission in the molecular frame for direct and resonant PI. In the latter case, a remarkable behavior is observed which may be attributed to the interference occurring between undistinguishable autoionization decay channels.

  3. Laboratory study of K-shell photoionization of oxygen and oxygen hydrides ions

    NASA Astrophysics Data System (ADS)

    Bizau, Jean-Marc

    2016-05-01

    The interpretation of the spectra sent by satellites required the knowledge of many atomic data, including photoionization cross sections or energy and oscillator strength of bound-bound transitions for many ions, over a broad photon energy range going from infra-red to x-rays. These data are mainly provided by theoretical results using state-of-the-art methods like R-matrix. Recently, discrepancies have been observed between the calculated energy of the Kα transitions in atomic oxygen and its ions and those determined from the satellites observations. The results of the experimental studies of K-shell photoionization of oxygen ions performed at the French synchrotron radiation center SOLEIL will be presented. A merged-beam setup installed on the PLEIADES beam line allows for the determination of absolute photoionization cross sections and transitions energy on singly- and multiply-charged ions in the 10-1000 eV photon energy range. The first results obtained with this setup on oxygen hydrides will be also presented.

  4. Anomalous Abundances in Gaseous Nebulae From Recombination and Collisional Lines: Improved Photoionization and Recombination Studies

    NASA Astrophysics Data System (ADS)

    Pradhan, Anil Kumar; Nahar, S. N.; Eissner, W. B.; Montenegro, M.

    2011-01-01

    A perplexing anomaly arises in the determination of abundances of common elements in gaseous nebulae, as derived from collisionally excited lines (CEL) as opposed to those from Recombination Lines (RCL). The "abundance discrepancy factors" can range from a factor of 2 to an order of magnitude or more. That has led to quite different interpretation of the physical structure and processes in gaseous nebulae, such as temperature fluctuations across the object, or metal-rich concentrations leading to a dual-abundnace scenario. We show that the problem may lie in inaccuracies in photoionization and recombination models neglecting low-energy resonance phenomena due to fine structure. Whereas the atomic physics of electron impact excitation of forbidden lines is well understood, and accurate collision strengths have long been available, that is not generally the case for electron-ion recombination cross sections. A major problem is the inclusion of relativisitic effects as it pertains to the existence of very low-energy fine structure resonances in photoionization cross sections. We carry out new relativistic calculations for photoionization and recombination cross sections using a recently extended version of the Breit-Pauli R-matrix codes, and the unified electron-ion recombination method that subsumes both the radiative and the dielectronic recombination (RR and DR) processes in an ab initio and self-consistent manner. We find that near-thresold resonances manifest themselves within fine structure levels of the ground state of ions, enhancing low-temperature recombination rate coefficients at 1000-10,000 K. The resulting enahncement in level-specific and total recombination rate coefficients should therefore lead to reduced abundances derived from RCL, and in accordance with those from CEL. We present results for photoionization of O II into, and recombination from, O III. Theoretical cross sections are benchmarked against high-resolution measurements from synchrotron

  5. Photoionization and photofragmentation of SF6 in helium nanodroplets.

    PubMed

    Peterka, Darcy S; Kim, Jeong Hyun; Wang, Chia C; Neumark, Daniel M

    2006-10-12

    The photoionization of He droplets doped with SF6 was investigated using tunable vacuum ultraviolet (VUV) synchrotron radiation from the Advanced Light Source (ALS). The resulting ionization and photofragmentation dynamics were characterized using time-of-flight mass spectrometry combined with photofragment and photoelectron imaging. Results are compared to those of gas-phase SF6 molecules. We find dissociative photoionization to SF5+ to be the dominant channel, in agreement with previous results. Key new findings are that (a) the photoelectron spectrum of the SF6 in the droplet is similar but not identical to that of the gas-phase species, (b) the SF5+ photofragment velocity distribution is considerably slower upon droplet photoionization, and (c) fragmentation to SF4+ and SF3+ is much less than in the photoionization of bare SF6. From these measurements we obtain new insights into the mechanism of SF6 photoionization within the droplet and the cooling of the hot photofragment ions produced by dissociative photoionization.

  6. Photoionization studies on various quinones by an infrared laser desorption/tunable VUV photoionization TOF mass spectrometry.

    PubMed

    Pan, Yang; Zhang, Lidong; Zhang, Taichang; Guo, Huijun; Hong, Xin; Qi, Fei

    2008-12-01

    Photoionization and dissociative photoionization characters of six quinones, including 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ), 9,10-phenanthroquinone (PQ), 9,10-anthraquinone (AQ), benz[a]- anthracene-7,12-dione (BAD) and 1,2-acenaphthylenedione (AND) have been studied with an infrared laser desorption/tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (IR LD/VUV PIMS) technique. Mass spectra of these compounds are obtained at different VUV photon energies. Consecutive losses of two carbon monoxide (CO) groups are found to be the main fragmentation pathways for all the quinones. Detailed dissociation processes are discussed with the help of ab initio B3LYP calculations. Ionization energies (IEs) of these quinones and appearance energies (AEs) of major fragments are obtained by measuring the photoionization efficiency (PIE) spectra. The experimental results are in good agreement with the theoretical data.

  7. Substitutional 4d and 5d impurities in graphene.

    PubMed

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2016-08-21

    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The adsorption energies and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which are also well-known characteristics of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar adsorption energies, distances and magnetic moments to the 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3 μB for manganese is reduced to 1 μB for technetium and rhenium. We find that compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree of hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different if 4d or 5d impurities are used instead of 3d impurities.

  8. Photoionization studies of intramolecular dynamics: A closer look

    NASA Astrophysics Data System (ADS)

    Wu, Chuanyong

    Using synchrotron radiation as an excitation source, dispersed fluorescence measurements of two different molecular systems are presented in this dissertation with the intention to study the two fundamental aspects of shape resonances-complexity and completeness. C6F6 is a relative large and complex molecule in the sense that nonradiative transitions can take place unimolecularly in the free species. The elucidation of the ionization dynamics of this molecule helps to bridge the gap from simple molecules to matter in condensed phases. In the 2a2u-1 photoionization study of C6F6, the non-Franck-Condon behavior of the vibrational distributions at around 20 eV indicates the existence of shape resonances in this energy range. This is the first time a shape resonance of such a complex molecule is characterized with vibrational resolution detail over such a broad energy range. While the study of C6F6 is to disentangle the complexity aspect of shape resonance, the investigation of CO is an attempt to carry the shape resonant study to its completeness. The original goal of the 4σ- 1 photoionization study of CO was to investigate the vibrational-rotational-electronic (V-R-E) coupling. To be specific, we intended to study the shape resonant effects on the rotational population distributions for alternative vibrational levels. While the 4/sigma/to k/sigma shape resonance influences do not seem to be very significant, the results brought to attention another issue-continuum-continuum channel coupling. The study shows that the R-dependent aspects of shape- resonance-induced continuum coupling affects rotational population distributions for alternative vibrational states differently. In modern scientific researches, the development of instruments plays a critical role. The trend today is for computers to serve as the engine for instrumentation- virtual instruments. By walking through the development processes of a real-time instrument control and data acquisition system, the

  9. Magnetic dipole transitions in 4d{sup N} configurations of tungsten ions

    SciTech Connect

    Jonauskas, V.; Kisielius, R.; Kyniene, A.; Kucas, S.; Norrington, P. H.

    2010-01-15

    Magnetic dipole transitions between the levels of ground 4d{sup N} configurations of tungsten ions were analyzed by employing a large basis of interacting configurations. Previously introduced configuration interaction strength between two configurations was used to determine the configurations with the largest contribution to wave functions of atomic states for the considered configurations. Collisional-radiative modeling was performed for the levels of the ground configuration coupled through electric dipole transitions with 4p{sup 5}4d{sup N+1} and 4d{sup N-1}4f configurations. New identification of some lines observed in the electron-beam ion trap plasma was proposed based on calculations in which wavelength convergence was reached.

  10. Oscillator strengths and branching fractions of 4d75p-4d75s Rh II transitions

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa

    2017-01-01

    This work reports semi-empirical determination of oscillator strengths, transition probabilities and branching fractions for Rh II 4d75p-4d75s transitions in a wide wavelength range. The angular coefficients of the transition matrix, beforehand obtained in pure SL coupling with help of Racah algebra are transformed into intermediate coupling using eigenvector amplitudes of these two configuration levels determined for this purpose; The transition integral was treated as free parameter in the least squares fit to experimental oscillator strength (gf) values found in literature. The extracted value: <4d75s|r1|4d75p> =2.7426 ± 0.0007 is slightly smaller than that computed by means of ab-initio method. Subsequently to oscillator strength evaluations, transition probabilities and branching fractions were deduced and compared to those obtained experimentally or through another approach like pseudo-relativistic Hartree-Fock model including core-polarization effects.

  11. Cooling and Heating Functions of Photoionized Gas

    NASA Astrophysics Data System (ADS)

    Gnedin, Nickolay Y.; Hollon, Nicholas

    2012-10-01

    Cooling and heating functions of cosmic gas are crucial ingredients for any study of gas dynamics and thermodynamics in the interstellar and intergalactic media. As such, they have been studied extensively in the past under the assumption of collisional ionization equilibrium. However, for a wide range of applications, the local radiation field introduces a non-negligible, often dominant, modification to the cooling and heating functions. In the most general case, these modifications cannot be described in simple terms and would require a detailed calculation with a large set of chemical species using a radiative transfer code (the well-known code Cloudy, for example). We show, however, that for a sufficiently general variation in the spectral shape and intensity of the incident radiation field, the cooling and heating functions can be approximated as depending only on several photoionization rates, which can be thought of as representative samples of the overall radiation field. This dependence is easy to tabulate and implement in cosmological or galactic-scale simulations, thus economically accounting for an important but rarely included factor in the evolution of cosmic gas. We also show a few examples where the radiation environment has a large effect, the most spectacular of which is a quasar that suppresses gas cooling in its host halo without any mechanical or non-radiative thermal feedback.

  12. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  13. Intergalactic magnetogenesis at Cosmic Dawn by photoionization

    NASA Astrophysics Data System (ADS)

    Durrive, J.-B.; Langer, M.

    2015-10-01

    We present a detailed analysis of an astrophysical mechanism that generates cosmological magnetic fields during the Epoch of Reionization. It is based on the photoionization of the intergalactic medium by the first sources formed in the Universe. First the induction equation is derived, then the characteristic length and time-scales of the mechanism are identified, and finally numerical applications are carried out for first stars, primordial galaxies and distant powerful quasars. In these simple examples, the strength of the generated magnetic fields varies between the order of 10-23 G on hundreds of kiloparsecs and 10-19 G on hundreds of parsecs in the neutral intergalactic medium between the Strömgren spheres of the sources. Thus, this mechanism contributes to the premagnetization of the whole Universe before large-scale structures are in place. It operates with any ionizing source, at any time during the Epoch of Reionization. Finally, the generated fields possess a characteristic spatial configuration which may help discriminate these seeds from those produced by different mechanisms.

  14. Vibrationally mode-specific excitation in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Poliakoff, Erwin

    2003-05-01

    Recent measurements on the photoionization of polyatomic molecules demonstrate that excitations of nominally forbidden vibrations are surprisingly intense, and that their energy dependences elucidate why they are occurring. The unifying theme underscored by these results is that the continuum photoelectron exerts tremendous influence on which vibrations are excited and the degree of excitation. These data are generated via high resolution photoelectron spectroscopy coupled with high brightness synchrotron radiation. Results are presented on the linear triatomic systems CO_2, CS_2, and N_2O. For these molecules, all vibrational modes are excited. Moreover, the energy dependences for the alternative vibrational modes exhibit dramatic differences, which are attributed to the degree and type of localization experienced by the continuum photoelectron in the molecular framework. And while the electronic structures of these molecules are very similar, they behave very differently from each other, even over a very broad energy range. Theoretical results by Prof. R.R. Lucchese will be discussed, and the comparison with experiment helps to illustrate the state of our understanding of these phenomena. In addition to the linear triatomics, preliminary results will be reported on BF_3, as well as a van der Waals dimer, Ar_2.

  15. Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer

    PubMed Central

    Yang, Ying-Hua; Buhamrah, Asma; Schneider, Abraham; Lin, Yi-Ling; Zhou, Hua; Bugshan, Amr; Basile, John R.

    2016-01-01

    Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects. PMID:26910109

  16. Soil matrix and macropore biodegradation of 2,4-D

    SciTech Connect

    Pivetz, B.E.; Steenhuis, T.S.

    1995-07-01

    Preferential flow of pesticides in macropores can lead to decreased travel times through the vadose zone and increased groundwater contamination. Macropores, however, may present a favorable environment for biodegradation because of greater oxygen, nutrient, and substrate supply, and higher microbial populations in earthworm burrows, compared to the soil matrix. The biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was measured in macropores and soil matrix of packed soil columns (7.0-cm diam., 10-cm length) and undisturbed cores contained as well-defined artificial macropore and the undisturbed cores contained earthworm-burrow macropores. A 50 {mu}g/L 2,4-D solution was continuously applied to the unsaturated soil surface and breakthrough curves (BTCs) indicating pesticide loss in the effluent were obtained from the soil matrix and macropore flow paths. Biodegradation rates were calculated separately for each flow path by comparing the BTCs to BTCs representing abiotic conditions, and dividing the 2,4-D loss by the travel time through each flow path. The biodegradation rates increased with time in both flow paths, and the final biodegradation rate in the macropore region surpassed that of the matrix, presumably because of increased microbial populations in the macropore. Complete loss of the 2,4-D in both flow paths was observed after continuous application of 2,4-D for 400 h, with maximum column-averaged 2,4-D loss rates of 0.879 {mu}g/(L h) in the matrix and 1.073 {mu}g/(L h) in the macropore. Biodegradation of 2,4-D was also observed in the macropore and matrix regions of the undisturbed soil cores. 19 refs., 7 figs., 2 tabs.

  17. Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer.

    PubMed

    Yang, Ying-Hua; Buhamrah, Asma; Schneider, Abraham; Lin, Yi-Ling; Zhou, Hua; Bugshan, Amr; Basile, John R

    2016-01-01

    Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects.

  18. Absolute Total Photoionization Cross Section of C60 in the Range of 25-120 eV: Revisited

    NASA Astrophysics Data System (ADS)

    Kafle, Bhim P.; Katayanagi, Hideki; Prodhan, Md. Serajul I.; Yagi, Hajime; Huang, Chaoqun; Mitsuke, Koichiro

    2008-01-01

    The absolute total photoionization cross section σabs,I of gaseous C60 is measured in the photon energy hν range from 25 to 120 eV by photoionization mass spectrometry with synchrotron radiation. The absolute detection efficiencies of photoions in different charge states are evaluated. The present σabs,I curve is combined with the photoabsorption cross section curves of C60 at hν=3.5--26 eV in the literature, after appropriate alterations of the vapor pressure are taken into account. The oscillator strengths are computed from the composite curve to be 178.5 and 230.5 for the hν ranges from 3.5 to 40.8 eV and from 3.5 to 119 eV, respectively. These oscillator strengths agree well with those expected from the Thomas-Kuhn-Reiche sum rule and 60 times the photoabsorption cross section of a carbon atom. Moreover, the present σabs,I curve behaves similarly to the relative photoionization cross section curve reported by Reinköster et al.

  19. Fine-structure resolved photoionization of metastable Be-like ionsC III, N IV, and O V

    SciTech Connect

    Muller, A.; Schippers, S.; Phaneuf, R.A.; Kilcoyne, A.L.D.; Brauning, H.; Schlachter, A.S.; McLaughlin, B.M.

    2006-09-01

    High-resolution photoionization experiments were carried outwith beams of C III, N IV, and O V containing roughly equal amounts ofground-state and metastable ions. The energy scales of the experimentsare calibrated with uncertainties of 1 to 10 meV depending on photonenergy. These data favorably compare with state-of-the-art R-matrixcalculations carried out on an energy grid with a spacing of 13.6 mueV.

  20. True 4D Image Denoising on the GPU.

    PubMed

    Eklund, Anders; Andersson, Mats; Knutsson, Hans

    2011-01-01

    The use of image denoising techniques is an important part of many medical imaging applications. One common application is to improve the image quality of low-dose (noisy) computed tomography (CT) data. While 3D image denoising previously has been applied to several volumes independently, there has not been much work done on true 4D image denoising, where the algorithm considers several volumes at the same time. The problem with 4D image denoising, compared to 2D and 3D denoising, is that the computational complexity increases exponentially. In this paper we describe a novel algorithm for true 4D image denoising, based on local adaptive filtering, and how to implement it on the graphics processing unit (GPU). The algorithm was applied to a 4D CT heart dataset of the resolution 512  × 512  × 445  × 20. The result is that the GPU can complete the denoising in about 25 minutes if spatial filtering is used and in about 8 minutes if FFT-based filtering is used. The CPU implementation requires several days of processing time for spatial filtering and about 50 minutes for FFT-based filtering. The short processing time increases the clinical value of true 4D image denoising significantly.

  1. Photoionization thresholds of rare-earth impurity ions. EuS :CaF2, CeT :YAG, and SmS :CaF2

    SciTech Connect

    Pedrini, C.; Rogemond, F.; McClure, D.S.

    1986-02-15

    The spectral dependence of the photoionization energy of EuS :CaF2, CeT :YAG, and SmS :CaF2 systems have been measured and thresholds experimentally determined and compared with theoretical values calculated from electrostatic models. It is shown that the excited state absorption transitions or the persistent hole burning observed by other authors occur above the threshold energy of photoionization of the impurities and that the states of the crystal which form the bottom of the conduction band may play an important role in the strong probability of these processes. A review of thresholds now known is also given.

  2. CaH Rydberg series, oscillator strengths and photoionization cross sections from Molecular Quantum Defect and Dyson Orbital theories

    NASA Astrophysics Data System (ADS)

    Velasco, A. M.; Lavín, C.; Díaz-Tinoco, Manuel; Ortiz, J. V.

    2017-01-01

    In this work, electron-propagator methods are applied to the calculation of the ionization potential and vertical excitation energies for several Rydberg series of the CaH molecule. The present calculations cover more highly excited states than those previously reported. In particular, excitation energies for ns (n>5), np (n>5), nd (n>4) and nf Rydberg states are given. Oscillator strengths for electronic transitions involving Rydberg states of CaH, as well as photoionization cross sections for Rydberg channels, also have been determined by using the Molecular Quantum Defect Orbital approach. Good agreement has been found with the scarce comparative data that are available for oscillator strengths. To our knowledge, predictions of photoionization cross sections from the outermost orbital of CaH are made here for the first time. A Cooper minimum and mixed atomic orbital character in some of the Dyson orbitals are among the novel features of these present calculations.

  3. Motion management with phase-adapted 4D-optimization

    NASA Astrophysics Data System (ADS)

    Nohadani, Omid; Seco, Joao; Bortfeld, Thomas

    2010-09-01

    Cancer treatment with ionizing radiation is often compromised by organ motion, in particular for lung cases. Motion uncertainties can significantly degrade an otherwise optimized treatment plan. We present a spatiotemporal optimization method, which takes into account all phases of breathing via the corresponding 4D-CTs and provides a 4D-optimal plan that can be delivered throughout all breathing phases. Monte Carlo dose calculations are employed to warrant for highest dosimetric accuracy, as pertinent to study motion effects in lung. We demonstrate the performance of this optimization method with clinical lung cancer cases and compare the outcomes to conventional gating techniques. We report significant improvements in target coverage and in healthy tissue sparing at a comparable computational expense. Furthermore, we show that the phase-adapted 4D-optimized plans are robust against irregular breathing, as opposed to gating. This technique has the potential to yield a higher delivery efficiency and a decisively shorter delivery time.

  4. Photoionization of Highly Charged Argon Ions and Their Diagnostic Lines

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2012-06-01

    %TEXT OF YOUR ABSTRACT Lines of highly charged He-like and Li-like ions in the ultraviolet and X-ray regions provide useful diagnostics for the physical and chemical conditions of the astrophysical as well as fusion plasmas. For example, Ar XVII lines in a Syfert galaxy have been measured by the X-ray space observatory Chandra. Results on photoionization of Ar XVI and Ar XVII obtained from relativistic Breit-Pauli R-matrix method and close-coupling approximation will be presented. Important features for level-specific photoionization for the diagnostic w, x, y, z lines of He-like Ar XVII in the ultraviolet region will be illustrated. Although monotonous decay dominates the low energy photoionization for these ions, strong resonances appear in the high energy region indicating higher recombination, inverse process of photoionization, at high temperature. The spectra of the well known 22 diagnostics dielectronic satellite lines of Li-like Ar XVI will be shown produced from the the KLL resonances in photoionization. Acknowledgement: Partially supported by DOE, NSF; Computational work was carried out at the Ohio Supercomputer Center

  5. Galaxy formation with local photoionization feedback - I. Methods

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Stinson, G. S.; Macciò, A. V.; Hennawi, J. F.; Woods, R.; Wadsley, J.; Shen, S.; Robitaille, T.; Cantalupo, S.; Quinn, T. R.; Christensen, C.

    2014-01-01

    We present a first study of the effect of local photoionizing radiation on gas cooling in smoothed particle hydrodynamics simulations of galaxy formation. We explore the combined effect of ionizing radiation from young and old stellar populations. The method computes the effect of multiple radiative sources using the same tree algorithm as used for gravity, so it is computationally efficient and well resolved. The method foregoes calculating absorption and scattering in favour of a constant escape fraction for young stars to keep the calculation efficient enough to simulate the entire evolution of a galaxy in a cosmological context to the present day. This allows us to quantify the effect of the local photoionization feedback through the whole history of a galaxy's formation. The simulation of a Milky Way-like galaxy using the local photoionization model forms ˜40 per cent less stars than a simulation that only includes a standard uniform background UV field. The local photoionization model decreases star formation by increasing the cooling time of the gas in the halo and increasing the equilibrium temperature of dense gas in the disc. Coupling the local radiation field to gas cooling from the halo provides a preventive feedback mechanism which keeps the central disc light and produces slowly rising rotation curves without resorting to extreme feedback mechanisms. These preliminary results indicate that the effect of local photoionizing sources is significant and should not be ignored in models of galaxy formation.

  6. 3D/4D sonography - any safety problem.

    PubMed

    Pooh, Ritsuko K; Maeda, Kazuo; Kurjak, Asim; Sen, Cihat; Ebrashy, Alaa; Adra, Abdallah; Dayyabu, Aliyu Labaran; Wataganara, Tuangsit; de Sá, Renato Augusto Moreira; Stanojevic, Milan

    2016-03-01

    Gray-scale image data are processed in 3D ultrasound by repeated scans of multiple planes within a few seconds to achieve one surface rendering image and three perpendicular plane images. The 4D image is achieved by repeating 3D images in short intervals, i.e. 3D and 4D ultrasound are based on simple B-mode images. During 3D/4D acquisition, a fetus in utero is exposed by ultrasound beam for only a few seconds, and it is as short as real-time B-mode scanning. Therefore, simple 3D imaging is as safe as a simple B-mode scan. The 4D ultrasound is also as safe as a simple B-mode scan, but the ultrasound exposure should be shorter than 30 min. The thermal index (TI) and mechanical index (MI) should both be lower than 1.0, and the ultrasound study is regulated by the Doppler ultrasound if it is combined with simple 3D or 4D ultrasound. Recently, some articles have reported the functional changes of animal fetal brain neuronal cells and liver cell apoptosis with Doppler ultrasound. We discuss cell apoptosis by ultrasound in this report. Diagnostic ultrasound safety is achieved by controlling the output pulse and continuous ultrasound waves using thermal and mechanical indices, which should be <1.0 in abdominal and transvaginal scan, pulsed Doppler, as well as 3D and 4D ultrasound. The lowest spatial peak temporal average (SPTA) intensity of the ultrasound to suppress cultured cell growth is 240 mW/cm2, below which no ultrasound effect has been reported. An ultrasound user must be trained to recognize the ultrasound bioeffects; thermal and mechanical indices, and how to reduce these when they are higher than 1.0 on the monitor display; and guide the proper use of the ultrasound under the ALARA principle, because the user is responsible for ensuring ultrasound safety.

  7. 4D Imaging of Protein Aggregation in Live Cells

    PubMed Central

    Kaganovich, Daniel

    2013-01-01

    proteins that are not ubiquitinated are diverted to the IPOD, where they are actively aggregated in a protective compartment. Up until this point, the methodological paradigm of live-cell fluorescence microscopy has largely been to label proteins and track their locations in the cell at specific time-points and usually in two dimensions. As new technologies have begun to grant experimenters unprecedented access to the submicron scale in living cells, the dynamic architecture of the cytosol has come into view as a challenging new frontier for experimental characterization. We present a method for rapidly monitoring the 3D spatial distributions of multiple fluorescently labeled proteins in the yeast cytosol over time. 3D timelapse (4D imaging) is not merely a technical challenge; rather, it also facilitates a dramatic shift in the conceptual framework used to analyze cellular structure. We utilize a cytosolic folding sensor protein in live yeast to visualize distinct fates for misfolded proteins in cellular aggregation quality control, using rapid 4D fluorescent imaging. The temperature sensitive mutant of the Ubc9 protein10-12 (Ubc9ts) is extremely effective both as a sensor of cellular proteostasis, and a physiological model for tracking aggregation quality control. As with most ts proteins, Ubc9ts is fully folded and functional at permissive temperatures due to active cellular chaperones. Above 30 °C, or when the cell faces misfolding stress, Ubc9ts misfolds and follows the fate of a native globular protein that has been misfolded due to mutation, heat denaturation, or oxidative damage. By fusing it to GFP or other fluorophores, it can be tracked in 3D as it forms Stress Foci, or is directed to JUNQ or IPOD. PMID:23608881

  8. 4D ultrasound imaging - ethically justifiable in India?

    PubMed

    Indiran, Venkatraman

    2017-01-01

    Four-dimensional (4D) ultrasound (real-time volume sonography), which has been used in the West since the last decade for the determination of gender as well as for bonding and entertainment of the parents, has become widely available in India in this decade. Here, I would like to discuss the ethical issues associated with 4D ultrasonography in India. These are self-referral, the use of the technology for non-medical indications, a higher possibility of the disclosure of the foetus' gender and safety concerns.

  9. Emerging Applications of Abdominal 4D Flow MRI

    PubMed Central

    Roldán-Alzate, Alejandro; Francois, Christopher J.; Wieben, Oliver; Reeder, Scott B.

    2016-01-01

    OBJECTIVE Comprehensive assessment of abdominal hemodynamics is crucial for many clinical diagnoses but is challenged by a tremendous complexity of anatomy, normal physiology, and a wide variety of pathologic abnormalities. This article introduces 4D flow MRI as a powerful technique for noninvasive assessment of the hemodynamics of abdominal vascular territories. CONCLUSION Four-dimensional flow MRI provides clinicians with a more extensive and straightforward approach to evaluate disorders that affect blood flow in the abdomen. This review presents a series of clinical cases to illustrate the utility of 4D flow MRI in the comprehensive assessment of the abdominal circulation. PMID:27187681

  10. Atomic Data for Neutron-capture Elements I. Photoionization and Recombination Properties of Low-charge Selenium Ions

    NASA Technical Reports Server (NTRS)

    Sterling, N. C.; Witthoeft, Michael

    2011-01-01

    We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of distorted-wave photoionization (PI) cross sections. and total and partial final-state resolved radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six ions of the trans-iron element Se. These calculations were motivated by the recent detection of Se emission lines in a large number of planetary nebulae. Se is a potentially useful tracer of neutron-capture nucleosynthesis. but accurate determinations of its abundance in photoionized nebulae have been hindered by the lack of atomic data governing its ionization balance. Our calculations were carried out in intermediate coupling with semi re1ativistic radial wavefunctions. PI and recombination data were determined for levels within the ground configuration of each ion, and experimental PI cross-section measurements were used to benchmark our results. For DR, we allowed (Delta)n = 0 core excitations, which are important at photoionized plasma temperatures. We find that DR is the dominant recombination process for each of these Se ions at temperatures representative of photoionized nebulae (approx.10(exp 4) K). In order to estimate the uncertainties of these data, we compared results from three different configuration-interaction expansions for each ion, and also tested the sensitivity of the results to the radial scaling factors in the structure calculations. We find that the internal uncertainties are typically 30-50% for the direct PI cross sections and approx.10% for the computed RR rate coefficients, while those for low-temperature DR can be considerably larger (from 15-30% up to two orders of magnitude) due to the unknown energies of near-threshold autoionization resonances. These data are available at the CDS, and fitting coefficients to the total RR and DR rate coefficients are presented. The results are suitable for incorporation into photoionization codes used to numerically simulate

  11. Advances Toward Inner-Shell Photo-Ionization X-Ray Lasing at 45 (Angstrom)

    SciTech Connect

    Moon, S J; Weber, F A; Celliers, P M; Eder, D C

    2002-07-18

    The inner-shell photo-ionization (ISPI) scheme requires photon energies at least high enough to photo-ionize the K-shell. {approx}286 eV, in the case of carbon. As a consequence of the higher cross-section, the inner-shell are selectively knocked out, leaving a hole state 1s2s{sup 2}2p{sup 2} in the singly charged carbon ion. This generates a population inversion to the radiatively connected state 1s{sup 2}2s{sup 2}2p in C+, leading to gain on the 1s-2p transition at 45 {angstrom}. The resonant character of the lasing transition in the single ionization state intrinsically allows much higher quantum efficiency compared to other schemes. Competing processes that deplete the population inversion include auto-ionization, Auger decay, and in particular collisional ionization of the outer-shell electrons by electrons generated during photo-ionization. These competing processes rapidly quench the gain. Consequently, the pump method must be capable of populating the inversion at a rate faster than the competing processes. This can be achieved by an ultra-fast, high intensity laser that is able to generate an ultra-fast, bright x-ray source. With current advances in the development of high-power, ultra-short pulse lasers it is possible to realize fast x-ray sources based that can deliver powerful pulses of light in the multiple hundred terawatt regime and beyond. They will discuss in greater detail concept, target design and a series of x-ray spectroscopy investigations they have conducted in order to optimize the absorber/x-ray converter--filter package.

  12. Triggering Excimer Lasers by Photoionization from Corona Discharges

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  13. Resonant and Near-Threshold Photoionization Cross Sections of Fe{sup 14+}

    SciTech Connect

    Simon, M. C.; Crespo Lopez-Urrutia, J. R.; Beilmann, C.; Schwarz, M.; Epp, S. W.; Schmitt, B. L.; Baumann, T. M.; Bernitt, S.; Ginzel, R.; Keitel, C. H.; Klawitter, R.; Kubicek, K.; Maeckel, V.; Mokler, P. H.; Ullrich, J.; Harman, Z.; Behar, E.; Follath, R.; Reichardt, G.; Schwarzkopf, O.

    2010-10-29

    Photoionization (PI) of Fe{sup 14+} in the range from 450 to 1100 eV was measured at the BESSY II storage ring using an electron beam ion trap achieving high target-ion area densities of 10{sup 10} cm{sup -2}. Photoabsorption by this ion is observed in astrophysical spectra and plasmas, but until now cross sections and resonance energies could only be provided by calculations. We reach a resolving power E/{Delta}E of at least 6500, outstanding in the present energy range, which enables benchmarking and improving the most advanced theories for PI of ions in high charge states.

  14. Application of sampling theory in modelling of continuum processes: photoionization cross-sections of atoms

    NASA Astrophysics Data System (ADS)

    Kozlov, A.; Saha, S.; Quiney, H. M.

    2017-01-01

    We describe a method for the calculation of photoionization cross-sections using square-integrable amplitudes obtained from the diagonalization of finite-basis set representations of the electronic Hamiltonian. Three examples are considered: a model example in which the final state is a free particle, the hydrogen atom and neutral atomic sodium. The method exploits the Whittaker-Shannon-Kotel’nikov sampling theorem, which is widely used in digital signal sampling and reconstruction. The approach reproduces known data with very good accuracy and converges to the exact solution with increase of the basis set size.

  15. Ultrafast Dynamics in Postcollision Interaction after Multiple Auger Decays in Argon 1s Photoionization

    NASA Astrophysics Data System (ADS)

    Guillemin, R.; Sheinerman, S.; Bomme, C.; Journel, L.; Marin, T.; Marchenko, T.; Kushawaha, R. K.; Trcera, N.; Piancastelli, M. N.; Simon, M.

    2012-07-01

    Argon 1s photoionization followed by multiple Auger decays is investigated both experimentally, by means of photoelectron-ion coincidences, and theoretically. A strong influence of the different Auger decays on the photoelectron spectra is observed through postcollision interaction which shifts the maximum of the energy distribution and distorts the spectral shape. A good agreement between the calculated and measured spectra for selected Arn+ ions (n=1-5) allows one to estimate the widths (lifetimes) of the intermediate states for each specific decay pathway.

  16. Impact of Petrophysical Experiments on Quantitative Interpretation of 4D Seismic Data at Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Ivanova, A.; Lueth, S.

    2015-12-01

    Petrophysical investigations for CCS concern relationships between physical properties of rocks and geophysical observations for understanding behavior of injected CO2 in a geological formation. In turn 4D seismic surveying is a proven tool for CO2 monitoring. At the Ketzin pilot site (Germany) 4D seismic data have been acquired by means of a baseline (pre-injection) survey in 2005 and monitor surveys in 2009 and 2012. At Ketzin CO2 was injected in supercritical state from 2008 to 2013 in a sandstone saline aquifer (Stuttgart Formation) at a depth of about 650 m. The 4D seismic data from Ketzin reflected a pronounced effect of this injection. Seismic forward modeling using results of petrophysical experiments on two core samples fromthe target reservoir confirmed that effects of the injected CO2 on the 4D seismic data are significant. The petrophysical data were used in that modeling in order to reflect changes due to the CO2 injection in acoustic parameters of the reservoir. These petrophysical data were further used for a successful quantitative interpretation of the 4D seismic data at Ketzin. Now logs from a well (drilled in 2012) penetrating the reservoir containing information about changes in the acoustic parameters of the reservoir due to the CO2 injection are available. These logs were used to estimate impact of the petrophysical data on the qualitative and quantitative interpretation of the 4D seismic data at Ketzin. New synthetic seismograms were computed using the same software and the same wavelet as the old ones apart from the only difference and namely the changes in the input acoustic parameters would not be affected with any petrophysical experiments anymore. Now these changes were put in computing directly from the logs. In turn the new modelled changes due to the injection in the newly computed seismograms do not include any effects of the petrophysical data anymore. Key steps of the quantitative and qualitative interpretation of the 4D seismic

  17. Vibrational branching ratios in the (b2u)-1 photoionization of C6F6

    NASA Astrophysics Data System (ADS)

    Lucchese, Robert R.; Bozek, John D.; Das, Aloke; Poliakoff, E. D.

    2009-07-01

    The vibrational branching ratios in the photoionization of C6F6 leading to the CB22u state of C6F6+ are considered. Computational and experimental data are compared for the excitation of two totally symmetric modes. Resonant features at photon energies near 19 and 21 eV are found. A detailed analysis of the computed results shows that the two resonance states have different responses to changes in the C-C and C-F bond lengths. We find that the energies of both of the resonant states decrease with increasing bond lengths. In contrast to the energy positions, however, the resonant widths and the integrated oscillator strength of the resonances can either increase or decrease with increasing bond length depending on the nature and location of the resonant state and the location of the bond under consideration. With increasing C-F bond length, we find that the energy of the antibonding σ resonance localized on the ring has a decreasing resonance energy and also a decreasing lifetime. This behavior is in contrast to the usual behavior of shape resonance energies where increasing a bond length leads to decreasing resonance energies and increasing resonance lifetimes. Finally, for the first time, we examine the effect of simultaneously occurring multiple vibrations on the resonance profile for valence photoionization, and we find that the inclusion of more than a single vibrational mode substantially attenuates the strength of resonance.

  18. Vibrationally Resolved B 1s Photoionization Cross Section of BF3.

    PubMed

    Ayuso, D; Kimura, M; Kooser, K; Patanen, M; Plésiat, E; Argenti, L; Mondal, S; Travnikova, O; Sakai, K; Palacios, A; Kukk, E; Decleva, P; Ueda, K; Martín, F; Miron, C

    2015-06-11

    Photoelectron diffraction is a well-established technique for structural characterization of solids, based on the interference of the native photoelectron wave with those scattered from the neighboring atoms. For isolated systems in the gas phase similar studies suffer from orders of magnitude lower signals due to the very small sample density. Here we present a detailed study of the vibrationally resolved B 1s photoionization cross section of BF3 molecule. A combination of high-resolution photoelectron spectroscopy measurements and of state-of-the-art static-exchange and time-dependent DFT calculations shows the evolution of the photon energy dependence of the cross section from a complete trapping of the photoelectron wave (low energies) to oscillations due to photoelectron diffraction phenomena. The diffraction pattern allows one to access structural information both for the ground neutral state of the molecule and for the core-ionized cation. Due to a significant change in geometry between the ground and the B 1s(-1) core-ionized state in the BF3 molecule, several vibrational final states of the cation are populated, allowing investigation of eight different relative vibrationally resolved photoionization cross sections. Effects due to recoil induced by the photoelectron emission are also discussed.

  19. Enterococcus faecalis promotes osteoclastogenesis and semaphorin 4D expression.

    PubMed

    Wang, Shuai; Deng, Zuhui; Seneviratne, Chaminda J; Cheung, Gary S P; Jin, Lijian; Zhao, Baohong; Zhang, Chengfei

    2015-10-01

    Enterococcus faecalis is considered a major bacterial pathogen implicated in endodontic infections and contributes considerably to periapical periodontitis. This study aimed to investigate the potential mechanisms by which E. faecalis accounts for the bone destruction in periapical periodontitis in vitro. Osteoclast precursor RAW264.7 cells were treated with E. faecalis ATCC 29212 and a wild strain of E. faecalis derived clinically from an infected root canal. The results showed that, to some extent, E. faecalis induced the RAW264.7 cells to form tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclast-like cells. This pathogen markedly stimulated RAW264.7 cells to express semaphorin 4D (Sema4D), which inhibits bone formation. Once RAW264.7 cells were primed by low-dose receptor activator of nuclear factor-kappa B ligand (RANKL), E. faecalis could significantly increase the production of TRAP-positive multinucleated cells and up-regulate the expression of osteoclast-specific markers, including NFATc1, TRAP and cathepsin K. Both p38 and ERK1/2 MAPK signaling pathways were activated by E. faecalis in RANKL-primed RAW264.7 cells, and meanwhile the expression of Sema4D was highly increased. In conclusion, E. faecalis may greatly contribute to the bone resorption in periapical periodontitis by promoting RANKL-dependent osteoclastogenesis and expression of Sema4D through activation of p38 and ERK1/2 MAPK signaling pathways.

  20. The technology and performance of 4D ultrasound.

    PubMed

    Obruchkov, Sergei

    2008-01-01

    Recent developments in 4D ultrasound imaging technology allow clinicians to obtain not only rich visual information but also quantitative data that can be used for diagnosis and treatment. Some argue that the extension of 2D ultrasound is unnecessary and does not offer any benefits to diagnosis, while others argue that it is possible to better assess an abnormality in 3D than 2D. Anatomy can be reconstructed in perspectives that were never seen with conventional 2D US imaging. Advanced rendering techniques in three dimensions can be customized to be sensitive to specific pathology, thus making diagnosis more accurate. Volume and function of certain anatomical components can be measured with greater accuracy. This article reviews physical principles behind the ultrasound technology, how they are applied to advance the field of ultrasound imaging, and maybe reach its limits. Advances in ultrasound technology make 4D ultrasound imaging faster and less dependent on the operator's expertise, thus opening up more research possibilities in the fields of data processing and visualization. Currently, 4D ultrasound is extensively used in the field of obstetrics and interven-tional radiology. The goal of 4D ultrasound is to overcome the limitations posed by its predecessor technology and to be more clinically useful as an imaging tool.

  1. 2,4-Dichlorophenoxyacetic acid (2,4-D)

    Integrated Risk Information System (IRIS)

    2,4 - Dichlorophenoxyacetic acid ( 2,4 - D ) ; CASRN 94 - 75 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asses

  2. 4D flow mri post-processing strategies for neuropathologies

    NASA Astrophysics Data System (ADS)

    Schrauben, Eric Mathew

    4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a

  3. 4D MR imaging using robust internal respiratory signal

    NASA Astrophysics Data System (ADS)

    Hui, CheukKai; Wen, Zhifei; Stemkens, Bjorn; Tijssen, R. H. N.; van den Berg, C. A. T.; Hwang, Ken-Pin; Beddar, Sam

    2016-05-01

    The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D.

  4. Absolute Photoionization Cross Sections of Two Cyclic Ketones: Cyclopentanone & Cyclohexanone.

    PubMed

    Price, Chelsea; Fathi, Yasmin; Meloni, Giovanni

    2017-02-23

    Absolute photoionization cross sections for cyclopentanone and cyclohexanone, as well as partial ionization cross sections for the dissociative ionized fragments, are presented in this investigation. Experiments are performed via a multiplexed photoionization mass spectrometer utilizing VUV synchrotron radiation supplied by the Advanced Light Source of Lawrence Berkeley National Laboratory. These results allow the quantification of these species that is relevant to investigate the kinetics and combustion reactions of potential biofuels. The CBS-QB3 calculated values for the adiabatic ionization energies agree well with the experimental values and the identification of possible dissociative fragments is discussed for both systems.

  5. 4D motion animation of coronary arteries from rotational angiography

    NASA Astrophysics Data System (ADS)

    Holub, Wolfgang; Rohkohl, Christopher; Schuldhaus, Dominik; Prümmer, Marcus; Lauritsch, Günter; Hornegger, Joachim

    2011-03-01

    Time-resolved 3-D imaging of the heart is a major research topic in the medical imaging community. Recent advances in the interventional cardiac 3-D imaging from rotational angiography (C-arm CT) are now also making 4-D imaging feasible during procedures in the catheter laboratory. State-of-the-art reconstruction algorithms try to estimate the cardiac motion and utilize the motion field to enhance the reconstruction of a stable cardiac phase (diastole). The available data offers a handful of opportunities during interventional procedures, e.g. the ECG-synchronized dynamic roadmapping or the computation and analysis of functional parameters. In this paper we will demonstrate that the motion vector field (MVF) that is output by motion compensated image reconstruction algorithms is in general not directly usable for animation and motion analysis. Dependent on the algorithm different defects are investigated. A primary issue is that the MVF needs to be inverted, i.e. the wrong direction of motion is provided. A second major issue is the non-periodicity of cardiac motion. In algorithms which compute a non-periodic motion field from a single rotation the in depth motion information along viewing direction is missing, since this cannot be measured in the projections. As a result, while the MVF improves reconstruction quality, it is insufficient for motion animation and analysis. We propose an algorithm to solve both problems, i.e. inversion and missing in-depth information in a unified framework. A periodic version of the MVF is approximated. The task is formulated as a linear optimization problem where a parametric smooth motion model based on B-splines is estimated from the MVF. It is shown that the problem can be solved using a sparse QR factorization within a clinical feasible time of less than one minute. In a phantom experiment using the publicly available CAVAREV platform, the average quality of a non-periodic animation could be increased by 39% by applying the

  6. Combined convective and diffusive simulations: VERB-4D comparison with 17 March 2013 Van Allen Probes observations: VERB-4D

    SciTech Connect

    Shprits, Yuri Y.; Kellerman, Adam C.; Drozdov, Alexander Y.; Spence, Harlan E.; Reeves, Geoffrey D.; Baker, Daniel N.

    2015-11-19

    Our study focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the 17 March 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. This analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on the scale of ~100 MeV/G may resemble ring current or relativistic electron trajectories depending on the level of geomagnetic activity. Simulations with the VERB-4D code including convection, radial diffusion, and energy diffusion are presented. Sensitivity simulations including various physical processes show how different acceleration mechanisms contribute to the energization of energetic electrons at transitional energies. In particular, the range of energies where inward transport is strongly influenced by both convection and radial diffusion are studied. Our results of the 4-D simulations are compared to Van Allen Probes observations at a range of energies including source, seed, and core populations of the energetic and relativistic electrons in the inner magnetosphere.

  7. Combined convective and diffusive simulations: VERB-4D comparison with 17 March 2013 Van Allen Probes observations: VERB-4D

    DOE PAGES

    Shprits, Yuri Y.; Kellerman, Adam C.; Drozdov, Alexander Y.; ...

    2015-11-19

    Our study focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the 17 March 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. This analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on the scale of ~100 MeV/G may resemble ring current or relativistic electron trajectories depending on the level of geomagnetic activity. Simulations with the VERB-4D code including convection,more » radial diffusion, and energy diffusion are presented. Sensitivity simulations including various physical processes show how different acceleration mechanisms contribute to the energization of energetic electrons at transitional energies. In particular, the range of energies where inward transport is strongly influenced by both convection and radial diffusion are studied. Our results of the 4-D simulations are compared to Van Allen Probes observations at a range of energies including source, seed, and core populations of the energetic and relativistic electrons in the inner magnetosphere.« less

  8. Valence and L-shell photoionization of Cl-like argon using R-matrix techniques

    NASA Astrophysics Data System (ADS)

    Tyndall, N. B.; Ramsbottom, C. A.; Ballance, C. P.; Hibbert, A.

    2016-02-01

    Photoionization cross-sections are obtained using the relativistic Dirac Atomic R-matrix Codes (DARC) for all valence and L-shell energy ranges between 27 and 270 eV. A total of 557 levels arising from the dominant configurations 3s23p4, 3s3p5, 3p6, 3s23p3[3d, 4s, 4p], 3p53d, 3s23p23d2, 3s3p43d, 3s3p33d2 and 2s22p53s23p5 have been included in the target wavefunction representation of the Ar III ion, including up to 4p in the orbital basis. We also performed a smaller Breit-Pauli (BP) calculation containing the lowest 124 levels. Direct comparisons are made with previous theoretical and experimental work for both valence shell and L-shell photoionization. Excellent agreement was found for transitions involving the 2Po initial state to all allowed final states for both calculations across a range of photon energies. A number of resonant states have been identified to help analyse and explain the nature of the spectra at photon energies between 250 and 270 eV.

  9. SU-E-T-790: Validation of 4D Measurement-Guided Dose Reconstruction (MGDR) with OCTAVIUS 4D System

    SciTech Connect

    Lee, V; Leung, R; Wong, M; Law, G; Lee, K; Tung, S; Chan, M; Blanck, O

    2015-06-15

    Purpose: To validate the MGDR of OCTAVIUS 4D system (PTW, Freiburg, Germany) for quality assurance (QA) of volumetric-modulated arc radiotherapy (VMAT). Methods: 4D-MGDR measurements were divided into two parts: 1) square fields from 2×2 to 25×25 cm{sup 2} at 0°, 10° and 45° gantry, and 2) 8 VMAT plans (5 nasopharyngeal and 3 prostate) collapsed to gantry 40° in QA mode in Monaco v5.0 (Elekta, CMS, Maryland Heights, MO) were delivered on the OCTAVIUS 4D phantom with the OCTAVIUS 1500 detector plane perpendicular to either the incident beam to obtain the reconstructed dose (OCTA4D) or the 0° gantry axis to obtain the raw doses (OCTA3D) in Verisoft 6.1 (PTW, Freiburg, Germany). Raw measurements of OCTA3D were limited to < 45° gantry to avoid >0.5% variation of detector angular response with respect to 0° gantry as determined previously. Reconstructed OCTA4D and raw OCTA3D doses for all plans were compared at the same detector plane using γ criteria of 2% (local dose)/2mm and 3%/3mm criteria. Results: At gantry 0° and 10°, the γ results for all OCTA4D on detector plane coinciding with OCTA3D were over 90% at 2%/2mm except for the largest field (25×25 cm{sup 2} ) showing >88%. For square field at 45° gantry, γ passing rate is > 90% for fields smaller than 15x 15cm2 but < 80% for field size of 20 x20 cm{sup 2} upward. For VMAT, γ results showed 94% and 99% passing rate at 2%/2mm and 3%/3mm, respectively. Conclusion: OCTAVIUS 4D system has compromised accuracy in reconstructing dose away from the central beam axis, possibly due to the off-axis softening correction and errors of the percent depth dose data necessary as input for MGDR. Good results in VMAT delivery suggested that the system is relatively reliable for VMAT with small segments.

  10. Improved Respiratory Navigator Gating for Thoracic 4D flow MRI

    PubMed Central

    van Ooij, Pim; Semaan, Edouard; Schnell, Susanne; Giri, Shivraman; Stankovic, Zoran; Carr, James; Barker, Alex J.; Markl, Michael

    2016-01-01

    Background Thoracic and abdominal 4D flow MRI is typically acquired in combination with navigator respiration control which can result in highly variable scan efficiency (Seff) and thus total scan time due to inter-individual variability in breathing patterns. The aim of this study was to test the feasibility of an improved respiratory control strategy based on diaphragm navigator gating with fixed Seff, respiratory driven phase encoding, and a navigator training phase. Methods 4D flow MRI of the thoracic aorta was performed in 10 healthy subjects at 1.5T and 3T systems for the in-vivo assessment of aortic time-resolved 3D blood flow velocities. For each subject, four 4D flow scans (1: conventional navigator gating, 2–4: new implementation with fixed Seff =60%, 80% and 100%) were acquired. Data analysis included semi-quantitative evaluation of image quality of the 4D flow magnitude images (image quality grading on a four point scale), 3D segmentation of the thoracic aorta, and voxel-by-voxel comparisons of systolic 3D flow velocity vector fields between scans. Results Conventional navigator gating resulted in variable Seff = 74±13% (range = 56% – 100%) due to inter-individual variability of respiration patterns. For scans 2–4, the the new navigator implementation was able to achieve predictable total scan times with stable Seff, only depending on heart rate. Semi- and fully quantitative analysis of image quality in 4D flow magnitude images was similar for the new navigator scheme compared to conventional navigator gating. For aortic systolic 3D velocities, good agreement was found between all new navigator settings (scan 2–4) with the conventional navigator gating (scan 1) with best performance for Seff = 80% (mean difference = −0.01; limits od agreement = 0.23, Pearson’s ρ=0.89, p <0.001). No significant differences for image quality or 3D systolic velocities were found for 1.5T compared to 3T. Conclusions The findings of this study demonstrate the

  11. 4D CT sorting based on patient internal anatomy

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Cerviño, Laura I.; Jiang, Steve B.

    2009-08-01

    Respiratory motion during free-breathing computed tomography (CT) scan may cause significant errors in target definition for tumors in the thorax and upper abdomen. A four-dimensional (4D) CT technique has been widely used for treatment simulation of thoracic and abdominal cancer radiotherapy. The current 4D CT techniques require retrospective sorting of the reconstructed CT slices oversampled at the same couch position. Most sorting methods depend on external surrogates of respiratory motion recorded by extra instruments. However, respiratory signals obtained from these external surrogates may not always accurately represent the internal target motion, especially when irregular breathing patterns occur. We have proposed a new sorting method based on multiple internal anatomical features for multi-slice CT scan acquired in the cine mode. Four features are analyzed in this study, including the air content, lung area, lung density and body area. We use a measure called spatial coherence to select the optimal internal feature at each couch position and to generate the respiratory signals for 4D CT sorting. The proposed method has been evaluated for ten cancer patients (eight with thoracic cancer and two with abdominal cancer). For nine patients, the respiratory signals generated from the combined internal features are well correlated to those from external surrogates recorded by the real-time position management (RPM) system (average correlation: 0.95 ± 0.02), which is better than any individual internal measures at 95% confidence level. For these nine patients, the 4D CT images sorted by the combined internal features are almost identical to those sorted by the RPM signal. For one patient with an irregular breathing pattern, the respiratory signals given by the combined internal features do not correlate well with those from RPM (correlation: 0.68 ± 0.42). In this case, the 4D CT image sorted by our method presents fewer artifacts than that from the RPM signal. Our

  12. The Iron Project & Iron Opacity Project: Updates on Photoionization, Electron-Ion Recombination of Fe XVII and Ca XV

    NASA Astrophysics Data System (ADS)

    Eissner, W.; Nahar, S.; Pradhan, A.; Hala, H.; Zhao, L.; Bailey, J.

    2016-05-01

    We have carried out converged close coupling (CCC) calculations for photoionization of Ne-like Fe XVII and demonstrate orders-of-magnitude enhancements in cross section due to successive core excitations. Convergence criteria are: (i) inclusion of sufficient number of residual ion Fe XVIII core states and (ii) high-resolution of myriad autoionizing resonances. We discuss verification of the conventional oscillator strength sum-rule in limited energy regions for bound-free plasma opacity. We will also report preliminary results from a larger R-matrix calculations of photoionization cross sections and electron-ion recombination rates of Ca XV where Rydberg series of resonances are included for core excitations to 28 states of n=2,3 complexes in contrast to previous 7 states of n=2 complex. The new results show existence of high-peak resonances of n=3 complex and enhanced background in high energy photoionization and a corresponding enhancement in the recombination in the high temperature region. Partial support: NSF, DOE, Ohio Supercomputer Center.

  13. Brain tissue segmentation in 4D CT using voxel classification

    NASA Astrophysics Data System (ADS)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  14. A new spin foam model for 4D gravity

    NASA Astrophysics Data System (ADS)

    Freidel, Laurent; Krasnov, Kirill

    2008-06-01

    Starting from Plebanski formulation of gravity as a constrained BF theory we propose a new spin foam model for 4D Riemannian quantum gravity that generalizes the well-known Barrett Crane model and resolves the inherent to it ultra-locality problem. The BF formulation of 4D gravity possesses two sectors: gravitational and topological ones. The model presented here is shown to give a quantization of the gravitational sector, and is dual to the recently proposed spin foam model of Engle et al which, we show, corresponds to the topological sector. Our methods allow us to introduce the Immirzi parameter into the framework of spin foam quantization. We generalize some of our considerations to the Lorentzian setting and obtain a new spin foam model in that context as well.

  15. 4D embryonic cardiography using gated optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jenkins, M. W.; Rothenberg, F.; Roy, D.; Nikolski, V. P.; Hu, Z.; Watanabe, M.; Wilson, D. L.; Efimov, I. R.; Rollins, A. M.

    2006-01-01

    Simultaneous imaging of very early embryonic heart structure and function has technical limitations of spatial and temporal resolution. We have developed a gated technique using optical coherence tomography (OCT) that can rapidly image beating embryonic hearts in four-dimensions (4D), at high spatial resolution (10-15 μm), and with a depth penetration of 1.5 - 2.0 mm that is suitable for the study of early embryonic hearts. We acquired data from paced, excised, embryonic chicken and mouse hearts using gated sampling and employed image processing techniques to visualize the hearts in 4D and measure physiologic parameters such as cardiac volume, ejection fraction, and wall thickness. This technique is being developed to longitudinally investigate the physiology of intact embryonic hearts and events that lead to congenital heart defects.

  16. Intelligent Vehicle Systems: A 4D/RCS Approach

    SciTech Connect

    Madhavan, Raj

    2007-04-01

    This book presents new research on autonomous mobility capabilities and shows how technological advances can be anticipated in the coming two decades. An in-depth description is presented on the theoretical foundations and engineering approaches that enable these capabilities. Chapter 1 provides a brief introduction to the 4D/RCS reference model architecture and design methodology that has proven successful in guiding the development of autonomous mobility systems. Chapters 2 through 7 provide more detailed descriptions of research that has been conducted and algorithms that have been developed to implement the various aspects of the 4D/RCS reference model architecture and design methodology. Chapters 8 and 9 discuss applications, performance measures, and standards. Chapter 10 provides a history of Army and DARPA research in autonomous ground mobility. Chapter 11 provides a perspective on the potential future developments in autonomous mobility.

  17. Modeling the heating and atomic kinetics of a photoionized neon plasma experiment

    NASA Astrophysics Data System (ADS)

    Lockard, Tom E.

    Motivated by gas cell photoionized plasma experiments performed by our group at the Z facility of Sandia National Laboratories, we discuss in this dissertation a modeling study of the heating and ionization of the plasma for conditions characteristic of these experiments. Photoionized plasmas are non-equilibrium systems driven by a broadband x-ray radiation flux. They are commonly found in astrophysics but rarely seen in the laboratory. Several modeling tools have been employed: (1) a view-factor computer code constrained with side x-ray power and gated monochromatic image measurements of the z-pinch radiation, to model the time-history of the photon-energy resolved x-ray flux driving the photoionized plasma, (2) a Boltzmann self-consistent electron and atomic kinetics model to simulate the electron distribution function and configuration-averaged atomic kinetics, (3) a radiation-hydrodynamics code with inline non-equilibrium atomic kinetics to perform a comprehensive numerical simulation of the experiment and plasma heating, and (4) steady-state and time-dependent collisional-radiative atomic kinetics calculations with fine-structure energy level description to assess transient effects in the ionization and charge state distribution of the plasma. The results indicate that the photon-energy resolved x-ray flux impinging on the front window of the gas cell is very well approximated by a linear combination of three geometrically-diluted Planckian distributions. Knowledge of the spectral details of the x-ray drive turned out to be important for the heating and ionization of the plasma. The free electrons in the plasma thermalize quickly relative to the timescales associated with the time-history of the x-ray drive and the plasma atomic kinetics. Hence, electrons are well described by a Maxwellian energy distribution of a single temperature. This finding is important to support the application of a radiation-hydrodynamic model to simulate the experiment. It is found

  18. 4D flow cardiovascular magnetic resonance consensus statement.

    PubMed

    Dyverfeldt, Petter; Bissell, Malenka; Barker, Alex J; Bolger, Ann F; Carlhäll, Carl-Johan; Ebbers, Tino; Francios, Christopher J; Frydrychowicz, Alex; Geiger, Julia; Giese, Daniel; Hope, Michael D; Kilner, Philip J; Kozerke, Sebastian; Myerson, Saul; Neubauer, Stefan; Wieben, Oliver; Markl, Michael

    2015-08-10

    Pulsatile blood flow through the cavities of the heart and great vessels is time-varying and multidirectional. Access to all regions, phases and directions of cardiovascular flows has formerly been limited. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has enabled more comprehensive access to such flows, with typical spatial resolution of 1.5×1.5×1.5 - 3×3×3 mm(3), typical temporal resolution of 30-40 ms, and acquisition times in the order of 5 to 25 min. This consensus paper is the work of physicists, physicians and biomedical engineers, active in the development and implementation of 4D Flow CMR, who have repeatedly met to share experience and ideas. The paper aims to assist understanding of acquisition and analysis methods, and their potential clinical applications with a focus on the heart and greater vessels. We describe that 4D Flow CMR can be clinically advantageous because placement of a single acquisition volume is straightforward and enables flow through any plane across it to be calculated retrospectively and with good accuracy. We also specify research and development goals that have yet to be satisfactorily achieved. Derived flow parameters, generally needing further development or validation for clinical use, include measurements of wall shear stress, pressure difference, turbulent kinetic energy, and intracardiac flow components. The dependence of measurement accuracy on acquisition parameters is considered, as are the uses of different visualization strategies for appropriate representation of time-varying multidirectional flow fields. Finally, we offer suggestions for more consistent, user-friendly implementation of 4D Flow CMR acquisition and data handling with a view to multicenter studies and more widespread adoption of the approach in routine clinical investigations.

  19. Repairing Stevenson's step in the 4d Ising model

    NASA Astrophysics Data System (ADS)

    Balog, Janos; Niedermayer, Ferenc; Weisz, Peter

    2006-05-01

    In a recent paper Stevenson claimed that analysis of the data on the wave function renormalization constant near the critical point of the 4d Ising model is not consistent with analytical expectations. Here we present data with improved statistics and show that the results are indeed consistent with conventional wisdom once one takes into account the uncertainty of lattice artifacts in the analytical computations.

  20. Phosphodiesterase 4D gene polymorphisms in sudden sensorineural hearing loss.

    PubMed

    Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wang, Hsun-Mo; Wu, Ming-Tsang; Ho, Kuen-Yao

    2016-09-01

    The phosphodiesterase 4D (PDE4D) gene has been reported as a risk gene for ischemic stroke. The vascular factors are between the hypothesized etiologies of sudden sensorineural hearing loss (SSNHL), and this genetic effect might be attributed for its role in SSNHL. We hypothesized that genetic variants of the PDE4D gene are associated with susceptibility to SSNHL. We conducted a case-control study with 362 SSNHL cases and 209 controls. Three single nucleotide polymorphisms (SNPs) were selected. The genotypes were determined using TaqMan technology. Hardy-Weinberg equilibrium (HWE) was tested for each SNP, and genetic effects were evaluated according to three inheritance modes. We carried out sex-specific analysis to analyze the overall data. All three SNPs were in HWE. When subjects were stratified by sex, the genetic effect was only evident in females but not in males. The TT genotype of rs702553 exhibited an adjusted odds ratio (OR) of 3.83 (95 % confidence interval = 1.46-11.18) (p = 0.006) in female SSNHL. The TT genotype of SNP rs702553 was associated with female SSNHL under the recessive model (p = 0.004, OR 3.70). In multivariate logistic regression analysis, TT genotype of rs702553 was significantly associated with female SSNHL (p = 0.0043, OR 3.70). These results suggest that PDE4D gene polymorphisms influence the susceptibility for the development of SSNHL in the southern Taiwanese female population.

  1. Real-time 4D ultrasound mosaicing and visualization.

    PubMed

    Brattain, Laura J; Howe, Robert D

    2011-01-01

    Intra-cardiac 3D ultrasound imaging has enabled new minimally invasive procedures. Its narrow field of view, however, limits its efficacy in guiding beating heart procedures where geometrically complex and spatially extended moving anatomic structures are often involved. In this paper, we present a system that performs electrocardiograph gated 4D mosaicing and visualization of 3DUS volumes. Real-time operation is enabled by GPU implementation. The method is validated on phantom and porcine heart data.

  2. Electron scattering from and photoionization of open- shell atoms

    NASA Astrophysics Data System (ADS)

    Lin, Dong

    1999-09-01

    The multiconfiguration Hartree-Fock (MCHF) approach, developed by Dr. H. P. Saha et al, has been proved to be extremely successful in the past few years in reproducing experimental results at a very high level of accuracy. The research projects we are interested consist of two areas. In the first area we performed ab initio calculations on elastic scattering of electrons from open-shell sulfur atoms. In the second area, in order to understand the electronic dynamics in photoionization of atoms, we carried out accurate calculations on valence and K-shell photoionization of three-electron systems from lithium through neon for photon energies from threshold to very high energies; to further identify the autoionization resonances which were observed near threshold and to understand the dynamics, we modifies the MCHF method to include relativistic effects and performed calculation on partial photoionization cross section, resonance structure and effect of spin-orbit interaction in photoionization of atomic bromine. The calculated results obtained in each of these investigations are compared with available experimental and theoretical data and are found to be in very good agreement. The research contribution made for the fulfillment of the degree, we understand, will be a valuable addition towards a better understanding of the open-shell systems.

  3. Correlation Effects in the Photoionization of Confined Calcium and Zinc

    NASA Astrophysics Data System (ADS)

    Varma, R. Hari; Manson, S. T.

    2005-05-01

    Studies of atoms confined in an endohedral environment have aroused significant recent interest [1]. In this work, the photoionization @Ca and @Zn have been studied using the Relativistic-Random-Phase Approximation, modified to include the confinement potential. Photoionization of the 4s and 3p subshells of free and confined atomic calcium, along with the 4s, 3d, 3p and 3s subshells of free and confined atomic zinc, have been studied. The photoionization parameters of confined atoms differ significantly from those of their ``free'' counterparts. The dipole cross sections and angular distribution asymmetry parameters exhibit oscillations with energy arising from the back scattering of the escaping electron by the confining potential, i.e., ``confinement resonances'' [2]. These oscillations persist when nondipole matrix elements are also included as is reflected in the nondipole cross section and angular distribution asymmetry parameters [3]; the relative strengths of the oscillations due to back-scattering in the E1 and E2 photoionization parameters have qualitatively different profiles as a function of photon energy. [1] V. K. Dolmatov, A. S. Baltenkov, J.-P. Connerade and S. T. Manson, Radiation Phys. Chem. 70, 417 (2004). [2] M. Ya. Amusia, A. S. Baltenkov, V. K. Dolmatov, S. T. Manson and A. Z. Msezane, Phys. Rev. A 70, 023201 (2004). [3] P.C. Deshmukh, Tanima Banerjee, K. P. Sunanda and R. Hari Varma, Radiation Phys. and Chem (submitted).

  4. Dissociative photoionization of ethyl acrylate: Theoretical and experimental insights

    NASA Astrophysics Data System (ADS)

    Song, Yanlin; Chen, Jun; Ding, Mengmeng; Wei, Bin; Cao, Maoqi; Shan, Xiaobin; Zhao, Yujie; Huang, Chaoqun; Sheng, Liusi; Liu, Fuyi

    2015-08-01

    The photoionization and dissociation of ethyl acrylate have been investigated by time-of-flight mass spectrometer with tunable vacuum ultraviolet (VUV) source in the range of 9.0-20.0 eV. The photoionization mass spectrum (PIMS) for ethyl acrylate and photoionization efficiency (PIE) curves for its major fragment ions: C5H7O2+, C4H5O2+, C3H5O2+, C3H4O+, C3H3O+, C2H5O+, C2H3O+, C2H5+ and C2H4+ have been obtained. The formation channels of main fragments are predicted by Gaussian 09 program at G3B3 level and examined via their dissociation energies from experimental results. Based on our analysis, nine main dissociative photoionization channels are proposed: C5H7O2+ + H, C4H5O2+ + CH3, C3H5O2+ + C2H3, C3H4O+ + C2H4O, C3H3O+ + C2H5O, C2H5O+ + C3H3O, C2H3O+ + C3H5O, C2H5+ + C3H3O2, C2H4+ + C3H4O2, respectively. The results of this work lead to a better understanding of photochemistry in the environment.

  5. Tunable Wavelength Soft Photoionization of Ionic Liquid Vapors (Preprint)

    DTIC Science & Technology

    2009-11-18

    Physical Review Letters; 71, 1994 (1993). 29. L. Belau et al., Vacuum ultraviolet ( VUV ) photoionization of small water clusters. Journal of...Physical Chemistry A; 111, 10075 (2007). 30. L. Nugent-Glandorf et al., A laser -based instrument for the study of ultrafast chemical dynamics by soft x

  6. Protonation enhancement by dichloromethane doping in low-pressure photoionization

    NASA Astrophysics Data System (ADS)

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-12-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH2Cl2) doping. CH2Cl2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500–1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH2Cl2, meanwhile CH2Cl2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization.

  7. Protonation enhancement by dichloromethane doping in low-pressure photoionization

    PubMed Central

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-01-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH2Cl2) doping. CH2Cl2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500–1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH2Cl2, meanwhile CH2Cl2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization. PMID:27905552

  8. Protonation enhancement by dichloromethane doping in low-pressure photoionization.

    PubMed

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-12-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH2Cl2) doping. CH2Cl2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500-1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH2Cl2, meanwhile CH2Cl2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization.

  9. 2D:4D Ratio and its Implications in Medicine

    PubMed Central

    Jeevanandam, Saravanakumar

    2016-01-01

    Digit ratios, especially 2D:4D ratio, a potential proxy marker for prenatal androgen exposure shows sexual dimorphism. Existing literature and recent research show accumulating evidence on 2D:4D ratio showing correlations with various phenotypic traits in humans. Ratio of 2D:4D is found to correlate negatively to testosterone and positively to oestrogen in the foetus. Interestingly, it is constant since birth and not influenced by the adult hormone levels. Usually, males have lower ratios when compared to females. Prenatal androgen exposure and therefore, digit ratios have been reported to be associated with numerical competencies, spatial skills, handedness, cognitive abilities, academic performance, sperm counts, personalities and prevalence of obesity, migraine, eating disorders, depression, myopia, autism etc. The authors have attempted to write a brief account on the digit ratios and the dimorphism observed in various physiological, psychological and behavioural traits. Also, the authors have discussed the relevant molecular basics and the methods of measurement of digit ratios. PMID:28208851

  10. 4D-Flow validation, numerical and experimental framework

    NASA Astrophysics Data System (ADS)

    Sansom, Kurt; Liu, Haining; Canton, Gador; Aliseda, Alberto; Yuan, Chun

    2015-11-01

    This work presents a group of assessment metrics of new 4D MRI flow sequences, an imaging modality that allows for visualization of three-dimensional pulsatile flow in the cardiovascular anatomy through time-resolved three-dimensional blood velocity measurements from cardiac-cycle synchronized MRI acquisition. This is a promising tool for clinical assessment but lacks a robust validation framework. First, 4D-MRI flow in a subject's stenotic carotid bifurcation is compared with a patient-specific CFD model using two different boundary condition methods. Second, Particle Image Velocimetry in a patient-specific phantom is used as a benchmark to compare the 4D-MRI in vivo measurements and CFD simulations under the same conditions. Comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, Lagrangian particle residence time, will be discussed, with justification for their biomechanics relevance and the insights they can provide on the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new sequence to provide a quantitative assessment. A parametric analysis on the carotid bifurcation pulsatile flow conditions will be presented and an accuracy assessment provided.

  11. High-gain inner-shell photoionization laser in Cd vapor pumped by soft-x-ray radiation from a laser-produced plasma source.

    PubMed

    Silfvast, W T; Macklin, J J; Ii, O R

    1983-11-01

    A soft-x-ray-pumped inner-shell photoionization laser has been produced in Cd vapor at 4416 and 3250 A. A gain of 5.6 cm(-1) has been measured at 4416 A, and a reasonably high-energy storage of 0.2 mJ/cm(3) in the upper laser states has been obtained.

  12. Total molecular photoionization cross-sections by algebraic diagrammatic construction-Stieltjes-Lanczos method: Benchmark calculations

    NASA Astrophysics Data System (ADS)

    Ruberti, M.; Yun, R.; Gokhberg, K.; Kopelke, S.; Cederbaum, L. S.; Tarantelli, F.; Averbukh, V.

    2013-10-01

    In [K. Gokhberg, V. Vysotskiy, L. S. Cederbaum, L. Storchi, F. Tarantelli, and V. Averbukh, J. Chem. Phys. 130, 064104 (2009)] we introduced a new {L}2ab initio method for the calculation of total molecular photoionization cross-sections. The method is based on the ab initio description of discretized photoionized molecular states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. Here we establish the accuracy of the new technique by comparing the ADC-Lanczos-Stieltjes cross-sections in the valence ionization region to the experimental ones for a series of eight molecules of first row elements: HF, NH3, H2O, CO2, H2CO, CH4, C2H2, and C2H4. We find that the use of the second-order ADC technique [ADC(2)] that includes double electronic excitations leads to a substantial systematic improvement over the first-order method [ADC(1)] and to a good agreement with experiment for photon energies below 80 eV. The use of extended second-order ADC theory [ADC(2)x] leads to a smaller further improvement. Above 80 eV photon energy all three methods lead to significant deviations from the experimental values which we attribute to the use of Gaussian single-electron bases. Our calculations show that the ADC(2)-Lanczos-Stieltjes technique is a reliable and efficient ab initio tool for theoretical prediction of total molecular photo-ionization cross-sections in the valence region.

  13. Total molecular photoionization cross-sections by algebraic diagrammatic construction-Stieltjes-Lanczos method: benchmark calculations.

    PubMed

    Ruberti, M; Yun, R; Gokhberg, K; Kopelke, S; Cederbaum, L S; Tarantelli, F; Averbukh, V

    2013-10-14

    In [K. Gokhberg, V. Vysotskiy, L. S. Cederbaum, L. Storchi, F. Tarantelli, and V. Averbukh, J. Chem. Phys. 130, 064104 (2009)] we introduced a new L(2) ab initio method for the calculation of total molecular photoionization cross-sections. The method is based on the ab initio description of discretized photoionized molecular states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. Here we establish the accuracy of the new technique by comparing the ADC-Lanczos-Stieltjes cross-sections in the valence ionization region to the experimental ones for a series of eight molecules of first row elements: HF, NH3, H2O, CO2, H2CO, CH4, C2H2, and C2H4. We find that the use of the second-order ADC technique [ADC(2)] that includes double electronic excitations leads to a substantial systematic improvement over the first-order method [ADC(1)] and to a good agreement with experiment for photon energies below 80 eV. The use of extended second-order ADC theory [ADC(2)x] leads to a smaller further improvement. Above 80 eV photon energy all three methods lead to significant deviations from the experimental values which we attribute to the use of Gaussian single-electron bases. Our calculations show that the ADC(2)-Lanczos-Stieltjes technique is a reliable and efficient ab initio tool for theoretical prediction of total molecular photo-ionization cross-sections in the valence region.

  14. The fingerprints of photoionization and shock-ionization in two CSS sources

    NASA Astrophysics Data System (ADS)

    Reynaldi, Victoria; Feinstein, Carlos

    2016-01-01

    We investigate the ionization state of the extended emission-line regions (EELRs) around two compact steep-spectrum (CSS) radio galaxies, 3C 268.3 and 3C 303.1, in order to identify the contribution of photoionization and shock-ionization. We perform a new spectroscopical (long-slit) analysis with GMOS/Gemini with the slit oriented in the radio-jet direction, where outflows are known to exist. The [Ne V] λ3426 emission is the most interesting feature of the spectra and the one key to breaking the degeneracy between the models: since this emission-line is more extended than He II, it challenges the ionization structure proposed by any photoionization model, also its intensity relative to H β does not behave as expected with respect to the ionization parameter U in the same scenario. On the contrary, when it is compared to the intensity of [O II] λ3727/H β and all these results are joined, the whole scenario is plausible to be explained as emission coming from the hot, compressed, shocked gas in shock-ionization models. Although the model fitting is strongly sensitive to the chosen line ratios, it argues for the presence of external and strong ionizing fields, such as the precursor field created by the shock or/and the AGN radiation field. In this paper, we show how AGN photoionization and shock-ionization triggered by jet-cloud interaction work together in these EELRs in order to explain the observed trends and line-ratio behaviours in a kinematically acceptable way.

  15. Photodissociation and photoionization of organosulfur radicals

    SciTech Connect

    Hsu, Chia-Wei

    1994-05-27

    The dynamics of S(3P2,1,0, 1D2) production from the 193 nm photodissociation of CH3SCH3, H2S and CH3SH have been studied using 2 + 1 resonance-enhanced multiphoton ionization (REMPI) techniques. The 193 nm photodissociation cross sections for the formation of S from CH3S and HS initially prepared in the photodissociation of CH3SCH3 and H2S are estimated to be 1 x 10-18 and 1.1 x 10-18 cm2, respectively. The dominant product from CH3S is S(1D), while that from SH is S(3P). Possible potential energy surfaces involved in the 193 nm photodissociation of CH3S($\\tilde{X}$) and SH(X) have been also examined. Threshold photoelectron (PE) spectra for SH and CH3S formed in the ultraviolet photodissociation of H2S and CH3SH, respectively, have been measured using the nonresonant two-photon pulsed field ionization (N2P-PFI) technique. The rotationally resolved N2P-PFI-PE spectrum obtained for SH indicates that photoionization dynamics favors the rotational angular momentum change ΔN < 0 with the ΔN value up to -3, an observation similar to that found in the PFI-PE spectra of OH (OD) and NO. The ionization energies for SH(X2Π3,2) and CH3S($\\tilde{X}$2E3/2) are determined to be 84,057.5 ± 3 cm-1 and 74,726 ± 8 cm-1 respectively. The spin-orbit splittings for SH(X2Π3/2, 1/2) and CH3S($\\tilde{X}$2E3/2, 1/2) are found to be 377 ± 2 and 257 ± 5 cm-1, respectively, in agreement with previous measurements. The C-S stretching frequency for CH3S+($\\tilde{X}$3A2) is 733 ± 5 cm-1. This study illustrates that the PFI-PE detection method can be a

  16. Interference in the molecular photoionization and Young's double-slit experiment

    NASA Astrophysics Data System (ADS)

    Baltenkov, A. S.; Becker, U.; Manson, S. T.; Msezane, A. Z.

    2012-02-01

    The photoabsorption by an electron bound by a two-centre potential has been investigated within the framework of the zero-range potential model. Expressions for total photoabsorption cross sections and for the photoelectron angular distributions have been derived for fixed-in-space and randomly oriented targets. The analytical formulae for gerade and ungerade molecular states have been used to analyse separately the molecular effects due to the two-centre ground state of quasi-molecule and diffraction effects that are connected with the spherical waves in the molecular continuum. It is shown that the interference of these waves significantly influences the magnitude of the cross sections near threshold but does not significantly distort the shape of the photoelectron angular distribution and it depends rather weakly on the character of the forces acting between the electron and molecular residue: Coulomb forces for neutral molecular photoionization or the short-range forces in the case of photodetachment of molecular negative ions. It is shown that despite the fact that the photoionization of diatomic molecules is reminiscent of Young's double-slit experiment, the similarity between these processes has been grossly exaggerated. This is confirmed by comparing the results of the classical interference of an electron scattered by two spatially separated centres with molecular photoelectron angular distributions.

  17. R-matrix calculations of the photoionization cross-sections of Ti2+

    NASA Astrophysics Data System (ADS)

    Gao, J. W.; Han, X. Y.; Wang, J. G.; Li, J. M.

    2015-11-01

    The photoionization cross-sections of Ti2+ in the ground state ([Ne]3s23p63d2 3Fe) are calculated using both non-relativistic (LS-coupling) and relativistic (Breit-Pauli) R-matrix methods for the photon energy from 27.49 eV (I.P.) to 48.00 eV. The results show that, in this energy range, the photoionization cross-sections are dominated by resonances 3p53d3, 3p53d24d and 3p53d24s, which are labelled by LS-terms by combining with the multiconfiguration Dirac-Fock calculations. Moreover, from the fractional parentage coefficients and the percentages (the square of the configuration interaction expansion coefficients) of the LS-terms involved in the final resonance states, the relative strength of the resonances have been explained qualitatively in a general way. The present results should be of great help in the modelling and diagnostic of astrophysical plasmas as well as laboratory plasmas.

  18. Photoionization of ground and excited levels of P II

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2017-01-01

    Photoionization cross section (σPI) of P II, (hν + P II → P III + e), from ground and a large number of excited levels are presented. The study includes the resonant structures and the characteristics of the background in photoionization cross sections. The present calculations were carried out in the Breit-Pauli R-matrix (BPRM) method that includes relativistic effects. The autoionizing resonances are delineated with a fine energy mesh to observe the fine structure effects. A singular resonance, formed by the coupling of channels in fine structure but not allowed in LS coupling, is seen at the ionization threshold of photoionization for the ground and many excited levels. The background cross section is seen enhanced compared to smooth decay for the excited levels. Examples are presented to illustrate the enhanced background cross sections at the energies of the core levels, 4P3/2 and 2D3/2, that are allowed for electric dipole transitions by the core ground level 2 P1/2o. In addition strong Seaton or photo-excitation-of-core (PEC) resonances are found in the photoionization of single valence electron excited levels. Calculations used a close coupling wave function expansion that included 18 fine structure levels of core P III from configurations 3s23p, 3s3p2, 3s23d, 3s24s, 3s24p and 3p3. Photoionization cross sections are presented for all 475 fine structure levels of P II found with n ≤ 10 and l ≤ 9. The present results will provide high precision parameters of various applications involving this less studied ion.

  19. Inner-shell photoionization and core-hole decay of Xe and XeF{sub 2}

    SciTech Connect

    Southworth, Stephen H.; Picón, Antonio; Lehmann, C. Stefan; Wehlitz, Ralf; Cheng, Lan; Stanton, John F.

    2015-06-14

    Photoionization cross sections and partial ion yields of Xe and XeF{sub 2} from Xe 3d{sub 5/2}, Xe 3d{sub 3/2}, and F 1s subshells in the 660–740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF{sub 2} cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F{sup +} and F{sup 2+} ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe{sup +} and F{sup +} ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.

  20. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Bellili, A.; Schwell, M.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Mogren Al-Mogren, M.; Guillemin, J.-C.; Poisson, L.; Hochlaf, M.

    2014-10-01

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  1. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: theory and experiment.

    PubMed

    Bellili, A; Schwell, M; Bénilan, Y; Fray, N; Gazeau, M-C; Mogren Al-Mogren, M; Guillemin, J-C; Poisson, L; Hochlaf, M

    2014-10-07

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  2. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    SciTech Connect

    Bellili, A.; Hochlaf, M. E-mail: martin.schwell@lisa.u-pec.fr; Schwell, M. E-mail: martin.schwell@lisa.u-pec.fr; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Mogren Al-Mogren, M.; Guillemin, J.-C.; Poisson, L.

    2014-10-07

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  3. 4D seismic data acquisition method during coal mining

    NASA Astrophysics Data System (ADS)

    Du, Wen-Feng; Peng, Su-Ping

    2014-06-01

    In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions.

  4. Digit ratio (2D:4D), salivary testosterone, and handedness.

    PubMed

    Beaton, Alan A; Rudling, Nick; Kissling, Christian; Taurines, Regine; Thome, Johannes

    2011-03-01

    The length of the index finger relative to that of the ring finger, the 2D:4D ratio, has been taken to be a marker of the amount of testosterone (T) that was present in the foetal environment (Manning, Scutt, Wilson, & Lewis-Jones, 1998). It has also been suggested (Geschwind & Galaburda, 1987) that elevated levels of foetal T are associated with left-handedness and that adult levels of circulating T might relate to foetal levels (Jamison, Meier, & Campbell, 1993). We used multiple regression analyses to investigate whether there is any relationship between either left or right hand 2D:4D ratio and handedness. We also examined whether adult levels of salivary T (or cortisol, used as a control hormone) predict digit ratio and/or handedness. Although the 2D:4D ratio of neither the left nor the right hand was related to handedness, the difference between the digit ratios of the right and left hands, D(R-L), was a significant predictor of handedness and of the performance difference between the hands on a peg-moving task, supporting previous findings (Manning & Peters, 2009; Manning et al., 1998; Manning, Trivers, Thornhill, & Singh, 2000; Stoyanov, Marinov, & Pashalieva, 2009). Adult circulating T levels did not predict the digit ratio of the left or right hand; nor was there a significant relationship between concentrations of salivary T (or cortisol) and either hand preference or asymmetry in manual skill. We suggest that the association between D(R-L) and hand preference arises because D(R-L) is a correlate of sensitivity to T in the developing foetus.

  5. CMT4D (NDRG1 mutation): genotype-phenotype correlations.

    PubMed

    Ricard, Emilie; Mathis, Stéphane; Magdelaine, Corinne; Delisle, Marie-Bernadette; Magy, Laurent; Funalot, Benoît; Vallat, Jean-Michel

    2013-09-01

    Charcot-Marie-Tooth (CMT) disease is a heterogeneous condition with a large number of clinical, electrophysiological and pathological phenotypes. More than 40 genes are involved. We report a child of gypsy origin with an autosomal recessive demyelinating phenotype. Clinical data, familial history, and electrophysiological studies were in favor of a CMT4 sub-type. The characteristic N-Myc downstream-regulated gene 1 (NDRG1) mutation responsible for this CMT4D phenotype was confirmed: p.R148X. The exact molecular function of the NDRG1 protein has yet to be elucidated.

  6. 4D micro-CT using fast prospective gating

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  7. 4D micro-CT using fast prospective gating.

    PubMed

    Guo, Xiaolian; Johnston, Samuel M; Qi, Yi; Johnson, G Allan; Badea, Cristian T

    2012-01-07

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml(-1) delivered via a tail vein catheter in a dose of 0.01 ml g(-1) body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 μm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  8. 4D Flow MRI in Neuroradiology: Techniques and Applications.

    PubMed

    Pereira, Vitor Mendes; Delattre, Benedicte; Brina, Olivier; Bouillot, Pierre; Vargas, Maria Isabel

    2016-04-01

    Assessment of the intracranial flow is important for the understanding and management of cerebral vascular diseases. From brain aneurysms and arteriovenous malformations lesions to intracranial and cervical stenosis, the appraisal of the blood flow can be crucial and influence positively on patients' management. The determination of the intracranial hemodynamics and the collateral pattern seems to play to a major role in the management of these lesions. 4D flow magnetic resonance imaging is a noninvasive phase contrast derived method that has been developed and applied in neurovascular diseases. It has a great potential if followed by further technical improvements and comprehensive and systematic clinical studies.

  9. Actively triggered 4d cone-beam CT acquisition

    SciTech Connect

    Fast, Martin F.; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  10. Realistic CT simulation using the 4D XCAT phantom.

    PubMed

    Segars, W P; Mahesh, M; Beck, T J; Frey, E C; Tsui, B M W

    2008-08-01

    The authors develop a unique CT simulation tool based on the 4D extended cardiac-torso (XCAT) phantom, a whole-body computer model of the human anatomy and physiology based on NURBS surfaces. Unlike current phantoms in CT based on simple mathematical primitives, the 4D XCAT provides an accurate representation of the complex human anatomy and has the advantage, due to its design, that its organ shapes can be changed to realistically model anatomical variations and patient motion. A disadvantage to the NURBS basis of the XCAT, however, is that the mathematical complexity of the surfaces makes the calculation of line integrals through the phantom difficult. They have to be calculated using iterative procedures; therefore, the calculation of CT projections is much slower than for simpler mathematical phantoms. To overcome this limitation, the authors used efficient ray tracing techniques from computer graphics, to develop a fast analytic projection algorithm to accurately calculate CT projections directly from the surface definition of the XCAT phantom given parameters defining the CT scanner and geometry. Using this tool, realistic high-resolution 3D and 4D projection images can be simulated and reconstructed from the XCAT within a reasonable amount of time. In comparison with other simulators with geometrically defined organs, the XCAT-based algorithm was found to be only three times slower in generating a projection data set of the same anatomical structures using a single 3.2 GHz processor. To overcome this decrease in speed would, therefore, only require running the projection algorithm in parallel over three processors. With the ever decreasing cost of computers and the rise of faster processors and multi-processor systems and clusters, this slowdown is basically inconsequential, especially given the vast improvement the XCAT offers in terms of realism and the ability to generate 3D and 4D data from anatomically diverse patients. As such, the authors conclude

  11. Oblique sounding using the DPS-4D stations in Europe

    NASA Astrophysics Data System (ADS)

    Mosna, Zbysek; Kouba, Daniel; Koucka Knizova, Petra; Arikan, Feza; Arikan, Orhan; Gok, Gokhan; Rejfek, Lubos

    2016-07-01

    The DPS-4D Digisondes are capable of detection of echoes from neighbouring European stations. Currently, a campaign with high-temporal resolution of 5 min is being run. Further, ionograms from regular vertical sounding with 15 min resolution provide us with oblique reflections together with vertical reflections. We analyzed profiles of electron concentration and basic ionospheric parameters derived from the ionograms. We compared results derived from reflections from the ionosphere above the stations (vertical sounding) with information derived from oblique reflections between the stations. This study is supported by the Joint TUBITAK 114E092 and AS CR 14/001 projects.

  12. Founding Gravitation in 4D Euclidean Space-Time Geometry

    SciTech Connect

    Winkler, Franz-Guenter

    2010-11-24

    The Euclidean interpretation of special relativity which has been suggested by the author is a formulation of special relativity in ordinary 4D Euclidean space-time geometry. The natural and geometrically intuitive generalization of this view involves variations of the speed of light (depending on location and direction) and a Euclidean principle of general covariance. In this article, a gravitation model by Jan Broekaert, which implements a view of relativity theory in the spirit of Lorentz and Poincare, is reconstructed and shown to fulfill the principles of the Euclidean approach after an appropriate reinterpretation.

  13. Resolution enhancement of lung 4D-CT via group-sparsity

    SciTech Connect

    Bhavsar, Arnav; Wu, Guorong; Shen, Dinggang; Lian, Jun

    2013-12-15

    quantitatively, the ability of their approach to achieve more accurate and better localized results over bicubic interpolation as well as a related state-of-the-art approach. The authors also show results on some datasets with tumor, to further emphasize the clinical importance of their method.Conclusions: The authors have proposed to improve the superior-inferior resolution of 4D-CT by estimating intermediate slices. The authors’ approach exploits neighboring constraints in the group-sparsity framework, toward the goal of achieving better localization and noise robustness. The authors’ results are encouraging, and positively demonstrate the role of group-sparsity for 4D-CT resolution enhancement.

  14. Comment on "Test of the Stark-effect theory using photoionization microscopy"

    NASA Astrophysics Data System (ADS)

    Giannakeas, P.; Robicheaux, F.; Greene, Chris H.

    2015-06-01

    An article by Zhao et al. [Phys. Rev. A 86, 053413 (2012), 10.1103/PhysRevA.86.053413] tests the local frame transformation (LFT) theory by comparing it with benchmark coupled-channel calculations. The system under consideration is an alkali-metal atom that is two-photon ionized in the presence of a static external electric field. Zhao et al. state that the differential cross sections computed in the LFT theory disagree with their supposedly more accurate coupled-channel calculations. They went on to diagnose the discrepancy and claimed that it originates in an inaccurate correspondence between the irregular functions in spherical and parabolic-cylindrical coordinates, a correspondence that lies at the heart of LFT theory. We have repeated the same tests and find that our calculations rule out the discrepancies that were claimed in Zhao et al. [Phys. Rev. A 86, 053413 (2012), 10.1103/PhysRevA.86.053413] to exist between the LFT approximation and the exact calculations. This Comment thus helps to clarify the accuracy of the Harmin-Fano theory and demonstrates that it is in fact remarkably accurate not only for the total photoionization cross section in the Stark effect, but also for the differential cross section in photoionization microscopy.

  15. VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers.

    PubMed

    Tia, Maurice; Cunha de Miranda, Barbara; Daly, Steven; Gaie-Levrel, François; Garcia, Gustavo A; Nahon, Laurent; Powis, Ivan

    2014-04-17

    The valence shell photoionization of the simplest proteinaceous chiral amino acid, alanine, is investigated over the vacuum ultraviolet region from its ionization threshold up to 18 eV. Tunable and variable polarization synchrotron radiation was coupled to a double imaging photoelectron/photoion coincidence (i(2)PEPICO) spectrometer to produce mass-selected threshold photoelectron spectra and derive the state-selected fragmentation channels. The photoelectron circular dichroism (PECD), an orbital-sensitive, conformer-dependent chiroptical effect, was also recorded at various photon energies and compared to continuum multiple scattering calculations. Two complementary vaporization methods-aerosol thermodesorption and a resistively heated sample oven coupled to an adiabatic expansion-were applied to promote pure enantiomers of alanine into the gas phase, yielding neutral alanine with different internal energy distributions. A comparison of the photoelectron spectroscopy, fragmentation, and dichroism measured for each of the vaporization methods was rationalized in terms of internal energy and conformer populations and supported by theoretical calculations. The analytical potential of the so-called PECD-PICO detection technique-where the electron spectroscopy and circular dichroism can be obtained as a function of mass and ion translational energy-is underlined and applied to characterize the origin of the various species found in the experimental mass spectra. Finally, the PECD findings are discussed within an astrochemical context, and possible implications regarding the origin of biomolecular asymmetry are identified.

  16. Design of laboratory experiments to study photoionization fronts driven by thermal sources

    DOE PAGES

    Drake, R. P.; Hazak, G.; Keiter, P. A.; ...

    2016-12-20

    This study analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an x-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a sourcemore » temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.« less

  17. Design of laboratory experiments to study photoionization fronts driven by thermal sources

    SciTech Connect

    Drake, R. P.; Hazak, G.; Keiter, P. A.; Davis, J. S.; Patterson, C. R.; Frank, A.; Blackman, E. G.; Busquet, Michel

    2016-12-20

    This study analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an x-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a source temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.

  18. Dissociative photoionization of β-pinene: an experimental and theoretical study.

    PubMed

    Sheng, Liusi; Cao, Maoqi; Chen, Jun; Fang, Wenzhen; Li, Yuquan; Ge, Shaolin; Shan, Xiaobin; Liu, Fuyi; Zhao, Yujie; Zhenya Wang, Zhenya Wang

    2014-01-01

    We investigated the photoionization and dissociation photoionization of the β-pinene molecular using time-of-flight mass spectrometry with a tunable vacuum ultraviolet source in the region from 8.00eV to 15.50eV. The experimental ionization energy (IE) value is 8.60eV using electron impact as the ionization source which is not in good agreement with theoretical value (8.41 eV) with a G3MP2 method. We obtained the accurate IE of β-pinene (8.45 ± 0.03eV) derived from the efficiency spectrum which is in good agreement with the theoretical value (8.38eV) of the CBS-QB3 method. We elucidated the dissociation pathways of primary fragment ions from the β-pinene cation on the basis of experimental observations in combination with theoretical calculations. Most of the dissociation pathways occur via a rearrangement reaction prior to dissociation. We also determined the structures of the transition states and intermediates for those isomerization processes.

  19. Parametrizations and dynamical analysis of angle-integrated cross sections for double photoionization including nondipole effects

    SciTech Connect

    Istomin, Andrei Y.; Starace, Anthony F.; Manakov, N. L.; Meremianin, A. V.; Kheifets, A. S.; Bray, Igor

    2005-11-15

    Similarly to differential cross sections for one-electron photoionization, the doubly differential cross section for double photoionization (DPI) may be conveniently described by four parameters: the singly differential (with respect to energy sharing) cross section ({sigma}{sub 0}), the dipole asymmetry parameter ({beta}), and two nondipole asymmetry parameters ({gamma} and {delta}). Here we derive two model-independent representations for these parameters for DPI from a {sup 1}S{sub 0} atomic bound state: (i) in terms of one-dimensional integrals of the polarization-invariant DPI amplitudes and (ii) in terms of the exact two-electron reduced matrix elements. For DPI of He at excess energies, E{sub exc}, of 100 eV, 450 eV, and 1 keV, we present numerical results for the asymmetry parameters within the framework of the convergent close-coupling theory and compare them with results of lowest-order (in the interelectron interaction) perturbation theory (LOPT). The results for E{sub exc}=1 keV exhibit a nondipole asymmetry that is large enough to be easily measured experimentally. We find excellent agreement between our LOPT results and other theoretical predictions and experimental data for total cross sections and ratios of double to single ionization cross sections for K-shell DPI from several multielectron atoms.

  20. Photoionization of phenothiazine: EPR detection of reactions of the polarized solvated electron

    SciTech Connect

    Turro, N.J.; Khudyakov, I.V.; Willigen, H. van

    1995-12-13

    Photoionization of phenothiazine (PTH) and reactions of the solvated electron with some electron acceptors were studied with steady state and time-resolved EPR and transient optical absorption techniques. Time-resolved EPR spectra from the phenothiazine cation radical (PTH{sup .+}) and hydrated electron (e{sub aq}{sup -}) formed in sodium 1-dodecylsulfate (SDS) micellar solution were observed in emission. By contrast, PTH{sup .+} formed by photoionization of PTH in alcohols gives absorptive EPR signals. The spin polarization carried by the hydrated electron in SDS solutions can be transferred effectively to a stable nitroxyl free radical 3-carboxy-2,2,5, 5-tetramethyl-1-pyrrolidinyloxyl (N{sup .-}) present in the bulk aqueous phase. EPR and flash photolysis measurements show that this electron spin polarization transfer process proceeds with a rate which is approximately five times faster than the chemical reaction between e{sub aq}{sup -} and N{sup .-}. The marked difference in rates is attributed to differences in spin-statistical factors and difference in reaction radii for spin exchange compared to reaction. In alcohol solutions of PTH and a nitroxyl stable radical (2,2,6, 6-tetramethylpyperidin-1-oxyl, TEMPO), excitation of PTH also results in emissive polarization of the EPR spectrum of the stable radical. 46 refs., 12 figs.

  1. Exploration of 4D MRI blood flow using stylistic visualization.

    PubMed

    van Pelt, Roy; Oliván Bescós, Javier; Breeuwer, Marcel; Clough, Rachel E; Gröller, M Eduard; ter Haar Romenij, Bart; Vilanova, Anna

    2010-01-01

    Insight into the dynamics of blood-flow considerably improves the understanding of the complex cardiovascular system and its pathologies. Advances in MRI technology enable acquisition of 4D blood-flow data, providing quantitative blood-flow velocities over time. The currently typical slice-by-slice analysis requires a full mental reconstruction of the unsteady blood-flow field, which is a tedious and highly challenging task, even for skilled physicians. We endeavor to alleviate this task by means of comprehensive visualization and interaction techniques. In this paper we present a framework for pre-clinical cardiovascular research, providing tools to both interactively explore the 4D blood-flow data and depict the essential blood-flow characteristics. The framework encompasses a variety of visualization styles, comprising illustrative techniques as well as improved methods from the established field of flow visualization. Each of the incorporated styles, including exploded planar reformats, flow-direction highlights, and arrow-trails, locally captures the blood-flow dynamics and may be initiated by an interactively probed vessel cross-section. Additionally, we present the results of an evaluation with domain experts, measuring the value of each of the visualization styles and related rendering parameters.

  2. 4D Simulation of Explosive Eruption Dynamics at Vesuvius

    NASA Astrophysics Data System (ADS)

    Neri, A.; Esposti Ongaro, T.; Menconi, G.; de'Michieli Vitturi, M.; Cavazzoni, C.; Erbacci, G.; Baxter, P. J.

    2006-12-01

    We applied, using a supercomputer, a new simulation model based on fundamental transport laws to describe the 4D (3D spatial co-ordinates plus time) multiphase flow dynamics of explosive eruptions. The model solves the fundamental transport equations for a multiphase mixture formed by a continuous multi-component gas phase and n solid particulate phases representative of magma fragments (such as ash, crystals, and lapilli). Numerical simulations describe the collapse of the volcanic eruption column and the propagation of pyroclastic density currents, for selected medium scale (sub-Plinian) eruptive scenarios at Vesuvius, Italy. The study shows that 4D multiphase numerical models can illuminate the non-intuitive and internal dynamics of explosive eruptions that cannot otherwise be studied by direct observation or using previous models. In particular, simulations provide crucial insights into the effects of the generation mechanism of the flows - partial collapse vs boiling-over - on their hazard potential, the complex dynamics of the collapsing column, and the influence of Mount Somma on the propagation of PDCs into the circum-Vesuvian area, one of the world's most hazardous volcanic settings.

  3. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    SciTech Connect

    Phifer, M.

    2014-11-17

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  4. Atlas construction for dynamic (4D) PET using diffeomorphic transformations.

    PubMed

    Bieth, Marie; Lombaert, Hervé; Reader, Andrew J; Siddiqi, Kaleem

    2013-01-01

    A novel dynamic (4D) PET to PET image registration procedure is proposed and applied to multiple PET scans acquired with the high resolution research tomograph (HRRT), the highest resolution human brain PET scanner available in the world. By extending the recent diffeomorphic log-demons (DLD) method and applying it to multiple dynamic [11C]raclopride scans from the HRRT, an important step towards construction of a PET atlas of unprecedented quality for [11C]raclopride imaging of the human brain has been achieved. Accounting for the temporal dimension in PET data improves registration accuracy when compared to registration of 3D to 3D time-averaged PET images. The DLD approach was chosen for its ease in providing both an intensity and shape template, through iterative sequential pair-wise registrations with fast convergence. The proposed method is applicable to any PET radiotracer, providing 4D atlases with useful applications in high accuracy PET data simulations and automated PET image analysis.

  5. 4D Dynamic Required Navigation Performance Final Report

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  6. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image.

    PubMed

    Wang, Mengjiao; Sharp, Gregory C; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-05-07

    Tumor motion caused by respiration is an important issue in image-guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and a streak-free 3DCBCT volume are combined to improve the image quality of the digitally reconstructed radiographs (DRRs). Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and one-minute and two-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. The diaphragm matching accuracy was 1.88 ± 1.35 mm in the isocenter plane and the 2D tumor tracking accuracy was 2.13 ± 1.26 mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purposes.

  7. Multiconfigurational Hartree-Fock close-coupling ansatz: Application to the argon photoionization cross section and delays

    NASA Astrophysics Data System (ADS)

    Carette, T.; Dahlström, J. M.; Argenti, L.; Lindroth, E.

    2013-02-01

    We present a robust, ab initio method for addressing atom-light interactions and apply it to photoionization of argon. We use a close-coupling ansatz constructed on a multiconfigurational Hartree-Fock description of localized states and B-spline expansions of the electron radial wave functions. In this implementation, the general many-electron problem can be tackled thanks to the use of the atsp2k libraries [C. Froese Fischer , Comput. Phys. Commun.CPHCBZ0010-465510.1016/j.cpc.2007.01.006 176, 559 (2007)]. In the present contribution, we combine this method with exterior complex scaling, thereby allowing for the computation of the complex partial amplitudes that encode the whole dynamics of the photoionization process. The method is validated on the 3s3p6np series of resonances converging to the 3s extraction. Then, it is used for computing the energy dependent differential atomic delay between 3p and 3s photoemission, and agreement is found with the measurements of Guénot [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.85.053424 85, 053424 (2012)]. The effect of the presence of resonances in the one-photon spectrum on photoionization delay measurements is studied.

  8. Criminality and the 2D:4D ratio: testing the prenatal androgen hypothesis.

    PubMed

    Ellis, Lee; Hoskin, Anthony W

    2015-03-01

    A decade old theory hypothesizes that brain exposure to androgens promotes involvement in criminal behavior. General support for this hypothesis has been provided by studies of postpubertal circulating levels of testosterone, at least among males. However, the theory also predicts that for both genders, prenatal androgens will be positively correlated with persistent offending, an idea for which no evidence currently exists. The present study used an indirect measure of prenatal androgen exposure-the relative length of the second and fourth fingers of the right hand (r2D:4D)-to test the hypothesis that elevated prenatal androgens promote criminal tendencies later in life for males and females. Questionnaires were administered to 2,059 college students in Malaysia and 1,291 college students in the United States. Respondents reported their r2D:4D relative finger lengths along with involvement in 13 categories of delinquent and criminal acts. Statistically significant correlations between the commission of most types of offenses and r2D:4D ratios were found for males and females even after controlling for age. It is concluded that high exposure to androgens during prenatal development contributes to most forms of offending following the onset of puberty.

  9. Photoionization of Endohedral Atoms: Collective, Reflective and Collateral Emissions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Himadri S.; McCune, Matthew A.; Madjet, Mohamed E.; Hopper, Dale E.; Manson, Steven T.

    2009-12-01

    The photoionization properties of a fullerene-confined atom differ dramatically from that of an isolated atom. In the low energy region, where the fullerene plasmons are active, the electrons of the confined atom emerge through a collective channel carrying a significant chunk of plasmon with it. The photoelectron angular distribution of the confined atom however shows far lesser impact of the effect. At higher energies, the interference between two single-electron ionization channels, one directly from the atom and another reflected off the fullerene cage, producuces oscillatory cross sections. But for the outermost atomic level, which transfers some electrons to the cage, oscillations are further modulated by the collateral emission from the part of the atomic charge density transferred to the cage. These various modes of emissions are studied for the photoionization of Ar endohedrally confined in C60.

  10. Vibrationally resolved shape resonant photoionization of SiF4

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep; Poliakoff, E. D.; Rosenberg, R. A.

    1992-01-01

    We have measured vibrationally resolved fluorescence from SiF+4(D˜ 2A1) photoions to determine the vibrational branching ratio σ[v=(1,0,0,0)]/σ[v=(0,0,0,0)] in the excitation energy range 22photoionization are discussed.

  11. Fluorescence probes of spectroscopic and dynamical aspects of molecular photoionization

    NASA Astrophysics Data System (ADS)

    Poliakoff, Erwin D.

    1988-11-01

    Studies were made of vibrationally resolved aspects of shape resonant excitation in the photoionization of N(2)0. This experiment was performed by generating dispersed fluorescence spectra from electronically excited photoions. These results are the first vibrationally resolved results on a polyatomic shape resonance. In vibrationally resolved measurements, different internuclear configurations are probed by sampling alternative vibrational levels of the ion. As a result, the continuum electron behavior can be mapped out most clearly, and the qualitative aspects of the electron ejection can be understood clearly. A central motivation for studying polyatomic shape resonances is that alternative vibrational modes may be explored, revealing facets that are nonexistent for diatomic systems, which are the only systems that have been characterized previously.

  12. Time-Dependent Photoionization of Gas Outflows in AGN

    NASA Astrophysics Data System (ADS)

    Elhoussieny, Ehab E.; Bautista, M.; Garcia, J.; Kallman, T. R.

    2013-01-01

    Gas outflows are fundamental components of Active Galactic Nuclei (AGN) activity. Time-variability of ionizing radiation, which is characteristic of AGN in various different time scales, may produce non-equilibrium photoionization conditions over a significant fraction of the flow and yields supersonically moving cooling/heating fronts. These fast fronts create pressure imbalances that can only be resolved by fragmentation of the flow and acceleration of such fragments. This mechanism can explain the kinematic structure of low ionization BAL systems (FeLoBAL). This mechanism may also have significant effects on other types of outflows given the wide range of variability time scales in AGN. We will study these effects in detail by constructing time-dependent photoionization models of the outflows and incorporating these models into radiative-hydrodynamic simulations.

  13. A non-invasive online photoionization spectrometer for FLASH2

    PubMed Central

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon–matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer. PMID:26698040

  14. Double-photoionization of helium including quadrupole radiation effects

    SciTech Connect

    Colgan, James; Ludlow, J A; Lee, Teck - Ghee; Pindzola, M S; Robicheaux, F

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  15. Spatially resolved photoionization of ultracold atoms on an atom chip

    SciTech Connect

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-06-15

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 {mu}K in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 {mu}m, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip.

  16. Photoionization of Endohedral Atoms: Collective, Reflective and Collateral Emissions

    SciTech Connect

    Chakraborty, Himadri S.; McCune, Matthew A.; Hopper, Dale E.; Madjet, Mohamed E.; Manson, Steven T.

    2009-12-03

    The photoionization properties of a fullerene-confined atom differ dramatically from that of an isolated atom. In the low energy region, where the fullerene plasmons are active, the electrons of the confined atom emerge through a collective channel carrying a significant chunk of plasmon with it. The photoelectron angular distribution of the confined atom however shows far lesser impact of the effect. At higher energies, the interference between two single-electron ionization channels, one directly from the atom and another reflected off the fullerene cage, producuces oscillatory cross sections. But for the outermost atomic level, which transfers some electrons to the cage, oscillations are further modulated by the collateral emission from the part of the atomic charge density transferred to the cage. These various modes of emissions are studied for the photoionization of Ar endohedrally confined in C{sub 60}.

  17. Double Photoionization of excited Lithium and Beryllium

    SciTech Connect

    Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.

    2010-05-20

    We present total, energy-sharing and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital/ numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter- and intra-shell electron correlation.

  18. Model-driven physiological assessment of the mitral valve from 4D TEE

    NASA Astrophysics Data System (ADS)

    Voigt, Ingmar; Ionasec, Razvan Ioan; Georgescu, Bogdan; Houle, Helene; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2009-02-01

    Disorders of the mitral valve are second most frequent, cumulating 14 percent of total number of deaths caused by Valvular Heart Disease each year in the United States and require elaborate clinical management. Visual and quantitative evaluation of the valve is an important step in the clinical workflow according to experts as knowledge about mitral morphology and dynamics is crucial for interventional planning. Traditionally this involves examination and metric analysis of 2D images comprising potential errors being intrinsic to the method. Recent commercial solutions are limited to specific anatomic components, pathologies and a single phase of cardiac 4D acquisitions only. This paper introduces a novel approach for morphological and functional quantification of the mitral valve based on a 4D model estimated from ultrasound data. A physiological model of the mitral valve, covering the complete anatomy and eventual shape variations, is generated utilizing parametric spline surfaces constrained by topological and geometrical prior knowledge. The 4D model's parameters are estimated for each patient using the latest discriminative learning and incremental searching techniques. Precise evaluation of the anatomy using model-based dynamic measurements and advanced visualization are enabled through the proposed approach in a reliable, repeatable and reproducible manner. The efficiency and accuracy of the method is demonstrated through experiments and an initial validation based on clinical research results. To the best of our knowledge this is the first time such a patient specific 4D mitral valve model is proposed, covering all of the relevant anatomies and enabling to model the common pathologies at once.

  19. SU-E-T-202: Comparison of 4D-Measurement-Guided Dose Reconstructions (MGDR) with COMPASS and OCTAVIUS 4D System

    SciTech Connect

    Leung, R; Wong, M; Lee, V; Law, G; Lee, K; Tung, S; Chan, M; Blanck, O

    2015-06-15

    Purpose: To cross-validate the MGDR of COMPASS (IBA dosimetry, GmbH, Germany) and OCTAVIUS 4D system (PTW, Freiburg, Germany). Methods: Volumetric-modulated arc plans (5 head-and-neck and 3 prostate) collapsed to 40° gantry on the OCTAVIUS 4D phantom in QA mode on Monaco v5.0 (Elekta, CMS, Maryland Heights, MO) were delivered on a Elekta Agility linac. This study was divided into two parts: (1) error-free measurements by gantry-mounted EvolutionXX 2D array were reconstructed in COMPASS (IBA dosimetry, GmbH, Germany), and by OCTAVIUS 1500 array in Versoft v6.1 (PTW, Freiburg, Germany) to obtain the 3D doses (COM4D and OCTA4D). COM4D and OCTA4D were compared to the raw measurement (OCTA3D) at the same detector plane for which OCTAVIUS 1500 was perpendicular to 0° gantry axis while the plans were delivered at gantry 40°; (2) beam steering errors of energy (Hump=-2%) and symmetry (2T=+2%) were introduced during the delivery of 5 plans to compare the MGDR doses COM4D-Hump (COM4D-2T), OCTA4D-Hump (OCTA4D-2T), with raw doses OCTA3D-Hump (OCTA3D-2T) and with OCTA3D to assess the error reconstruction and detection ability of MGDR tools. All comparisons used Υ-criteria of 2%(local dose)/2mm and 3%/3mm. Results: Averaged Υ passing rates were 85% and 96% for COM4D,and 94% and 99% for OCTA4D at 2%/2mm and 3%/3mm criteria respectively. For error reconstruction, COM4D-Hump (COM4D-2T) showed 81% (93%) at 2%/2mm and 94% (98%) at 3%/3mm, while OCTA4D-Hump (OCTA4D-2T) showed 96% (96%) at 2%/2mm and 99% (99%) at 3%/3mm. For error detection, OCTA3D doses were compared to COM4D-Hump (COM4D-2T) showing Υ passing rates of 93% (93%) at 2%/2mm and 98% (98%), and to OCTA4D-Hump (OCTA4D -2T) showing 94% (99%) at 2%/2mm and 81% (96%) at 3%/3mm, respectively. Conclusion: OCTAVIUS MGDR showed better agreement to raw measurements in both error- and error-free comparisons. COMPASS MGDR deviated from the raw measurements possibly owing to beam modeling uncertainty.

  20. Precision measurements on the photoionization of neutral atomic species

    NASA Astrophysics Data System (ADS)

    Stolte, Wayne

    2016-05-01

    In contrast to studies on rare gas atoms, experimental studies of open-shell atoms offers very challenging problems, such as creation of the atom, low signal, purity and stability. Because of this, studies of inner-shell excitations for open shell atoms are limited. In this talk I will discuss precision experimental measurements for photoionization of atomic oxygen, nitrogen, and chlorine over the last two decades on various beamlines at Lawrence Berkeley National Laboratories, Advanced Light Source.

  1. Rotationally resolved fluorescence as a probe of molecular photoionization dynamics

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep; Choi, Heung-Cheun; Poliakoff, E. D.

    1992-11-01

    We present rotationally resolved data for the v'=0 and v'=1 levels of N2+(B 2Σu+) produced via 2σu-1 photoionization of N2. The data are obtained over a broad photon energy range (19≤hνexc≤35 eV). This is made possible by using synchrotron radiation excitation in conjunction with dispersed fluorescence detection. The results exhibit both resonant and nonresonant effects.

  2. Differential cross-sections for the double photoionization of lithium

    NASA Astrophysics Data System (ADS)

    Kheifets, A. S.; Fursa, D. V.; Bray, Igor; Colgan, J.; Pindzola, M. S.

    2012-11-01

    We apply the convergent close-coupling (CCC) and time-dependent close- coupling (TDCC) methods to describe energy and angular resolved double photoionization (DPI) of lithium at arbitrary energy sharing. By doing so, we are able to evaluate the recoil ion momentum distribution of DPI of Li and make a comparison with recent measurements of Zhu et al. [Phys. Rev. Lett. 103, 103008 (2009)].

  3. Differential cross sections of double photoionization of lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2010-08-15

    We extend our previous application of the convergent close-coupling (CCC) and time-dependent close-coupling (TDCC) methods [Phys. Rev. A 81, 023418 (2010)] to describe energy and angular resolved double photoionization (DPI) of lithium at arbitrary energy sharing. By doing so, we are able to evaluate the recoil ion momentum distribution of DPI of Li and make a comparison with recent measurements of Zhu et al. [Phys. Rev. Lett. 103, 103008 (2009)].

  4. Single-center model for double photoionization of the H{sub 2} molecule

    SciTech Connect

    Kheifets, A.S.

    2005-02-01

    We present a single-center model of double photoionization (DPI) of the H{sub 2} molecule which combines a multiconfiguration expansion of the molecular ground state with the convergent close-coupling description of the two-electron continuum. Because the single-center final-state wave function is only correct in the asymptotic region of large distances, the model cannot predict the magnitude of the DPI cross sections. However, we expect the model to account for the angular correlation in the two-electron continuum and to reproduce correctly the shape of the fully differential DPI cross sections. We test this assumption in kinematics of recent DPI experiments on the randomly oriented and fixed in space hydrogen molecule in the isotopic form of D{sub 2}.

  5. 4D XCAT phantom for multimodality imaging research

    SciTech Connect

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-09-15

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ''Basic anatomical and physiological data for use in radiological protection: reference values,'' ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  6. 4D Light Field Imaging System Using Programmable Aperture

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam

    2012-01-01

    Complete depth information can be extracted from analyzing all angles of light rays emanated from a source. However, this angular information is lost in a typical 2D imaging system. In order to record this information, a standard stereo imaging system uses two cameras to obtain information from two view angles. Sometimes, more cameras are used to obtain information from more angles. However, a 4D light field imaging technique can achieve this multiple-camera effect through a single-lens camera. Two methods are available for this: one using a microlens array, and the other using a moving aperture. The moving-aperture method can obtain more complete stereo information. The existing literature suggests a modified liquid crystal panel [LC (liquid crystal) panel, similar to ones commonly used in the display industry] to achieve a moving aperture. However, LC panels cannot withstand harsh environments and are not qualified for spaceflight. In this regard, different hardware is proposed for the moving aperture. A digital micromirror device (DMD) will replace the liquid crystal. This will be qualified for harsh environments for the 4D light field imaging. This will enable an imager to record near-complete stereo information. The approach to building a proof-ofconcept is using existing, or slightly modified, off-the-shelf components. An SLR (single-lens reflex) lens system, which typically has a large aperture for fast imaging, will be modified. The lens system will be arranged so that DMD can be integrated. The shape of aperture will be programmed for single-viewpoint imaging, multiple-viewpoint imaging, and coded aperture imaging. The novelty lies in using a DMD instead of a LC panel to move the apertures for 4D light field imaging. The DMD uses reflecting mirrors, so any light transmission lost (which would be expected from the LC panel) will be minimal. Also, the MEMS-based DMD can withstand higher temperature and pressure fluctuation than a LC panel can. Robotics need

  7. Photoionization Modeling and the K Lines of Iron

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.

    2004-01-01

    We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.

  8. Turbulence in giant molecular clouds: the effect of photoionization feedback

    NASA Astrophysics Data System (ADS)

    Boneberg, D. M.; Dale, J. E.; Girichidis, P.; Ercolano, B.

    2015-02-01

    Giant molecular clouds (GMCs) are observed to be turbulent, but theory shows that without a driving mechanism turbulence should quickly decay. The question arises by which mechanisms turbulence is driven or sustained. It has been shown that photoionizing feedback from massive stars has an impact on the surrounding GMC and can for example create vast H II bubbles. We therefore address the question of whether turbulence is a consequence of this effect of feedback on the cloud. To investigate this, we analyse the velocity field of simulations of high-mass star-forming regions by studying velocity structure functions and power spectra. We find that clouds whose morphology is strongly affected by photoionizing feedback also show evidence of driving of turbulence by preserving or recovering a Kolmogorov-type velocity field. On the contrary, control run simulations without photoionizing feedback have a velocity distribution that bears the signature of gravitational collapse and of the dissipation of energy, where the initial Kolmogorov-type structure function is erased.

  9. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  10. 4D simulation of explosive eruption dynamics at Vesuvius

    NASA Astrophysics Data System (ADS)

    Neri, Augusto; Esposti Ongaro, Tomaso; Menconi, Gianluca; De'Michieli Vitturi, Mattia; Cavazzoni, Carlo; Erbacci, Giovanni; Baxter, Peter J.

    2007-02-01

    We applied a new simulation model, based on multiphase transport laws, to describe the 4D (3D spatial coordinates plus time) dynamics of explosive eruptions. Numerical experiments, carried out on a parallel supercomputer, describe the collapse of the volcanic eruption column and the propagation of pyroclastic density currents (PDCs), for selected medium scale (sub-Plinian) eruptive scenarios at Vesuvius, Italy. Simulations provide crucial insights into the effects of the generation mechanism of the flows - partial collapse vs boiling-over - on their evolution and hazard potential, the unstable dynamics of the fountain, and the influence of Mount Somma on the propagation of PDCs into the circum-Vesuvian area, one of the world's most hazardous volcanic settings. Results also show that it is possible to characterize the volcanic column behavior in terms of percentage of the mass of pyroclasts collapsed to the ground and how this parameter strongly influences the dynamics and hazard of the associated PDCs.

  11. Chaos in a 4D dissipative nonlinear fermionic model

    NASA Astrophysics Data System (ADS)

    Aydogmus, Fatma

    2015-12-01

    Gursey Model is the only possible 4D conformally invariant pure fermionic model with a nonlinear self-coupled spinor term. It has been assumed to be similar to the Heisenberg's nonlinear generalization of Dirac's equation, as a possible basis for a unitary description of elementary particles. Gursey Model admits particle-like solutions for the derived classical field equations and these solutions are instantonic in character. In this paper, the dynamical nature of damped and forced Gursey Nonlinear Differential Equations System (GNDES) are studied in order to get more information on spinor type instantons. Bifurcation and chaos in the system are observed by constructing the bifurcation diagrams and Poincaré sections. Lyapunov exponent and power spectrum graphs of GNDES are also constructed to characterize the chaotic behavior.

  12. Probabilistic 4D blood flow tracking and uncertainty estimation.

    PubMed

    Friman, Ola; Hennemuth, Anja; Harloff, Andreas; Bock, Jelena; Markl, Michael; Peitgen, Heinz-Otto

    2011-10-01

    Phase-Contrast (PC) MRI utilizes signal phase shifts resulting from moving spins to measure tissue motion and blood flow. Time-resolved 4D vector fields representing the motion or flow can be derived from the acquired PC MRI images. In cardiovascular PC MRI applications, visualization techniques such as vector glyphs, streamlines, and particle traces are commonly employed for depicting the blood flow. Whereas these techniques indeed provide useful diagnostic information, uncertainty due to noise in the PC-MRI measurements is ignored, which may lend the results a false sense of precision. In this work, the statistical properties of PC MRI flow measurements are investigated and a probabilistic flow tracking method based on sequential Monte Carlo sampling is devised to calculate flow uncertainty maps. The theoretical derivations are validated using simulated data and a number of real PC MRI data sets of the aorta and carotid arteries are used to demonstrate the flow uncertainty mapping technique.

  13. Biomechanics of DNA structures visualized by 4D electron microscopy

    PubMed Central

    Lorenz, Ulrich J.; Zewail, Ahmed H.

    2013-01-01

    We present a technique for in situ visualization of the biomechanics of DNA structural networks using 4D electron microscopy. Vibrational oscillations of the DNA structure are excited mechanically through a short burst of substrate vibrations triggered by a laser pulse. Subsequently, the motion is probed with electron pulses to observe the impulse response of the specimen in space and time. From the frequency and amplitude of the observed oscillations, we determine the normal modes and eigenfrequencies of the structures involved. Moreover, by selective “nano-cutting” at a given point in the network, it was possible to obtain Young’s modulus, and hence the stiffness, of the DNA filament at that position. This experimental approach enables nanoscale mechanics studies of macromolecules and should find applications in other domains of biological networks such as origamis. PMID:23382239

  14. 4D GPR Experiments--Towards the Virtual Lysimeter

    NASA Astrophysics Data System (ADS)

    Grasmueck, M.; Viggiano, D. A.; Day-Lewis, F. D.; Drasdis, J. B.; Kruse, S. E.; Or, D.

    2006-05-01

    In-situ monitoring of infiltration, water flow and retention in the vadose zone currently rely primarily on invasive methods, which irreversibly disturb original soil structure and alter its hydrologic behavior in the vicinity of the measurement. For example, use of lysimeters requires extraction and repacking of soil samples, and time- domain reflectometry (TDR) requires insertion of probes into the soil profile. This study investigates the use of repeated high-density 3D ground penetrating radar surveys (also known as 4D GPR) as a non-invasive alternative for detailed visualization and quantification of water flow in the vadose zone. Evaluation of the 4D GPR method was based on a series of controlled point-source water injection experiments into undisturbed beach sand deposits at Crandon Park in Miami, Florida. The goal of the GPR surveys was to image the shape and evolution of a wet-bulb as it propagates from the injection points (~0.5 m) towards the water table at 2.2 m depth. The experimental design was guided by predictive modeling using Hydrus 2D and finite-difference GPR waveform codes. Input parameters for the modeling were derived from hydrologic and electromagnetic characterization of representative sand samples. Guided by modeling results, we injected 30 to 40 liters of tap water through plastic-cased boreholes with slotted bottom sections (0.1 m) located 0.4 to 0.6 m below the surface. During and after injection, an area of 25 m2 was surveyed every 20 minutes using 250 and 500 MHz antennas with a grid spacing of 0.05 x 0.025 m. A total of 20 3D GPR surveys were completed over 3 infiltration sites. To confirm wet-bulb shapes measured by GPR, we injected 2 liters of "brilliant blue" dye (~100 mg/l) along with a saline water tracer towards the end of one experiment. After completion of GPR scanning, a trench was excavated to examine the distribution of the saltwater and dye using TDR and visual inspection, respectively. Preliminary analysis of the 4D GPR

  15. 4D fast tracking for experiments at high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Neri, N.; Cardini, A.; Calabrese, R.; Fiorini, M.; Luppi, E.; Marconi, U.; Petruzzo, M.

    2016-11-01

    The full exploitation of the physics potential of the high luminosity LHC is a big challenge that requires new instrumentation and innovative solutions. We present here a conceptual design and simulation studies of a fast timing pixel detector with embedded real-time tracking capabilities. The system is conceived to operate at 40 MHz event rate and to reconstruct tracks in real-time, using precise space and time 4D information of the hit, for fast trigger decisions. This work is part of an R&D project aimed at building an innovative tracking detector with superior time (10 ps) and position (10 μm) resolutions to be used in very harsh radiation environments, for the ultimate flavour physics experiment at the high luminosity phase of the LHC.

  16. Parallel Wavefront Analysis for a 4D Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  17. An updated version of the Motion4D-library

    NASA Astrophysics Data System (ADS)

    Müller, Thomas; Grave, Frank

    2010-03-01

    We present an updated version of the Motion4D-library that can be used for the newly developed GeodesicViewer application. New version program summaryProgram title: Motion4D-library Catalogue identifier: AEEX_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 153 757 No. of bytes in distributed program, including test data, etc.: 5 178 439 Distribution format: tar.gz Programming language: C++ Computer: All platforms with a C++ compiler Operating system: Linux, Unix, Windows RAM: 31 MBytes Catalogue identifier of previous version: AEEX_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2355 Classification: 1.5 External routines: Gnu Scientific Library (GSL) ( http://www.gnu.org/software/gsl/) Does the new version supersede the previous version?: Yes Nature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes. Solution method: Integration of ordinary differential equations. Reasons for new version: To be applicable for the GeodesicViewer (accepted for publication in Comput. Phys. Comm. (COMPHY) 3941, doi:10.1016/j.cpc.2009.10.010 [program AEFP_v1_0]), there were several minor adjustments to be done. Summary of revisions:Calculation of embedding diagrams are improved. Physical units can be used for some metrics. Tests for the constraint equation within the metric classes are slightly modified. New metrics: AlcubierreWarp, GoedelScaled, GoedelScaledCart, Kasner. Running time: The test runs provided with the distribution require only a few seconds to run.

  18. Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: A technical feasibility study

    SciTech Connect

    Boye, Dirk; Lomax, Tony; Knopf, Antje

    2013-06-15

    Purpose: Target sites affected by organ motion require a time resolved (4D) dose calculation. Typical 4D dose calculations use 4D-CT as a basis. Unfortunately, 4D-CT images have the disadvantage of being a 'snap-shot' of the motion during acquisition and of assuming regularity of breathing. In addition, 4D-CT acquisitions involve a substantial additional dose burden to the patient making many, repeated 4D-CT acquisitions undesirable. Here the authors test the feasibility of an alternative approach to generate patient specific 4D-CT data sets. Methods: In this approach motion information is extracted from 4D-MRI. Simulated 4D-CT data sets [which the authors call 4D-CT(MRI)] are created by warping extracted deformation fields to a static 3D-CT data set. The employment of 4D-MRI sequences for this has the advantage that no assumptions on breathing regularity are made, irregularities in breathing can be studied and, if necessary, many repeat imaging studies (and consequently simulated 4D-CT data sets) can be performed on patients and/or volunteers. The accuracy of 4D-CT(MRI)s has been validated by 4D proton dose calculations. Our 4D dose algorithm takes into account displacements as well as deformations on the originating 4D-CT/4D-CT(MRI) by calculating the dose of each pencil beam based on an individual time stamp of when that pencil beam is applied. According to corresponding displacement and density-variation-maps the position and the water equivalent range of the dose grid points is adjusted at each time instance. Results: 4D dose distributions, using 4D-CT(MRI) data sets as input were compared to results based on a reference conventional 4D-CT data set capturing similar motion characteristics. Almost identical 4D dose distributions could be achieved, even though scanned proton beams are very sensitive to small differences in the patient geometry. In addition, 4D dose calculations have been performed on the same patient, but using 4D-CT(MRI) data sets based on

  19. Photoionization branching ratios and vibrational intensity distribution for N2, CO; and CO2 between 53 and 75 nm

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Gardner, J. L.

    1973-01-01

    The probability of radiation producing ions in specific electronic and vibrational levels was documented. For example, when a narrow band-pass of solar ionizing photons is incident on an atmospheric species it is now possible to describe, accurately, how the radiant energy is shared among the various electronic states of the ions produced. The molecules studied were N2, CO, and CO2. These molecules were photoionized by radiation between 53 and 75 nm. The effects of autoionization are discussed and continuum vibrational intensities are tabulated and compared with theoretical Franck-Condon factors where available. The branching ratios and partial cross sections for ionization into various electronic states are tabulated.

  20. Theoretical Modeling of Radiation-driven Atomic Kinetics of a Neon Photoionized Plasma

    NASA Astrophysics Data System (ADS)

    Durmaz, Tunay

    We report on a theoretical study on atomic kinetics modeling of a photoionized neon plasma at conditions relevant to laboratory experiments performed at the Z-machine in Sandia National Laboratories. We describe an atomic kinetics model and code, ATOKIN, that was developed and used to compute the atomic level population distribution. The study includes atomic level sensitivity with respect to energy level structure, radiation and transient effects, electron temperature and x-ray drive sensitivity and an idea for electron temperature extraction from a level population ratio. The neon atomic model considers several ionization stages of highly-charged neon ions as well as a detailed structure of non-autoionizing and autoionizing energy levels in each ion. In the energy level sensitivity study, the atomic model was changed by adding certain types of energy levels such as singly-excited, auto-ionizing doubly-excited states. Furthermore, these levels were added ion by ion for the most populated ions. Atomic processes populating and de-populating the energy levels consider photoexcitation and photoionization due to the external radiation flux, and spontaneous and collisional atomic processes including plasma radiation trapping. Relevant atomic cross sections and rates were computed with the atomic structure and scattering FAC code. The calculations were performed at constant particle number density and driven by the time-histories of temperature and external radiation flux. These conditions were selected in order to resemble those achieved in photoionized plasma experiments at the Z facility of Sandia National Laboratories. For the same set of time histories, calculations were done in a full time-dependent mode and also as a sequence of instantaneous, steady states. Differences between both calculations are useful to identify transient effects in the ionization and atomic kinetics of the photoionized plasma, and its dependence on the atomic model and plasma environmental

  1. Parallel Infrastructure Modeling and Inversion Module for E4D

    SciTech Connect

    2014-10-09

    Electrical resistivity tomography ERT is a method of imaging the electrical conductivity of the subsurface. Electrical conductivity is a useful metric for understanding the subsurface because it is governed by geomechanical and geochemical properties that drive subsurface systems. ERT works by injecting current into the subsurface across a pair of electrodes, and measuring the corresponding electrical potential response across another pair of electrodes. Many such measurements are strategically taken across an array of electrodes to produce an ERT data set. These data are then processed through a computationally demanding process known as inversion to produce an image of the subsurface conductivity structure that gave rise to the measurements. Data can be inverted to provide 2D images, 3D images, or in the case of time-lapse 3D imaging, 4D images. ERT is generally not well suited for environments with buried electrically conductive infrastructure such as pipes, tanks, or well casings, because these features tend to dominate and degrade ERT images. This reduces or eliminates the utility of ERT imaging where it would otherwise be highly useful for, for example, imaging fluid migration from leaking pipes, imaging soil contamination beneath leaking subusurface tanks, and monitoring contaminant migration in locations with dense network of metal cased monitoring wells. The location and dimension of buried metallic infrastructure is often known. If so, then the effects of the infrastructure can be explicitly modeled within the ERT imaging algorithm, and thereby removed from the corresponding ERT image. However,there are a number of obstacles limiting this application. 1) Metallic infrastructure cannot be accurately modeled with standard codes because of the large contrast in conductivity between the metal and host material. 2) Modeling infrastructure in true dimension requires the computational mesh to be highly refined near the metal inclusions, which increases

  2. Respiratory triggered 4D cone-beam computed tomography: A novel method to reduce imaging dose

    SciTech Connect

    Cooper, Benjamin J.; O'Brien, Ricky T.; Keall, Paul J.; Balik, Salim; Hugo, Geoffrey D.

    2013-04-15

    Purpose: A novel method called respiratory triggered 4D cone-beam computed tomography (RT 4D CBCT) is described whereby imaging dose can be reduced without degrading image quality. RT 4D CBCT utilizes a respiratory signal to trigger projections such that only a single projection is assigned to a given respiratory bin for each breathing cycle. In contrast, commercial 4D CBCT does not actively use the respiratory signal to minimize image dose. Methods: To compare RT 4D CBCT with conventional 4D CBCT, 3600 CBCT projections of a thorax phantom were gathered and reconstructed to generate a ground truth CBCT dataset. Simulation pairs of conventional 4D CBCT acquisitions and RT 4D CBCT acquisitions were developed assuming a sinusoidal respiratory signal which governs the selection of projections from the pool of 3600 original projections. The RT 4D CBCT acquisition triggers a single projection when the respiratory signal enters a desired acquisition bin; the conventional acquisition does not use a respiratory trigger and projections are acquired at a constant frequency. Acquisition parameters studied were breathing period, acquisition time, and imager frequency. The performance of RT 4D CBCT using phase based and displacement based sorting was also studied. Image quality was quantified by calculating difference images of the test dataset from the ground truth dataset. Imaging dose was calculated by counting projections. Results: Using phase based sorting RT 4D CBCT results in 47% less imaging dose on average compared to conventional 4D CBCT. Image quality differences were less than 4% at worst. Using displacement based sorting RT 4D CBCT results in 57% less imaging dose on average, than conventional 4D CBCT methods; however, image quality was 26% worse with RT 4D CBCT. Conclusions: Simulation studies have shown that RT 4D CBCT reduces imaging dose while maintaining comparable image quality for phase based 4D CBCT; image quality is degraded for displacement based RT 4D

  3. Parabolic versus spherical partial cross sections for photoionization excitation of He near threshold

    SciTech Connect

    Bouri, C.; Selles, P.; Malegat, L.; Kwato Njock, M. G.

    2006-09-15

    Spherical and parabolic partial cross sections and asymmetry parameters, defined in the ejected electron frame, are presented for photoionization excitation of the helium atom at 0.1 eV above its double ionization threshold. A quantitative law giving the dominant spherical partial wave l{sub dom} for each excitation level n is obtained. The parabolic partial cross sections are shown to satisfy the same approximate selection rules as the related Rydberg series of doubly excited states (K,T){sub n}{sup A}. The analysis of radial and angular correlations reveals the close relationship between double excitation, ionization excitation, and double ionization. Opposite to a widespread belief, the observed value of the asymmetry parameter is shown to result from the interplay of radial correlations and symmetry constraints, irrespective of angular correlations. Finally, the measurement of parabolic partial cross sections is proposed as a challenge to experimentalists.

  4. Characterization of the transient species generated by the photoionization of Berberine: A laser flash photolysis study

    NASA Astrophysics Data System (ADS)

    Cheng, Ling-Li; Wang, Mei; Zhu, Hui; Li, Kun; Zhu, Rong-Rong; Sun, Xiao-Yu; Yao, Si-De; Wu, Qing-Sheng; Wang, Shi-Long

    2009-09-01

    Using 266 nm laser flash photolysis it has been demonstrated that Berberine (BBR) in aqueous solution is ionized via a mono-photonic process giving a hydrated electron, anion radical that formed by hydrated electron react with steady state of BBR, and neutral radical that formed from rapid deprotonation of the radical cation of BBR. The quantum yield of photoionization is determined to be 0.03 at room temperature with KI solution used as a reference. Furthermore utilizing pH changing method and the SO 4rad - radical oxidation method, the assignment of radical cation of BBR was further confirmed, the p Ka value of it was calculated, and the related set up rate constant was also determined.

  5. Time-dependent photoionization of azulene: Optically induced anistropy on the femtosecond scale

    NASA Astrophysics Data System (ADS)

    Raffael, Kevin; Blanchet, Valérie; Chatel, Béatrice; Turri, Giorgio; Girard, Bertrand; Garcia, Ivan Anton; Wilkinson, Iain; Whitaker, Benjamin J.

    2008-07-01

    We measure the photoionization cross-section of vibrationally excited levels in the S 2 state of azulene by femtosecond pump-probe spectroscopy. At the wavelengths studied (349-265 nm in the pump) the transient signals exhibit two distinct and well-defined behaviours: (i) short-term (on the order of a picosecond) polarization dependent transients and (ii) longer (10 ps-1 ns) timescale decays. This Letter focuses on the short-time transient. In contrast to an earlier study by Diau et al. [E.G. Diau, S. De Feyter, A.H. Zewail, J. Chem. Phys. 110 (1999) 9785.] we unambiguously assign the fast initial decay signal to rotational dephasing of the initial alignment created by the pump transition.

  6. Data for First Responder Use of Photoionization Detectors for Vapor Chemical Constituents

    SciTech Connect

    Keith A. Daum; Matthew G. Watrous; M. Dean Neptune; Daniel I. Michael; Kevin J. Hull; Joseph D. Evans

    2006-11-01

    First responders need appropriate measurement technologies for evaluating incident scenes. This report provides information about photoionization detectors (PIDs), obtained from manufacturers and independent laboratory tests, and the use of PIDs by first responders, obtained from incident commanders in the United States and Canada. PIDs are valued for their relatively low cost, light weight, rapid detection response, and ease of use. However, it is clear that further efforts are needed to provide suitable instruments and decision tools to incident commanders and first responders for assessing potential hazardous chemical releases. Information provided in this report indicates that PIDs should always be part of a decision-making context in which other qualitative and more definitive tests and instruments are used to confirm a finding. Possible amelioratory actions ranging from quick and relatively easy fixes to those requiring significant additional effort are outlined in the report.

  7. Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity.

    PubMed

    Nahar, Sultana N; Pradhan, Anil K

    2016-06-10

    Aimed at solving the outstanding problem of solar opacity, and radiation transport plasma models in general, we report substantial photoabsorption in the high-energy regime due to atomic core photoexcitations not heretofore considered. In extensive R-matrix calculations of unprecedented complexity for an important iron ion Fe xvii (Fe^{16+}), with a wave function expansion of 99 Fe xviii (Fe^{17+}) LS core states from n≤4 complexes (equivalent to 218 fine structure levels), we find (i) up to orders of magnitude enhancement in background photoionization cross sections, in addition to strongly peaked photo-excitation-of-core resonances not considered in current opacity models, and ii) demonstrate convergence with respect to successive core excitations. The resulting increase in the monochromatic continuum, and 35% in the Rosseland mean opacity, are compared with the "higher-than-predicted" iron opacity measured at the Sandia Z-pinch fusion device at solar interior conditions.

  8. Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Pradhan, Anil K.

    2016-06-01

    Aimed at solving the outstanding problem of solar opacity, and radiation transport plasma models in general, we report substantial photoabsorption in the high-energy regime due to atomic core photoexcitations not heretofore considered. In extensive R -matrix calculations of unprecedented complexity for an important iron ion Fe xvii (Fe16 + ), with a wave function expansion of 99 Fe xviii (Fe17 + ) LS core states from n ≤4 complexes (equivalent to 218 fine structure levels), we find (i) up to orders of magnitude enhancement in background photoionization cross sections, in addition to strongly peaked photo-excitation-of-core resonances not considered in current opacity models, and ii) demonstrate convergence with respect to successive core excitations. The resulting increase in the monochromatic continuum, and 35% in the Rosseland mean opacity, are compared with the "higher-than-predicted" iron opacity measured at the Sandia Z -pinch fusion device at solar interior conditions.

  9. Multimaterial 4D Printing with Tailorable Shape Memory Polymers

    PubMed Central

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.

    2016-01-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures. PMID:27499417

  10. Multimaterial 4D Printing with Tailorable Shape Memory Polymers

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.

    2016-08-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures.

  11. Multimaterial 4D Printing with Tailorable Shape Memory Polymers.

    PubMed

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K; Fang, Nicholas X; Dunn, Martin L

    2016-08-08

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures.

  12. Denoising and 4D visualization of OCT images

    PubMed Central

    Gargesha, Madhusudhana; Jenkins, Michael W.; Rollins, Andrew M.; Wilson, David L.

    2009-01-01

    We are using Optical Coherence Tomography (OCT) to image structure and function of the developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time) and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise in OCT images poses additional challenges. We created an algorithm with a quick, data set specific optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet, basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit also indicated superiority of the new algorithm. Noise reduction aided semi-automatic 2D image segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert segmented contour. In conclusion, the noise reduction algorithm should be quite useful for visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity, etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that the algorithm can be applied to OCT images from other applications. PMID:18679509

  13. 4D Cellular Automaton Track Finder in the CBM Experiment

    NASA Astrophysics Data System (ADS)

    Akishina, Valentina; Kisel, Ivan

    2016-11-01

    The CBM experiment (FAIR/GSI, Darmstadt, Germany) will focus on the measurement of rare probes at interaction rates up to 10MHz with data flow of up to 1 TB/s. It requires a novel read-out and data-acquisition concept with self-triggered electronics and free-streaming data. In this case resolving different collisions is a non-trivial task and event building must be performed in software online. That requires full online event reconstruction and selection not only in space, but also in time, so-called 4D event building and selection. This is a task of the First-Level Event Selection (FLES). The FLES reconstruction and selection package consists of several modules: track finding, track fitting, short-lived particles finding, event building and event selection. The Cellular Automaton (CA) track finder algorithm was adapted towards time-based reconstruction. In this article, we describe in detail the modification done to the algorithm, as well as the performance of the developed time-based CA approach.

  14. "4D Biology for health and disease" workshop report.

    PubMed

    Abrahams, Jan-Pieter; Apweiler, Rolf; Balling, Rudi; Bertero, Michela G; Bujnicki, Janusz M; Chayen, Naomi E; Chène, Patrick; Corthals, Gary L; Dyląg, Tomasz; Förster, Friedrich; Heck, Albert J R; Henderson, Peter J F; Herwig, Ralf; Jehenson, Philippe; Kokalj, Sasa Jenko; Laue, Ernest; Legrain, Pierre; Martens, Lennart; Migliorini, Cristiano; Musacchio, Andrea; Podobnik, Marjetka; Schertler, Gebhard F X; Schreiber, Gideon; Sixma, Titia K; Smit, August B; Stuart, David; Svergun, Dmitri I; Taussig, Michael J

    2011-07-01

    The "4D Biology Workshop for Health and Disease", held on 16-17th of March 2010 in Brussels, aimed at finding the best organising principles for large-scale proteomics, interactomics and structural genomics/biology initiatives, and setting the vision for future high-throughput research and large-scale data gathering in biological and medical science. Major conclusions of the workshop include the following. (i) Development of new technologies and approaches to data analysis is crucial. Biophysical methods should be developed that span a broad range of time/spatial resolution and characterise structures and kinetics of interactions. Mathematics, physics, computational and engineering tools need to be used more in biology and new tools need to be developed. (ii) Database efforts need to focus on improved definitions of ontologies and standards so that system-scale data and associated metadata can be understood and shared efficiently. (iii) Research infrastructures should play a key role in fostering multidisciplinary research, maximising knowledge exchange between disciplines and facilitating access to diverse technologies. (iv) Understanding disease on a molecular level is crucial. System approaches may represent a new paradigm in the search for biomarkers and new targets in human disease. (v) Appropriate education and training should be provided to help efficient exchange of knowledge between theoreticians, experimental biologists and clinicians. These conclusions provide a strong basis for creating major possibilities in advancing research and clinical applications towards personalised medicine.

  15. Digit ratio (2D:4D) and hand preference for writing in the BBC Internet Study.

    PubMed

    Manning, J T; Peters, M

    2009-09-01

    The ratio of the length of the second to the fourth digit (2D:4D) may be negatively correlated with prenatal testosterone. Hand preference has been linked with prenatal testosterone and 2D:4D. Here we show that 2D:4D is associated with hand preference for writing in a large internet sample (n>170,000) in which participants self-reported their finger lengths. We replicated a significant association between right 2D:4D and writing hand preference (low right 2D:4D associated with left hand preference) as well as a significant correlation between writing hand preference and the difference between left and right 2D:4D or Dr-l (low Dr-l associated with left hand preference). A new significant correlation between left 2D:4D and writing hand preference was also shown (high left 2D:4D associated with left hand preference). There was a clear interaction between writing hand preference and 2D:4D: The left 2D:4D was significantly larger than the right 2D:4D in male and female left-handed writers, and the right hand 2D:4D was significantly larger than the left hand 2D:4D in male and female right-handed writers.

  16. 2,4-D and IAA Amino Acid Conjugates Show Distinct Metabolism in Arabidopsis

    PubMed Central

    Eyer, Luděk; Vain, Thomas; Pařízková, Barbora; Oklestkova, Jana; Barbez, Elke; Kozubíková, Hana; Pospíšil, Tomáš; Wierzbicka, Roksana; Kleine-Vehn, Jürgen; Fránek, Milan; Strnad, Miroslav; Robert, Stéphanie

    2016-01-01

    The herbicide 2,4-D exhibits an auxinic activity and therefore can be used as a synthetic and traceable analog to study auxin-related responses. Here we identified that not only exogenous 2,4-D but also its amide-linked metabolite 2,4-D-Glu displayed an inhibitory effect on plant growth via the TIR1/AFB auxin-mediated signaling pathway. To further investigate 2,4-D metabolite conversion, identity and activity, we have developed a novel purification procedure based on the combination of ion exchange and immuno-specific sorbents combined with a sensitive liquid chromatography-mass spectrometry method. In 2,4-D treated samples, 2,4-D-Glu and 2,4-D-Asp were detected at 100-fold lower concentrations compared to 2,4-D levels, showing that 2,4-D can be metabolized in the plant. Moreover, 2,4-D-Asp and 2,4-D-Glu were identified as reversible forms of 2,4-D homeostasis that can be converted to free 2,4-D. This work paves the way to new studies of auxin action in plant development. PMID:27434212

  17. Photoionization studies of (BH3)n (n=1,2)

    NASA Astrophysics Data System (ADS)

    Ruščić, B.; Mayhew, C. A.; Berkowitz, J.

    1988-05-01

    The results of photoionization mass spectrometric studies on B2H6, and BH3 (produced by pyrolysis of B2H6) are presented. The photoion yield curves of B2H+n (n=2-6) and BH+n (n=2-3) from B2H6, as well as BH+n (n=1-3) from BH3 have been obtained. It is shown that the combination of appearance potential measurements for BH+3 (B2H6) and BH+3 (BH3) yields a poor upper limit for -ΔHdimerization, 0 K (BH3) of 52.7 kcal/mol, while the combination of BH+2 (B2H6) and BH+2 (BH3) provides a better upper limit (46.6±0.6 kcal/mol) for this quantity. However, the threshold for BH+ (BH3), combined with auxiliary data, provides the best current experimental value, (34.3-39.1)±2 kcal/mol. This experimental value is in good agreement with a recent ab initio calculation, and is arrived at by using the best current estimate of ΔHf(B2H6), rather than a radically different value proposed in that paper. The ionization potential of BH3, ΔHf (BH+2), and the atomization energy of BH3 obtained experimentally are in excellent agreement with other ab initio calculations. The upper limits on heats of formation for the ionic species B2H+n (n=2-6) are obtained, and plausible structures are discussed for these species, based on the current energetics and various ab initio calculations. Finally, the fragmentation behavior of photoions from diborane is shown to have a more facile explanation by quasiequilibrium theory than by a molecular orbital picture, with the probable exception of BH+3 (B2H6).

  18. GRAM 88 - 4D GLOBAL REFERENCE ATMOSPHERE MODEL-1988

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1994-01-01

    the Jacchia values. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. GRAM-88 incorporates a hydrostatic/gas law check in the 0-30 km altitude range to flag and change any bad data points. Between 5km and 30km, an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate the variability due to synoptic, diurnal, planetary wave, and gravity wave variations. Quasi-biennial and random variation perturbations are computed from parameters determined by various empirical studies and are added to the monthly mean values. The GRAM-88 program is for batch execution on the IBM 3084. It is written in STANDARD FORTRAN 77 under the MVS/XA operating system. The IBM DISPLA graphics routines are necessary for graphical output. The program was developed in 1988.

  19. The photoionization spectrum of neutral aluminium, Al I

    NASA Technical Reports Server (NTRS)

    Roig, R. A.

    1975-01-01

    The absorption spectrum of Al I has been studied for the wavelength range 1160 to 2000 A by the flash pyrolysis technique. Wavelengths and derived energy levels are reported for 70 new lines converging on the 3s3p(3)P(0) limits of Al II. The autoionization parameters of the 3p(2)P(0)-3p(2)(2)S doublet have been measured. Good agreement is obtained with the experiment of Kohl and Parkinson and the recent calculation of Le Dourneuf et al. The relative photoionization cross section has been measured in the wavelength region 1200 A to 2000 A.

  20. Photo-ionization and residual electron effects in guided streamers

    SciTech Connect

    Wu, S.; Lu, X. Liu, D.; Yang, Y.; Pan, Y.; Ostrikov, K.

    2014-10-15

    Complementary experiments and numerical modeling reveal the important role of photo-ionization in the guided streamer propagation in helium-air gas mixtures. It is shown that the minimum electron concentration ∼10{sup 8 }cm{sup −3} is required for the regular, repeated propagation of the plasma bullets, while the streamers propagate in the stochastic mode below this threshold. The stochastic-to-regular mode transition is related to the higher background electron density in front of the propagating streamers. These findings help improving control of guided streamer propagation in applications from health care to nanotechnology and improve understanding of generic pre-breakdown phenomena.

  1. Inner-shell photoionized x-ray lasers

    SciTech Connect

    Moon, Stephen J.

    1998-09-01

    The inner-shell photoionized x-ray lasing scheme is an attractive method for achieving x-ray lasing at short wavelengths, via population inversion following inner-shell photoionization (ISPI). This scheme promises both a short wavelength and a short pulse source of coherent x rays with high average power. In this dissertation a very complete study of the ISPI x-ray laser scheme is done concerning target structure, filter design and lasant medium. An investigation of the rapid rise time of x-ray emission from targets heated by an ultra-short pulse high-intensity optical laser was conducted for use as the x-ray source for ISPI x-ray lasing. Lasing by this approach in C at a wavelength of 45 Å requires a short pulse (about 50 fsec) driving optical laser with an energy of 1-5 J and traveling wave optics with an accuracy of ~ 15 μm. The optical laser is incident on a high-Z target creating a high-density plasma which emits a broadband spectrum of x rays. This x-ray source is passed through a filter to eliminate the low-energy x rays. The remaining high-energy x rays preferentially photoionize inner-shell electrons resulting in a population inversion. Inner-shell photoionized x-ray lasing relies on the large energy of a K-α transition in the initially neutral lasant. The photo energy required to pump this scheme is only slightly greater than the photon energy of the lasing transition yielding a lasing scheme with high quantum efficiency. However, the overall efficiency is reduced due to low x-ray conversion efficiency and the large probability of Auger decay yielding an overall efficiency of ~ 10-7 resulting in an output energy of μJ's. They calculate that a driving laser with a pulse duration of 40 fs, a 10μm x 1 cm line focus, and an energy of 1 J gives an effective gain length product (gl) of 10 in C at 45 Å. At saturation (gl ~ 18) they expect an output of ~ 0.1 μJ per pulse. The short duration of x-ray lasing (< 100 fs) combined with a 10-Hz

  2. Molecular photoionization studies of nucleobases and correlated systems

    SciTech Connect

    Poliakoff, Erwin D.

    2015-03-11

    We proposed molecular photoionization studies in order to probe correlated events in fundamental scattering phenomena. In particular, we suggested that joint theoretical-experimental studies would provide a window into the microscopic aspects that are of central importance in AMO and chemical physics generally, and would generate useful data for wide array of important DOE topics, such as ultrafast dynamics, high harmonic generation, and probes of nonadiabatic processes. The unifying theme is that correlations between electron scattering dynamics and molecular geometry highlight inherently molecular aspects of the photoelectron behavior.

  3. Experimental observation of guanine tautomers with VUV photoionization.

    PubMed

    Zhou, Jia; Kostko, Oleg; Nicolas, Christophe; Tang, Xiaonan; Belau, Leonid; de Vries, Mattanjah S; Ahmed, Musahid

    2009-04-30

    Two methods of preparing guanine in the gas phase, thermal vaporization and laser desorption, have been investigated. The guanine generated by each method is entrained in a molecular beam, single-photon ionized with tunable VUV synchrotron radiation, and analyzed using reflectron mass spectrometry. The recorded photoionization efficiency (PIE) curves show a dramatic difference for experiments performed via thermal vaporization compared to that with laser desorption. The calculated vertical and adiabatic ionization energies for the eight lowest-lying tautomers of guanine suggest that the experimental observations arise from different tautomers being populated in the two different experimental methods.

  4. Experimental observation of guanine tautomers with VUV photoionization

    SciTech Connect

    Zhou, Jia; Kostko, Oleg; Nicolas, Christophe; Tang, Xiaonan; Belau, Leonid; de Vries, Mattanjah S.; Ahmed, Musahid

    2008-12-01

    Two methods of preparing guanine in the gas phase, thermal vaporization and laser desorption, have been investigated. The guanine generated by each method is entrained in a molecular beam, single photon ionized with tunable VUV synchrotron radiation, and analyzed using reflectron mass spectrometry. The recorded photoionization efficiency (PIE) curves show a dramatic difference for experiments performed via thermal vaporization compared to laser desorption. The calculated vertical and adiabatic ionization energies for the eight lowest lying tautomers of guanine suggest the experimental observations arise from different tautomers being populated in the two different experimental methods.

  5. Ab initio calculations of the photoionization of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Lefebvre-Brion, Helene; Raşeev, Georges

    2003-01-01

    A review is presented of the calculation of photoionization spectra, particularly in the spectral range where electron autoionization of diatomic molecules takes place. In addition to some interesting results obtained over years that compare favourably with experiment, the emphasis here is put on the relation between the methods developed for the calculation of observables associated with the continuum energy spectrum of the electrons and the Alchemy system of programs. This system of programs serves as a basis for initial and intermediate calculations. The examples presented show that diatomic molecules not only in gas phase but also oriented in space or physisorbed at surfaces may be studied readily.

  6. Three-photon near-threshold photoionization dynamics of isooctane

    NASA Astrophysics Data System (ADS)

    Healy, Andrew T.; Underwood, David F.; Lipsky, Sanford; Blank, David A.

    2005-08-01

    The electron survival probability following three-photon (9.3eV total) near-threshold photoionization of neat isooctane is measured with sub-50fs time resolution. The measured dynamics are nonexponential in time and are well described by a diffusion-controlled electron-cation recombination model. Excitation-power-dependent studies indicate that the unperturbed three-photon threshold ionization is only observed for pump irradiance below 0.5TW/cm2. At excitation fields above this level, the signal is no longer cubic in the excitation irradiance, and the observed electron survival probability dramatically changes, decaying as a single exponential in time.

  7. Three-photon near-threshold photoionization dynamics of isooctane.

    PubMed

    Healy, Andrew T; Underwood, David F; Lipsky, Sanford; Blank, David A

    2005-08-01

    The electron survival probability following three-photon (9.3 eV total) near-threshold photoionization of neat isooctane is measured with sub-50 fs time resolution. The measured dynamics are nonexponential in time and are well described by a diffusion-controlled electron-cation recombination model. Excitation-power-dependent studies indicate that the unperturbed three-photon threshold ionization is only observed for pump irradiance below 0.5 TW cm2. At excitation fields above this level, the signal is no longer cubic in the excitation irradiance, and the observed electron survival probability dramatically changes, decaying as a single exponential in time.

  8. Vibrational branching ratios in photoionization of CO and N2

    NASA Astrophysics Data System (ADS)

    Rathbone, G. J.; Rao, R. M.; Poliakoff, E. D.; Wang, Kwanghsi; McKoy, V.

    2004-01-01

    We report results of experimental and theoretical studies of the vibrational branching ratios for CO 4σ-1 photoionization from 20 to 185 eV. Comparison with results for the 2σu-1 channel of the isoelectronic N2 molecule shows the branching ratios for these two systems to be qualitatively different due to the underlying scattering dynamics: CO has a shape resonance at low energy but lacks a Cooper minimum at higher energies whereas the situation is reversed for N2.

  9. Vibrationally resolved shape resonant photoionization of N2O

    NASA Astrophysics Data System (ADS)

    Kelly, L. A.; Duffy, L. M.; Space, B.; Poliakoff, E. D.; Roy, P.

    1989-02-01

    A vibrationally resolved dispersed fluorescence study of 7sigma exp -1 shape resonant photoionization in N2O is presented. It is shown that the lower energy shape resonance results in non-Franck-Condon vibrational branching ratios over a wide range. It is found that the cross section curves for alternative vibrational modes behave differently and that the resonance behavior is influenced more by symmetric stretch than by the asymmetric stretching vibration. Spectroscopic data on the ionic potential surfaces and ratios of Franck-Condon factors for N2O(+) (A to X) transitions are obtained.

  10. The role of intramolecular scattering in K-shell photoionization

    NASA Astrophysics Data System (ADS)

    Ayuso, D.; Ueda, K.; Miron, C.; Plésiat, E.; Argenti, L.; Patanen, M.; Kooser, K.; Mondal, S.; Kimura, M.; Sakai, K.; Travnikova, O.; Palacios, A.; Decleva, P.; Kukk, E.; Martín, F.

    2014-04-01

    We report evidence of intramolecular scattering occurring in inner shell photoionization of small molecules. Pronounced oscillations of the ratios between vibrationally resolved cross sections (v-ratios) as a function of photon energy have been observed theoretically and experimentally. Qualitative agreement with a 1st Born model confirms that they are due to intramolecular scattering: when an electron is ejected from a very localized region in the center of a polyatomic molecule, such as the C(1s) orbital in a CF4 molecule, it is diffracted by the surrounding atomic centers, encoding the geometry of the molecule [1, 2].

  11. Differential cross sections of double photoionization of lithium

    NASA Astrophysics Data System (ADS)

    Kheifets, A. S.; Fursa, D. V.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2010-08-01

    We extend our previous application of the convergent close-coupling (CCC) and time-dependent close-coupling (TDCC) methods [Phys. Rev. A10.1103/PhysRevA.81.023418 81, 023418 (2010)] to describe energy and angular resolved double photoionization (DPI) of lithium at arbitrary energy sharing. By doing so, we are able to evaluate the recoil ion momentum distribution of DPI of Li and make a comparison with recent measurements of Zhu [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.103008 103, 103008 (2009)].

  12. Short-time Chebyshev wave packet method for molecular photoionization

    NASA Astrophysics Data System (ADS)

    Sun, Zhaopeng; Zheng, Yujun

    2016-08-01

    In this letter we present the extended usage of short-time Chebyshev wave packet method in the laser induced molecular photoionization dynamics. In our extension, the polynomial expansion of the exponential in the time evolution operator, the Hamiltonian operator can act on the wave packet directly which neatly avoids the matrix diagonalization. This propagation scheme is of obvious advantages when the dynamical system has large Hamiltonian matrix. Computational simulations are performed for the calculation of photoelectronic distributions from intense short pulse ionization of K2 and NaI which represent the Born-Oppenheimer (BO) model and Non-BO one, respectively.

  13. A simple photoionization scheme for characterizing electron and ion spectrometers

    NASA Astrophysics Data System (ADS)

    Wituschek, A.; von Vangerow, J.; Grzesiak, J.; Stienkemeier, F.; Mudrich, M.

    2016-08-01

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ˜1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.

  14. Evaluation of a novel 4D in vivo dosimetry system

    SciTech Connect

    Cherpak, A.; Ding, W.; Hallil, A.; Cygler, J. E.

    2009-05-15

    A prototype of a new 4D in vivo dosimetry system capable of simultaneous real-time position monitoring and dose measurement has been developed. The radiation positioning system (RADPOS) is controlled by a computer and combines two technologies: MOSFET radiation detector coupled with an electromagnetic positioning device. Special software has been developed that allows sampling position and dose either manually or automatically in user-defined time intervals. Preliminary tests of the new device include a dosimetric evaluation of the detector in {sup 60}Co, 6 MV, and 18 MV beams and measurements of spatial position stability and accuracy. In addition, the effect of metals and other materials on the performance of the positioning system has been investigated. Results show that the RADPOS system can measure in-air dose profiles that agree, on average, within 3%-5% of diode measurements for the energies tested. The response of the detector is isotropic within 1.6% (1 SD) with a maximum deviation of {+-}4.0% over 360 deg. The maximum variation in the calibration coefficient over field sizes from 6x6 to 25x25 cm{sup 2} was 2.3% for RADPOS probe with the high sensitivity MOSFET and 4.6% for the probe with the standard sensitivity MOSFET. Of the materials tested, only aluminum, lead, and brass caused shifts in the RADPOS read position. The magnitude of the shift varied between materials and size of the material sample. Nonmagnetic stainless steel (Grade 304) caused a distortion of less than 2 mm when placed within 10 mm of the detector; therefore, it can provide a reasonable alternative to other metals if required. The results of the preliminary tests indicate that the device can be used for in vivo dosimetry in {sup 60}Co and high-energy beams from linear accelerators.

  15. Binary 4D seismic history matching, a metric study

    NASA Astrophysics Data System (ADS)

    Chassagne, Romain; Obidegwu, Dennis; Dambrine, Julien; MacBeth, Colin

    2016-11-01

    This paper explores 4D seismic history matching and it specifically focuses on the objective function used during the optimisation with seismic data. The objective function is calculated by using binary maps, where one map is obtained from the observed seismic data and the other is from one realisation of the optimisation algorithm from the simulation model. In order to decide which set of parameters is a relevant update for the simulation model, an efficient way is required to measure how similar these two binary images are, during their evaluation within the objective function. Behind this aspect of quantification of the similarities or dissimilarities lies the metric notion, or the art of measuring distances. Four metrics are proposed with this study, the well-known Hamming distance, two widely used metrics, the Hausdorff distance and Mutual Information and a recent metric, called the Current Measure Metric. These metrics will be tested and compared on different case scenarios, designed in accordance to a real field case (gas exsolution) before being used in the second part of the paper. Despite its simplicity, the Hamming distance gives positive results, but the Current Measure Metric appears to be a more efficient choice to cover a wider range of scenarios, these conclusions remain true when tested on synthetic and real dataset in a history matching exercise. Some practical aspects of binary map processes will be examined through the paper, as it is shown that it is more proper to use a derivative free optimisation algorithm and a proper metric should be more inclined to capture global features than local features.

  16. Infrared PINEM developed by diffraction in 4D UEM.

    PubMed

    Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H

    2016-02-23

    The development of four-dimensional ultrafast electron microscopy (4D UEM) has enabled not only observations of the ultrafast dynamics of photon-matter interactions at the atomic scale with ultrafast resolution in image, diffraction, and energy space, but photon-electron interactions in the field of nanoplasmonics and nanophotonics also have been captured by the related technique of photon-induced near-field electron microscopy (PINEM) in image and energy space. Here we report a further extension in the ongoing development of PINEM using a focused, nanometer-scale, electron beam in diffraction space for measurements of infrared-light-induced PINEM. The energy resolution in diffraction mode is unprecedented, reaching 0.63 eV under the 200-keV electron beam illumination, and separated peaks of the PINEM electron-energy spectrum induced by infrared light of wavelength 1,038 nm (photon energy 1.2 eV) have been well resolved for the first time, to our knowledge. In a comparison with excitation by green (519-nm) pulses, similar first-order PINEM peak amplitudes were obtained for optical fluence differing by a factor of more than 60 at the interface of copper metal and vacuum. Under high fluence, the nonlinear regime of IR PINEM was observed, and its spatial dependence was studied. In combination with PINEM temporal gating and low-fluence infrared excitation, the PINEM diffraction method paves the way for studies of structural dynamics in reciprocal space and energy space with high temporal resolution.

  17. Fast interactive exploration of 4D MRI flow data

    NASA Astrophysics Data System (ADS)

    Hennemuth, A.; Friman, O.; Schumann, C.; Bock, J.; Drexl, J.; Huellebrand, M.; Markl, M.; Peitgen, H.-O.

    2011-03-01

    1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing

  18. Infrared PINEM developed by diffraction in 4D UEM

    PubMed Central

    Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H.

    2016-01-01

    The development of four-dimensional ultrafast electron microscopy (4D UEM) has enabled not only observations of the ultrafast dynamics of photon–matter interactions at the atomic scale with ultrafast resolution in image, diffraction, and energy space, but photon–electron interactions in the field of nanoplasmonics and nanophotonics also have been captured by the related technique of photon-induced near-field electron microscopy (PINEM) in image and energy space. Here we report a further extension in the ongoing development of PINEM using a focused, nanometer-scale, electron beam in diffraction space for measurements of infrared-light-induced PINEM. The energy resolution in diffraction mode is unprecedented, reaching 0.63 eV under the 200-keV electron beam illumination, and separated peaks of the PINEM electron-energy spectrum induced by infrared light of wavelength 1,038 nm (photon energy 1.2 eV) have been well resolved for the first time, to our knowledge. In a comparison with excitation by green (519-nm) pulses, similar first-order PINEM peak amplitudes were obtained for optical fluence differing by a factor of more than 60 at the interface of copper metal and vacuum. Under high fluence, the nonlinear regime of IR PINEM was observed, and its spatial dependence was studied. In combination with PINEM temporal gating and low-fluence infrared excitation, the PINEM diffraction method paves the way for studies of structural dynamics in reciprocal space and energy space with high temporal resolution. PMID:26848135

  19. Polyacrylamide gel electrophoresis of intact bacteriophage T4D particles.

    PubMed Central

    Childs, J D; Birnboim, H C

    1975-01-01

    A method for the electrophoresis of intact bacteriophage T4D particles through polyacrylamide gels has been developed. It was found that phage particles will migrate through dilute polyacrylamide gels (less than 2.1%) in the presence of a low concentration of MgCl2. As few as 5 x 10(9) phage particles can be seen directly as a light-scattering band during the course of electrophoresis. The band can also be detected by scanning gels at 260 to 265 nm or by eluting viable phage particles from gel slices. A new mutant (eph1) has been identified on the basis of its decreased electrophoretic mobility compared with that of the wild type; mutant particles migrated 14% slower than the wild type particles at pH 8.3 and 35% slower at pH 5.0. The isoelectric points of both the wild type and eph1 mutant were found to be between pH 4.0 and 5.0. Particles of T4 with different head lengths were also studied. Petite particles (heads 20% shorter than normal) migrated at the same rate as normal-size particles. Giant particles, heterogenous with respect to head length (two to nine times normal), migrated faster than normal-size particles as a diffuse band. This diffuseness was due to separation within the band of particles having mobilities ranging from 8 to 35% faster than those of normal-size particles. These observations extend the useful range of polyacrylamide gel electrophoresis to include much larger particles than have previously been studied, including most viruses. Images PMID:240037

  20. 4D measurement system for automatic location of anatomical structures

    NASA Astrophysics Data System (ADS)

    Witkowski, Marcin; Sitnik, Robert; Kujawińska, Małgorzata; Rapp, Walter; Kowalski, Marcin; Haex, Bart; Mooshake, Sven

    2006-04-01

    Orthopedics and neurosciences are fields of medicine where the analysis of objective movement parameters is extremely important for clinical diagnosis. Moreover, as there are significant differences between static and dynamic parameters, there is a strong need of analyzing the anatomical structures under functional conditions. In clinical gait analysis the benefits of kinematical methods are undoubted. In this paper we present a 4D (3D + time) measurement system capable of automatic location of selected anatomical structures by locating and tracing the structures' position and orientation in time. The presented system is designed to help a general practitioner in diagnosing selected lower limbs' dysfunctions (e.g. knee injuries) and also determine if a patient should be directed for further examination (e.g. x-ray or MRI). The measurement system components are hardware and software. For the hardware part we adapt the laser triangulation method. In this way we can evaluate functional and dynamic movements in a contact-free, non-invasive way, without the use of potentially harmful radiation. Furthermore, opposite to marker-based video-tracking systems, no preparation time is required. The software part consists of a data acquisition module, an image processing and point clouds (point cloud, set of points described by coordinates (x, y, z)) calculation module, a preliminary processing module, a feature-searching module and an external biomechanical module. The paper briefly presents the modules mentioned above with the focus on the feature-searching module. Also we present some measurement and analysis results. These include: parameters maps, landmarks trajectories in time sequence and animation of a simplified model of lower limbs.

  1. 4-d magnetism: Electronic structure and magnetism of some Mo-based alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Bose, S. K.; Kudrnovský, J.

    2017-02-01

    We report results of a first-principles density-functional study of alloys of the 4 d -element Mo with group IV elements Si, Ge and Sn in zinc blende (ZB) and rock salt (RS) structures. The study was motivated by a similar study of ours based on the 4 d -element Tc, which showed the presence of half-metallic states with integer magnetic moment (1μB) per formula unit in TcX (X=C, Si, Ge) alloys. The calculated Curie temperatures for the ferromagnetic (FM) phases were low, around or less than 300 K. Searching for the possibility of 4 d -based alloys with higher Curie temperatures we have carried out the study involving the elements Mo, Ru and Rh. Among these the most promising case appears to be that involving the element Mo. Among the MoX (X=Si, Ge, Sn) alloys in ZB and RS structures, both MoGe and MoSn in ZB structures are found to possess an integer magnetic moment of 2μB per formula unit. ZB MoSn can be classified as a marginal/weak half-metal or a spin gapless semiconductor, while ZB MoGe would be best described as a gapless magnetic semiconductor. The calculated Curie temperatures are in the range 300-700 K. Considering the theoretical uncertainty in the band gaps due not only to the treatment of exchange and correlation effects, but density functional theory itself, these classifications may change somewhat, but both merit investigation from the viewpoint of potential spintronic application. Based on their higher Curie temperatures, Mo-based alloys would serve such purpose better than the previously reported Tc-based ones.

  2. Franck—Condon breakdown as a probe of continuum coupling in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep; Choi, Heung Cheun; Poliakoff, E. D.

    1992-03-01

    We have measured vibrational branching ratios for 4σ -1 photoionization of CO in order to characterize continuum channel coupling. The results indicate that the shape resonance in the 5σ→ɛσ channel influences vibrational branching ratios of the 4σ -1 channel via continuum coupling, and the data illustrate how continuum channel coupling affects molecular photoionization dynamics.

  3. Research on fluorescence from photoionization, photodissociation, and vacuum, along with bending quantrum study

    NASA Technical Reports Server (NTRS)

    Judge, D. L.

    1975-01-01

    Reports of research concerning the fluorescence of CS2 are presented. Fluorescence from fragments of CS2 vapor produced by vacuum ultraviolet radiation, and fluorescence from photoionization of CS2 vapor are discussed along with fluorescence produced by photodissociation of CS2, and fluorescence from photoionization of OCS.

  4. An ecological risk assessment of the exposure and effects of 2,4-D acid to rainbow trout (Onchorhyncus mykiss)

    USGS Publications Warehouse

    Fairchild, J.F.; Feltz, K.P.; Allert, A.L.; Sappington, L.C.; Nelson, K.J.; Valle, J.A.

    2009-01-01

    Numerous state and federal agencies are increasingly concerned with the rapid expansion of invasive, noxious weeds across the United States. Herbicides are frequently applied as weed control measures in forest and rangeland ecosystems that frequently overlap with critical habitats of threatened and endangered fish species. However, there is little published chronic toxicity data for herbicides and fish that can be used to assess ecological risk of herbicides in aquatic environments. We conducted 96-h flowthrough acute and 30-day chronic toxicity studies with swim-up larvae and juvenile rainbow trout (Onchorhyncus mykiss) exposed to the free acid form of 2,4-D. Juvenile rainbow trout were acutely sensitive to 2,4-D acid equivalent at 494 mg/L (95% confidence interval [CI] 334-668 mg/L; 96-h ALC50). Accelerated life-testing procedures, used to estimate chronic mortality from acute data, predicted that a 30-day exposure of juvenile rainbow trout to 2,4-D would result in 1% and 10% mortality at 260 and 343 mg/L, respectively. Swim-up larvae were chronically more sensitive than juveniles using growth as the measurement end point. The 30-day lowest observable effect concentration (LOEC) of 2,4-D on growth of swim-up larvae was 108 mg/L, whereas the 30-day no observable effect concentration (NOEC) was 54 mg/L. The 30-day maximum acceptable toxicant concentration (MATC) of 2,4-D for rainbow trout, determined as the geometric mean of the NOEC and the LOEC, was 76 mg/L. The acute:chronic ratio was 6.5 (i.e., 494/76). We observed no chronic effects on growth of juvenile rainbow trout at the highest concentration tested (108 mg/L). Worst-case aquatic exposures to 2,4-D (4 mg/L) occur when the herbicide is directly applied to aquatic ecosystems for aquatic weed control and resulted in a 30-day safety factor of 19 based on the MATC for growth (i.e., 76/4). Highest nontarget aquatic exposures to 2,4-D applied following terrestrial use is calculated at 0.136 mg/L and resulted in a

  5. An ecological risk assessment of the exposure and effects of 2,4-D acid to rainbow trout (Onchorhyncus mykiss).

    PubMed

    Fairchild, J F; Feltz, K P; Allert, A L; Sappington, L C; Nelson, K J; Valle, J A

    2009-05-01

    Numerous state and federal agencies are increasingly concerned with the rapid expansion of invasive, noxious weeds across the United States. Herbicides are frequently applied as weed control measures in forest and rangeland ecosystems that frequently overlap with critical habitats of threatened and endangered fish species. However, there is little published chronic toxicity data for herbicides and fish that can be used to assess ecological risk of herbicides in aquatic environments. We conducted 96-h flowthrough acute and 30-day chronic toxicity studies with swim-up larvae and juvenile rainbow trout (Onchorhyncus mykiss) exposed to the free acid form of 2,4-D. Juvenile rainbow trout were acutely sensitive to 2,4-D acid equivalent at 494 mg/L (95% confidence interval [CI] 334-668 mg/L; 96-h ALC(50)). Accelerated life-testing procedures, used to estimate chronic mortality from acute data, predicted that a 30-day exposure of juvenile rainbow trout to 2,4-D would result in 1% and 10% mortality at 260 and 343 mg/L, respectively. Swim-up larvae were chronically more sensitive than juveniles using growth as the measurement end point. The 30-day lowest observable effect concentration (LOEC) of 2,4-D on growth of swim-up larvae was 108 mg/L, whereas the 30-day no observable effect concentration (NOEC) was 54 mg/L. The 30-day maximum acceptable toxicant concentration (MATC) of 2,4-D for rainbow trout, determined as the geometric mean of the NOEC and the LOEC, was 76 mg/L. The acute:chronic ratio was 6.5 (i.e., 494/76). We observed no chronic effects on growth of juvenile rainbow trout at the highest concentration tested (108 mg/L). Worst-case aquatic exposures to 2,4-D (4 mg/L) occur when the herbicide is directly applied to aquatic ecosystems for aquatic weed control and resulted in a 30-day safety factor of 19 based on the MATC for growth (i.e., 76/4). Highest nontarget aquatic exposures to 2,4-D applied following terrestrial use is calculated at 0.136 mg/L and resulted in

  6. 2D-4D correspondence: Towers of kinks versus towers of monopoles in N=2 theories

    NASA Astrophysics Data System (ADS)

    Bolokhov, Pavel A.; Shifman, Mikhail; Yung, Alexei

    2012-04-01

    We continue to study the BPS spectrum of the N=(2,2) CPN-1 model with the ZN-symmetric twisted mass terms. We focus on analysis of the “extra” towers found previously in [P. A. Bolokhov, M. Shifman, and A. Yung, arXiv:1104.5241], and compare them to the states that can be identified in the quasiclassical domain. Exact analysis of the strong-coupling states shows that not all of them survive when passing to the weak-coupling domain. Some of the states decay on the curves of the marginal stability. Thus, not all strong-coupling states can be analytically continued to weak coupling to match the observable bound states. At weak coupling, we confirm the existence of bound states of topologically charged kinks and elementary quanta. Quantization of the U(1) kink modulus leads to formation of towers of such states. For the ZN-symmetric twisted masses their number is by far less than N-1 as was conjectured previously. We investigate the quasiclassical limit and show that out of N possible towers only two survive in the spectrum for odd N, and a single tower for even N. In the case of CP2 theory the related curves of the marginal stability are discussed in detail. In these points we overlap and completely agree with the results of Dorey and Petunin. We also comment on 2D-4D correspondence.

  7. Dirac R-matrix calculations of photoionization cross sections of Ni XII and atomic structure data of Ni XIII

    NASA Astrophysics Data System (ADS)

    Nazir, R. T.; Bari, M. A.; Bilal, M.; Sardar, S.; Nasim, M. H.; Salahuddin, M.

    2017-02-01

    We performed R-matrix calculations for photoionization cross sections of the two ground state configuration 3s23p5 (^2P^o3/2,1/2) levels and 12 excited states of Ni XII using relativistic Dirac Atomic R-matrix Codes (DARC) across the photon energy range between the ionizations thresholds of the corresponding states and well above the thresholds of the last level of the Ni XIII target ion. Generally, a good agreement is obtained between our results and the earlier theoretical photoionization cross sections. Moreover, we have used two independent fully relativistic GRASP and FAC codes to calculate fine-structure energy levels, wavelengths, oscillator strengths, transitions rates among the lowest 48 levels belonging to the configuration (3s23p4, 3s3p5, 3p6, 3s23p33d) in Ni XIII. Additionally, radiative lifetimes of all the excited states of Ni XIII are presented. Our results of the atomic structure of Ni XIII show good agreement with other theoretical and experimental results available in the literature. A good agreement is found between our calculated lifetimes and the experimental ones. Our present results are useful for plasma diagnostic of fusion and astrophysical plasmas.

  8. 32 CFR 1630.43 - Class 4-D: Minister of religion.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Class 4-D: Minister of religion. 1630.43 Section... CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D who is a: (a) Duly ordained minister of religion; or (b)...

  9. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...

  10. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...

  11. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...

  12. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...

  13. 40 CFR 180.142 - 2,4-D; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...,4-D; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide... § 180.1(l), are established for residues of the herbicide, plant regulator, and fungicide 2,4-D (2,4... established for indirect or inadvertent residues of the herbicide, plant regulator, and fungicide 2,4-D...

  14. 40 CFR 180.142 - 2,4-D; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...,4-D; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide... § 180.1(m), are established for residues of the herbicide, plant regulator, and fungicide 2,4-D (2,4... established for indirect or inadvertent residues of the herbicide, plant regulator, and fungicide 2,4-D...

  15. 2,4-D removal via denitrification using volatile fatty acids.

    PubMed

    He, X; Wareham, D G

    2011-01-01

    Many countries have waters contaminated with both herbicides and nitrates; however, information is limited with respect to removal rates for combined nitrate and herbicide elimination. This research investigates the removal of 2,4-D via denitrification, with a particular emphasis on the effect of adding naturally generated volatile fatty acids (VFAs). The acids were produced from an acid-phase anaerobic digester with a mean VFA concentration of 3153±801 mg/L (as acetic acid). Initially, 2,4-D degrading bacteria were developed in an SBR fed with both sewage and 2,4-D (30-100 mg/L). Subsequent denitrification batch tests demonstrated that the specific denitrification rate increased from 0.0119±0.0039 using 2,4-D alone to 0.0192±0.0079 g NO₃-N/g VSS per day, when 2,4-D was combined with natural VFAs from the digester. Similarly, the specific 2,4-D consumption rate increased from 0.0016±0.0009 using 2,4-D alone to 0.0055±0.0021 g 2,4-D/g VSS per day, when using 2,4-D plus natural VFAs. Finally, a parallel increase in the percent 2,4-D removal was observed, rising from 28.33±11.88 using 2,4-D alone to 54.17±21.89 using 2,4-D plus natural VFAs.

  16. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    SciTech Connect

    Not Available

    1992-07-01

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

  17. 4D tumor centroid tracking using orthogonal 2D dynamic MRI: Implications for radiotherapy planning

    SciTech Connect

    Tryggestad, Erik; Flammang, Aaron; Shea, Steven M.; Hales, Russell; Herman, Joseph; Lee, Junghoon; McNutt, Todd; Roland, Teboh; Wong, John

    2013-09-15

    Purpose: Current pretreatment, 4D imaging techniques are suboptimal in that they sample breathing motion over a very limited “snapshot” in time. Heretofore, long-duration, 4D motion characterization for radiotherapy planning, margin optimization, and validation have been impractical for safety reasons, requiring invasive markers imaged under x-ray fluoroscopy. To characterize 3D tumor motion and associated variability over durations more consistent with treatments, the authors have developed a practical dynamic MRI (dMRI) technique employing two orthogonal planes acquired in a continuous, interleaved fashion.Methods: 2D balanced steady-state free precession MRI was acquired continuously over 9–14 min at approximately 4 Hz in three healthy volunteers using a commercial 1.5 T system; alternating orthogonal imaging planes (sagittal, coronal, sagittal, etc.) were employed. The 2D in-plane pixel resolution was 2 × 2 mm{sup 2} with a 5 mm slice profile. Simultaneous with image acquisition, the authors monitored a 1D surrogate respiratory signal using a device available with the MRI system. 2D template matching-based anatomic feature registration, or tracking, was performed independently in each orientation. 4D feature tracking at the raw frame rate was derived using spline interpolation.Results: Tracking vascular features in the lung for two volunteers and pancreatic features in one volunteer, the authors have successfully demonstrated this method. Registration error, defined here as the difference between the sagittal and coronal tracking result in the SI direction, ranged from 0.7 to 1.6 mm (1σ) which was less than the acquired image resolution. Although the healthy volunteers were instructed to relax and breathe normally, significantly variable respiration was observed. To demonstrate potential applications of this technique, the authors subsequently explored the intrafraction stability of hypothetical tumoral internal target volumes and 3D spatial probability

  18. Photoionization cross sections for O-like S IX: a Breit-Pauli R-matrix calculation

    NASA Astrophysics Data System (ADS)

    Tyndall, N. B.; Ramsbottom, C. A.; Hibbert, A.; Ferland, G.

    2015-08-01

    In this paper we present photoionization cross sections for the lowest five states of O-like S IX (1s22s22p4 3P0,1,2, 1D2, 1S0). The relativistic Breit-Pauli R-matrix codes were utilized including all terms of the 2s22p3, 2s2p4, 2p5, 2s22p23s, 3p, 3d and 2s2p33s, 3p, 3d configurations in the expansion of the collision wavefunction for S X. It was also found that to achieve convergence of the low-lying energy separations of the target levels, an additional 21 configuration functions needed to be included in the configuration interaction expansion, incorporating two-electron excitations from the 2s and 2p shells to the 3s, 3p and 3d shells. The present work thus constitutes the most sophisticated photoionization evaluation for ground and metastable levels of the S IX ion. Direct comparisons have been made with the only available data found on the OPEN-ADAS database between level resolved contributions of the spectrum. This comparison for the background cross section exhibits excellent agreement at all photon energies for each partial photoionization cross section contribution investigated. Finally, the autoionizing bound states arising from numerous open channels have also been investigated and identified using the QB approach, a procedure for analyzing resonances in atomic and molecular collision theory which exploits the analytic properties of R-matrix theory. Major Rydberg resonance series are also presented and tabulated for the dominant linewidths considered.

  19. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    NASA Astrophysics Data System (ADS)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s‑1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s‑1 has a density in the range of 109 to 1010 cm‑3 and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s‑1 has a density of 103 cm‑3 and a distance of ∼1 kpc.

  20. Connecting field ionization to photoionization via 17- and 36-GHz microwave fields

    SciTech Connect

    Gurian, J. H.; Overstreet, K. R.; Gallagher, T. F.; Maeda, H.

    2010-10-15

    Here we present experimental results connecting field ionization to photoionization in Li Rydberg atoms obtained with 17- and 36-GHz microwave fields. At a low principal quantum number n, where the microwave frequency {omega} is much lower than the classical, or Kepler frequency, {omega}{sub K}=1/n{sup 3}, microwave ionization occurs by field ionization, at E=1/9n{sup 4}. When the microwave frequency exceeds the Kepler frequency, {omega}>1/n{sup 3}, the field required for ionization is independent of n and given by E=2.4{omega}{sup 5/3}, in agreement with dynamic localization models, which cross over to a Fermi's Golden Rule approach at the photoionization limit. A surprising aspect of our results is that when {omega}{approx_equal}1/2n{sup 2}, the one- and multiphoton ionization rates are similar, and even at the lowest microwave powers, all are 10 times lower than the perturbation theory rate calculated for single-photon ionization. Further, we show that when the Rydberg atoms are excited in the presence of the microwave field, the probability of an atom's being bound at the end of the microwave pulse passes smoothly across the limit. This microwave stimulated recombination to bound Rydberg states can be well described by a simple classical model. More generally, these results suggest that the problem of a Rydberg atom coupled to a high-frequency microwave field is similar to the problem of interchannel internal coupling in multilimit atoms, a problem well described by quantum defect theory.

  1. A dose error evaluation study for 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  2. Experimenting with the GMAO 4D Data Assimilation

    NASA Technical Reports Server (NTRS)

    Todling, R.; El Akkraoui, A.; Errico, R. M.; Guo, J.; Kim, J.; Kliest, D.; Parrish, D. F.; Suarez, M.; Trayanov, A.; Tremolet, Yannick; Whitaker, J.

    2012-01-01

    The Global Modeling and Assimilation Office (GMAO) has been working to promote its prototype four-dimensional variational (4DVAR) system to a version that can be exercised at operationally desirable configurations. Beyond a general circulation model (GeM) and an analysis system, traditional 4DV AR requires availability of tangent linear (TL) and adjoint (AD) models of the corresponding GeM. The GMAO prototype 4DVAR uses the finite-volume-based GEOS GeM and the Grid-point Statistical Interpolation (GSI) system for the first two, and TL and AD models derived ITom an early version of the finite-volume hydrodynamics that is scientifically equivalent to the present GEOS nonlinear GeM but computationally rather outdated. Specifically, the TL and AD models hydrodynamics uses a simple (I-dimensional) latitudinal MPI domain decomposition, which has consequent low scalability and prevents the prototype 4DV AR ITom being used in realistic applications. In the near future, GMAO will be upgrading its operational GEOS GCM (and assimilation system) to use a cubed-sphere-based hydrodynamics. This versions of the dynamics scales to thousands of processes and has led to a decision to re-derive the TL and AD models for this more modern dynamics, thus taking advantage of a two-dimensional MPI decomposition and improved scalability properties. With the aid of the Transformation of Algorithms in FORTRAN (l'AF) automatic adjoint generation tool and some hand-coding, a version of the cubed-sphere-based TL and AD models, with a simplified vertical diffusion scheme, is now available, enabling multiple configurations of standard implementations of 4DV AR in GEOS. Concurrent to this development, collaboration with the National Centers for Environmental Prediction (NCEP) and the Earth System Research Laboratory (ESRL) has allowed GMAO to implement a hybrid-ensemble capability within the GEOS data assimilation system. Both 3Dand 4D-ensemble capabilities are presently available thus allowing

  3. Predicting lower mantle heterogeneity from 4-D Earth models

    NASA Astrophysics Data System (ADS)

    Flament, Nicolas; Williams, Simon; Müller, Dietmar; Gurnis, Michael; Bower, Dan J.

    2016-04-01

    basal layer ˜ 4% denser than ambient mantle. Increasing convective vigour (Ra ≈ 5 x 108) or decreasing the density of the basal layer decreases both the accuracy and sensitivity of the predicted lower mantle structure. References: D. J. Bower, M. Gurnis, N. Flament, Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8-22 (2015). V. Lekic, S. Cottaar, A. Dziewonski, B. Romanowicz, Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68-77 (2012).

  4. Interactive 4D Visualization of Sediment Transport Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.; Englert, C. M.

    2013-12-01

    Coastal sediment transport models simulate the effects that waves, currents, and tides have on near-shore bathymetry and features such as beaches and barrier islands. Understanding these dynamic processes is integral to the study of coastline stability, beach erosion, and environmental contamination. Furthermore, analyzing the results of these simulations is a critical task in the design, placement, and engineering of coastal structures such as seawalls, jetties, support pilings for wind turbines, etc. Despite the importance of these models, there is a lack of available visualization software that allows users to explore and perform analysis on these datasets in an intuitive and effective manner. Existing visualization interfaces for these datasets often present only one variable at a time, using two dimensional plan or cross-sectional views. These visual restrictions limit the ability to observe the contents in the proper overall context, both in spatial and multi-dimensional terms. To improve upon these limitations, we use 3D rendering and particle system based illustration techniques to show water column/flow data across all depths simultaneously. We can also encode multiple variables across different perceptual channels (color, texture, motion, etc.) to enrich surfaces with multi-dimensional information. Interactive tools are provided, which can be used to explore the dataset and find regions-of-interest for further investigation. Our visualization package provides an intuitive 4D (3D, time-varying) visualization of sediment transport model output. In addition, we are also integrating real world observations with the simulated data to support analysis of the impact from major sediment transport events. In particular, we have been focusing on the effects of Superstorm Sandy on the Redbird Artificial Reef Site, offshore of Delaware Bay. Based on our pre- and post-storm high-resolution sonar surveys, there has significant scour and bedform migration around the

  5. Detecting default mode networks in utero by integrated 4D fMRI reconstruction and analysis.

    PubMed

    Seshamani, Sharmishtaa; Blazejewska, Anna I; Mckown, Susan; Caucutt, Jason; Dighe, Manjiri; Gatenby, Christopher; Studholme, Colin

    2016-11-01

    Recently, there has been considerable interest, especially for in utero imaging, in the detection of functional connectivity in subjects whose motion cannot be controlled while in the MRI scanner. These cases require two advances over current studies: (1) multiecho acquisitions and (2) post processing and reconstruction that can deal with significant between slice motion during multislice protocols to allow for the ability to detect temporal correlations introduced by spatial scattering of slices into account. This article focuses on the estimation of a spatially and temporally regular time series from motion scattered slices of multiecho fMRI datasets using a full four-dimensional (4D) iterative image reconstruction framework. The framework which includes quantitative MRI methods for artifact correction is evaluated using adult studies with and without motion to both refine parameter settings and evaluate the analysis pipeline. ICA analysis is then applied to the 4D image reconstruction of both adult and in utero fetal studies where resting state activity is perturbed by motion. Results indicate quantitative improvements in reconstruction quality when compared to the conventional 3D reconstruction approach (using simulated adult data) and demonstrate the ability to detect the default mode network in moving adults and fetuses with single-subject and group analysis. Hum Brain Mapp 37:4158-4178, 2016. © 2016 Wiley Periodicals, Inc.

  6. In vivo determination of elastic properties of the human aorta based on 4D ultrasound data.

    PubMed

    Wittek, Andreas; Karatolios, Konstantinos; Bihari, Peter; Schmitz-Rixen, Thomas; Moosdorf, Rainer; Vogt, Sebastian; Blase, Christopher

    2013-11-01

    Computational analysis of the biomechanics of the vascular system aims at a better understanding of its physiology and pathophysiology. To be of clinical use, however, these models and thus their predictions, have to be patient specific regarding geometry, boundary conditions and material. In this paper we present an approach to determine individual material properties of human aortae based on a new type of in vivo full field displacement data acquired by dimensional time resolved three dimensional ultrasound (4D-US) imaging. We developed a nested iterative Finite Element Updating method to solve two coupled inverse problems: The prestrains that are present in the imaged diastolic configuration of the aortic wall are determined. The solution of this problem is integrated in an iterative method to identify the nonlinear hyperelastic anisotropic material response of the aorta to physiologic deformation states. The method was applied to 4D-US data sets of the abdominal aorta of five healthy volunteers and verified by a numerical experiment. This non-invasive in vivo technique can be regarded as a first step to determine patient individual material properties of the human aorta.

  7. Semantic World Modelling and Data Management in a 4d Forest Simulation and Information System

    NASA Astrophysics Data System (ADS)

    Roßmann, J.; Hoppen, M.; Bücken, A.

    2013-08-01

    Various types of 3D simulation applications benefit from realistic forest models. They range from flight simulators for entertainment to harvester simulators for training and tree growth simulations for research and planning. Our 4D forest simulation and information system integrates the necessary methods for data extraction, modelling and management. Using modern methods of semantic world modelling, tree data can efficiently be extracted from remote sensing data. The derived forest models contain position, height, crown volume, type and diameter of each tree. This data is modelled using GML-based data models to assure compatibility and exchangeability. A flexible approach for database synchronization is used to manage the data and provide caching, persistence, a central communication hub for change distribution, and a versioning mechanism. Combining various simulation techniques and data versioning, the 4D forest simulation and information system can provide applications with "both directions" of the fourth dimension. Our paper outlines the current state, new developments, and integration of tree extraction, data modelling, and data management. It also shows several applications realized with the system.

  8. QED Corrections to the 4p - 4d Transition Energies of Copperlike Heavy Ions

    SciTech Connect

    Chen, M H; Cheng, K T; Johnson, W R; Sapirstein, J

    2006-08-21

    Quantum electrodynamic (QED) corrections to 4p-4d transition energies of several copper-like ions with Z = 70-92 are calculated non-perturbatively in strong external fields to all orders in binding corrections. Dirac-Kohn-Sham potentials are used to account for screening and core-relaxation effects. For the 4p{sub 1/2}-4d{sub 3/2} transition in copperlike bismuth, thorium and uranium, results are in good agreement with empirical QED corrections deduced from differences between transition energies obtained from recent high-precision electron-beam ion-trap (EBIT) measurements and those calculated with the relativistic many-body perturbation theory (RMBPT). These comparisons provide sensitive tests of QED corrections for high angular momentum states in many-electron heavy ions and illustrate the importance of core-relaxation corrections. Comparisons are also made with other theories and with experiment on the 4s-4p transition energies of high-Z Cu-like ions as accuracy checks of the present RMBPT and QED calculations.

  9. QED corrections to the 4p-4d transition energies of copperlike heavy ions

    SciTech Connect

    Chen, M. H.; Cheng, K. T.; Johnson, W. R.; Sapirstein, J.

    2006-10-15

    Quantum electrodynamic (QED) corrections to 4p-4d transition energies of several copperlike ions with Z=70-92 are calculated nonperturbatively in strong external fields to all orders in binding corrections. Dirac-Kohn-Sham potentials are used to account for screening and core-relaxation effects. For the 4p{sub 1/2}-4d{sub 3/2} transition in copperlike bismuth, thorium, and uranium, results are in good agreement with empirical QED corrections deduced from differences between transition energies obtained from recent high-precision electron-beam ion-trap measurements and those calculated with the relativistic many-body perturbation theory (RMBPT). These comparisons provide sensitive tests of QED corrections for high-angular-momentum states in many-electron heavy ions and illustrate the importance of core-relaxation corrections. Comparisons are also made with other theories and with experiments on the 4s-4p transition energies of high-Z Cu-like ions as accuracy checks of the present RMBPT and QED calculations.

  10. Photoionization sensor CES for non-invasive medical diagnostics

    NASA Astrophysics Data System (ADS)

    Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia

    2016-10-01

    Method CES (collisional electron spectroscopy), patented in Russia, the USA, Japan, China, Germany and Britain, allows to analyze the gaseous mixtures using electron spectroscopy under high pressures up to atmospheric without using vacuum. The design of VUV photoionization detector was developed based on this method. Such detector is used as a portable gas analyzer for continuous personal bio-medical monitoring. This detector measures energy of electrons produced in ionization with resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). Nowadays, micro plasma source of such photons on resonant line of Kr with energy of 10,6 eV is developed. Only impurities are ionized and detected by the VUV-emission, meanwhile the main components of air stay neutral that reduces background signal and increases the sensibility along with accuracy. The experimental facilities with VUV photoionization sensors CES are constructed with the overall sizes about 10*10*1 mm. The watt consumption may comprise less than 1W. Increase of electrometer amplifier's sensibility and more high-aperture construction are used today to increase the sensibility of CES-detectors. The wide range of detectable molecules and high sensitivity allow the development of portable device, which can become the base of the future preventive medicine. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.

  11. Valence shell photoionization of SF6 and high harmonic generation

    NASA Astrophysics Data System (ADS)

    Jobin, Jobin; Fulfer, K.; Wilson, B.; Poliakoff, E.; Trallero, C.; Mondal, S.; Le, A.-T.; Lin, C.-D.; Lucchese, Robert

    2013-05-01

    When an atom or molecule is exposed to highly intense laser fields, the target can emit coherent radiation at photon energies which are multiples of incident laser energy. This process is known as High-order harmonic generation (HHG). There has been experimental and theoretical investigation of HHG for atoms and simple linear molecules. However, there have been few such studies for non-linear polyatomic molecules. In the current work, we investigate HHG for SF6 experimentally and theoretically. We employ quantitative rescattering theory (QRS) which makes use of the magnitude and phase of the dipole transition matrix elements for photoionization. For calculating dipole transition matrix elements we employ the ePolyscat static-exchange method. The features seen in the computed results will be compared to corresponding features in the measured HHG spectrum. The calculation is repeated for different polarization of incident laser and different intensities. The analysis allows us to reproduce then understand experimentally measured HHG spectra from SF6. Additionally, the valence shell photoionization parameters are also compared with several other theoretical and experimental results.

  12. Localization of a continuum shape resonance - Photoionization of CS2

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep; Choi, Heung-Cheun; Poliakoff, E. D.

    1992-10-01

    We report a vibrationally resolved investigation into the 5sigma(u) exp -1 shape-resonant ionization dynamics for CS2 in the range h nu 18-30 eV. The intensity of dispersed fluorescence from CS2(+)(B 2Sigma(u)(+) photoions is measured to obtain partial photoionization cross-section curves for the v = (0,0,0) and (1,0,0) levels of CS2(+)(B 2Sigma(u)(+), as well as the vibrational branching ratio. Our results indicate a shape resonance at hv equal to about 21 eV which is insensitive to changes in the symmetric stretching coordinate. These data are consistent with recent theoretical efforts that predict a shape resonance in the 5sigma(u) - epsilon pi(g) channel. All previous vibrationally resolved data on shape resonances have been obtained for systems whose shape resonances occur in the (epsilon sigma) continuum. The current results are in contrast to behavior observed for other shape resonances, highlighting both their diverse nature and possible extensions of the current measurements.

  13. Attosecond delays in photoionization: time and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard

    2014-10-01

    This article addresses topics regarding time measurements performed on quantum systems. The motivation is linked to the advent of ‘attophysics’ which makes feasible to follow the motion of electrons in atoms and molecules, with time resolution at the attosecond (1 as = 10-18 s) level, i.e. at the natural scale for electronic processes in these systems. In this context, attosecond ‘time-delays’ have been recently measured in experiments on photoionization and the question arises if such advances could cast a new light on the still active discussion on the status of the time variable in quantum mechanics. One issue still debatable is how to decide whether one can define a quantum time operator with eigenvalues associated to measurable ‘time-delays’, or time is a parameter, as it is implicit in the Newtonian classical mechanics. One objective of this paper is to investigate if the recent attophysics-based measurements could shed light on this parameter-operator conundrum. To this end, we present here the main features of the theory background, followed by an analysis of the experimental schemes that have been used to evidence attosecond ‘time-delays’ in photoionization. Our conclusion is that these results reinforce the view that time is a parameter which cannot be defined without reference to classical mechanics.

  14. Generalizations and applications of Bethe's treatment of photoionization

    NASA Astrophysics Data System (ADS)

    Langhoff, P. W.; Arce, J. C.; Winstead, C. L.

    2006-05-01

    Extensions and elaborations are reported of the late Hans Bethe's non-stationary or initial-value treatment of photoionization based on Dirac variation-of-constants solution of the time-dependent Schr"odinger equation [Ann. Physik, 5, 433 (1930)] . His method is applied to complex anisotropic targets, including molecules both randomly oriented and fixed in space, and to more general dynamical aspects of the time evolution of photo-excitation and ionization processes. Explicit expressions are derived for photoionization cross sections differential in ejected electron direction for polyatomic molecules in terms of a minimal set of body-frame angular distribution functions for incident dipole radiation of arbitrary polarization. A generalization of the familiar Bethe-Cooper-Zare expression for atomic anisotropy factors applicable to randomly-oriented molecules and other aggregates is obtained which provides useful connections with experiments performed on fixed-in-space molecules. Some representative applications are provided as illustrations of the formalism, including study of the kinematics of elementary excitation and ionization processes and of the natures of the associated transient Ehrenfest's forces operative in these cases. The conceptual and computational advantages of the approach that Bethe developed in such connections are indicated.

  15. Structure-based modeling of dye-fiber affinity with SOM-4D-QSAR paradigm: application to set of anthraquinone derivatives.

    PubMed

    Bak, Andrzej; Wyszomirski, Miroslaw; Magdziarz, Tomasz; Smolinski, Adam; Polanski, Jaroslaw

    2014-01-01

    A comparative structure-affinity study of anthraquinone dyes adsorption on cellulose fibre is presented in this paper. We used receptor-dependent 4D-QSAR methods based on grid and neural (SOM) methodology coupled with IVEPLS procedure. The applied RD 4D-QSAR approach focuses mainly on the ability of mapping dye properties to verify the concept of tinctophore in dye chemistry. Moreover, the stochastic SMV procedure to investigate the predictive ability of the method for a large population of 4D-QSAR models was employed. The obtained findings were compared with the previously published RI 3D/4D-QSAR models for the corresponding anthraquinone trainings sets. The neutral (protonated) and anionic (deprotonated) forms of anthraquinone scaffold were examined in order to deal with the uncertainty of the dye ionization state. The results are comparable to both the neutral and anionic dye sets regardless of the occupancy and charge descriptors applied, respectively. It is worth noting that the SOM-4D-QSAR behaves comparably to the cubic counterpart which is observed in each training/test subset specification (4D-QSAR-Jo vs SOM- 4D-QSARo and 4D-QSAR-Jq vs SOM-4D-QSARq). Additionally, an attempt was made to specify a common set of variables contributing significantly to dye-fiber binding affinity; it was simultaneously performed for some arbitrary chosen SMV models. The presented RD 4D-QSAR methodology together with IVE-PLS procedure provides a robust and predictive modeling technique, which facilitates detailed specification of the molecular motifs significantly contributing to the fiber-dye affinity.

  16. Dynamics of electron emission in double photoionization processes near the krypton 3d threshold

    NASA Astrophysics Data System (ADS)

    Penent, F.; Sheinerman, S.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Becker, U.; Braune, M.; Viefhaus, J.; Eland, J. H. D.

    2008-02-01

    Two-electron emission following photoabsorption near the Kr 3d threshold is investigated both experimentally and theoretically. On the experimental side, electron/electron coincidences using a magnetic bottle time-of-flight spectrometer allow us to observe the complete double photo ionization (DPI) continua of selected Kr2+ final states, and to see how these continua are affected by resonant processes in the vicinity of the Kr 3d threshold. The analysis is based on a quantum mechanical approach that takes into account the contribution of three different processes: (A) Auger decay of the inner 3d vacancy with the associated post-collision interaction (PCI) effects, (B) capture of slow photoelectrons into discrete states followed by valence multiplet decay (VMD) of the excited ionic states and (C) valence shell DPI. The dominant process for each Kr2+(4p-2) final state is the photoionization of the inner shell followed by Auger decay of the 3d vacancies. Moreover, for the 4p-2(3P) and 4p-2(1D) final ionic states an important contribution comes from the processes of slow photoelectron capture followed by VMD as well as from double ionization of the outer shell involving also VMD.

  17. Estrogen-dependent proteolytic cleavage of semaphorin 4D and plexin-B1 enhances semaphorin 4D-induced apoptosis during postnatal vaginal remodeling in pubescent mice.

    PubMed

    Ito, Takuji; Bai, Tao; Tanaka, Tetsuji; Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

    2014-01-01

    Around the fifth week after birth, the vaginal cavity in female mouse pups opens to the overlaying skin. This postnatal tissue remodeling of the genital tract occurs during puberty, and it largely depends upon hormonally induced apoptosis that mainly occurs in the epithelium at the lower part of the mouse vaginal cavity. Previously, we showed that most BALB/c mice lacking the class IV Semaphorin (Sema4D) develop imperforate vagina and hydrometrocolpos; therefore, we reasoned that the absence of Sema4D-induced apoptosis in vaginal epithelial cells may cause the imperforate vagina. Sema4D signals via the Plexin-B1 receptor; nevertheless detailed mechanisms mediating this hormonally triggered apoptosis are not fully documented. To investigate the estrogen-dependent control of Sema4D signaling during the apoptosis responsible for mouse vaginal opening, we examined structural and functional modulation of Sema4D, Plexin-B1, and signaling molecules by analyzing both wild-type and Sema4D-/- mice with or without ovariectomy. Both the release of soluble Sema4D and the conversion of Plexin-B1 by proteolytic processing in vaginal tissue peaked 5 weeks after birth of wild-type BALB/c mice at the time of vaginal opening. Estrogen supplementation of ovariectomized wild-type mice revealed that both the release of soluble Sema4D and the conversion of Plexin-B1 into an active form were estrogen-dependent and concordant with apoptosis. Estrogen supplementation of ovariectomized Sema4D-/- mice did not induce massive vaginal apoptosis in 5-week-old mice; therefore, Sema4D may be an essential apoptosis-inducing ligand that acts downstream of estrogen action in vaginal epithelium during this postnatal tissue remodeling. Analysis of ovariectomized mice also indicated that Sema4D contributed to estrogen-dependent dephosphorylation of Akt and ERK at the time of vaginal opening. Based on our results, we propose that apoptosis in vaginal epithelium during postnatal vaginal opening is induced

  18. PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan

    2017-02-01

    Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at https://bitbucket.org/pflotran/pflotran-dev.

  19. On the ionization and dissociative photoionization of iodomethane: a definitive experimental enthalpy of formation of CH3I.

    PubMed

    Bodi, Andras; Shuman, Nicholas S; Baer, Tomas

    2009-12-14

    The dissociative photoionization onset energy of the CH(3)I --> CH(3)(+) + I reaction was studied at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source (SLS) using a new imaging photoelectron photoion coincidence (iPEPICO) apparatus operating with a photon resolution of 2 meV and a threshold electron kinetic energy resolution of about 1 meV. Three previous attempts at establishing this value accurately, namely a pulsed field ionization (PFI)-PEPICO measurement, ab initio calculations and a mass-analyzed threshold ionization (MATI) experiment, in which the onset energy was bracketed by state-selected excitation to vibrationally excited (2)A(1) A states of the parent ion, have yielded contradictory results. It is shown that dimers and adducts formed in the supersonic molecular beam affected the PFI-PEPICO onset energy. The room temperature iPEPICO experiment yields an accurate 0 K onset of 12.248 +/- 0.003 eV, from which we derive a Delta(f)H(o)(298 K)(CH(3)I) = 15.23 +/- 0.3 kJ mol(-1), and the C-I bond energy in CH(3)I is 232.4 +/- 0.4 kJ mol(-1). The room temperature breakdown diagram shows a fine structure that corresponds to the threshold photoelectron spectrum (TPES) of the A state. Low internal energy neutrals seem to be preferentially ionized in the A state when compared with the X state, and A state peaks in the TPES are Stark-shifted as a function of the DC field, whereas the dissociative photoionization of X state ions is not affected. This suggests that there are different competing mechanisms at play to produce ions in the A state vs. ions in the X state. The competition between field ionization and autoionization in CH(3)I is compared with that in Ar, N(2) and in the H-atom loss energy region in CH(4)(+). The binding energies of the neutral and ionic Ar-CH(3)I clusters were found to be 26 and 66 meV, respectively.

  20. Energy calculation of 2s2 1S, 2p2 1D, 3s2 1S, 3p2 1D, 3d2 1G, 4p2 1D, 4d2 1D, 4f2 1I doubly excited states using a new wave function to four terms for 2 ≤ Z ≤ 15

    NASA Astrophysics Data System (ADS)

    Sow, B.; Sow, M.; Gning, Y.; Traore, A.; Ndao, A. S.; Wague, A.

    2016-06-01

    Calculation of the energy levels of atoms and ions with 2 ≤ Z ≤ 15 are carried out in this paper using a Hyllerass approximation. The method used is one of Screen Constant by Nuclear Charge Unit to calculate the total energy of two-electron atomic systems in ground and different doubly excited states. Employing a new wave function including correlation, we were able to calculate excited states (nl)2 (n ≤ 4). The Comparison of these results with the ones of other methods shows a good agreement.

  1. Fast acquisition of high resolution 4-D amide-amide NOESY with diagonal suppression, sparse sampling and FFT-CLEAN.

    PubMed

    Werner-Allen, Jon W; Coggins, Brian E; Zhou, Pei

    2010-05-01

    Amide-amide NOESY provides important distance constraints for calculating global folds of large proteins, especially integral membrane proteins with beta-barrel folds. Here, we describe a diagonal-suppressed 4-D NH-NH TROSY-NOESY-TROSY (ds-TNT) experiment for NMR studies of large proteins. The ds-TNT experiment employs a spin state selective transfer scheme that suppresses diagonal signals while providing TROSY optimization in all four dimensions. Active suppression of the strong diagonal peaks greatly reduces the dynamic range of observable signals, making this experiment particularly suitable for use with sparse sampling techniques. To demonstrate the utility of this method, we collected a high resolution 4-D ds-TNT spectrum of a 23kDa protein using randomized concentric shell sampling (RCSS), and we used FFT-CLEAN processing for further reduction of aliasing artifacts - the first application of these techniques to a NOESY experiment. A comparison of peak parameters in the high resolution 4-D dataset with those from a conventionally-sampled 3-D control spectrum shows an accurate reproduction of NOE crosspeaks in addition to a significant reduction in resonance overlap, which largely eliminates assignment ambiguity. Likewise, a comparison of 4-D peak intensities and volumes before and after application of the CLEAN procedure demonstrates that the reduction of aliasing artifacts by CLEAN does not systematically distort NMR signals.

  2. Photoionization dynamics of glycine adsorbed on a silicon cluster: ''On-the-fly'' simulations

    SciTech Connect

    Shemesh, Dorit; Baer, Roi; Seideman, Tamar; Gerber, R. Benny

    2005-05-08

    Dynamics of glycine chemisorbed on the surface of a silicon cluster is studied for a process that involves single-photon ionization, followed by recombination with the electron after a selected time delay. The process is studied by ''on-the-fly'' molecular dynamics simulations, using the semiempirical parametric method number 3 (PM3) potential energy surface. The system is taken to be in the ground state prior to photoionization, and time delays from 5 to 50 fs before the recombination are considered. The time evolution is computed over 10 ps. The main findings are (1) the positive charge after ionization is initially mostly distributed on the silicon cluster. (2) After ionization the major structural changes are on the silicon cluster. These include Si-Si bond breaking and formation and hydrogen transfer between different silicon atoms. (3) The transient ionization event gives rise to dynamical behavior that depends sensitively on the ion state lifetime. Subsequent to 45 fs evolution in the charged state, the glycine molecule starts to rotate on the silicon cluster. Implications of the results to various processes that are induced by transient transition to a charged state are discussed. These include inelastic tunneling in molecular devices, photochemistry on conducting surfaces, and electron-molecule scattering.

  3. Designing S-Box Based on 4D-4Wing Hyperchaotic System

    NASA Astrophysics Data System (ADS)

    Islam, Faiz ul; Liu, Guangjie

    2017-03-01

    S-box plays an imperative role in designing a cryptographically strong block cipher. Designing S-box based on chaos has attracted lots of attentions because of its distinct characteristics relevant to cryptography. In this paper, a 4D-4wing hyperchaotic system is investigated. Its sophisticated nonlinear behaviors are used to generate two pseudorandom 8-bit integer sequences, which further drive iterative two-position swap on the identical map on GF(28). According to the indicator of typical evaluation criteria including nonlinearity, differential uniformity, strict avalanche criterion, output bits independence criterion and bijective property, the preferred S-box is obtained from all those batch-generated ones. The comparison with the state-of-the-art chaos-based schemes shows that the obtained S-box achieves better cryptographical performance.

  4. Photoionization and Recombination of ne IV and Excitation of NeV in Nebular Plasmas

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Palay, Ethan; Pradhan, Anil K.

    2013-06-01

    %TEXT OF YOUR ABSTRACT The inverse processes of photoionization and electron-ion recombination are dominant in photoionized astrophysical plasmas. They determine the ionization fractions in photoionization equilibrium, physical conditions, and chemical abundances. We employ the unified theory of electron-ion recombination to study photoionization of Ne IV in photoionized nebulae. That leads to the production of Ne V and spectral emission of forbidden optical and mid-infrared [Ne V] lines via collisional excitation. These lines are prominent in the observations made by infrared space observatories SPITZER, SOFIA, and HERSCHEL. The unified method for electronic recombination provides self-consistent data for photoionization and recombination that is necessary to eliminate uncertainties in the determination of ionization fractions. To wit: Precise abundance of neon in the Sun is unknown owing to lack of accurate atomic data. A 20-level wave function expansion is used for the calculations of photoionization, recombination, and collisional excitation employing the relativistic Breit-Pauli R-matrix method in the close coupling approximation. We find and delineate extensive resonance structures at low energies that considerably enhance the effective cross sections and rates in astrophysical sources. Acknowledgement: Partially supported by DOE and NSF. Computational work was carried out at the Ohio Supercomputer Center

  5. Electron correlation effects on photoionization time delay in atomic Ar and Xe

    NASA Astrophysics Data System (ADS)

    Ganesan, A.; Saha, S.; Decshmukh, P. C.; Manson, S. T.; Kheifets, A. S.

    2016-05-01

    Time delay studies in photoionization processes have stimulated much interest as they provide valuable dynamical information about electron correlation and relativistic effects. In a recent work on Wigner time delay in the photoionization of noble gas atoms, it was found that correlations resulting from interchannel coupling involving shells with different principal quantum numbers have significant effects on 2s and 2p photoionization of Ne, 3s photoionization of Ar, and 3d photoionization of Kr. In the present work, photoionization time delay in inner and outer subshells of the noble gases Ar and Xe are examined by including electron correlations using different many body techniques: (i) the relativistic-random-phase approximation (RRPA), (ii) RRPA with relaxation, to include relaxation effects of the residual ion and (iii) the relativistic multiconfiguration Tamm-Dancoff (RMCTD) approximation. The (sometimes substantial) effects of the inclusion of non-RPA correlations on the photoionization Wigner time delay are reported. Work supported by DOE, Office of Chemical Sciences and DST (India).

  6. Physical mechanism of terahertz generation in two-color photoionization

    NASA Astrophysics Data System (ADS)

    You, Yong Sing

    Two-color photoionization has been widely used as a versatile tool for intense, broadband terahertz (THz) radiation generation. In this scheme, an ultrashort laser's fundamental and its second harmonic pulses are co-focused into a gas of atoms or molecules, transforming them into plasma by photoionization. This process produces an intense THz pulse emitted in the forward direction. The main focus of this dissertation is to provide a physical understanding of such THz generation and investigate its generation mechanism at both microscopic and macroscopic levels. First, we examine the generation process by measuring the relative phase between two-color (fundamental and second harmonic) laser fields and the resulting THz field simultaneously. We discover that a relative phase of pi/2 yields maximal THz outputs, consistent with a semi-classical plasma current model. We find that this optimal relative phase is independent of laser intensities, gas species, and two-color laser amplitude ratios. We also measure concurrent near-field photocurrents. All these measurements verify laser-produced plasma currents as a microscopic source for THz generation. We also investigate THz radiation from an ensemble of aligned air molecules in two-color laser fields. Our experiments show that THz radiation is strongly affected by molecular (nitrogen and oxygen) alignment. We explain this phenomenon in the context of the plasma current model combined with alignment-dependent ionization. Phase-matching is essential to achieve high-efficiency nonlinear frequency conversion. We discover THz generation by two-color photoionization in elongated air plasmas (filamentation) is naturally phase-matched in the off-axis direction, resulting in donut-shaped radiation profiles in the far field. Because of this off-axis phase-matching, THz yields increase almost linearly with the filament length, scalable for further THz energy enhancement. Lastly, we study the polarization of emitted THz radiation. In

  7. High-resolution absorption spectroscopy of photoionized silicon plasma, a step toward measuring the efficiency of Resonant Auger Destruction

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume; Bailey, James; Hansen, Stephanie; Nagayama, Taisuke; Rochau, Gregory; Liedhal, Duane; Mancini, Roberto

    2013-10-01

    A remarkable opportunity to observe matter in a regime where the effects of General Relativity are significant has arisen through measurements of strongly red-shifted iron x-ray lines emitted from black hole accretion disks. A major uncertainty in the spectral formation models is the efficiency of Resonant Auger Destruction (RAD), in which fluorescent K α photons are resonantly absorbed by neighbor ions. The absorbing ion preferentially decays by Auger ionization, thus reducing the emerging K α intensity. If K α lines from L-shell ions are not observed in iron spectral emission, why are such lines observed from silicon plasma surrounding other accretion powered objects? To help answer this question, we are investigating photoionized silicon plasmas produced using intense x-rays from the Z facility. The incident spectral irradiance is determined with time-resolved absolute power measurements, multiple monochromatic gated images, and a 3-D view factor model. The charge state distribution, electron temperature, and electron density are determined using space-resolved backlit absorption spectroscopy. The measurements constrain photoionized plasma models and set the stage for future emission spectroscopy directly investigating the RAD process. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  8. Effect of photoions on the line shape of the Foerster resonance lines and microwave transitions in cold rubidium Rydberg atoms

    SciTech Connect

    Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Yakshina, E. A.; Ryabtsev, I. I.; Dyubko, S. F.; Alekseev, E. A.; Pogrebnyak, N. L.; Bezuglov, N. N.; Arimondo, E.

    2012-01-15

    Experiments are carried out on the spectroscopy of the Foerster resonance lines Rb(37P) + Rb(37P) {yields} Rb(37S) + Rb(38S) and microwave transitions nP {yields} n Prime S, n Prime D between Rydberg states of cold rubidium atoms in a magneto-optical trap (MOT). Under ordinary conditions, all spectra exhibit a linewidth of 2-3 MHz irrespective of the interaction time between atoms or between atoms and microwave radiation, although the limit resonance width should be determined by the inverse interaction time. The analysis of experimental conditions has shown that the main source of line broadening is the inhomogeneous electric field of cold photoions that are generated under the excitation of initial nP Rydberg states by broadband pulsed laser radiation. The application of an additional electric-field pulse that rapidly extracts photoions produced by a laser pulse leads to a considerable narrowing of lines of microwave resonances and the Foerster resonance. Various sources of line broadening in cold Rydberg atoms are analyzed.

  9. [The effect of the dioxin-containing herbicide 2,4-D on the hormonal status of experimental animals].

    PubMed

    Gil'manov, A Zh; Galimov, Sh N; Kamilov, F Kh; Davletov, E G; Shchepanskiĭ, V O

    1997-01-01

    The article presents studies of hormonal state in rats under daily or 20-day peroral administration of variable doses of 2,4-D herbicide containing dioxine. Changed levels of thyroid hormones, insulin, cortisol, testosterone and estradiol appeared to be divergent and dose-dependent, proving direct toxic effects of the herbicide in endocrine organs, altered hormonal effects in target organs and disorders of peripheral hormonal metabolism.

  10. SEMA4D compromises blood-brain barrier, activates microglia, and inhibits remyelination in neurodegenerative disease.

    PubMed

    Smith, Ernest S; Jonason, Alan; Reilly, Christine; Veeraraghavan, Janaki; Fisher, Terrence; Doherty, Michael; Klimatcheva, Ekaterina; Mallow, Crystal; Cornelius, Chad; Leonard, John E; Marchi, Nicola; Janigro, Damir; Argaw, Azeb Tadesse; Pham, Trinh; Seils, Jennifer; Bussler, Holm; Torno, Sebold; Kirk, Renee; Howell, Alan; Evans, Elizabeth E; Paris, Mark; Bowers, William J; John, Gareth; Zauderer, Maurice

    2015-01-01

    Multiple sclerosis (MS) is a chronic neuroinflammatory disease characterized by immune cell infiltration of CNS, blood-brain barrier (BBB) breakdown, localized myelin destruction, and progressive neuronal degeneration. There exists a significant need to identify novel therapeutic targets and strategies that effectively and safely disrupt and even reverse disease pathophysiology. Signaling cascades initiated by semaphorin 4D (SEMA4D) induce glial activation, neuronal process collapse, inhibit migration and differentiation of oligodendrocyte precursor cells (OPCs), and disrupt endothelial tight junctions forming the BBB. To target SEMA4D, we generated a monoclonal antibody that recognizes mouse, rat, monkey and human SEMA4D with high affinity and blocks interaction between SEMA4D and its cognate receptors. In vitro, anti-SEMA4D reverses the inhibitory effects of recombinant SEMA4D on OPC survival and differentiation. In vivo, anti-SEMA4D significantly attenuates experimental autoimmune encephalomyelitis in multiple rodent models by preserving BBB integrity and axonal myelination and can be shown to promote migration of OPC to the site of lesions and improve myelin status following chemically-induced demyelination. Our study underscores SEMA4D as a key factor in CNS disease and supports the further development of antibody-based inhibition of SEMA4D as a novel therapeutic strategy for MS and other neurologic diseases with evidence of demyelination and/or compromise to the neurovascular unit.

  11. Regulation of semaphorin 4D expression and cell proliferation of ovarian cancer by ERalpha and ERbeta

    PubMed Central

    Liu, Y.; Hou, Y.; Ma, L.; Sun, C.; Pan, J.; Yang, Y.; Zhou, H.; Zhang, J.

    2017-01-01

    Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D) is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ) participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2) significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication. PMID:28225892

  12. Geometric validation of self-gating k-space-sorted 4D-MRI vs 4D-CT using a respiratory motion phantom

    PubMed Central

    Yue, Yong; Fan, Zhaoyang; Yang, Wensha; Pang, Jianing; Deng, Zixin; McKenzie, Elizabeth; Tuli, Richard; Wallace, Robert; Li, Debiao; Fraass, Benedick

    2015-01-01

    Purpose: MRI is increasingly being used for radiotherapy planning, simulation, and in-treatment-room motion monitoring. To provide more detailed temporal and spatial MR data for these tasks, we have recently developed a novel self-gated (SG) MRI technique with advantage of k-space phase sorting, high isotropic spatial resolution, and high temporal resolution. The current work describes the validation of this 4D-MRI technique using a MRI- and CT-compatible respiratory motion phantom and comparison to 4D-CT. Methods: The 4D-MRI sequence is based on a spoiled gradient echo-based 3D projection reconstruction sequence with self-gating for 4D-MRI at 3 T. Respiratory phase is resolved by using SG k-space lines as the motion surrogate. 4D-MRI images are reconstructed into ten temporal bins with spatial resolution 1.56 × 1.56 × 1.56 mm3. A MRI-CT compatible phantom was designed to validate the performance of the 4D-MRI sequence and 4D-CT imaging. A spherical target (diameter 23 mm, volume 6.37 ml) filled with high-concentration gadolinium (Gd) gel is embedded into a plastic box (35 × 40 × 63 mm3) and stabilized with low-concentration Gd gel. The phantom, driven by an air pump, is able to produce human-type breathing patterns between 4 and 30 respiratory cycles/min. 4D-CT of the phantom has been acquired in cine mode, and reconstructed into ten phases with slice thickness 1.25 mm. The 4D images sets were imported into a treatment planning software for target contouring. The geometrical accuracy of the 4D MRI and CT images has been quantified using target volume, flattening, and eccentricity. The target motion was measured by tracking the centroids of the spheres in each individual phase. Motion ground-truth was obtained from input signals and real-time video recordings. Results: The dynamic phantom has been operated in four respiratory rate (RR) settings, 6, 10, 15, and 20/min, and was scanned with 4D-MRI and 4D-CT. 4D-CT images have target-stretching, partial

  13. Geometric validation of self-gating k-space-sorted 4D-MRI vs 4D-CT using a respiratory motion phantom

    SciTech Connect

    Yue, Yong Yang, Wensha; McKenzie, Elizabeth; Tuli, Richard; Wallace, Robert; Fraass, Benedick; Fan, Zhaoyang; Pang, Jianing; Deng, Zixin; Li, Debiao

    2015-10-15

    Purpose: MRI is increasingly being used for radiotherapy planning, simulation, and in-treatment-room motion monitoring. To provide more detailed temporal and spatial MR data for these tasks, we have recently developed a novel self-gated (SG) MRI technique with advantage of k-space phase sorting, high isotropic spatial resolution, and high temporal resolution. The current work describes the validation of this 4D-MRI technique using a MRI- and CT-compatible respiratory motion phantom and comparison to 4D-CT. Methods: The 4D-MRI sequence is based on a spoiled gradient echo-based 3D projection reconstruction sequence with self-gating for 4D-MRI at 3 T. Respiratory phase is resolved by using SG k-space lines as the motion surrogate. 4D-MRI images are reconstructed into ten temporal bins with spatial resolution 1.56 × 1.56 × 1.56 mm{sup 3}. A MRI-CT compatible phantom was designed to validate the performance of the 4D-MRI sequence and 4D-CT imaging. A spherical target (diameter 23 mm, volume 6.37 ml) filled with high-concentration gadolinium (Gd) gel is embedded into a plastic box (35 × 40 × 63 mm{sup 3}) and stabilized with low-concentration Gd gel. The phantom, driven by an air pump, is able to produce human-type breathing patterns between 4 and 30 respiratory cycles/min. 4D-CT of the phantom has been acquired in cine mode, and reconstructed into ten phases with slice thickness 1.25 mm. The 4D images sets were imported into a treatment planning software for target contouring. The geometrical accuracy of the 4D MRI and CT images has been quantified using target volume, flattening, and eccentricity. The target motion was measured by tracking the centroids of the spheres in each individual phase. Motion ground-truth was obtained from input signals and real-time video recordings. Results: The dynamic phantom has been operated in four respiratory rate (RR) settings, 6, 10, 15, and 20/min, and was scanned with 4D-MRI and 4D-CT. 4D-CT images have target

  14. Dissociative and double photoionization of CO2 from threshold to 90 A

    NASA Technical Reports Server (NTRS)

    Masuoka, T.; Samson, J. A. R.

    1979-01-01

    The molecular photoionization, dissociative photoionization and double photoionization cross sections for CO2 were measured from their onsets down to 90 A by using various combinations of mass spectrometers (a coincidence time-of-flight mass spectrometer and a magnetic mass spectrometer) and light sources (synchrotron radiation, and glow and spark discharge). It is concluded that the one broad peak and the three shoulders in the total adsorption cross section curve between 640 and 90 A are caused completely by dissociative ionization processes. Several peaks observed in the cross section curve for the total fragmentation CO(+)3, O(+) and C(+) are compared with those in the photoelectron spectrum reported for CO2.

  15. Energy Correlation among Three Photoelectrons Emitted in Core-Valence-Valence Triple Photoionization of Ne

    SciTech Connect

    Hikosaka, Y.; Soejima, K.; Lablanquie, P.; Penent, F.; Palaudoux, J.; Andric, L.; Shigemasa, E.; Suzuki, I. H.; Nakano, M.; Ito, K.

    2011-09-09

    The direct observation of triple photoionization involving one inner shell and two valence electrons is reported. The energy distribution of the three photoelectrons emitted from Ne is obtained using a very efficient multielectron coincidence method using the magnetic bottle electron spectroscopic technique. A predominance of the direct path to triple photoionization for the formation of Ne{sup 3+} in the 1s2s{sup 2}2p{sup 4} configuration is observed. It is demonstrated that the energy distribution evolves with photon energy and indicates a significant difference with triple photoionization involving only valence electrons.

  16. Photoionization and photoabsorption cross sections for the aluminum iso-nuclear sequence

    SciTech Connect

    Witthoeft, M.C.; García, J.; Kallman, T.R.; Palmeri, P.; Quinet, P.

    2013-01-15

    K-shell photoionization and photoabsorption cross sections are presented for Li-like to Na-like Al. The calculations are performed using the Breit–Pauli R-matrix method where the effects of radiation and Auger dampings are included. We provide electronic data files for the raw cross sections as well as those convolved with a Gaussian of width ΔE/E=10{sup −4}. In addition to total cross sections for photoabsorption and photoionization, partial cross sections are available for photoionization.

  17. OXAF: Ionizing spectra of Seyfert galaxies for photoionization modeling

    NASA Astrophysics Data System (ADS)

    Thomas, Adam D.; Groves, Brent A.; Sutherland, Ralph S.; Dopita, Michael A.; Jin, Chichuan; Kewley, Lisa J.

    2016-11-01

    OXAF provides a simplified model of Seyfert Active Galactic Nucleus (AGN) continuum emission designed for photoionization modeling. It removes degeneracies in the effects of AGN parameters on model spectral shapes and reproduces the diversity of spectral shapes that arise in physically-based models. OXAF accepts three parameters which directly describe the shape of the output ionizing spectrum: the energy of the peak of the accretion disk emission Epeak, the photon power-law index of the non-thermal X-ray emission Γ, and the proportion of the total flux which is emitted in the non-thermal component pNT. OXAF accounts for opacity effects where the accretion disk is ionized because it inherits the ‘color correction’ of OPTXAGNF, the physical model upon which OXAF is based.

  18. Tunable wavelength soft photoionization of ionic liquid vapors

    SciTech Connect

    Strasser, Daniel; Goulay, Fabien; Belau, Leonid; Kostko, Oleg; Koh, Christine; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Ahmed, Musahid; Leone, Stephen R.

    2009-11-11

    Combined data of photoelectron spectra and photoionization efficiency curves in the near threshold ionization region of isolated ion-pairs from [emim][Tf2N], [emim][Pf2N]and [dmpim][Tf2N]ionic liquid vapors reveal small shifts in the ionization energies of ion-pair systems due to cation and anion substitutions. Shifts towards higher binding energy following anion substitution are attributed to increased electronegativity of the anion itself, while shifts towards lower binding energies following cation substitution are attributed to an increase in the cation-anion distance that causes a lower Coulombic binding potential. The predominant ionization mechanism in the near threshold photon energy region is identified as dissociative ionization, involving dissociation of the ion-pair and the production of intact cations as the positively charged products.

  19. X-ray spectroscopy of photoionized plasmas in astrophysics.

    NASA Astrophysics Data System (ADS)

    Kunieda, H.

    Among astrophysical objects, active galactic nuclei (AGN) are good examples of photoionized plasmas illuminated by central bright sources. X-rays emerging from such plasmas are observed by ASCA. In soft X-rays, emission lines are observed from He-like Ca, Ar, S, Si, and Mg, whose ionization temperature are much higher than the electron temperature. From some Sy I's, an absorption feature due to O VII/O VIII was found, which suggests it ionized (warm) absorber. Such a warm absorber has been identified by emission lines seen by EUVE. A common spectral feature of Sy I's is the iron K emission line. ASCA discovered broad line feature due to gravitational and Doppler effects of reprocessor on the accretion disk around a massive black hole.

  20. Global Franck-Condon breakdown: nonresonant molecular photoionization processes

    NASA Astrophysics Data System (ADS)

    Das, Aloke; Hardy, David; Aguilar, Alejandro; Kilcoyne, A. L. D.; Bozek, John D.; Poliakoff, Erwin D.

    2007-06-01

    We report photoelectron spectroscopy results of nonresonant Franck-Condon breakdown in the photoionization of CO and ICN. Most importantly, the deviations occur over a surprisingly wide range of energies. For the case of CO^+(X^2σ^+), the v^ + = 1/v^ + = 0 vibrational branching ratio is found to vary significantly (>50%) over a 200 eV range. While it is well understood that resonances can lead to coupling between photoelectron and molecular vibration, there is little information on nonresonant sources of coupling. It appears that Cooper minima may be responsible for the observations. Moreover, for ICN, the vibrationally resolved deviations from Franck-Condon behavior are vibrationally mode-specific. Studies on alternative molecular targets are planned to see whether they exhibit photoelectron dynamics that are geometry-dependent.

  1. Direct double photoionization of the valence shell of Be

    SciTech Connect

    Citrini, F.; Malegat, L.; Selles, P.; Kazansky, A.K.

    2003-04-01

    The hyperspherical R-matrix method with semiclassical outgoing waves is used to study the direct double photoionization (DPI) of the valence shell of the lightest alkaline earth-metal Be. The absolute fully integrated, singly, doubly, and triply differential cross sections obtained are compared with the single set of measurements available and with recent calculations based on the convergent close coupling and time-dependent close coupling methods. The level of agreement between all these data is very encouraging. A comparison is also made between the DPI of He and the direct DPI of the valence shell of Be. It confirms that the electron-electron correlations are stronger in the valence 2s shell of Be than in the 1s shell of He, thus contributing to a desirable clarification.

  2. A combined VUV synchrotron pulsed field ionization-photoelectron and IR-VUV laser photoion depletion study of ammonia.

    PubMed

    Bahng, Mi-Kyung; Xing, Xi; Baek, Sun Jong; Qian, Ximei; Ng, C Y

    2006-07-13

    The synchrotron based vacuum ultraviolet-pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of ammonia (NH(3)) has been measured in the energy range 10.12-12.12 eV using a room-temperature NH(3) sample. In addition to extending the VUV-PFI-PE measurement to include the v(2)(+) = 0, 10, 11, 12, and 13 and the v(1)(+) + nv(2)(+) (n = 4-9) vibrational bands, the present study also reveals photoionization transition line strengths for higher rotational levels of NH(3), which were not examined in previous PFI-PE studies. Here, v(1)(+) and v(2)(+) represent the N-H symmetric stretching and inversion vibrational modes of the ammonia cation (NH(3)(+)), respectively. The relative PFI-PE band intensities for NH(3)(+)(v(2)(+)=0-13) are found to be in general agreement with the calculated Franck-Condon factors. However, rotational simulation indicates that rotational photoionization transitions of the P-branches, particularly those for the lower v(2)(+) PFI-PE bands, are strongly enhanced by forced rotational autoionization. For the synchrotron based VUV-PFI-PE spectrum of the origin band of NH(3)(+), rotational transition intensities of the P-branch are overwhelming compared to those of other rotational branches. Similar to that observed for the nv(2)(+) (n = 0-13) levels, the v(1)(+) + nv(2)(+) (n = 4-9) levels are found to have a positive anharmonicity constant; i.e., the vibrational spacing increases as n is increased. The VUV laser PFI-PE measurement of the origin band has also been made using a supersonically cooled NH(3) sample. The analysis of this band has allowed the direct determination of the ionization energy of NH(3) as 82158.2 +/- 1.0 cm(-1), which is in good accord with the previous PFI-PE and photoionization efficiency measurements. Using the known nd(v(2)(+)=1,1(0)<--0(0)) Rydberg series of NH(3) as an example, we have demonstrated a valuable method based on two-color infrared-VUV-photoion depletion measurements for determining the rotational

  3. The role of semaphorin 4D in tumor development and angiogenesis in human breast cancer

    PubMed Central

    Jiang, Hongchao; Chen, Ceshi; Sun, Qiangming; Wu, Jing; Qiu, Lijuan; Gao, Change; Liu, Weiqing; Yang, Jun; Jun, Nie; Dong, Jian

    2016-01-01

    Background Semaphorin 4D (Sema4D) is highly expressed in certain types of tumors and functions in the regulation of tumor angiogenesis and growth. However, it is still not clear regarding the roles of Sema4D in breast cancer. This study was designed to explore the effects of Sema4D on proliferation, cell cycle progression, apoptosis, invasion, migration, tumor growth, and angiogenesis in breast cancer. Materials and methods The expression level of Sema4D was investigated in MCF10A, 184A1, HCC1937, MDA-MB-468, MDA-MB-231, Hs578T, BT474, MCF-7, and T47D breast cancer cell lines by Western blotting analysis. Sema4D downregulation or overexpression was established by infection with lentiviruses-encoding Sema4D short hairpin RNA (shRNA) or Sema4D. To evaluate the effects of Sema4D on cell proliferation, cell cycle progression, apoptosis, invasion, and migration of MDA-MB-231 and MDA-MB-468 cells, methods including MTT assay, flow cytometry, wound healing assay, and transwell experiments were applied. BALB/c nude mice were injected with MDA-MB-231 cells, which were respectively infected with lentiviruses-encoding Sema4D, Sema4D shRNA, and GFP, followed by tumor angiogenesis assay. Results Sema4D was expressed at higher levels in breast cancer cell lines compared with the normal human breast epithelial cell lines, especially in MDA-MB-231 and MDA-MB-468 cells. Cell proliferation ability was remarkably inhibited in Sema4D downregulated condition, whereas the proportions of cells in the G0/G1 phase and apoptosis increased in MDA-MB-231 and MDA-MB-468 cells. In addition, the invasion and migration abilities of these cells were obviously reduced. Xenograft growth as well as angiogenesis was inhibited when infected with lentiviruses-encoding Sema4D shRNA in vivo. Conclusion Downregulation of Sema4D had notable influence on cell proliferation ability, invasion, migration, and apoptosis of both MDA-MB-231 and MDA-MB-468 cells. Furthermore, infection with lentiviruses

  4. IMRT treatment planning on 4D geometries for the era of dynamic MLC tracking.

    PubMed

    Suh, Yelin; Murray, Walter; Keall, Paul J

    2014-12-01

    The problem addressed here was to obtain optimal and deliverable dynamic multileaf collimator (MLC) leaf sequences from four-dimensional (4D) geometries for dynamic MLC tracking delivery. The envisaged scenario was where respiratory phase and position information of the target was available during treatment, from which the optimal treatment plan could be further adapted in real time. A tool for 4D treatment plan optimization was developed that integrates a commercially available treatment planning system and a general-purpose optimization system. The 4D planning method was applied to the 4D computed tomography planning scans of three lung cancer patients. The optimization variables were MLC leaf positions as a function of monitor units and respiratory phase. The objective function was the deformable dose-summed 4D treatment plan score. MLC leaf motion was constrained by the maximum leaf velocity between control points in terms of monitor units for tumor motion parallel to the leaf travel direction and between phases for tumor motion parallel to the leaf travel direction. For comparison and a starting point for the 4D optimization, three-dimensional (3D) optimization was performed on each of the phases. The output of the 4D IMRT planning process is a leaf sequence which is a function of both monitor unit and phase, which can be delivered to a patient whose breathing may vary between the imaging and treatment sessions. The 4D treatment plan score improved during 4D optimization by 34%, 4%, and 50% for Patients A, B, and C, respectively, indicating 4D optimization generated a better 4D treatment plan than the deformable sum of individually optimized phase plans. The dose-volume histograms for each phase remained similar, indicating robustness of the 4D treatment plan to respiratory variations expected during treatment delivery. In summary, 4D optimization for respiratory phase-dependent treatment planning with dynamic MLC motion tracking improved the 4D treatment plan

  5. Desorption and ionization mechanisms in desorption atmospheric pressure photoionization.

    PubMed

    Luosujärvi, Laura; Arvola, Ville; Haapala, Markus; Pól, Jaroslav; Saarela, Ville; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto; Kauppila, Tiina J

    2008-10-01

    The factors influencing desorption and ionization in newly developed desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) were studied. Redirecting the DAPPI spray was observed to further improve the versatility of the technique: for dilute samples, parallel spray with increased analyte signal was found to be the best suited, while for more concentrated samples, the orthogonal spray with less risk for contamination is recommended. The suitability of various spray solvents and sampling surface materials was tested for a variety of analytes with different polarities and molecular weights. As in atmospheric pressure photoionization, the analytes formed [M + H](+), [M - H](-), M(+*), M(-*), [M - H + O](-), or [M - 2H + 2O](-) ions depending on the analyte, spray solvent, and ionization mode. In positive ion mode, anisole and toluene as spray solvents promoted the formation of M(+*) ions and were therefore best suited for the analysis of nonpolar compounds (anthracene, benzo[a]pyrene, and tetracyclone). Acetone and hexane were optimal spray solvents for polar compounds (MDMA, testosterone, and verapamil) since they produced intensive [M + H](+) ion peaks of the analytes. In negative ion mode, the type of spray solvent affected the signal intensity, but not the ion composition. M(-*) ions were formed from 1,4-dinitrobenzene, and [M - H + O](-) and [M - 2H + 2O](-) ions from 1,4-naphthoquinone, whereas acidic compounds (naphthoic acid and paracetamol) formed [M - H](-) ions. The tested sampling surfaces included various materials with different thermal conductivities. The materials with low thermal conductivity, i.e., polymers like poly(methyl methacrylate) and poly(tetrafluoroethylene) (Teflon) were found to be the best, since they enable localized heating of the sampling surface, which was found to be essential for efficient analyte desorption. Nevertheless, the sampling surface material did not affect the ionization mechanisms.

  6. Photoionization of helium by attosecond pulses: Extraction of spectra from correlated wave functions

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Pazourek, Renate; Feist, Johannes; Nagele, Stefan; Liertzer, Matthias; Persson, Emil; Burgdörfer, Joachim; Lindroth, Eva

    2013-05-01

    We investigate the photoionization spectrum of helium by attosecond XUV pulses both in the spectral region of doubly excited resonances as well as above the double ionization threshold. In order to probe for convergence, we compare three techniques to extract photoelectron spectra from the wave packet resulting from the integration of the time-dependent Schrödinger equation in a finite-element discrete variable representation basis. These techniques are projection on products of hydrogenic bound and continuum states, projection onto multichannel scattering states computed in a B-spline close-coupling basis, and a technique based on exterior complex scaling implemented in the same basis used for the time propagation. These methods allow one to monitor the population of continuum states in wave packets created with ultrashort pulses in different regimes. Applications include photo cross sections and anisotropy parameters in the spectral region of doubly excited resonances, time-resolved photoexcitation of autoionizing resonances in an attosecond pump-probe setting, and the energy and angular distribution of correlated wave packets for two-photon double ionization.

  7. Dissociation of internal energy-selected methyl bromide ion revealed from threshold photoelectron-photoion coincidence velocity imaging.

    PubMed

    Tang, Xiaofeng; Zhou, Xiaoguo; Sun, Zhongfa; Liu, Shilin; Liu, Fuyi; Sheng, Liusi; Yan, Bing

    2014-01-28

    Dissociative photoionization of methyl bromide (CH3Br) in an excitation energy range of 10.45-16.90 eV has been investigated by using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. The coincident time-of-flight mass spectra indicate that the ground state X(2)E of CH3Br(+) is stable, and both A(2)A1 and B(2)E ionic excited states are fully dissociative to produce the unique fragment ion of CH3 (+). From TPEPICO 3D time-sliced velocity images of CH3 (+) dissociated from specific state-selected CH3Br(+) ion, kinetic energy release distribution (KERD) and angular distribution of CH3 (+) fragment ion are directly obtained. Both spin-orbit states of Br((2)P) atom can be clearly observed in fast dissociation of CH3Br(+)(A(2)A1) ion along C-Br rupture, while a KERD of Maxwell-Boltzmann profile is obtained in dissociation of CH3Br(+)(B(2)E) ion. With the aid of the re-calculated potential energy curves of CH3Br(+) including spin-orbit coupling, dissociation mechanisms of CH3Br(+) ion in A(2)A1 and B(2)E states along C-Br rupture are revealed. For CH3Br(+)(A(2)A1) ion, the CH3 (+) + Br((2)P1/2) channel is occurred via an adiabatic dissociation by vibration, while the Br((2)P3/2) formation is through vibronic coupling to the high vibrational level of X(2)E state followed by rapid dissociation. C-Br bond breaking of CH3Br(+)(B(2)E) ion can occur via slow internal conversion to the excited vibrational level of the lower electronic states and then dissociation.

  8. 4D Hybrid Ensemble-Variational Data Assimilation for the NCEP GFS: Outer Loops and Variable Transforms

    NASA Astrophysics Data System (ADS)

    Kleist, D. T.; Ide, K.; Mahajan, R.; Thomas, C.

    2014-12-01

    The use of hybrid error covariance models has become quite popular for numerical weather prediction (NWP). One such method for incorporating localized covariances from an ensemble within the variational framework utilizes an augmented control variable (EnVar), and has been implemented in the operational NCEP data assimilation system (GSI). By taking the existing 3D EnVar algorithm in GSI and allowing for four-dimensional ensemble perturbations, coupled with the 4DVAR infrastructure already in place, a 4D EnVar capability has been developed. The 4D EnVar algorithm has a few attractive qualities relative to 4DVAR, including the lack of need for tangent-linear and adjoint model as well as reduced computational cost. Preliminary results using real observations have been encouraging, showing forecast improvements nearly as large as were found in moving from 3DVAR to hybrid 3D EnVar. 4D EnVar is the method of choice for the next generation assimilation system for use with the operational NCEP global model, the global forecast system (GFS). The use of an outer-loop has long been the method of choice for 4DVar data assimilation to help address nonlinearity. An outer loop involves the re-running of the (deterministic) background forecast from the updated initial condition at the beginning of the assimilation window, and proceeding with another inner loop minimization. Within 4D EnVar, a similar procedure can be adopted since the solver evaluates a 4D analysis increment throughout the window, consistent with the valid times of the 4D ensemble perturbations. In this procedure, the ensemble perturbations are kept fixed and centered about the updated background state. This is analogous to the quasi-outer loop idea developed for the EnKF. Here, we present results for both toy model and real NWP systems demonstrating the impact from incorporating outer loops to address nonlinearity within the 4D EnVar context. The appropriate amplitudes for observation and background error

  9. 4D MRI for the Localization of Parathyroid Adenoma: A Novel Method in Evolution.

    PubMed

    Merchavy, Shlomo; Luckman, Judith; Guindy, Michal; Segev, Yoram; Khafif, Avi

    2016-03-01

    The sestamibi scan (MIBI) and ultrasound (US) are used for preoperative localization of parathyroid adenoma (PTA), with sensitivity as high as 90%. We developed 4-dimensional magnetic resonance imaging (4D MRI) as a novel tool for identifying PTAs. Eleven patients with PTA were enrolled. 4D MRI from the mandible to the aortic arch was used. Optimization of the timing of image acquisition was obtained by changing dynamic and static sequences. PTAs were identified in all except 1 patient. In 9 patients, there was a complete match between the 4D MRI and the US and MIBI, as well as with the operative finding. In 1 patient, the adenoma was correctly localized by 4D MRI, in contrast to the US and MIBI scan. The sensitivity of the 4D MRI was 90% and after optimization, 100%. Specificity was 100%. We concluded that 4D MRI is a reliable technique for identification of PTAs, although more studies are needed.

  10. Photoionization of ions of the nitrogen isoelectronic sequence:experiment and theory for F2+ and Ne3+

    SciTech Connect

    Aguilar, A.; Emmons, E.D.; Gharaibeh, M.F.; Covington, A.M.; Bozek, J.D.; Ackerman, G.; Canton, S.; Rude, B.; Schlachter, A.S.; Hinojosa, G.; Alvarez, I.; Cisneros, C.; McLaughlin, B.M.; Phaneuf, R.A.

    2005-06-21

    Absolute photoionization measurements are reported for admixtures of the ground and metastable states of F2+ from 56.3 eV to 75.6 eV, and of Ne3+ from 89.3 eV to 113.8 eV. The 4So ground-state and the 2Do and 2Po metastable-state fractions present in the primary ion beams were estimated from photo ion yield measurements near the irrespective threshold energies. Most of the observed resonance structure has been spectroscopically assigned. The measurements are compared with new R-matrix theoretical calculations and with those in the TOP base astrophysical database. The systematic behaviour of the quantum-defect parameter is analyzed as a function of the nuclear charge for four Rydberg series observed in both species, and compared to published data for O+ and N.

  11. 32 CFR 1630.43 - Class 4-D: Minister of religion.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Class 4-D: Minister of religion. 1630.43 Section 1630.43 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D...

  12. 32 CFR 1630.43 - Class 4-D: Minister of religion.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Class 4-D: Minister of religion. 1630.43 Section 1630.43 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D...

  13. 32 CFR 1630.43 - Class 4-D: Minister of religion.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Class 4-D: Minister of religion. 1630.43 Section 1630.43 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D...

  14. 32 CFR 1630.43 - Class 4-D: Minister of religion.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Class 4-D: Minister of religion. 1630.43 Section 1630.43 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D...

  15. Immunomodulation of the tumor microenvironment by neutralization of Semaphorin 4D

    PubMed Central

    Evans, Elizabeth E; Paris, Mark; Smith, Ernest S; Zauderer, Maurice

    2015-01-01

    Semaphorin 4D is highly expressed at the invasive tumor margin and acts as a guidance molecule, restricting movement of tumoricidal immune cells into the tumor microenvironment. We recently showed that antibody neutralization of SEMA4D augmented activated monocyte and anticancer T-cell tumor penetration and that anti-SEMA4D antibody potentiated other immunomodulatory therapies in murine tumor models. PMID:26587332

  16. MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research

    PubMed Central

    Paul Segars, W.; Tsui, Benjamin M. W.

    2012-01-01

    Recent work in the development of computerized phantoms has focused on the creation of ideal “hybrid” models that seek to combine the realism of a patient-based voxelized phantom with the flexibility of a mathematical or stylized phantom. We have been leading the development of such computerized phantoms for use in medical imaging research. This paper will summarize our developments dating from the original four-dimensional (4-D) Mathematical Cardiac-Torso (MCAT) phantom, a stylized model based on geometric primitives, to the current 4-D extended Cardiac-Torso (XCAT) and Mouse Whole-Body (MOBY) phantoms, hybrid models of the human and laboratory mouse based on state-of-the-art computer graphics techniques. This paper illustrates the evolution of computerized phantoms toward more accurate models of anatomy and physiology. This evolution was catalyzed through the introduction of nonuniform rational b-spline (NURBS) and subdivision (SD) surfaces, tools widely used in computer graphics, as modeling primitives to define a more ideal hybrid phantom. With NURBS and SD surfaces as a basis, we progressed from a simple geometrically based model of the male torso (MCAT) containing only a handful of structures to detailed, whole-body models of the male and female (XCAT) anatomies (at different ages from newborn to adult), each containing more than 9000 structures. The techniques we applied for modeling the human body were similarly used in the creation of the 4-D MOBY phantom, a whole-body model for the mouse designed for small animal imaging research. From our work, we have found the NURBS and SD surface modeling techniques to be an efficient and flexible way to describe the anatomy and physiology for realistic phantoms. Based on imaging data, the surfaces can accurately model the complex organs and structures in the body, providing a level of realism comparable to that of a voxelized phantom. In addition, they are very flexible. Like stylized models, they can easily be

  17. Mitotic activation of the DISC1-inducible cyclic AMP phosphodiesterase-4D9 (PDE4D9), through multi-site phosphorylation, influences cell cycle progression.

    PubMed

    Sheppard, Catherine L; Lee, Louisa C Y; Hill, Elaine V; Henderson, David J P; Anthony, Diana F; Houslay, Daniel M; Yalla, Krishna C; Cairns, Lynne S; Dunlop, Allan J; Baillie, George S; Huston, Elaine; Houslay, Miles D

    2014-09-01

    In Rat-1 cells, the dramatic decrease in the levels of both intracellular cyclic 3'5' adenosine monophosphate (cyclic AMP; cAMP) and in the activity of cAMP-activated protein kinase A (PKA) observed in mitosis was paralleled by a profound increase in cAMP hydrolyzing phosphodiesterase-4 (PDE4) activity. The decrease in PKA activity, which occurs during mitosis, was attributable to PDE4 activation as the PDE4 selective inhibitor, rolipram, but not the phosphodiesterase-3 (PDE3) inhibitor, cilostamide, specifically ablated this cell cycle-dependent effect. PDE4 inhibition caused Rat-1 cells to move from S phase into G2/M more rapidly, to transit through G2/M more quickly and to remain in G1 for a longer period. Inhibition of PDE3 elicited no observable effects on cell cycle dynamics. Selective immunopurification of each of the four PDE4 sub-families identified PDE4D as being selectively activated in mitosis. Subsequent analysis uncovered PDE4D9, an isoform whose expression can be regulated by Disrupted-In-Schizophrenia 1 (DISC1)/activating transcription factor 4 (ATF4) complex, as the sole PDE4 species activated during mitosis in Rat-1 cells. PDE4D9 becomes activated in mitosis through dual phosphorylation at Ser585 and Ser245, involving the combined action of ERK and an unidentified 'switch' kinase that has previously been shown to be activated by H2O2. Additionally, in mitosis, PDE4D9 also becomes phosphorylated at Ser67 and Ser81, through the action of MK2 (MAPKAPK2) and AMP kinase (AMPK), respectively. The multisite phosphorylation of PDE4D9 by all four of these protein kinases leads to decreased mobility (band-shift) of PDE4D9 on SDS-PAGE. PDE4D9 is predominantly concentrated in the perinuclear region of Rat-1 cells but with a fraction distributed asymmetrically at the cell margins. Our investigations demonstrate that the diminished levels of cAMP and PKA activity that characterise mitosis are due to enhanced cAMP degradation by PDE4D9. PDE4D9, was found to

  18. The Relationship Between Digit Ratio (2D:4D) and Sexual Orientation in Men from China.

    PubMed

    Xu, Yin; Zheng, Yong

    2016-04-01

    We examined the relationship between 2D:4D digit ratio and sexual orientation in men from China and analyzed the influences of the components used to assess sexual orientation and the criteria used to classify individuals as homosexual on this relationship. A total of 309 male and 110 female participants took part in a web-based survey. Our results showed that heterosexual men had a significantly lower 2D:4D than heterosexual women and exclusively homosexual men had a significantly higher left 2D:4D than heterosexual men whereas only exclusively homosexual men had a significantly higher right 2D:4D than heterosexual men when sexual orientation was assessed via sexual attraction. The left 2D:4D showed a significant positive correlation with sexual identity, sexual attraction, and sexual behavior, and the right 2D:4D showed a significant positive correlation with sexual attraction. The effect sizes for differences in 2D:4D between homosexual and heterosexual men varied according to criteria used to classify individuals as homosexual and sexual orientation components; the more stringent the criteria (scores closer to the homosexual category), the larger the effect sizes; further, sexual attraction yielded the largest effect size. There were no significant effects of age and latitude on Chinese 2D:4D. This study contributes to the current understanding of the relationship between 2D:4D and male sexual orientation.

  19. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung

    NASA Astrophysics Data System (ADS)

    Chin, E.; Loewen, S. K.; Nichol, A.; Otto, K.

    2013-02-01

    Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.

  20. Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.

    2015-12-01

    upon 2-D, steady-state thermal and flow regimes. We reiterate the importance of 4-D time evolution in subduction models. Analogue experiments allow added feedbacks and complexity improving intuition and providing insight for further investigation.