Science.gov

Sample records for 4d seismic tomography

  1. 4-D Photoacoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy. PMID:23346370

  2. 4-D Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  3. Reservoir Characterization around Geothermal Field, West Java, Indonesia Derived from 4-D Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Verdhora Ry, Rexha; Nugraha, A. D.

    2016-01-01

    Observation of micro-seismic events induced by intensive geothermal exploitation in a particular geothermal field, located in West Java region, Indonesia was used to detect the fracture and permeability zone. Using local monitoring seismometer network, tomographic inversions were conducted for the three-dimensional Vp, Vs, and Vp/Vs structure of the reservoir for January - December 2007, January - December 2008, and January - December 2009. First, hypocenters location was relocated using joint hypocenter determination (JHD) method in purpose to estimate best location. Then, seismic tomographic inversions were conducted using delay time tomography for dataset of every year respectively. The travel times passing through the three-dimensional velocity model were calculated using ray tracing pseudo-bending method. Norm and gradient damping were added to constrain blocks without ray and to produce smooth solution model. The inversion algorithm was developed in Matlab environment. Our tomographic inversion results from 3-years of observations indicate the presence of low Vp, low Vs, and low Vp/Vs ratio at depths of about 1 - 3 km below sea level. These features were interpreted may be related to steam-saturated rock in the reservoir area of this geothermal field. The locations of the reservoir area were supported by the data of well- trajectory, where the zones of high Vp/Vs were observed around the injection wells and the zones of low Vp/Vs were observed around the production wells. The extensive low Vp/Vs anomaly that occupies the reservoir is getting stronger during the 3-years study period. This is probably attributed to depletion of pore liquid water in the reservoir and replacement with steam. Continuous monitoring of Vp, Vs, and Vp/Vs is an effective tool for geothermal reservoir characterization and depletion monitoring and can potentially provide information in parts of the reservoir which have not been drilled.

  4. Seismic Tomography.

    ERIC Educational Resources Information Center

    Anderson, Don L.; Dziewonski, Adam M.

    1984-01-01

    Describes how seismic tomography is used to analyze the waves produced by earthquakes. The information obtained from the procedure can then be used to map the earth's mantle in three dimensions. The resulting maps are then studied to determine such information as the convective flow that propels the crustal plates. (JN)

  5. 4D image reconstruction for emission tomography

    NASA Astrophysics Data System (ADS)

    Reader, Andrew J.; Verhaeghe, Jeroen

    2014-11-01

    An overview of the theory of 4D image reconstruction for emission tomography is given along with a review of the current state of the art, covering both positron emission tomography and single photon emission computed tomography (SPECT). By viewing 4D image reconstruction as a matter of either linear or non-linear parameter estimation for a set of spatiotemporal functions chosen to approximately represent the radiotracer distribution, the areas of so-called ‘fully 4D’ image reconstruction and ‘direct kinetic parameter estimation’ are unified within a common framework. Many choices of linear and non-linear parameterization of these functions are considered (including the important case where the parameters have direct biological meaning), along with a review of the algorithms which are able to estimate these often non-linear parameters from emission tomography data. The other crucial components to image reconstruction (the objective function, the system model and the raw data format) are also covered, but in less detail due to the relatively straightforward extension from their corresponding components in conventional 3D image reconstruction. The key unifying concept is that maximum likelihood or maximum a posteriori (MAP) estimation of either linear or non-linear model parameters can be achieved in image space after carrying out a conventional expectation maximization (EM) update of the dynamic image series, using a Kullback-Leibler distance metric (comparing the modeled image values with the EM image values), to optimize the desired parameters. For MAP, an image-space penalty for regularization purposes is required. The benefits of 4D and direct reconstruction reported in the literature are reviewed, and furthermore demonstrated with simple simulation examples. It is clear that the future of reconstructing dynamic or functional emission tomography images, which often exhibit high levels of spatially correlated noise, should ideally exploit these 4D

  6. Controlled Source 4D Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Morency, C.; Tromp, J.

    2009-12-01

    Earth's material properties may change after significant tectonic events, e.g., volcanic eruptions, earthquake ruptures, landslides, and hydrocarbon migration. While many studies focus on how to interpret observations in terms of changes in wavespeeds and attenuation, the oil industry is more interested in how we can identify and locate such temporal changes using seismic waves generated by controlled sources. 4D seismic analysis is indeed an important tool to monitor fluid movement in hydrocarbon reservoirs during production, improving fields management. Classic 4D seismic imaging involves comparing images obtained from two subsequent seismic surveys. Differences between the two images tell us where temporal changes occurred. However, when the temporal changes are small, it may be quite hard to reliably identify and characterize the differences between the two images. We propose to back-project residual seismograms between two subsequent surveys using adjoint methods, which results in images highlighting temporal changes. We use the SEG/EAGE salt dome model to illustrate our approach. In two subsequent surveys, the wavespeeds and density within a target region are changed, mimicking possible fluid migration. Due to changes in material properties induced by fluid migration, seismograms recorded in the two surveys differ. By back propagating these residuals, the adjoint images identify the location of the affected region. An important issue involves the nature of model. For instance, are we characterizing only changes in wavespeed, or do we also consider density and attenuation? How many model parameters characterize the model, e.g., is our model isotropic or anisotropic? Is acoustic wave propagation accurate enough or do we need to consider elastic or poroelastic effects? We will investigate how imaging strategies based upon acoustic, elastic and poroelastic simulations affect our imaging capabilities.

  7. Soft Route to 4D Tomography

    NASA Astrophysics Data System (ADS)

    Taillandier-Thomas, Thibault; Roux, Stéphane; Hild, François

    2016-07-01

    Based on the assumption that the time evolution of a sample observed by computed tomography requires many less parameters than the definition of the microstructure itself, it is proposed to reconstruct these changes based on the initial state (using computed tomography) and very few radiographs acquired at fixed intervals of time. This Letter presents a proof of concept that for a fatigue cracked sample its kinematics can be tracked from no more than two radiographs in situations where a complete 3D view would require several hundreds of radiographs. This 2 order of magnitude gain opens the way to a "computed" 4D tomography, which complements the recent progress achieved in fast or ultrafast computed tomography, which is based on beam brightness, detector sensitivity, and signal acquisition technologies.

  8. Time-dependent seismic tomography

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.

    2010-01-01

    Of methods for measuring temporal changes in seismic-wave speeds in the Earth, seismic tomography is among those that offer the highest spatial resolution. 3-D tomographic methods are commonly applied in this context by inverting seismic wave arrival time data sets from different epochs independently and assuming that differences in the derived structures represent real temporal variations. This assumption is dangerous because the results of independent inversions would differ even if the structure in the Earth did not change, due to observational errors and differences in the seismic ray distributions. The latter effect may be especially severe when data sets include earthquake swarms or aftershock sequences, and may produce the appearance of correlation between structural changes and seismicity when the wave speeds are actually temporally invariant. A better approach, which makes it possible to assess what changes are truly required by the data, is to invert multiple data sets simultaneously, minimizing the difference between models for different epochs as well as the rms arrival-time residuals. This problem leads, in the case of two epochs, to a system of normal equations whose order is twice as great as for a single epoch. The direct solution of this system would require twice as much memory and four times as much computational effort as would independent inversions. We present an algorithm, tomo4d, that takes advantage of the structure and sparseness of the system to obtain the solution with essentially no more effort than independent inversions require. No claim to original US government works Journal compilation ?? 2010 RAS.

  9. 4D microvascular imaging based on ultrafast Doppler tomography.

    PubMed

    Demené, Charlie; Tiran, Elodie; Sieu, Lim-Anna; Bergel, Antoine; Gennisson, Jean Luc; Pernot, Mathieu; Deffieux, Thomas; Cohen, Ivan; Tanter, Mickael

    2016-02-15

    4D ultrasound microvascular imaging was demonstrated by applying ultrafast Doppler tomography (UFD-T) to the imaging of brain hemodynamics in rodents. In vivo real-time imaging of the rat brain was performed using ultrasonic plane wave transmissions at very high frame rates (18,000 frames per second). Such ultrafast frame rates allow for highly sensitive and wide-field-of-view 2D Doppler imaging of blood vessels far beyond conventional ultrasonography. Voxel anisotropy (100 μm × 100 μm × 500 μm) was corrected for by using a tomographic approach, which consisted of ultrafast acquisitions repeated for different imaging plane orientations over multiple cardiac cycles. UFT-D allows for 4D dynamic microvascular imaging of deep-seated vasculature (up to 20 mm) with a very high 4D resolution (respectively 100 μm × 100 μm × 100 μm and 10 ms) and high sensitivity to flow in small vessels (>1 mm/s) for a whole-brain imaging technique without requiring any contrast agent. 4D ultrasound microvascular imaging in vivo could become a valuable tool for the study of brain hemodynamics, such as cerebral flow autoregulation or vascular remodeling after ischemic stroke recovery, and, more generally, tumor vasculature response to therapeutic treatment. PMID:26555279

  10. Transdimensional Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Bodin, T.; Sambridge, M.

    2009-12-01

    In seismic imaging the degree of model complexity is usually determined by manually tuning damping parameters within a fixed parameterization chosen in advance. Here we present an alternative methodology for seismic travel time tomography where the model complexity is controlled automatically by the data. In particular we use a variable parametrization consisting of Voronoi cells with mobile geometry, shape and number, all treated as unknowns in the inversion. The reversible jump algorithm is used to sample the transdimensional model space within a Bayesian framework which avoids global damping procedures and the need to tune regularisation parameters. The method is an ensemble inference approach, as many potential solutions are generated with variable numbers of cells. Information is extracted from the ensemble as a whole by performing Monte Carlo integration to produce the expected Earth model. The ensemble of models can also be used to produce velocity uncertainty estimates and experiments with synthetic data suggest they represent actual uncertainty surprisingly well. In a transdimensional approach, the level of data uncertainty directly determines the model complexity needed to satisfy the data. Intriguingly, the Bayesian formulation can be extended to the case where data uncertainty is also uncertain. Experiments show that it is possible to recover data noise estimate while at the same time controlling model complexity in an automated fashion. The method is tested on synthetic data in a 2-D application and compared with a more standard matrix based inversion scheme. The method has also been applied to real data obtained from cross correlation of ambient noise where little is known about the size of the errors associated with the travel times. As an example, a tomographic image of Rayleigh wave group velocity for the Australian continent is constructed for 5s data together with uncertainty estimates.

  11. 4-D Transdimensional Tomography of Iceland Using Ambient Noise

    NASA Astrophysics Data System (ADS)

    Bhowmick, D.; Tkalcic, H.; Young, M.

    2012-12-01

    Located at the east of Greenland and immediately south of Arctic Circle, Iceland is the largest volcanic island in the world and represents a unique region of particular interest to geosciences. Various seismological imaging techniques have been deployed to shed light on composition and thickness of the Icelandic crust with serious geodynamic repercussions (for a recent review, see Foulger (2010)). Due to an abundance of active volcanoes, Iceland can be considered a natural laboratory for studying volcanic earthquakes with anomalous seismic radiation (e.g. Tkalcic et al., 2009; Fichtner and Tkalcic, 2010). Temporal changes in the velocity field due to volcanic processes effect seismic waveforms and are important to consider in the context of seismic sources, whose understanding relies on complete understanding of Earth structure. Apart from reflection and refraction studies and teleseismic signals, ambient noise tomography has been recently utilised to image shallow subsurface of Iceland (Gudmundson et al., 2007). The confluence of North Atlantic and Arctic oceans delivers a strong and relatively evenly distributed noise field, therefore making Iceland an ideal place for an ambient noise study. We initially attempt to confirm previous results of Gudmundson et al. (2007) using conventional surface wave tomography derived from Rayleigh wave group velocity dispersion, with fast marching method as a method of choice for forward modelling (Rawlinson and Sambridge, 2005). We perform cross-correlation over several three-month time intervals of ambient noise obtained from the HOTSPOT experiment (Foulger et al., 2001) distributed across Iceland and we discuss seasonal variation observed in cross-correlograms. To extend conventional methods of imaging, trans-dimensional and hierarchical Bayesian sampling methods are used to produce a multidimensional posterior probability distribution of seismic velocity field. We use a trans-dimensional Bayesian inverse method, as it has an

  12. Mantle dynamics and seismic tomography.

    PubMed

    Tanimoto, T; Lay, T

    2000-11-01

    Three-dimensional imaging of the Earth's interior, called seismic tomography, has achieved breakthrough advances in the last two decades, revealing fundamental geodynamical processes throughout the Earth's mantle and core. Convective circulation of the entire mantle is taking place, with subducted oceanic lithosphere sinking into the lower mantle, overcoming the resistance to penetration provided by the phase boundary near 650-km depth that separates the upper and lower mantle. The boundary layer at the base of the mantle has been revealed to have complex structure, involving local stratification, extensive structural anisotropy, and massive regions of partial melt. The Earth's high Rayleigh number convective regime now is recognized to be much more interesting and complex than suggested by textbook cartoons, and continued advances in seismic tomography, geodynamical modeling, and high-pressure-high-temperature mineral physics will be needed to fully quantify the complex dynamics of our planet's interior. PMID:11035784

  13. 4-D monitoring of the Solfatara crater (Italy) by ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Pilz, M.; Woith, H.; Parolai, S.; Festa, G.

    2014-12-01

    Imaging shallow subsurface structures and monitoring related temporal variations are two of the main tasks for modern seismology. Although many observations have reported temporal velocity changes, e.g., in volcanic areas and on landslides, new methods based on passive sources like ambient seismic noise can provide accurate spatially and temporally resolved information on the velocity structure and on velocity changes. The success of these passive applications is explained by the fact that these methods are based on surface waves which are always present in the ambient seismic noise wave field because they are excited preferentially by superficial sources. Such surface waves can easily be extracted because they dominate the Green´s function between receivers located at the surface. For real-time monitoring of the shallow velocity structure of the Solfatara crater, one the forty volcanoes in the Campi Flegrei area characterized by an intense hydrothermal activity due to the interaction of deep convection and meteoric water, we have installed a dense network of 50 seismological sensing units covering the whole surface area in the framework of the European project MED-SUV. Continuous recordings of the ambient seismic noise over several days as well as signals of an active vibroseis source have been used. Based on a weighted inversion procedure for 3D-passive imaging using ambient noise cross-correlations of both Rayleigh and Love waves, we will present a high-resolution velocity model of the structure beneath the Solfatara crater. We discuss why and how it is possible to perform high precision and real-time monitoring of temporal changes in the properties of the propagation medium at small scales. In particular, we will focus on the depth resolution of the presented approach and further discuss the perspectives of noise-based real-time 4-D tomography.

  14. 3D and 4D Seismic Imaging in the Oilfield; the state of the art

    NASA Astrophysics Data System (ADS)

    Strudley, A.

    2005-05-01

    Seismic imaging in the oilfield context has seen enormous changes over the last 20 years driven by a combination of improved subsurface illumination (2D to 3D), increased computational power and improved physical understanding. Today Kirchhoff Pre-stack migration (in time or depth) is the norm with anisotropic parameterisation and finite difference methods being increasingly employed. In the production context Time-Lapse (4D) Seismic is of growing importance as a tool for monitoring reservoir changes to facilitate increased productivity and recovery. In this paper we present an overview of state of the art technology in 3D and 4D seismic and look at future trends. Pre-stack Kirchhoff migration in time or depth is the imaging tool of choice for the majority of contemporary 3D datasets. Recent developments in 3D pre-stack imaging have been focussed around finite difference solutions to the acoustic wave equation, the so-called Wave Equation Migration methods (WEM). Application of finite difference solutions to imaging is certainly not new, however 3D pre-stack migration using these schemes is a relatively recent development driven by the need for imaging complex geologic structures such as sub salt, and facilitated by increased computational resources. Finally there are a class of imaging methods referred to as beam migration. These methods may be based on either the wave equation or rays, but all operate on a localised (in space and direction) part of the wavefield. These methods offer a bridge between the computational efficiency of Kirchhoff schemes and the improved image quality of WEM methods. Just as 3D seismic has had a radical impact on the quality of the static model of the reservoir, 4D seismic is having a dramatic impact on the dynamic model. Repeat shooting of seismic surveys after a period of production (typically one to several years) reveals changes in pressure and saturation through changes in the seismic response. The growth in interest in 4D seismic

  15. Live 4D optical coherence tomography for early embryonic mouse cardiac phenotyping

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Larin, Kirill V.; Overbeek, Paul A.; Larina, Irina V.

    2016-03-01

    Studying embryonic mouse development is important for our understanding of normal human embryogenesis and the underlying causes of congenital defects. Our research focuses on imaging early development in the mouse embryo to specifically understand cardiovascular development using optical coherence tomography (OCT). We have previously developed imaging approaches that combine static embryo culture, OCT imaging and advanced image processing to visualize the whole live mouse embryos and obtain 4D (3D+time) cardiodynamic datasets with cellular resolution. Here, we present the study of using 4D OCT for dynamic imaging of early embryonic heart in live mouse embryos to assess mutant cardiac phenotypes during development, including a cardiac looping defect. Our results indicate that the live 4D OCT imaging approach is an efficient phenotyping tool that can reveal structural and functional cardiac defects at very early stages. Further studies integrating live embryonic cardiodynamic phenotyping with molecular and genetic approaches in mouse mutants will help to elucidate the underlying signaling defects.

  16. 4D in vivo imaging of subpleural lung parenchyma by swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Meissner, S.; Tabuchi, A.; Mertens, M.; Homann, H.; Walther, J.; Kuebler, W. M.; Koch, E.

    2009-07-01

    In this feasibility study we present a method for 4D imaging of healthy and injured subpleural lung tissue in a mouse model. We used triggered swept source optical coherence tomography with an A-scan frequency of 20 kHz to image murine subpleural alveoli during the ventilation cycle. The data acquisition was gated to the pulmonary airway pressure to take one B-scan in each ventilation cycle for different pressure levels. The acquired B-scans were combined offline to one C-scan for each pressure level. Due to the high acquisition rate of the used optical coherence tomography system, we are also able to perform OCT Doppler imaging of the alveolar arterioles. We demonstrated that OCT is a useful tool to investigate the alveolar dynamics in spatial dimensions and to analyze the alveolar blood flow by using Doppler OCT.

  17. Automated Lung Segmentation and Image Quality Assessment for Clinical 3-D/4-D-Computed Tomography

    PubMed Central

    Li, Guang

    2014-01-01

    4-D-computed tomography (4DCT) provides not only a new dimension of patient-specific information for radiation therapy planning and treatment, but also a challenging scale of data volume to process and analyze. Manual analysis using existing 3-D tools is unable to keep up with vastly increased 4-D data volume, automated processing and analysis are thus needed to process 4DCT data effectively and efficiently. In this paper, we applied ideas and algorithms from image/signal processing, computer vision, and machine learning to 4DCT lung data so that lungs can be reliably segmented in a fully automated manner, lung features can be visualized and measured on the fly via user interactions, and data quality classifications can be computed in a robust manner. Comparisons of our results with an established treatment planning system and calculation by experts demonstrated negligible discrepancies (within ±2%) for volume assessment but one to two orders of magnitude performance enhancement. An empirical Fourier-analysis-based quality measure-delivered performances closely emulating human experts. Three machine learners are inspected to justify the viability of machine learning techniques used to robustly identify data quality of 4DCT images in the scalable manner. The resultant system provides a toolkit that speeds up 4-D tasks in the clinic and facilitates clinical research to improve current clinical practice. PMID:25621194

  18. A method to update fault transmissibility multipliers in the flow simulation model directly from 4D seismic

    NASA Astrophysics Data System (ADS)

    Benguigui, Amran; Yin, Zhen; MacBeth, Colin

    2014-04-01

    We propose a new approach to update fault seal estimates in fluid flow simulation models by direct use of 4D seismic amplitudes calibrated by a well geological constraint. The method is suited to compartmentalized reservoirs and based on metrics created from differences in the 4D seismic signature on either side of major faults. The effectiveness of the approach is demonstrated by application to data from the fault controlled Heidrun field in the Norwegian Sea. The results of this application appear favourable and show that our method can detect variations of fault permeability along the major controlling faults in the field. Updates of the field simulation model with the 4D seismic-derived transmissibilities are observed to decrease the mismatch between the predicted and historical field production data in the majority of wells in our sector of interest.

  19. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOEpatents

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  20. Global surface wave tomography using seismic hum.

    PubMed

    Nishida, Kiwamu; Montagner, Jean-Paul; Kawakatsu, Hitoshi

    2009-10-01

    The development of global surface wave tomography using earthquakes has been crucial to exploration of the dynamic status of Earth's deep. It is naturally believed that only large earthquakes can generate long-period seismic waves that penetrate deep enough into Earth for such exploration. The discovery of seismic hum, Earth's background free oscillations, which are randomly generated by oceanic and/or atmospheric disturbances, now provides an alternative approach. We present results of global upper-mantle seismic tomography using seismic hum and without referring to earthquakes. At periods of 100 to 400 seconds, the phase-velocity anomalies of Rayleigh waves are measured by modeling the observed cross-correlation functions between every pair of stations from among 54 globally distributed seismic stations. The anomalies are then inverted to obtain the three-dimensional S-wave velocity structure in the upper mantle. Our technique provides a new means for exploring the three-dimensional structure of the interior of terrestrial planets with an atmosphere and/or oceans, particularly Mars. PMID:19797654

  1. Double-difference adjoint seismic tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Yanhua O.; Simons, Frederik J.; Tromp, Jeroen

    2016-06-01

    We introduce a `double-difference' method for the inversion for seismic wavespeed structure based on adjoint tomography. Differences between seismic observations and model predictions at individual stations may arise from factors other than structural heterogeneity, such as errors in the assumed source-time function, inaccurate timings, and systematic uncertainties. To alleviate the corresponding nonuniqueness in the inverse problem, we construct differential measurements between stations, thereby reducing the influence of the source signature and systematic errors. We minimize the discrepancy between observations and simulations in terms of the differential measurements made on station pairs. We show how to implement the double-difference concept in adjoint tomography, both theoretically and in practice. We compare the sensitivities of absolute and differential measurements. The former provide absolute information on structure along the ray paths between stations and sources, whereas the latter explain relative (and thus higher-resolution) structural variations in areas close to the stations. Whereas in conventional tomography a measurement made on a single earthquake-station pair provides very limited structural information, in double-difference tomography one earthquake can actually resolve significant details of the structure. The double-difference methodology can be incorporated into the usual adjoint tomography workflow by simply pairing up all conventional measurements; the computational cost of the necessary adjoint simulations is largely unaffected. Rather than adding to the computational burden, the inversion of double-difference measurements merely modifies the construction of the adjoint sources for data assimilation.

  2. 4-D imaging and monitoring of the Solfatara crater (Italy) by ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Pilz, Marco; Parolai, Stefano; Woith, Heiko; Gresse, Marceau; Vandemeulebrouck, Jean

    2016-04-01

    Imaging shallow subsurface structures and monitoring related temporal variations are two of the main tasks for modern geosciences and seismology. Although many observations have reported temporal velocity changes, e.g., in volcanic areas and on landslides, new methods based on passive sources like ambient seismic noise can provide accurate spatially and temporally resolved information on the velocity structure and on velocity changes. The success of these passive applications is explained by the fact that these methods are based on surface waves which are always present in the ambient seismic noise wave field because they are excited preferentially by superficial sources. Such surface waves can easily be extracted because they dominate the Greeńs function between receivers located at the surface. For real-time monitoring of the shallow velocity structure of the Solfatara crater, one of the forty volcanoes in the Campi Flegrei area characterized by an intense hydrothermal activity due to the interaction of deep convection and meteoric water, we have installed a dense network of 50 seismological sensing units covering the whole surface area in the framework of the European project MED-SUV (The MED-SUV project has received funding from the European Union Seventh Framework Programme FP7 under Grant agreement no 308665). Continuous recordings of the ambient seismic noise over several days as well as signals of an active vibroseis source have been used. Based on a weighted inversion procedure for 3D-passive imaging using ambient noise cross-correlations of both Rayleigh and Love waves, we will present a high-resolution shear-wave velocity model of the structure beneath the Solfatara crater and its temporal changes. Results of seismic tomography are compared with a 3-D electrical resistivity model and CO2 flux map.

  3. 4D Optical Coherence Tomography based Microangiography achieved by 1.6 MHz FDML Swept source

    PubMed Central

    Zhi, Zhongwei; Qin, Wan; Wang, Jingang; Wei, Wei; Wang, Ruikang K.

    2015-01-01

    We demonstrate the use of an ultra-high speed swept-source optical coherence tomography (OCT) to achieve optical microangiography (OMAG) of microcirculatory tissue beds in vivo. The system is based on a 1310 nm Fourier domain mode locking (FDML) laser with 1.6MHz A-line rate, providing a frame rate of 3.415 KHz, an axial resolution of ~10 µm and signal to noise ratio of 102 dB. Motion from blood flow causes change in OCT signals between consecutive B-frames acquired at the same location. Intensity based inter-frame subtraction algorithm is applied to extract blood flow from tissue background without any motion correction. We demonstrate the capability of this 1.6 MHz OCT system for 4D optical microangiography of in vivo tissue at a volume rate of 4.7 volumes/s (volume size: 512×200×720 voxels). PMID:25872072

  4. 4-D reconstruction of fluorescence molecular tomography using re-assembled measurement data

    PubMed Central

    Liu, Xin; He, Xiaowe; Yan, Zhuangzhi; Lu, Hongbing

    2015-01-01

    Challenges remain in the reconstruction of dynamic (4-D) fluorescence molecular tomography (FMT). In our previous work, we implemented a fully 4-D FMT reconstruction approach using Karhunen-Loève (KL) transformation. However, in the reconstruction processes, the input data were scan-by-scan fluorescence projections. As a result, the reconstruction interval is limited by the data acquisition time for scanning one circle projections, leading to a long time (typically >1 min). In this paper, we propose a new method to reduce the reconstruction interval of dynamic FMT imaging, which is achieved by re-assembling the acquired fluorescence projection sequence. Further, to eliminate the temporal correlations within measurement data, the re-assembled projection sequence is reconstructed by the KL-based method. The numerical simulation and in vivo experiments are performed to evaluate the performance of the method. The experimental results indicate that after re-assembling measurement data, the reconstruction interval can be greatly reduced (~2.5 sec/frame). In addition, the proposed re-assembling method is helpful for improving reconstruction quality of the KL-based method. PMID:26114022

  5. Application of seismic tomography in underground mining

    SciTech Connect

    Scott, D.F.; Williams, T.J.; Friedel, M.J.

    1996-12-01

    Seismic tomography, as used in mining, is based on the principle that highly stressed rock will demonstrate relatively higher P-wave velocities than rock under less stress. A decrease or increase in stress over time can be verified by comparing successive tomograms. Personnel at the Spokane Research Center have been investigating the use of seismic tomography to identify stress in remnant ore pillars in deep (greater than 1220 in) underground mines. In this process, three-dimensional seismic surveys are conducted in a pillar between mine levels. A sledgehammer is used to generate P-waves, which are recorded by geophones connected to a stacking signal seismograph capable of collecting and storing the P-wave data. Travel times are input into a spreadsheet, and apparent velocities are then generated and merged into imaging software. Mine workings are superimposed over apparent P-wave velocity contours to generate a final tomographic image. Results of a seismic tomographic survey at the Sunshine Mine, Kellogg, ED, indicate that low-velocity areas (low stress) are associated with mine workings and high-velocity areas (higher stress) are associated with areas where no mining has taken place. A high stress gradient was identified in an area where ground failed. From this tomographic survey, as well, as four earlier surveys at other deep underground mines, a method was developed to identify relative stress in remnant ore pillars. This information is useful in making decisions about miner safety when mining such ore pillars.

  6. Global tomography using seismic hum

    NASA Astrophysics Data System (ADS)

    Haned, A.; Stutzmann, E.; Schimmel, M.; Kiselev, S.; Davaille, A.; Yelles-Chaouche, A.

    2016-02-01

    We present a new upper-mantle tomographic model derived solely from hum seismic data. Phase correlograms between station pairs are computed to extract phase-coherent signals. Correlograms are then stacked using the time-frequency phase-weighted stack method to build-up empirical Green's functions. Group velocities and uncertainties are measured in the wide period band of 30-250 s, following a resampling approach. Less data are required to extract reliable group velocities at short periods than at long periods, and 2 yr of data are necessary to measure reliable group velocities for the entire period band. Group velocities are first regionalized and then inverted versus depth using a simulated annealing method in which the number and shape of splines that describes the S-wave velocity model are variable. The new S-wave velocity tomographic model is well correlated with models derived from earthquakes in most areas, although in India, the Dharwar craton is shallower than in other published models.

  7. Using GPU for Seismic Emission Tomography processing

    NASA Astrophysics Data System (ADS)

    Dricker, I. G.; Cooke, A. J.; Friberg, P. A.; Hellman, S. B.

    2010-12-01

    Seismic Emission Tomography (SET) is an emerging technique which is rapidly gaining popularity in both earthquake seismology and the oil and gas industry. Stacking seismic records from multiple channels of a surface seismic array with moveout correction dramatically increases the signal-to-noise ratio and allows monitoring of fine-scale microseismicity. Using SET to detect active seismic locations within the study volume requires time-shifting and stacking the trace for each seismic recording channel and node in the 3D Earth grid. Algorithmically, this implies five nested loops over space coordinates, channel lists and time. Even the most powerful PC CPUs proved impractical for this task; only rough models could be built in a reasonable period of time. Fortunately the SET computational kernel is easy to parallelize, because computations for each grid node and recording channel are independent, so we could achieve significant (of order x100) speedups on Nvidia GPUs with OpenCL. In this case study we show how progressive optimization, from Matlab to C, and on to OpenCL, improved performance. We discuss various problems encountered, give practical guidance on refactoring, and include benchmarks on several GPUs.

  8. Seeing the unseen--bioturbation in 4D: tracing bioirrigation in marine sediment using positron emission tomography and computed tomography.

    PubMed

    Delefosse, Matthieu; Kristensen, Erik; Crunelle, Diane; Braad, Poul Erik; Dam, Johan Hygum; Thisgaard, Helge; Thomassen, Anders; Høilund-Carlsen, Poul Flemming

    2015-01-01

    Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities and behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images of porewater advection induced by the well-studied lugworm (Arenicola marina). Our results show that PET/CT allows more comprehensive studies on ventilation and bioirrigation than possible using techniques traditionally applied in marine ecology. We provide a dynamic three-dimensional description of bioirrigation by the lugworm at very high temporal and spatial resolution. Results obtained with the PET/CT are in agreement with literature data on lugworm ventilation and bioirrigation. Major advantages of PET/CT over methods commonly used are its non-invasive and non-destructive approach and its capacity to provide information that otherwise would require multiple methods. Furthermore, PET/CT scan is versatile as it can be used for a variety of benthic macrofauna species and sediment types and it provides information on burrow morphology or animal behavior. The lack of accessibility to the expensive equipment is its major drawback which can only be overcome through collaboration among several institutions. PMID:25837626

  9. Seeing the Unseen—Bioturbation in 4D: Tracing Bioirrigation in Marine Sediment Using Positron Emission Tomography and Computed Tomography

    PubMed Central

    Delefosse, Matthieu; Kristensen, Erik; Crunelle, Diane; Braad, Poul Erik; Dam, Johan Hygum; Thisgaard, Helge; Thomassen, Anders; Høilund-Carlsen, Poul Flemming

    2015-01-01

    Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities and behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images of porewater advection induced by the well-studied lugworm (Arenicola marina). Our results show that PET/CT allows more comprehensive studies on ventilation and bioirrigation than possible using techniques traditionally applied in marine ecology. We provide a dynamic three-dimensional description of bioirrigation by the lugworm at very high temporal and spatial resolution. Results obtained with the PET/CT are in agreement with literature data on lugworm ventilation and bioirrigation. Major advantages of PET/CT over methods commonly used are its non-invasive and non-destructive approach and its capacity to provide information that otherwise would require multiple methods. Furthermore, PET/CT scan is versatile as it can be used for a variety of benthic macrofauna species and sediment types and it provides information on burrow morphology or animal behavior. The lack of accessibility to the expensive equipment is its major drawback which can only be overcome through collaboration among several institutions. PMID:25837626

  10. Forward modeling of 4D seismic response to the CO2 injection at the Ketzin pilot site with the reflectivity method

    NASA Astrophysics Data System (ADS)

    Ivanova, Alexandra; Ivandic, Monika; Kempka, Thomas; Gil, Magdalena; Bergmann, Peter; Lüth, Stefan

    2014-05-01

    When CO2 replaces brine as a free gas it is well known to affect the elastic properties of porous media considerably. 3D seismic time-lapse surveys (4D seismics) have proven to be a suitable technique for monitoring of injected CO2. Forward modeling of a 4D seismic response to the CO2 fluid substitution in a storage reservoir is an important step in such studies. In order to track the migration of CO2 at the Ketzin pilot site (Germany), 3D time-lapse seismic data were acquired by means of a baseline (pre-injection) survey in 2005 and the monitor surveys in 2009 and 2012. Results of 4D seismic forward modeling with the reflectivity method suggest that effects of the injected CO2 on the 4D seismic data at the Ketzin pilot site are significant regarding both seismic amplitudes and time delays. They prove the corresponding observations in the real 4D seismic data at the Ketzin pilot site. However reservoir heterogeneity and seismic resolution, as well as random and coherent seismic noise are negative factors to be considered while the interpretation. In spite of these negative factors, results of 4D seismic forward modeling with the reflectivity method support the conclusion that the injected CO2 can be monitored at the Ketzin pilot site both qualitatively and quantitatively.

  11. Introducing Seismic Tomography with Computational Modeling

    NASA Astrophysics Data System (ADS)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  12. Formation of secondary porosity in 4D Synchrotron X-ray tomography experiments

    NASA Astrophysics Data System (ADS)

    Fusseis, Florian; Liu, Jie; de Carlo, Francesco; Regenauer-Lieb, Klaus; Schrank, Christoph; Hough, Robert; Gessner, Klaus; Llana-Fúnez, Sergio; Faulkner, Dan; Wheeler, John

    2010-05-01

    Synchrotron X-ray tomography at the Advanced Photon Source (APS) allows to investigate secondary porosity in three dimensions on the nano- to microscale. We utilised the key advantage of the technique, the rapid data acquisition time (seconds to about half an hour/data set), to study the formation of porosity in natural rock samples in real time (4D). The spacious instrument setup in the experimental hutch allowed us to install an X-ray transparent furnace to heat millimetre-sized samples up to 230 °C (>400 °C in the next generation) in the X-ray beam. We focused on two porosity-generating mechanisms: thermal expansion cracking in Westerly granite and dehydration (volume loss/hydraulic fracturing) of Volterra gypsum. The spatial resolution was 1.3 micron in both experiments. We heated a 2mm diameter cylinder of Westerly Granite stepwise from 50 °C to 230 °C and then quenched it to investigate the effects of thermal expansion cracking on the three-dimensional porosity architecture. The sample was scanned after increasing the temperature in 10 °C steps to record the cracks formed during each heating interval. Preliminary analysis of the heterogeneous 4D displacement fields proved that the approach works well. We documented the opening and closing as well as interconnection of grain boundary- and intragranular cracks. A full quantification is currently under way. This experiment also serves to benchmark numerical simulations of thermal cracking that will be used to upscale the permeability evolution during heating (see abstract of Schrank et al.). A second heating experiment aimed at documenting the fluid escape pathways during the dehydration of gypsum to bassanite. We heated a gypsum sample to 115 °C for increasing periods of time. The reaction progress was directly observed in two-dimensional tomographic projections, 3D tomographic datasets were collected during cooling at 50 °C in between the heating intervals. The experiment demonstrated how a permeable

  13. Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction.

    PubMed

    Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R B; Bent, Julian; Withers, Philip J; Lee, Peter D

    2016-01-01

    X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding. PMID:27002902

  14. 4D optical coherence tomography of aortic valve dynamics in a murine mouse model ex vivo

    NASA Astrophysics Data System (ADS)

    Schnabel, Christian; Jannasch, Anett; Faak, Saskia; Waldow, Thomas; Koch, Edmund

    2015-07-01

    The heart and its mechanical components, especially the heart valves and leaflets, are under enormous strain during lifetime. Like all highly stressed materials, also these biological components undergo fatigue and signs of wear, which impinge upon cardiac output and in the end on health and living comfort of affected patients. Thereby pathophysiological changes of the aortic valve leading to calcific aortic valve stenosis (AVS) as most frequent heart valve disease in humans are of particular interest. The knowledge about changes of the dynamic behavior during the course of this disease and the possibility of early stage diagnosis could lead to the development of new treatment strategies and drug-based options of prevention or therapy. ApoE-/- mice as established model of AVS versus wildtype mice were introduced in an ex vivo artificially stimulated heart model. 4D optical coherence tomography (OCT) in combination with high-speed video microscopy were applied to characterize dynamic behavior of the murine aortic valve and to characterize dynamic properties during artificial stimulation. OCT and high-speed video microscopy with high spatial and temporal resolution represent promising tools for the investigation of dynamic behavior and their changes in calcific aortic stenosis disease models in mice.

  15. Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction

    PubMed Central

    Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R. B.; Bent, Julian; Withers, Philip J.; Lee, Peter D.

    2016-01-01

    X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding. PMID:27002902

  16. The mechanics of intermittent methane venting at South Hydrate Ridge inferred from 4D seismic surveying

    NASA Astrophysics Data System (ADS)

    Bangs, Nathan L. B.; Hornbach, Matthew J.; Berndt, Christian

    2011-10-01

    Sea floor methane vents and seeps direct methane generated by microbial and thermal decompositions of organic matter in sediment into the oceans and atmosphere. Methane vents contribute to ocean acidification, global warming, and providing a long-term (e.g. 500-4000 years; Powell et al., 1998) life-sustaining role for unique chemosynthetic biological communities. However, the role methane vents play in both climate change and chemosynthetic life remains controversial primarily because we do not understand long-term methane flux and the mechanisms that control it ( Milkov et al., 2004; Shakhova et al., 2010; Van Dover, 2000). Vents are inherently dynamic and flux varies greatly in magnitude and even flow direction over short time periods (hours-to-days), often tidally-driven ( Boles et al., 2001; Tryon et al., 1999). But, it remains unclear if flux changes at vents occur on the order of the life-cycle of various species within chemosynthetic communities (months, years, to decades Leifer et al., 2004; Torres et al., 2001) and thus impacts their sustainability. Here, using repeat high-resolution 3D seismic surveys acquired in 2000 and 2008, we demonstrate in 4D that Hydrate Ridge, a vent off the Oregon coast has undergone significant reduction of methane flow and complete interruption in just the past few years. In the subsurface, below a frozen methane hydrate layer, free gas appears to be migrating toward the vent, but currently there is accumulating gas that is unable to reach the seafloor through the gas hydrate layer. At the same time, abundant authigenic carbonates show that the system has been active for several thousands of years. Thus, it is likely that activity has been intermittent because gas hydrates clog the vertical flow pathways feeding the seafloor vent. Back pressure building in the subsurface will ultimately trigger hydrofracturing that will revive fluid-flow to the seafloor. The nature of this mechanism implies regular recurring flow interruptions

  17. Optical diffraction tomography using a digital micromirror device for stable measurements of 4D refractive index tomography of cells

    NASA Astrophysics Data System (ADS)

    Shin, Seungwoo; Kim, Kyoohyun; Kim, Taeho; Yoon, Jonghee; Hong, Kihyun; Park, Jinah; Park, YongKeun

    2016-03-01

    Optical diffraction tomography (ODT) is an interferometric microscopy technique capable of measuring 3-D refractive index (RI) distribution of transparent samples. Multiple 2-D holograms of a sample illuminated with various angles are measured, from which 3-D RI map of the sample is reconstructed via the diffraction theory. ODT has been proved as a powerful tool for the study of biological cells, due to its non-invasiveness, label-free and quantitative imaging capability. Recently, our group has demonstrated that a digital micromirror device (DMD) can be exploited for fast and precise control of illumination beams for ODT. In this work, we systematically study the precision and stability of the ODT system equipped with a DMD and present measurements of 3-D and 4-D RI maps of various types of live cells including human red blood cells, white blood cells, hepatocytes, and HeLa cells. Furthermore, we also demonstrate the effective visualization of 3-D RI maps of live cells utilizing the measured information about the values and gradient of RI tomograms.

  18. Can We Estimate Injected Carbon Dioxide Prior to the Repeat Survey in 4D Seismic Monitoring Scheme?

    NASA Astrophysics Data System (ADS)

    Sakai, A.

    2005-12-01

    good and relying on this relation and geological constraints with inversion techniques, porosity and permeability was estimated in 3D volume. If the carbon dioxide movement was solely controlled by permeability, estimated permeability volume might predict the time-lapse seismic data prior to a repeat survey. We compare the estimate with the actual 4D changes and discuss related variations.

  19. Seismic crosshole curved ray reflection plus transmission tomography

    SciTech Connect

    Wu, L.; Song, W.; Zhang, M.

    1994-12-31

    This paper provides a new seismic crosshole tomography method, Curved Ray Reflection + Transmission Tomography (CCRTT). The method could enhance the resolution of oil and gas reservoir beds tomography image, and it is suitable for the area with thin reservoir beds and high velocity contrast between the adjacent beds.

  20. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography

    PubMed Central

    Carrasco-Zevallos, O. M.; Keller, B.; Viehland, C.; Shen, L.; Waterman, G.; Todorich, B.; Shieh, C.; Hahn, P.; Farsiu, S.; Kuo, A. N.; Toth, C. A.; Izatt, J. A.

    2016-01-01

    Minimally-invasive microsurgery has resulted in improved outcomes for patients. However, operating through a microscope limits depth perception and fixes the visual perspective, which result in a steep learning curve to achieve microsurgical proficiency. We introduce a surgical imaging system employing four-dimensional (live volumetric imaging through time) microscope-integrated optical coherence tomography (4D MIOCT) capable of imaging at up to 10 volumes per second to visualize human microsurgery. A custom stereoscopic heads-up display provides real-time interactive volumetric feedback to the surgeon. We report that 4D MIOCT enhanced suturing accuracy and control of instrument positioning in mock surgical trials involving 17 ophthalmic surgeons. Additionally, 4D MIOCT imaging was performed in 48 human eye surgeries and was demonstrated to successfully visualize the pathology of interest in concordance with preoperative diagnosis in 93% of retinal surgeries and the surgical site of interest in 100% of anterior segment surgeries. In vivo 4D MIOCT imaging revealed sub-surface pathologic structures and instrument-induced lesions that were invisible through the operating microscope during standard surgical maneuvers. In select cases, 4D MIOCT guidance was necessary to resolve such lesions and prevent post-operative complications. Our novel surgical visualization platform achieves surgeon-interactive 4D visualization of live surgery which could expand the surgeon’s capabilities. PMID:27538478

  1. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography.

    PubMed

    Carrasco-Zevallos, O M; Keller, B; Viehland, C; Shen, L; Waterman, G; Todorich, B; Shieh, C; Hahn, P; Farsiu, S; Kuo, A N; Toth, C A; Izatt, J A

    2016-01-01

    Minimally-invasive microsurgery has resulted in improved outcomes for patients. However, operating through a microscope limits depth perception and fixes the visual perspective, which result in a steep learning curve to achieve microsurgical proficiency. We introduce a surgical imaging system employing four-dimensional (live volumetric imaging through time) microscope-integrated optical coherence tomography (4D MIOCT) capable of imaging at up to 10 volumes per second to visualize human microsurgery. A custom stereoscopic heads-up display provides real-time interactive volumetric feedback to the surgeon. We report that 4D MIOCT enhanced suturing accuracy and control of instrument positioning in mock surgical trials involving 17 ophthalmic surgeons. Additionally, 4D MIOCT imaging was performed in 48 human eye surgeries and was demonstrated to successfully visualize the pathology of interest in concordance with preoperative diagnosis in 93% of retinal surgeries and the surgical site of interest in 100% of anterior segment surgeries. In vivo 4D MIOCT imaging revealed sub-surface pathologic structures and instrument-induced lesions that were invisible through the operating microscope during standard surgical maneuvers. In select cases, 4D MIOCT guidance was necessary to resolve such lesions and prevent post-operative complications. Our novel surgical visualization platform achieves surgeon-interactive 4D visualization of live surgery which could expand the surgeon's capabilities. PMID:27538478

  2. Using Distant Sources in Local Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Julian, Bruce; Foulgr, Gillian

    2014-05-01

    Seismic tomography methods such as the 'ACH' method of Aki, Christoffersson & Husebye (1976, 1977) are subject to significant bias caused by the unknown wave-speed structure outside the study volume, whose effects are mathematically of the same order as the local-structure effects being studied. Computational experiments using whole-mantle wave-speed models show that the effects are also of comparable numerical magnitude (Masson & Trampert, 1997). Failure to correct for these effects will significantly corrupt computed local structures. This bias can be greatly reduced by solving for additional parameters defining the shapes, orientations, and arrival times of the incident wavefronts. The procedure is exactly analogous to solving for hypocentral locations in local-earthquake tomography. For planar incident wavefronts, each event adds three free parameters and the forward problem is surprisingly simple: The first-order change in the theoretical arrival time at observation point B resulting from perturbations in the incident-wave time t0 and slowness vector s is δtB ≡ δt0 + δs · rA = δtA, the change in the time of the plane wave at the point A where the un-perturbed ray enters the study volume (Julian and Foulger, submitted). This consequence of Fermat's principle apparently has not previously been recognized. In addition to eliminating the biasing effect of structure outside the study volume, this formalism enables us to combine data from local and distant events in studies of local structure, significantly improving resolution of deeper structure, particularly in places such as volcanic and geothermal areas where seismicity is confined to shallow depths. Many published models that were derived using ACH and similar methods probably contain significant artifacts and are in need of re-evaluation.

  3. Structure of Uturuncu volcano from seismic tomography

    NASA Astrophysics Data System (ADS)

    West, M. E.; Kukarina, E.; Koulakov, I.

    2013-12-01

    The PLUTONS project is attempting to capture the process of magma intrusion and pluton formation in situ through the multi-disciplinary study of known magmatic inflation centers. The centerpiece of this study, Uturuncu volcano, is investigated here through seismic travel time tomography. Local seismicity is well distributed and provides constraints on the shallow crust. Ray paths from earthquakes in the subducting slab complement this with steep ray paths that sample the deeper crust. Together the shallow and deep earthquakes provide strong 3D coverage of Uturuncu and the surrounding region. Previous studies have demonstrated that this region is underlain by a broad sill of partial melt at depths below 15 km. It is widely believed that this sill sources the prodigious magmas in the surrounding volcanic complex. However, the connection between the sill and discrete overlying volcanoes, such as Uturuncu, is unknown. We do not know if Uturuncu exists because of higher magma flux from the deep crust, an aggregation of melt from the surrounding sill, or because hotter crust in this region facilitates the movement of existing magmas. The combination of P-wave and S-wave tomography offer some insights. Above the sill, we observe a region of low P velocities but relatively constant Vp/Vs ratios. These suggest a region of high temperatures or, perhaps, hydrothermal alteration. At the time of writing, we do not see strong evidence for the presence of partial melt in the shallow crust. At depths below the sill, however, we observe a combination of low P velocities but high Vp/Vs ratios. The strong depression in S velocities required to get these values is consistent with the presence of partial melt. Taken together these suggest a regime in which excess magma exists beneath Uturuncu at depth, either from a deeper crustal source or pooled from the sill. This magma provides additional heat to the shallow crust. This heat may drive the hydrothermal system at Uturuncu as well as

  4. 4D seismic monitoring of the miscible CO2 flood of Hall-Gurney Field, Kansas, U.S

    USGS Publications Warehouse

    Raef, A.E.; Miller, R.D.; Byrnes, A.P.; Harrison, W.E.

    2004-01-01

    A cost-effective, highly repeatable, 4D-optimized, single-pattern/patch seismic data-acquisition approach with several 3D data sets was used to evaluate the feasibility of imaging changes associated with the " water alternated with gas" (WAG) stage. By incorporating noninversion-based seismic-attribute analysis, the time and cost of processing and interpreting the data were reduced. A 24-ms-thick EOR-CO 2 injection interval-using an average instantaneous frequency attribute (AIF) was targeted. Changes in amplitude response related to decrease in velocity from pore-fluid replacement within this time interval were found to be lower relative to background values than in AIF analysis. Carefully color-balanced AIF-attribute maps established the overall area affected by the injected EOR-CO2.

  5. Optimal observables for multiparameter seismic tomography

    NASA Astrophysics Data System (ADS)

    Bernauer, Moritz; Fichtner, Andreas; Igel, Heiner

    2014-08-01

    We propose a method for the design of seismic observables with maximum sensitivity to a target model parameter class, and minimum sensitivity to all remaining parameter classes. The resulting optimal observables thereby minimize interparameter trade-offs in multiparameter inverse problems. Our method is based on the linear combination of fundamental observables that can be any scalar measurement extracted from seismic waveforms. Optimal weights of the fundamental observables are determined with an efficient global search algorithm. While most optimal design methods assume variable source and/or receiver positions, our method has the flexibility to operate with a fixed source-receiver geometry, making it particularly attractive in studies where the mobility of sources and receivers is limited. In a series of examples we illustrate the construction of optimal observables, and assess the potentials and limitations of the method. The combination of Rayleigh-wave traveltimes in four frequency bands yields an observable with strongly enhanced sensitivity to 3-D density structure. Simultaneously, sensitivity to S velocity is reduced, and sensitivity to P velocity is eliminated. The original three-parameter problem thereby collapses into a simpler two-parameter problem with one dominant parameter. By defining parameter classes to equal earth model properties within specific regions, our approach mimics the Backus-Gilbert method where data are combined to focus sensitivity in a target region. This concept is illustrated using rotational ground motion measurements as fundamental observables. Forcing dominant sensitivity in the near-receiver region produces an observable that is insensitive to the Earth structure at more than a few wavelengths' distance from the receiver. This observable may be used for local tomography with teleseismic data. While our test examples use a small number of well-understood fundamental observables, few parameter classes and a radially symmetric

  6. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

    1996-12-17

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

  7. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, Roger N.; Boulanger, Albert; Bagdonas, Edward P.; Xu, Liqing; He, Wei

    1996-01-01

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

  8. Seismic Tomography of the South Carpathian System

    NASA Astrophysics Data System (ADS)

    Stuart, G. W.; Ren, Y.; Dando, B. D.; Houseman, G.; Ionescu, C.; Hegedus, E.; Radovanovic, S.; South Carpathian Project Working Group

    2010-12-01

    The South Carpathian Mountain Range is an enigmatic system, which includes one of the most seismically active regions in Europe today. That region, Vrancea in the SE Carpathians, is well studied and its deep structure may be geologically unique, but the mantle structures beneath the western part of the South Carpathian Range are not well resolved by previous tomographic studies. The South Carpathian Project (SCP) is a major temporary deployment (2009-2011) of seismic broadband systems extending across the eastern Pannonian Basin and the South Carpathian Mountains. In this project we aim to map the upper mantle structure in central Europe with the objective of testing geodynamic models of the process that produced extension in the Pannonian, synchronous with convergence and uplift in the Carpathians. Here, we describe initial results of finite-frequency tomography using body waves to image the mantle of the region. We have selected teleseismic earthquakes with magnitude greater than 5.9, which occurred between 2005 and 2010. The data were recorded on 57 temporary stations deployed in the South Carpathian Project, 56 temporary stations deployed in the earlier Carpathian Basins Project (CBP), and 41 permanent broadband stations. The differential travel times are measured in high, intermediate and low frequencies (0.5-2.0 Hz, 0.1-0.5 Hz and 0.03-0.1 Hz for both P-wave, 0.1-0.5 Hz, 0.05-0.1 Hz and 0.02-0.05 Hz for S-wave), and are inverted to produce P and S-wave velocity maps at different depths in the mantle. An extensive zone of high seismic velocities is located in the Mantle Transition zone beneath the Pannonian Basin, and is related to down-welling associated with an earlier phase of continental convergence in the Pannonian region. These results will be used in conjunction with 3D geodynamical modelling to help understand the geological evolution of this region. SCP working group: G. Houseman, G. Stuart, Y. Ren, B. Dando, P. Lorinczi, School of Earth and

  9. Development of seismic tomography software for hybrid supercomputers

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on

  10. Stochastic seismic tomography by interacting Markov chains

    NASA Astrophysics Data System (ADS)

    Bottero, Alexis; Gesret, Alexandrine; Romary, Thomas; Noble, Mark; Maisons, Christophe

    2016-07-01

    Markov chain Monte Carlo sampling methods are widely used for non-linear Bayesian inversion where no analytical expression for the forward relation between data and model parameters is available. Contrary to the linear(ized) approaches they naturally allow to evaluate the uncertainties on the model found. Nevertheless their use is problematic in high dimensional model spaces especially when the computational cost of the forward problem is significant and/or the a posteriori distribution is multimodal. In this case the chain can stay stuck in one of the modes and hence not provide an exhaustive sampling of the distribution of interest. We present here a still relatively unknown algorithm that allows interaction between several Markov chains at different temperatures. These interactions (based on Importance Resampling) ensure a robust sampling of any posterior distribution and thus provide a way to efficiently tackle complex fully non linear inverse problems. The algorithm is easy to implement and is well adapted to run on parallel supercomputers. In this paper the algorithm is first introduced and applied to a synthetic multimodal distribution in order to demonstrate its robustness and efficiency compared to a Simulated Annealing method. It is then applied in the framework of first arrival traveltime seismic tomography on real data recorded in the context of hydraulic fracturing. To carry out this study a wavelet based adaptive model parametrization has been used. This allows to integrate the a priori information provided by sonic logs and to reduce optimally the dimension of the problem.

  11. Nonlinear regularization techniques for seismic tomography

    SciTech Connect

    Loris, I. Douma, H.; Nolet, G.; Regone, C.

    2010-02-01

    The effects of several nonlinear regularization techniques are discussed in the framework of 3D seismic tomography. Traditional, linear, l{sub 2} penalties are compared to so-called sparsity promoting l{sub 1} and l{sub 0} penalties, and a total variation penalty. Which of these algorithms is judged optimal depends on the specific requirements of the scientific experiment. If the correct reproduction of model amplitudes is important, classical damping towards a smooth model using an l{sub 2} norm works almost as well as minimizing the total variation but is much more efficient. If gradients (edges of anomalies) should be resolved with a minimum of distortion, we prefer l{sub 1} damping of Daubechies-4 wavelet coefficients. It has the additional advantage of yielding a noiseless reconstruction, contrary to simple l{sub 2} minimization ('Tikhonov regularization') which should be avoided. In some of our examples, the l{sub 0} method produced notable artifacts. In addition we show how nonlinear l{sub 1} methods for finding sparse models can be competitive in speed with the widely used l{sub 2} methods, certainly under noisy conditions, so that there is no need to shun l{sub 1} penalizations.

  12. Application of Genetic Algorithms in Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet; Papazachos, Constantinos

    2010-05-01

    application of hybrid genetic algorithms in seismic tomography is examined and the efficiency of least squares and genetic methods as representative of the local and global optimization, respectively, is presented and evaluated. The robustness of both optimization methods has been tested and compared for the same source-receiver geometry and characteristics of the model structure (anomalies, etc.). A set of seismic refraction synthetic (noise free) data was used for modeling. Specifically, cross-well, down-hole and typical refraction studies using 24 geophones and 5 shoots were used to confirm the applicability of the genetic algorithms in seismic tomography. To solve the forward modeling and estimate the traveltimes, the revisited ray bending method was used supplemented by an approximate computation of the first Fresnel volume. The root mean square (rms) error as the misfit function was used and calculated for the entire random velocity model for each generation. After the end of each generation and based on the misfit of the individuals (velocity models), the selection, crossover and mutation (typical process steps of genetic algorithms) were selected continuing the evolution theory and coding the new generation. To optimize the computation time, since the whole procedure is quite time consuming, the Matlab Distributed Computing Environment (MDCE) was used in a multicore engine. During the tests, we noticed that the fast convergence that the algorithm initially exhibits (first 5 generations) is followed by progressively slower improvements of the reconstructed velocity models. Thus, to improve the final tomographic models, a hybrid genetic algorithm (GA) approach was adopted by combining the GAs with a local optimization method after several generations, on the basis of the convergence of the resulting models. This approach is shown to be efficient, as it directs the solution search towards a model region close to the global minimum solution.

  13. MC Kernel: Broadband Waveform Sensitivity Kernels for Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Stähler, Simon C.; van Driel, Martin; Auer, Ludwig; Hosseini, Kasra; Sigloch, Karin; Nissen-Meyer, Tarje

    2016-04-01

    We present MC Kernel, a software implementation to calculate seismic sensitivity kernels on arbitrary tetrahedral or hexahedral grids across the whole observable seismic frequency band. Seismic sensitivity kernels are the basis for seismic tomography, since they map measurements to model perturbations. Their calculation over the whole frequency range was so far only possible with approximative methods (Dahlen et al. 2000). Fully numerical methods were restricted to the lower frequency range (usually below 0.05 Hz, Tromp et al. 2005). With our implementation, it's possible to compute accurate sensitivity kernels for global tomography across the observable seismic frequency band. These kernels rely on wavefield databases computed via AxiSEM (www.axisem.info), and thus on spherically symmetric models. The advantage is that frequencies up to 0.2 Hz and higher can be accessed. Since the usage of irregular, adapted grids is an integral part of regularisation in seismic tomography, MC Kernel works in a inversion-grid-centred fashion: A Monte-Carlo integration method is used to project the kernel onto each basis function, which allows to control the desired precision of the kernel estimation. Also, it means that the code concentrates calculation effort on regions of interest without prior assumptions on the kernel shape. The code makes extensive use of redundancies in calculating kernels for different receivers or frequency-pass-bands for one earthquake, to facilitate its usage in large-scale global seismic tomography.

  14. Time lapse seismic response (4D) related to industrial-scale CO2 injection at an EOR and CCS site, Cranfield, MS

    NASA Astrophysics Data System (ADS)

    Ditkof, J.; Meckel, T. A.; Zeng, H.; Hovorka, S. D.

    2011-12-01

    4D seismic response can be used to understand reservoir fluid substitution related to multiphase fluid flow. Time lapse seismic surveys have been conducted internationally at well-known CCS field sites like Otway, Weyburn, and Sleipner as well as downhole measurements at Frio and Cranfield in the United States. We present results from the first 4D survey conducted in the U.S. for CCS purposes. Since 2008 continuous CO2 injection has occurred at an EOR project in Cranfield, Mississippi, also the location of our SECARB CCS demonstration project funded by DOE's Regional Carbon Sequestration Partnership. 4D response has been characterized after 3 years of injection, where >3 million tons of CO2 remain in the subsurface. Results from 4D stratal slices show a definitive but complicated CO2 response in the injection interval, and no coherent response above or below the injection interval. Clear examples of seismic amplitude response are seen near injection wells. Qualitatively, some areas that have received large amounts of CO2 do not have coherent seismic response, indicating that 4D response to injected CO2 in some parts of the field is likely to be masked by residual oil, gas, and brine related to historic production (1960's). To further quantify the seismic response, well log data shows that Vp decreases before becoming mostly constant, Vs increases linearly, and density slightly decreases in the injection zone. This is a similar expected result to that observed at other sites. Forward seismic modeling and flow simulation have been integrated to understand seismic response in relation to fluid properties and distribution. Seismic understanding may lead to improved understanding of sweep efficiency (capacity) as well as define sensitivity of seismic imaging for quantifying CO2 storage.

  15. Seismic tomography as a tool for measuring stress in mines

    USGS Publications Warehouse

    Scott, Douglas F.; Williams, T.J.; Denton, D.K.; Friedel, M.J.

    1999-01-01

    Spokane Research Center personnel have been investigating the use of seismic tomography to monitor the behavior of a rock mass, detect hazardous ground conditions and assess the mechanical integrity of a rock mass affected by mining. Seismic tomography can be a valuable tool for determining relative stress in deep, >1,220-m (>4,000-ft), underground pillars. If high-stress areas are detected, they can be destressed prior to development or they can be avoided. High-stress areas can be monitored with successive seismic surveys to determine if stress decreases to a level where development can be initiated safely. There are several benefits to using seismic tomography to identify high stress in deep underground pillars. The technique is reliable, cost-effective, efficient and noninvasive. Also, investigators can monitor large rock masses, as well as monitor pillars during the mining cycle. By identifying areas of high stress, engineers will be able to assure that miners are working in a safer environment.Spokane Research Center personnel have been investigating the use of seismic tomography to monitor the behavior of a rock mass, detect hazardous ground conditions and assess the mechanical integrity of a rock mass affected by mining. Seismic tomography can be a valuable tool for determining relative stress in deep, >1,200-m (>4,000-ft), underground pillars. If high-stress areas are detected, they can be destressed prior to development or they can be avoided. High-stress areas can be monitored with successive seismic surveys to determine if stress decreases to a level where development can be initiated safely. There are several benefits to using seismic tomography to identify high stress in deep underground pillars. The technique is reliable, cost-effective, efficient and noninvasive. Also, investigators can monitor large rock masses, as well as monitor pillars during the mining cycle. By identifying areas of high stress. engineers will be able to assure that miners are

  16. Caribbean plate tectonics from seismic tomography

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.; Villasenor, A.

    2012-12-01

    New seismic tomography in the Caribbean shows close links between the geometry and dynamics of subducting slabs and the geology of the overriding plate. Unlike most oceanic plates, the Caribbean plate lacks identifiable seafloor magnetic anomalies and fracture zones. The plate's history has therefore been inferred primarily from land geology along the plate boundary, which is complicated by large-scale shear deformation, and from finite rotations of surrounding plates.We used more than 14 million arrival times from 300,000 earthquakes to identify P-wave velocity anomalies. We relate the anomalies to the geometry and dynamics of subducting slabs and to patterns of earthquake activity, volcanism, topographic relief, and tectonic deformation. For example, we detect two separate slabs belonging to the North and South American plates, respectively, which appear to be responsible for morphologic and tectonic differences between the arcs of the Northern (from Guadeloupe northward) and Southern (from Dominica southward) Lesser Antilles. Variations in earthquake activity between Haiti and the Dominican Republic can be explained by a change in slab geometry from an underplated slab beneath Haiti to a subducting slab under the Dominican Republic. A shallow tear in the slab may explain the anomalously deep Puerto Rico Trench and the frequent earthquake swarms there. The westward shift in volcanic activity in the Northern Lesser Antilles from the Miocene Limestone Caribbees to the present arc can be attributed to the limit on convective flow imposed by the 3-D geometry of the slab at depth. A thinned South America slab under the southern Lesser Antilles may result from traction imposed on the slab by a wide forearc wedge. Variations in tectonic deformation of northern South America could be related to the location of the Caribbean Large Igneous Province north of the Maracaibo Block.

  17. Reflection seismic waveform tomography of physical modelling data

    NASA Astrophysics Data System (ADS)

    Rao, Y.; Wang, Y.; Zhang, Z. D.; Ning, Y. C.; Chen, X. H.; Li, J. Y.

    2016-04-01

    Waveform tomography is commonly tested using numerically generated synthetic seismic data, before the method is applied to field seismic data. However, there are often noticeable differences between idealized synthetic data and real field data, and many factors in the field data, such as noise, irregular source/receiver geometry, affect the inversion solutions. For exploring the potential of reflection seismic waveform tomography, we presented a more realistic test than the synthetic data test, by applying it to physical modelling data, to reconstruct a laboratorial model with complex velocity variation. First, we provided a formulation of the perfectly matched layer absorbing boundary condition, associated with the second-order acoustic wave equation, in order to suppress artificial reflections from subsurface model boundaries in seismic waveform simulation and tomography. Then, we demonstrated the successful implementation of a layer-striping inversion scheme applicable to reflection seismic waveform tomography. Finally, we confirmed the effectiveness of frequency grouping, rather than a single frequency at each iteration, a strategy specifically for the frequency-domain waveform tomography.

  18. 4D shear stress maps of the developing heart using Doppler optical coherence tomography

    PubMed Central

    Peterson, Lindsy M.; Jenkins, Michael W.; Gu, Shi; Barwick, Lee; Watanabe, Michiko; Rollins, Andrew M.

    2012-01-01

    Accurate imaging and measurement of hemodynamic forces is vital for investigating how physical forces acting on the embryonic heart are transduced and influence developmental pathways. Of particular importance is blood flow-induced shear stress, which influences gene expression by endothelial cells and potentially leads to congenital heart defects through abnormal heart looping, septation, and valvulogenesis. However no imaging tool has been available to measure shear stress on the endocardium volumetrically and dynamically. Using 4D structural and Doppler OCT imaging, we are able to accurately measure the blood flow in the heart tube in vivo and to map endocardial shear stress throughout the heart cycle under physiological conditions for the first time. These measurements of the shear stress patterns will enable precise titration of experimental perturbations and accurate correlation of shear with the expression of molecules critical to heart development. PMID:23162737

  19. Geodynamically Consistent Interpretation of Seismic Tomography under the Hawaiian Hotspot

    NASA Astrophysics Data System (ADS)

    Bercovici, D.; Samuel, H.

    2006-12-01

    Recent theoretical developments as well as increased data quality and coverage have allowed seismic tomographic imaging to better resolve narrower structures at both shallow and deep mantle depths. However, despite these improvements, the interpretation of tomographic images remains problematic mainly because of: (1) the trade off between temperature and composition and their different influence on mantle flow; (2) the difficulty in determining the extent and continuity of structures revealed by seismic tomography. We present a study on mantle thermal plumes, which illustrate the need to consider both geodynamic and mineral physics for a consistent interpretation of tomographic images in terms of temperature composition and flow. We focus on the identification of thermal plume by seismic tomography beneath the Hawaiian hot spot: a set of 3D numerical experiments is performed in a spherical shell to model a rising plume beneath a moving plate. The thermal structure obtained is converted into body waves seismic velocities using mineral physics considerations. We then build synthetic travel time data by propagating front waves in the obtained seismic structure. This synthetic data will be used to construct a travel time tomographic model, which is compared with actual tomographic models based on data from the ongoing PLUME seismic experiment. This comparison will allow a more consistent and quantitative interpretation of seismic tomography and plume structure under Hawaii.

  20. Super-resolution reconstruction for 4D computed tomography of the lung via the projections onto convex sets approach

    SciTech Connect

    Zhang, Yu E-mail: qianjinfeng08@gmail.com; Wu, Xiuxiu; Yang, Wei; Feng, Qianjin E-mail: qianjinfeng08@gmail.com; Chen, Wufan

    2014-11-01

    Purpose: The use of 4D computed tomography (4D-CT) of the lung is important in lung cancer radiotherapy for tumor localization and treatment planning. Sometimes, dense sampling is not acquired along the superior–inferior direction. This disadvantage results in an interslice thickness that is much greater than in-plane voxel resolutions. Isotropic resolution is necessary for multiplanar display, but the commonly used interpolation operation blurs images. This paper presents a super-resolution (SR) reconstruction method to enhance 4D-CT resolution. Methods: The authors assume that the low-resolution images of different phases at the same position can be regarded as input “frames” to reconstruct high-resolution images. The SR technique is used to recover high-resolution images. Specifically, the Demons deformable registration algorithm is used to estimate the motion field between different “frames.” Then, the projection onto convex sets approach is implemented to reconstruct high-resolution lung images. Results: The performance of the SR algorithm is evaluated using both simulated and real datasets. Their method can generate clearer lung images and enhance image structure compared with cubic spline interpolation and back projection (BP) method. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 40.8% relative to cubic spline interpolation and 10.2% versus BP. Conclusions: A new algorithm has been developed to improve the resolution of 4D-CT. The algorithm outperforms the cubic spline interpolation and BP approaches by producing images with markedly improved structural clarity and greatly reduced artifacts.

  1. 4D optical coherence tomography of the embryonic heart using gated imaging

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rothenberg, Florence; Roy, Debashish; Nikolski, Vladimir P.; Wilson, David L.; Efimov, Igor R.; Rollins, Andrew M.

    2005-04-01

    Computed tomography (CT), ultrasound, and magnetic resonance imaging have been used to image and diagnose diseases of the human heart. By gating the acquisition of the images to the heart cycle (gated imaging), these modalities enable one to produce 3D images of the heart without significant motion artifact and to more accurately calculate various parameters such as ejection fractions [1-3]. Unfortunately, these imaging modalities give inadequate resolution when investigating embryonic development in animal models. Defects in developmental mechanisms during embryogenesis have long been thought to result in congenital cardiac anomalies. Our understanding of normal mechanisms of heart development and how abnormalities can lead to defects has been hampered by our inability to detect anatomic and physiologic changes in these small (<2mm) organs. Optical coherence tomography (OCT) has made it possible to visualize internal structures of the living embryonic heart with high-resolution in two- and threedimensions. OCT offers higher resolution than ultrasound (30 um axial, 90 um lateral) and magnetic resonance microscopy (25 um axial, 31 um lateral) [4, 5], with greater depth penetration over confocal microscopy (200 um). Optical coherence tomography (OCT) uses back reflected light from a sample to create an image with axial resolutions ranging from 2-15 um, while penetrating 1-2 mm in depth [6]. In the past, OCT groups estimated ejection fractions using 2D images in a Xenopus laevis [7], created 3D renderings of chick embryo hearts [8], and used a gated reconstruction technique to produce 2D Doppler OCT image of an in vivo Xenopus laevis heart [9]. In this paper we present a gated imaging system that allowed us to produce a 16-frame 3D movie of a beating chick embryo heart. The heart was excised from a day two (stage 13) chicken embryo and electrically paced at 1 Hz. We acquired 2D images (B-scans) in 62.5 ms, which provides enough temporal resolution to distinguish end

  2. Tracking tracer motion in a 4-D electrical resistivity tomography experiment

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Nilsson, H.; Kuras, O.; Bai, L.

    2016-05-01

    A new framework for automatically tracking subsurface tracers in electrical resistivity tomography (ERT) monitoring images is presented. Using computer vision and Bayesian inference techniques, in the form of a Kalman filter, the trajectory of a subsurface tracer is monitored by predicting and updating a state model representing its movements. Observations for the Kalman filter are gathered using the maximally stable volumes algorithm, which is used to dynamically threshold local regions of an ERT image sequence to detect the tracer at each time step. The application of the framework to the results of 2-D and 3-D tracer monitoring experiments show that the proposed method is effective for detecting and tracking tracer plumes in ERT images in the presence of noise, without intermediate manual intervention.

  3. Automated 4D lung computed tomography reconstruction during free breathing for conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam M.; Low, Daniel A.; Christensen, Gary E.; Parikh, Parag J.; Song, Joo Hyun; Nystrom, Michelle M.; Lu, Wei; Deasy, Joseph O.; Hubenschmidt, James P.; Wahab, Sasha H.; Mutic, Sasa; Singh, Anurag K.; Bradley, Jeffrey D.

    2004-04-01

    We are developing 4D-CT to provide breathing motion information (trajectories) for radiation therapy treatment planning of lung cancer. Potential applications include optimization of intensity-modulated beams in the presence of breathing motion and intra-fraction target volume margin determination for conformal therapy. The images are acquired using a multi-slice CT scanner while the patient undergoes simultaneous quantitative spirometry. At each couch position, the CT scanner is operated in ciné mode and acquires up to 15 scans of 12 slices each. Each CT scan is associated with the measured tidal volume for retrospective reconstruction of 3D CT scans at arbitrary tidal volumes. The specific tasks of this project involves the development of automated registration of internal organ motion (trajectories) during breathing. A modified least-squares based optical flow algorithm tracks specific features of interest by modifying the eigenvalues of gradient matrix (gradient structural tensor). Good correlations between the measured motion and spirometry-based tidal volume are observed and evidence of internal hysteresis is also detected.

  4. Segmentation of 4D cardiac computer tomography images using active shape models

    NASA Astrophysics Data System (ADS)

    Leiner, Barba-J.; Olveres, Jimena; Escalante-Ramírez, Boris; Arámbula, Fernando; Vallejo, Enrique

    2012-06-01

    This paper describes a segmentation method for time series of 3D cardiac images based on deformable models. The goal of this work is to extend active shape models (ASM) of tree-dimensional objects to the problem of 4D (3D + time) cardiac CT image modeling. The segmentation is achieved by constructing a point distribution model (PDM) that encodes the spatio-temporal variability of a training set, i.e., the principal modes of variation of the temporal shapes are computed using some statistical parameters. An active search is used in the segmentation process where an initial approximation of the spatio-temporal shape is given and the gray level information in the neighborhood of the landmarks is analyzed. The starting shape is able to deform so as to better fit the data, but in the range allowed by the point distribution model. Several time series consisting of eleven 3D images of cardiac CT are employed for the method validation. Results are compared with manual segmentation made by an expert. The proposed application can be used for clinical evaluation of the left ventricle mechanical function. Likewise, the results can be taken as the first step of processing for optic flow estimation algorithms.

  5. Medium-scale 4-D ionospheric tomography using a dense GPS network

    NASA Astrophysics Data System (ADS)

    van de Kamp, M. M. J. L.

    2013-01-01

    The ionosphere above Scandinavia in December 2006 is successfully imaged by 4-dimensional tomography using the software package MIDAS from the University of Bath. The method concentrates on medium-scale structures: between 100 km and 2000 km in horizontal size. The input consists of TEC measurements from the dense GPS network Geotrim in Finland. In order to ensure sufficient vertical resolution of the result, EISCAT incoherent scatter radar data from Tromsø are used as additional input to provide the vertical profile information. The TEC offset of the measurements is unknown, but the inversion procedure is able to determine this automatically. This auto-calibration is shown to work well. Comparisons with EISCAT radar results and with occultation results show that the inversion using EISCAT data for profile information is much better able to resolve vertical profiles of irregular structures than the inversion using built-in profiles. Still, with either method the intensities of irregular structures of sizes near the resolution (about 100 km horizontal size) can be underestimated. Also, the accuracy of the inversion worsens above areas where no receivers are available. The ionosphere over Scandinavia in December 2006 often showed a dense E-layer in early morning hours, which generally disappeared during midday when a dense F-layer was present. On 14 December, a strong coronal mass ejection occurred, and many intense irregularities appeared in the ionosphere, which extended to high altitudes.

  6. Dynamic reservoir characterization using 4D multicomponent seismic data and rock physics modeling at Delhi Field, Louisiana

    NASA Astrophysics Data System (ADS)

    Carvajal Meneses, Carla C.

    Pore pressure and CO2 saturation changes are important to detect and quantify for maximizing oil recovery in Delhi Field. Delhi Field is a enhanced oil recovery (EOR) project with active monitoring by 4D multicomponent seismic technologies. Dynamic rock physics modeling integrates the rich dataset of core, well logs, petrographic thin sections and facies providing a link between reservoir and elastic properties. The dynamic modeling in this high porosity sandstone reservoir shows that P-wave velocity is more sensitive to CO2 saturation while S-wave velocity is more sensitive to pore pressure changes. I use PP and PS seismic data to jointly invert for Vp=Vs ratio and acoustic impedance. This technique has the advantage of adding more information to the non-unique inversion problem. Combining the inversion results from the monitor surveys of June 2010 and August 2011 provides acoustic impedance and Vp=Vs percentage differences. The time-lapse inverted response enables dynamic characterization of the reservoir by fitting the predicted dynamic models (calibrated at the wells). Dynamic reservoir characterization adds value in this stratigraphic complex reservoir. The results indicate that reservoir heterogeneities and pore pressure gradients control the CO2 flow within the Paluxy reservoir. Injectors 148-2 and 140-1 showed CO2 is moving downdip following a distributary channel induced by differential pressure from an updip injector or a barrier caused by a heterogeneity in the reservoir. CO2 anomalies located above the Paluxy injector 148-2 indicates that CO2 is moving from the Paluxy up into the Tuscaloosa Formation. My work demonstrates that reservoir monitoring is necessary for reservoir management at Delhi Field.

  7. 4D computerized ionospheric tomography by using GPS measurements and IRI-Plas model

    NASA Astrophysics Data System (ADS)

    Tuna, Hakan; Arikan, Feza; Arikan, Orhan

    2016-07-01

    approaches onto the obtained results. Combining Kalman methods with the proposed 3D CIT technique creates a robust 4D ionospheric electron density estimation model, and has the advantage of decreasing the computational cost of the proposed method. Results applied on both calm and storm days of the ionosphere show that, new technique produces more robust solutions especially when the number of GPS receiver stations in the region is small. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.

  8. Experimental characterization of cement-bentonite interaction using core infiltration techniques and 4D computed tomography

    NASA Astrophysics Data System (ADS)

    Dolder, F.; Mäder, U.; Jenni, A.; Schwendener, N.

    Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel drums, and as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predict significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this project is to characterize and quantify the cement/bentonite skin effects spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used, which allows performing X-ray computed tomography (CT) periodically without interrupting a running experiment. A pre-saturated cylindrical MX-80 bentonite sample (1920 kg/m3 average wet density) is subjected to a confining pressure as a constant total pressure boundary condition. The infiltration of a hyperalkaline (pH 13.4), artificial OPC (ordinary Portland cement) pore water into the bentonite plug alters the mineral assemblage over time as an advancing reaction front. The related changes in X-ray attenuation values are related to changes in phase densities, porosity and local bulk density and are tracked over time periodically by non-destructive CT scans. Mineral precipitation is observed in the inflow filter. Mineral alteration in the first millimeters of the bentonite sample is clearly detected and the reaction front is presently progressing with an average linear velocity that is 8 times slower than that for anions. The reaction zone is characterized by a higher X-ray attenuation compared to the signal of the pre-existing mineralogy. Chemical analysis of the outflow fluid showed initially elevated anion and cation concentrations compared to the infiltration fluid due to anion exclusion effects related to compaction of

  9. Theoretical and computational aspects of seismic tomography

    NASA Astrophysics Data System (ADS)

    Alekseev, A. S.; Lavrentiev, M. M.; Romanov, V. G.; Romanov, M. E.

    1990-12-01

    This paper reviews aspects related to applications of seismic wave kinematics for the reconstruction of internal characteristics of an elastic medium. It presents the results of studying the inverse kinematic seismic problem and its linear analogue — problems of integral geometry, obtained in recent decades with an emphasis on the work done by Soviet scientists. Computational techniques of solving these problems are discussed. This review should be of interest to geophysicists studying the oceans, atmosphere and ionosphere as well as those studying the solid part of the Earth.

  10. Quantifying the image quality and dose reduction of respiratory triggered 4D cone-beam computed tomography with patient-measured breathing

    NASA Astrophysics Data System (ADS)

    Cooper, Benjamin J.; O'Brien, Ricky T.; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J.

    2015-12-01

    Respiratory triggered four dimensional cone-beam computed tomography (RT 4D CBCT) is a novel technique that uses a patient’s respiratory signal to drive the image acquisition with the goal of imaging dose reduction without degrading image quality. This work investigates image quality and dose using patient-measured respiratory signals for RT 4D CBCT simulations. Studies were performed that simulate a 4D CBCT image acquisition using both the novel RT 4D CBCT technique and a conventional 4D CBCT technique. A set containing 111 free breathing lung cancer patient respiratory signal files was used to create 111 pairs of RT 4D CBCT and conventional 4D CBCT image sets from realistic simulations of a 4D CBCT system using a Rando phantom and the digital phantom, XCAT. Each of these image sets were compared to a ground truth dataset from which a mean absolute pixel difference (MAPD) metric was calculated to quantify the degradation of image quality. The number of projections used in each simulation was counted and was assumed as a surrogate for imaging dose. Based on 111 breathing traces, when comparing RT 4D CBCT with conventional 4D CBCT, the average image quality was reduced by 7.6% (Rando study) and 11.1% (XCAT study). However, the average imaging dose reduction was 53% based on needing fewer projections (617 on average) than conventional 4D CBCT (1320 projections). The simulation studies have demonstrated that the RT 4D CBCT method can potentially offer a 53% saving in imaging dose on average compared to conventional 4D CBCT in simulation studies using a wide range of patient-measured breathing traces with a minimal impact on image quality.

  11. SU-E-J-183: Quantifying the Image Quality and Dose Reduction of Respiratory Triggered 4D Cone-Beam Computed Tomography with Patient- Measured Breathing

    SciTech Connect

    Cooper, B; OBrien, R; Kipritidis, J; Keall, P

    2014-06-01

    Purpose: Respiratory triggered four dimensional cone-beam computed tomography (RT 4D CBCT) is a novel technique that uses a patient's respiratory signal to drive the image acquisition with the goal of imaging dose reduction without degrading image quality. This work investigates image quality and dose using patient-measured respiratory signals for RT 4D CBCT simulations instead of synthetic sinusoidal signals used in previous work. Methods: Studies were performed that simulate a 4D CBCT image acquisition using both the novel RT 4D CBCT technique and a conventional 4D CBCT technique from a database of oversampled Rando phantom CBCT projections. A database containing 111 free breathing lung cancer patient respiratory signal files was used to create 111 RT 4D CBCT and 111 conventional 4D CBCT image datasets from realistic simulations of a 4D RT CBCT system. Each of these image datasets were compared to a ground truth dataset from which a root mean square error (RMSE) metric was calculated to quantify the degradation of image quality. The number of projections used in each simulation is counted and was assumed as a surrogate for imaging dose. Results: Based on 111 breathing traces, when comparing RT 4D CBCT with conventional 4D CBCT the average image quality was reduced by 7.6%. However, the average imaging dose reduction was 53% based on needing fewer projections (617 on average) than conventional 4D CBCT (1320 projections). Conclusion: The simulation studies using a wide range of patient breathing traces have demonstrated that the RT 4D CBCT method can potentially offer a substantial saving of imaging dose of 53% on average compared to conventional 4D CBCT in simulation studies with a minimal impact on image quality. A patent application (PCT/US2012/048693) has been filed which is related to this work.

  12. 5D respiratory motion model based image reconstruction algorithm for 4D cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jiulong; Zhang, Xue; Zhang, Xiaoqun; Zhao, Hongkai; Gao, Yu; Thomas, David; Low, Daniel A.; Gao, Hao

    2015-11-01

    4D cone-beam computed tomography (4DCBCT) reconstructs a temporal sequence of CBCT images for the purpose of motion management or 4D treatment in radiotherapy. However the image reconstruction often involves the binning of projection data to each temporal phase, and therefore suffers from deteriorated image quality due to inaccurate or uneven binning in phase, e.g., under the non-periodic breathing. A 5D model has been developed as an accurate model of (periodic and non-periodic) respiratory motion. That is, given the measurements of breathing amplitude and its time derivative, the 5D model parametrizes the respiratory motion by three time-independent variables, i.e., one reference image and two vector fields. In this work we aim to develop a new 4DCBCT reconstruction method based on 5D model. Instead of reconstructing a temporal sequence of images after the projection binning, the new method reconstructs time-independent reference image and vector fields with no requirement of binning. The image reconstruction is formulated as a optimization problem with total-variation regularization on both reference image and vector fields, and the problem is solved by the proximal alternating minimization algorithm, during which the split Bregman method is used to reconstruct the reference image, and the Chambolle's duality-based algorithm is used to reconstruct the vector fields. The convergence analysis of the proposed algorithm is provided for this nonconvex problem. Validated by the simulation studies, the new method has significantly improved image reconstruction accuracy due to no binning and reduced number of unknowns via the use of the 5D model.

  13. Using the STOMP (Seismic TOMography Program) Program for tomography with strong ray bending

    SciTech Connect

    Beatty, J.A.; Berryman, J.G.

    1987-08-31

    Accurate tomographic reconstructions of sound wave speed and attenuation are more difficult to obtain than are the corresponding reconstructions for x-rays or high frequency electromagnetic probes. The source of the difficulty is the common occurrence of large contrasts in acoustic or seismic wave speeds, leading to refraction and ray-bending effects. A new algorithm based on Fermat's principle has been developed to treat these problems. A description of the code STOMP (for Seismic TOMography Program) implementing the new algorithm is presented here together with a brief users manual for applications to borehole-to-borehole tomography. 3 refs., 3 figs.

  14. Ambient Seismic Noise Tomography of Southern Norway

    NASA Astrophysics Data System (ADS)

    Köhler, Andreas; Weidle, Christian; Maupin, Valerie

    2010-05-01

    The noise cross-correlation technique is especially useful in regions like southern Norway since local seismicity is rare and teleseismic records are not able to resolve the upper crust. Within the TopoScandiaDeep project, which aims to investigate the relation between surface topography and lithosphere-asthenosphere structure, we process seismic broadband data from the temporary MAGNUS network in Southern Norway. The receivers were recording 20 months of continuous data between September 2006 and June 2008. Additionally, permanent stations of the National Norwegian Seismic Network, NORSAR and GSN stations in the region are used. After usual preprocessing steps (filtering, prewhitening, temporal normalization), we compute 820 cross-correlation functions from 41 receivers for three month time windows. Evaluation of the azimuthal and temporal variation of signal to noise ratios and f-k analysis of NORSAR array data shows that the dominant propagation direction of seismic noise is south-west to north, corresponding well to the Norwegian coast line. During summer months, the signal to noise ratios decrease and the azimuthal distribution becomes smoother. Time-frequency analysis is applied to measure Rayleigh and Love wave group velocity dispersion curves between each station pair for each three-month correlation stack. The mean and variance of all dispersion curves is computed for each path. After rejection of low-quality data using a signal to noise ratio, minimum wavelength and velocity variance criterion, we obtain a large number of reliable velocity estimates (about 600) for periods between 2 and 15 seconds, which we invert for group velocity maps at respective periods. At all inverted periods, we find positive and negative velocity anomalies for Rayleigh and Love waves that correlate very well with local surface geology. While higher velocities (+5%) can be associated with the Caledonian nappes in the central part of southern Norway, the Oslo Graben is reflected

  15. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G.; Liu, Chihray; Lu, Bo

    2015-12-01

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR). In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the

  16. Seismic tomography at Popocatépetl volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Berger, Pia; Got, Jean-Luc; González, Carlos Valdés; Monteiller, Vadim

    2011-03-01

    We performed the first 3D seismic tomography of the Popocatépetl volcano, Mexico, from the inversion of the P-wave arrival times of nearly 1500 earthquakes recorded by up to 11 seismic stations of the permanent CENAPRED-SSN network. We used the Bayesian tomographic algorithm developed by Monteiller et al. (2005) to perform this P-wave travel-time tomography and carefully choose optimal regularization hyper-parameters. Sensitivity tests show that the inversion is correctly constrained under the volcano from - 1 to 4 km depth b.s.l.. At these depths, the optimal tomographic model mainly shows low-velocity volumes surrounded by higher-velocity volumes. Lateral heterogeneity is strong: the variation of the P-wave velocity may reach up to ± 20% of the average value at a given depth. Low-velocity volumes correlate well with results from former geological and geophysical studies.

  17. Yellowstone Attenuation Tomography from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Seats, K.; Lawrence, J. F.

    2013-12-01

    The goal of this study is to create a tomographic attenuation image for the Yellowstone region by analyzing ambient seismic noise. An attenuation image generated from ambient noise should provide more information about the structure and properties beneath Yellowstone, especially the caldera, which is known to be active. I applied the method of Lawrence & Prieto [2011] to examine lateral variations in the attenuation structure of Yellowstone. Ambient noise data were collected from broadband seismic stations located around Yellowstone National Park from 1999-2013. Noise correlation functions derived from cross correlations of the ambient noise at two stations were used to calculate a distance dependent decay (an attenuation coefficient) at each period and distance. An inversion was then performed to isolate and localize the spatial attenuation coefficients within the study area. I observe high amplitude decay of the ambient noise at the Yellowstone caldera, most likely due to elevated temperature and crustal melts caused by volcanism, geothermal heat flow, and hydrothermal activity such as geysers.

  18. Seismic Window Selection and Misfit Measurements for Global Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Lei, W.; Bozdag, E.; Lefebvre, M.; Podhorszki, N.; Smith, J. A.; Tromp, J.

    2013-12-01

    Global Adjoint Tomography requires fast parallel processing of large datasets. After obtaing the preprocessed observed and synthetic seismograms, we use the open source software packages FLEXWIN (Maggi et al. 2007) to select time windows and MEASURE_ADJ to make measurements. These measurements define adjoint sources for data assimilation. Previous versions of these tools work on a pair of SAC files---observed and synthetic seismic data for the same component and station, and loop over all seismic records associated with one earthquake. Given the large number of stations and earthquakes, the frequent read and write operations create severe I/O bottlenecks on modern computing platforms. We present new versions of these tools utilizing a new seismic data format, namely the Adaptive Seismic Data Format(ASDF). This new format shows superior scalability for applications on high-performance computers and accommodates various types of data, including earthquake, industry and seismic interferometry datasets. ASDF also provides user-friendly APIs, which can be easily integrated into the adjoint tomography workflow and combined with other data processing tools. In addition to solving the I/O bottleneck, we are making several improvements to these tools. For example, FLEXWIN is tuned to select windows for different types of earthquakes. To capture their distinct features, we categorize earthquakes by their depths and frequency bands. Moreover, instead of only picking phases between the first P arrival and the surface-wave arrivals, our aim is to select and assimilate many other later prominent phases in adjoint tomography. For example, in the body-wave band (17 s - 60 s), we include SKS, sSKS and their multiple, while in the surface-wave band (60 s - 120 s) we incorporate major-arc surface waves.

  19. Illumination of Jakarta Basin with Full Seismic Noise Tomography

    NASA Astrophysics Data System (ADS)

    Saygin, Erdinc; Fichtner, Andreas; Cummins, Phil; Masturyono, Masturyono

    2015-04-01

    The greater Jakarta area is densely populated with over 20 million residents. The rapid subduction of Australian crust beneath Sundaland, and the alluvial basin covering most of Jakarta increase the seismic hazard that the city is facing during an earthquake. We apply 3D Full Seismic Wave Tomography to invert interstation Green's functions retrieved from stacked correlations of seismic ambient noise recorded at a dense broadband network operated in Jakarta, Indonesia. Over 1200 Green's Functions were used in an iteratively applied adjoint scheme to map 3D velocity structure. The initial model used in the simulations, is derived from the combination of a 2-step procedure of Bayesian tomography and point wise inversions of dispersions curves. The iterative updates on the starting model, reduced the misfits between observed and synthetic Green's functions. Simulations were conducted in a parallelized approach with 128 compute cores. Green's functions were filtered between 0.08 and 0.2 Hz where their signal to noise ration is optimum. Results of the full waveform inversions show a thick very low velocity layer in the north-west part of the city with shortening towards the south east. Shear wave velocities as low as 1 km/s is observed across the region. The resulting model contributes to the quantification of the seismic hazard of Jakarta.

  20. Seismic Waveform Tomography of the Iranian Region

    NASA Astrophysics Data System (ADS)

    Maggi, A.; Priestley, K.; Jackson, J.

    2001-05-01

    Surprisingly little is known about the detailed velocity structure of Iran, despite the region's importance in the tectonics of the Middle East. Previous studies have concentrated mainly on fundamental mode surface wave dispersion measurements along isolated paths (e.g.~Asudeh, 1982; Cong & Mitchell, 1998; Ritzwoller et.~al, 1998), and the propagation characteristics of crust and upper mantle body waves (e.g. Hearn & Ni 1994; Rodgers et.~al 1997). We use the partitioned waveform inversion method of Nolet (1990) on several hundred regional waveforms crossing the Iranian region to produce a 3-D seismic velocity map for the crust and upper mantle of the area. The method consists of using long period seismograms from earthquakes with well determined focal mechanisms and depths to constrain 1-D path-averaged shear wave models along regional paths. The constraints imposed on the 1-D models by the seismograms are then combined with independent constraints from other methods (e.g.~Moho depths from reciever function analysis etc.), to solve for the 3-D seismic velocity structure of the region. A dense coverage of fundamental mode rayleigh waves at a period of 100~s ensures good resolution of lithospheric scale structure. We also use 20~s period fundamental mode rayleigh waves and some Pnl wavetrains to make estimates of crustal thickness variations and average crustal velocities. A few deeper events give us some coverage of higher mode rayleigh waves and mantle S waves, which sample to the base of the upper mantle. Our crustal thickness estimates range from 45~km in the southern Zagros mountains, to 40~km in central Iran and 35~km towards the north of the region. We also find inconsistencies between the 1-D models required to fit the vertical and the tranverse seismograms, indicating the presence of anisotropy.

  1. Chemical and biogeophysical impact of four-dimensional (4D) seismic exploration in sub-Saharan Africa, and restoration of dysfunctionalized mangrove forests in the prospect areas.

    PubMed

    Osuji, Leo C; Ayolagha, G; Obute, G C; Ohabuike, H C

    2007-09-01

    Four-dimensional (4D) seismic exploration, an improved geophysical technique for hydrocarbon-data acquisition, was applied for the first time in the Nembe Creek prospect area of Nigeria. The affected soils were slightly alkaline in situ when wet (pH 7.2), but extremely acidic when dry (pH 3.0). The organic carbon content (4.6-26.8%) and other physicochemical properties of soils and water (N, P, and heavy-metal contents, etc.) were higher than the baseline values obtained in 2001 before seismic profiling. Most values also exceeded the baseline compliance standards of the Department of Petroleum Resources (DPR), the World Health Organization (WHO), and the Federal Environmental Protection Agency (FEPA). Rehabilitation of the affected areas was achieved by stabilizing the mangrove floor by liming and appropriate application of nutrients, followed by replanting the cut seismic lines over a distance of 1,372 km with different mangrove species, including juvenile Rhizophora racemosa, R. mangle, and Avicennia species, which were transferred from nursery points. Quicker post-operational intervention is recommended for future 4D surveys, because the time lag between the end of seismic activity and post-impact investigation is critical in determining the relationship between activity and impact: the longer the intervening period, the more mooted the interaction. PMID:17886833

  2. Seismic Tomography of Erebus Volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Zandomeneghi, Daria; Kyle, Philip; Miller, Pnina; Snelson, Catherine; Aster, Richard

    2010-02-01

    Mount Erebus (77°32'S, 167°10'E elevation 3794 meters) is the most active volcano in Antarctica and is well known for its persistent lava lake. The lake constitutes an “open window” into the conduit and underlying feeding system and offers a rare opportunity to observe a shallow convecting magmatic system. Imaging and modeling of the internal structure of Erebus volcano are best done through compiling information from arrays of seismometers positioned strategically around the volcano. From these data, the three-dimensional (3-D) structure of the conduit can be pieced together. Building this 3-D model of Erebus was a main goal of the seismic tomographic experiment Tomo Erebus (TE). During the 2007-2008 austral field season, 23 intermediate-period seismometers were installed to contribute data, through the winter, for the passive-source aspect of the experiment. One year later, 100 three-component short-period stations were deployed to record 16 chemical blasts (see Figure 1).

  3. The Role of Synthetic Reconstruction Tests in Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Rawlinson, N.; Spakman, W.

    2015-12-01

    Synthetic reconstruction tests are widely used in seismic tomography as a means for assessing the robustness of solutions produced by linear or iterative non-linear inversion schemes. The most common test is the so-called checkerboard resolution test, which uses an alternating pattern of high and low wavespeeds (or some other seismic property such as attenuation). However, checkerboard tests have a number of limitations, including that they (1) only provide indirect evidence of quantitative measures of reliability such as resolution and uncertainty; (2) give a potentially misleading impression of the range of scale-lengths that can be resolved; (3) don't give a true picture of the structural distortion or smearing caused by the data coverage; and (4) result in an inverse problem that is biased towards an accurate reconstruction. The widespread use of synthetic reconstruction tests in seismic tomography is likely to continue for some time yet, so it is important to implement best practice where possible. The goal here is to provide a general set of guidelines, derived from the underlying theory and illustrated by a series of numerical experiments, on their implementation in seismic tomography. In particular, we recommend (1) using a sparse distribution of spikes, rather than the more conventional tightly-spaced checkerboard; (2) using the identical data coverage (e.g. geometric rays) for the synthetic model that was computed for the observation-based model; (3) carrying out multiple tests using anomalies of different scale length; (4) exercising caution when analysing synthetic recovery tests that use anomaly patterns that closely mimic the observation-based model; (5) investigating the trade-off between data noise levels and the minimum wavelength of recovered structure; (6) where possible, test the extent to which preconditioning (e.g. identical parameterization for input and output models) influences the recovery of anomalies.

  4. Seismic tomography Technology for the Water Infiltration Experiment

    SciTech Connect

    J. Descour

    2001-04-30

    NSA Engineering, Inc., conducted seismic tomography surveys in Niche No.3 in the Exploratory Studies Facility (ESF), Yucca Mountain, Nevada, and Alcove No.8 in the Enhanced Characterization of the Repository Block (ECRB) cross drift as part of the Infiltration Experiment being conducted in Niche No.3. NSA Engineering is a direct support contractor to the Yucca Mountain Project. This report documents the work performed from August 14 through 30, 2000, prior to the beginning of the infiltration experiment. The objective of the seismic tomography survey was to investigate the flow path of water between access drifts and more specifically to (Kramer 2000): (1) Conduct a baseline seismic tomography survey prior to the infiltration experiment; (2) Produce 2-D and 3-D tomographic images of the rock volume between Alcove No.8 and Niche No.3; (3) Correlate tomography results with published structural and lithological features, and with other geophysical data such as ground penetrating radar (GPR); and (4) Results of this survey will form a baseline with which to compare subsequent changes to the rock mass. These changes may be as a result of the water infiltration tests that could be conducted in Alcove No.8 in 2001. The scope of this reported work is to use the velocity tomograms to: (a) assess the structures and lithologic features within the surveyed area and/or volume between the two access drifts; and (b) provide information on the structural state of the rock mass as inferred by the velocity signatures of the rock prior to the beginning of the infiltration experiment.

  5. SU-E-J-31: Monitor Interfractional Variation of Tumor Respiratory Motion Using 4D KV Conebeam Computed Tomography for Stereotactic Body Radiation Therapy of Lung Cancer

    SciTech Connect

    Tai, A; Prior, P; Gore, E; Johnstone, C; Li, X

    2015-06-15

    Purpose: 4DCT has been widely used to generate internal tumor volume (ITV) for a lung tumor for treatment planning. However, lung tumors may show different respiratory motion on the treatment day. The purpose of this study is to evaluate 4D KV conebeam computed tomography (CBCT) for monitoring tumor interfractional motion variation between simulation and each fraction of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: 4D KV CBCT was acquired with the Elekta XVI system. The accuracy of 4D KV CBCT for image-guided radiation therapy (IGRT) was tested with a dynamic thorax motion phantom (CIRS, Virginia) with a linear amplitude of 2 cm. In addition, an adult anthropomorphic phantom (Alderson, Rando) with optically stimulated luminescence (OSL) dosimeters embedded at the center and periphery of a slab of solid water was used to measure the dose of 4D KV CBCT and to compare it with the dose with 3D KV CBCT. The image registration was performed by aligning\\ each phase images of 4D KV CBCT to the planning images and the final couch shifts were calculated as a mean of all these individual shifts along each direction.A workflow was established based on these quality assurance tests for lung cancer patients. Results: 4D KV CBCT does not increase imaging dose in comparison to 3D KV CBCT. Acquisition of 4D KV CBCT is 4 minutes as compared to 2 minutes for 3D KV CBCT. Most of patients showed a small daily variation of tumor respiratory motion about 2 mm. However, some patients may have more than 5 mm variations of tumor respiratory motion. Conclusion: The radiation dose does not increase with 4D KV CBCT. 4D KV CBCT is a useful tool for monitoring interfractional variations of tumor respiratory motion before SBRT of lung cancer patients.

  6. Lecture notes on nonlinear inversion and tomography: 1, Borehole seismic tomography. Revision 1

    SciTech Connect

    Berryman, J.G.

    1991-10-01

    The main topic of these lectures is seismic traveltime inversion in 2- and 3-dimensional heterogeneous media. A typical problem is to infer the (isotropic) compressional-wave slowness (reciprocal of velocity) distribution of a medium, given a set of observed first-arrival traveltime between sources and receivers of known location within the medium. This problem is common for crosshole seismic transmission tomography imaging a 2-D region between vertical boreholes in oil field applications. We also consider the problem of inverting for wave slowness when the absolute traveltimes are not known, as is normally the case in earthquake seismology.

  7. Teleseismic Tomography of the Eastern Tennessee Seismic Zone

    NASA Astrophysics Data System (ADS)

    Olasanmi, Olorunfemi Temitope

    This research investigates the properties of the crust and the upper mantle beneath the eastern Tennessee seismic zone (ETSZ). The ETSZ is a major seismic feature that is located in the southeastern United States. The zone spans portions of eastern Tennessee, North Carolina, Virginia, Georgia and Alabama and is, after the New Madrid seismic zone, the second most active seismic region of the North America east of the Rocky Mountains. This NE trending zone of intraplate seismicity is about 300km long and 100km wide. A striking geophysical anomaly crossing this region is called the New York-Alabama magnetic lineament. The most seismically active part of this zone is along and to the SW of this aeromagnetic anomaly. In this thesis 3-D velocity images of the earth beneath the ETSZ were obtained by using Fast Marching Teleseismic Tomography package. The starting data was adopted from the previous study by Agbaje (2012) and consisted of 2855 residuals from 217 teleseismic events that were recorded by 28 stations within the ETSZ. The tomographic images show significant velocity anomalies, confirming complex tectonic evolution and revealing basement features that can be correlated with regional gravity and magnetic anomalies. The results of the tomographic inversion in the crust agree with the previous tomographic studies that used local earthquake data (Powell et al., 2014). However, the most significant anomaly resolved persists through most of the upper mantle and suggests the presence of a major, southeast dipping, high velocity anomaly located beneath the Blue Ridge province. The anomaly is interpreted to possibly be a fossil slab dating back to the accretion of Carolina terrane during Devonian.

  8. Computing field statics with the help of seismic tomography

    SciTech Connect

    De Amorim, W.N.; Hubral, P.; Tygel, M.

    1987-10-01

    Field static corrections in general need be applied to all onshore seismic reflection data to eliminate the disturbing effects a weathering layer or near-surface low velocity zone has on the continuity of deep seismic reflections. The traveltimes of waves refracted at the bottom of the low velocity zone (or intermediate refracting interfaces) can often be observed as first breaks on shot records and used to develop a laterally inhomogeneous velocity model for this layer, from which the field static corrections can then be obtained. A simple method is described for computing accurate field statics from first breaks. It is based on a linearization principal for traveltimes and leads to the algorithms that are widely and successfully applied within the framework of seismic tomography. The authors refine an initial model for the low velocity layer (estimated by a standard traveltime inversion technique) by minimizing the errors between the observed first arrivals on field records and those computed by ray theory through an initial model of the low velocity layer. Thus, one can include more lateral velocity variations within the low velocity layers, which are important to obtain good field static corrections. Traditional first break traveltime inversion methods cannot, in general, provide such refined velocity values. The technique is successfully applied to seismic data from the Amazon Basin. It is based on a simple model for the low velocity layer that consists of an undulating earth surface and one planar horizontal refractor overlain by a laterally changing velocity field.

  9. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  10. Markov-random-field modeling for linear seismic tomography.

    PubMed

    Kuwatani, Tatsu; Nagata, Kenji; Okada, Masato; Toriumi, Mitsuhiro

    2014-10-01

    We apply the Markov-random-field model to linear seismic tomography and propose a method to estimate the hyperparameters for the smoothness and the magnitude of the noise. Optimal hyperparameters can be determined analytically by minimizing the free energy function, which is defined by marginalizing the evaluation function. In synthetic inversion tests under various settings, the assumed velocity structures are successfully reconstructed, which shows the effectiveness and robustness of the proposed method. The proposed mathematical framework can be applied to inversion problems in various fields in the natural sciences. PMID:25375468

  11. TH-E-17A-07: Improved Cine Four-Dimensional Computed Tomography (4D CT) Acquisition and Processing Method

    SciTech Connect

    Castillo, S; Castillo, R; Castillo, E; Pan, T; Ibbott, G; Balter, P; Hobbs, B; Dai, J; Guerrero, T

    2014-06-15

    Purpose: Artifacts arising from the 4D CT acquisition and post-processing methods add systematic uncertainty to the treatment planning process. We propose an alternate cine 4D CT acquisition and post-processing method to consistently reduce artifacts, and explore patient parameters indicative of image quality. Methods: In an IRB-approved protocol, 18 patients with primary thoracic malignancies received a standard cine 4D CT acquisition followed by an oversampling 4D CT that doubled the number of images acquired. A second cohort of 10 patients received the clinical 4D CT plus 3 oversampling scans for intra-fraction reproducibility. The clinical acquisitions were processed by the standard phase sorting method. The oversampling acquisitions were processed using Dijkstras algorithm to optimize an artifact metric over available image data. Image quality was evaluated with a one-way mixed ANOVA model using a correlation-based artifact metric calculated from the final 4D CT image sets. Spearman correlations and a linear mixed model tested the association between breathing parameters, patient characteristics, and image quality. Results: The oversampling 4D CT scans reduced artifact presence significantly by 27% and 28%, for the first cohort and second cohort respectively. From cohort 2, the inter-replicate deviation for the oversampling method was within approximately 13% of the cross scan average at the 0.05 significance level. Artifact presence for both clinical and oversampling methods was significantly correlated with breathing period (ρ=0.407, p-value<0.032 clinical, ρ=0.296, p-value<0.041 oversampling). Artifact presence in the oversampling method was significantly correlated with amount of data acquired, (ρ=-0.335, p-value<0.02) indicating decreased artifact presence with increased breathing cycles per scan location. Conclusion: The 4D CT oversampling acquisition with optimized sorting reduced artifact presence significantly and reproducibly compared to the phase

  12. Sleipner CCS site: velocity and attenuation model from seismic tomography

    NASA Astrophysics Data System (ADS)

    Rossi, G.; Chadwick, R. A.; Williams, G. A.

    2012-04-01

    The results of the travel-time and frequency shift tomographic inversion of the seismic data from one of the high-resolution lines acquired in 2006 on the Sleipner CO2 geological storage site are here presented. The work has been performed within the European project CO2ReMoVe, to produce an accurate model in-depth, of both seismic velocities and attenuation, to constrain better the quantification studies of the project's partners. Tomographic techniques have the advantage of not assuming horizontal layering or uniform lateral velocities, and of enabling an easy comparison of models, even if resulting from seismic data acquired with different geometries, unavoidable in a time-lapse data set. Through an iterative process, the differences in travel-times between observed direct, reflected or refracted arrivals and the same, calculated on a discrete model, with a ray-tracing based on the Fermat's principle, are minimized. Other minimization procedures provide the reflector/refractor geometries in -depth. Analogously, in attenuation tomography, the minimization process takes into account the observed and calculated spectral-centroid frequency-shift, due to the loss of the highest frequency of the seismic wave, while crossing an attenuating medium. The result is a seismic quality factor (Q) model in-depth, and hence of the attenuation that is known to be more sensitive to subtle changes in physical properties than seismic velocity. The model is across the center of the CO2 plume, on the in-line 1838, and is constituted by nine layers, four resulting by a preliminary analysis of the pre-injection 1994 data set, i.e. seabed, a strong reflection in the overburden and the top and bottom of the Utsira Sand, plus additional five horizons, four of which within Utsira Sands, and one just above the top of it. The layers within the reservoir are very close to each other and in some cases they merge together laterally. The accumulation of CO2 in the uppermost layer of the

  13. 4D seismic to image a thin carbonate reservoir during a miscible C02 flood: Hall-Gurney Field, Kansas, USA

    USGS Publications Warehouse

    Raef, A.E.; Miller, R.D.; Franseen, E.K.; Byrnes, A.P.; Watney, W.L.; Harrison, W.E.

    2005-01-01

    The movement of miscible CO2 injected into a shallow (900 m) thin (3.6-6m) carbonate reservoir was monitored using the high-resolution parallel progressive blanking (PPB) approach. The approach concentrated on repeatability during acquisition and processing, and use of amplitude envelope 4D horizon attributes. Comparison of production data and reservoir simulations to seismic images provided a measure of the effectiveness of time-lapse (TL) to detect weak anomalies associated with changes in fluid concentration. Specifically, the method aided in the analysis of high-resolution data to distinguish subtle seismic characteristics and associated trends related to depositional lithofacies and geometries and structural elements of this carbonate reservoir that impact fluid character and EOR efforts.

  14. Causes of intraplate seismicity in central Brazil from travel time seismic tomography

    NASA Astrophysics Data System (ADS)

    Rocha, Marcelo Peres; Azevedo, Paulo Araújo de; Marotta, Giuliano Sant'Anna; Schimmel, Martin; Fuck, Reinhardt

    2016-06-01

    New results of travel time seismic tomography in central Brazil provide evidence that the relatively high seismicity in this region is related to the thinner lithosphere at the limit between the Amazonian and São Francisco paleocontinents. The transition between these paleocontinents is marked by low velocity anomalies, spatially well correlated with the high seismicity region, which are interpreted as related to the lithospheric thinning and consequent rise of the asthenosphere, which have increased the temperature in this region. The low-velocity anomalies suggest a weakness region, favorable to the build-up of stress. The effective elastic thickness and the strain/stress regime for the study area are in agreement with tomographic results. A high-velocity trend is observed beneath the Parnaíba Basin, where low seismicity is observed, indicating the presence of a cratonic core. Our results support the idea that the intraplate seismicity in central Brazil is related to the thin lithosphere underlying parts of the Tocantins Province between the neighboring large cratonic blocks.

  15. Teleseismic Tomography in the Eastern Tennessee Seismic Zone

    NASA Astrophysics Data System (ADS)

    Agbaje, T.; Arroucau, P.; Vlahovic, G.; Powell, C. A.

    2011-12-01

    The Eastern Tennessee Seismic Zone (ETSZ) is the second most active seismic region in the eastern United States and is located in the southern Appalachian fold-and-thrust belt. The earthquakes mostly occur between 5 and 25 km depth, below the decollement surface, and tend to align along the New York Alabama magnetic lineament, a linear feature attributed to a strike-slip fault affecting the Precambrian basement but having no signature in surface geology. Recent results from local tomography also show some relationship between the body-wave velocity field and earthquake distribution down to about 20 km depth. In this work, we investigate the deep 3D P-wave velocity structure of the lithosphere in the ETSZ by means of teleseismic tomography We use seismograms recorded in the last 10 years at a local array of 30 short-period stations operated by the Center for Earthquake Research and Information (CERI) in Memphis, TN. Events with magnitude greater than 5.5 and epicentral distance greater than 2500 km were selected. Relative P-wave arrival time residuals were obtained from an adaptive stacking procedure and were subsequently used in a tomographic inversion to map the 3D P-wave velocity variations beneath the array.

  16. Seismic Tomography of the Arctic Lithosphere and Asthenosphere

    NASA Astrophysics Data System (ADS)

    Schaeffer, Andrew; Lebedev, Sergei

    2015-04-01

    Lateral variations in seismic velocities in the upper mantle, mapped by seismic tomography, primarily reflect variations in the temperature of the rocks at depth. Seismic tomography thus provides a proxy for lateral changes in the temperature and thickness of the lithosphere, in addition to delineating the deep boundaries between tectonic blocks with different properties and age of the lithosphere. Our new, 3D tomographic model of the upper mantle and the crust of the Arctic region is constrained by an unprecedentedly large global dataset of broadband waveform fits (over one million seismograms) and provides improved resolution of the lithosphere, compared to other available models. The most prominent high-velocity anomalies, seen down to 150-200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons. The northern boundaries of the Canadian Shield's and Greenland's cratonic lithosphere closely follow the coastlines, with the Greenland and North American cratons clearly separated from each other. Sharp velocity gradients in western Canada indicate that the craton boundary at depth closely follows the Rocky Mountain Front. High velocities between the Great Bear Arc and Beaufort Sea provide convincing evidence for the recently proposed 'MacKenzie Craton', unexposed at the surface. In Eurasia, cratonic continental lithosphere extends northwards beneath the Barents and eastern Kara Seas. The boundaries of the Archean cratons and intervening Proterozoic belts mapped by tomography indicate the likely offshore extensions of major Phanerozoic sutures and deformation fronts. The old oceanic lithosphere of the Canada Basin is much colder and thicker than the younger lithosphere beneath the adjacent Amundsen Basin, north of the Gakkel Ridge. Beneath the slow-spreading Gakkel Ridge, we detect the expected low-velocity anomaly associated with partial melting in the uppermost mantle; the anomaly is weaker, however, than beneath faster

  17. 4D Seismic Monitoring at the Ketzin Pilot Site during five years of storage - Results and Quantitative Assessment

    NASA Astrophysics Data System (ADS)

    Lüth, Stefan; Ivanova, Alexandra; Ivandic, Monika; Götz, Julia

    2015-04-01

    The Ketzin pilot site for geological CO2-storage has been operative between June 2008 and August 2013. In this period, 67 kt of CO2 have been injected (Martens et al., this conference). Repeated 3D seismic monitoring surveys were performed before and during CO2 injection. A third repeat survey, providing data from the post-injection phase, is currently being prepared for the autumn of 2015. The large scale 3D surface seismic measurements have been complemented by other geophysical and geochemical monitoring methods, among which are high-resolution seismic surface-downhole observations. These observations have been concentrating on the reservoir area in the vicinity of the injection well and provide high-resolution images as well as data for petrophysical quantification of the CO2 distribution in the reservoir. The Ketzin pilot site is a saline aquifer site in an onshore environment which poses specific challenges for a reliable monitoring of the injection CO2. Although much effort was done to ensure as much as possible identical acquisition conditions, a high degree of repeatability noise was observed, mainly due to varying weather conditions, and also variations in the acquisition geometries due to logistical reasons. Nevertheless, time-lapse processing succeeded in generating 3D time-lapse data sets which could be interpreted in terms of CO2 storage related amplitude variations in the depth range of the storage reservoir. The time-lapse seismic data, pulsed-neutron-gamma logging results (saturation), and petrophysical core measurements were interpreted together in order to estimate the amount of injected carbon dioxide imaged by the seismic repeat data. For the first repeat survey, the mass estimation was summed up to 20.5 ktons, which is approximately 7% less than what had been injected then. For the second repeat survey, the mass estimation was summed up to approximately 10-15% less than what had been injected. The deviations may be explained by several factors

  18. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2006-08-31

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in an attempt to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data.

  19. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2005-09-01

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 18 months of seismic monitoring, one baseline and six monitor surveys clearly imaged changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators.

  20. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    NASA Astrophysics Data System (ADS)

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V.; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L.; Beauchemin, Steven S.; Rodrigues, George; Gaede, Stewart

    2015-02-01

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  1. 4D Time-Lapse Seismic Analysis of Active Gas Seepage Systems on the Vestnesa Ridge, Offshore W-Svalbard

    NASA Astrophysics Data System (ADS)

    Bunz, S.; Hurter, S.; Plaza-Faverola, A. A.; Mienert, J.

    2014-12-01

    Active gas venting occurs on the Vestnesa Ridge, an elongated sediment drift north of the Molloy Transform and just east of the Molloy Ridge, one of the shortest segments of the slow spreading North-Atlantic Ridge system. The crest of the Vestnesa Ridge at water depth between 1200-1300 m is pierced with fluid-flow features. Seafloor pockmarks vary in size up to 1 km in diameter with significant morphological features consisting of small ridges, diapiric structures and small pits. Detailed hydro-acoustic surveying shows that gas mostly emanates from the small-scale pits, where also hydrates have been recovered by sediment sampling. High-resolution P-Cable 3D seismic data acquired in 2012 show vertical focused fluid flow features beneath the seafloor pockmarks. These co-called chimneys extend down to the free-gas zone underneath a bottom-simulating reflection (BSR). Here, they link up with small fault systems that might provide pathways to the deeper subsurface. The chimney features show a high variability in their acoustic characteristics with alternating blanked or masked zones and high-amplitude anomalies scattered through the whole vertical extent of the chimneys. The amplitude anomalies indicate high-impedance contrasts due to the likely presence of gas or a high-velocity material like gas hydrates or carbonates. In most cases, the high-amplitude anomalies line up along specific vertical pathways that connect nicely with the small-scale pits at the surface where gas bubbles seep from the seafloor. We re-acquired the 3D seismic survey in 2013 for time-lapse seismic studies in order to better understand the origin of the amplitude anomalies and in order to track potentially migrating gas fronts up along the chimney structure. The time-lapse seismic analysis indicates several areas, where gas migration may have led to changes in acoustic properties of the subsurface. These areas are located along chimney structures and the BSR. This work provides a basis for better

  2. Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression

    NASA Astrophysics Data System (ADS)

    Lindstrom, Peter; Chen, Po; Lee, En-Jui

    2016-08-01

    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithm into our F3DT-SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.

  3. Towards 4-D Noise-based Seismic Probing of Volcanoes: Perspectives from a Large-N Nodal Experiment on Piton de la Fournaise Volcano

    NASA Astrophysics Data System (ADS)

    Brenguier, F.; Ackerley, N. J.; Nakata, N.; Boué, P.; Campillo, M.; Roux, P.; Shapiro, N.

    2015-12-01

    Noise-based seismology is proving to be a complementary approach to active source or earthquake-based methods for imaging and monitoring the Earth's interior and in particular volcanoes and active faults. Until recently, noise-based imaging and monitoring relied only on the inversion of surface waves reconstructed from correlations of mostly microseismic seismic noise. Compared to body-wave tomography, surface wave tomography succeeds in retrieving lateral sub-surface velocity contrasts but is less efficient in resolving velocity perturbations at depth. Moreover reflected body-waves can carry direct information about sharp interfaces at depth. Extracting body-waves from noise correlations is challenging and the use of Large-N seismic arrays proves to be of great benefit for extracting noisy body-waves from noise-correlations by stacking over a large number of receiver pairs and by applying array processing. The purpose of VolcArray Large-N seismic experiment on Piton de la Fournaise Volcano is to extract body-waves travelling directly through the active magma reservoir located at ~2.5 km depth below the summit crater using noise correlations between arrays of seismic nodes. By beamforming noise on individual arrays, we found an unusual strong directional source of body-wave noise. This is thus a favorable context for retrieving the body-wave component of the Green's function between arrays. However, standard correlation techniques between nodes do not allow deciphering between the reconstructed Green's function and artifacts from the correlation of the strong directional source of body-waves. By applying double beamforming to the noise correlations between arrays, we are able to isolate ballistic body-waves travelling across the magma storage zone at depth. The stability of these reconstructed waves over time is encouraging in the perspectives of high resolution monitoring of the volcano feeding system.

  4. Spherical wavelet transform: linking global seismic tomography and imaging

    NASA Astrophysics Data System (ADS)

    Pan, J.

    2001-12-01

    Each year, numerous seismic tomographic images are published based on either new parameterization, damping schemes or datasets. Though people agree generally on the longer- wavelength seismic structures, large discrepencies still exist among various models. Normally the data is noisy, thus the inverse problem is often ill-conditioned. Sampling rate may be enough to resolve for long-wavelength structures when we parameterize the earth to a low harmonic order. However, higher order signals (slabs, plume-like structures, and local seismic velocity anomalies (SVA)) on a global scale remain under-sampled. Finer discretization of the model space increases the problem size dramatically but does not alleviate the nature of the problem. The main challenge thus is to find an efficient representation of the model space to solve for the lower- and higher- degree SVAs simultaneously. Spherical wavelets are a good choice because of their compact support (locaized) in both spatial and frequency domains. If SVAs can be viewed as an image, they consist of smooth-varying signals superpositioned by small-scale local changes and can be compressed greatly and represented better using spherical wavelets. By mapping the model parameters into a nested multi-resolution analysis (MRA) space, the signals become comparable in size therefore stable solutions can be achieved at every level of the resolution without introducing subjective damping. The efficiency of using wavelets and MRA to denoise and compress signals can be used to reduce the problem size and eliminate effects of noisy data. This new algorithm can achieve better resolving power for 2D and 3D seismic tomography, by linking image processing with inverse theory. Advances in spherical wavelets enable the introduction of wavelet analysis and a new parameterization of MRA into global tomography studies. In this paper, we present the new inversion method based on spherical wavelet transform. An application to 2D surface wave

  5. Probing the Detailed Seismic Velocity Structure of Subduction Zones Using Advanced Seismic Tomography Methods

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.

    2005-12-01

    Subduction zones are one of the most important components of the Earth's plate tectonic system. Knowing the detailed seismic velocity structure within and around subducting slabs is vital to understand the constitution of the slab, the cause of intermediate depth earthquakes inside the slab, the fluid distribution and recycling, and tremor occurrence [Hacker et al., 2001; Obara, 2002].Thanks to the ability of double-difference tomography [Zhang and Thurber, 2003] to resolve the fine-scale structure near the source region and the favorable seismicity distribution inside many subducting slabs, it is now possible to characterize the fine details of the velocity structure and earthquake locations inside the slab, as shown in the study of the Japan subduction zone [Zhang et al., 2004]. We further develop the double-difference tomography method in two aspects: the first improvement is to use an adaptive inversion mesh rather than a regular inversion grid and the second improvement is to determine a reliable Vp/Vs structure using various strategies rather than directly from Vp and Vs [see our abstract ``Strategies to solve for a better Vp/Vs model using P and S arrival time'' at Session T29]. The adaptive mesh seismic tomography method is based on tetrahedral diagrams and can automatically adjust the inversion mesh according to the ray distribution so that the inversion mesh nodes are denser where there are more rays and vice versa [Zhang and Thurber, 2005]. As a result, the number of inversion mesh nodes is greatly reduced compared to a regular inversion grid with comparable spatial resolution, and the tomographic system is more stable and better conditioned. This improvement is quite valuable for characterizing the fine structure of the subduction zone considering the highly uneven distribution of earthquakes within and around the subducting slab. The second improvement, to determine a reliable Vp/Vs model, lies in jointly inverting Vp, Vs, and Vp/Vs using P, S, and S

  6. Waveform Tomography and its Application to Marine Seismic Refraction Data

    NASA Astrophysics Data System (ADS)

    Nag, S.; Canales, J.

    2008-05-01

    We explore the applicability of two-dimensional seismic waveform tomography to conventional deep-water, long- offset (10s of kilometers) seismic refraction experiments in which ocean-bottom receivers and sea-surface sources are usually spaced several kilometers and a few 100s of meters apart, respectively. In particular, we test the application of waveform tomography to ocean-bottom seismometer (hydrophone) data collected along the rift valley of the Mid-Atlantic Ridge near 26°N in the vicinity of the active TAG hydrothermal system, which is thought to be located on the hanging wall of an active oceanic detachment fault [e.g., Canales et al., Geochem. Geophys. Geosyst., 8, Q08004, 2007]. If successful, waveform tomography could provide detailed velocity information related to fluid flow and alternation along the fault zone that cannot be obtained from traveltime tomography analyses. We use the frequency-domain, elastic-wave equation approach of R.G. Pratt [Geophysics, 64, 888-901, 1999]. Initial data processing consisted of spherical divergence corrections, wavelet shaping and predictive deconvolution using a special design and application window data to obtain a smooth, random amplitude spectrum sans the bubble pulse. Other processing steps included filtering, windowing and offset-dependent amplitude normalization with respect to forward modeled synthetics. Forward modeling is done via the central-difference scheme of finite difference method with the primary modeling parameters being the boundary conditions, time-domain damping parameter to prevent wraparound energy, appropriate quality factor and dispersion coefficient. Source and velocity inversion is done at selected frequencies using "efficient waveform inversion" [Sirgue and Pratt, Geophysics, 69, 231-248 2004] to minimize the misfit of data residuals via the gradient method. Inversion parameters (offset weighting, depth tapering, gradient wave-number filtering and masking) were tested and decided on a

  7. Innovations in seismic tomography, their applications and induced seismic events in carbon sequestration

    NASA Astrophysics Data System (ADS)

    Li, Peng

    This dissertation presents two innovations in seismic tomography and a new discovery of induced seismic events associated with CO2 injection at an Enhanced Oil Recovery (EOR) site. The following are brief introductions of these three works. The first innovated work is adaptive ambient seismic noise tomography (AANT). Traditional ambient noise tomography methods using regular grid nodes are often ill posed because the inversion grids do not always represent the distribution of ray paths. Large grid spacing is usually used to reduce the number of inversion parameters, which may not be able to solve for small-scale velocity structure. We present a new adaptive tomography method with irregular grids that provides a few advantages over the traditional methods. First, irregular grids with different sizes and shapes can fit the ray distribution better and the traditionally ill-posed problem can become more stable owing to the different parameterizations. Second, the data in the area with dense ray sampling will be sufficiently utilized so that the model resolution can be greatly improved. Both synthetic and real data are used to test the newly developed tomography algorithm. In synthetic data tests, we compare the resolution and stability of the traditional and adaptive methods. The results show that adaptive tomography is more stable and performs better in improving the resolution in the area with dense ray sampling. For real data, we extract the ambient noise signals of the seismic data near the Garlock Fault region, obtained from the Southern California Earthquake Data Center. The resulting group velocity of Rayleigh waves is well correlated with the geological structures. High velocity anomalies are shown in the cold southern Sierra Nevada, the Tehachapi Mountains and the Western San Gabriel Mountains. The second innovated work is local earthquake tomography with full topography (LETFT). In this work, we develop a new three-dimensional local earthquake tomography

  8. Innovations in seismic tomography, their applications and induced seismic events in carbon sequestration

    NASA Astrophysics Data System (ADS)

    Li, Peng

    This dissertation presents two innovations in seismic tomography and a new discovery of induced seismic events associated with CO2 injection at an Enhanced Oil Recovery (EOR) site. The following are brief introductions of these three works. The first innovated work is adaptive ambient seismic noise tomography (AANT). Traditional ambient noise tomography methods using regular grid nodes are often ill posed because the inversion grids do not always represent the distribution of ray paths. Large grid spacing is usually used to reduce the number of inversion parameters, which may not be able to solve for small-scale velocity structure. We present a new adaptive tomography method with irregular grids that provides a few advantages over the traditional methods. First, irregular grids with different sizes and shapes can fit the ray distribution better and the traditionally ill-posed problem can become more stable owing to the different parameterizations. Second, the data in the area with dense ray sampling will be sufficiently utilized so that the model resolution can be greatly improved. Both synthetic and real data are used to test the newly developed tomography algorithm. In synthetic data tests, we compare the resolution and stability of the traditional and adaptive methods. The results show that adaptive tomography is more stable and performs better in improving the resolution in the area with dense ray sampling. For real data, we extract the ambient noise signals of the seismic data near the Garlock Fault region, obtained from the Southern California Earthquake Data Center. The resulting group velocity of Rayleigh waves is well correlated with the geological structures. High velocity anomalies are shown in the cold southern Sierra Nevada, the Tehachapi Mountains and the Western San Gabriel Mountains. The second innovated work is local earthquake tomography with full topography (LETFT). In this work, we develop a new three-dimensional local earthquake tomography

  9. Size and shape of seismic noise sources and implications for ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Obrebski, M. J.; Ardhuin, F.; Schimmel, M.; Stutzmann, E.

    2011-12-01

    Seismic noise has been intensively used for tomographic purpose over the past 5 years and shows promising potential for 4D imaging of the earth interior. Cross-correlation of noise samples allows reconstructing surface- and compressional-waves that carry information of the earth velocity structure comparable to that obtained from earthquakes. Nevertheless, ambient noise tomography is limited by the lack of knowledge on the distribution and lateral extent of sources. Recent numerical modeling (Kedar et al., 2008; Ardhuin et al. J. Geophys. Res. 2011; Stutzmann et al., submitted) has shown that the dominant seismic noise, with periods 3 to 10s, is generated by non linear wave-wave interactions as described by the theory proposed by Longuet-Higgins (1950) and Hasselmann (1963) for double frequency microseisms (DFM). The magnitude of the noise source is conditioned by the angular spectra of the swells and wind seas and the bathymetry. Here we use seismic records and numerical modeling to characterize the distribution of the DFM sources in time and space. Our numerical approach combines a numerical wave model based on the WAVEWATCH III° framework, in which the second-order pressure spectrum is computed, and a ray-tracing algorithm for integrating the seismic source and damping along propagation rays for the different Rayleigh modes that are contained in the microseismic wave field. Noise recorded at broadband stations generally consists of a series of high seismic noise intensity peaks (a few micrometers for the standard deviation of the vertical ground displacement) with durations of about one day. Focusing on the peaks for which the model results fit particularly well to the data, we estimate the width of the source area and use our model to map the area responsible for the DFM signal recorded at a given time and set of stations. These source centroid position and width of sources are validated using an independent estimate from a polarization analysis of the three

  10. 4D seismic study of active gas seepage systems on the Vestnesa Ridge, offshore W-Svalbard

    NASA Astrophysics Data System (ADS)

    Bünz, Stefan; Plaza-Faverola, Andreia; Hurter, Sandra; Mienert, Jürgen

    2014-05-01

    Active gas venting occurs on the Vestnesa Ridge, an elongated sediment drift north of the Molloy Transform and just east of the Molloy Ridge, one of the shortest segments of the slow spreading North-Atlantic Ridge system. The crest of the Vestnesa Ridge at water depth between 1200-1300 m is pierced with fluid-flow features. Seafloor pockmarks vary in size up to 1 km in diameter. High-resolution P-Cable 3D seismic data acquired in 2012 show vertical focused fluid flow features beneath the seafloor pockmarks. These co-called chimneys extend down to the free-gas zone underneath a bottom-simulating reflection. Here, they link up with small fault systems that might provide pathways to the deeper subsurface. The chimney features show a high variability in their acoustic characteristics with alternating blanked or masked zones and high-amplitude anomalies scattered through the whole vertical extent of the chimneys. The amplitude anomalies indicate high-impedance contrasts due to the likely presence of gas or a high-velocity material like gas hydrates or carbonates. We re-acquired the 3D seismic survey in 2013 for time-lapse seismic studies in order to better understand the origin of the amplitude anomalies and in order to track potentially migrating gas fronts up along the chimney structure. Here, we will present the preliminary results of this time-lapse analysis, which will allow us to better understand gas migration and seafloor plumbing systems in continental margins. This work is part of CAGE - Centre of Excellence for Arctic Gas Hydrate, Environment and Climate. Details on the CAGE research plan and organization can be found on www.cage.uit.no to foster opportunities for cross-disciplinary collaboration. Based in Tromsø, at the world's northernmost University, CAGE establishes the intellectual and infrastructure resources for studying the amount of methane hydrate and magnitude of methane release in Arctic Ocean environments on time scales from the Neogene to the

  11. Resolution-matrix-constrained model updates for bayesian seismic tomography

    NASA Astrophysics Data System (ADS)

    Fontanini, Francesco; Bleibinhaus, Florian

    2015-04-01

    One of the most important issues of interpreting seismic tomography models is the need to provide a quantification of their uncertainty. Bayesian approach to inverse problems offers a rigorous way to quantitatively estimate this uncertainty at the price of an higher computation time. Optimizing bayesian algorithms is therefore a key problem. We are developing a multivariate model-updating scheme that makes use of the constraints provided by the Model Resolution Matrix , aiming to a more efficient sampling of the model space. The Resolution Matrix relates the true model to the estimate, its off-diagonal values provide a set of trade-off relations between model parameters used in our algorithm to obtain optimized model updates.

  12. Development of the Borehole 2-D Seismic Tomography Software Using MATLAB

    NASA Astrophysics Data System (ADS)

    Nugraha, A. D.; Syahputra, A.; Fatkhan, F.; Sule, R.; Hendriyana, A.

    2011-12-01

    We developed 2-D borehole seismic tomography software that we called "EARTHMAX-2D TOMOGRAPHY" to image subsurface physical properties including P-wave and S-wave velocities between two boreholes. We used Graphic User Interface (GUI) facilities of MATLAB programming language to create the software. In this software, we used travel time of seismic waves from source to receiver by using pseudo bending ray tracing method as input for tomography inversion. We can also set up a model parameterization, initial velocity model, ray tracing processes, conduct borehole seismic tomography inversion, and finally visualize the inversion results. The LSQR method was applied to solve of tomography inversion solution. We provided the Checkerboard Test Resolution (CTR) to evaluate the model resolution of the tomography inversion. As validation of this developed software, we tested it for geotechnical purposes. We then conducted data acquisition in the "ITB X-field" that is located on ITB campus. We used two boreholes that have a depth of 39 meters. Seismic wave sources were generated by impulse generator and sparker and then they were recorded by borehole hydrophone string type 3. Later on, we analyzed and picked seismic arrival time as input for tomography inversion. As results, we can image the estimated weathering layer, sediment layer, and basement rock in the field depicted by seismic wave structures. More detailed information about the developed software will be presented. Keywords: borehole, tomography, earthmax-2D, inversion

  13. Broadband Waveform Sensitivity Kernels for Large-Scale Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Nissen-Meyer, T.; Stähler, S. C.; van Driel, M.; Hosseini, K.; Auer, L.; Sigloch, K.

    2015-12-01

    Seismic sensitivity kernels, i.e. the basis for mapping misfit functionals to structural parameters in seismic inversions, have received much attention in recent years. Their computation has been conducted via ray-theory based approaches (Dahlen et al., 2000) or fully numerical solutions based on the adjoint-state formulation (e.g. Tromp et al., 2005). The core problem is the exuberant computational cost due to the large number of source-receiver pairs, each of which require solutions to the forward problem. This is exacerbated in the high-frequency regime where numerical solutions become prohibitively expensive. We present a methodology to compute accurate sensitivity kernels for global tomography across the observable seismic frequency band. These kernels rely on wavefield databases computed via AxiSEM (abstract ID# 77891, www.axisem.info), and thus on spherically symmetric models. As a consequence of this method's numerical efficiency even in high-frequency regimes, kernels can be computed in a time- and frequency-dependent manner, thus providing the full generic mapping from perturbed waveform to perturbed structure. Such waveform kernels can then be used for a variety of misfit functions, structural parameters and refiltered into bandpasses without recomputing any wavefields. A core component of the kernel method presented here is the mapping from numerical wavefields to inversion meshes. This is achieved by a Monte-Carlo approach, allowing for convergent and controllable accuracy on arbitrarily shaped tetrahedral and hexahedral meshes. We test and validate this accuracy by comparing to reference traveltimes, show the projection onto various locally adaptive inversion meshes and discuss computational efficiency for ongoing tomographic applications in the range of millions of observed body-wave data between periods of 2-30s.

  14. 2D seismic reflection tomography in strongly anisotropic media

    NASA Astrophysics Data System (ADS)

    Huang, Guangnan; Zhou, Bing; Li, Hongxi; Zhang, Hua; Li, Zelin

    2014-12-01

    Seismic traveltime tomography is an effective method to reconstruct underground anisotropic parameters. Currently, most anisotropic tomographic methods were developed under the assumption of weak anisotropy. The tomographic method proposed here can be implemented for imaging subsurface targets in strongly anisotropic media with a known tilted symmetry axis, since the adopted ray tracing method is suitable for anisotropic media with arbitrary degree. There are three kinds of reflection waves (qP, qSV and qSH waves) that were separately used to invert the blocky abnormal body model. The reflection traveltime tomographiy is developed here because a surface observation system is the most economical and practical way compared with crosswell and VSP. The numerical examples show that the traveltimes of qP reflection wave have inverted parameters {{c}11},{{c}13},{{c}33} \\text{and} {{c}44} successfully. Traveltimes of qSV reflection wave have inverted parameters {{c}11},{{c}33} \\text{and} {{c}44} successfully, with the exception of the {{c}13}, since it is less sensitive than other parameters. Traveltimes of qSH reflection wave also have inverted parameters {{c}44} \\text{and} {{c}66} successfully. In addition, we find that the velocity sensitivity functions (derivatives of phase velocity with respect to elastic moduli parameters) and raypath illuminating angles have a great influence on the qualities of tomograms according to the inversion of theoretical models. Finally, the numerical examples confirm that the reflection traveltime tomography can be applied to invert strongly anisotropic models.

  15. Bayesian seismic tomography by parallel interacting Markov chains

    NASA Astrophysics Data System (ADS)

    Gesret, Alexandrine; Bottero, Alexis; Romary, Thomas; Noble, Mark; Desassis, Nicolas

    2014-05-01

    The velocity field estimated by first arrival traveltime tomography is commonly used as a starting point for further seismological, mineralogical, tectonic or similar analysis. In order to interpret quantitatively the results, the tomography uncertainty values as well as their spatial distribution are required. The estimated velocity model is obtained through inverse modeling by minimizing an objective function that compares observed and computed traveltimes. This step is often performed by gradient-based optimization algorithms. The major drawback of such local optimization schemes, beyond the possibility of being trapped in a local minimum, is that they do not account for the multiple possible solutions of the inverse problem. They are therefore unable to assess the uncertainties linked to the solution. Within a Bayesian (probabilistic) framework, solving the tomography inverse problem aims at estimating the posterior probability density function of velocity model using a global sampling algorithm. Markov chains Monte-Carlo (MCMC) methods are known to produce samples of virtually any distribution. In such a Bayesian inversion, the total number of simulations we can afford is highly related to the computational cost of the forward model. Although fast algorithms have been recently developed for computing first arrival traveltimes of seismic waves, the complete browsing of the posterior distribution of velocity model is hardly performed, especially when it is high dimensional and/or multimodal. In the latter case, the chain may even stay stuck in one of the modes. In order to improve the mixing properties of classical single MCMC, we propose to make interact several Markov chains at different temperatures. This method can make efficient use of large CPU clusters, without increasing the global computational cost with respect to classical MCMC and is therefore particularly suited for Bayesian inversion. The exchanges between the chains allow a precise sampling of the

  16. On the use of sensitivity tests in seismic tomography

    NASA Astrophysics Data System (ADS)

    Rawlinson, N.; Spakman, W.

    2016-03-01

    Sensitivity analysis with synthetic models is widely used in seismic tomography as a means for assessing the spatial resolution of solutions produced by, in most cases, linear or iterative non-linear inversion schemes. The most common type of synthetic reconstruction test is the so-called checkerboard resolution test, in which the synthetic model comprises an alternating pattern of higher and lower wavespeed (or some other seismic property such as attenuation) in two or three dimensions. Although originally introduced for application to large inverse problems for which formal resolution and covariance could not be computed, these tests have achieved popularity, even when resolution and covariance can be computed, by virtue of being simple to implement and providing rapid and intuitive insight into the reliability of the recovered model. However, checkerboard tests have a number of potential drawbacks, including (1) only providing indirect evidence of quantitative measures of reliability such as resolution and uncertainty; (2) giving a potentially misleading impression of the range of scale-lengths that can be resolved; and (3) not giving a true picture of the structural distortion or smearing that can be caused by the data coverage. The widespread use of synthetic reconstruction tests in seismic tomography is likely to continue for some time yet, so it is important to implement best practice where possible. The goal of this paper is to develop the underlying theory and carry out a series of numerical experiments in order to establish best practice and identify some common pitfalls. Based on our findings, we recommend (1) the use of a discrete spike test involving a sparse distribution of spikes, rather than the use of the conventional tightly-spaced checkerboard; (2) using data coverage (e.g. ray path geometry) inherited from the model constrained by the observations (i.e. the same forward operator or matrix), rather than the data coverage obtained by solving the

  17. On the use of sensitivity tests in seismic tomography

    NASA Astrophysics Data System (ADS)

    Rawlinson, N.; Spakman, W.

    2016-05-01

    Sensitivity analysis with synthetic models is widely used in seismic tomography as a means for assessing the spatial resolution of solutions produced by, in most cases, linear or iterative nonlinear inversion schemes. The most common type of synthetic reconstruction test is the so-called checkerboard resolution test in which the synthetic model comprises an alternating pattern of higher and lower wave speed (or some other seismic property such as attenuation) in 2-D or 3-D. Although originally introduced for application to large inverse problems for which formal resolution and covariance could not be computed, these tests have achieved popularity, even when resolution and covariance can be computed, by virtue of being simple to implement and providing rapid and intuitive insight into the reliability of the recovered model. However, checkerboard tests have a number of potential drawbacks, including (1) only providing indirect evidence of quantitative measures of reliability such as resolution and uncertainty, (2) giving a potentially misleading impression of the range of scale-lengths that can be resolved, and (3) not giving a true picture of the structural distortion or smearing that can be caused by the data coverage. The widespread use of synthetic reconstruction tests in seismic tomography is likely to continue for some time yet, so it is important to implement best practice where possible. The goal of this paper is to develop the underlying theory and carry out a series of numerical experiments in order to establish best practice and identify some common pitfalls. Based on our findings, we recommend (1) the use of a discrete spike test involving a sparse distribution of spikes, rather than the use of the conventional tightly spaced checkerboard; (2) using data coverage (e.g. ray-path geometry) inherited from the model constrained by the observations (i.e. the same forward operator or matrix), rather than the data coverage obtained by solving the forward problem

  18. Limitations of the acoustic approximation for seismic crosshole tomography

    NASA Astrophysics Data System (ADS)

    Marelli, Stefano; Maurer, Hansruedi

    2010-05-01

    Modelling and inversion of seismic crosshole data is a challenging task in terms of computational resources. Even with the significant increase in power of modern supercomputers, full three-dimensional elastic modelling of high-frequency waveforms generated from hundreds of source positions in several boreholes is still an intractable task. However, it has been recognised that full waveform inversion offers substantially more information compared with traditional travel time tomography. A common strategy to reduce the computational burden for tomographic inversion is to approximate the true elastic wave propagation by acoustic modelling. This approximation assumes that the solid rock units can be treated like fluids (with no shear wave propagation) and is generally considered to be satisfactory so long as only the earliest portions of the recorded seismograms are considered. The main assumption is that most of the energy in the early parts of the recorded seismograms is carried by the faster compressional (P-) waves. Although a limited number of studies exist on the effects of this approximation for surface/marine synthetic reflection seismic data, and show it to be generally acceptable for models with low to moderate impedance contrasts, to our knowledge no comparable studies have been published on the effects for cross-borehole transmission data. An obvious question is whether transmission tomography should be less affected by elastic effects than surface reflection data when only short time windows are applied to primarily capture the first arriving wavetrains. To answer this question we have performed 2D and 3D investigations on the validity of the acoustic approximation for an elastic medium and using crosshole source-receiver configurations. In order to generate consistent acoustic and elastic data sets, we ran the synthetic tests using the same finite-differences time-domain elastic modelling code for both types of simulations. The acoustic approximation was

  19. Ambient seismic noise tomography of Jeju Island, South Korea

    NASA Astrophysics Data System (ADS)

    Lee, S. J.; Rhie, J.; Kim, S.; Kang, T. S.; Kim, Y.

    2015-12-01

    Jeju Island, formed by Cenozoic basaltic eruptions, is an island off the southern coast of the Korean Peninsula. This volcanic island is far from the plate boundaries and the fundamental cause of the volcanic activity in this region is not understood well. To understand the origin of the island, resolving the detailed seismic velocity structures is crucial. Therefore, we applied ambient noise tomography to study the velocity structures of the island. Continuous waveform data recorded at 20 temporary and 3 permanent broad-band seismic stations are used. The group and phase velocity dispersion curves of the fundamental mode Rayleigh waves are extracted from cross-correlograms for 253 station pairs by adopting multiple filter technique. The fast marching method and the subspace method are jointly applied to construct 2-D group and phase velocity maps for periods ranging between 1 and 15 s. 1-D shear wave velocity models and their uncertainties are estimated by the Bayesian technique. The optimal number of the layers are determined at the end of the burn-in period based on the Bayesian Information Criteria (BIC). Final 3-D velocity model of the island is constructed by compiling 1-D models. In our 3-D model, a distinct low velocity anomaly appears beneath Mt. Halla from surface to about 6 km depth. The surficial extent of the anomaly is more or less consistent with the surface geologic feature of the third-stage basaltic eruption reported by previous studies but the vertical extension of the anomaly is not well constrained. To improve the velocity model, especially enhance the vertical resolution of the anomaly, we will apply joint analysis of the surface wave dispersions and teleseismic receiver functions. The improved model will provide more information to infer the tectonic or volcanic implications of the anomaly and unravel the origin of the strange volcanic island in South Korea.

  20. Big Data Challenges in Global Seismic 'Adjoint Tomography' (Invited)

    NASA Astrophysics Data System (ADS)

    Tromp, J.; Bozdag, E.; Krischer, L.; Lefebvre, M.; Lei, W.; Smith, J.

    2013-12-01

    The challenge of imaging Earth's interior on a global scale is closely linked to the challenge of handling large data sets. The related iterative workflow involves five distinct phases, namely, 1) data gathering and culling, 2) synthetic seismogram calculations, 3) pre-processing (time-series analysis and time-window selection), 4) data assimilation and adjoint calculations, 5) post-processing (pre-conditioning, regularization, model update). In order to implement this workflow on modern high-performance computing systems, a new seismic data format is being developed. The Adaptable Seismic Data Format (ASDF) is designed to replace currently used data formats with a more flexible format that allows for fast parallel I/O. The metadata is divided into abstract categories, such as "source" and "receiver", along with provenance information for complete reproducibility. The structure of ASDF is designed keeping in mind three distinct applications: earthquake seismology, seismic interferometry, and exploration seismology. Existing time-series analysis tool kits, such as SAC and ObsPy, can be easily interfaced with ASDF so that seismologists can use robust, previously developed software packages. ASDF accommodates an automated, efficient workflow for global adjoint tomography. Manually managing the large number of simulations associated with the workflow can rapidly become a burden, especially with increasing numbers of earthquakes and stations. Therefore, it is of importance to investigate the possibility of automating the entire workflow. Scientific Workflow Management Software (SWfMS) allows users to execute workflows almost routinely. SWfMS provides additional advantages. In particular, it is possible to group independent simulations in a single job to fit the available computational resources. They also give a basic level of fault resilience as the workflow can be resumed at the correct state preceding a failure. Some of the best candidates for our particular workflow

  1. Shallow seismicity, triggered seismicity, and ambient noise tomography at the long-dormant Uturuncu Volcano, Bolivia

    NASA Astrophysics Data System (ADS)

    Jay, Jennifer A.; Pritchard, Matthew E.; West, Michael E.; Christensen, Douglas; Haney, Matthew; Minaya, Estela; Sunagua, Mayel; McNutt, Stephen R.; Zabala, Mario

    2012-05-01

    Using a network of 15 seismometers around the inflating Uturuncu Volcano from April 2009 to 2010, we find an average rate of about three local volcano-tectonic earthquakes per day, and swarms of 5-60 events a few times per month with local magnitudes ranging from -1.2 to 3.7. The earthquake depths are near sea level, more than 10 km above the geodetically inferred inflation source and the Altiplano Puna Magma Body. The Mw 8.8 Maule earthquake on 27 February 2010 triggered hundreds of earthquakes at Uturuncu with the onset of the Love and Rayleigh waves and again with the passage of the X2/X3 overtone phases of Rayleigh waves. This is one of the first incidences in which triggering has been observed from multiple surface wave trains. The earthquakes are oriented NW-SE similar to the regional faults and lineaments. The b value of the catalog is 0.49, consistent with a tectonic origin of the earthquakes. We perform ambient noise tomography using Love wave cross-correlations to image a low-velocity zone at 1.9 to 3.9 km depth below the surface centered slightly north of the summit. The low velocities are perhaps related to the hydrothermal system and the low-velocity zone is spatially correlated with earthquake locations. The earthquake rate appears to vary with time—a seismic deployment from 1996 to 1997 reveals 1-5 earthquakes per day, whereas 60 events/day were seen during 5 days using one seismometer in 2003. However, differences in analysis methods and magnitudes of completeness do not allow direct comparison of these seismicity rates. The rate of seismic activity at Uturuncu is higher than at other well-monitored inflating volcanoes during periods of repose. The frequent swarms and triggered earthquakes suggest the hydrothermal system is metastable.

  2. Frequency-dependent traveltime tomography using fat rays: application to near-surface seismic imaging

    NASA Astrophysics Data System (ADS)

    Jordi, Claudio; Schmelzbach, Cedric; Greenhalgh, Stewart

    2016-08-01

    Frequency-dependent traveltime tomography does not rely on the high frequency assumption made in classical ray-based tomography. By incorporating the effects of velocity structures in the first Fresnel volume around the central ray, it offers a more realistic and accurate representation of the actual physics of seismic wave propagation and thus, enhanced imaging of near-surface structures is expected. The objective of this work was to apply frequency-dependent first arrival traveltime tomography to surface seismic data that were acquired for exploration scale and near-surface seismic imaging. We adapted a fat ray tomography algorithm from global-earth seismology that calculates the Fresnel volumes based on source and receiver (adjoint source) traveltime fields. The fat ray tomography algorithm was tested on synthetic model data that mimics the dimensions of two field data sets. The field data sets are presented as two case studies where fat ray tomography was applied for near-surface seismic imaging. The data set of the first case study was recorded for high-resolution near-surface imaging of a Quaternary valley (profile length < 1 km); the second data set was acquired for hydrocarbon search (profile length > 10 km). All results of fat ray tomography are compared against the results of classical ray-based tomography. We show that fat ray tomography can provide enhanced tomograms and that it is possible to recover more information on the subsurface when compared to ray tomography. However, model assessment based on the column sum of the Jacobian matrix revealed that especially the deep parts of the structure in the fat ray tomograms might not be adequately covered by fat rays. Furthermore, the performance of the fat ray tomography depends on the chosen input frequency in relation to the scale of the seismic survey. Synthetic data testing revealed that the best results were obtained when the frequency was chosen to correspond to an approximate wavelength

  3. Cross-well 4-D resistivity tomography localizes the oil-water encroachment front during water flooding

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Revil, A.

    2015-04-01

    The early detection of the oil-water encroachment front is of prime interest during the water flooding of an oil reservoir to maximize the production of oil and to avoid the oil-water encroachment front to come too close to production wells. We propose a new 4-D inversion approach based on the Gauss-Newton approach to invert cross-well resistance data. The goal of this study is to image the position of the oil-water encroachment front in a heterogeneous clayey sand reservoir. This approach is based on explicitly connecting the change of resistivity to the petrophysical properties controlling the position of the front (porosity and permeability) and to the saturation of the water phase through a petrophysical resistivity model accounting for bulk and surface conductivity contributions and saturation. The distributions of the permeability and porosity are also inverted using the time-lapse resistivity data in order to better reconstruct the position of the oil water encroachment front. In our synthetic test case, we get a better position of the front with the by-products of porosity and permeability inferences near the flow trajectory and close to the wells. The numerical simulations show that the position of the front is recovered well but the distribution of the recovered porosity and permeability is only fair. A comparison with a commercial code based on a classical Gauss-Newton approach with no information provided by the two-phase flow model fails to recover the position of the front. The new approach could be used for the time-lapse monitoring of various processes in both geothermal fields and oil and gas reservoirs using a combination of geophysical methods.

  4. High resolution seismic tomography of a Strombolian volcanic cone

    NASA Astrophysics Data System (ADS)

    Brenguier, F.; Coutant, O.; Baudon, H.; Doré, F.; Dietrich, M.

    2006-08-01

    We determine the 3D velocity structure of the Puy des Goules, a small, 1 km wide, Strombolian volcano that erupted 10 ky ago in central France, through a high resolution seismic survey. One major goal for this experiment was to develop methods to reach a high resolution focused on the plumbing system. This has raised different problems such as: mixing active sources (explosive, vibroseis) with different signal properties; inverting traveltime residuals of the order of 10 ms which requires the corresponding accuracy on the Digital Elevation Model (DEM), source and sensor locations (300 sites) and traveltime computations. The results of the traveltime tomography reveal three main bodies of high velocity embedded within scoria layers. These bodies can be interpreted as the central chimney and two complex feeding zones that compare quite well with the Puy de Lemptégy, a neighboring cone that was quarried and removed, showing its underlying feeding conduits and dykes. These results represent a first step toward our objective that is to determine geological structures related to natural hazards with a high resolution.

  5. 4D megahertz optical coherence tomography (OCT): imaging and live display beyond 1 gigavoxel/sec (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huber, Robert A.; Draxinger, Wolfgang; Wieser, Wolfgang; Kolb, Jan Philip; Pfeiffer, Tom; Karpf, Sebastian N.; Eibl, Matthias; Klein, Thomas

    2016-03-01

    Over the last 20 years, optical coherence tomography (OCT) has become a valuable diagnostic tool in ophthalmology with several 10,000 devices sold today. Other applications, like intravascular OCT in cardiology and gastro-intestinal imaging will follow. OCT provides 3-dimensional image data with microscopic resolution of biological tissue in vivo. In most applications, off-line processing of the acquired OCT-data is sufficient. However, for OCT applications like OCT aided surgical microscopes, for functional OCT imaging of tissue after a stimulus, or for interactive endoscopy an OCT engine capable of acquiring, processing and displaying large and high quality 3D OCT data sets at video rate is highly desired. We developed such a prototype OCT engine and demonstrate live OCT with 25 volumes per second at a size of 320x320x320 pixels. The computer processing load of more than 1.5 TFLOPS was handled by a GTX 690 graphics processing unit with more than 3000 stream processors operating in parallel. In the talk, we will describe the optics and electronics hardware as well as the software of the system in detail and analyze current limitations. The talk also focuses on new OCT applications, where such a system improves diagnosis and monitoring of medical procedures. The additional acquisition of hyperspectral stimulated Raman signals with the system will be discussed.

  6. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  7. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, Wei; Anderson, Roger N.

    1998-01-01

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

  8. Mapping soil deformation around plant roots using in vivo 4D X-ray Computed Tomography and Digital Volume Correlation.

    PubMed

    Keyes, S D; Gillard, F; Soper, N; Mavrogordato, M N; Sinclair, I; Roose, T

    2016-06-14

    The mechanical impedance of soils inhibits the growth of plant roots, often being the most significant physical limitation to root system development. Non-invasive imaging techniques have recently been used to investigate the development of root system architecture over time, but the relationship with soil deformation is usually neglected. Correlative mapping approaches parameterised using 2D and 3D image data have recently gained prominence for quantifying physical deformation in composite materials including fibre-reinforced polymers and trabecular bone. Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) are computational techniques which use the inherent material texture of surfaces and volumes, captured using imaging techniques, to map full-field deformation components in samples during physical loading. Here we develop an experimental assay and methodology for four-dimensional, in vivo X-ray Computed Tomography (XCT) and apply a Digital Volume Correlation (DVC) approach to the data to quantify deformation. The method is validated for a field-derived soil under conditions of uniaxial compression, and a calibration study is used to quantify thresholds of displacement and strain measurement. The validated and calibrated approach is then demonstrated for an in vivo test case in which an extending maize root in field-derived soil was imaged hourly using XCT over a growth period of 19h. This allowed full-field soil deformation data and 3D root tip dynamics to be quantified in parallel for the first time. This fusion of methods paves the way for comparative studies of contrasting soils and plant genotypes, improving our understanding of the fundamental mechanical processes which influence root system development. PMID:27155747

  9. Overview of Results from the Endeavour Seismic Tomography Experiment

    NASA Astrophysics Data System (ADS)

    Toomey, D. R.; Hooft, E. E.; Wilcock, W. S.; Weekly, R. T.; Wells, A. E.; Soule, D. C.

    2011-12-01

    We report on our continuing analyses of a multi-scale seismic tomography experiment of the Endeavour segment of the Juan de Fuca Ridge. In August 2009 we deployed 68 four-component ocean bottom seismometers (OBSs) at 64 sites throughout a 90x50 km2 area to record seismic energy from 5567 shots of the 36-element, 6600 in.3 airgun array of the R/V Marcus G. Langseth. The experimental geometry utilized 3 nested scales and was designed to image (1) crustal thickness variations within 25 km of the axial high (0 to 900 kyr); (2) the map view heterogeneity and anisotropy of the topmost mantle beneath the spreading axis; (3) the three-dimensional structure of the crustal magmatic system and (4) the detailed three-dimensional, shallow crustal thermal structure beneath the Endeavour vent fields. The 90-km-long Endeavour segment lies between the Cobb and Endeavour overlapping spreading centers (OSCs), which are converging and thus shortening the Endeavour segment. Previous seismic reflection studies indicate that the central Endeavour segment is on a 40-km-wide plateau of greater crustal thickness that is interpreted to have developed when the ridge overrode the mantle melt anomaly associated with the Heckle seamount chain. The central Endeavour is also underlain by an axial magma chamber (AMC) reflector that is shallowest and most prominent beneath the hydrothermal fields. Geophysical studies of Endeavour thus permit investigation of the competing effects of tectonic, magmatic and hydrothermal processes on crustal structure and architecture. Ongoing analyses include tomographic inversion of first-arriving P waves that sample the upper- and mid-crustal regions, characterization of off-axis magma bodies via travel time and amplitude anomalies of crustal phases, estimation of regional-scale crustal thickness variations from analysis of PmP arrivals and imaging of mantle structure using Pn to constrain mantle flow and melt distribution [Weekly et al.; Wells et al.; Soule et al

  10. Multi-Resolution Seismic Tomography Based on Recursive Tessellation Hierarchy

    SciTech Connect

    Simmons, N A; Myers, S C; Ramirez, A

    2009-07-01

    A 3-D global tomographic model that reconstructs velocity structure at multiple scales and incorporates laterally variable seismic discontinuities is currently being developed. The model parameterization is node-based where nodes are placed along vertices defined by triangular tessellations of a spheroidal surface. The triangular tessellation framework is hierarchical. Starting with a tetrahexahedron representing the whole globe (1st level of the hierarchy, 24 faces), they divide each triangle of the tessellation into daughter triangles. The collection of all daughter triangles comprises the 2nd level of the tessellation hierarchy and further recursion produces an arbitrary number of tessellation levels and arbitrarily fine node-spacing. They have developed an inversion procedure that takes advantage of the recursive properties of the tessellation hierarchies by progressively solving for shorter wavelength heterogeneities. In this procedure, we first perform the tomographic inversion using a tessellation level with coarse node spacing. They find that a coarse node spacing of approximately 8{sup o} is adequate to capture bulk regional properties. They then conduct the tomographic inversion on a 4{sup o} tessellation level using the residuals and inversion results from the 8{sup o} run. In practice they find that the progressive tomography approach is robust, providing an intrinsic regularization for inversion stability and avoids the issue of predefining resolution levels. Further, determining average regional properties with coarser tessellation levels enables long-wavelength heterogeneities to account for sparsely sampled regions (or regions of the mantle where longer wavelength patterns of heterogeneity suffice) while allowing shorter length-scale heterogeneities to emerge where necessary. They demonstrate the inversion approach with a set of synthetic test cases that mimic the complex nature of data arrangements (mixed-determined inversion) common to most

  11. Global seismic waveform tomography based on the spectral element method.

    NASA Astrophysics Data System (ADS)

    Capdeville, Y.; Romanowicz, B.; Gung, Y.

    2003-04-01

    Because seismogram waveforms contain much more information on the earth structure than body wave time arrivals or surface wave phase velocities, inversion of complete time-domain seismograms should allow much better resolution in global tomography. In order to achieve this, accurate methods for the calculation of forward propagation of waves in a 3D earth need to be utilized, which presents theoretical as well as computational challenges. In the past 8 years, we have developed several global 3D S velocity models based on long period waveform data, and a normal mode asymptotic perturbation formalism (NACT, Li and Romanowicz, 1996). While this approach is relatively accessible from the computational point of view, it relies on the assumption of smooth heterogeneity in a single scattering framework. Recently, the introduction of the spectral element method (SEM) has been a major step forward in the computation of seismic waveforms in a global 3D earth with no restrictions on the size of heterogeneities (Chaljub, 2000). While this method is computationally heavy when the goal is to compute large numbers of seismograms down to typical body wave periods (1-10 sec), it is much more accessible when restricted to low frequencies (T>150sec). When coupled with normal modes (e.g. Capdeville et al., 2000), the numerical computation can be restricted to a spherical shell within which heterogeneity is considered, further reducing the computational time. Here, we present a tomographic method based on the non linear least square inversion of time domain seismograms using the coupled method of spectral elements and modal solution. SEM/modes are used for both the forward modeling and to compute partial derivatives. The parametrisation of the model is also based on the spectral element mesh, the "cubed sphere" (Sadourny, 1972), which leads to a 3D local polynomial parametrization. This parametrization, combined with the excellent earth coverage resulting from the full 3D theory used

  12. First Arrival Seismic Tomography (FAST) vs. PStomo_eq applied to crooked line seismic data from the Siljan ring area

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tablante, Johiris I.; Juhlin, Christopher; Bergman, Björn

    2006-05-01

    When seismic profiles deviate significantly from straight lines, the results from 2D traveltime inversion programs will be in error due to the inherent 3D component present in the data. Thus, it is necessary to use a program that can handle the 3D aspects of the acquisition geometry. This study compares the performance and results from two computer programs for 3D seismic tomography. These algorithms are the package for First Arrival Seismic Tomography (FAST) and a Local Earthquake tomography program, PStomo_eq. Although both codes invert for the velocity field using the conjugate gradient solver LSQR, the common smoothness constraint is handled differently. In addition, the programs do not incorporate the same options for user-specified constraints. These differences in implementation are clearly observed in the inverted velocity fields obtained in this study. Both FAST and PStomo_eq are applied to synthetic and real data sets with crooked line geometry. First arrival traveltimes from seismic data acquired in the Siljan ring impact area are used for the real data set test. The results show that FAST gives smoother models than PStomo_eq. On the real data set PStomo_eq showed a better correlation to the information at hand. Different criteria exist for what is desirable in a model; thus, the choice of which program to use will mostly depend on the particular goals of the study.

  13. Reducing Disk Storage of Full-3D Seismic Waveform Tomography (F3DT) Through Lossy Online Compression

    DOE PAGESBeta

    Lindstrom, Peter; Chen, Po; Lee, En-Jui

    2016-05-05

    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithmmore » into our F3DT SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.« less

  14. Implications of free breathing motion assessed by 4D-computed tomography on the delivered dose in radiotherapy for esophageal cancer.

    PubMed

    Duma, Marciana Nona; Berndt, Johannes; Rondak, Ina-Christine; Devecka, Michal; Wilkens, Jan J; Geinitz, Hans; Combs, Stephanie Elisabeth; Oechsner, Markus

    2015-01-01

    The aim of this study was to assess the effect of breathing motion on the delivered dose in esophageal cancer 3-dimensional (3D)-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT). We assessed 16 patients with esophageal cancer. All patients underwent 4D-computed tomography (4D-CT) for treatment planning. For each of the analyzed patients, 1 3D-CRT, 1 IMRT, and 1 VMAT (RapidArc-RA) plan were calculated. Each of the 3 initial plans was recalculated on the 4D-CT (for the maximum free inspiration and maximum free expiration) to assess the effect of breathing motion. We assessed the minimum dose (Dmin) and mean dose (Dmean) to the esophagus within the planning target volume, the volume changes of the lungs, the Dmean and the total lung volume receiving at least 40Gy (V40), and the V30, V20, V10, and V5. For the heart we assessed the Dmean and the V25. Over all techniques and all patients the change in Dmean as compared with the planned Dmean (planning CT [PCT]) to the esophagus was 0.48% in maximum free inspiration (CT_insp) and 0.55% in maximum free expiration (CT_exp). The Dmin CT_insp change was 0.86% and CT_exp change was 0.89%. The Dmean change of the lungs (heart) was in CT_insp 1.95% (2.89%) and 3.88% (2.38%) in CT_exp. In all, 4 patients had a clinically relevant change of the dose (≥ 5% Dmean to the heart and the lungs) between inspiration and expiration. These patients had a very cranially or caudally situated tumor. There are no relevant differences in the delivered dose to the regions of interest among the 3 techniques. Breathing motion management could be considered to achieve a better sparing of the lungs or heart in patients with cranially or caudally situated tumors. PMID:26419857

  15. 4-D imaging of sub-second dynamics in pore-scale processes using real-time synchrotron X-ray tomography

    NASA Astrophysics Data System (ADS)

    Dobson, Katherine J.; Coban, Sophia B.; McDonald, Samuel A.; Walsh, Joanna N.; Atwood, Robert C.; Withers, Philip J.

    2016-07-01

    A variable volume flow cell has been integrated with state-of-the-art ultra-high-speed synchrotron X-ray tomography imaging. The combination allows the first real-time (sub-second) capture of dynamic pore (micron)-scale fluid transport processes in 4-D (3-D + time). With 3-D data volumes acquired at up to 20 Hz, we perform in situ experiments that capture high-frequency pore-scale dynamics in 5-25 mm diameter samples with voxel (3-D equivalent of a pixel) resolutions of 2.5 to 3.8 µm. The data are free from motion artefacts and can be spatially registered or collected in the same orientation, making them suitable for detailed quantitative analysis of the dynamic fluid distribution pathways and processes. The methods presented here are capable of capturing a wide range of high-frequency nonequilibrium pore-scale processes including wetting, dilution, mixing, and reaction phenomena, without sacrificing significant spatial resolution. As well as fast streaming (continuous acquisition) at 20 Hz, they also allow larger-scale and longer-term experimental runs to be sampled intermittently at lower frequency (time-lapse imaging), benefiting from fast image acquisition rates to prevent motion blur in highly dynamic systems. This marks a major technical breakthrough for quantification of high-frequency pore-scale processes: processes that are critical for developing and validating more accurate multiscale flow models through spatially and temporally heterogeneous pore networks.

  16. Passive seismic tomography application for cave monitoring in DOZ underground mine PT. Freeport Indonesia

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Wely, Woen; Setiadi, Herlan; Riyanto, Erwin

    2015-04-01

    It is already known that tomography has a great impact for analyzing and mapping unknown objects based on inversion, travel time as well as waveform inversion. Therefore, tomography has used in wide area, not only in medical but also in petroleum as well as mining. Recently, tomography method is being applied in several mining industries. A case study of tomography imaging has been carried out in DOZ ( Deep Ore Zone ) block caving mine, Tembagapura, Papua. Many researchers are undergoing to investigate the properties of DOZ cave not only outside but also inside which is unknown. Tomography takes a part for determining this objective.The sources are natural from the seismic events that caused by mining induced seismicity and rocks deformation activity, therefore it is called as passive seismic. These microseismic travel time data are processed by Simultaneous Iterative Reconstruction Technique (SIRT). The result of the inversion can be used for DOZ cave monitoring. These information must be used for identifying weak zone inside the cave. In addition, these results of tomography can be used to determine DOZ and cave information to support mine activity in PT. Freeport Indonesia.

  17. Passive seismic tomography application for cave monitoring in DOZ underground mine PT. Freeport Indonesia

    SciTech Connect

    Nurhandoko, Bagus Endar B.; Wely, Woen; Setiadi, Herlan; Riyanto, Erwin

    2015-04-16

    It is already known that tomography has a great impact for analyzing and mapping unknown objects based on inversion, travel time as well as waveform inversion. Therefore, tomography has used in wide area, not only in medical but also in petroleum as well as mining. Recently, tomography method is being applied in several mining industries. A case study of tomography imaging has been carried out in DOZ ( Deep Ore Zone ) block caving mine, Tembagapura, Papua. Many researchers are undergoing to investigate the properties of DOZ cave not only outside but also inside which is unknown. Tomography takes a part for determining this objective.The sources are natural from the seismic events that caused by mining induced seismicity and rocks deformation activity, therefore it is called as passive seismic. These microseismic travel time data are processed by Simultaneous Iterative Reconstruction Technique (SIRT). The result of the inversion can be used for DOZ cave monitoring. These information must be used for identifying weak zone inside the cave. In addition, these results of tomography can be used to determine DOZ and cave information to support mine activity in PT. Freeport Indonesia.

  18. Simultaneous Seismic Tomography and Gravity Inversion for Tertiary Basin Geometry Beneath Puget Lowland, Washington

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Parsons, T.; Blakely, R. J.

    2001-12-01

    We present a simultaneous seismic tomography and gravity inversion model for the subsurface geometry of Tertiary basins underlying the Puget Lowland, Washington. The method extrapolates high-resolution seismic tomography results from Seismic Hazards Investigation of Puget Sound (SHIPS), which covered much of the Lowland, to adjacent regions not well imaged by SHIPS. Our current algorithm uses the initial seismic tomography result to calculate the gravity field assuming Gardner's rule of ρ (kg/m3) = 1740v0.25 for velocities (in km/s) below 6 km/s. We currently use ρ = 2920 kg/m3 for velocities greater than 6 km/s. Iteratively, the method compares the observed and calculated gravity fields, increases or decreases the velocity gradient as necessary, and updates the velocity model for the next iteration of the seismic tomography inversion. This tomography result is subsequently used for another comparison of observed and calculated gravity fields. Currently, the RMS first-arrival travel time misfit (90 msec) produced by this algorithm is identical to that obtained using solely the seismic data, and the RMS gravity error is 9 mgal, slightly higher than desired. Nonetheless, the simultaneous inversion has successfully extended the region of subsurface coverage from that obtained from SHIPS to the core of the accretionary rocks on the Olympic Peninsula and to the Everett and Bellingham basins, where the SHIPS coverage was limited. The inverse model clearly shows accretionary rocks in the Olympic core complex dipping eastward beneath east dipping rocks of the Siletz terrane. We present an overview of our algorithm and summarize the crustal structure inferred from our inversion.

  19. Evaluating the Performance of Short-Term Heat Storage in Alluvial Aquifer with 4D Electrical Resistivity Tomography and Hydrological Monitoring

    NASA Astrophysics Data System (ADS)

    Hermans, T.; Robert, T.; Paulus, C.; Bolly, P. Y.; Koo Seen Lin, E.; Nguyen, F.

    2015-12-01

    In the context of energy demand side management (DSM), energy storage solutions are needed to store energy during high production periods and recover energy during high demand periods. Among currently studied solutions, storing energy in the subsurface through heat pumps and/or exchangers (thermal energy storage) is relatively simple with low investment costs. However, the design and functioning of such systems have strong interconnections with the geology of the site which may be complex and heterogeneous, making predictions difficult. In this context, local temperature measurements are necessary but not sufficient to model heat flow and transport in the subsurface. Electrical resistivity tomography (ERT) provides spatially distributed information on the temperature distribution in the subsurface. In this study, we monitored, with 4D ERT combined with multiple hydrological measurements in available wells, a short-term heat storage experiment in a confined alluvial aquifer. We injected heated water (ΔT=30K) during 6 hours with a rate of 3 m³/h. We stored this heat during 3 days, and then we pumped it back to estimate the energy balance. We collected ERT data sets using 9 parallel profiles of 21 electrodes and cross-lines measurements. Inversion results clearly show the ability of ERT to delimit the thermal plume growth during injection, the diffusion and decrease of temperature during storage, and the decrease in size after pumping. Quantitative interpretation of ERT in terms of temperature estimates is difficult at this stage due to strong spatial variations of the total dissolved solid content in the aquifer, due to historical chloride contamination of the site. However, we demonstrated that short-term heat storage in alluvial aquifer is efficient and that ERT combined with hydrological measurements is a valuable tool to image and estimate the temperature distribution in the subsurface. Moreover, energy balance shows that up to 75% of the energy can be easily

  20. Teleseismic Tomography of the Eastern Tennessee Seismic Zone

    NASA Astrophysics Data System (ADS)

    Olasanmi, O. T.; Arroucau, P.; Vlahovic, G.

    2014-12-01

    In this work we perform a tomographic inversion of teleseismic data to investigate the properties of the crust and the uppermost mantle beneath the eastern Tennessee seismic zone (ETSZ). The ETSZ is a major seismic feature located in the southeastern United States. The zone spans portions of eastern Tennessee, North Carolina, Virginia, Georgia and Alabama and is, after the New Madrid seismic zone, the second most active seismic region of the North America east of the Rocky Mountains. Earthquakes in the ETSZ appear to align along a sharp, linear magnetic feature, called the New York-Alabama Lineament (NYAL), which acts as the northwest edge of the seismic zone and is attributed to a strike-slip fault affecting the Precambrian basement. A total of 2652 relative P-wave arrival time residuals from 201 teleseismic events recorded at 28 regional seismic station have been extracted from the continuous records using the adaptive stacking code. The three-dimensional model was computed down to 300km. The tomographic images show significant velocity anomalies, confirming complex tectonic evolution and revealing basement features that can be correlated with regional gravity and magnetic anomalies. One of the main features of the three-dimensional model is a significant velocity contrast across the NYAL that extends through the crust and the uppermost mantle, with high velocity anomalies northwest of the NYAL and lower velocities southwest of the NYAL. Our results support the hypothesis that the lineament is a major basement fault associated with a tectonic boundary produced by merging of the southern Appalachian basement with the Granite-Rhyolite basement during the Grenville orogeny.

  1. Volcano deformation source parameters estimated from InSAR: Sensitivities to uncertainties in seismic tomography

    NASA Astrophysics Data System (ADS)

    Masterlark, Timothy; Donovan, Theodore; Feigl, Kurt L.; Haney, Matthew; Thurber, Clifford H.; Tung, Sui

    2016-04-01

    The eruption cycle of a volcano is controlled in part by the upward migration of magma. The characteristics of the magma flux produce a deformation signature at the Earth's surface. Inverse analyses use geodetic data to estimate strategic controlling parameters that describe the position and pressurization of a magma chamber at depth. The specific distribution of material properties controls how observed surface deformation translates to source parameter estimates. Seismic tomography models describe the spatial distributions of material properties that are necessary for accurate models of volcano deformation. This study investigates how uncertainties in seismic tomography models propagate into variations in the estimates of volcano deformation source parameters inverted from geodetic data. We conduct finite element model-based nonlinear inverse analyses of interferometric synthetic aperture radar (InSAR) data for Okmok volcano, Alaska, as an example. We then analyze the estimated parameters and their uncertainties to characterize the magma chamber. Analyses are performed separately for models simulating a pressurized chamber embedded in a homogeneous domain as well as for a domain having a heterogeneous distribution of material properties according to seismic tomography. The estimated depth of the source is sensitive to the distribution of material properties. The estimated depths for the homogeneous and heterogeneous domains are 2666 ± 42 and 3527 ± 56 m below mean sea level, respectively (99% confidence). A Monte Carlo analysis indicates that uncertainties of the seismic tomography cannot account for this discrepancy at the 99% confidence level. Accounting for the spatial distribution of elastic properties according to seismic tomography significantly improves the fit of the deformation model predictions and significantly influences estimates for parameters that describe the location of a pressurized magma chamber.

  2. Anisotropic Tomography of Portugal (West Iberia) from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Silveira, Graça; Stutzmann, Éléonore; Schimmel, Martin; Dias, Nuno; Kiselev, Sergey; Custódio, Susana; Dundar, Suleyman

    2016-04-01

    Located on the western Iberian Peninsula, Portugal constitutes a key area for accretionary terrane and basin research, providing the best opportunity to probe a crustal formation shaped by the Paleozoic Variscan orogeny followed by the Mesozoic-Cenozoic extensions. The geology of Portugal documents a protracted history from Paleozoic basement formation to the Mesozoic opening of the North Atlantic Ocean. The inheritance of such complex geologic history is yet to be fully determined, playing an important role in the current geodynamic framework influencing, for example, the observed regional seismicity. The physical properties of its crust have largely remained undetermined so far, with unevenly distributed knowledge on the spatial distributions of a detailed crustal structure. Also, the deep seismic reflection/refraction surveys conducted in Western Iberia do not provide a clear picture of the regional characteristics of the crust. Using Seismic Broad Band observations from a dense temporary deployment, conducted between 2010 and 2012 in the scope of the WILAS project and covering the entire Portuguese mainland, we computed a 3D anisotropic model from ambient seismic noise. The dispersion measurements were computed for each station pair using empirical Green's functions generated by cross-correlating one-day-length seismic ambient-noise records. After dispersion analysis, group velocity measurements were regionalized to obtain 2D anisotropic tomographic images. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave anisotropic model, using a bayesian approach. A simulated annealing method, in which the number of splines that describes the model, is adapted within the inversion. The models are jointly interpreted with the models gathered from Ps receiver functions as well as with the regional seismicity, enabling to obtain a more detailed picture of the crustal

  3. Seismic Tomography of Siyazan - Shabran Oil and Gas Region Of Azerbaijan by Data of The Seismic Stations

    NASA Astrophysics Data System (ADS)

    Yetirmishli, Gurban; Guliyev, Ibrahim; Mammadov, Nazim; Kazimova, Sabina; Ismailova, Saida

    2016-04-01

    The main purpose of the research was to build a reliable 3D model of the structure of seismic velocities in the earth crust on the territory of Siyazan-Shabran region of Azerbaijan, using the data of seismic telemetry stations spanning Siyazan-Shabran region (Siyazan, Altiagaj, Pirgulu, Guba, Khinalig, Gusar), including 7 mobile telemetry seismic stations. Interest to the problem of research seismic tomography caused by applied environmental objectives, such as the assessment of geological risks, engineering evaluation (stability and safety of wells), the task of exploration and mining operations. In the study region are being actively developed oil fields, and therefore, there is a risk of technogenic earthquakes. It was performed the calculation of first arrival travel times of P and S waves and the corresponding ray paths. Calculate 1D velocity model which is the initial model as a set of horizontal layers (velocity may be constant or changed linearly with depth on each layer, gaps are possible only at the boundaries between the layers). Have been constructed and analyzed the horizontal sections of the three-dimensional velocity model at different depths of the investigated region. By the empirical method was proposed density model of the sedimentary rocks at depths of 0-8 km.

  4. FINAL REPORT. SEISMIC SURFACE-WAVE TOMOGRAPHY OF WASTE SITES

    EPA Science Inventory

    The objective of this study was to develop analysis programs for surface-wave group-velocity tomography and apply these to three test areas. We succeeded by obtaining data covering two square areas that were 30 meters on a side and one that was 16 meters on a side, in addition to...

  5. Global tomography from ambient seismic noise cross-correlation

    NASA Astrophysics Data System (ADS)

    Haned, A.; Stutzmann, E.; Yelles-Chaouche, A.; Schimmel, M.; Kiselev, A. A.

    2013-12-01

    Ambient seismic noise is generated in the ocean and recorded worldwide. In order to extract Green function between stations from seismic noise records, we consider the analytical signal and compute the phase correlation to to extract phase coherent signals which after stacking build up the empirical Green function. The ambient noise phase cross-correlations are stacked using the time-frequency domain phase weighted stack (Schimmel et al. 2011). This method is applied to noise data in the period band 30 to 250sec. A bootstrap approach is used to measure group velocity between pairs of stations and to estimate the corresponding error. We show that it is necessary to stack 2 years of data in order to determine reliable group velocity measurements. It is observed by analyzing the convergence that less data are required to extract reliable group velocities at short period than at long periods. This data processing is applied to 150 stations of the global networks GEOSCOPE and GSN. Global maps of group velocities and the corresponding errors are then estimated and inverted to obtain the 3D S-wave model. CRUST2.0 model is used and the S-wave model below the crust is determined using a simulated annealing method in which the number of splines that describes the model is adapted within the inversion. This model is the first global S-wave velocity model derived from seismic noise recordings in the wide period band 30-250sec.

  6. Deep Structure of the Northern Cascadia Subduction Zone From Reflection, Tomography and Seismicity Studies

    NASA Astrophysics Data System (ADS)

    Nedimović, M. R.; Ramachandran, K.; Hyndman, R. D.

    2002-12-01

    To study the structure of southwestern British Columbia and northwestern Washington State, a multidisciplinary seismic survey named SHIPS (Seismic Hazards Investigation in Puget Sound) was carried out in 1998. The main objective was to map active crustal faults in the high seismicity region of Strait of Juan de Fuca, Georgia Strait and Puget Sound, and to gather information about other earthquake controlling structures such as are the position and nature of the subducted Juan de Fuca oceanic plate. We carried out a comparative analysis of the reflection, tomography and seismicity results for the Strait of Juan de Fuca region. Shallow forearc sedimentary basins of glacial and tectonic origin are well outlined on reflection sections. Leech River Fault and southern Whidbey Island Fault are imaged directly. Devils Mountain Fault is indirectly imaged on several profiles by an offset in the basement structure. At greater depth, a thick group of gently landward dipping events is present in the reflection images: The "E" reflection zone previously detected on Lithoprobe data. We believe that this reflection band, earlier interpreted as a shear zone, is situated just above the subducted slab. We use it to map the topography of the subducted oceanic crust. Because oceanic Moho is visible on reflection profiles only within the western edge of the survey area, we also use tomography and seismicity results to delineate it. The reflection, tomography and seismicity results are in good agreement and confirm the existence of an upward bulge in the subducting oceanic crust beneath northwestern Washington. By integrating our results with previous reflection profiles across the accreted wedge and Vancouver Island, we study the structure of the subducted Juan de Fuca oceanic slab and the nature of its contact with the overriding North America plate, from the deformation front to the forearc Moho.

  7. 4D imaging of velocity variation of the underground by single ultra-stable seismic source and multi-receivers (Invited)

    NASA Astrophysics Data System (ADS)

    Kasahara, J.; Hasada, Y.; Tsuruga, K.; Fujii, N.

    2010-12-01

    We propose a seismological method to construct images of any time-variable zone(s) in the underground such as earthquake focal zone, volcanic magma intruding zone, oil-gas reservoirs and CO2 sequestration zone. If fluid flow controls earthquake generation, sudden change of physical state due to fluid migration may suggest a high possibility of future earthquake events. Increasing of magma body in volcano may also cause any change of seismic reflections from volcanic zone. Injection of CO2 to the ground may also cause decrease of injected zone. We use an extremely stable seismic system (ACROSS: Accurately Controlled and Routinely Operated Signal System) to perform continuous monitor of them. The seismic ACROSS source is non-destructive seismic source, which can be used to continuously monitor a change of target zone. If we assume the seismic source signature does not change during a certain time frame, we can compare the waveforms between any observation periods. Using single seismic source and multi-receivers, we made back-propagate the differential waveforms of multi-receivers between before and after the Vp and Vs change. We carried out simulation by subduction zone and small-scale examples such as CO2 sequestration zone. In this talk, we present the change of image with time of CO2 sequestration zone. Assuming we know the velocity structure of the target zone and no or very small velocity change of near surface zone, we may image the place of time-variable zone by use of appropriate location of seismic source(s). Multi-seismic sources can improve the image. The result may apply to earthquake forecasting in the suducting plate, forecasting of volcanic eruption and oil and gas reservoir EOR.

  8. A 4D Synchrotron X-Ray-Tomography Study of the Formation of Hydrocarbon- Migration Pathways in Heated Organic-Rich Shale

    SciTech Connect

    Hamed Panahi; Paul Meakin; Francois Renard; Maya Kobchenko; Julien Scheibert; Adriano Mazzini; Bjorn Jamtveit; Anders Malthe-Sorenssen; Dag Kristian Dysthe

    2013-04-01

    with formation of microcracks. The main technical difficulty was numerical extraction of microcracks that have apertures in the 5- to 30-um range (with 5 um being the resolution limit) from a large 3D volume of X-ray attenuation data. The main goal of the work presented here is to develop a methodology to process these 3D data and image the cracks. This methodology is based on several levels of spatial filtering and automatic recognition of connected domains. Supportive petrographic and thermogravimetric data were an important complement to this study. An investigation of the strain field using 2D image correlation analyses was also performed. As one application of the 4D (space + time) microtomography and the developed workflow, we show that fluid generation was accompanied by crack formation. Under different conditions, in the subsurface, this might provide paths for primary migration.

  9. On the Statistical Reliability of Seismic Waveform Tomography - a Crosshole Case Study in Anisotropic Crystalline Rocks

    NASA Astrophysics Data System (ADS)

    Greig, D. W.; Pratt, R. G.

    2013-12-01

    We study a crosshole seismic survey from the Voisey's Bay area in Newfoundland using traveltime tomography and waveform tomography, and we develop images of the seismic velocity of the subsurface. Our waveform tomography method incorporates one-dimensional elliptical anisotropy; anisotropic traveltime tomography is used to generate a starting model for both the velocity and the anisotropy according to the technique developed by Pratt and Chapman (1992). This approach allows us to largely satisfy the half-cycle criterion for waveform tomography, though there is some evidence of cycle-skipping at large offsets. The waveform data are separated into five full-coverage subsets, creating five complete, independent data sets for the same region. Waveform tomography is then performed using frequencies from 300 to 1400 Hz on each of the five data sets, resulting in five independent velocity models of the subsurface. The five models are averaged to generate a single representative model of the subsurface and an image of the population standard deviation is calculated to provide a measure of the variance of the five models. The population standard deviation between the models is in the range of about 100 m/s over most of the target zone. Areas of higher variance tend to suggest artifacts of the inversion. Areas of lower variance are regions in which we have greater confidence in the result. In this way the averaging of the five independent realizations acted as a filter, picking out those velocity features that are present in all models and smoothing out those found in only one or two. The introduction of the standard deviation as a tool to evaluate the results of waveform tomography provides valuable information on the reliability of the waveform tomography approach. Survey design for redundant full coverage will prove useful in future surveys.

  10. Upper Mantle Seismic Structure for NE Tibet From Multiscale Tomography Method

    NASA Astrophysics Data System (ADS)

    Guo, B.; Liu, Q.; Chen, J.

    2013-12-01

    In the real seismic experiments, the spatial sampling of rays inside the studied volume is basically nonuniform because of the unequispaced distribution of the seismic stations as well as the earthquake events. The conventional seismic tomography schemes adopt fixed size of cells or grid spacing while the actual resolution varies. As a result, either the phantom velocity anomalies may be aroused in regions that are poorly illuminated by the seismic rays, or the best detailed velocity model is unable to be extracted from those with fine ray coverage. We present an adaptive wavelet parameterization solution for three-dimensional traveltime seismic tomography problem and apply it to the study of the tectonics in the Northeast Tibet region. Different from the traditional parameterization schemes, we discretize the velocity model in terms of the Haar wavelets and the parameters are adjusted adaptively based on both the density and the azimuthal coverage of rays. Therefore, the fine grids are used in regions with the good data coverage, whereas the poorly resolved areas are represented by the coarse grids. Using the traveltime data recorded by the portable seismic array and the regional seismic network in the northeastern Tibet area, we investigate the P wave velocity structure of the crust and upper mantle. Our results show that the structure of the crust and upper mantle in the northeastern Tibet region manifests a strong laterally inhomogeneity, which appears not only in the adjacent areas between the different blocks, but also within each block. The velocity of the crust and upper mantle is highly different between the northeastern Tibet and the Ordos plateau. Of these two regions, the former possesses a low-velocity feature while the latter is referred to a high-velocity pattern. Between the northeastern Tibet and the Ordos plateau, there is a transition zone of about 200km wide, which is associated with an extremely complex velocity structure in crust and upper

  11. Imaging the Carboneras fault zone at depth: preliminary results from reflection/refraction seismic tomography

    NASA Astrophysics Data System (ADS)

    Nippress, S.; Rietbrock, A.; Faulkner, D. R.; Rutter, E.; Haberland, C. A.; Teixido, T.

    2009-12-01

    Understanding and characterizing fault zone structure at depth is vital to predicting the slip behaviour of faults in the brittle crust. We aim to combine detailed field mapping and laboratory velocity/physical property determinations with seismic measurements on the Carboneras fault zone (S.E. Spain) to improve our knowledge of how fault zone structure affects seismic signals. The CFZ is a large offset (10s of km) strike-slip fault that constitutes part of the diffuse plate boundary between Africa and Iberia. It has been largely passively exhumed from ca. 4 to 6 km depth. The friable fault zone components are excellently preserved in the region’s semi-arid climate, and consist of multiple strands of phyllosilicate-rich fault gouge ranging from 1 to 20 m in thickness. In May 2009 we conducted 4 high-resolution seismic reflection and refraction/first break tomography lines. Two of these lines (~1km long) crossed the entire fault zone while the remaining lines (~150 and ~300m long) concentrated on individual fault strands and associated damage zones. For each of the lines a 2 m-geophone spacing was used with a combination of accelerated drop weight, sledgehammer and 100g explosives as seismic sources. Initial seismic reflection processing has been carried out on each of the 4 lines. First breaks have been picked for each of the shot gathers and inputted into a 2D traveltime inversion and amplitude-modeling package (Zelt & Smith, 1992) to obtain first break tomography images. During this field campaign we also carried out numerous fault zone guided wave experiments on two of the dense seismic lines. At the larger offsets (~600-700m) we observe low frequency guided waves. These experiments will capture the various length scales involved in a mature fault zone and will enable the surface mapping and petrophysical studies to be linked to the seismic field observations.

  12. Full waveform seismic tomography of the Vrancea region using the adjoint method

    NASA Astrophysics Data System (ADS)

    Baron, J.; Danecek, P.; Morelli, A.; Tondi, R.

    2013-12-01

    The Vrancea region, at the south-eastern bend of the Carpathian Mountains, Romania, represents one of the most particular seismically active zones of Europe. Beside some shallow crustal seismicity spread across the whole Romanian territory, Vrancea is the place of intense seismicity with the presence of a cluster of intermediate-depth foci placed in a narrow NE-SW trending volume below 60km depth. The occurrence of strong earthquakes in the past has raised questions about the nature of this deep intra-continental seismicity and increased the interest in the geodynamics of this earthquake-prone area. The central issue for seismic risk assessment is whether this singular seismogenic volume is geodynamically coupled to the crust. Large-scale mantle seismic tomographic studies have revealed the presence of a narrow, almost vertical, high-velocity body in the upper mantle. So far, two main different geodynamical models have been proposed for the region: (1) A subduction-related process, and (2) more recently a delamination process. High-resolution seismic tomography could help to reveal more details in the subcrustal structural models and to constrain the properties of the Vrancea Seismogenic Zone. Previous efforts have relied on classical ray-theoretical travel-time tomography to model data from local permanent or temporary instruments. Recent developments in computational seismology as well as the availability of parallel computing now allow modelling of the entire seismogram in a consistent way. This enables us to potentially retrieve more information out of seismic waveforms and to keep the modelling more uniform. In this work we want to assess the information gain that can be obtained using an adjoint-based inversion scheme combined with a full 3D waveform modelling, with respect to ray theory based tomography for the Vrancea region. The study is done with a dataset of local earthquakes from the broadband data of the CALIXTO 1999 experiment. This dataset is

  13. Seismic velocity structure of the Puget Sound Region from three dimensional nonlinear tomography

    NASA Astrophysics Data System (ADS)

    Symons, Neill Philip

    In this dissertation I describe a non-linear seismic tomography experiment in the Greater Puget Sound Region (GPSR). The GPSR contains portions of three distinct geologic provinces: (1) the Coast Range Province---composed of the Olympic Mountains and the Siletzia terrane lying along the Washington Coast (the western edge of the GPSR). (2) The Puget Lowland---an approximately linear depression that stretches from Oregon's Willamette Valley to the Strait of Georgia in Canada. The Puget Lowland lies in the middle of the GPSR. (3) The Cascade Range---lying along the eastern edge of the GPSR and characterized by extensive episodic volcanism since the later Mesozoic. The result of this study is a three-dimensional model of the P-wave velocity within the GPSR. Interpretation of this model provides information about the subsurface geology in the region. The method used to perform the tomography has been developed as part of this research. The method uses a finite-difference algorithm to calculate seismic travel-times to every point in the region using the full 3-d velocity model. The method is capable of using three different types of data: (1) earthquakes with unknown hypocenters. The earthquake hypocenters are found as part of the model during solution of the tomography problem. (2) Explosions or other seismic events with known locations. (3) External data constraining the seismic velocity at known locations within the model. There is a good correlation between the velocity model derived in this experiment and several known geologic structures in the GPSR, including: the core of the Olympic Mountains; high seismic velocity where the basalt that makes up the Siletzia terrane outcrops; and low-velocity regions at basins under the cities of Seattle, Tacoma, Everett, and Chehalis. The data provides sufficient resolution to delineate the geometry of the contacts between these units within a large portion of the GPSR.

  14. Geodynamically Consistent Interpretation of Seismic Tomography for Thermal and Thermochemical Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Samuel, H.; Bercovici, D.

    2006-05-01

    Recent theoretical developments as well as increased data quality and coverage have allowed seismic tomographic imaging to better resolve narrower structures at both shallow and deep mantle depths. However, despite these improvements, the interpretation of tomographic images remains problematic mainly because of: (1) the trade off between temperature and composition and their different influence on mantle flow; (2) the difficulty in determining the extent and continuity of structures revealed by seismic tomography. We present two geodynamic studies on mantle plumes which illustrate the need to consider both geodynamic and mineral physics for a consistent interpretation of tomographic images in terms of temperature composition and flow. The first study aims to investigate the coupled effect of pressure and composition on thermochemical plumes. Using both high resolution 2D numerical modeling and simple analytical theory we show that the coupled effect of composition and pressure have a first order impact on the dynamics of mantle thermochemical plumes in the lower mantle: (1) For low Si enrichment of the plume relative to a reference pyrolitic mantle, an oscillatory behavior of the plume head is observed; (2) For Si-enriched plume compositions, the chemical density excess of the plume increases with height, leading to stagnation of large plume heads at various depths in the lower mantle. As a consequence, these thermochemical plumes may display broad (~ 1200 km wide and more) negative seismic velocity anomalies at various lower mantle depths, which may not necessarily be associated with upwelling currents. The second study focuses on the identification of thermal mantle plumes by seismic tomography beneath the Hawaiian hot spot: we performed a set of 3D numerical experiments in a spherical shell to model a rising plume beneath a moving plate. The thermal structure obtained is converted into P and S wave seismic velocities using mineral physics considerations. We

  15. Frequency-dependent traveltime tomography for near-surface seismic refraction data

    NASA Astrophysics Data System (ADS)

    Zelt, Colin A.; Chen, Jianxiong

    2016-07-01

    Traveltime tomography is the main method by which the Earth's seismic velocity is determined on all scales, from the near-surface (< 100 m) to the core. Usually traveltime tomography uses ray theory, an infinite-frequency approximation of wave propagation. A theory developed in global seismology to account for the finite-frequency nature of seismic data, known as finite-frequency traveltime tomography (FFTT), can theoretically provide a more accurate estimation of velocity. But the FFTT theory is generally not applicable to near-surface data because there is no reference velocity model known in advance that is capable of yielding synthetic waveforms that are close enough to the recorded seismograms to yield a reliable delay time. Also, there is usually no reference model for which the unknown velocity model represents a small (linear) perturbation from the reference model. This paper presents a frequency dependent form of nonlinear traveltime tomography specifically designed for near-surface seismic data in which a starting model, iterative approach with recalculated travel paths at each iteration, and the calculation of a frequency-dependent total traveltime, as opposed to a delay time, are used. Frequency-dependent traveltime tomography (FDTT) involves two modifications to conventional traveltime tomography: (1) the calculation of frequency-dependent traveltimes using wavelength-dependent velocity smoothing (WDVS), and (2) the corresponding sensitivity kernels that arise from using WDVS. Results show that the former modification is essential to achieve significant benefits from FDTT, whereas the latter is optional in that similar results can be achieved using infinite-frequency kernels. The long seismic wavelengths relative to the total path lengths and the size of subsurface heterogeneities of typical near-surface data means the improvements over ray theory tomography are significant. The benefits of FDTT are demonstrated using conventional minimum

  16. Analysis of the Magmatic - Hydrothermal volcanic field of Tacora Volcano, northern Chile, using passive seismic tomography

    NASA Astrophysics Data System (ADS)

    Pavez Orrego, Claudia; Comte, Diana; Gutierrez, Francisco; Gaytan, Diego

    2016-04-01

    The results of a passive seismic tomography developed in the Tacora Volcano, northern Chile, are presented. In this area, the main thermal manifestations are fumarolic fields mainly distributed in the western flank of the volcano. Around the volcanic area were installed 17 short period seismic stations, between August and December, 2014. Using the P and S wave arrival times of the seismicity record, a 3D velocity model was determined through a passive seismic tomography. For a better visualization of low and high velocity anomalies, the Leapfrog Viewer Software has been used. The areas of high Vp /Vs values, located directly under the volcanic chain, are interpreted as fluid-saturated areas, corresponding to the recharge zone of the hydrothermal system. Meanwhile, low Vp /Vs values represent the location of a magmatic reservoir and circulation networks of magmatic-hydrothermal fluids. The final model it was contrasted with available geochemical information showing a match between the low Vp/Vs areas (magma reservoirs / hydrothermal fluids), fumarolic fields and surface hydrothermal alteration. Finally, we present a cluster analysis using the percentage variation of %dVp, with which we have found a method for the identification of clay level areas related with the intermediate values of Vp/Vs (1.70 - 1.75) and the degassification zones.

  17. Three-Dimensional Seismic Tomography Beneath Tangshan, China

    NASA Astrophysics Data System (ADS)

    Chang, J. C.; Keranen, K. M.; Keller, G.; Qu, G.; Harder, S. H.

    2010-12-01

    The 1976 earthquake in Tangshan, China ranks as the deadliest earthquake in modern times. Though the exact number of casualties remains disputed, it is widely accepted that at least a quarter of a million people died. The high casualty level is surprising since the earthquake was not unusually large (Mw 7.5). Amplification of ground motion by thick sediment fill in the basin underlying the city is a likely cause for the extensive destruction. However, the extent of the unconsolidated material and the broader subsurface geology beneath Tangshan and surrounding areas needs to be better-constrained to properly model predicted ground motion and mitigate the hazards of future earthquakes. From a broader perspective, the Tangshan area is at the northern edge of the Bohai Bay basin province that has experienced both Cenozoic extension and related strike-slip tectonism. In January 2010, our group conducted a three-dimensional seismic investigation centered on the city of Tangshan. In an area of approximately 40 km x 60 km, we deployed 500 REFTEK 125A (“Texan”) recorders at 500 m spacing. A number of different sources, 20 altogether, were recorded during the two-day listening window, which include our large shots, smaller explosive shots from a co-spatial reflection survey, blasts from nearby quarries, and a small (M<1) earthquake. Our preliminary analyses suggest that the sediment fill is, on average, less than 1 km thick. Sediment fill is thinner to the north, as evidenced by outcropping bedrock, and thickens to the south. Sediment seismic velocity is about 1.8 km/s. Upper crustal velocities are 5.2 to 6.6 km/s, and increase to 7.0 km/s at mid-crustal depths.

  18. Seismic Structure of Villarrica Volcano obtained through Local Tomography

    NASA Astrophysics Data System (ADS)

    Mora-Stock, Cindy; Thorwart, Martin; Rabbel, Wolfgang

    2016-04-01

    We present a first model of the inner structure of the Villarrica volcano (Southern Chile) derived from P-wave arrival time inversion from local volcano tectonic (VT) events. A total set of 75 DSS-Cube stations was installed at the volcano surroundings between March 1st and 14th, 2012, with 50 of them at the crater, flanks and around the volcano. Volcano tectonic earthquakes located inside the network describe a NS-trending structure between 2 and 7 km below sea level at a transition zone between low and high P-wave velocity zones. The location and trend of the volume is consistent with a branch of the Liquiñe - Ofqui Fault Zone, a long lived arc-parallel 1000 km long strike-slip fault at the Chilean subduction zone. Values for P-wave velocity (Vp) averaged 4.5 km/s, and Vp/Vs ratios gave values of 1.6 to 1.7. The maximum variation of Vp is of the order of ±20%. Checkerboard test and Bootstrap method were applied. Bootstrap method shows that the standard deviation of the tomographic solutions is of the order of ±9%. Resolution given by Checkerboard test is of the order of 2-3 km. We observed three low velocity zones (LVZs) located between 1 and 5 km depth that can be associated with magma and/or other fluids. One main LVZ at 1-2 km towards NNW from the locus of seismicity; and two conduit-like LVZ s reaching from the locus of seismicity towards the surface features of the Los Nevados and Challupén pyroclastic flows (ENE and S of the crater, respectively). These two LVZs are thought to be remnant conduits of these previous eruptions. High velocity zones are observed to the east and below the crater, and can be interpreted as consolidated crustal rocks and volcanic products from previously collapsed caldera.

  19. Seismic tomography and dynamics of geothermal and natural hydrothermal systems in the south of Bandung, Indonesia

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Sule, Rachmat; Diningrat, Wahyuddin; Syahbana, Devy; Schuck, Nicole; Akbar, Fanini; Kusnadi, Yosep; Hendryana, Andri; Nugraha, Andri; Ryannugroho, Riskiray; Jaya, Makki; Erbas, Kemal; Bruhn, David; Pratomo, Bambang

    2015-04-01

    The structure and the dynamics of geothermal reservoirs and hydrothermal systems allows us to better assess geothermal resources in the south of Bandung. A large variety of intense surface manifestations like geysers, hot-steaming grounds, hot water pools, and active volcanoes suggest an intimate coupling between volcanic, tectonic and hydrothermal processes in this area. We deployed a geophysical network around geothermal areas starting with a network of 30 seismic stations including high-dynamic broadband Güralp and Trillium sensors (0.008 - 100 Hz) and 4 short-period (1 Hz) sensors from October 2012 to December 2013. We extended the network in June 2013 with 16 short-period seismometers. Finally, we deployed a geodetic network including a continuously recording gravity meter, a GPS station and tilt-meters. We describe the set-up of the seismic and geodetic networks and we discuss observations and results. The earthquakes locations were estimated using a non-linear algorithm, and revealed at least 3 seismic clusters. We perform joint inversion of hypo-center and velocity tomography and we look at seismic focal mechanisms. We develop seismic ambient noise tomography. We discuss the resulting seismic pattern within the area and relate the structure to the distribution of hydrothermal systems. We aim at searching possible structural and dynamical links between different hydrothermal systems. In addition, we discuss possible dynamical implications of this complex volcanic systems from temporal variations of inferred parameters. The integration of those results allows us achieving a better understanding of the structures and the dynamics of those geothermal reservoirs. This approach contributes to the sustainable and optimal exploitation of the geothermal resource in Indonesia.

  20. Noise-based body-wave seismic tomography in an active underground mine.

    NASA Astrophysics Data System (ADS)

    Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.

    2014-12-01

    Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from

  1. Seismic Surface-Wave Tomography of Waste Sites - Final Report

    SciTech Connect

    Long, Timothy L.

    2000-09-14

    The objective of this study was to develop analysis programs for surface-wave group-velocity tomography, and apply these to three test areas. We succeeded by obtaining data covering two square areas that were 30 meters on a side, and a third area that was 16 meters on a side, in addition to a collaborative effort wherein we processed data from the Oak Ridge National Laboratory site. At all sites, usable group velocities were obtained for frequencies from 16 to 50 Hz using a sledgehammer source. The resulting tomographic images and velocity anomalies were sufficient to delineate suspected burial trenches (one 4-meters deep) and anomalous velocity structure related to rocks and disturbed soil. The success was not uniform because in portions of one area the inversion for shear-wave structure became unstable. More research is needed to establish a more robust inversion technique.

  2. Mantle Plume Dynamics Constrained by Seismic Tomography and Geodynamics

    NASA Astrophysics Data System (ADS)

    Glisovic, P.; Forte, A. M.

    2012-12-01

    We construct a time-dependent, compressible mantle convection model in three-dimensional spherical geometry that is consistent with tomography-based instantaneous flow dynamics, using an updated and revised pseudo-spectral numerical method [Glisovic et al., Geophys. J. Int. 2012]. We explored the impact of two end-member surface boundary conditions, for a rigid and plate-like surface, along with geodynamically-inferred radial viscosity profiles. In each case we find that deep-mantle hot upwellings are durable and stable features in the mantle-wide convective circulation. These deeply-rooted mantle plumes show remarkable longevity over very long geological time spans (several hundred million years), mainly owing to the high viscosity in the lower mantle. Our very-long time convection simulations suggest that the deep-mantle plumes beneath the following hotspots: Pitcairn, Easter, Galapagos, Crozet, Kerguelen, Caroline and Cape Verde, are most reliably resolved in the present-day tomographic images.

  3. Seismic tomography reveals magma chamber location beneath Uturuncu volcano (Bolivia)

    NASA Astrophysics Data System (ADS)

    Kukarina, Ekaterina; West, Michael; Koulakov, Ivan

    2014-05-01

    Uturuncu volcano belongs to the Altiplano-Puna Volcanic Complex in the central Andes, the product of an ignimbrite ''flare-up''. The region has been the site of large-scale silicic magmatism since 10 Ma, producing 10 major eruptive calderas and edifices, some of which are multiple-eruption resurgent complexes as large as the Yellowstone or Long Valley caldera. Satellite measurements show that the hill has been rising more than half an inch a year for almost 20 years, suggesting that the Uturuncu volcano, which has erupted last time more than 300,000 years ago, is steadily inflating, which makes it fertile ground for study. In 2009 an international multidisciplinary team formed a project called PLUTONS to study Uturuncu. Under this project a 100 km wide seismic network was set around the volcano by seismologists from University of Alaska Fairbanks. Local seismicity is well distributed and provides constraints on the shallow crust. Ray paths from earthquakes in the subducting slab complement this with steep ray paths that sample the deeper crust. Together the shallow and deep earthquakes provide strong 3D coverage of Uturuncu and the surrounding region. To study the deformation source beneath the volcano we performed simultaneous tomographic inversion for the Vp and Vs anomalies and source locations, using the non-linear passive source tomographic code, LOTOS. We estimated both P and S wave velocity structures beneath the entire Uturuncu volcano by using arrival times of P and S waves from more than 600 events registered by 33 stations. To show the reliability of the results, we performed a number of different tests, including checkerboard synthetic tests and tests with odd/even data. Obtained Vp/Vs ratio distribution shows increased values beneath the south Uturuncu, at a depth of about 15 km. We suggest the high ratio anomaly is caused by partial melt, presented in expanding magma chamber, responsible for the volcano inflation. The resulting Vp, Vs and the ratio

  4. Java Tomography System (JaTS), a Seismic Tomography Software Using Fresnel Volumes, a Fast Marching Eikonal Solver and a Probabilistic Reconstruction Method: Conclusive Synthetic Test Cases

    NASA Astrophysics Data System (ADS)

    Sage, Sandrine; Grandjean, Gilles; Verly, Jacques

    Problems related to landscape management, natural hazards and civil engineering involve subsurface structures that can be delineated by geophysical imaging. Seismic tomography can accurately characterize a medium according to its velocity variations. Traditional seismic travel time tomography based on ray-tracing methods assumes that the waves frequency is infinite. Therefore, only the medium located along the ray path has an impact on the wave propagation. In subsurface tomography, the infinite frequency assumption does not hold, as targets have about the same size as the wavelength. The seismic waves propagation is affected not only by the medium along the shortest travel time path but also by the medium located in its vicinity. In this study, Fresnel volumes are used to determine the medium affecting the wave propagation given the seismic waves frequency. The choice of the travel time computation and reconstruction methods determines the overall efficiency and soundness of the tomography process. In this research, a second order Fast Marching eikonal solver is used for computing travel times. The Fast Marching Method is an original approach that propagates a monotonously expanding wave front in a medium. It is fast, reliable and easy to implement in both 2D and 3D. An innovative probabilistic approach enables the iterative reconstruction process based upon Fresnel volumes. This study compares the performances of JaTS, our java Fresnel volume tomography software to those of Sardine, a ray-tracing tomography software, over an unfavourable synthetic case.

  5. Plume and lithologic profiling with surface resistivity and seismic tomography.

    PubMed

    Watson, David B; Doll, William E; Gamey, T Jeffrey; Sheehan, Jacob R; Jardine, Philip M

    2005-01-01

    Improved surface-based geophysical technologies that are commercially available provide a new level of detail that can be used to guide ground water remediation. Surface-based multielectrode resistivity methods and tomographic seismic refraction techniques were used to image to a depth of approximately 30 m below the surface at the Natural and Accelerated Bioremediation Research Field Research Center. The U.S. Department of Energy (DOE) established the research center on the DOE Oak Ridge Reservation in Oak Ridge, Tennessee, to conduct in situ field-scale studies on bioremediation of metals and radionuclides. Bioremediation studies are being conducted on the saprolite, shale bedrock, and ground water at the site that have been contaminated with nitrate, uranium, technetium, tetrachloroethylene, and other contaminants (U.S. DOE 1997). Geophysical methods were effective in imaging the high-ionic strength plume and in defining the transition zone between saprolite and bedrock zones that appears to have a significant influence on contaminant transport. The geophysical data were used to help select the location and depth of investigation for field research plots. Drilling, borehole geophysics, and ground water sampling were used to verify the surface geophysical studies. PMID:15819938

  6. High resolution seismic attenuation tomography at Medicine Lake Volcano, California

    SciTech Connect

    Zucca, J.J.; Kasameyer, P.W.

    1987-07-10

    Medicine Lake Volcano, a broad shield volcano about 50km east of Mount Shasta in northern California, produced rhylotic eruptions as recently as 400 years ago. Because of this recent activity it is of considerable interest to producers of geothermal energy. In a joint project sponsored by the Geothermal Research Program of the USGS and the Division of Geothermal and Hydropower Division of the US-DOE, the USGS and LLNL conducted an active seismic experiment designed to explore the area beneath and around the caldera. The experiment of eight explosions detonated in a 50 km radius circle around the volcano recorded on a 11 x 15 km grid of 140 seismographs. The travel time data from the experiment have been inverted for structure and are presented elsewhere in this volume. In this paper we present the results of an inversion for 1/Q structure using t* data in a modified Aki inversion scheme. Although the data are noisy, we find that in general attenuative zones correlate with low velocity zones. In particular, we observe a high 1/Q zone roughly in the center of the caldera at 4 km depth in between two large recent dacite flows. This zone could represent the still molten or partially molten source of the flows.

  7. Plume and lithologic profiling with surface resistivity and seismic tomography

    SciTech Connect

    Watson, David B; Doll, William E.; Gamey, Jeff; Sheehan, Jacob R; Jardine, Philip M

    2005-03-01

    Improved surface-based geophysical technologies that are commercially available provide a new level of detail that can be used to guide ground water remediation. Surface-based multielectrode resistivity methods and tomographic seismic refraction techniques were used to image to a depth of approximately 30 m below the surface at the Natural and Accelerated Bioremediation Research Field Research Center. The U.S. Department of Energy (DOE) established the research center on the DOE Oak Ridge Reservation in Oak Ridge, Tennessee, to conduct in situ field-scale studies on bioremediation of metals and radionuclides. Bioremediation studies are being conducted on the saprolite, shale bedrock, and ground water at the site that have been contaminated with nitrate, uranium, technetium, tetrachloroethylene, and other contaminants (U.S. DOE 1997). Geophysical methods were effective in imaging the high-ionic strength plume and in defining the transition zone between saprolite and bedrock zones that appears to have a significant influence on contaminant transport. The geophysical data were used to help select the location and depth of investigation for field research plots. Drilling, borehole geophysics, and ground water sampling were used to verify the surface geophysical studies.

  8. Using nonlinear kernels in seismic tomography: go beyond gradient methods

    NASA Astrophysics Data System (ADS)

    Wu, R.

    2013-05-01

    In quasi-linear inversion, a nonlinear problem is typically solved iteratively and at each step the nonlinear problem is linearized through the use of a linear functional derivative, the Fréchet derivative. Higher order terms generally are assumed to be insignificant and neglected. The linearization approach leads to the popular gradient method of seismic inversion. However, for the real Earth, the wave equation (and the real wave propagation) is strongly nonlinear with respect to the medium parameter perturbations. Therefore, the quasi-linear inversion may have a serious convergence problem for strong perturbations. In this presentation I will compare the convergence properties of the Taylor-Fréchet series and the renormalized Fréchet series, the De Wolf approximation, and illustrate the improved convergence property with numerical examples. I'll also discuss the application of nonlinear partial derivative to least-square waveform inversion. References: Bonnans, J., Gilbert, J., Lemarechal, C. and Sagastizabal, C., 2006, Numirical optmization, Springer. Wu, R.S. and Y. Zheng, 2012. Nonlinear Fréchet derivative and its De Wolf approximation, Expanded Abstracts of Society of Exploration Gephysicists, SI 8.1.

  9. P-Wave Velocity Structure beneath Eastern Eurasia from Finite Frequency Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Yang, T.; Shen, Y.; Yang, X.

    2006-05-01

    Despite the recent extensive seismic studies, the detailed lithospheric structure and deep mantle dynamic processes beneath eastern Eurasia remain poorly constrained. In this study, we applied the Finite Frequency Seismic Tomography (FFST) method, which utilizes the 3D Fréchet sensitivity kernels of the travel times of finite frequency seismic waves to account for wavefront healing and off-ray scattering, to eastern Eurasia. Taking advantage of the broadband feature of seismic records, we measured P wave relative delays times by waveform cross-correlation in three frequency bands (0.03-0.1Hz, 0.1-0.5 Hz and 0.5 to 2.0 Hz), which were inverted jointly to constrain velocity heterogeneities with different distances from the central geometric rays. The effect of strong variations in crustal structure beneath this region on travel time data was removed by conducting a frequency dependent crustal correction. A comprehensive dataset, including waveforms from the publicly accessible sources and other seismic networks in the region, were collected for this study. Our preliminary results are consistent with the velocity models obtained in previous tomographic studies. A more complete dataset will further improve the resolution of the velocity structure beneath eastern Eurasia.

  10. Seismic surface wave tomography of waste sites. 1997 annual progress report

    SciTech Connect

    Long, T.L.

    1997-10-14

    'The objective of the Seismic Surface Wave Tomography of Waste Sites is to develop a robust technique for field acquisition and analysis of surface wave data for the interpretation of shallow structures, such as those associated with the burial of wastes. The analysis technique is to be developed and tested on an existing set of seismic data covering the K-901 burial site at the East Tennessee Technology Park. Also, a portable prototype for a field acquisition system will be designed and developed to obtain additional data for analysis and testing of the technique. The K-901 data have been examined and a preliminary Single Valued Decomposition inversion has been obtained. The preliminary data indicates a need for additional seismic data to ground-truth the inversion. The originally proposed gravity data acquisition has been dropped because sufficient gravity data are now available for a preliminary analysis and because the seismic data are considered more critical to the interpretation. The proposed prototype for the portable acquisition and analysis system was developed during the first year and will be used in part of the acquisition of additional seismic data.'

  11. Deep critical zone weathering at the southern Sierra Nevada Critical Zone Observatory imaged by seismic waveform tomography

    NASA Astrophysics Data System (ADS)

    Hayes, J. L.; Holbrook, W.; Riebe, C. S.

    2012-12-01

    We present seismic velocity profiles that constrain the extent of weathering and frequency of velocity heterogeneities at depths less than 40 m in the southern Sierra Nevada Critical Zone Observatory (SSCZO) from waveform tomography modeling of a seismic refraction experiment. Near-surface variations in seismic velocity reflect differences in alteration of parent material by chemical, hydrological and biological processes. Previous traveltime tomography models from these data suggest that the depth to bedrock in the SSCZO is typically ~25 m; thus the potential for subsurface water storage in regolith may be a larger component of water storage than previously thought. Traveltime tomography is unable to resolve heterogeneities with horizontal wavelengths less than 10 m, such as those observed along a surveyed road cut beneath our seismic profile. For a higher resolution seismic image, we apply waveform tomography, which is more robust than traveltime tomography at approximating the wave equation and thus should provide images of subsurface heterogeneities such as corestones and fracture networks. This technique uses a weak scattering approximation to account for the amplitude and phase of the recorded waveforms, rather than just the traveltimes. A 48-channel vertical geophone array and hammer source was deployed over a 7 m high road cut with receiver and shot spacing of 2 m and 4 m respectively. The road cut displays lateral variation in weathering from a friable saprolite to coherent granodiorite which are compared to velocity variations modeled using waveform tomography.

  12. Application of seismic velocity tomography in underground coal mines: A case study of Yima mining area, Henan, China

    NASA Astrophysics Data System (ADS)

    Cai, Wu; Dou, Linming; Cao, Anye; Gong, Siyuan; Li, Zhenlei

    2014-10-01

    A better understanding of geological structures, stress regimes, and rock burst risks around longwall mining panels can allow for higher extraction efficiency with reduced safety concerns. In this paper, the stress change of rock mass was first examined by using ultrasonic technique into laboratory-scale rock samples. Subsequently, the active and passive seismic velocity tomograms were simultaneously applied into two study cases with field-scale. Similar characteristics can be found between the active and passive tomography results. More specifically, in the first case, a geological discontinuity was clearly indicated by a linear image in both active and passive seismic tomography results. The results of the second case suggest that seismic tomography can be used to infer stress redistribution, and assess rock burst hazard or locate high-seismicity zones. Ultimately, comparisons have been made between the results of active and passive seismic tomography. Active tomography is found to be better applied in accurately detecting stress distribution and geological structures prior to the extraction of longwall panels, while passive tomography has advantages in continuously monitoring the stress changes and assessing rock burst potential during the mining of longwall panels. This study is expected to increase the safety and efficiency of the underground mining.

  13. Application of tomography seismic for subsurface modeling of Kelud Mountain

    NASA Astrophysics Data System (ADS)

    Destawan, R.; Bernando, A.; Aziz, M.; Palupi, I. R.

    2016-05-01

    Kelud is a Quaternary volcano formed by the collision between the Indo-Australian plate with the Eurasian plate, exactly in the south of Java. This volcano is included in stratovolcanoes type explosive eruption characteristics. In order observation of subsurface conditions, performed imaging tomography. The research used data recordings from the 4 point observation in 2007. The data processing started from the initial velocity modeling, ray tracing calculations using the method of bending and tomographic velocity model Vp, Vs and Vp/Vs using inversion techniques delay time. Based on the research activities carried out, were resulted velocity structure models Vp, Vs, Vp/Vs and the hypocenter distribution of volcanic earthquakes occurring in Kelud. Velocity structures of Vp and Vs with variations of negative values between -60 to 0% and the value of Vp / Vs positive indicating the presence of hot fluid Kelud from top to sea level. While the positive values of Vs velocity structure between 0 to 20%, which dominate the east and south peaks interpreted as the rest of the frozen magma from previous volcanic activity.

  14. Seismic Surface-Wave Tomography of Waste Sites

    SciTech Connect

    Leland Timothy Long

    2002-12-17

    Surface-wave group-velocity tomography is an efficient way to obtain images of the group velocity over a test area. Because Rayleigh-wave group velocity depends on frequency, there are separate images for each frequency. Thus, at each point in these images the group velocities define a dispersion curve, a curve that relates group velocity to frequency. The objective of this study has been to find an accurate and efficient way to find the shear-wave structure from these dispersion curves. The conventional inversion techniques match theoretical and observed dispersion curves to determine the structure. These conventional methods do not always succeed in correctly differentiating the fundamental and higher modes, and for some velocity structures can become unstable. In this research a perturbation technique was developed. The perturbation method allows the pre-computation of a global inversion matrix which improves efficiency in obtaining solutions for the structure. Perturbation methods are stable and mimic the averaging process in wave propagation; hence. leading to more accurate solutions. Finite difference techniques and synthetic trace generation techniques were developed to define the perturbations. A new differential trace technique was developed for slight variations in dispersion. The improvements in analysis speed and the accuracy of the solution could lead to real-time field analysis systems, making it possible to obtain immediate results or to monitor temporal change in structure, such as might develop in using fluids for soil remediation.

  15. Prediction of subsurface fracture in mining zone of Papua using passive seismic tomography based on Fresnel zone

    NASA Astrophysics Data System (ADS)

    Setiadi, Herlan; Nurhandoko, Bagus Endar B.; Wely, Woen; Riyanto, Erwin

    2015-04-01

    Fracture prediction in a block cave of underground mine is very important to monitor the structure of the fracture that can be harmful to the mining activities. Many methods can be used to obtain such information, such as TDR (Time Domain Relectometry) and open hole. Both of them have limitations in range measurement. Passive seismic tomography is one of the subsurface imaging method. It has advantage in terms of measurements, cost, and rich of rock physical information. This passive seismic tomography studies using Fresnel zone to model the wavepath by using frequency parameter. Fresnel zone was developed by Nurhandoko in 2000. The result of this study is tomography of P and S wave velocity which can predict position of fracture. The study also attempted to use sum of the wavefronts to obtain position and time of seismic event occurence. Fresnel zone tomography and the summation wavefront can predict location of geological structure of mine area as well.

  16. Prediction of subsurface fracture in mining zone of Papua using passive seismic tomography based on Fresnel zone

    SciTech Connect

    Setiadi, Herlan; Nurhandoko, Bagus Endar B.; Wely, Woen; Riyanto, Erwin

    2015-04-16

    Fracture prediction in a block cave of underground mine is very important to monitor the structure of the fracture that can be harmful to the mining activities. Many methods can be used to obtain such information, such as TDR (Time Domain Relectometry) and open hole. Both of them have limitations in range measurement. Passive seismic tomography is one of the subsurface imaging method. It has advantage in terms of measurements, cost, and rich of rock physical information. This passive seismic tomography studies using Fresnel zone to model the wavepath by using frequency parameter. Fresnel zone was developed by Nurhandoko in 2000. The result of this study is tomography of P and S wave velocity which can predict position of fracture. The study also attempted to use sum of the wavefronts to obtain position and time of seismic event occurence. Fresnel zone tomography and the summation wavefront can predict location of geological structure of mine area as well.

  17. Seismic amplification within the Seattle Basin, Washington State: Insights from SHIPS seismic tomography experiments

    USGS Publications Warehouse

    Snelson, C.M.; Brocher, T.M.; Miller, K.C.; Pratt, T.L.; Trehu, A.M.

    2007-01-01

    Recent observations indicate that the Seattle sedimentary basin, underlying Seattle and other urban centers in the Puget Lowland, Washington, amplifies long-period (1-5 sec) weak ground motions by factors of 10 or more. We computed east-trending P- and S-wave velocity models across the Seattle basin from Seismic Hazard Investigations of Puget Sound (SHIPS) experiments to better characterize the seismic hazard the basin poses. The 3D tomographic models, which resolve features to a depth of 10 km, for the first time define the P- and S-wave velocity structure of the eastern end of the basin. The basin, which contains sedimentary rocks of Eocene to Holocene, is broadly symmetric in east-west section and reaches a maximum thickness of 6 km along our profile beneath north Seattle. A comparison of our velocity model with coincident amplification curves for weak ground motions produced by the 1999 Chi-Chi earthquake suggests that the distribution of Quaternary deposits and reduced velocity gradients in the upper part of the basement east of Seattle have significance in forecasting variations in seismic-wave amplification across the basin. Specifically, eastward increases in the amplification of 0.2- to 5-Hz energy correlate with locally thicker unconsolidated deposits and a change from Crescent Formation basement to pre-Tertiary Cascadia basement. These models define the extent of the Seattle basin, the Seattle fault, and the geometry of the basement contact, giving insight into the tectonic evolution of the Seattle basin and its influence on ground shaking.

  18. Using seismic tomography to characterize fracture systems induced by hydraulic fracturing

    SciTech Connect

    Fehler, M.; Rutledge, J.

    1995-01-01

    Microearthquakes induced by hydraulic fracturing have been studied by many investigators to characterize fracture systems created by the fracturing process and to better understand the locations of energy resources in the earth`s subsurface. The pattern of the locations often contains a great deal of information about the fracture system stimulated during the hydraulic fracturing. Seismic tomography has found applications in many areas for characterizing the subsurface of the earth. It is well known that fractures in rock influence both the P and S velocities of the rock. The influence of the fractures is a function of the geometry of the fractures, the apertures and number of fractures, and the presence of fluids in the fractures. In addition, the temporal evolution of the created fracture system can be inferred from the temporal changes in seismic velocity and the pattern of microearthquake locations. Seismic tomography has been used to infer the spatial location of a fracture system in a reservoir that was created by hydraulic fracturing.

  19. A highly scalable parallel computation strategy and optimized implementation for Fresnel Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Gao, Yongan; Zhao, Changhai; Li, Chuang; Yan, Haihua; Zhao, Liang

    2013-03-01

    Fresnel Seismic Tomography which uses a huge amount of seismic data is an efficient methodology of researching three-dimensional structure of earth. However, in practical application, it confronts with two key challenges of enormous data volume and huge computation. It is difficult to accomplish computation tasks under normal operating environment and computation strategies. In this paper, a Job-By-Application parallel computation strategy, which uses MPI (Message Passing Interface) and Pthread hybrid programming models based on the cluster, is designed to implement Fresnel seismic tomography, this method can solve the problem of allocating tasks dynamically, improve the load balancing and scalability of the system effectively; and we adopted the cached I/O strategy to accommodate the limited memory resources. Experimental results demonstrated that the program implemented on these strategies could completed the actual job within the idea time, the running of the program was stable, achieved load balancing, showed a good speedup and could adapt to the hardware environment of insufficient memory.

  20. Three-dimensional full-wavefield seismic tomography on field data (Invited)

    NASA Astrophysics Data System (ADS)

    Warner, M.; Umpleby, A.; Stekl, I.; Guasch, L.

    2010-12-01

    In contrast to conventional seismic tomography, where we minimise the mismatch between observed and calculated seismic travel times, in full-wavefield tomography we seek a model that is able to match the entire observed wavefield, wiggle-for-wiggle. Wavefield tomography has a long history, but it is only recently that advances in algorithms and in hardware have made the technique feasible on realistic-sized datasets in three dimensions. With sponsorship from the petroleum industry, we have developed full 3D codes for anisotropic acoustic, and isotropic elastic, wavefield tomography in the time-domain, and for visco-acoustic tomography in the frequency domain. In both domains, we solve the wave equation using finite differences on a regular mesh; we use explicit time-stepping in the time domain, and use an implicit iterative solver in the frequency domain. The codes are parallelised to run on a cluster of multi-core nodes, and they are able to deal with large irregular 3D datasets efficiently. We report here the results of applying these codes to a 3D ocean-bottom seismic dataset acquired over the Tommeliten oil field in the North Sea. The field data are composed of 1920 four-component ocean-bottom receivers, recording about 30,000 air-gun sources over an area of 12 x 9 km. A low-velocity, high-attenuation gas cloud is located at a depth of 1 to 2 km; this gas cloud partially obscures the geology of the underlying oil field. There is significant anisotropy within the section; vertical and horizontal p-wave velocities can differ by more than 15%. Wavefield tomography is successful in imaging the complex velocity structure in 3D within this gas cloud with a lateral resolution of about 25 m. This resolution is much better than that obtained using reflection travel-time tomography or migration velocity analysis. Subsequent pre-stack reverse-time depth migration of the underlying reflection data demonstrates that the recovered velocity structure is real. It is necessary

  1. Preliminary Results of Full Seismic Waveform Tomography for Sea of Marmara Region (NW Turkey)

    NASA Astrophysics Data System (ADS)

    ÇUBUK, Y.; Fichtner, A.; Taymaz, T.

    2014-12-01

    The Marmara and Northwestern Anatolia regions are known to be a transition zone from the strike-slip tectonics to the extensional tectonics. Although, the Sea of Marmara has been subjected to several active and passive seismic investigations, the accurate knowledge on the heterogeneity in the crust and upper mantle beneath the study area still remains enigmatic. On small-scale tomography problems, seismograms strongly reflect the effects of heterogeneities and the scattering properties of the Earth. Thus, the knowledge of high-resolution seismic imaging with an improved 3D radially anisotropic crustal model of the Northwestern Anatolia will enable better localization of earthquakes, identification of faults as well as the improvement of the seismic hazard assessment. For this purpose, 3D non-linear full waveform inversion methodology has been used to obtain an accurate image of the lithosphere and the upper-most mantle structure over an area of 37.5˚-42˚ N and 25˚-32˚ E and down to a depth of 471 km. The earthquake data were principally obtained from the Kandilli Observatory and Earthquake Research Institute (KOERI) and Earthquake Research Center (AFAD-DAD) database. In addition to this, some of the seismic waveform data extracted from the Hellenic Unified Seismic Network (HUSN) stations that are located within our study region were also used in this study. We have selected and simulated the waveforms of earthquakes with magnitudes Mw ≥ 4 occurred in the period of 2007-2014. In total, 3002 three-component regional seismograms from 95 events were used. The initial 3D earth model for the study region has been implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). The synthetic seismograms were computed with forward modeling of seismic wave propagation by using spectral elements method (SEM). The complete waveforms were filtered at 8-100 seconds. The adjoint method is used to compute sensitivity kernels. The differences between

  2. Gravity and Seismic Tomography Joint Inversion: A synthetic study modelling magmatic massive sulphide type bodies

    NASA Astrophysics Data System (ADS)

    Carter-McAuslan, Angela; Lelievre, Peter; Farquharson, Colin

    2013-04-01

    Gravity methods have long been used in mineral exploration. However, gravity methods have difficulty resolving small details. Seismic methods provide high resolving potential for use in mineral exploration. However, complicated hard-rock geology can make seismic data processing and interpretation difficult. By jointly inverting seismic tomography data with gravity data these difficulty may be overcome. We investigated the viability of deterministic minimum-structure style joint inversion of seismic traveltime and gravity data for the delineation of magmatic massive sulphide type geological targets. These tests also assessed the potential of employing borehole gravity. A number of synthetic Earth models were created. These models were built on triangular unstructured meshes, allowing for efficient generation of complicated, realistic geological structures. 2D models were based on conceptualized models of the magmatic massive sulphide body similar to the Eastern Deeps of the Voisey's Bay, Labrador, Canada. Single property and joint inversions were performed with seismic traveltimes and both ground-based and borehole gravity. There is a known relationship between seismic velocity and density for both silicate rocks and sulphide minerals for the models constructed; this lithological relationship was used to design an appropriate coupling strategy in the joint inversions. Joint inversions were able to successfully locate a buried high contrast target with a variety of survey designs. 2D inversions results provided guidance to 3D inversion. Experimentation with noise levels, mesh design, and various inversion parameters has led to a better understanding of how to practically apply joint inversion of traveltimes and gravity data to this and similar exploration problems.

  3. P-Wave Velocity Structure Beneath Eastern Eurasia From Finite Frequency Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Yang, T.; Shen, Y.; Yang, X.

    2005-12-01

    Eastern Eurasia is one of the most tectonically complex regions in the world. While the evolution history of continental lithosphere has been well recognized, the fine structure associated with the complicated deformation in this region is far from clear, and deep mantle processes that accompanied shallower lithosphere deformations are poorly understood. In order to improve the resolution of the velocity structure in the region, we applied the newly-developed Finite Frequency Seismic Tomography (FFST) method, which utilizes the 3D Frechet-Born sensitivity kernels of the travel times of finite frequency seismic waves to account for wavefront healing and off-ray scattering, to eastern Eurasia. In addition to the new technique, we obtained a comprehensive finite-frequency body wave travel time data set from cross-correlation of broadband waveforms. Datasets used in this study include waveforms from the publicly accessible sources (e.g. IRIS, GSN, PASSCAL, and IMS stations) and other seismic networks in the region such as the Japanese Broadband Seismograph Network (F-net), the Japanese International Seismic Network (JISNET), the Taiwan Broadband Seismic Network and China National Digital Seismic Network. Taking advantage of broadband waveforms, we measured relative delays times by waveform cross-correlation in three frequency bands between 0.03 to 2 Hz for P waves. The travel times in the three frequency bands were inverted jointly to take advantage of the `data fusion' made possible by the finite-frequency kernels and separately to understand the resolving power of each data set. Preliminary results are comparable to the velocity models obtained in previous tomographic studies.

  4. Advances in high-performance spectral-element solvers for seismic tomography

    NASA Astrophysics Data System (ADS)

    Peter, D. B.; Rietmann, M.; Komatitsch, D.; Tromp, J.

    2011-12-01

    In seismic tomography, waveform inversions require accurate simulations of seismic wave propagation in complex media. That is, seismic inverse problems benefit from accurate and fast forward solvers. This is the main motivation for further development of solvers based on the spectral-element method (SEM). All our open-source SEM codes have the ability to compute Fréchet derivatives with respect to isotropic and anisotropic model parameters as well as topographic boundary undulations, making use of adjoint methods. These adjoint sensitivity kernels can be used for gradient-based optimization, minimizing, e.g., traveltimes or full waveform misfits. We highlight our most recent efforts in SEM solvers, which mainly focus on two different aspects: flexibility and performance. For local- to regional-scale applications, the widely used SEM code SPECFEM3D has been further extended to simulate acoustic and (an)elastic wave propagation. This facilitates running SEM solvers on fully unstructured meshes, which readily honor topography of complex geological surfaces. By coupling acoustic and elastic wave propagation, this new SEM code can simulate seismic wave propagation for land and marine surveys to produce highly accurate seismograms and sensitivity kernels. Code performance often governs whether seismic inversions become feasible or remain elusive. The current versions of our SEM packages, the local-scale code SPECFEM3D and the global-scale code SPECFEM3D_GLOBE, are tackling this problem by optimizing matrix-vector multiplications, the most common operation in SEM codes. New code developments are porting our SEM codes to graphic processing units (GPUs) to further exploit massively parallel processors. Running simulations on such dedicated GPU clusters will further reduce computation times. This leads to simulations an order of magnitude faster as before, and pushes seismic inversions into a new, higher frequency realm.

  5. The effects of unaccounted-for elastic anisotropy in isotropic seismic tomographies

    NASA Astrophysics Data System (ADS)

    Faccenda, Manuele; Bezada, Max; Toomey, Doug R.

    2016-04-01

    The present-day structure of Earth's interior is commonly determined by means of seismic tomography techniques. Most of the tomographic models, however, assume that the mantle is isotropic, which produces a physical inconsistency in regions where significant mantle anisotropy is sampled by a heterogeneous seismic ray distribution. We investigate the possible effects of unaccounted-for anisotropy in seismic imaging of the upper mantle in a subduction setting by carrying out a synthetic test in three steps: (1) We build an anisotropic velocity model of a subduction zone. The model was built from self-consistent estimates of mantle velocity structure and strain-induced anisotropy that are derived from thermo-mechanical and microstructural modeling. (2) We generate P-wave travel-time delay data for this model using an event distribution that is representative of what is typically recorded by a temporary seismic array. The anisotropic travel times are calculated through the prescribed model using a graph-theory ray tracer. (3) We invert the anisotropic synthetic delays under the assumption of isotropy, as is common practice. The tomographic inversion of the synthetic data recovers the input velocity structure fairly well, but delays caused solely by anisotropy result in very significant additional isotropic velocity anomalies that are artificial. Some of these apparent seismic anomalies are nonetheless attractive targets for (mis)interpretation. For example, one of the most notable apparent seismic anomalies is a low velocity zone in the mantle wedge. Our results suggest that significant artifacts may be common in isotropic velocity models of subduction zones and stress the need for mantle imaging that properly handles anisotropy.

  6. Seismic velocity variation along the Izu-Bonin arc estaimated from traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.

    2014-12-01

    The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.

  7. Singular value decomposition-based reconstruction algorithm for seismic traveltime tomography.

    PubMed

    Song, L P; Zhang, S Y

    1999-01-01

    A reconstruction method is given for seismic transmission traveltime tomography. The method is implemented via the combinations of singular value decomposition, appropriate weighting matrices, and variable regularization parameter. The problem is scaled through the weighting matrices so that the singular spectrum is normalized. Matching the normalized singular values, a regularization parameter varies within the interval [0, 1], and linearly increases with singular value index from a small, initial value rather than a fixed one to eliminate the impacts of smaller singular values' components. The experimental results show that the proposed method is superior to the ordinary singular value decomposition (SVD) methods such as truncated SVD and Tikhonov regularization. PMID:18267533

  8. Deep structure of Llaima Volcano from seismic ambient noise tomography: Preliminary results

    NASA Astrophysics Data System (ADS)

    Franco, L.; Mikesell, T. D.; Rodd, R.; Lees, J. M.; Johnson, J. B.; Ronan, T.

    2015-12-01

    The ambient seismic noise tomography (ANT) method has become an important tool to image crustal structures and magmatic bodies at volcanoes. The frequency band of ambient noise provides complimentary data and added resolution to the deeper volcanic structures when compared to traditional tomography based on local earthquakes. The Llaima Volcano (38° 41.9' S and 71° 43.8' W) is a stratovolcano of basaltic-andesitic composition. Llaima is located in the South Volcanic Zone (ZVS) of the Andes and is listed as one of the most active volcanoes in South America, with a long documented historical record dating back to 1640. Llaima experienced violent eruptions in 1927 and 1957 (Naranjo and Moreno, 1991), and its last eruptive cycle (2008-2010) is considered the most important after the 1957 eruption. Lacking seismic constraints on the deep structure under Llaima, petrologic data have suggested the presence of magmatic bodies (dikes). These bodies likely play an important role in the eruptive dynamics of Llaima (Bouvet de Maisonneuve, C., et al 2012). Analysis of the 2008-2010 seismicity shows a southern zone (approx. 15 km from the Llaima summit) where there were many Very Long Period events occurring prior to the eruptions. This is in agreement with a deformation zone determined by InSAR analysis (Fournier et al, 2010 and Bathke, 2011), but no geologic model based on geophysical imaging has been created yet. Beginning in 2009, staff from the Chilean Geological Survey (SERNAGEOMIN) started to install a permanent seismic network consisting of nine stations. These nine stations have allowed Chilean seismologists to closely monitor the activity at Llaima, but prevented a high-resolution tomographic imaging study. During the summer of 2015, a temporary seismic network consisting of 26 stations was installed around Llaima. In the work presented here, we analyze continuous waveforms recorded between January and April 2015 from a total of 35 broadband stations (permanent and

  9. Imaging the continental lithosphere: Perspectives from global and regional anisotropic seismic tomography

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergei; Schaeffer, Andrew

    2016-04-01

    Azimuthal seismic anisotropy, the dependence of seismic wave speeds on propagation azimuth, is largely due to fabrics within the Earth's crust and mantle, produced by deformation. It thus provides constraints on the distribution and evolution of deformation within the upper mantle. Lateral variations in isotropic-average seismic velocities reflect variations in the temperature of the rocks at depth. Seismic tomography thus also provides a proxy for lateral changes in the temperature and thickness of the lithosphere. It can map the deep boundaries between tectonic blocks with different properties and age of the lithosphere. Our new global, anisotropic, 3D tomographic models of the upper mantle and the crust are constrained by an unprecedentedly large global dataset of broadband waveform fits (over one million seismograms) and provide improved resolution of the lithosphere at the global scale, compared to other available models. The most prominent high-velocity anomalies, seen down to around 200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons. The tomography resolves the deep boundaries of the cratons even where they are not exposed and difficult to map at the surface. Our large waveform dataset, with complementary large global networks and high-density regional array data, also produces improved resolution of azimuthal anisotropy patterns, so that regional-scale variations related to lithospheric deformation and mantle flow can be resolved, in particular in densely sampled regions. The depth of the boundary between the cold, rigid lithosphere (preserving ancient, frozen anisotropic fabric) and the rheologically weak asthenosphere (characterized by fabric developed recently) can be inferred from the depth layering of seismic anisotropy and its comparison to the past and present plate motions. Beneath oceans, the lithosphere-asthenosphere boundary (LAB) is defined clearly by the layering of anisotropy, with a dependence on

  10. Time-resolved seismic tomography detects magma intrusions at Mount Etna.

    PubMed

    Patanè, D; Barberi, G; Cocina, O; De Gori, P; Chiarabba, C

    2006-08-11

    The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002-January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (>/=4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and short- and midterm eruption forecasting of explosive activity. PMID:16902133

  11. SU-E-J-28: Gantry Speed Significantly Affects Image Quality and Imaging Dose for 4D Cone-Beam Computed Tomography On the Varian Edge Platform

    SciTech Connect

    Santoso, A; Song, K; Gardner, S; Chetty, I; Wen, N

    2015-06-15

    Purpose: 4D-CBCT facilitates assessment of tumor motion at treatment position. We investigated the effect of gantry speed on 4D-CBCT image quality and dose using the Varian Edge On-Board Imager (OBI). Methods: A thoracic protocol was designed using a 125 kVp spectrum. Image quality parameters were obtained via 4D acquisition using a Catphan phantom with a gating system. A sinusoidal waveform was executed with a five second period and superior-inferior motion. 4D-CBCT scans were sorted into 4 and 10 phases. Image quality metrics included spatial resolution, contrast-to-noise ratio (CNR), uniformity index (UI), Hounsfield unit (HU) sensitivity, and RMS error (RMSE) of motion amplitude. Dosimetry was accomplished using Gafchromic XR-QA2 films within a CIRS Thorax phantom. This was placed on the gating phantom using the same motion waveform. Results: High contrast resolution decreased linearly from 5.93 to 4.18 lp/cm, 6.54 to 4.18 lp/cm, and 5.19 to 3.91 lp/cm for averaged, 4 phase, and 10 phase 4DCBCT volumes respectively as gantry speed increased from 1.0 to 6.0 degs/sec. CNRs decreased linearly from 4.80 to 1.82 as the gantry speed increased from 1.0 to 6.0 degs/sec, respectively. No significant variations in UIs, HU sensitivities, or RMSEs were observed with variable gantry speed. Ion chamber measurements compared to film yielded small percent differences in plastic water regions (0.1–9.6%), larger percent differences in lung equivalent regions (7.5–34.8%), and significantly larger percent differences in bone equivalent regions (119.1–137.3%). Ion chamber measurements decreased from 17.29 to 2.89 cGy with increasing gantry speed from 1.0 to 6.0 degs/sec. Conclusion: Maintaining technique factors while changing gantry speed changes the number of projections used for reconstruction. Increasing the number of projections by decreasing gantry speed decreases noise, however, dose is increased. The future of 4DCBCT’s clinical utility relies on further

  12. Significantly Improving Regional Seismic Amplitude Tomography at Higher Frequencies by Determining S -Wave Bandwidth

    DOE PAGESBeta

    Fisk, Mark D.; Pasyanos, Michael E.

    2016-05-03

    Characterizing regional seismic signals continues to be a difficult problem due to their variability. Calibration of these signals is very important to many aspects of monitoring underground nuclear explosions, including detecting seismic signals, discriminating explosions from earthquakes, and reliably estimating magnitude and yield. Amplitude tomography, which simultaneously inverts for source, propagation, and site effects, is a leading method of calibrating these signals. A major issue in amplitude tomography is the data quality of the input amplitude measurements. Pre-event and prephase signal-to-noise ratio (SNR) tests are typically used but can frequently include bad signals and exclude good signals. The deficiencies ofmore » SNR criteria, which are demonstrated here, lead to large calibration errors. To ameliorate these issues, we introduce a semi-automated approach to assess the bandwidth of a spectrum where it behaves physically. We determine the maximum frequency (denoted as Fmax) where it deviates from this behavior due to inflections at which noise or spurious signals start to bias the spectra away from the expected decay. We compare two amplitude tomography runs using the SNR and new Fmax criteria and show significant improvements to the stability and accuracy of the tomography output for frequency bands higher than 2 Hz by using our assessments of valid S-wave bandwidth. We compare Q estimates, P/S residuals, and some detailed results to explain the improvements. Lastly, for frequency bands higher than 4 Hz, needed for effective P/S discrimination of explosions from earthquakes, the new bandwidth criteria sufficiently fix the instabilities and errors so that the residuals and calibration terms are useful for application.« less

  13. Crustal Structure of the Gulf of Aden Continental Margins, from Afar to Oman, by Ambient Noise Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Korostelev, F.; Weemstra, C.; Boschi, L.; Leroy, S. D.; Ren, Y.; Stuart, G. W.; Keir, D.; Rolandone, F.; Ahmed, A.; Al Ganad, I.; Khanbari, K. M.; Doubre, C.; Hammond, J. O. S.; Kendall, J. M.

    2014-12-01

    Continental rupture processes under mantle plume influence are still poorly known although extensively studied. The Gulf of Aden presents volcanic margins to the west, where they are influenced by the Afar hotspot, and non volcanic margins east of longitude 46° E. We imaged the crustal structure of the Gulf of Aden continental margins from Afar to Oman to evaluate the role of the Afar plume on the evolution of the passive margin and its extent towards the East. We use Ambient Noise Seismic Tomography to better understand the architecture and processes along the Gulf of Aden. This recent method, developed in the last decade, allows us to study the seismic signal propagating between two seismic stations. Ambient Noise Seismic Tomography is thus free from artifacts related to the distribution of earthquakes. We collected continuous records from about 200 permanent or temporary stations since 1999 to compute Rayleigh phase velocity maps over the Gulf of Aden.

  14. Explore Seismic Velocity Change Associated with the 2010 Kaohsiung Earthquake by Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Ku, Chin-Shang; Wu, Yih-Min; Huang, Bor-Shouh; Huang, Win-Gee; Liu, Chun-Chi

    2016-04-01

    A ML 6.4 earthquake occurred on 4 March 2010 in Kaohsiung, the southern part of Taiwan, this shallow earthquake is the largest one of that area in the past few years. Some damages occurred on buildings and bridges after the earthquake, obvious surface deformation up to few cm was observed and the transportation including road and train traffic was also affected near the source area. Some studies about monitoring the velocity change induced by the big earthquake were carried out recently, most of studies used cross-correlation of the ambient noise-based method and indicated velocity drop was observed immediately after the big earthquake. However, this method is not able to constrain the depth of velocity change, and need to assume a homogeneous seismic velocity change during the earthquake. In this study, we selected 25 broadband seismic stations in the southern Taiwan and time period is from 2009/03 to 2011/03. Then we explored the velocity change associated with the 2010 Kaohsiung earthquake by applying ambient noise tomography (ANT) method. ANT is a way of using interferometry to image subsurface seismic velocity variations by using surface wave dispersions extracted from the ambient noise cross-correlation of seismic station-pairs, then the 2-D group velocity map with different periods could be extracted. Compare to ambient noise-based cross-correlation analysis, we estimated sensitivity kernel of dispersion curves and converted 2-D group velocity map from "with the period" to "with the depth" to have more constraints on the depth of velocity change. By subtracting shear velocity between "before" and "after" the earthquake, we could explore velocity change associated with the earthquake. Our result shows velocity reduction about 5-10% around the focal depth after the 2010 Kaohsiung earthquake and the post-seismic velocity recovery was observed with time period increasing, which may suggest a healing process of damaged rocks.

  15. Mapping brittle fracture zones in three dimensions: high resolution traveltime seismic tomography in a granitic pluton

    NASA Astrophysics Data System (ADS)

    Martí, D.; Carbonell, R.; Tryggvason, A.; Escuder, J.; Pérez-Estaún, A.

    2002-04-01

    Fractured and altered zones within a granitic pluton are mapped in three dimensions by means of high resolution seismic traveltime tomography. The input traveltimes were picked from offset and azimuth variable vertical seismic profiles (OVSP) acquired in three boreholes and from seismic shot gathers of four CDP high resolution seismic reflection profiles recorded on the surface. For the OVSP data a hydrophone streamer placed in the boreholes recorded the acoustic energy generated (a signal with a frequency content between 15 to 150 Hz) by a Vibroseis truck at source points distributed every 30 m in a rectangular grid of 620 m by 150 m. The combination of borehole and surface seismic data resulted in an increase in the ray density of the shallow subsurface. The tomographic algorithm uses a variable model grid, with a finer grid spacing close to the surface were ray density is highest and the velocity variations are strongest. Therefore the resulting velocity models feature more detail at shallow levels. A simple and smooth starting velocity model was derived from P -wave velocity logs. Careful surface geological mapping, and borehole geophysical data, P - and S -wave velocity logs and Poisson's ratio depth functions, provided key constraints for a physically reasonable 3-D interpretation of the tomograms. The low velocity anomalies constrained by the tomographic images were interpreted as unconsolidated rock, fractures and altered zones which correlate with structures mapped at the surface or velocity anomalies identified in the logs. Subsequent resolution analysis revealed that the derived velocity model is well constrained to depths of 60 m.

  16. Seismic Tomography of the Arctic: Continental Cratons, Ancient Orogens, Oceanic Lithosphere and Convecting Mantle Beneath (Invited)

    NASA Astrophysics Data System (ADS)

    Lebedev, S.; Schaeffer, A. J.

    2013-12-01

    Lateral variations in seismic velocities in the upper mantle, mapped by seismic tomography, reflect primarily the variations in the temperature of the rock at depth. Seismic tomography thus reveals lateral changes in the temperature and thickness of the lithosphere; it maps deep boundaries between tectonic blocks with different properties and with different age of the lithosphere. Our new global, shear-wave tomographic model of the upper mantle and the crust is constrained by an unprecedentedly large number of broadband waveform fits (nearly one million seismograms, with both surface and S waves included) and provides improved resolution of the lithosphere across the whole of the Arctic region, compared to other available models. The most prominent high-velocity anomalies, seen down to 150-200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons. The northern boundaries of the Canadian Shield's and Greenland's cratonic lithosphere closely follow the coastlines, with the Greenland and North American cratons clearly separated from each other. In Eurasia, in contrast, cratonic lithosphere extends hundreds of kilometres north of the coast of the continent, beneath the Barents and eastern Kara Seas. The boundaries of the Archean cratons mapped by tomography indicate the likely offshore extensions of major Phanerozoic sutures in northern Eurasia. The old oceanic lithosphere of the Canada Basin is much colder and thicker than the younger lithosphere beneath the adjacent Amundsen Basin, north of the Gakkel Ridge. Beneath the slow-spreading Gakkel Ridge, we detect the expected low-velocity anomaly associated with partial melting in the uppermost mantle; the anomaly is weaker, however, than beneath faster-spreading ridges globally. South of the ridge, the Nansen Basin shows higher seismic velocities in the upper mantle beneath it, compared to the Amundsen Basin. At 150-250 km depth, most of the oceanic portions of the central Arctic (the

  17. Seismic Vp & Vs tomography of Texas & Oklahoma with a focus on the Gulf Coast margin

    NASA Astrophysics Data System (ADS)

    Evanzia, Dominic; Pulliam, Jay; Ainsworth, Ryan; Gurrola, Harold; Pratt, Kevin

    2014-09-01

    The northwestern Gulf of Mexico passive margin contains an extensive record of continental collision and rifting, as well as deformation associated with orogenic events and heavy sedimentation. Seismic traveltime tomography that incorporates new data from 328 broadband seismic stations deployed throughout the region reveals features that correlate well with expected mantle structures, as well as features that have no obvious expression at the surface. Among the former are a large fast anomaly that corresponds to the southern extent of the Laurentia craton and a large slow anomaly associated with the Southern Oklahoma Aulacogen. Among the latter are a slow layer that we interpret to be a shear zone at the base of the cratonic and transitional continental lithosphere, a zone that is bounded at its top and bottom by discontinuities and high levels of seismic anisotropy identified in companion receiver function and shear wave splitting studies, respectively. A high velocity body underlying the Gulf Coastal Plain may mark delaminating lower crust. If this is true it could provide indirect evidence for an elevated geotherm during the rifting process that created the Gulf of Mexico.

  18. Time-dependent seismic tomography and its application to the Coso geothermal area, 1996-2006

    SciTech Connect

    Julian, B.R.; G.R. Foulger; F. Monastero

    2008-04-01

    Measurements of temporal changes in Earth structure are commonly determined using localearthquake tomography computer programs that invert multiple seismic-wave arrival time data sets separately and assume that any differences in the structural results arise from real temporal variations. This assumption is dangerous because the results of repeated tomography experiments would differ even if the structure did not change, simply because of variation in the seismic ray distribution caused by the natural variation in earthquake locations. Even if the source locations did not change (if only explosion data were used, for example), derived structures would inevitably differ because of observational errors. A better approach is to invert multiple data sets simultaneously, which makes it possible to determine what changes are truly required by the data. This problem is similar to that of seeking models consistent with initial assumptions, and techniques similar to the “damped least squares” method can solve it. We have developed a computer program, dtomo, that inverts multiple epochs of arrival-time measurements to determine hypocentral parameters and structural changes between epochs. We shall apply this program to data from the seismically active Coso geothermal area, California, in the near future. The permanent network operated there by the US Navy, supplemented by temporary stations, has provided excellent earthquake arrival-time data covering a span of more than a decade. Furthermore, structural change is expected in the area as a result of geothermal exploitation of the resource. We have studied the period 1996 through 2006. Our results to date using the traditional method show, for a 2-km horizontal grid spacing, an irregular strengthening with time of a negative VP/VS anomaly in the upper ~ 2 km of the reservoir. This progressive reduction in VP/VS results predominately from an increase of VS with respect to VP. Such a change is expected to result from

  19. Applications of detailed 3D P-wave velocity crustal model in Poland for local, regional and global seismic tomography

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin; Grad, Marek

    2015-04-01

    The 3D P-wave seismic velocity model was obtained by combining data from multiple studies during past 50 years. Data sources included refraction seismology, reflection seismology, geological boreholes, vertical seismic profiling, magnetotellurics and gravimetry. Use of many data sources allowed creation of detailed 3D P-wave velocity model that reaches to depth of 60 km and includes 6-layers of sediments and 3-layers of the crust. Purpose of this study is to analyze how 3D model influences local (accuracy of location and source time estimation for local events), regional (identification of wide-angle seismic phases) and global (teleseismic tomography) seismic travel times. Additionally we compare results of forward seismic wave propagation with signals observed on short period and broadband stations. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  20. Robust inverse scattering full waveform seismic tomography for imaging complex structure

    SciTech Connect

    Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Wibowo, Satryo; Deny, Agus; Kurniadi, Rizal; Widowati, Sri; Mubarok, Syahrul; Susilowati; Kaswandhi

    2012-06-20

    Seismic tomography becomes important tool recently for imaging complex subsurface. It is well known that imaging complex rich fault zone is difficult. In this paper, The application of time domain inverse scattering wave tomography to image the complex fault zone would be shown on this paper, especially an efficient time domain inverse scattering tomography and their run in cluster parallel computer which has been developed. This algorithm is purely based on scattering theory through solving Lippmann Schwienger integral by using Born's approximation. In this paper, it is shown the robustness of this algorithm especially in avoiding the inversion trapped in local minimum to reach global minimum. A large data are solved by windowing and blocking technique of memory as well as computation. Parameter of windowing computation is based on shot gather's aperture. This windowing technique reduces memory as well as computation significantly. This parallel algorithm is done by means cluster system of 120 processors from 20 nodes of AMD Phenom II. Benchmarking of this algorithm is done by means Marmoussi model which can be representative of complex rich fault area. It is shown that the proposed method can image clearly the rich fault and complex zone in Marmoussi model even though the initial model is quite far from the true model. Therefore, this method can be as one of solution to image the very complex mode.

  1. Internally Consistent Receiver Function Images, Tomography, and Seismicity of Taiwan from TAIGER

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.; Kuochen, H.; Wu, F. T.

    2012-12-01

    Taiwan is the site of a young, active arc-continent collision with ongoing mountain building and a complex 3-D geometry, with the Eurasian plate subducting eastwards in the south and the Philippine plate subducting northward under the northeastern part of the island. We combine teleseismic tomography, relocated seismicity, and receiver functions derived from the TAIGER and permanent stations to image Moho and Eurasian slab geometries and determine the mode of lithospheric deformation. The Moho under the Central Range shows preogressive thickening from southern to central Taiwan. An apparent discontinuous Moho structure is due to significant azimuthal variability in the receiver functions, and we investigate dipping structures and crustal anisotropy using radial and tangential receiver functions in polarized Common Point Conversion stacks. Shallow subduction of the Eurasian plate under the Central Ranges, as proposed in the thin-skinned model, would place young sediments under the higher velocity core of the Central Range. An interface with such a velocity inversion is not seen in the receiver function images. We map S-P delay times from receiver functions (mode converted teleseismic phases) relative to S-P arrival times from local seismicity. Such mapping in delay time space removes the distortion introduced by unresolved velocity structure that can bias event depths and time-to depth mapping of receiver functions, and thus allows for accuracy when conducting hypothesis tests for proposed thin- versus thick-skinned deformation models and locating seismogenic structures by placing seismicity in spatial context with crustal structure with high resolution. No clustering of seismicity on a shallow decollement is apparent. Overall, our results favor a thick-skinned rather than thin-skinned deformation mode.

  2. Seismic tomography of the upper mantle beneath the Bohemian Massif (central Europe)

    NASA Astrophysics Data System (ADS)

    Karousova, H.; Plomerova, J.; Vecsey, L.; Munzarova, H.

    2012-04-01

    We present a comprehensive test for teleseismic tomography of the upper mantle beneath the southern part of the Bohemian Massif (BM) based on data of passive experiments BOHEMA III and the northern part of the ALPASS (Mitterbauer et al., Tectonophysics 2011) as well as preliminary results. A new semi-automatic picker was applied for measuring P-wave arrival times from correlated extremes of waveforms recorded at 58 temporary seismic stations and 55 permanent observatories during 2005-2006. To calculate P-velocity perturbations, we selected 173 events from epicentral distances between 25° and 90°, and with magnitude higher than 4.5. Before the travel-time inversion itself, we analysed carefully relative P-wave residuals and cleaned the dataset of the travel-times from outliers and instabilities in timing for further processing. To eliminate leakage of crustal effects into the upper mantle velocity images, we corrected the observed travel-times for crustal structure according to 3D models of the BM and Eastern Alps crust (Karousova et al., Studia Geophys. Geod. 2012; Behm et al., GJI 2007). In order to optimize model parameterization, initial velocities and damping factors we perform different synthetic tests. Checkerboard and synthetic tests with artificial heterogeneities and shifted parameterization are calculated to explore sensitivity and resolution in individual nodes. Models with indistinctive velocity perturbations in the resolved parts tend to be more sensitive to ray geometry in the upper mantle and consequently could accentuate even insignificant heterogeneities. We show series of velocity perturbation images in three parts of the BM retrieved in three successive passive seismic experiments BOHEMA I-III. No distinct 'tube-like' low velocity heterogeneity, which could be interpreted as a small plume beneath the Eger Rift is imaged in tomography in western BM from the BOHEMA I data. Relatively small velocity perturbations exist in the upper mantle beneath

  3. Time-lapse seismic tomography using the data of microseismic monitoring network and analysis of mine-induced events, seismic tomography results and technological data in Pyhäsalmi mine, Finland

    NASA Astrophysics Data System (ADS)

    Nevalainen, Jouni; Kozlovskaya, Elena

    2016-04-01

    We present results of a seismic travel-time tomography applied to microseismic data from the Pyhäsalmi mine, Finland. The data about microseismic events in the mine is recorded since 2002 when the passive microseismic monitoring network was installed in the mine. Since that over 130000 microseismic events have been observed. The first target of our study was to test can the passive microseismic monitoring data be used with travel-time tomography. In this data set the source-receiver geometry is based on non-even distribution of natural and mine-induced events inside and in the vicinity of the mine and hence, is a non-ideal one for the travel-time tomography. The tomographic inversion procedure was tested with the synthetic data and real source-receiver geometry from Pyhäsalmi mine and with the real travel-time data of the first arrivals of P-waves from the microseismic events. The results showed that seismic tomography is capable to reveal differences in seismic velocities in the mine area corresponding to different rock types. For example, the velocity contrast between the ore body and surrounding rock is detectable. The velocity model recovered agrees well with the known geological structures in the mine area. The second target of the study was to apply the travel-time tomography to microseismic monitoring data recorded during different time periods in order to track temporal changes in seismic velocities within the mining area as the excavation proceeds. The result shows that such a time-lapse travel-time tomography can recover such changes. In order to obtain good ray coverage and good resolution, the time interval for a single tomography round need to be selected taking into account the number of events and their spatial distribution. The third target was to compare and analyze mine-induced event locations, seismic tomography results and mining technological data (for example, mine excavation plans) in order to understand the influence of mining technology

  4. Ground-Truthing Seismic Refraction Tomography for Sinkhole Detection in Florida

    NASA Astrophysics Data System (ADS)

    Hiltunen, D. R.; Hudyma, N.; Quigley, T. P.; Samakur, C.

    2007-12-01

    In order to provide effective return of storm water runoff to the subsurface aquifer, the Florida Department of Transportation (FDOT) constructs detention basins adjacent to its transportation facilities. These basins serve as a collection point for runoff within a local drainage area, and the overburden soil above the aquifer provides a natural filter for contaminants in the surface runoff water. However, the geologic setting for many of these basins in Florida is karst, limestone bedrock at shallow depth, and the concentration of water flow in these basins leads to frequent development of sinkholes. These sinkholes are an environmental hazard, as they provide a direct, open conduit for contaminant-laden runoff water to return to the aquifer rather than percolate through the overburden soil. Consequently, FDOT is keenly interested in all aspects of sinkholes, including factors leading to formation, methods of early detection, and effective methods for rapid repair. Recently, FDOT has engaged in a research effort to evaluate the capabilities of a wide range of geophysical investigation tools with regard to detection of sinkhole-prone areas within sites being considered for construction of detention ponds. The geophysical techniques evaluated have included ground penetrating radar (GPR), multi- electrode electrical resistivity (MER), seismic MASW, and seismic refraction tomography. In addition to geophysical testing at the research sites, extensive traditional geotechnical site characterization has been conducted, including boring and sampling of soil and rock, standard penetration tests (SPT), and cone penetration tests (CPT). The proposed paper will evaluate the capabilities of seismic refraction tomography. Comparisons between refraction tomograms and borehole logs, SPT soundings, and CPT soundings suggest that the refraction method can map the laterally-variable top of bedrock surface typical of karst terrane. During a recent ground proving exercise at the

  5. 3D Full Seismic Waveform Tomography of NW Turkey and Surroundings

    NASA Astrophysics Data System (ADS)

    Cubuk, Yesim; Fichtner, Andreas; Taymaz, Tuncay

    2015-04-01

    Northward collision of the Arabian plate with the Eurasian plate, and interaction of the motion between dynamic processes originated from the subduction of the African plate beneath the Aegean generated very complex tectonic structures in the study region. Western Turkey is among one of the most active extensional regions in the world and the study area is mainly located where the extensional Aegean and the right-lateral strike-slip North Anatolian Fault Zone (NAFZ) intersects. Therefore, the tectonic framework of the NW Turkey and the Marmara region is mainly characterized by the transition between the strike-slip tectonics to the extensional tectonics. The Sea of Marmara region has been subjected to several active and passive seismic investigations, nevertheless the accurate knowledge on the heterogeneity in the crust and upper mantle beneath the study area still remains enigmatic. On small-scale tomography problems, seismograms strongly reflect the effects of heterogeneities and the scattering properties of the Earth. Thus, the knowledge of high-resolution seismic imaging with an improved 3D radially anisotropic crustal model of the NW Turkey will enable better localization of earthquakes, identification of faults as well as the improvement of the seismic hazard assessment. For this purpose, we aim to develop 3D radially anisotropic subsurface structure of the Sea of Marmara and NW Turkey crust based on full waveform adjoint tomography method. The earthquake data were principally obtained from the Kandilli Observatory and Earthquake Research Institute (KOERI) and Earthquake Research Center (AFAD-DAD) database. In addition to this, some of the seismic waveform data extracted from the Hellenic Unified Seismic Network (HUSN) stations that are located within our study region were also used in this study. We have selected and simulated waveforms of earthquakes with magnitudes 4.0 ≤ Mw ≤ 6.7 occurred in the period between 2007-2014 to determine the 3D velocity

  6. Comparing the Gibraltar and Calabrian subduction zones (central western Mediterranean) based on seismic tomography

    NASA Astrophysics Data System (ADS)

    Argnani, Andrea; Battista Cimini, Giovanni; Frugoni, Francesco; Monna, Stephen; Montuori, Caterina

    2016-04-01

    The Central Western Mediterranean (CWM) was shaped by a complex tectonic and geodynamic evolution. Deep seismicity and tomographic studies point to the existence, under the Alboran and Tyrrhenian Seas, of lithospheric slabs extending down to the bottom of the mantle transition zone, at 660 km depth. Two narrow arcs correspond to the two slabs, the Gibraltar and Calabrian Arcs (e.g., Monna et al., 2013; Montuori et al., 2007). Similarities in the tectonic and mantle structure of the two areas have been explained by a common subduction and roll-back mechanism for the opening of the CWM, in which the two arcs are symmetrical end products. In spite of this unifying model, a wide amount of literature from different disciplines shows that many aspects of the two areas are still controversial. We present a new 3-D tomographic model at mantle scale for the Calabrian Arc and compare it with a recently published 3-D tomographic model for the Gibraltar Arc by Monna et al (2013). The two models are based on non-linear inversion of teleseismic phase arrivals, and have scale and parametrization that allow for a direct comparison. Unlike previous studies the tomographic models here presented include Ocean Bottom Seismometer broadband data, which improved the resolution of the mantle structures in the marine areas surrounding the arcs. We focus on key features of the two models that constrain reconstructions of the geodynamic evolution of the CWM (e.g., Monna et al., 2015). At Tortonian time the opening of the Tyrrhenian basin was in its initial stage, and the Calabrian arc formed subsequently; on the contrary, the Gibraltar arc was almost completely defined. We hypothesize that the complexity of the continental margin approaching the subduction zone played a key role during the final stages of the arc formation. References Monna, S., G. B. Cimini, C. Montuori, L. Matias, W. H. Geissler, and P. Favali (2013), New insights from seismic tomography on the complex geodynamic evolution

  7. REGIONAL SEISMIC AMPLITUDE MODELING AND TOMOGRAPHY FOR EARTHQUAKE-EXPLOSION DISCRIMINATION

    SciTech Connect

    Walter, W R; Pasyanos, M E; Matzel, E; Gok, R; Sweeney, J; Ford, S R; Rodgers, A J

    2008-07-08

    We continue exploring methodologies to improve earthquake-explosion discrimination using regional amplitude ratios such as P/S in a variety of frequency bands. Empirically we demonstrate that such ratios separate explosions from earthquakes using closely located pairs of earthquakes and explosions recorded on common, publicly available stations at test sites around the world (e.g. Nevada, Novaya Zemlya, Semipalatinsk, Lop Nor, India, Pakistan, and North Korea). We are also examining if there is any relationship between the observed P/S and the point source variability revealed by longer period full waveform modeling (e. g. Ford et al 2008). For example, regional waveform modeling shows strong tectonic release from the May 1998 India test, in contrast with very little tectonic release in the October 2006 North Korea test, but the P/S discrimination behavior appears similar in both events using the limited regional data available. While regional amplitude ratios such as P/S can separate events in close proximity, it is also empirically well known that path effects can greatly distort observed amplitudes and make earthquakes appear very explosion-like. Previously we have shown that the MDAC (Magnitude Distance Amplitude Correction, Walter and Taylor, 2001) technique can account for simple 1-D attenuation and geometrical spreading corrections, as well as magnitude and site effects. However in some regions 1-D path corrections are a poor approximation and we need to develop 2-D path corrections. Here we demonstrate a new 2-D attenuation tomography technique using the MDAC earthquake source model applied to a set of events and stations in both the Middle East and the Yellow Sea Korean Peninsula regions. We believe this new 2-D MDAC tomography has the potential to greatly improve earthquake-explosion discrimination, particularly in tectonically complex regions such as the Middle East. Monitoring the world for potential nuclear explosions requires characterizing seismic

  8. Seismic attenuation and scattering tomography of rock samples using stochastic wavefields: linking seismology, volcanology, and rock physics.

    NASA Astrophysics Data System (ADS)

    Fazio, Marco; De Siena, Luca; Benson, Phillip

    2016-04-01

    Seismic attenuation and scattering are two attributes that can be linked with porosity and permeability in laboratory experiments. When measuring these two quantities using seismic waveforms recorder at lithospheric and volcanic scales the areas of highest heterogeneity, as batches of melt and zones of high deformation, produce anomalous values of the measured quantities, the seismic quality factor and scattering coefficient. When employed as indicators of heterogeneity and absorption in volcanic areas these anomalous effects become strong indicators of magma accumulation and tectonic boundaries, shaping magmatic chambers and conduit systems. We perform attenuation and scattering measurements and imaging using seismic waveforms produced in laboratory experiments, at frequencies ranging between the kHz and MHz. As attenuation and scattering are measured from the shape of the envelopes, disregarding phases, we are able to connect the observations with the micro fracturing and petrological quantities previously measured on the sample. Connecting the imaging of dry and saturated samples via these novel attributes with the burst of low-period events with increasing saturation and deformation is a challenge. Its solution could plant the seed for better relating attenuation and scattering tomography measurements to the presence of fluids and gas, therefore creating a novel path for reliable porosity and permeability tomography. In particular for volcanoes, being able to relate attenuation/scattering measurements with low-period micro seismicity could deliver new data to settle the debate about if both source and medium can produce seismic resonance.

  9. Seismic tomography and ambient noise reflection interferometry on Reykjanes, SW Iceland

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Verdel, Arie; Ágústsson, Kristján; Blanck, Hanna; Franke, Steven; Metz, Malte; Ryberg, Trond; Weemstra, Cornelius; Hersir, Gylfi; Bruhn, David

    2016-04-01

    Recent advances in volcano-seismology and seismic noise interferometry have introduced new processing techniques for assessing subsurface structures and controls on fluid flow in geothermal systems. We present tomographic results obtained from seismic data recorded around geothermal reservoirs located both on-land Reykjanes, SW-Iceland and offshore along Reykjanes Ridge. We gathered records from a network of 234 seismic stations (including 24 Ocean Bottom Seismometers) deployed between April 2014 and August 2015. In order to determine the orientation of the OBS stations, we used Rayleigh waves planar particle motions from large magnitude earthquakes. This method proved suitable using the on-land stations: orientations determined using this method with the orientations measured using a giro-compass agreed. We obtain 3D velocity images from two fundamentally different tomography methods. First, we used local earthquakes to perform travel time tomography. The processing includes first arrival picking of P- and S- phases using an automatic detection and picking technique based on Akaike Information Criteria. We locate earthquakes by using a non-linear localization technique, as a priori information for deriving a 1D velocity model. We then computed 3D velocity models of velocities by joint inversion of each earthquake's location and lateral velocity anomalies with respect to the 1D model. Our models confirms previous models obtained in the area, with enhanced details. Second, we performed ambient noise cross-correlation techniques in order to derive an S velocity model, especially where earthquakes did not occur. Cross-correlation techniques involve the computation of cross- correlation between seismic records, from which Green's functions are estimated. Surface wave inversion of the Green's functions allows derivation of an S wave velocity model. Noise correlation theory furthermore shows that zero-offset P-wave reflectivity at selected station locations can be

  10. Resolution for a local earthquake arrival time and ambient seismic noise tomography around the Eyjafjallajökull volcano

    NASA Astrophysics Data System (ADS)

    Benediktsdóttir, Á.; Gudmundsson, Ö.; Tryggvason, A.; Bödvarsson, R.; Brandsdóttir, B.; Vogfjörd; K.; Sigmundsson, F.

    2012-04-01

    The explosive summit eruption of Eyjafjallajökull volcano from 14 April to end of May 2010 was preceded by an effusive flank eruption of the volcano (at Fimmvörðuháls) March 20th - April 12th. These eruptions culminated 18 years of recurrent volcanic unrest in the area, with extensive seismicity and high deformation rates since beginning of January 2010. A national network of seismic stations in Iceland (the SIL network), operated by he Icelandic Meteorological Office, monitored the precursors and development of the eruptions, in real time. We analyse a seismic dataset available from SIL stations in the vicinity of the eruption area, as well as data from additional portable stations that were deployed during a period of unrest in 1999 and just before and during the eruptions in 2010. The SIL system detected and located 2328 events between early March and late May 2010 in the area around Eyjafjallajökull. Here we present a preliminary evaluation of resolution for a local earthquake arrival time tomography. Adding the portable stations to the pre-existing SIL data set is crucial in order to identify more seismic events and improve the data coverage for tomography. We also present a resolution analysis for Ambient Seismic Noise Tomography (ASNT) in the area. In this method ambient seismic noise, recorded at two seismic stations, is cross-correlated. This band-limited approximation of the Green's function between two stations is used to estimate surface wave velocities. The fundamental assumptions underlying this method is that the noise is constructed from a randomly distributed wavefield, but this may be violated by volcanic tremor during the eruptions. We evaluate the robustness of inter-station correlograms as a function of time during the unrest period as well as their frequency content for evaluation of depth resolution. The results can be compared to constraints on magma movements inside the volcano based on interpretation of crustal deformation and

  11. The deep structure of south-central Taiwan illuminated by seismic tomography and earthquake hypocenter data

    NASA Astrophysics Data System (ADS)

    Camanni, Giovanni; Alvarez-Marron, Joaquina; Brown, Dennis; Ayala, Concepcion; Wu, Yih-Min; Hsieh, Hsien-Hsiang

    2016-06-01

    The Taiwan mountain belt is generally thought to develop above a through-going basal thrust confined to within the sedimentary cover of the Eurasian continental margin. Surface geology, magnetotelluric, earthquake hypocenter, and seismic tomography data suggest, however, that crustal levels below this basal thrust are also currently being involved in the deformation. Here, we combine seismic tomography and earthquake hypocenter data to investigate the deformation that is taking place at depth beneath south-central Taiwan. In this paper, we define the basement as any pre-Eocene rifting rocks, and use a P-wave velocity of 5.2 km/s as a reference for the interface between these rocks and their sedimentary cover. We found that beneath the Coastal Plain and the Western Foothills clustering of hypocenters near the basement-cover interface suggests that this interface is acting as a detachment. This detachment is located below the basal thrust proposed from surface geology for this part of the mountain belt. Inherited basement faults appear to determine the geometry of this detachment, and their inversion in the Alishan area result in the development of a basement uplift and a lateral structure in the thrust system above them. However, across the Shuilikeng and the Chaochou faults, earthquake hypocenters define steeply dipping clusters that extend to greater than 20 km depth, above which higher velocity basement rocks are uplifted beneath the Hsuehshan and Central ranges. We interpret these clusters to form a deeply penetrating, east-dipping ramp that joins westward with the detachment at the basement-cover interface. It is not possible to define a basal thrust to the east, beneath the Central Range.

  12. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions

    NASA Astrophysics Data System (ADS)

    Hafkenscheid, E.; Wortel, M. J. R.; Spakman, W.

    2006-08-01

    In the mantle underneath the Tethyan suture zone, large volumes of positive velocity anomalies have been imaged by seismic tomography and interpreted as the present-day signature of subducted Tethyan lithosphere. We investigate the Mesozoic-Cenozoic subduction history of the region by integrating independent information from mantle tomography and tectonic reconstructions. Three different subduction scenarios for the Tethyan oceanic lithosphere, representative for the available tectonic reconstructions, are used to predict the present thermally anomalous volumes associated with the lithospheric surface subducted since the late Mesozoic. Next, these predicted thermal volumes and their expected positions are compared to the relevant anomalous volumes derived from seismic tomographic images. In this analysis we include, among others, the possible effects of ridge subduction and slab detachment after the Cenozoic continental collisions, absolute plate motion, and slab thickening in the mantle. Our preferred subduction model comprises the opening of large back-arc oceanic basins within the Eurasian margin. The model points to slab thickening by a factor of 3 in the mantle, in which case the estimated volumes allow for active oceanic spreading (˜1-2.5 cm/yr) in the Tethyan lithosphere during convergence. Our results further indicate the occurrence of early Oligocene slab detachment underneath the northern Zagros suture zone, followed by both westward and eastward propagation of the slab tear and diachronous Eocene to Miocene slab detachment below the eastern to western Himalayas. Free sinking rates of the detached material of ˜2 cm/yr in the lower mantle provide the best fit between the tomographic mantle structure and our Tethyan subduction model.

  13. Towards Crustal Structure of Java Island (Sunda Arc) from Ambient Seismic Noise Tomography

    NASA Astrophysics Data System (ADS)

    Widiyantoro, Sri; Zulhan, Zulfakriza; Martha, Agustya; Saygin, Erdinc; Cummins, Phil

    2015-04-01

    In our previous studies, P- and S-wave velocity structures beneath the Sunda Arc were successfully imaged using a global data set and a nested regional-global tomographic method was employed. To obtain more detailed P- and S-wave velocity structures beneath Java, in the central part of the Sunda Arc, we then used local data sets, i.e. newline from the MErapi AMphibious EXperiment (MERAMEX) and the Meteorological, Climatological and Geophysical Agency (MCGA), as well as employed a double-difference technique for tomographic imaging. The results of the imaging show e.g. that P- and S-wave velocities are significantly reduced in the uppermost mantle beneath central Java. In order to obtain detailed crustal structure information beneath Java, the Ambient Noise Tomography (ANT) method was used. The application of this method to the MERAMEX data has produced a good crustal model beneath central Java. We continue our experiment to image crustal structure of eastern Java. We have used seismic waveform data recorded by 22 MCGA stationary seismographic stations and 25 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms of cross-correlated noise between pairs of seismographic stations. Our preliminary results presented here indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly (as shown by our tomographic images). In future work we will install more seismographic stations in eastern Java as well as in western Java to conduct ANT imaging for the whole of Java Island. The expected result combined with the mantle velocity models resulting from our body wave tomography will allow for accurate location of earthquake hypocenters and determination of regional tectonic structures. Both of these are valuable for understanding seismic hazard in Java, the most densely populated

  14. Investigation of the foundations of a Byzantine church by three-dimensional seismic tomography

    NASA Astrophysics Data System (ADS)

    Polymenakos, L.; Papamarinopoulos, S.; Miltiadou, A.; Charkiolakis, N.

    2005-02-01

    Byzantine public buildings are of high historical and cultural value. Churches, in particular, are of high architectural and artistic value because they are built using various materials and construction techniques and may contain significant frescoes and mosaics. The knowledge of the state of foundations and ground material conditions is important for their proper restoration and preservation. Seismic tomography is employed to investigate the foundation structure and ground material of a Byzantine church. Energy sources are placed across the floor of the church and surrounding courts, while recorders are placed in a subterranean crypt. Travel time data are analyzed and processed with a three-dimensional (3D) tomographic inversion software in order to construct seismic velocity images at the foundation and below foundation level. Velocity variations are known to correlate well with the lithological character of the earth materials, thus providing important structural and lithological information. A case study from a Byzantine church of 11th c. A.D. in the suburbs of Athens, Greece, is presented. The objective of this research is the nondestructive investigation of unknown underground structures or void spaces, mainly under the floor of the building. The results are interpreted in terms of the foundation elements as well as of significant variations in the earth material character.

  15. Three-Dimensional Seismic Velocity Structure in a High-Injection Region in The Northwest Geysers, California, from Standard and Double-Difference Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Boyle, K. L.; Jarpe, S.

    2011-12-01

    The Northwest Geysers contains some of the highest-volume injection and production wells in the Geysers geothermal field. These wells coincide spatially with dense clusters of microseismicity with exception of a sub-region central to several injectors which has shown lower rates of seismicity over the past 10 years. This low-seismicity region is underlain by a cluster of deep seismicity extending up to 4.2km below sea level (b.s.l.). The low-seismicity region has been imaged to 610 m resolution using passive-source 3D seismic tomography and co-location of hypocenters. The results indicate a low-velocity (2.9 km/s) anomaly that extends from the surface to approximately 1.5km b.s.l. in both P- and S- velocity models. It lies just above and to the Northwest of the low-seismicity region. The high-injection/production region is bounded on the southeast by higher velocities (range 4.0 km/s to 5.3 km/s), although it is dominated by velocities in the 3.8 km/s range. The low-velocity feature persists over our 5-year study period from 2005 to 2010, but appears to diminish spatially in 2010. Mean velocity values vary nominally from year to year, as do the extent of high and low velocity regions, but it is yet unknown whether this effect is temporal, an artifact of topography, or related to differences in data quality during different monitoring periods. The the low-velocity feature is being confirmed and re-imaged using double-difference tomography with a node-spacing of 150 m, and the feature's evolution over time will be correlated with injection and production rates in the surrounding area.

  16. Wave-equation-based travel-time seismic tomography - Part 1: Method

    NASA Astrophysics Data System (ADS)

    Tong, P.; Zhao, D.; Yang, D.; Yang, X.; Chen, J.; Liu, Q.

    2014-11-01

    In this paper, we propose a wave-equation-based travel-time seismic tomography method with a detailed description of its step-by-step process. First, a linear relationship between the travel-time residual Δt = Tobs-Tsyn and the relative velocity perturbation δ c(x)/c(x) connected by a finite-frequency travel-time sensitivity kernel K(x) is theoretically derived using the adjoint method. To accurately calculate the travel-time residual Δt, two automatic arrival-time picking techniques including the envelop energy ratio method and the combined ray and cross-correlation method are then developed to compute the arrival times Tsyn for synthetic seismograms. The arrival times Tobs of observed seismograms are usually determined by manual hand picking in real applications. Travel-time sensitivity kernel K(x) is constructed by convolving a~forward wavefield u(t,x) with an adjoint wavefield q(t,x). The calculations of synthetic seismograms and sensitivity kernels rely on forward modeling. To make it computationally feasible for tomographic problems involving a large number of seismic records, the forward problem is solved in the two-dimensional (2-D) vertical plane passing through the source and the receiver by a high-order central difference method. The final model is parameterized on 3-D regular grid (inversion) nodes with variable spacings, while model values on each 2-D forward modeling node are linearly interpolated by the values at its eight surrounding 3-D inversion grid nodes. Finally, the tomographic inverse problem is formulated as a regularized optimization problem, which can be iteratively solved by either the LSQR solver or a~nonlinear conjugate-gradient method. To provide some insights into future 3-D tomographic inversions, Fréchet kernels for different seismic phases are also demonstrated in this study.

  17. Crustal structure of Deception Island volcano from P wave seismic tomography: Tectonic and volcanic implications

    NASA Astrophysics Data System (ADS)

    Zandomeneghi, Daria; Barclay, Andrew; Almendros, Javier; IbañEz Godoy, Jesús M.; Wilcock, William S. D.; Ben-Zvi, Tami

    2009-06-01

    Deception Island (62°59'S, 60°41'W) is an active volcano located in the Bransfield Strait between the Antarctic Peninsula and the South Shetland Islands. The island is composed of rocks that date from <0.75 Ma to historical eruptions (1842, 1967, 1969, and 1970), and nowadays most of its activity is represented by vigorous hydrothermal circulation, slight resurgence of the inner bay floor, and intense seismicity, with frequent volcano-tectonic and long-period events. In January 2005 an extensive seismic survey took place in and around the island to collect high-quality data for a high-resolution P wave velocity tomography study. A total of 95 land and 14 ocean bottom seismometers were deployed, and more than 6600 air gun shots were fired. As a result of this experiment, more than 70,000 travel time data were used to obtain the velocity model, which resolves strong P wave velocity contrasts down to 5 km depth. The joint interpretation of the Vp distribution together with the results of geological, geochemical, and other geophysical (magnetic and gravimetric) measurements allows us to map and interpret several volcanic features of the island and surroundings. The most striking feature is the low P wave velocity beneath the caldera floor which represents the seismic image of an extensive region of magma beneath a sediment-filled basin. Another low-velocity zone to the east of Deception Island corresponds to seafloor sedimentary deposits, while high velocities to the northwest are interpreted as the crystalline basement of the South Shetland Islands platform. In general, in the tomographic image we observe NE-SW and NW-SE distributions of velocity contrasts that are compatible with the regional tectonic directions and suggest that the volcanic evolution of Deception Island is strongly conditioned by the Bransfield Basin geodynamics.

  18. Tectonic implication of local seismic tomography and focal mechanism study in Northeast Taiwan

    NASA Astrophysics Data System (ADS)

    Liao, Y. C.; Li, Y. H.

    2015-12-01

    Evaluation of the stability of host rock and nearby seismic activities are critical for safety issue. Since 2011, a broad-band seismometer array with 15 seismometers has been gradually deployed to date in the study area to collect continuous waveform data for host rock characterization study. In this study, we presented a series of study results, including location/relocation of regional earthquakes, seismic focal mechanisms, and inversion of three dimensional Vp and Vp/Vs models. A double-difference tomography algorithm was adopted in both earthquake relocation and three-dimensional velocity inversion to improve location accuracy and model reliability. Spatial distribution of earthquakes could be separated into two clusters. The eastern group was distributed nearly along the eastern boundary of granite outcrop in the surface; the other group was mainly located beneath the western part of imbricated high-magnetic-susceptibility zones, which were identified by three-dimensional inversion of aeromagnetic data. In-between there exists a clear zone with relatively quiet seismicity. Moreover, our Vp and Vp/Vs inversion results also revealed patterns compatible with previous-mentioned imbricate structures and shown good correlation with the high magnetic susceptibility zones as well. In addition, more than one hundred earthquake events with clear P-wave first motion in waveform were identified for demonstration. Their focal mechanisms were also determined and shown dramatic variation with respect to the depth of hypocenters. Mechanisms of earthquakes in shallow crust with depth less than 10 km are mostly normal faults. In contrast, most of deeper events are reverse faults. It implies that tectonic stress regime in shallow crust is extensional and becomes more compressional in deeper part.

  19. Models of Crustal Thickness for South America from Seismic Refraction, Receiver Functions and Surface Wave Tomography

    NASA Astrophysics Data System (ADS)

    Assumpcao, M.; Feng, M.; Tassara, A.; Julia, J.

    2013-05-01

    An extensive compilation of crustal thicknesses is used to develop crustal models in continental South America. We consider point crustal thicknesses from seismic seismic refraction experiments, receiver function analyses, and surface-wave dispersion. Estimates of crustal thickness derived from gravity anomalies were only included along the continental shelf and in some areas of the Andes to fill large gaps in seismic coverage. Two crustal models were developed: A) by simple interpolation of the ~1000 point estimates, and B) our preferred model, based on the same point estimates, interpolated with surface-wave tomography. Despite gaps in continental coverage, both models reveal interesting crustal thickness variations. In the Andean range, the crust reaches 75 km in Southern Peru and the Bolivian Altiplano, while crustal thicknesses seem to be close to the global continental average (~40 km) in Ecuador and southern Colombia (despite high elevations), and along the southern Andes of Chile-Argentina (elevation lower than 2000 m). In the stable continental platform the average thickness is 38 ± 5 km (1 std. deviation) and no systematic differences are observed among Archean-Paleoproterozoic cratons, NeoProterozoic fold belts, and low-altitude intracratonic sedimentary basins. An exception is the Borborema Province (NE Brazil) with crust ~30-35 km thick. Narrow belts surrounding the cratons are suggested in central Brazil, parallel to the eastern and southern border of the Amazon craton, and possibly along the Transbrasiliano Lineament continuing into the Chaco basin, where crust thinner than 35 km is observed. In the sub-Andean region, between the mid-plate cratons and the Andean cordillera, the crust tends to be thinner (~35 km) than the average crust in the stable platform, a feature possibly inherited from the old pre-Cambrian history of the continent. We expect these crustal models will be useful for studies of isostasy, dynamic topography, and crustal evolution

  20. Ambient Seismic Noise Tomography of a High Loess Bank at Dunaszekcső (Hungary)

    NASA Astrophysics Data System (ADS)

    Szanyi, Gyöngyvér; Gráczer, Zoltán; Győri, Erzsébet; Kaláb, Zdeněk; Lednická, Markéta

    2016-05-01

    High loess banks along the right side of the Danube in Hungary are potential subjects of landslides. Small scale ambient seismic noise tomography was used at the Dunaszekcső high bank. The aim of the study was to map near surface velocity anomalies since we assume that the formation of tension cracks—which precede landslides—are represented by low velocities. Mapping Rayleigh wave group velocity distribution can help to image intact and creviced areas and identify the most vulnerable sections. The study area lies at the top of the Castle Hill of Dunaszekcső, which was named after Castellum Lugio, a fortress of Roman origin. The presently active head scarp was formed in April 2011, and our study area was chosen to be at its surroundings. Cross-correlation functions of ambient noise recordings were used to retrieve the dispersion curves, which served as the input of the group velocity tomography. Phase cross-correlation and time-frequency phase weighted stacking was applied to calculate the cross-correlation functions. The average Rayleigh wave group velocity at the high loess bank was found to be 171 ms^{-1} . The group velocity map at a 0.1 s period revealed a low-velocity region, whose location coincides with a highly creviced area, where slope failure takes place along a several meter wide territory. Another low velocity region was found, which might indicate a previously unknown loosened domain. The highest velocities were observed at the supposed remnants of Castellum Lugio.

  1. A seismic tomography study of lithospheric structure under the Norwegian Caledonides

    NASA Astrophysics Data System (ADS)

    Hejrani, B.; Jacobsen, B. H.; Balling, N.; England, R. W.

    2012-04-01

    A deep lithospheric transition between southern Norway and southern Sweden has been revealed in papers by Medhus et al. (2009,) and Medhus (2010). This lithospheric transition is crossing various tectonic units including the Caledonides.. We address the question of whether this transition continues towards the north along the Caledonian Mountains or not? For this purpose we present new results of relative P-wave tomography for the northern SCANLIPS (SCANdinavia Lithosphere ProfileS) profile across the northern part of the Caledonides combined with data from permanent seismological stations in this area. These results are compared the upper mantle structure obtained by Medhus (2010) and Hejrani et al. (2011) for Caledonian and shield units to the south in southern Norway and Sweden, where the lithospheric transition follows the eastern margin of the Oslo Graben. Crooked line seismic tomography (Hejrani et al., 2011) (optimizes 2D ray coverage under a crooked profile) is used to resolve the details of the transition boundaries in lithosphere structure across the mountains and its relation to the geological surface settings.

  2. Ambient Seismic Noise Tomography of a Loess High Bank at Dunaszekcső (Hungary)

    NASA Astrophysics Data System (ADS)

    Szanyi, Gyöngyvér; Gráczer, Zoltán; Győri, Erzsébet; Kaláb, Zdeněk; Lednická, Markéta

    2016-08-01

    Loess high banks along the right side of the Danube in Hungary are potential subjects of landslides. Small scale ambient seismic noise tomography was used at the Dunaszekcső high bank. The aim of the study was to map near surface velocity anomalies since we assume that the formation of tension cracks—which precede landslides—are represented by low velocities. Mapping Rayleigh wave group velocity distribution can help to image intact and creviced areas and identify the most vulnerable sections. The study area lies at the top of the Castle Hill of Dunaszekcső, which was named after Castellum Lugio, a fortress of Roman origin. The presently active head scarp was formed in April 2011, and our study area was chosen to be at its surroundings. Cross-correlation functions of ambient noise recordings were used to retrieve the dispersion curves, which served as the input of the group velocity tomography. Phase cross-correlation and time-frequency phase weighted stacking was applied to calculate the cross-correlation functions. The average Rayleigh wave group velocity at the loess high bank was found to be 171 ms^{-1}. The group velocity map at a 0.1 s period revealed a low-velocity region, whose location coincides with a highly creviced area, where slope failure takes place along a several meter wide territory. Another low velocity region was found, which might indicate a previously unknown loosened domain. The highest velocities were observed at the supposed remnants of Castellum Lugio.

  3. Development of a State-Wide 3-D Seismic Tomography Velocity Model for California

    NASA Astrophysics Data System (ADS)

    Thurber, C. H.; Lin, G.; Zhang, H.; Hauksson, E.; Shearer, P.; Waldhauser, F.; Hardebeck, J.; Brocher, T.

    2007-12-01

    We report on progress towards the development of a state-wide tomographic model of the P-wave velocity for the crust and uppermost mantle of California. The dataset combines first arrival times from earthquakes and quarry blasts recorded on regional network stations and travel times of first arrivals from explosions and airguns recorded on profile receivers and network stations. The principal active-source datasets are Geysers-San Pablo Bay, Imperial Valley, Livermore, W. Mojave, Gilroy-Coyote Lake, Shasta region, Great Valley, Morro Bay, Mono Craters-Long Valley, PACE, S. Sierras, LARSE 1 and 2, Loma Prieta, BASIX, San Francisco Peninsula and Parkfield. Our beta-version model is coarse (uniform 30 km horizontal and variable vertical gridding) but is able to image the principal features in previous separate regional models for northern and southern California, such as the high-velocity subducting Gorda Plate, upper to middle crustal velocity highs beneath the Sierra Nevada and much of the Coast Ranges, the deep low-velocity basins of the Great Valley, Ventura, and Los Angeles, and a high- velocity body in the lower crust underlying the Great Valley. The new state-wide model has improved areal coverage compared to the previous models, and extends to greater depth due to the data at large epicentral distances. We plan a series of steps to improve the model. We are enlarging and calibrating the active-source dataset as we obtain additional picks from investigators and perform quality control analyses on the existing and new picks. We will also be adding data from more quarry blasts, mainly in northern California, following an identification and calibration procedure similar to Lin et al. (2006). Composite event construction (Lin et al., in press) will be carried out for northern California for use in conventional tomography. A major contribution of the state-wide model is the identification of earthquakes yielding arrival times at both the Northern California Seismic

  4. Crosswell seismic studies in gas hydrate-bearing sediments: P wave velocity and attenuation tomography

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Haberland, Ch.; Pratt, R. G.; Ryberg, T.; Weber, M. H.; Mallik Working Group

    2003-04-01

    We present crosswell seismic data from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. The crosswell seismic measurements were carried out by making use of two 1160 m deep observation wells (Mallik 3L-38 and 4L-38) both 45 m from and co-planar with the 1188 m deep production research well (5L-38). A high power piezo-ceramic source was used to generate sweeped signals with frequencies between 100 and 2000 Hz recorded with arrays of 8 hydrophones per depth level. A depth range between 800 and 1150 m was covered, with shot and receiver spacings of 0.75 m. High quality data could be collected during the survey which allow for application of a wide range of crosswell seismic methods. The initial data analysis included suppression of tube wave energy and picking of first arrivals. A damped least-squares algorithm was used to derive P-wave velocities from the travel time data. Next, t* values were derived from the decay of the amplitude spectra, which served as input parameters for a damped least-squares attenuation tomography. The initial results of the P-wave velocity and attenuation tomography reveal significant features reflecting the stratigraphic environment and allow for detection and eventually quantification of gas hydrate bearing sediments. A prominent correlation between P velocity and attenuation was found for the gas hydrate layers. This contradicts to the apparently more meaningful inverse correlation as it was determined for the gas hydrates at the Blake Ridge but supports the results from

  5. Modeling the Coast Mountains Batholith, British Columbia, Canada with 3D Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Quinonez, S. M.; Olaya, J. C.; Miller, K. C.; Romero, R.; Velasco, A. A.; Harder, S. H.; Cerda, I.

    2011-12-01

    The Coast Mountains Batholith on the west coast of British Columbia, Canada comprises a series of granitic to tonalitic plutons; where felsic continental crust is generated from the subduction of mafic oceanic crust by partial melting and fractionation, leaving ultra-mafic roots. In July of 2009, a large controlled-source experiment was conducted along a 400km east - west transect from Bella Bella into central British Columbia. Student volunteers from multiple universities deployed 1,800 one-component and 200 three-component geophones plus 2400 Texan data recorders with 200-m spacing intervals and shot spacing at 30-km. The 18-point sources ranged from 160 to 1,000 kg of high explosive. The geoscience component of the NSF-funded Cyber-ShARE project at UTEP focuses on fusing models developed from different data sets to develop 3-D Earth models. Created in 2007, the Cyber-ShARE Center brings together experts in computer science, computational mathematics, education, earth science, and environmental science. We leverage the Cyber-ShARE work to implement an enhanced 3-D finite difference tomography approach for P-wave delays times (Hole, 1992) with a graphical user interface and visualization framework. In particular, to account for model sensitivity to picked P-wave arrival times, we use a model fusion approach (Ochoa et al., 2010) to generate a model with the lowest RMS residual that a combination of a set of Monte Carlo sample models. In order to make the seismic tomography process more interactive at many points, visualizations of model perturbation at each iteration will help to troubleshoot when a model is not converging to highlight where the RMS residual values are the highest to pinpoint where changes need to be made to achieve model convergence. Finally, a model of the upper mantle using 3-D P-wave tomography will be made to determine the location of these ultra-mafic roots.

  6. Imaging heterogeneity of the crust adjacent to the Dead Sea fault using ambient seismic noise tomography

    NASA Astrophysics Data System (ADS)

    Pinsky, Vladimir; Meirova, Tatiana; Levshin, Anatoli; Hofstetter, Abraham; Kraeva, Nadezda; Barmin, Mikhail

    2013-04-01

    For the purpose of studying the Earth's crust by means of tomography, we investigated cross-correlation functions emerging from long-term observations of propagating ambient seismic noise at pairs of broadband stations in Israel and Jordan. The data was provided by the eight permanent broadband stations of the Israel Seismic Network evenly distributed over Israel and the 30 stations of the DESERT2000 experiment distributed across the Arava Fault (South of the Dead Sea basin). To eliminate the influence of earthquakes and explosions, we have applied the methodology of Bensen et al. (Geophys J Int 169:1239-1260, 2007), including bandpass filtering and amplitude normalization in time and frequency domain. The cross-correlation functions estimated from continuous recordings of a few months were used to extract Rayleigh waves group velocity dispersion curves using automatic version of the frequency-time analysis procedure. Subsequently, these curves have been converted into the Rayleigh wave group velocity maps in the period range 5-20 s and S waves velocity maps in the depth range 5-15 km. In these maps, four velocity anomalies are prominent. Two of them are outlined by the previous reflection-refraction profiles and body wave tomography studies, i.e. a low velocity anomaly corresponds to the area of the extremely deep (down to 14 km) sedimentary infill in the Southern Dead Sea Basin and a high velocity anomaly in the Southern Jordan corresponds to the area of the Precambrian crystalline rocks of the Nubian Shield on the flanks of the Red Sea. The two other anomalies have not been reported before - the high velocity zone close to the Beersheba city and the low velocity anomaly in the region of Samaria-Carmel mountains - Southern Galilee. They have relatively low resolution and hence need further investigations for approving and contouring. The highest contrast between the average Rayleigh wave group velocity (2.7 km/s) and the anomalies is 10-13 %, comparable, however

  7. Integration of constrained electrical and seismic tomographies to study the landslide affecting the cathedral of Agrigento

    NASA Astrophysics Data System (ADS)

    Capizzi, P.; Martorana, R.

    2014-08-01

    The Cathedral of Saint Gerland, located on the top of the hill of Agrigento, is an important historical church, which dates back to the Arab-Norman period (XI century). Unfortunately throughout its history the Cathedral and the adjacent famous Archaeological Park of the ‘Valley of the Temples’ have been affected by landslides. In this area the interleaving of calcarenites, silt, sand and clay is complicated by the presence of dislocated rock blocks and cavities and by a system of fractures partly filled with clay or water. Integrated geophysical surveys were carried out on the north side of the hill, on which the Cathedral of Agrigento is founded, to define lithological structures involved in the failure process. Because of the landslide, the cathedral has been affected by fractures, which resulted in the overall instability of the structure. Along each of four footpaths a combination of 2D electrical resistivity tomographies (ERT) and 2D seismic refraction tomographies (SRT) was performed. Moreover, along two of these footpaths microtremor (HVSR) and surface wave soundings (MASW) were carried out to reconstruct 2D sections of shear waves velocity. Furthermore a 3D electrical resistivity tomography was carried out in a limited area characterized by gentle slopes. After a preliminary phase, in which the data were processed independently, a subsequent inversion of seismic and electrical data was constrained with stratigraphic information obtained from geognostic continuous core boreholes located along the geophysical lines. This process allowed us to significantly increase the robustness of the geophysical models. The acquired data were interpolated to construct 3D geophysical models of the electrical resistivity and of the P-wave velocity. The interpolation algorithm took into account the average direction and immersion of geological strata. Results led to a better understanding of the complexity of the subsoil in the investigated area. The use of integrated

  8. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    SciTech Connect

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  9. Improved results by combining reflection seismic profiling with diving wave tomography; three case histories on hi-res hybrid seismic surveying

    NASA Astrophysics Data System (ADS)

    Bachmann, D.; Frei, W.

    2003-04-01

    The performance of high resolution reflection seismic surveys is questionable in areas with poorly defined acoustic impedance contrasts at shallow depths, but is unparalleled for delineating complex structures at greater depths. The salient feature of the diving wave tomography technique is the detailed mapping capability of the velocity field in the near surface depth range, whereas, its resolving power degrades rapidly with increasing depth. We have, for both methods, combined the efforts for the data acquisition and processing with the main objective to compensate the disadvantages of either technique by the benefits of the other. An equally important objective was to render the method routinely applicable in the cost sensitive environment of geotechnical / environmental engineering. The appropriate choice of acquisition parameters is crucial to achieve the spatial data density and recording geometry requirements by either evaluation method. Three case histories illustrate the practical use of the hybrid seismic surveying technique to characterize the shallow subsurface in the depth range of a few tenths of meters. The first example deals with the mapping of subsurface structures in close proximity to a ground failure in an urban environment. Here, both methods produce pieces of information of equivalent importance for the final outcome of the survey. They are truly complementary, since each one alone provides only an incomplete image of the subsurface. The second case study focuses on the determination of the ground water barrier beneath fluviatile sediments contaminated by toxic waste fluids. In the presence of poorly defined acoustic impedance contrasts within the sediments and at the boundary to the intensely weathered Tertiary bedrock, the information provided by the diving wave tomography technique reveals the surface topography of the bedrock with considerably greater precision than the combination of bore holes with solely reflection seismic profiling

  10. Seismic rays and traveltime tomography of strongly heterogeneous mantle structure: application to the Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Serretti, Paola; Morelli, Andrea

    2011-12-01

    The structure of the Earth's upper mantle near convergent plate margins, such as along the Nubia-Eurasia collision zone in the Mediterranean, involves strong seismic wave speed contrasts associated with subducting lithospheric slabs and opening backarc basins. In this environment, seismic wave propagation is strongly influenced by heterogeneity, and requires appropriate modelling practice. Although accurate numerical methods are often used to model seismic traveltimes in the crust, only approximate techniques have been used for the mantle, on the assumption that speed contrasts are weaker. We devise, optimize, and test a method aimed at recovering strongly heterogeneous mantle structures using a finite-difference scheme to calculate first-arrival traveltimes and trace seismic rays with high accuracy even in the presence of strong gradients. We adapt this forward scheme—successfully used in local-scale tomography—to spherical geometry through source-specific Earth flattening approximations, and we split calculations in meshes with different step size to model optimally the crust (with a 2 km step) and the mantle (6 km step). We then use an iterative non-linear inversion approach, starting from a simple 1-D prior model. We test the ability of this procedure to reconstruct sample structures, devised to be illustrative for the Mediterranean region, using synthetic data calculated on the real distribution of sources and stations reported by the Bulletins of the International Seismological Centre (ISC). Besides regular checkerboard patterns, we also reconstruct a more representative model. Different strategies are used and compared in linear and non-linear inversion. We find that a linear approach, by which rays are only traced once in the background model, may result in an illusory fit to data. Realistic upper-mantle structures strongly deflect seismic rays, and correct paths can only be found after a few iterations. Although linear inversion seems able to identify

  11. The Crustal Structure of the Eastern Tennessee Seismic Zone Imaged by means of Seismic Noise Tomography and Potential Fields Inversion Methods

    NASA Astrophysics Data System (ADS)

    Brandmayr, E.; Arroucau, P.; Kuponiyi, A.; Vlahovic, G.

    2015-12-01

    We investigate the crustal structure of the Eastern Tennessee Seismic Zone (ETSZ) by means of group velocity tomography maps from seismic noise data analysis and potential fields inversion with the located Euler deconvolution method. Preliminary tomography results show that, in the uppermost crust, the New York-Alabama (NY-AL) magnetic lineament surface projection represents the boundary between a low velocity anomaly to the NW of the lineament and a high velocity anomaly to the SE of it. The low velocity anomaly migrates towards SE with increasing depth, suggesting a possible SE dipping weak structure in which most of the seismic activity takes place. Inversion of magnetic field data shows that the top of the magnetic basement ranges between 5 and 10 km of depth in the Valley and the Ridge physiographic province while it is shallower (less than 2 km of depth) and locally outcropping in the Blue Ridge province and in the Cumberland Plateau province. The estimated depth of the top of the magnetic basement is in general agreement with existing sedimentary cover map of the broad study area, although the local features of the ETSZ presented in this work are not resolved by previous studies due to poor resolution. The correlation between the magnetic signature and the position of the seismic velocity anomalies support the interpretation of the low velocity zone as a major basement fault, trending NE-SW and juxtaposing Granite-Rhyolite basement to the NW from Grenville southern Appalachian basement to the SE, of which the NY-AL magnetic lineament is the projection on the surface. In order to better constrain our interpretation, inversion of tomography results to obtain absolute shear waves velocity models will be performed as a next step.

  12. Mapping southern Californian crust with high and low frequency seismics: A comparison between tomography, receiver functions, and reflection imageries

    NASA Astrophysics Data System (ADS)

    Zhou, H.

    2007-12-01

    While it is not surprising that the Earth may yield different geophysical imageries at different frequency scales, how much similarity or difference is there between crustal and mantle heterogeneities of different spatial scales? What are the geologic and geodynamic implications? Of course, we have to weed out insufficiencies in data S/N ratio, data coverage, and processing methods. This study intends to provide a careful comparison between seismic imaging methods of different spatial scales in southern California where data is of the state-or-the-art quality due to the dense distribution of earthquakes and seismologic stations, as well as the use of both passive earthquake data and active Los Angeles Regional Seismic Experiment (LARSE) data. The methods include traveltime tomography of long-wavelength velocity variations, receiver functions of long-wavelength seismic discontinuities, and reflection imaging of seismic impedance contrasts or scatters using envelop stacking in comparison with prestack depth migration. The comparison indicates a broad level of similarity between seismic imageries of different wavelengths, while well-known and somewhat less-known artifacts are still a key factor to reckon with. Compared to previously published analyses of LARSE data, the prestack depth migration method can better treat lateral velocity variations in the shallow crust. Prestack depth migration also improves the resolution of reflection events in comparison with the receiver functions. Prestack depth imaging is superior than simple CMP stack techniques to process 2D seismic data in the presence of high noise level, strong lateral velocity heterogeneity and crooked survey geometry. The long-wavelength undulation of velocity contours as provided by a new deformable-layer tomography is very helpful to interpreting the reflection images. The innovative seismic imaging techniques from this study are directly applicable to EarthScope/USArray and other projects studying the

  13. Seismic structures beneath Popocatepetl (Mexico) and Gorely (Kamchatka) volcanoes derived from passive tomography studies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel; Koulakov, Ivan

    2014-05-01

    A number of active volcanoes are observed in different parts of the world, and they attract great interest of scientists. Comparing their characteristics helps in understanding the origin and mechanisms of their activity. One of the most effective methods for studying the deep structure beneath volcanoes is passive source seismic tomography. In this study we present results of tomographic inversions for two active volcanoes located in different parts of the world: Popocatepetl (Mexico) and Gorely (Kamchatka, Russia). In the past century both volcanoes were actively erupted that explains great interest to their detailed investigations. In both cases we made the full data analysis starting from picking the arrival times from local events. In the case of the Popocatepetl study, a temporary seismological network was deployed by GFZ for the period from December 1999 to July 2000. Note that during this period there were a very few events recorded inside the volcano. Most of recorded earthquakes occurred in surrounding areas and they probably have the tectonic nature. We performed a special analysis to ground the efficiency of using these data for studying seismic structure beneath the network installed on the volcano. The tomographic inversion was performed using the LOTOS code by Koulakov (2009). Beneath the Popocatepetl volcano we have found a zone of strong anti-correlation between P- and S-velocities that leaded to high values of Vp/Vs ratio. Similar features were found for some other volcanoes in previous studies. We interpret these anomalies as zones of high content of fluids and melts that are related to active magma sources. For the case of Gorely volcano we used the data of a temporary network just deployed in summer 2013 by our team from IPGG, Novosibirsk. Luckily, during the field works, the volcano started to manifest strong seismic activity. In this period, 100 - 200 volcanic events occurred daily. We collected the continuous seismic records from 20 stations

  14. Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore-offshore seismic tomography

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.

    2007-01-01

    We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.

  15. Active Source Tomography of Stromboli Volcano (Italy): Results From the 2006 Seismic Experiment.

    NASA Astrophysics Data System (ADS)

    Zuccarello, L.; Patanè, D.; Cocina, O.; Castellano, M.; Sgroi, T.; Favali, P.; de Gori, P.

    2008-12-01

    Stromboli island, located in the Southern Tyrrhenian sea, is the emerged part (about 900 m a.s.l.) of a 3km-high strato-volcano. Its persistent Strombolian activity, documented for over 2000 years, is sometimes interrupted by lava effusions or major explosions. Despite the amount of recent published geophysical studies aimed to clarifying eruption dynamics, the spatial extend and geometrical characteristics of the plumbing system remain poorly understood. In fact, the knowledge of the inner structure and the zones of magma storage is limited to the upper few hundreds meters of the volcanic edifice and P- and S-waves velocity models are available only in restricted areas. In order to obtain a more suitable internal structural and velocity models of the volcano, from 25 November to 2 December 2006, a seismic tomography experiment through active seismics using air-gun sources was carried out and the final Vp model is here presented. The data has been inverted for the Vp structure by using the code Simulps13q, considering a 3D grid of nodes spaced 0.5 km down to 2 km depth, beneath the central part of volcano. The results show a relatively high velocity zones located both in the inner part of the volcanic structure, at about 1km b.s.l. and in the last 200-300 m a.s.l. in correspondence with the volcanic conduit. Slower zones were located around the summit craters in agreement with volcanological and petrological informations for the area. The relatively high velocity zones could suggest the presence of intrusive bodies related to the plumbing system.

  16. Rayleigh Wave Group Velocity Distributions for East Asia from Ambient Seismic Noise Tomography

    NASA Astrophysics Data System (ADS)

    Witek, M.; van der Lee, S.; Kang, T. S.; Chang, S. J.; Ning, S.; Ning, J.

    2014-12-01

    We have collected continuous vertical-component broadband data from 1109 seismic stations in regional networks across China, Korea, and Japan for the year 2011 to perform the largest surface wave tomography study in the region. Using this data set, we have measured over half a million Rayleigh wave group velocity dispersion curves from 1-year stacks of station-pair ambient seismic noise cross-correlations. Quality control is performed by measuring the coherency of the positive and negative lag time sides of the cross-correlations. If the coherency is below an empirically determined threshold, the dispersion curve is measured on the side of the highest SNR. Otherwise, the positive and negative sides of the cross-correlation are averaged before dispersion curve measurement. Group velocity measurements for which the SNR was less than 10 are discarded. The Rayleigh wave group velocity dispersion curves are regionalized on a tessellated spherical shell grid in the period range 10 to 50 s to produce maps of Rayleigh wave group velocity distributions. Preliminary maps at 10 seconds period match well with geologic features at the surface. In particular, we observe low group velocities in the Songliao, Bohai Bay, Sichuan, Ordos, Tarim, and Junggar Basins in China, and the Ulleung and Yamato Basins in the East Sea (Sea of Japan). Higher group velocities are observed in regions with less sediment cover. At periods around 30 s, we observe group velocity decreases going from east to west in China, representing an overall trend of crustal thickening due to the collision between the Indian and Eurasian plates. The Ordos and Sichuan blocks show higher group velocities relative to the eastern margin of the Tibetan Plateau, possibly reflecting low temperatures in these cratons.

  17. Rayleigh wave tomography of the British Isles from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Nicolson, Heather; Curtis, Andrew; Baptie, Brian

    2014-08-01

    We present the first Rayleigh wave group speed maps of the British Isles constructed from ambient seismic noise. The maps also constitute the first surface wave tomography study of the crust under the British Isles at a relatively high resolution. We computed interferometric, interstation Rayleigh waves from vertical component records of ambient seismic noise recorded on 63 broad-band and short-period stations across the UK and Ireland. Group velocity measurements were made from the resulting surface wave dispersion curves between 5 and 25 s using a multiple phase-matched filter method. Uncertainties in the group velocities were computed by calculating the standard deviation of four dispersion curves constructed by stacking a random selection of daily cross-correlations. Where an uncertainty could not be obtained for a ray path using this method, we estimated it as a function of the interreceiver distance. Group velocity maps were computed for 5-25-s period using the Fast Marching forward solution of the eikonal equation and iterative, linearized inversion. At short and intermediate periods, the maps show remarkable agreement with the major geological features of the British Isles including: terrane boundaries in Scotland; regions of late Palaeozoic basement uplift; areas of exposed late Proterozoic/early Palaeozoic rocks in southwest Scotland, northern England and northwest Wales and, sedimentary basins formed during the Mesozoic such as the Irish Sea Basin, the Chester Basin, the Worcester Graben and the Wessex Basin. The maps also show a consistent low-velocity anomaly in the region of the Midlands Platform, a Proterozoic crustal block in the English Midlands. At longer periods, which are sensitive velocities in the lower crustal/upper mantle, the maps suggest that the depth of Moho beneath the British Isles decreases towards the north and west. Areas of fast velocity in the lower crust also coincide with areas thought to be associated with underplating of the

  18. Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography

    NASA Astrophysics Data System (ADS)

    Assumpção, Marcelo; Feng, Mei; Tassara, Andrés; Julià, Jordi

    2013-12-01

    An extensive compilation of crustal thicknesses is used to develop crustal models in continental South America. We consider point crustal thicknesses from seismic refraction experiments, receiver function analyses, and surface-wave dispersion. Estimates of crustal thickness derived from gravity anomalies were only included along the continental shelf and in some areas of the Andes to fill large gaps in seismic coverage. Two crustal models were developed: A) by simple interpolation of the point estimates, and B) our preferred model, based on the same point estimates, interpolated with surface-wave tomography. Despite gaps in continental coverage, both models reveal interesting crustal thickness variations. In the Andean range, the crust reaches 75 km in Southern Peru and the Bolivian Altiplano, while crustal thicknesses seem to be close to the global continental average (~ 40 km) in Ecuador and southern Colombia (despite high elevations), and along the southern Andes of Chile-Argentina (elevation lower than 2000 m). In the stable continental platform the average thickness is 38 ± 5 km (1-st. deviation) and no systematic differences are observed among Archean-Paleoproterozoic cratons, NeoProterozoic fold belts, and low-altitude intracratonic sedimentary basins. An exception is the Borborema Province (NE Brazil) with crust ~ 30-35 km thick. Narrow belts surrounding the cratons are suggested in central Brazil, parallel to the eastern and southern border of the Amazon craton, and possibly along the TransBrasiliano Lineament continuing into the Chaco basin, where crust thinner than 35 km is observed. In the sub-Andean region, between the mid-plate cratons and the Andean cordillera, the crust tends to be thinner (~ 35 km) than the average crust in the stable platform, a feature possibly inherited from the old pre-Cambrian history of the continent. We expect that these crustal models will be useful for studies of isostasy, dynamic topography, and crustal evolution of the

  19. A sensitivity analysis on seismic tomography data with respect to CO2 saturation of a CO2 geological sequestration field

    NASA Astrophysics Data System (ADS)

    Park, Chanho; Nguyen, Phung K. T.; Nam, Myung Jin; Kim, Jongwook

    2013-04-01

    Monitoring CO2 migration and storage in geological formations is important not only for the stability of geological sequestration of CO2 but also for efficient management of CO2 injection. Especially, geophysical methods can make in situ observation of CO2 to assess the potential leakage of CO2 and to improve reservoir description as well to monitor development of geologic discontinuity (i.e., fault, crack, joint, etc.). Geophysical monitoring can be based on wireline logging or surface surveys for well-scale monitoring (high resolution and nallow area of investigation) or basin-scale monitoring (low resolution and wide area of investigation). In the meantime, crosswell tomography can make reservoir-scale monitoring to bridge the resolution gap between well logs and surface measurements. This study focuses on reservoir-scale monitoring based on crosswell seismic tomography aiming describe details of reservoir structure and monitoring migration of reservoir fluid (water and CO2). For the monitoring, we first make a sensitivity analysis on crosswell seismic tomography data with respect to CO2 saturation. For the sensitivity analysis, Rock Physics Models (RPMs) are constructed by calculating the values of density and P and S-wave velocities of a virtual CO2 injection reservoir. Since the seismic velocity of the reservoir accordingly changes as CO2 saturation changes when the CO2 saturation is less than about 20%, while when the CO2 saturation is larger than 20%, the seismic velocity is insensitive to the change, sensitivity analysis is mainly made when CO2 saturation is less than 20%. For precise simulation of seismic tomography responses for constructed RPMs, we developed a time-domain 2D elastic modeling based on finite difference method with a staggered grid employing a boundary condition of a convolutional perfectly matched layer. We further make comparison between sensitivities of seismic tomography and surface measurements for RPMs to analysis resolution

  20. Upper Mantle Structure beneath the Chinese Capital Region from Teleseismic Finite-Frequency Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Yang, F.; Huang, J.

    2009-12-01

    In this study, we applied the finite-frequency seismic tomography(FFST) to teleseismic waveform data to determine 3-D P-wave velocity structure of the upper mantle under the Chinese capital region. The seismic waveform data from more than 300 teleseismic events recorded by the Chinese digital Capital Seismic Network during the period from September 2003 to December 2005 was used in this study. We obtained 18499 high accuracy P-wave relative travel-times by filtering these waveform data on the vertical component into high-, intermediate-, low-frequency bands (1.0-2.0, 0.1-1.0 and 0.05-0.1 hz, respectively) and the multi-channel waveform cross correlation measurement. The 3-D Fréchet sensitivity kernels were calculated by paraxial approximation for each frequency band. We established observation equations with these measured relative travel-times and 3-D Fréchet sensitivity kernels and then determined the 3-D velocity structure by inverting the observation equations. Our results show there are distinct differences of deep velocity structure down to 150 km depth under the four tectonic units of present study region. The Yanshan uplift exhibited the high velocity(high-V) feature. Under the Taihangshan uplift, broad low velocity(low-V) are visible, but it also shows up as small high-V anomalies. A large scale prominent low-V anomaly was revealed in the shallow upper mantle under the North China basin and Bohai bay. In the North China basin the low-V anomaly generally extend from 50 km to 150 km depth, but in the Bohai bay, this low-V anomaly gradually extend down to 200 km depth. The depth of this low-V anomaly is 50-70 km under the North China basin and Bohai bay, which is consistent with the depth of high conductivity layer in the upper mantle determined by the measurement of magnetotelluric sounding and heat flow. This result shows lithosphere thinning in the North China basin and Bohai bay. Most of large earthquakes occurred in the Zhangjiakou-Penglai fault zone

  1. Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Li, Hongyi; Li, S.; Song, X. D.; Gong, M.; Li, X.; Jia, J.

    2012-01-01

    In this paper, we conduct ambient noise seismic tomography of northwestern China and adjacent regions. The data include 9 months (2009 January to 2009 September) three-component continuous data recorded at 146 seismic stations of newly upgraded China Provincial Digital Seismic Networks and regional Kyrgyzstan and Kazakhstan networks. Empirical Rayleigh and Love wave Green's functions are obtained from interstation cross-correlations. Group velocity dispersion curves for both Rayleigh and Love waves between 7 and 50 s periods were measured for each interstation path by applying the multiple-filter analysis method with phase-matched processing. The group velocity maps show clear lateral variations which correlate well with major geological structures and tectonic units in the study region. Shear wave velocity structures are inverted from Rayleigh wave and love wave dispersion maps. The results show that the Tibetan Plateau has a very thick crust with a low-velocity zone in its mid-lower crust. Along the northern margin of the plateau where a steep topographic gradient is present, the low-velocity zone does not extend to the Tarim basin which may indicate that crustal materials beneath the Tarim basin are colder and stronger than beneath the plateau, therefore inhibit the extension of mid-lower crustal flow and deformation of the Tibetan Plateau, resulting in very sharp topography contrasts. In the northeastern margin with a gentle topographic gradient toward the Ordos platform, the low-velocity zone diminishes around the eastern KunLun fault. Meanwhile, our results reveal obvious lateral velocity changes in the crust beneath the Tarim basin. In the upper crust, the Manjaer depression in the eastern Tarim basin is featured with very low velocities and the Bachu uplift in the western Tarim basin with high velocities; in the mid-lower crust, the northern Tarim basin in general displays lower velocities than the southern part along latitude ˜40° N with an east

  2. Combined Seismic Refraction Inversion, Reflection, and Electrical Resistivity Tomography Imaging of a Glacially Buried Valley

    NASA Astrophysics Data System (ADS)

    Ahmad, J.; Ogunsuyi, O.; Schmitt, D. R.; Rokosh, C. D.; Pawlowicz, J. G.

    2008-12-01

    Buried valleys are common in the regions of the Northern Hemisphere covered by ice sheets during the last glaciation. The valleys are filled by a variety of glacio-lacustrine and glacio-fluvial sedimentation. These valleys are important sources of fresh water, aggregates, and even shallow methane deposits. The surface expressions of the buried valleys, however, are often not apparent and they are often only serendipitously found during drilling for water or petroleum. Geophysical investigations of one deep (~ 350 m) buried valley in northern Alberta that had been located on the basis of geophysical logs were carried out. This buried valley was somewhat unique in that shallow (~ 30 m) methane deposits, providing a significant hazard to drilling, exist. A 10 km high resolution seismic profile (vibrator sweep 14 Hz to 250 Hz, 40 Hz geophone singles at 4 m spacing) was obtained. Significant differences in the raw shot records were apparent across the array due to the lateral differences in compressional wave velocity between the untouched bedrock and the valley fill sediments. Travel time inversion of first arrivals and deeper reflections further quantifies this lateral variation showing that the valley fill and bedrock velocities differ by more than 50% ranging from about 1700 m/s to nearly 3000 m/s, respectively. The reflection seismic image agrees well with the refraction inversion. The gross structure of the steep-sided valley is apparent. The internal architecture, however, shows a variety of clino-form dipping reflectors at the edge of the valley that are possibly related to subglacial sedimentation, a strong dipping reflector that is unconformable with the others and may be representative of recurrent discharge events, and numerous flat lying reflectors that are likely related to lacustrine sedimentation. Co-incident electrical resistivity tomography, too, is largely in agreement with the gross structure. The clay rich bedrock shales are substantially more

  3. Seismic tomography of the Excavation Damaged Zone of the Gallery 04 in the Mont Terri Rock Laboratory

    NASA Astrophysics Data System (ADS)

    Nicollin, F.; Gibert, D.; Bossart, P.; Nussbaum, Ch.; Guervilly, C.

    2008-01-01

    An endoscopic antenna is used to perform a seismic cross-hole tomography in the Excavation Damaged Zone (EDZ) of the new G04 gallery of the Mont Terri Underground Rock Laboratory (Switzerland) excavated in Opalinus clay. More than 800 seismic traces were recorded between two vertical boreholes by combining 22 source and 48 receiver locations. A vertical area of 1.2 × 3.4 m under the floor of the gallery is investigated with a high-resolution tomography. Data with a very good quality allow to determine the traveltimes and the amplitudes of a 40kHz source wavelet propagating between the two boreholes. The analysis of the traveltimes shows that the wave velocity is homogeneous but anisotropic with a minimum value of 2490 +/- 45ms-1 in the direction normal to the bedding and a maximum of 3330 +/- 90ms-1 parallel to the bedding. The amplitude of the first arrivals strongly varies depending on the source-receiver locations, and suggesting an heterogeneous distribution of the attenuation coefficient of the seismic waves. A Bayesian inversion provides likely models of attenuation that are compared with geological observations. The areas where fractures or cracks exist in the Opalinus clay appear as highly absorbing the seismic waves.

  4. Multi-scale Seismic Waveform Tomography and the Evolution of Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Auer, L.; Boschi, L.; Becker, T. W.; van Driel, M.; Stähler, S. C.; Nissen-Meyer, T.; Sigloch, K.

    2014-12-01

    The advent of high-resolution seismometer array deployments such as USArray, IberArray or the upcoming AlpArray pave the way for significantly enhanced tomographic resolution across their tectonically complex target areas. The optimal interpretation of these datasets requires a new generation of multiple-resolution tomographic imaging approaches. Our recent anisotropic S-wave tomography model SAVANI is adaptive and multi-scale in the sense that it relies on a data-driven adaptive parameterization scheme, which automatically adjusts grid size to local ray sampling density, where demanded by the data. Such automatic rescaling of the parameterization grid provides an efficient means to stepwise improve upon a global background model by updating the tomographic system whenever new observations become available. Since our method employs phase and dispersion measurements from the complete time- and frequency range of the seismic record, it is akin to other types of waveform inversion and sensitive across the entire depth extent of the mantle. We present our current work towards an update of the purely ray-theoretical first version of SAVANI, which involves the reinterpretation of the regional portion of our global dataset using more accurate full-waveform based sensitivity functions that should facilitate an adequate extraction of high-resolution regional structure in areas where data coverage permits it. Adaptive-resolution tomography models, as developed with our algorithm, honour the multi-scale nature of mantle convection, and have various advantages over purely global models when applied in the study of global and regional geodynamics. We focus here on upper mantle dynamics and the evolution of the oceanic lithosphere. Importantly, we find a distinct decorrelation between anisotropy patterns as observed in our tomography and conceptual half-space cooling models or dynamic predictions of anisotropic texture, respectively. This observation implies that sub

  5. Shallow seismic structure of Mexico and vicinity from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Gaite, B.; Villasenor, A.; Herraiz, M.; Iglesias, A.; Pacheco, J. F.

    2010-12-01

    Previous tomographic models for Mexico and surrounding regions based on surface waves have been obtained either for small local regions or are part of continental-scale or global studies. We present here the results of high-resolution Rayleigh and Love wave tomography for the entire Mexican territory and vicinity from correlations of seismic ambient noise. For this study we take advantage of the increasing number of broadband stations deployed in recent years in North and Central America. We use a total of 86 stations, including those of the National Seismological Service of Mexico (SSN), the USGS Caribbean network, and other permanent and temporary stations (e.g. USArray and PASSCAL experiments) available from the IRIS DMC, to obtain 30-month (2006-2008) stacked noise cross-correlations of vertical and horizontal component records. From these Green’s functions we measure fundamental-mode Rayleigh and Love wave group and phase velocities using the frequency-time analysis method (FTAN). We then invert these measurements to obtain group and phase velocity maps from 8 to 60 s period. Resolution is better than 200 km for most of the model region located inside the station distribution. The resulting images of Mexico’s crustal and upper mantle structure cover a considerably wider area than local studies and show higher resolution than continental or global models. Future inversion of the dispersion maps will produce a 3-D shear-wave model of the crust and upper mantle of Mexico and surroundings.

  6. High-resolution seismic tomography of compressional wave velocity structure at Newberry Volcano, Oregon Cascade Range

    SciTech Connect

    Achauer, U.; Evans, J.R.; Stauber, D.A.

    1988-09-10

    Compressional wave velocity structure is determined for the upper crust beneath Newberry Volcano, central Oregon, using a high-resolution active-source seismic-tomography method. Newberry Volcano is a bimodal shield volcano east of the axis of the Cascade Range. It is associated both with the Cascade Range and with northwest migrating silicic volcanism in southeast Oregon. High-frequency (approx.7 Hz) crustal phases, nominally Pg and a midcrustal reflected phase, travel upward through a target volume beneath Newberry Volcano to a dense array of 120 seismographs. This arrangement is limited by station spacing to 1- to 2-km resolution in the upper 5 to 6 km of the crust beneath the volcano's summit caldera. The experiment tests the hypothesis that Cascade Range volcanoes are underlain only by small magma chambers. A small low-velocity anomaly delineated abosut 3 km below the summit caldera supports this hypothesis for Newberry Volcano and is interpreted as a possible magma chamber of a few to a few tens of km/sup 3/ in volume. A ring-shaped high-velocity anomaly nearer the surface coincides with the inner mapped ring fractures of the caldera. It also coincides with a circular gravity high, and we interpret it as largely subsolidus silicic cone sheets. The presence of this anomaly and of silicic vents along the ring fractures suggests that the fractures are a likely eruption path between the small magma chamber and the surface.

  7. Upper crustal structure of central Java, Indonesia, from transdimensional seismic ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Zulfakriza, Z.; Saygin, E.; Cummins, P. R.; Widiyantoro, S.; Nugraha, A. D.; Lühr, B.-G.; Bodin, T.

    2014-04-01

    Delineating the crustal structure of central Java is crucial for understanding its complex tectonic setting. However, seismic imaging of the strong heterogeneity typical of such a tectonically active region can be challenging, particularly in the upper crust where velocity contrasts are strongest and steep body wave ray paths provide poor resolution. To overcome these difficulties, we apply the technique of ambient noise tomography (ANT) to data collected during the Merapi Amphibious Experiment (MERAMEX), which covered central Java with a temporary deployment of over 120 seismometers during 2004 May-October. More than 5000 Rayleigh wave Green's functions were extracted by cross-correlating the noise simultaneously recorded at available station pairs. We applied a fully non-linear 2-D Bayesian probabilistic inversion technique to the retrieved traveltimes. Features in the derived tomographic images correlate well with previous studies, and some shallow structures that were not evident in previous studies are clearly imaged with ANT. The Kendeng Basin and several active volcanoes appear with very low group velocities, and anomalies with relatively high velocities can be interpreted in terms of crustal sutures and/or surface geological features.

  8. Source Stacking for Numerical Wavefield Computations - Application to Global Scale Seismic Mantle Tomography

    NASA Astrophysics Data System (ADS)

    MacLean, L. S.; Romanowicz, B. A.; French, S.

    2015-12-01

    Seismic wavefield computations using the Spectral Element Method are now regularly used to recover tomographic images of the upper mantle and crust at the local, regional, and global scales (e.g. Fichtner et al., GJI, 2009; Tape et al., Science 2010; Lekic and Romanowicz, GJI, 2011; French and Romanowicz, GJI, 2014). However, the heaviness of the computations remains a challenge, and contributes to limiting the resolution of the produced images. Using source stacking, as suggested by Capdeville et al. (GJI,2005), can considerably speed up the process by reducing the wavefield computations to only one per each set of N sources. This method was demonstrated through synthetic tests on low frequency datasets, and therefore should work for global mantle tomography. However, the large amplitudes of surface waves dominates the stacked seismograms and these cases can no longer be separated by windowing in the time domain. We have developed a processing approach that helps address this issue and demonstrate its usefulness through a series of synthetic tests performed at long periods (T >60 s) on toy upper mantle models. The summed synthetics are computed using the CSEM code (Capdeville et al., 2002). As for the inverse part of the procedure, we use a quasi-Newton method, computing Frechet derivatives and Hessian using normal mode perturbation theory.

  9. Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second

    PubMed Central

    Choi, Dong-hak; Hiro-Oka, Hideaki; Shimizu, Kimiya; Ohbayashi, Kohji

    2012-01-01

    An ultrafast frequency domain optical coherence tomography system was developed at A-scan rates between 2.5 and 10 MHz, a B-scan rate of 4 or 8 kHz, and volume-rates between 12 and 41 volumes/second. In the case of the worst duty ratio of 10%, the averaged A-scan rate was 1 MHz. Two optical demultiplexers at a center wavelength of 1310 nm were used for linear-k spectral dispersion and simultaneous differential signal detection at 320 wavelengths. The depth-range, sensitivity, sensitivity roll-off by 6 dB, and axial resolution were 4 mm, 97 dB, 6 mm, and 23 μm, respectively. Using FPGAs for FFT and a GPU for volume rendering, a real-time 4D display was demonstrated at a rate up to 41 volumes/second for an image size of 256 (axial) × 128 × 128 (lateral) voxels. PMID:23243560

  10. Improvements of Travel-time Tomography Models from Joint Inversion of Multi-channel and Wide-angle Seismic Data

    NASA Astrophysics Data System (ADS)

    Begović, Slaven; Ranero, César; Sallarès, Valentí; Meléndez, Adrià; Grevemeyer, Ingo

    2016-04-01

    Commonly multichannel seismic reflection (MCS) and wide-angle seismic (WAS) data are modeled and interpreted with different approaches. Conventional travel-time tomography models using solely WAS data lack the resolution to define the model properties and, particularly, the geometry of geologic boundaries (reflectors) with the required accuracy, specially in the shallow complex upper geological layers. We plan to mitigate this issue by combining these two different data sets, specifically taking advantage of the high redundancy of multichannel seismic (MCS) data, integrated with wide-angle seismic (WAS) data into a common inversion scheme to obtain higher-resolution velocity models (Vp), decrease Vp uncertainty and improve the geometry of reflectors. To do so, we have adapted the tomo2d and tomo3d joint refraction and reflection travel time tomography codes (Korenaga et al, 2000; Meléndez et al, 2015) to deal with streamer data and MCS acquisition geometries. The scheme results in a joint travel-time tomographic inversion based on integrated travel-time information from refracted and reflected phases from WAS data and reflected identified in the MCS common depth point (CDP) or shot gathers. To illustrate the advantages of a common inversion approach we have compared the modeling results for synthetic data sets using two different travel-time inversion strategies: We have produced seismic velocity models and reflector geometries following typical refraction and reflection travel-time tomographic strategy modeling just WAS data with a typical acquisition geometry (one OBS each 10 km). Second, we performed joint inversion of two types of seismic data sets, integrating two coincident data sets consisting of MCS data collected with a 8 km-long streamer and the WAS data into a common inversion scheme. Our synthetic results of the joint inversion indicate a 5-10 times smaller ray travel-time misfit in the deeper parts of the model, compared to models obtained using just

  11. How hot is red? Thermal structure of the melting mantle from seismic tomography and thermobarometry

    NASA Astrophysics Data System (ADS)

    Plank, T.; Forsyth, D. W.; Bendersky, C.; Ferguson, D. J.; Gazel, E.; Lee, C.

    2012-12-01

    Seismic tomography is providing ever sharper views of the upper mantle, but the ability to interpret these images continues to be limited by the confounding effects of temperature, water and melt content on S wave velocities (Vs). Globally low Vs is found in many active rift zones (e.g., Basin and Range, East African Rift, mid ocean ridges), and yet it is still not clear if velocities reflect variations in mantle temperature, water concentrations, or melt retention in the mantle. Here we combine Vs results from recent tomographic models with melt thermobarometry to isolate the temperature effect on Vs. We focus on the Western US where we have combined surface and body wave tomography using data from EarthScope's Transportable Array to yield excellent models of Vs to depths of 300 km or more. The widespread basaltic volcanism that has occurred over the past 1 Ma across the region provides samples of the melting mantle. We employ a revised version of the Lee et al. (2009) thermobarometer to estimate pressures and temperatures of last equilibration in the mantle from the Si and Mg compositions of basalts. Results are highly dependent on oxygen fugacity and water content, which we determine with new measurements of water and vanadium in melt inclusions and their olivine hosts. Temperatures and pressures range from ~ 1200°C and 1 GPa (40 km) beneath Big Pine volcanic field to ~ 1450°C and 3.5 GPa (115 km) beneath Lunar Crater volcanic field. Most of the equilibration depths are near the base of the seismically determined lithosphere-asthenosphere boundary, although some are deeper, in the low velocity zone, and some are shallower, in the fast seismic lid. Vs in the source regions varies from ~ 4.4 km/s to 3.9 km/s. There is a good negative correlation of Vs with temperature of equilibration, based on nine volcanic fields across the Basin and Range. Other rifting regions around the world, including back-arc basins, the East Pacific Rise and the East Africa Rift, also

  12. Can seismic tomography detect weak velocity changes? The practical application for the volcanoes in the Tohoku region.

    NASA Astrophysics Data System (ADS)

    Gladkov, Valery; Koulakov, Ivan

    2016-04-01

    Temporal variations of seismic velocities in the active volcanic areas may give us important information about its evolution and development of geologic processes inside it. Usually we use "direct" method to reveal velocity changes with use of body wave's data. In this method, a whole period of observations is divided into a several interesting for us periods. For each period, we obtain a seismic velocity model by means of seismic tomography. Finally, a seismic velocity changes between chosen periods is a difference between inverted velocity models for these periods. In case of weak velocity changes, this approach fails due to factors of varying events location and "event-station" rays distribution which influence can raise a false and apparent velocity changes in the model. With the aim to eliminate these factors and to increase the reliability of velocity changes detection, we propose an approach, which improves the similarity of datasets used for seismic tomography in different time periods by rejection some input events and rays information. We used this approach to the data of the Japan Meteorological Agency, which includes several years before and after the Mw 9.0 Tohoku-Oki event that occurred on 11.03.2011. We performed careful testing using different synthetic models, showing that the selected data subsets reveal weak velocity changes with amplitudes above 0.5%. We detected velocity reductions of P-waves on 0.8% and S-waves on 0.6% in the central area of Honshu possibly linked with the fluid system properties changes which triggered by Tohoku-Oki earthquake.

  13. Ambient seismic noise tomography of SW Iberia integrating seafloor- and land-based data

    NASA Astrophysics Data System (ADS)

    Corela, Carlos; Silveira, Graça; Matias, Luís; Schimmel, Martin; Geissler, Wolfram

    2016-04-01

    We used ambient seismic noise recorded by 24 broadband ocean bottom seismometers (OBS-BB) deployed in in the Gulf of Cadiz during the EC funded NEAREST project and seven broadband land stations located in the South of Portugal to image the sedimentary and crustal structure beneath the Eastern Atlantic and SW Iberia. We computed ambient noise cross-correlations to obtain empirical Green's functions (EGFs) between all station pairs, and using both sort of sensors, namely seismometers and hydrophones. Despite the great difference between the crustal structure below beneath OBSs and land stations and the recording conditions, we were able to compute high signal-to-noise ratio EGFs, by applying a linear cross-correlation with a running absolute mean average time normalization, followed by a time-frequency phase weighted stack. Dispersion analysis was then applied to the EGFs, between 4 and 20s period. The obtained 395 reliable group velocity dispersion curves, between all station pairs, allowed mapping the lateral variation of Rayleigh wave group velocities, as a function of period. Finally, dispersion curves extracted from each cell of the 2D group velocity maps were inverted, as a function of depth, to obtain the 3D distribution of the shear-wave velocities. The 3-D shear wave velocity model, computed from joint inversion of OBS and land stations data allowed to estimate the thickness of sediments and crust and the Moho depth. Although, we could perceive the impact of the spatial gap between OBSs and land stations, our model displays a good correlation with the main geological features. The main results on the sedimentary layer thickness and on the Moho depth are in agreement with the model proposed by other studies using observations from multi-beam bathymetry and seismic profiling, thus confirming that, not only that ambient noise tomography is a valuable tool to image oceanic domains, but also that we can integrate seafloor- and land-based stations. Publication

  14. Seismic structure of the European upper mantle based on adjoint tomography

    NASA Astrophysics Data System (ADS)

    Zhu, Hejun; Bozdağ, Ebru; Tromp, Jeroen

    2015-04-01

    We use adjoint tomography to iteratively determine seismic models of the crust and upper mantle beneath the European continent and the North Atlantic Ocean. Three-component seismograms from 190 earthquakes recorded by 745 seismographic stations are employed in the inversion. Crustal model EPcrust combined with mantle model S362ANI comprise the 3-D starting model, EU00. Before the structural inversion, earthquake source parameters, for example, centroid moment tensors and locations, are reinverted based on global 3-D Green's functions and Fréchet derivatives. This study consists of three stages. In stage one, frequency-dependent phase differences between observed and simulated seismograms are used to constrain radially anisotropic wave speed variations. In stage two, frequency-dependent phase and amplitude measurements are combined to simultaneously constrain elastic wave speeds and anelastic attenuation. In these two stages, long-period surface waves and short-period body waves are combined to simultaneously constrain shallow and deep structures. In stage three, frequency-dependent phase and amplitude anomalies of three-component surface waves are used to simultaneously constrain radial and azimuthal anisotropy. After this three-stage inversion, we obtain a new seismic model of the European curst and upper mantle, named EU60. Improvements in misfits and histograms in both phase and amplitude help us to validate this three-stage inversion strategy. Long-wavelength elastic wave speed variations in model EU60 compare favourably with previous body- and surface wave tomographic models. Some hitherto unidentified features, such as the Adria microplate, naturally emerge from the smooth starting model. Subducting slabs, slab detachments, ancient suture zones, continental rifts and backarc basins are well resolved in model EU60. We find an anticorrelation between shear wave speed and anelastic attenuation at depths < 100 km. At greater depths, this anticorrelation becomes

  15. On the potential of recording earthquakes for global seismic tomography by low-cost autonomous instruments in the oceans

    NASA Astrophysics Data System (ADS)

    Simons, Frederik J.; Nolet, Guust; Georgief, Paul; Babcock, Jeff M.; Regier, Lloyd A.; Davis, Russ E.

    2009-05-01

    We describe the development and testing of an autonomous device designed to revolutionize Earth structure determination via global seismic tomography by detecting earthquakes at teleseismic distances in the oceans. One prototype MERMAID, short for Mobile Earthquake Recording in Marine Areas by Independent Divers, was constructed and tested at sea. The instrument combines two readily available, relatively low-cost but state-of-the-art components: a Sounding Oceanographic Lagrangian Observer, or SOLO float, and an off-the-shelf hydrophone, with custom-built data logging hardware. We report on the development of efficient wavelet-based algorithms for the detection and discrimination of seismic events and analyze three time series of acoustic pressure collected at a depth of 700 m in pilot experiments conducted offshore San Diego, CA. In these tests, over 120 hours of data were gathered, and five earthquakes, of which one was teleseismic, were recorded and identified. Quantitative estimates based on these results suggest that instruments of the MERMAID type may collect up to a hundred tomographically useful teleseismic events per year. The final design will also incorporate a Global Positioning System receiver, onboard signal processing software optimized for low-power chips, and high-throughput satellite communication equipment for telemetered data transfer. With these improvements, we hope to realize our vision of a global array of autonomous floating sensors for whole-earth seismic tomography.

  16. Degradation of the mechanical properties imaged by seismic tomography during an EGS creation at The Geysers (California) and geomechanical modeling

    NASA Astrophysics Data System (ADS)

    Jeanne, Pierre; Rutqvist, Jonny; Hutchings, Lawrence; Singh, Ankit; Dobson, Patrick F.; Walters, Mark; Hartline, Craig; Garcia, Julio

    2015-03-01

    Using coupled thermal-hydro-mechanical (THM) modeling, we evaluated new seismic tomography results associated with stimulation injection at an EGS demonstration project at the Northwest Geysers geothermal steam field, California. We studied high resolution seismic tomography images built from data recorded during three time periods: a period of two months prior to injection and during two consecutive one month periods after injection started in October 2011. Our analysis shows that seismic velocity decreases in areas of most intense induced microseismicity and this is also correlated with the spatial distribution of calculated steam pressure changes. A detailed analysis showed that shear wave velocity decreases with pressure in areas where pressure is sufficiently high to cause shear reactivation of pre-existing fractures. The analysis also indicates that cooling in a liquid zone around the injection well contributes to reduced shear wave velocity. A trend of reducing compressional wave velocity with fluid pressure was also found, but at pressures much above the pressure required for shear reactivation. We attribute the reduction in shear wave velocity to softening in the rock mass shear modulus associated with shear dislocations and associated changes in fracture surface properties. Also, as the rock mass become more fractured and more deformable this favors reservoir expansion caused by the pressure increase, and so the fracture porosity increases leading to a decrease in bulk density, a decrease in Young modulus and finally a decrease in Vp.

  17. Seismic Tomography Around the Eastern Edge of the Alps From Ambient-Noise-Based Rayleigh Waves

    NASA Astrophysics Data System (ADS)

    Zigone, Dimitri; Fuchs, Florian; Kolinsky, Petr; Gröschl, Gidera; Apoloner, Maria-Theresia; Qorbani, Ehsan; Schippkus, Sven; Löberich, Eric; Bokelmann, Götz; AlpArray Working Group

    2016-04-01

    Inspecting ambient noise Green's functions is an excellent tool for monitoring the quality of seismic data, and for swiftly detecting changes in the configuration of a seismological station. Those Green's functions readily provide stable information about structural variations near the Earth's surface. We apply the technique to a network consisting of about 40 broadband stations in the area of the Easternmost Alps, in particular those operated by the University of Vienna (AlpArrayAustria) and the Vienna University of Technology. Those data are used to estimate Green's functions between station pairs; the Green's function consist mainly of surface waves, and we use them to investigate crustal structure near the Eastern edge of the Alps. To obtain better signal-to-noise ratios in the noise correlation functions, we adopt a procedure using short time windows (2 hr). Energy tests are performed on the data to remove effects of transient sources and instrumental problems. The resulting 9-component correlation tensor is used to make travel time measurements on the vertical, radial and transverse components. Those measurements can be used to evaluate dispersion using frequency-time analysis for periods between 5-30 seconds. After rejecting paths without sufficient signal-to-noise ratio, we invert the velocity measurements using the Barmin et al. (2001) approach on a 10 km grid size. The obtained group velocity maps reveal complex structures with clear velocity contrasts between sedimentary basins and crystalline rocks. The Bohemian Massif and the Northern Calcareous Alps are associated with fast-velocity bodies. By contrast, the Vienna Basin presents clear low-velocity zones with group velocities down to 2 km/s at period of 7 s. The group velocities are then inverted to 3D images of shear wave speeds using the linear inversion method of Herrmann (2013). The results highlight the complex crustal structure and complement earthquake tomography studies in the region. Updated

  18. Closure of the Mongol-Okhotsk Ocean: Insights from seismic tomography and numerical modelling

    NASA Astrophysics Data System (ADS)

    Fritzell, E. H.; Bull, A. L.; Shephard, G. E.

    2016-07-01

    The existence of the Palaeozoic and Mesozoic Mongol-Okhotsk Ocean is evident from the Mongol-Okhotsk suture, which stretches from central Mongolia to the Sea of Okhotsk. A lack of sufficient palaeomagnetic data and an otherwise diffuse suture with an abrupt termination to the west has led to difficulties in reconstructing the history, geometry and closure of this ocean. Both the timing and style of the ocean's closure are unclear and have led to several alternative reconstructions. Closure timing ranges between the Late Jurassic (∼155 Ma) and beginning of the Early Cretaceous (∼120 Ma), and the proposed kinematics include contemporaneous subduction along two opposite margins, subduction along only one margin or with a component of left-lateral shear. In the present study, numerical models of mantle convection are coupled with global plate reconstructions to investigate ambiguities regarding the closure of the Mongol-Okhotsk Ocean. In order to decipher the tectonic history of this enigmatic region, two end-member scenarios of subduction location - either along the present-day northern or the southern margins of the Mongol-Okhotsk Ocean - are imposed as kinematic surface boundary conditions for the past 230 Myrs. Through a comparison to seismic tomography, the results indicate a preferred subduction history along the Siberian margin (relative northern margin) of the Mongol-Okhotsk Ocean. At present-day, the slab remnant is predicted to be located farther west than previously proposed. Furthermore, we find that the subducting slabs in this region generate a hot, dense pile at the same location and with a similar shape as the Perm Anomaly.

  19. Seismic wave-speed structure beneath the metropolitan area of Japan based on adjoint tomography

    NASA Astrophysics Data System (ADS)

    Miyoshi, T.; Obayashi, M.; Tono, Y.; Tsuboi, S.

    2015-12-01

    We have obtained a three-dimensional (3D) model of seismic wave-speed structure beneath the metropolitan area of Japan. We applied the spectral-element method (e.g. Komatitsch and Tromp 1999) and adjoint method (Liu and Tromp 2006) to the broadband seismograms in order to infer the 3D model. We used the travel-time tomography result (Matsubara and Obara 2011) as an initial 3D model and used broadband waveforms recorded at the NIED F-net stations. We selected 147 earthquakes with magnitude of larger than 4.5 from the F-net earthquake catalog and used their bandpass filtered seismograms between 5 and 20 second with a high S/N ratio. The 3D model used for the forward and adjoint simulations is represented as a region of approximately 500 by 450 km in horizontal and 120 km in depth. Minimum period of theoretical waveforms was 4.35 second. For the adjoint inversion, we picked up the windows of the body waves from the observed and theoretical seismograms. We used SPECFEM3D_Cartesian code (e.g. Peter et al. 2011) for the forward and adjoint simulations, and their simulations were implemented by K-computer in RIKEN. Each iteration required about 0.1 million CPU hours at least. The model parameters of Vp and Vs were updated by using the steepest descent method. We obtained the fourth iterative model (M04), which reproduced observed waveforms better than the initial model. The shear wave-speed of M04 was significantly smaller than the initial model at any depth. The model of compressional wave-speed was not improved by inversion because of small alpha kernel values. Acknowledgements: This research was partly supported by MEXT Strategic Program for Innovative Research. We thank to the NIED for providing seismological data.

  20. The Augustine magmatic system as revealed by seismic tomography and relocated earthquake hypocenters from 1994 through 2009

    USGS Publications Warehouse

    Syracuse, E.M.; Thurber, C.H.; Power, J.A.

    2011-01-01

    We incorporate 14 years of earthquake data from the Alaska Volcano Observatory with data from a 1975 controlled-source seismic experiment to obtain the three-dimensional P and S wave velocity structure and the first high-precision earthquake locations at Augustine Volcano to be calculated in a fully three-dimensional velocity model. Velocity tomography shows two main features beneath Augustine: a narrow, high-velocity column beneath the summit, extending from ???2 km depth to the surface, and elevated velocities on the south flank. Our relocation results allow a thorough analysis of the spatio-temoral patterns of seismicity and the relationship to the magmatic and eruptive activity. Background seismicity is centered beneath the summit at an average depth of 0.6 km above sea level. In the weeks leading to the January 2006 eruption of Augustine, seismicity focused on a NW-SE line along the trend of an inflating dike. A series of drumbeat earthquakes occurred in the early weeks of the eruption, indicating further magma transport through the same dike system. During the six months following the onset of the eruption, the otherwise quiescent region 1 to 5 km below sea level centered beneath the summit became seismically active with two groups of earthquakes, differentiated by frequency content. The deep longer-period earthquakes occurred during the eruption and are interpreted as resulting from the movement of magma toward the summit, and the post-eruptive shorter-period earthquakes may be due to the relaxation of an emptied magma tube. The seismicity subsequently returned to its normal background rates and patterns. Copyright 2011 by the American Geophysical Union.

  1. Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle

    USGS Publications Warehouse

    Foulger, G.R.; Pritchard, M.J.; Julian, B.R.; Evans, J.R.; Allen, R.M.; Nolet, G.; Morgan, W.J.; Bergsson, B.H.; Erlendsson, P.; Jakobsdottir, S.; Ragnarsson, S.; Stefansson, R.; Vogfjord, K.

    2001-01-01

    range ??? 100-300 km beneath east-central Iceland. The anomalous body is approximately cylindrical in the top 250 km but tabular in shape at greater depth, elongated north-south and generally underlying the spreading plate boundary. Such a morphological change and its relationship to surface rift zones are predicted to occur in convective upwellings driven by basal heating, passive upwelling in response to plate separation and lateral temperature gradients. Although we cannot resolve structure deeper than ??? 450 km, and do not detect a bottom to the anomaly, these models suggest that it extends no deeper than the mantle transition zone. Such models thus suggest a shallow origin for the Iceland hotspot rather than a deep mantle plume, and imply that the hotspot has been located on the spreading ridge in the centre of the north Atlantic for its entire history, and is not fixed relative to other Atlantic hotspots. The results are consistent with recent, regional full-thickness mantle tomography and whole-mantle tomography images that show a strong, low-wave-speed anomaly beneath the Iceland region that is confined to the upper mantle and thus do not require a plume in the lower mantle. Seismic and geochemical observations that are interpreted as indicating a lower mantle, or core-mantle boundary origin for the North Atlantic Igneous Province and the Iceland hotspot should be re-examined to consider whether they are consistent with upper mantle processes.

  2. Spectral-Element Seismic Wave Propagation Codes for both Forward Modeling in Complex Media and Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.

    2015-12-01

    We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.

  3. Resistivity and Seismic Surface Wave Tomography Results for the Nevşehir Kale Region: Cappadocia, Turkey

    NASA Astrophysics Data System (ADS)

    Coşkun, Nart; Çakır, Özcan; Erduran, Murat; Arif Kutlu, Yusuf

    2014-05-01

    The Nevşehir Kale region located in the middle of Cappadocia with approximately cone shape is investigated for existence of an underground city using the geophysical methods of electrical resistivity and seismic surface wave tomography together. Underground cities are generally known to exist in Cappadocia. The current study has obtained important clues that there may be another one under the Nevşehir Kale region. Two-dimensional resistivity and seismic profiles approximately 4-km long surrounding the Nevşehir Kale are measured to determine the distribution of electrical resistivities and seismic velocities under the profiles. Several high resistivity anomalies with a depth range 8-20 m are discovered to associate with a systematic void structure beneath the region. Because of the high resolution resistivity measurement system currently employed we were able to isolate the void structure from the embedding structure. Low seismic velocity zones associated with the high resistivity depths are also discovered. Using three-dimensional visualization techniques we show the extension of the void structure under the measured profiles.

  4. Mantle seismic structure beneath the MELT region of the east pacific rise from P and S wave tomography

    PubMed

    Toomey; Wilcock; Solomon; Hammond; Orcutt

    1998-05-22

    Relative travel time delays of teleseismic P and S waves, recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment, have been inverted tomographically for upper-mantle structure beneath the southern East Pacific Rise. A broad zone of low seismic velocities extends beneath the rise to depths of about 200 kilometers and is centered to the west of the spreading center. The magnitudes of the P and S wave anomalies require the presence of retained mantle melt; the melt fraction near the rise exceeds the fraction 300 kilometers off axis by as little as 1%. Seismic anisotropy, induced by mantle flow, is evident in the P wave delays at near-vertical incidence and is consistent with a half-width of mantle upwelling of about 100 km. PMID:9596567

  5. Abdominal and pancreatic motion correlation using 4D CT, 4D transponders, and a gating belt.

    PubMed

    Betancourt, Ricardo; Zou, Wei; Plastaras, John P; Metz, James M; Teo, Boon-Keng; Kassaee, Alireza

    2013-01-01

    The correlation between the pancreatic and external abdominal motion due to respiration was investigated on two patients. These studies utilized four dimensional computer tomography (4D CT), a four dimensional (4D) electromagnetic transponder system, and a gating belt system. One 4D CT study was performed during simulation to quantify the pancreatic motion using computer tomography images at eight breathing phases. The motion under free breathing and breath-hold were analyzed for the 4D electromagnetic transponder system and the gating belt system during treatment. A linear curve was fitted for all data sets and correlation factors were evaluated between the 4D electromagnetic transponder system and the gating belt system data. The 4D CT study demonstrated a modest correlation between the external marker and the pancreatic motion with R-square values larger than 0.8 for the inferior-superior (inf-sup). Then, the relative pressure from the belt gating system correlated well with the 4D electromagnetic transponder system's motion in the anterior-posterior (ant-post) and the inf-post directions. These directions have a correlation value of -0.93 and 0.76, while the lateral only had a 0.03 correlation coefficient. Based on our limited study, external surrogates can be used as predictors of the pancreatic motion in the inf-sup and the ant-post directions. Although there is a low correlation on the lateral direction, its motion is significantly shorter. In conclusion, an appropriate treatment delivery can be used for pancreatic cancer when an internal tracking system, such as the 4D electromagnetic transponder system, is unavailable. PMID:23652242

  6. High Resolution of Crustal Seismic Wave Attenuation Tomography in Eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, X.; Sandvol, E. A.; Ni, J. F.; Hearn, T. M.; Chen, Y. J.; Shen, Y.

    2010-12-01

    We investigate the frequency dependent attenuation tomography of regional seismic phases Lg and Pg. The intrinsic attenuation of Lg and Pg is employed as an approximation of Qs and Qp in the crust and used as a constraint in interpretation of crustal geothermy, rheology and tectonics. We have generated tomographic images with the best resolution to observe structures as small as 100km2. We applied waveform data from 769 regional events and 222 stations of permanent or temporary networks including CDSN, INDEPTH-IV-ASCENT, NETS, Namche Barwa, and MIT-China within this region. We used a Reverse Two-station/event Method (RTM) to measure inter-station Q; this method theoretically eliminates any contributions from source excitation and site amplification from the estimation of path-based Q. The tomographic images with significant lateral variations in Q suggest a strong lateral variation in the geothermal and rheological properties of the Tibetan crust. The disadvantage of the Two-Station Method (TSM) is that the measurements is contaminated by site amplification terms, thus the RTM is a significant improvement in the methodology of measuring Q. Large-scale scattering is a significant contributor to Lg and Pg attenuation however, we suggest the patterns in our tomographic images suggest that the intrinsic attenuation is the dominant factor causing the observed Q anomalies. The most remarkable results in this study include that (1) a high Q zone bands around the eastern Himalayan syntaxis and even spreads to the entire three-river zone tectonically between the Indus-Yalu suture and the Bangong-Nujiang suture in the southeastern TP; (2) the TP has widespread low to middle Q values, except the mid-eastern Qiangtang terrane, east of the INDEPTH-III profile, with relatively middle to high Q values; (3) approximately along the Kunlun Fault system there is a nearly 1000km E-W very low Q band; (4) high Q values are observed widely in the Qaidam Basin, Tarim Basin, Sichuan Basin

  7. 2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach

    EPA Science Inventory

    We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...

  8. Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography

    USGS Publications Warehouse

    Lin, Guoqing; Shearer, Peter M.; Matoza, Robin S.; Okubo, Paul G.; Amelung, Falk

    2016-01-01

    We present a new three-dimensional seismic velocity model of the crustal and upper mantle structure for Mauna Loa and Kilauea volcanoes in Hawaii. Our model is derived from the first-arrival times of the compressional and shear waves from about 53,000 events on and near the Island of Hawaii between 1992 and 2009 recorded by the Hawaiian Volcano Observatory stations. The Vp model generally agrees with previous studies, showing high-velocity anomalies near the calderas and rift zones and low-velocity anomalies in the fault systems. The most significant difference from previous models is in Vp/Vs structure. The high-Vp and high-Vp/Vs anomalies below Mauna Loa caldera are interpreted as mafic magmatic cumulates. The observed low-Vp and high-Vp/Vs bodies in the Kaoiki seismic zone between 5 and 15 km depth are attributed to the underlying volcaniclastic sediments. The high-Vp and moderate- to low-Vp/Vs anomalies beneath Kilauea caldera can be explained by a combination of different mafic compositions, likely to be olivine-rich gabbro and dunite. The systematically low-Vp and low-Vp/Vs bodies in the southeast flank of Kilauea may be caused by the presence of volatiles. Another difference between this study and previous ones is the improved Vp model resolution in deeper layers, owing to the inclusion of events with large epicentral distances. The new velocity model is used to relocate the seismicity of Mauna Loa and Kilauea for improved absolute locations and ultimately to develop a high-precision earthquake catalog using waveform cross-correlation data.

  9. Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography

    NASA Astrophysics Data System (ADS)

    Lin, Guoqing; Shearer, Peter M.; Matoza, Robin S.; Okubo, Paul G.; Amelung, Falk

    2014-05-01

    We present a new three-dimensional seismic velocity model of the crustal and upper mantle structure for Mauna Loa and Kilauea volcanoes in Hawaii. Our model is derived from the first-arrival times of the compressional and shear waves from about 53,000 events on and near the Island of Hawaii between 1992 and 2009 recorded by the Hawaiian Volcano Observatory stations. The Vp model generally agrees with previous studies, showing high-velocity anomalies near the calderas and rift zones and low-velocity anomalies in the fault systems. The most significant difference from previous models is in Vp/Vs structure. The high-Vp and high-Vp/Vs anomalies below Mauna Loa caldera are interpreted as mafic magmatic cumulates. The observed low-Vp and high-Vp/Vs bodies in the Kaoiki seismic zone between 5 and 15 km depth are attributed to the underlying volcaniclastic sediments. The high-Vp and moderate- to low-Vp/Vs anomalies beneath Kilauea caldera can be explained by a combination of different mafic compositions, likely to be olivine-rich gabbro and dunite. The systematically low-Vp and low-Vp/Vs bodies in the southeast flank of Kilauea may be caused by the presence of volatiles. Another difference between this study and previous ones is the improved Vp model resolution in deeper layers, owing to the inclusion of events with large epicentral distances. The new velocity model is used to relocate the seismicity of Mauna Loa and Kilauea for improved absolute locations and ultimately to develop a high-precision earthquake catalog using waveform cross-correlation data.

  10. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Thurber, C. H.; Zhang, H.; Peng, Z.; Zhao, P.

    2011-12-01

    Large crustal faults such as the San Andreas fault (SAF) often juxtapose rocks of significantly different elastic properties, resulting in well-defined bimaterial interfaces. A sharp material contrast across the fault interface is expected to generate fault zone head waves (FZHW's) that spend a large portion of their propagation paths refracting along the bimaterial interface (Ben-Zion 1989, 1990; Ben-Zion & Aki 1990). Because of this FZHW's provide a high-resolution tool for imaging the velocity contrast across the fault. Recently, Zhao et al. (2010) systematically analyzed large data sets of near-fault waveforms recorded by several permanent and temporary seismic networks along the Parkfield section of the SAF. The local-scale tomography study of Zhang et al. (2009) for a roughly 10 km3 volume centered on SAFOD and the more regional-scale study of Thurber et al. (2006) for a 130 km x 120 km x 20 km volume centered on the 2004 Parkfield earthquake rupture provide what are probably the best 3D images of the seismic velocity structure of the area. The former shows a low velocity zone associated with the SAF extending to significant depth, and both image the well-known velocity contrast across the fault. Seismic tomography generally uses just first P and/or S arrivals because of the relative simplicity of phase picking and ray tracing. Adding secondary arrivals such as FZHW's, however, can enhance the resolution of structure and strengthen constraints on earthquake locations and focal mechanisms. We present a model of 3D velocity structure for the Parkfield region that utilizes a combination of arrival times for FZHW's and the associated direct-wave secondary arrivals as well as existing P-wave arrival time data. The resulting image provides a higher-resolution model of the SAF at depth than previously published models. In addition, we plan to measure polarizations of the direct P and S waves and FZHW's and incorporate the data into our updated velocity tomography

  11. A simple algorithm for sequentially incorporating gravity observations in seismic traveltime tomography

    USGS Publications Warehouse

    Parsons, T.; Blakely, R.J.; Brocher, T.M.

    2001-01-01

    The geologic structure of the Earth's upper crust can be revealed by modeling variation in seismic arrival times and in potential field measurements. We demonstrate a simple method for sequentially satisfying seismic traveltime and observed gravity residuals in an iterative 3-D inversion. The algorithm is portable to any seismic analysis method that uses a gridded representation of velocity structure. Our technique calculates the gravity anomaly resulting from a velocity model by converting to density with Gardner's rule. The residual between calculated and observed gravity is minimized by weighted adjustments to the model velocity-depth gradient where the gradient is steepest and where seismic coverage is least. The adjustments are scaled by the sign and magnitude of the gravity residuals, and a smoothing step is performed to minimize vertical streaking. The adjusted model is then used as a starting model in the next seismic traveltime iteration. The process is repeated until one velocity model can simultaneously satisfy both the gravity anomaly and seismic traveltime observations within acceptable misfits. We test our algorithm with data gathered in the Puget Lowland of Washington state, USA (Seismic Hazards Investigation in Puget Sound [SHIPS] experiment). We perform resolution tests with synthetic traveltime and gravity observations calculated with a checkerboard velocity model using the SHIPS experiment geometry, and show that the addition of gravity significantly enhances resolution. We calculate a new velocity model for the region using SHIPS traveltimes and observed gravity, and show examples where correlation between surface geology and modeled subsurface velocity structure is enhanced.

  12. Seismically induced soft-sediment deformation structures revealed by X-ray computed tomography of boring cores

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Komatsubara, Junko

    2016-06-01

    X-ray computed tomography (CT) allows us to visualize three-dimensional structures hidden in boring cores nondestructively. We applied medical X-ray CT to cores containing seismically induced soft-sediment deformation structures (SSDSs) obtained from the Kanto region of Japan, where the 2011 off the Pacific coast of Tohoku Earthquake occurred. The CT images obtained clearly revealed various types of the seismically induced SSDSs embedded in the cores: a propagating sand dyke bent complexly by the preexisting geological structure, deformed laminations of fluidized sandy layers, and two types of downward mass movement (ductile downward folding and brittle normal faulting) as compensation for upward sand transport through sand dykes. Two advanced image analysis techniques were applied to the sand dyke CT images for the first time. The GrowCut algorithm, a specific digital image segmentation technique that uses cellular automata, was used successfully to extract the three-dimensional complex sand dyke structures embedded in the sandy sediments, which would have been difficult to achieve using a conventional image processing technique. Local autocorrelation image analysis was performed to detect the flow pattern aligned along the sand dykes objectively. The results demonstrate that X-ray CT coupled with advanced digital image analysis techniques is a promising approach to studying the seismically induced SSDSs in boring cores.

  13. Cenozoic East Asia plate tectonic reconstructions using constraints of mapped and unfolded slabs from mantle seismic tomography

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Kanda, R. V.

    2012-12-01

    Subducted slabs were mapped in the mantle under East Asia using MITP08 global seismic tomography (Li et al., 2008), Benioff zone seismicities and published local tomography. 3D gridded slab surfaces were constructed by manually picking and correlating the midpoint of fast seismic anomalies along variable cross-section orientations. The mapped slabs were structurally 'unfolded' and restored to the spherical Earth surface to assess their pre-subduction geometries. Gplates software was used to constrain plate tectonic reconstructions using the unfolded slabs. The unfolded SE Asia upper mantle slabs reveal a 'picture puzzle' fit along their edges that suggests a larger NE Indo-Australian ocean once existed that included the Philippine Sea, Molucca Sea and Celebes Sea. Deeper lower mantle detached slabs indicate an early to mid-Cenozoic 'East Asia Sea' between east Sundaland and the Pacific that stretched from the Ryukyu Islands north of present-day Taiwan southward to Sulawesi. The unfolded slab constraints produced gap and overlap incompatibilities when used in published plate tectonic reconstructions. Here a plate tectonic reconstruction incorporating the unfolded slab constraints is proposed that has the Philippine Sea, Molucca Sea and Celebes Sea clustered at the northern margin of Australia during the early Cenozoic. At the mid-Cenozoic these plates moved NNE with 'Australia-like' plate motions and overrode the 'East Asia Sea'. Plate motions were accommodated by N-S transforms at the eastern margin of Sundaland. Between 25 to 15 Ma the Philippine Sea, Molucca Sea and Celebes Sea plates were fragmented from the greater Indo-Australian ocean. The Philippine Sea was captured by the Pacific plate and now has Pacific-like westward motions.

  14. Can we go From Tomographically Determined Seismic Velocities to Composition? Amplitude Resolution Issues in Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Wagner, L.

    2007-12-01

    There have been a number of recent papers (i.e. Lee (2003), James et al. (2004), Hacker and Abers (2004), Schutt and Lesher (2006)) which calculate predicted velocities for xenolith compositions at mantle pressures and temperatures. It is tempting, therefore, to attempt to go the other way ... to use tomographically determined absolute velocities to constrain mantle composition. However, in order to do this, it is vital that one is able to accurately constrain not only the polarity of the determined velocity deviations (i.e. fast vs slow) but also how much faster, how much slower relative to the starting model, if absolute velocities are to be so closely analyzed. While much attention has been given to issues concerning spatial resolution in seismic tomography (i.e. what areas are fast, what areas are slow), little attention has been directed at the issue of amplitude resolution (how fast, how slow). Velocity deviation amplitudes in seismic tomography are heavily influenced by the amount of regularization used and the number of iterations performed. Determining these two parameters is a difficult and little discussed problem. I explore the effect of these two parameters on the amplitudes obtained from the tomographic inversion of the Chile Argentina Geophysical Experiment (CHARGE) dataset, and attempt to determine a reasonable solution space for the low Vp, high Vs, low Vp/Vs anomaly found above the flat slab in central Chile. I then compare this solution space to the range in experimentally determined velocities for peridotite end-members to evaluate our ability to constrain composition using tomographically determined seismic velocities. I find that in general, it will be difficult to constrain the compositions of normal mantle peridotites using tomographically determined velocities, but that in the unusual case of the anomaly above the flat slab, the observed velocity structure still has an anomalously high S wave velocity and low Vp/Vs ratio that is most

  15. 4-D Noise-Based Seismology at Volcanoes: Ongoing Efforts and Perspectives

    NASA Astrophysics Data System (ADS)

    Brenguier, F.; Campillo, M.; Shapiro, N.; Rivet, D. N.; Takeda, T.; Aoki, Y.; Lecointre, A.

    2014-12-01

    Probing the long-term processes of volcanic eruption preparation and the short-term initiation and transport of magma to surface remains extremely difficult. One reason is that it is hardly possible to directly monitor at depth the magma storage areas. One way to overcome this limit is to use seismic waves that, through their propagation, directly sample the targets of interest. This presentation will summarize recent advances and perspectives in characterizing volcanic systems using noise-based seismic monitoring. In particular, we will focus on Piton de la Fournaise volcano where a wide variety of processes including long-term magma pressure buildup, flank deformation, environmental perturbations and short-term eruption preparation are imaged. We will also show an example in Japan where mapping the seismic velocity susceptibility to transient stress perturbations allows characterizing the state of pressurized volcanic systems. We will discuss the perspectives of noise-based 4-D tomography that will be made possible in the future thanks to the availability of dense seismic networks including large-N arrays and intensive computational facilities.

  16. Storage of fluids and melts at subduction zones detectable by seismic tomography

    NASA Astrophysics Data System (ADS)

    Luehr, B. G.; Koulakov, I.; Rabbel, W.; Brotopuspito, K. S.; Surono, S.

    2015-12-01

    During the last decades investigations at active continental margins discovered the link between the subduction of fluid saturated oceanic plates and the process of ascent of these fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose the geophysical structure of the mantle and crustal range above the down going slap has been imaged. Information is required about the slap, the ascent paths, as well as the reservoires of fluids and partial melts in the mantle and the crust up to the volcanoes at the surface. Statistically the distance between the volcanoes of volcanic arcs down to their Wadati Benioff zone results of approximately 100 kilometers in mean value. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical laboratory investigations have shown that dehydration of the diving plate has a maximum at temperature and pressure conditions we find at around 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be resolved by seismic tomographic methods using records of local natural seismicity. With these methods these areas are corresponding to lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. The anomalies and their time dependence are controlled by the fluids. The seismic velocity anomalies detected so far are within a range of a few per cent to more than 30% reduction. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined to achieve best results. The seismic station distribution should cover an area from before the trench up to far behind the volcanic chain, to provide under favorable conditions information down to 150 km depth. Findings of different subduction zones will be compared and discussed.

  17. Seismic study of the inner part of the Tyrrhenian basin from 2-D joint refraction and reflection travel-time tomography

    NASA Astrophysics Data System (ADS)

    Prada, M.; Sallares, V.; Ranero, C. R.; Guzman, M.; Grevemeyer, I.; Zitellini, N.

    2011-12-01

    Located between Italy, Corsica, Sardinia and Sicily the Tyrrhenian Sea is a Neogen back-arc basin formed by continental extension attributed to the southeastward rollback of the subducting Ionian plate. This triangle-shaped basin is an ideal place to study the evolution of extension process. The basin displays different states of extension along its length, finding from the early, low-extension episodes of continental rifting in the northern areas to the exhumation of the mantle in the deepest part of the basin. In order to study the nature of the crust and the 4D evolution of the Tyrrhenian basin, we have collected a survey of multichannel (MCS) and wide angle seismic (WAS) data. This survey was carried out into the framework of the MEDOC project during 2010 with the coordination of 2 research vessels, the R/V Sarmiento de Gamboa and the R/V Urania. During the experiment a total of 17 lines of MCS and 5 lines of WAS were acquired, with more than 100 deployments of both Ocean Bottom Hydrophones (OBH) and Ocean Bottom Seismometers (OBS). The coordination with more than one team on land made possible to record data by land stations in Corsica, Sardinia and Italy. Here we present 2D P-wave velocity models with the velocity distribution in the crust and uppermost mantle and the geometry of the moho boundary, obtained by joint refraction and reflection tomography of WAS data. The data belong to lines recorded between Sardinia and Italy and Sardinia and Sicily. The data selected for the inversion consist in phases refracted through the crust and upper mantle (phases Pg and Pn) and reflected in the moho boundary (phases PmP). A detailed statistical uncertainty analysis will allow us to use seismic velocities to predict the petrology of the different domains recognized. The aim of this modeling effort is to identify the different crustal units across the basin in order to determine the transition between the continental little extended crust and the exhumed mantle.

  18. A new Bayesian approach of tomography and seismic event location dedicated to the estimation of the true uncertainties

    NASA Astrophysics Data System (ADS)

    Gesret, Alexandrine; Noble, Mark; Desassis, Nicolas; Romary, Thomas

    2013-04-01

    The monitoring of hydrocarbon reservoirs, geothermal reservoirs and mines commonly relies on the analysis of the induced seismicity. Even if a large amount of microseismic data have been recorded, the relationship between the exploration and the induced seismicity still needs to be better understood. This microseismicity is also interpreted to derive the fracture network and several physical parameters. The first step is thus to locate very precisely the induced seismicity and to estimate its associated uncertainties. The microseismic location errors are mainly due to the lack of knowledge of the wave-propagation medium, the velocity model has thus to be preliminary inverted. We here present a tomography algorithm that estimates the true uncertainties on the resulting velocity model. Including these results, we develop an approach that allows to obtain accurate event locations and their associated uncertainties due to the velocity model uncertainties. We apply a Monte-Carlo Markov chain (MCMC) algorithm to the tomography of calibration shots for a typical 3D geometry hydraulic fracture context. Our formulation is especially useful for ill-posed inverse problem, as it results in a large number of samples of possible solutions from the posterior probability distribution. All these velocity models are consistent with both the data and the prior information. Our non linear approach leads to a very satisfying mean velocity model and to associated meaningful standard deviations. These uncertainty estimates are much more reliable and accurate than sensitivity tests for only one final solution that is obtained with a linearized inversion approach. The Bayesian approach is commonly used for the computation of the posterior probability density function (PDF) of the event location as proposed by Tarantola and Valette in 1982 and Lomax in 2000. We add here the propagation of the posterior distribution of the velocity model to the formulation of the posterior PDF of the event

  19. Recent upper mantle structure beneath Siberia and surrounding areas according to a seismic tomography and numerical thermogravitational convection modeling data

    NASA Astrophysics Data System (ADS)

    Bushenkova, N.; Chervov, V.; Koulakov, I.

    2012-04-01

    We investigate the interaction between the recent lithosphere structure and dynamics of the upper mantle beneath a big segment of Asia. This study is based on the results of seismic tomography using travel times from the ISC catalog (1964-2007) and numerical thermogravitational modeling. The model contains thick lithosphere blocks of the Siberian Craton, the Tarim plate, and remnant parts of the Mongol-Tuva microcontinent. These blocks are alternated with weaker younger lithosphere corresponding to the West-Siberian plate, orogenic belts in southern Siberia and the Arctic shelves to the north. In the tomography part, we have updated a previously published model by Koulakov and Bushenkova (2010) based on a larger dataset including reflected PP and teleseismic P travel times from global catalogues. The lithosphere thickness has been estimated based on seismic anomalies at 250 km depth according to a technique described in (Bushenkova et al., 2008). These estimates were used to define the lithosphere thickness which is then implemented for setting the boundary conditions in numerical modeling and for joint interpretation of the final results. When computing the mantle dynamics, we consider the viscosity which is depends from temperature and pressure. Calculations are performed in the spherical coordinates. To minimize the boundary effects and to take into account the effect of the outside features, we considerably enlarged the calculation area by including the Russian, North- and South China Cratons and the Indian Plate. The modeling results demonstrate formation of steady ascending flows caused by overheating under the cratons (the average temperature of the upper mantle under a craton increases to ~100°) and descending flows on their periphery. The ascending flows spread along the bottom of the cratonic lithosphere and propagate towards its edges which cause smaller-scale convection cells nearly the borders of the cratons. The computed temperature distribution is

  20. Documenting the importance of coupled isotropic-anisotropic seismic tomography of the upper mantle beneath Northern Apennines subduction zone

    NASA Astrophysics Data System (ADS)

    Munzarova, Helena; Plomerova, Jaroslava; Kissling, Eduard

    2013-04-01

    The upper mantle velocity anisotropy together with the velocity heterogeneities affect significantly propagation of seismic waves. Velocity perturbations both due to isotropic heterogeneities and due to anisotropy are probably comparable in their amplitudes. Standard methods of imaging velocity perturbations in the upper mantle consider only isotropic propagations, in spite of the fact that seismic anisotropy has been undoubtedly proven within the whole of upper mantle. Neglecting anisotropy can cause significant artefacts in isotropic tomography results (e.g., wrong amplitudes of the heterogeneities, and/or, seriously distorted or false heterogeneities altogether). In addition, anisotropy yields unparalleled information on subsurface fabric and thus strongly enhances tectonic interpretation capabilities. The region of Northern Apennines (Italy) can serve as an example of an upper mantle volume where both a strong isotropic velocity heterogeneity and significant seismic anisotropy are present. The distinct velocity heterogeneity is represented by the subducting Adriatic slab. Strength and orientation of seismic anisotropy, both fossil one in the mantle lithosphere and anisotropy in the sub-lithospheric mantle flow, are evaluated from teleseismic P-wave travel times and shear-wave splitting (Plomerova et al., EPSL 2006). Anisotropic models of the upper mantle fabrics beneath the Northern Apennines were derived by joint analysis of anisotropic parameters evaluated from two independent body-wave data sets recorded during the RETREAT experiment (2003-2006; Munzarova et al., G-Cubed 2012, submitted). To evaluate effects of the well-known trade-off between anisotropy and heterogeneity, we calculated synthetic P travel time residual spheres, showing azimuth and incidence-angle dependent parts of the P-wave relative residuals, for the most recent tomographic model of isotropic velocity perturbations in the upper mantle beneath the Northern Apennines (Benoit et al., G

  1. Volcano deformation source parameters estimated from InSAR and FEM-based nonlinear inverse methods: Sensitivities to uncertainties in seismic tomography

    NASA Astrophysics Data System (ADS)

    Masterlark, T.; Donovan, T. C.; Feigl, K. L.; Haney, M. M.; Thurber, C. H.

    2013-12-01

    Forward models of volcano deformation, due to a pressurized magma chamber embedded in an elastic domain, can predict observed surface deformation. Inverse models of surface deformation allow us to estimate characteristic parameters that describe the deformation source, such as the position and strength of a pressurized magma chamber embedded in an elastic domain. However, the specific distribution of material properties controls how the pressurization translates to surface deformation in a forward model, or alternatively, how observed surface deformation translates to source parameters in an inverse model. Seismic tomography models can describe the specific distributions of material properties that are necessary for accurate forward and inverse models of volcano deformation. The aim of this project is to investigate how uncertainties in seismic tomography models propagate into variations in the estimates of volcano deformation source parameters inverted from geodetic data. To do so, we combine FEM-based nonlinear inverse analyses of InSAR data for Okmok volcano, Alaska, as an example to estimate sensitivities of source parameters to uncertainties in seismic tomography. More specifically, we use Monte Carlo methods to construct an assembly of FEMs that simulate a pressurized magma chamber in the domain of Okmok. Each FEM simulates a realization of source parameters (three-component magma chamber position), a material property distribution that samples the seismic tomography model with a normal velocity perturbation of +/-10%, and a corresponding linear pressure estimate calculated using the Pinned Mesh Perturbation method. We then analyze the posteriori results to quantify sensitivities of source parameter estimates to the seismic tomography uncertainties. Preliminary results suggest that uncertainties in the seismic tomography do not significantly influence the estimated source parameters at a 95% confidence level. The presence of heterogeneous material properties

  2. Shallow Moho with aseismic upper crust and deep Moho with seismic lower crust beneath the Japanese Islands obtained by seismic tomography using data from dense seismic network

    NASA Astrophysics Data System (ADS)

    Matsubara, Makoto; Obara, Kazushige

    2015-04-01

    P-wave seismic velocity is well known to be up to 7.0 km/s and over 7.5 km/s in the lower crust and in the mantle, respectively. A large velocity gradient is the definition of the Moho discontinuity between the crust and mantle. In this paper, we investigates the configuration of Moho discontinuity defined as an isovelocity plane with large velocity gradient derived from our fine-scale three-dimensional seismic velocity structure beneath Japanese Islands using data obtained by dense seismic network with the tomographic method (Matsubara and Obara, 2011). Japanese Islands are mainly on the Eurasian and North American plates. The Philippine Sea and Pacific plates are subducting beneath these continental plates. We focus on the Moho discontinuity at the continental side. We calculate the P-wave velocity gradients between the vertical grid nodes since the grid inversion as our tomographic method does not produce velocity discontinuity. The largest velocity gradient is 0.078 (km/s)/km at velocities of 7.2 and 7.3 km/s. We define the iso-velocity plane of 7.2 km/s as the Moho discontinuity. We discuss the Moho discontinuity above the upper boundary of the subducting oceanic plates with consideration of configuration of plate boundaries of prior studies (Shiomi et al., 2008; Kita et al., 2010; Hirata et al, 2012) since the Moho depth derived from the iso-velocity plane denotes the oceanic Moho at the contact zones of the overriding continental plates and the subducting oceanic plates. The Moho discontinuity shallower than 30 km depth is distributed within the tension region like northern Kyushu and coastal line of the Pacific Ocean in the northeastern Japan and the tension region at the Cretaceous as the northeastern Kanto district. These regions have low seismicity within the upper crust. Positive Bouguer anomaly beneath the northeastern Kanto district indicates the ductile material with large density in lower crust at the shallower portion and the aseismic upper crust

  3. 3D imaging of the Corinth rift from a new passive seismic tomography and receiver function analysis

    NASA Astrophysics Data System (ADS)

    Godano, Maxime; Gesret, Alexandrine; Noble, Mark; Lyon-Caen, Hélène; Gautier, Stéphanie; Deschamps, Anne

    2016-04-01

    The Corinth Rift is the most seismically active zone in Europe. The area is characterized by very localized NS extension at a rate of ~ 1.5cm/year, the occurrence of frequent and intensive microseismic crises and occasional moderate to large earthquakes like in 1995 (Mw=6.1). Since the year 2000, the Corinth Rift Laboratory (CRL, http://crlab.eu) consisting in a multidisciplinary natural observatory, aims at understanding the mechanics of faulting and earthquake nucleation in the Rift. Recent studies have improved our view about fault geometry and mechanics within CRL, but there is still a critical need for a better knowledge of the structure at depth both for the accuracy of earthquake locations and for mechanical interpretation of the seismicity. In this project, we aim to analyze the complete seismological database (13 years of recordings) of CRL by using recently developed methodologies of structural imaging, in order to determine at the same time and with high resolution, the local 3D structure and the earthquake locations. We perform an iterative joint determination of 3D velocity model and earthquake coordinates. In a first step, P and S velocity models are determined using first arrival time tomography method proposed by Taillandier et al. (2009). It consists in the minimization of the cost function between observed and theoretical arrival times which is achieved by the steepest descent method (e.g. Tarantola 1987). This latter requires computing the gradient of the cost function by using the adjoint state method (Chavent 1974). In a second step, earthquakes are located in the new velocity model with a non-linear inversion method based on a Bayesian formulation (Gesret et al. 2015). Step 1 and 2 are repeated until the cost function no longer decreases. We present preliminary results consisting in: (1) the adjustement of a 1D velocity model that is used as initial model of the 3D tomography and (2) a first attempt of the joint determination of 3D velocity

  4. Continent-ocean chemical heterogeneity in the mantle based on seismic tomography.

    PubMed

    Forte, A M; Dziewonski, A M; O'connell, R J

    1995-04-21

    Seismic models of global-scale lateral heterogeneity in the mantle show systematic differences below continents and oceans that are too large to be purely thermal in origin. An inversion of the geoid, based on a seismic model that includes viscous flow in the mantle, indicates that the differences beneath continents and oceans can be accounted for by differences in composition in the upper mantle superposed on mantle-wide thermal heterogeneities. The net continent-ocean density differences, integrated over depth, are small and cause only a low flux of mass and heat across the asthenosphere and mantle transition zone. PMID:17746544

  5. Time-dependent seismic tomography of the Coso geothermal area, 1996-2004

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.

    2005-01-01

    The permanent 18-station network of three-component digital seismometers at the seismically active Coso geothermal area, California, provides high-quality microearthquake (MEQ) data that are well suited to investigating temporal variations in structure related to processes within the geothermal reservoir. A preliminary study [Julian, et al., 2003; Julian, et al., 2004] comparing data from 1996 and 2003 found significant variations in the ratio of the seismic wave-speeds, Vp/Vs, at shallow depths over this time interval. This report describes results of a more detailed study of each year from 1996 through 2004.

  6. Shallow Moho with aseismic upper crust and deep Moho with seismic lower crust beneath the Japanese Islands obtained by seismic tomography using data from dense seismic network

    NASA Astrophysics Data System (ADS)

    Matsubara, Makoto; Obara, Kazushige

    2015-04-01

    P-wave seismic velocity is well known to be up to 7.0 km/s and over 7.5 km/s in the lower crust and in the mantle, respectively. A large velocity gradient is the definition of the Moho discontinuity between the crust and mantle. In this paper, we investigates the configuration of Moho discontinuity defined as an isovelocity plane with large velocity gradient derived from our fine-scale three-dimensional seismic velocity structure beneath Japanese Islands using data obtained by dense seismic network with the tomographic method (Matsubara and Obara, 2011). Japanese Islands are mainly on the Eurasian and North American plates. The Philippine Sea and Pacific plates are subducting beneath these continental plates. We focus on the Moho discontinuity at the continental side. We calculate the P-wave velocity gradients between the vertical grid nodes since the grid inversion as our tomographic method does not produce velocity discontinuity. The largest velocity gradient is 0.078 (km/s)/km at velocities of 7.2 and 7.3 km/s. We define the iso-velocity plane of 7.2 km/s as the Moho discontinuity. We discuss the Moho discontinuity above the upper boundary of the subducting oceanic plates with consideration of configuration of plate boundaries of prior studies (Shiomi et al., 2008; Kita et al., 2010; Hirata et al, 2012) since the Moho depth derived from the iso-velocity plane denotes the oceanic Moho at the contact zones of the overriding continental plates and the subducting oceanic plates. The Moho discontinuity shallower than 30 km depth is distributed within the tension region like northern Kyushu and coastal line of the Pacific Ocean in the northeastern Japan and the tension region at the Cretaceous as the northeastern Kanto district. These regions have low seismicity within the upper crust. Positive Bouguer anomaly beneath the northeastern Kanto district indicates the ductile material with large density in lower crust at the shallower portion and the aseismic upper crust

  7. Time-lapse Seismic Tomography for Permafrost Monitoring at the Crest of Hoher Sonnblick (3106 m, Hohe Tauern, Austria)

    NASA Astrophysics Data System (ADS)

    Hausmann, Helmut; Staudinger, Michael; Brückl, Ewald; Riedl, Claudia

    2010-05-01

    In the alpine realm the cryosphere (glaciers and permafrost) belongs to those areas which are most intensively affected by climatic change. As the retreat of glaciers since the Little Ice Age is clearly visible and well documented the distribution, thickness and ice volume of alpine permafrost is just sparsely known. This study focuses on the documentation of permafrost in the rock mass of the crest of Hoher Sonnblick and its reaction on climate change based on measurements of rock temperature and geophysical parameters. The seismic tomography was conducted on a 2D-profile (120 m) crossing three 20 m deep boreholes at an interval of about 30 m. Seismic signals generated at the surface with a hammer were registered on 15 borehole geophones. From 2008 to 2009 four seismic data sets were collected in the months July and September. Rock temperatures were recorded continuously along various depths in the boreholes since 2008. The active layer has a depth of up to 60 cm. During summer significant short-term variations (~ 0.5°C within 2 months) were observed into depths of 8 m, whereas rock temperatures in 20 m depth remain almost constant at about -2.7°C. We observed a change in seismic wavefield and data quality depending on the measurement period. Compared to the measurements in July, while the active layer remains particularly frozen, the data recorded in September show a better data quality and the seismic wavefield arrives delayed. The P-wave travel time differences can be related to thawing processes within the active layer (< 1 m). First results from a tomographic inversion indicate lower compressional velocity (< 4000 m/s) down to 8 m depth. This region is interpreted as loosening zone (weathered & jointed bedrock) and correlates with the region of short-term rock temperature variation. Thus we assume that thawing and melting processes are controlled by a strong heat transfer (e.g. percolation). Below this depth the P-wave travel time differences did not

  8. Use of Seismic Reflection Data and Traveltime Tomography to Image the Near Surface Velocity Structure in the Mississippi Embayment

    NASA Astrophysics Data System (ADS)

    Ge, J.; Magnani, M.; Waldron, B.; Powell, C.

    2007-12-01

    The Memphis aquifer represents one of the highest quality reservoirs of drinking water in the nation and it is separated from the shallow unconfined aquifer by the Upper Claiborne clay. Recent studies show that the confining unit might be discontinuous over the greater Memphis area exposing the Memphis aquifer to potential contamination. We present the results of a seismic reflection profile collected near Memphis, TN with the goal of imaging the structures and potential breaches in the Upper Claiborne confining clay. The imaged area is characterized by a highly heterogeneous shallow velocity structure and low P wave velocities in the ultrashallow unconsolidated materials. The data were collected using a shotgun source and a 1 m source spacing, 0.25 m receiver spacing and a 168-geophone spread for a max offset of 42 m. Raw seismic data show several reflected arrivals in the first 200ms, widespread ground roll, and air wave energy as well as consistent refracted phases across the 1 km - long profile. In addition to the reflection profile we present the preliminary results of first arrival travel time tomography performed along the profile to constrain the velocity field in the shallow portion of the profile. The velocity was then used to remove the effect of the near surface velocity variations. The main data processing steps included elevation statics and frequency and FK filtering. First arrival travel time modeling started with an initial estimate of the 2-layer velocity model using the slope/intercept method. We then modeled first-arrival picks on 1095 shot gathers using the Geo TOMO+ package. The algorithm computes travel times by tracing turning rays and is also able to handle raypaths through low-velocity zones (blind zones). The final resolution is estimated through a ray-information density map, which shows the cumulative contribution of the ray segments traversing different areas of the model. Synthetic models were generated and tested for the tomography

  9. Three-dimensional seismic refraction tomography of the crustal structure at the ION site on the Ninetyeast Ridge, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Schlindwein, Vera; Bönnemann, Christian; Reichert, Christian; Grevemeyer, Ingo; Flueh, Ernst

    2003-01-01

    We have performed a 3-D seismic refraction tomography of a 48 × 48 km2 area surrounding ODP site 757, which is planned to host an International Ocean Network (ION) permanent seismological observatory, called the Ninetyeast Ridge Observatory (NERO). The study area is located in the southern part of the Ninetyeast Ridge, the trail left by the Kerguelen hotspot on the Indian plate. The GEOMAR Research Centre for Marine Geosciences and the Federal Institute for Geosciences and Natural Resources acquired 18 wide-angle profiles recorded by 23 ocean bottom hydrophones during cruise SO131 of R/V Sonne in spring 1998. We apply a first arrival traveltime tomography technique using regularized inversion to recover the 3-D velocity structure relative to a 1-D background model that was constructed from a priori information and averaged traveltime data. The final velocity model revealed the crustal structure down to approximately 8 km depth. Resolution tests showed that structures with approximately 6 km horizontal extent can reliably be resolved down to that depth. The survey imaged the extrusive layer of the upper crust of the Ninetyeast Ridge, which varies in thickness between 3 and 4 km. A high-velocity anomaly coinciding with a positive magnetic anomaly represents a volcanic centre from which crust in this area is thought to have formed. A pronounced low-velocity anomaly is located underneath a thick sedimentary cover in a bathymetric depression. However, poor ray coverage of the uppermost kilometre of the crust in this area resulted in smearing of the shallow structure to a larger depth. Tests explicitly including the shallow low-velocity layer confirmed the existence of the deeper structure. The heterogeneity of the upper crust as observed by our study will have consequences for the waveforms of earthquake signals to be recorded by the future seismic observatory.

  10. Seismic tomography of compressional wave attenuation structure for Kı¯lauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Lin, Guoqing; Shearer, Peter M.; Amelung, Falk; Okubo, Paul G.

    2015-04-01

    We present a frequency-independent three-dimensional (3-D) compressional wave attenuation model (indicated by the reciprocal of quality factor Qp) for Kı¯lauea Volcano in Hawai`i. We apply the simul2000 tomographic algorithm to the attenuation operator t* values for the inversion of Qp perturbations through a recent 3-D seismic velocity model and earthquake location catalog. The t* values are measured from amplitude spectra of 26708 P wave arrivals of 1036 events recorded by 61 seismic stations at the Hawaiian Volcanology Observatory. The 3-D Qp model has a uniform horizontal grid spacing of 3 km, and the vertical node intervals range between 2 and 10 km down to 35 km depth. In general, the resolved Qp values increase with depth, and there is a correlation between seismic activity and low-Qp values. The area beneath the summit caldera is dominated by low-Qp anomalies throughout the entire resolved depth range. The Southwest Rift Zone and the East Rift Zone exhibit very high Qp values at about 9 km depth, whereas the shallow depths are characterized with low-Qp anomalies comparable with those in the summit area. The seismic zones and fault systems generally display relatively high Qp values relative to the summit. The newly developed Qp model provides an important complement to the existing velocity models for exploring the magmatic system and evaluating and interpreting intrinsic physical properties of the rocks in the study area.

  11. Seismic tomography of the area of the 2010 Beni-Ilmane earthquake sequence, north-central Algeria.

    PubMed

    Abacha, Issam; Koulakov, Ivan; Semmane, Fethi; Yelles-Chaouche, Abd Karim

    2014-01-01

    The region of Beni-Ilmane (District of M'sila, north-central Algeria) was the site of an earthquake sequence that started on 14 May 2010. This sequence, which lasted several months, was triggered by conjugate E-W reverse and N-S dextral faulting. To image the crustal structure of these active faults, we used a set of 1406 well located aftershocks events and applied the local tomography software (LOTOS) algorithm, which includes absolute source location, optimization of the initial 1D velocity model, and iterative tomographic inversion for 3D seismic P- and S-wave velocities (and the Vp/Vs ratio), and source parameters. The patterns of P-wave low-velocity anomalies correspond to the alignments of faults determined from geological evidence, and the P-wave high-velocity anomalies may represent rigid blocks of the upper crust that are not deformed by regional stresses. The S-wave low-velocity anomalies coincide with the aftershock area, where relatively high values of Vp/Vs ratio (1.78) are observed compared with values in the surrounding areas (1.62-1.66). These high values may indicate high fluid contents in the aftershock area. These fluids could have been released from deeper levels by fault movements during earthquakes and migrated rapidly upwards. This hypothesis is supported by vertical sections across the study area show that the major Vp/Vs anomalies are located above the seismicity clusters. PMID:25485193

  12. Upper crustal seismic structure of the Endeavour segment, Juan de Fuca Ridge from traveltime tomography: Implications for oceanic crustal accretion

    NASA Astrophysics Data System (ADS)

    Weekly, Robert T.; Wilcock, William S. D.; Toomey, Douglas R.; Hooft, Emilie E. E.; Kim, Eunyoung

    2014-04-01

    isotropic and anisotropic P wave velocity structure of the upper oceanic crust on the Endeavour segment of the Juan de Fuca Ridge is studied using refracted traveltime data collected by an active-source, three-dimensional tomography experiment. The isotropic velocity structure is characterized by low crustal velocities in the overlapping spreading centers (OSCs) at the segment ends. These low velocities are indicative of pervasive tectonic fracturing and persist off axis, recording the history of ridge propagation. Near the segment center, velocities within the upper 1 km show ridge-parallel bands with low velocities on the outer flanks of topographic highs. These features are consistent with localized thickening of the volcanic extrusive layer from eruptions extending outside of the axial valley that flow down the fault-tilted blocks that form the abyssal hill topography. On-axis velocities are generally relatively high beneath the hydrothermal vent fields likely due to the infilling of porosity by mineral precipitation. Lower velocities are observed beneath the most vigorous vent fields in a seismically active region above the axial magma chamber and may reflect increased fracturing and higher temperatures. Seismic anisotropy is high on-axis but decreases substantially off axis over 5-10 km (0.2-0.4 Ma). This decrease coincides with an increase in seismic velocities resolved at depths ≥1 km and is attributed to the infilling of cracks by mineral precipitation associated with near-axis hydrothermal circulation. The orientation of the fast-axis of anisotropy is ridge-parallel near the segment center but curves near the segment ends reflecting the tectonic fabric within the OSCs.

  13. Uppermost mantle seismic velocity and anisotropy in the Euro-Mediterranean region from Pn and Sn tomography

    NASA Astrophysics Data System (ADS)

    Díaz, J.; Gil, A.; Gallart, J.

    2013-01-01

    In the last 10-15 years, the number of high quality seismic stations monitoring the Euro-Mediterranean region has increased significantly, allowing a corresponding improvement in structural constraints. We present here new images of the seismic velocity and anisotropy variations in the uppermost mantle beneath this complex area, compiled from inversion of Pn and Sn phases sampling the whole region. The method of Hearn has been applied to the traveltime arrivals of the International Seismological Center catalogue for the time period 1990-2010. A total of 579 753 Pn arrivals coming from 12 377 events recorded at 1 408 stations with epicentral distances between 220 km and 1 400 km have been retained after applying standard quality criteria (maximum depth, minimum number of recordings, maximum residual values …). Our results show significant features well correlated with surface geology and evidence the heterogeneous character of the Euro-Mediterranean lithosphere. The station terms reflect the existence of marked variations in crustal thickness, consistent with available Moho depths inferred from active seismic experiments. The highest Pn velocities are observed along a continuous band from the Po Basin to the northern Ionian Sea. Other high velocity zones include the Ligurian Basin, the Valencia Trough, the southern Alboran Sea and central part of the Algerian margin. Most significant low-velocity values are associated to orogenic belts (Betics, Pyrenees, Alps, Apennines and Calabrian Arc, Dinarides-Hellenides), and low-velocity zones are also identified beneath Sardinia and the Balearic Islands. The introduction of an anisotropic term enhances significantly the lateral continuity of the anomalies, in particular in the most active tectonic areas. Pn anisotropy shows consistent orientations subparallel to major orogenic structures, such as Betics, Apennines, Calabrian Arc and Alps. The Sn tomographic image has lower resolution but confirms independently most of the

  14. The Effects of Mississippi Embayment Sediments on Local Earthquake Tomography Models for the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Powell, C.; Withers, M.

    2008-12-01

    The effects of velocity and thickness variations in thick, unconsolidated Mississippi Embayment sediments on local earthquake tomography for the New Madrid seismic zone are investigated using normal station corrections, synthetic modeling, and application of a sediment correction based upon independent knowledge of sediment thickness and velocity structure. Synthetic modeling indicates that smearing from strong velocity perturbations in the unconsolidated sediments can influence the uppermost basement portion of the P wave velocity solution and can extend into deeper portions of the S wave velocity solution. However, there is little evidence for smearing due to velocity perturbations in the unconsolidated sediments in inversion results obtained using real arrival time data. The clustered distribution of hypocenters makes station corrections sensitive to velocity variations located deeper than the unconsolidated sediments and application of station corrections removes useful information about the basement from the inversion solution. The sediment correction also appears to remove useful information from the inversion solution but is an improvement for the P wave solution over removal of station corrections. There is no evidence that the sediment correction is removing smearing effects produced by velocity perturbations in the unconsolidated sediments. The unconsolidated sediments do not appear to be exerting a first order effect on local earthquake tomography solutions.

  15. Electrical Resistivity, Seismic Refraction Tomography and Drilling Logs to Identify the Heterogeneity and the Preferential Flow in a Shallow Aquifer

    NASA Astrophysics Data System (ADS)

    Lachhab, A.

    2015-12-01

    The study site is located at the Center for Environmental Education and Research (CEER) at Susquehanna University. Electrical Resistivity and Seismic Refraction Tomography (ERT and SRT), as well as several pumping tests were performed to identify zones of heterogeneities and hydrogeophysical characteristics of a shallow unconfined aquifer. The combination of these methods was selected to study the local geology and the subsurface preferential pathways of groundwater flow. 22 Dipole-Dipole ERT transects with 56 electrodes each and 11 SRT transects with 24 geophones each were performed. Drilling logs of 5 observation wells located within the site were also used. All drilling logs showed clearly the heterogeneity of the aquifer when compared to each other. The combination of ERT and SRT indicated that a potential zone of preferential flow is present within the aquifer and can be accurately identified based on the approach adopted in this study. The drilling logs served to specifically identify the soil and the geological formations making the heterogeneity of the aquifer. 3D ERT and SRT block diagrams were generated to connect all formations shown in the 2D tomography profiles to visualize the pathways of preferential flow and non-conductive formations. While ERT has proven to show saturated areas of the subsurface, SRT was more effective in identifying the bedrock-soil discontinuity and other near surface formations contributing to the local heterogeneity.

  16. Ambient noise tomography in the Naruko/Onikobe volcanic area, NE Japan: implications for geofluids and seismic activity

    NASA Astrophysics Data System (ADS)

    Tamura, Jun; Okada, Tomomi

    2016-01-01

    To understand the earthquake generation in volcanic areas, it is important to investigate the presence of geofluids in the uppermost crust. We applied ambient noise tomography to the Naruko/Onikobe volcanic area and constructed a detailed 3-D S-wave velocity ( V s) model using continuous records from a dense seismic network and surrounding stations. The low-velocity zones were found beneath Naruko Volcano, Onikobe Caldera, and Mt. Kurikoma. The low-velocity zone beneath Onikobe Caldera may correspond to a magma reservoir, which is also characterized by surrounding S-wave reflectors. The molten magma originates from the upwelling flows in the mantle wedge. We also conducted the relocation of aftershocks of the 2008 Iwate-Miyagi Nairiku earthquake by double-difference tomography based on the obtained velocity model. Beneath Mt. Kurikoma, aftershock distribution delineates one of the unfavorably oriented fault planes of the main shock, which implies that the low-velocity zone around the fault plane is related to the presence of overpressurized fluid.

  17. A detailed view of the crust and lithospheric mantle beneath eastern Australia from transportable seismic array tomography

    NASA Astrophysics Data System (ADS)

    Rawlinson, Nicholas; Pilia, Simone

    2014-05-01

    The WOMBAT transportable seismic array project has been ongoing in eastern Australia since 1998, when a 40 station temporary array of recorders was first installed in western Victoria. To date, 16 consecutive array deployments have taken place with a cumulative total of over 700 stations installed in an area spanning Tasmania, New South Wales, southern Queensland and much of South Australia. Station separation varies between 15 km in Tasmania and 50 km on the mainland, with the majority of stations 3-component 1 Hz instruments, although a number of broadband instruments are interspersed. Although best suited to P-wave tomography, the recorded seismic wavefield has also proven to be useful for ambient noise tomography and crustal receiver functions, thus allowing detailed information on both the crust and lithospheric mantle structure to be retrieved. In order to apply teleseismic tomography using a transportable array of instruments, a robust background model is required which contains the long wavelength features suppressed by the use of relative arrival time residual datasets which are array specific. Here, we use the recently released AuSREM mantle model which is based on regional surface and body wave datasets. Crustal and Moho structure, which is poorly resolved by teleseismic data, is also included (from the AuSREM crustal model) as prior information to minimise smearing of crustal information into the mantle. The final model exhibits a variety of well resolved features, including a low velocity zone associated with Quaternary intraplate volcanism; a pronounced velocity gradient transition zone between the Precambrian shield region of Australia in the west and the Palaeozoic orogens in the east; and the presence of a high velocity salient which extends almost to the east coast in northern New South Wales, which is interpreted to be Precambrian lithosphere. The ambient noise tomography results, which are now continuous between Tasmania and mainland Australia

  18. Characterization of the Hydrothermal System of the Tinguiririca Volcanic Complex, Central Chile, using Structural Geology and Passive Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Pavez Orrego, Claudia; Tapia, Felipe; Comte, Diana; Gutierrez, Francisco; Lira, Elías; Charrier, Reynaldo; Benavente, Oscar

    2016-04-01

    A structural characterization of the hydrothermal-volcanic field associated with the Tinguiririca Volcanic Complex had been performed by combining passive seismic tomography and structural geology. This complex corresponds to a 20 km long succession of N25°E oriented of eruptive centers, currently showing several thermal manifestations distributed throughout the area. The structural behavior of this zone is controlled by the El Fierro - El Diablo fault system, corresponding to a high angle reverse faults of Oligocene - Miocene age. In this area, a temporary seismic network with 16 short-period stations was setup from January to April of 2010, in the context of the MSc thesis of Lira- Energía Andina (2010), covering an area of 200 km2 that corresponds with the hydrothermal field of Tinguiririca Volcanic Complex (TVC), Central Chile, Southern Central Andes. Using P- and S- wave arrival times, a 3D seismic velocity tomography was performed. High Vp/Vs ratios are interpreted as zones with high hot fluid content and high fracturing. Meanwhile, low Vp/Vs anomalies could represent the magmatic reservoir and the conduit network associated to the fluid mobility. Based on structural information and thermal manifestations, these anomalies have been interpreted. In order to visualize the relation between local geology and the velocity model, the volume associated with the magma reservoir and the fluid circulation network has been delimited using an iso-value contour of Vp/Vs equal to 1.70. The most prominent observed feature in the obtained model is a large "V" shaped low - velocity anomaly extending along the entire study region and having the same vergency and orientation as the existing high-angle inverse faults, which corroborates that El Fierro - El Diablo fault system represents the local control for fluid mobility. This geometry coincides with surface hydrothermal manifestations and with available geochemical information of the area, which allowed us to generate a

  19. Imaging the Western Iberia Seismic Structure from the Crust to the Upper Mantle from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Silveira, Graça; Kiselev, Sergey; Stutzmann, Eleonore; Schimmel, Martin; Haned, Abderrahmane; Dias, Nuno; Morais, Iolanda; Custódio, Susana

    2015-04-01

    Ambient Noise Tomography (ANT) is now widely used to image the subsurface seismic structure, with a resolution mainly dependent on the seismic network coverage. Most of these studies are limited to Rayleigh waves for periods shorter than 40/45 s and, as a consequence, they can image only the crust or, at most, the uppermost mantle. Recently, some studies successfully showed that this analysis could be extended to longer periods, thus allowing a deeper probing. In this work we present the combination of two complementary datasets. The first was obtained from the analysis of ambient noise in the period range 5-50 sec, for Western Iberia, using a dense temporary seismic network that operated between 2010 and 2012. The second one was computed for a global study, in the period range 30-250 sec, from analysis of 150 stations of the global networks GEOSCOPE and GSN. In both datasets, the Empirical Green Functions are computed by phase cross-correlation. The ambient noise phase cross-correlations are stacked using the time-frequency domain phase weighted stack (Schimmel et al. 2011, Geoph. J. Int., 184, 494-506). A bootstrap approach is used to measure the group velocities between pairs of stations and to estimate the corresponding error. We observed a good agreement between the dispersion measurements on both short period and long period datasets for most of the grid nodes. They are then inverted to obtain the 3D S-wave model from the crust to the upper mantle, using a bayesian approach. A simulated annealing method is applied, in which the number of splines that describes the model is adapted within the inversion. We compare the S-wave velocity model at some selected profiles with the S-wave velocity models gathered from Ps and Sp receiver functions joint inversion. Both results, issued from ambient noise tomography and body wave's analysis for the crust and upper mantle are consistent. This work is supported by project AQUAREL (PTDC/CTEGIX/116819/2010) and is a

  20. Characterization of the hydrothermal system of the Tinguiririca Volcanic Complex, Central Chile, using structural geology and passive seismic tomography

    NASA Astrophysics Data System (ADS)

    Pavez, C.; Tapia, F.; Comte, D.; Gutiérrez, F.; Lira, E.; Charrier, R.; Benavente, O.

    2016-01-01

    A structural characterization of the hydrothermal-volcanic field associated with the Tinguiririca Volcanic Complex had been performed by combining passive seismic tomography and structural geology. This complex corresponds to a 20 km long succession of N25°E oriented of eruptive centers, currently showing several thermal manifestations distributed throughout the area. The structural behavior of this zone is controlled by the El Fierro-El Diablo fault system, corresponding to a high angle reverse faults of Oligocene-Miocene age. In this area, a temporary seismic network with 16 short-period stations was setup from January to April of 2010, in the context of the MSc thesis of Lira (2010), covering an area of 200 km2 that corresponds with the hydrothermal field of Tinguiririca Volcanic Complex (TVC), Central Chile, Southern Central Andes. Using P- and S- wave arrival times, a 3D seismic velocity tomography was performed. The preliminary locations of 2270 earthquakes have first been determined using an a priori 1D velocity model. Afterwards, a joint inversion of both, the 3D velocity model and final locations have been obtained. High Vp/Vs ratios are interpreted as zones with high hot fluid content and high fracturing. Meanwhile, low Vp/Vs anomalies could represent the magmatic reservoir and the conduit network associated to the fluid mobility. Based on structural information and thermal manifestations, these anomalies have been interpreted. In order to visualize the relation between local geology and the velocity model, the volume associated with the magma reservoir and the fluid circulation network has been delimited using an iso-value contour of Vp/Vs equal to 1.70. The most prominent observed feature in the obtained model is a large "V" shaped low-velocity anomaly extending along the entire study region and having the same vergency and orientation as the existing high-angle inverse faults, which corroborates that El Fierro-El Diablo fault system represents the

  1. Linking Microearthquakes and Seismic Tomography on the Endeavour Segment of the Juan de Fuca Ridge: Implications for Hydrothermal Circulation

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S.; Weekly, R. T.; Hooft, E. E.; Toomey, D. R.; Kim, E.

    2013-12-01

    We report on a remarkable correlation between the patterns of microearthquakes and three-dimensional upper crustal velocity anomalies on the Endeavour segment of the Juan de Fuca Ridge. Microearthquakes were monitored from 2003-2006 by a small seismic network deployed on the central part of the segment. The velocity model was obtained from a tomography experiment comprising over 5500 shots from a large airgun array that were recorded by ocean bottom seismometers deployed at 64 sites along the Endeavour segment and the adjacent overlapping spreading centers (OSCs). On the segment scale, upper crustal velocities are low in the OSCs indicating that the crust is highly fractured. These low velocities persist off-axis and record the history of ridge propagation. In 2005, two swarm sequences that were interpreted in terms of magmatic intrusions on the limbs of the Endeavour-West Valley OSC were accompanied by extensive seismicity within the overlap basin. Throughout the microearthquake experiment earthquakes were concentrated in a region surrounding the southern tip of the West Valley propagator that coincides closely with the southern limit of the low velocities imaged around the OSC. Beneath the hydrothermal vent fields in the center of the Endeavour segment, the earthquakes were mostly located in a 500-m-thick band immediately above the axial magma chamber. There was a close correlation between the rates of seismicity beneath each vent field and their thermal output. The highest rates of seismicity were observed beneath the High Rise and Main Endeavour fields that each have power outputs of several hundred megawatts. Seismic velocities are generally high beneath the vent fields relative to velocities along the ridge axis immediately to the north and south. However, the High Rise and Main Endeavour fields are underlain by a low velocity region at 2 km depth that coincides with the seismically active region. This is consistent with a region of increased fracturing and

  2. SUBSEQUENT FINAL REPORT. SEISMIC SURFACE-WAVE TOMOGRAPHY OF WASTE SITES

    EPA Science Inventory

    Surface-wave group-velocity tomography is an efficient way to obtain images of the group velocity over a test area. Because Rayleigh-wave group velocity depends on frequency, there are separate images for each frequency. Thus, at each point in these images the group velocities de...

  3. Structure of the Chesapeake Bay Impact Crater from Wide-Angle Seismic Waveform Tomography

    NASA Astrophysics Data System (ADS)

    Lester, W. R.; Hole, J. A.; Catchings, R. D.; Bleibinhaus, F.

    2006-12-01

    The 35 million year old Chesapeake Bay impact structure is one of the largest and most well preserved meteor/comet impact structures on Earth. As a marine impact on a continental shelf, its morphology consists of a deep inner crater penetrating pre-existing crystalline basement surrounded by a much wider, shallower crater within the overlying sediments. In 2004, the U.S. Geological Survey conducted a combined refraction and low-fold reflection seismic survey across the northern part of the inner crater with the goals of constraining crater structure and identifying an ideal drill site for a deep borehole. Waveform inversion was applied to the seismic data to produce a high-resolution seismic velocity model of the inner crater. This significantly improved the spatial resolution over previous images based on travel times. Under the northeastern part of the outer crater, eastward-sloping, relatively intact crystalline basement is at a depth of ~1.5 km. The edge of the inner crater is at ~17 km radius and slopes gradually inward to penetrate pre-existing crystalline basement. The top of crystalline rock on the central uplift is about 0.8 km higher than its surroundings. Seismic velocity of crystalline rocks under the inner crater is much lower than under the outer crater, suggesting strong fracturing/brecciation of the inner crater floor and even stronger brecciation of the central uplift. A basement uplift and lateral change of basement velocity occurs at a radius of ~12 km and is interpreted as possibly indicating the edge of the transient crater caused by impact excavation prior to collapse. Assuming a 24 km diameter transient crater, scaling laws based on extraterrestrial craters and numerical models predict the observed inner crater diameter, central uplift diameter, and inner crater depth. This suggests that the crater collapse processes that created the inner crater in crystalline rocks were unaffected by the much weaker rheology of the overlying sediments.

  4. New Insights into Tectonics of the Saint Elias, Alaska, Region Based on Local Seismicity and Tomography

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Zabelina, I.; Freymueller, J. T.

    2013-12-01

    Saint Elias Mountains in southern Alaska are manifestation of ongoing tectonic processes that include collision of the Yakutat block with and subduction of the Yakutat block and Pacific plate under the North American plate. Interaction of these tectonic blocks and plates is complex and not well understood. In 2005 and 2006 a network of 22 broadband seismic sites was installed in the region as part of the SainT Elias TEctonics and Erosion Project (STEEP), a five-year multi-disciplinary study that addressed evolution of the highest coastal mountain range on Earth. High quality seismic data provides unique insights into earthquake occurrence and velocity structure of the region. Local earthquake data recorded between 2005 and 2010 became a foundation for detailed study of seismotectonic features and crustal velocities. The highest concentration of seismicity follows the Chugach-St.Elias fault, a major on land tectonic structure in the region. This fault is also delineated in tomographic images as a distinct contrast between lower velocities to the south and higher velocities to the north. The low-velocity region corresponds to the rapidly-uplifted and exhumed sediments on the south side of the range. Earthquake source parameters indicate high degree of compression and undertrusting processes along the coastal area, consistent with multiple thrust structures mapped from geological studies in the region. Tomographic inversion reveals velocity anomalies that correlate with sedimentary basins, volcanic features and subducting Yakutat block. We will present precise earthquake locations and source parameters recorded with the STEEP and regional seismic network along with the results of P- and S-wave tomographic inversion.

  5. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    DOE PAGESBeta

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks ofmore » both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.« less

  6. Seismic structure of the crust and uppermost mantle beneath Caucasus based on regional earthquake tomography

    NASA Astrophysics Data System (ADS)

    Zabelina, Irina; Koulakov, Ivan; Amanatashvili, Iason; El Khrepy, Sami; Al-Arifi, Nassir

    2016-04-01

    We present a new seismic model of the crust beneath the Caucasus based on tomographic inversion of P and S arrival times from earthquakes occurred in the region recorded by regional seismic networks in the Caucasian republics. The resulting P and S velocity models clearly delineate major tectonic units of the study area. A high velocity anomaly in Transcaucasian separating the Great and Lesser Caucasus possibly represents a rigid crustal block corresponding to the remnant oceanic lithosphere of Tethys. Another high-velocity pattern coincides with the southern edge of the Scythian Plate. Strongly deformed areas of Great and Lesser Caucasus are mostly associated with low-velocity patterns representing thickened felsic part of the crust and strong fracturing of rocks. Most Cenozoic volcanic centers of Caucasus match to the low-velocity seismic anomalies in the crust. For example, the Kazbegi volcano group is located above an elongated low-velocity anomaly squeezed between high-velocity segments of Transcaucasian and Scythian Plate. We propose that mantle part of the Arabian and Eurasian Plates has been delaminated due to the continental collision in the Caucasus region. As a result, overheated asthenosphere appeared nearly the bottom of the crust and facilitated melting of the crustal material that caused the origin of recent volcanism in Great and Lesser Caucasus.

  7. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    SciTech Connect

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks of both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.

  8. Application of Surface Time-Lapse Seismic Refraction Tomography (TLSRT) to Quantifying Changes in Saturation Within the Vadose Zone

    NASA Astrophysics Data System (ADS)

    Gaines, D. P.; Baker, G. S.; Hubbard, S. S.; Watson, D.; Jardine, P.

    2009-05-01

    Seismic p-wave propagation velocity of a medium is a function of the effective elastic constants of the material, and has been previously demonstrated to be related to hydrologic parameters according to the Gassmann equation. Above the water table (i.e., in the vadose zone), seismic p-wave velocity is expected to vary linearly as a function of density. Similarly, bulk density is expected to vary linearly as a function of the porosity and the pore-fluid density, where the pore-fluid density is described as the weighted mean of the pore-fluid density and density of air, dependent upon the saturation. Thus, the equations for calculating a change in saturation given two successive seismic p-wave propagation velocity measurements at a coincident point in the vadose zone are straightforward, given a priori values for bulk density or porosity for the medium. In the absence of in situ information for a given medium, subsurface variations in density can be derived using the multi-channel analysis of shear waves (MASW) technique that yields estimates of s-wave propagation velocity (Vs). As Vs is a function of the shear modulus and density, and shear modulus is invariant due to saturation according the Gassmann equation, a direct estimate of density can be derived via MASW. Thus, using MASW to establish initial conditions, a direct measure of changes in vadose zone saturation can be estimated using time-lapse seismic refraction tomography (TLSRT). In order to validate the above approach to quantifying saturation in the vadose zone, an ephemeral perched water table at the Oak Ridge Field Research Center (ORFRC) located at the Oak Ridge National Laboratory in Tennessee was monitored using TLSRT and correlated with traditional point hydrologic measurements. From October 2007 through February 2009, 35 coincident datasets were acquired along a 100-m profile. The hydrologic measurements provide a binary measure of the existence of an elevated water table, and the TLSRT data

  9. Seismic Tomography of the Southern California Plate Boundary Region from Noise-Based Rayleigh and Love Waves

    NASA Astrophysics Data System (ADS)

    Zigone, Dimitri; Ben-Zion, Yehuda; Campillo, Michel; Roux, Philippe

    2015-05-01

    trifurcation area of the SJFZ. These results augment local earthquake tomography images that have low resolution in the top few km of the crust, and provide important constraints for studies concerned with behavior of earthquake ruptures, generation of rock damage, and seismic shaking hazard in the region.

  10. Development of a High-Resolution Shallow Seismic Refraction Tomography System at the Monterey Bay Aquarium Research Institute

    NASA Astrophysics Data System (ADS)

    Henthorn, R.; Caress, D. W.; Chaffey, M. R.; McGill, P. R.; Kirkwood, W. J.; Burgess, W. C.

    2009-12-01

    The Monterey Bay Aquarium Research Institute (MBARI) is developing a high-resolution marine seismic refraction imaging system that can be deployed and operated using a remotely operated vehicle. Conventional marine seismic refraction methods typically use low-frequency sources and widely-spaced seafloor receivers to image crustal-scale subsurface structure. These systems often employ air-guns towed from a surface vessel to produce acoustic signals ranging from 1-100Hz, and ocean-bottom seismometers to record the refracted signals, resulting in images on the scale of hundreds of kilometers with resolutions no better than hundreds of meters. Images of subsurface structure at resolutions on the order of meters requires closely-spaced, near-seafloor sources and receivers capable of producing and recording higher-frequency signals centered around 3kHz. This poster will describe the first phase development of the High-Resolution Shallow Seismic Refraction Tomography System at MBARI including the science drivers, the design approach and trade-offs, and results from initial field tests conducted in the Monterey Bay. The capability to image fine-scale subsurface structure will augment ongoing research on hydrate deposits. Methane and the other hydrocarbon gases trapped in hydrates are climate-impacting greenhouse gases as well as potential energy sources. Therefore, research regarding the formation, stability, volume, and structure of these globally common deposits has considerable relevance today. High-resolution subsurface imaging can impact many important marine geological topics such as submarine faults, hydrothermal venting, and submarine volcanism. The system combines ROV-mounted transmission of chirp acoustic signals with a roughly 1-6 kHz sweep and an array of high-frequency ocean bottom hydrophone (OBH) receivers. The configuration of closely spaced receivers and a source pinging at tightly-spaced intervals provides the opportunity to pick refracted arrival times

  11. Critical zone weathering in the southern Sierra Nevada and Laramie Mountains imaged by seismic tomography

    NASA Astrophysics Data System (ADS)

    Hayes, J. L.; Holbrook, W. S.; Riebe, C. S.

    2011-12-01

    Near-surface variations in seismic velocity reflect differences in physical properties such as density and porosity, which in turn reflect differences in alteration of parent material by exposure to water and biologic activity. Here we present tomographic analysis of the extent of weathering from seismic refraction experiments at two areas underlain by granite: the Southern Sierra Critical Zone Observatory (SSCZO) in the fall of 2010 & 2011 and the Laramie Mountains in the spring of 2010. A 48-channel geophone array and hammer source was deployed in both surveys. In both areas seismic velocities suggest that weathering has progressed to depths of 10 m or more. When coupled with geochemical measurements of the degree of regolith weathering, these depths imply that the potential for subsurface water storage in regolith may be a larger component of the water budget than previously thought at the SSCZO. The velocity of granite bedrock was determined independently in both studies to be ~4 km/s by seismic experiments directly on outcropping granite. Two other ranges of seismic velocities seem consistent between the studies: a saprolite layer of chemically altered but still intact rock (2-4 km/s) and a regolith layer more altered than the underlying saprolite layer (<2 km/s). Using these parameters we tested hypotheses in two different granite-weathering environments. In the SSCZO a velocity-depth profile that crosses a water-saturated meadow and an adjoining forest reveal relatively low gradients in the first ten meters beneath the forest (0.75 km/s per 10 m) and higher gradients beneath the meadow (3 km/s per 10 m). From these observations, we hypothesize that the saturated meadow may provide a reducing environment that inhibits chemical weathering relative to better-drained, more oxidizing conditions in the forest. In the 1.4 Ga Sherman batholith of the Laramie Mountains we observe isolated outcrops of Lincoln Granite within the Sherman Granite. Two 0.5 km profiles

  12. Effectiveness of imaging seismic attenuation using visco-acoustic full waveform tomography: Examples from the Seattle Fault Zone and Northern Perth Basin

    NASA Astrophysics Data System (ADS)

    Takam Takougang, E.; Calvert, A. J.

    2012-12-01

    Attenuation characterizes the decrease in amplitude of seismic waves as they propagate away from the source. A seismic wave propagating in the subsurface will suffer from two types of attenuation: Intrinsic attenuation and scattering attenuation. Scattering attenuation is due to small scale heterogeneity in the subsurface, whereas intrinsic attenuation arises from inelastic rock properties. Intrinsic attenuation can provide key information about the subsurface, which can be of value to the mining as well as the oil and gas industry. However, accurate imaging of intrinsic seismic attenuation using visco-acoustic full-waveform tomography is not straight forward. Attenuation models recovered by visco-acoustic waveform tomography are often contain contaminated by scattering effects as well as elastic mode conversion artefacts due to the inability of the visco-acoustic approximation to perfectly predict the amplitude of visco-elastic field data. The effect of scattering can be reduced if a velocity model with a high resolution is used. This usually necessitates a two-step inversion approach consisting of first recovering the velocity model and later, the attenuation model. In this study, we present a specific preconditioning of the data based on matching the amplitude variation with offset (AVO) of the field and modelled visco-acoustic data, and a specific inversion approach based on a sequential recovering of the seismic velocity and attenuation models using the visco-acoustic approximation. Our purpose is to improve the quality of the recovered attenuation model by decoupling the reconstruction of velocity and attenuation, thus reducing artefacts. We apply the method to two different areas: The Seattle Fault Zone in Puget Sound in the northwestern USA, using marine seismic reflection data from the Seismic Hazards investigation in Puget Sound (SHIPS) survey collected in 1998, and the Allanooka area within the Northern Perth Basin using high resolution seismic

  13. On the scalability of seismic waveform inversion: From ultrasonic experiments to global-scale tomography

    NASA Astrophysics Data System (ADS)

    Kamei, R.; Pratt, R. G.

    2012-12-01

    Seismic waveform inversion endeavors to extract high-resolution subsurface models from full seismic records by using numerical solutions of the full forward wave equation. In the last two decades, waveform inversion has been successfully applied to both active and passive seismic experiments, and has demonstrated superb resolution power over a wide-range of applications. Waveform inversion is still computationally challenging, and is well known to be a strongly non-linear and ill-conditioned inverse problem. Passive and active waveform inversions have largely been developed independently, although both originate from the work of Lailly (1983) and Tarantola (1984). In this presentation, we review a suite of past results from both active and passive source waveform inversions, and attempt to illustrate similarities and shared challenges between them. In active seismics, waveform inversion has been applied to i) ultrasonic breast cancer data to image targets of a few tens of centimeters on a side, ii) cross-well exploration data using frequencies between hundreds and a few thousands of Hz to image targets of the order of hundreds of meters on a side, iii) surface seismic for near-surface engineering problems using frequencies of tens to a few hundreds of Hz to image targets of the order of hundreds of meters to several kilometers, and iv) hydrocarbon exploration and crustal imaging using frequencies of a few, to a few tens of Hz for targets tens of kilometers on a side. In contrast, waveform inversion from passive source data uses much lower frequencies (less than 1 Hz), and images much larger target areas to retrieve iv) crustal scale structures of the order of hundreds of kilometers using data periods of one to several tens of seconds, v) upper-mantle structure on regional scales thousands of kilometers on a side using data periods of ten to a few hundred seconds, and vi) the whole-earth inversions (of order 10,000 km on a side), using a similar frequency range. Our

  14. High resolution seismic imaging of Rainier Mesa using surface reflection and surface to tunnel tomography

    SciTech Connect

    Majer, E.L.; Johnson, L.R.; Karageorgi, E.K.; Peterson, J.E.

    1994-06-01

    In the interpretation of seismic data to infer properties of an explosion source, it is necessary to account for wave propagation effects. In order to understand and remove these propagation effects, it is necessary to have a model. An open question concerning this matter is the detail and accuracy which must be present in the velocity model in order to produce reliable estimates in the estimated source properties. While it would appear that the reliability of the results would be directly related to the accuracy of the velocity and density models used in the interpretation, it may be that certain deficiencies in these models can be compensated by the and amount of seismic data which is used in the inversion. The NPE provided an opportunity to test questions of this sort. In August 1993, two high resolution seismic experiments were performed in N-Tunnel and on the surface of Rainier Mesa above it. The first involved a surface-to-tunnel imaging experiment with sources on the surface and receivers in tunnel U12n.23 about 88 meters west of the NPE. It was possible to estimate the apparent average velocity between the tunnel and the surface. In a separate experiment, a high resolution reflection experiment was performed in order to image the lithology in Rainier Mesa. Good quality, broad band, reflections were obtained from depths extending into the Paleozoic basement. A high velocity layer near the surface is underlain by a thick section of low velocity material, providing a nonuniform but low average velocity between the depth of the NPE and the surface.

  15. Seismic Travel-Time Tomography of the Northern Andean Volcanic Zone in Ecuador

    NASA Astrophysics Data System (ADS)

    Araujo, Sebastián; Valette, Bernard; Monteiller, Vadim; Ruiz, Mario

    2014-05-01

    In this poster we present the results of an inversion of earthquakes travel-time data recorded by the national Ecuadorian network. We aim to identify the topography of the slab, to ascertain the velocity of P and S waves, as well as to locate more accurately events in the mantle and the crust beneath Ecuador. The data catalog of the Institute of Geophysics of Quito consists of 478,000 P and S phases corresponding to 21,152 events recorded between 1988 and 2012 by the national network. It provides a unique opportunity to improve our information on the lithospheric structure and the topology of the slab. The domain within which the velocity model is searched for consists of a box oriented in the main direction of the trench and of the Andes Cordillera, taking account of the Earth's ellipticity, in addition to the surface topography. An a priori model of the Moho depth was first determined by matching together informations coming from global gravitational potential, wide-angle reflection seismics and bathymetry studies in the coastal area. The inversion is performed through a non-linear least-square approach based on a stochastic description of data and model. The forward computation of time delay is performed by integrating slowness along the rays, which are determined by the Podvin-Lecomte algorithm which is based on a finite difference resolution of the eikonal equation. The regularization of the velocity fields is achieved through a covariance norm on P velocity and V P/V S velocity ratio over the box domain, with an exponential type kernel. The tuning of smoothing and damping parameters is carried out through an L-curve analysis. The topography of the slab, as displayed by the seismicity, presents an increasing dip from north to south, with a deep cluster of seismicity in the 1.5°- 2° S latitude range.

  16. High-resolution surface-wave tomography from ambient seismic noise.

    PubMed

    Shapiro, Nikolai M; Campillo, Michel; Stehly, Laurent; Ritzwoller, Michael H

    2005-03-11

    Cross-correlation of 1 month of ambient seismic noise recorded at USArray stations in California yields hundreds of short-period surface-wave group-speed measurements on interstation paths. We used these measurements to construct tomographic images of the principal geological units of California, with low-speed anomalies corresponding to the main sedimentary basins and high-speed anomalies corresponding to the igneous cores of the major mountain ranges. This method can improve the resolution and fidelity of crustal images obtained from surface-wave analyses. PMID:15761151

  17. The 3D crustal structure of Northeastern Tibetan area from seismic tomography

    NASA Astrophysics Data System (ADS)

    Sun, Anhui

    2015-04-01

    The Northeastern Tibetan region is located in the border area of three sub-plates in China, i.e. the Tibetan plateau, North China block and Xinjiang block. Effected simultaneously by the extrusion driven by the India-Eurasia plat collision and the blockage of the Ordos basin, this area has complex geology, strong tectonics activities and suffered from several large historic earthquakes, such as the Haiyuan earthquake (M8.6) in 1920, the Gulang earthquake (M8.0) in 1927. To enhance our understanding of the crustal structure and the interaction between different tectonic blocks of this region, we conduct a three-dimensional (3D) tomographic study by using the arrival time date recorded by regional seismic network. We used 101101 P and 103313 S wave arrival times from 11650 local earthquakes during 1970 to 2013 recorded by 154 permanent seismic stations of the local Seismic Network, installed over five provinces in China, i.e. Gansu, Ningxia, Qinghai, Shanxi, Neimenggu. We first established a 1D primary crustal model from LITHO1.0, an updated crust and lithospheric model of the Earth by weighted averaging. To better performer ray tracing, our inversion involved three discontinuities (including the Moho) with depth variation over the mantle derived from LITHO1.0. Detailed three-dimensional seismic velocity (Vp and Vs) structures of the crust of the Northeastern Tibetan are determined with a horizontal resolution of about 35 km and a depth resolution of 6-20 km. The Poisson's ratio (σ) structure was also estimated after obtained Vp and Vs structures. We detected low-velocity anomalies in the lower crust and relative high-velocity anomalies in the upper crust beneath the Longmenshan faults zone, which are in good agreement with the results of most previous geophysical studies. Our results revealed clear different velocity variation beneath both sides of different tectonic blocks. In addition, we found the correlation between our tomographic result and previous

  18. Flake tectonics in the Sulu orogen in eastern China as revealed by seismic tomography

    NASA Astrophysics Data System (ADS)

    Xu, Peifen; Liu, Futian; Ye, Kai; Wang, Qingchen; Cong, Bolin; Chen, Hui

    2002-05-01

    Seismic tomographic image reveals a crocodile-like P-waves velocity structure beneath the Sulu orogenic belt, which marks the subduction/collision zone between the Sino-Korean block (SK) and Yangtze block (YZ) in eastern China. It may imply that the upper crust of the YZ was detached from its lower crust and thrust over the SK for a maximum of ~400 km in the Sulu region, whereas the remnant of the subducted Yangtze lithosphere was lay beneath the SK. This crustal detached structure (flake tectonics) might have occurred after the Triassic subduction/collision.

  19. Towards using direct methods in seismic tomography: computation of the full resolution matrix using high-performance computing and sparse QR factorization

    NASA Astrophysics Data System (ADS)

    Bogiatzis, Petros; Ishii, Miaki; Davis, Timothy A.

    2016-05-01

    For more than two decades, the number of data and model parameters in seismic tomography problems has exceeded the available computational resources required for application of direct computational methods, leaving iterative solvers the only option. One disadvantage of the iterative techniques is that the inverse of the matrix that defines the system is not explicitly formed, and as a consequence, the model resolution and covariance matrices cannot be computed. Despite the significant effort in finding computationally affordable approximations of these matrices, challenges remain, and methods such as the checkerboard resolution tests continue to be used. Based upon recent developments in sparse algorithms and high-performance computing resources, we show that direct methods are becoming feasible for large seismic tomography problems. We demonstrate the application of QR factorization in solving the regional P-wave structure and computing the full resolution matrix with 267 520 model parameters.

  20. A joint local and teleseismic tomography study of the Mississippi Embayment and New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Nyamwandha, Cecilia A.; Powell, Christine A.; Langston, Charles A.

    2016-05-01

    Detailed, upper mantle P and S wave velocity (Vp and Vs) models are developed for the northern Mississippi Embayment (ME), a major physiographic feature in the Central United States (U.S.) and the location of the active New Madrid Seismic Zone (NMSZ). This study incorporates local earthquake and teleseismic data from the New Madrid Seismic Network, the Earthscope Transportable Array, and the FlexArray Northern Embayment Lithospheric Experiment stations. The Vp and Vs solutions contain anomalies with similar magnitudes and spatial distributions. High velocities are present in the lower crust beneath the NMSZ. A pronounced low-velocity anomaly of ~ -3%--5% is imaged at depths of 100-250 km. High-velocity anomalies of ~ +3%-+4% are observed at depths of 80-160 km and are located along the sides and top of the low-velocity anomaly. The low-velocity anomaly is attributed to the presence of hot fluids upwelling from a flat slab segment stalled in the transition zone below the Central U.S.; the thinned and weakened ME lithosphere, still at slightly higher temperatures from the passage of the Bermuda hotspot in mid-Cretaceous, provides an optimal pathway for the ascent of the fluids. The observed high-velocity anomalies are attributed to the presence of mafic rocks emplaced beneath the ME during initial rifting in the early Paleozoic and to remnants of the depleted, lower portion of the lithosphere.

  1. Lower mantle thermal structure deduced from seismic tomography, mineral physics and numerical modelling

    NASA Technical Reports Server (NTRS)

    Cadek, O.; Yuen, D. A.; Steinbach, V.; Chopelas, A.; Matyska, C.

    1994-01-01

    The long-wavelength thermal anomalies in the lower mantle have been mapped out using several seismic tomographic models in conjunction with thermodynamic parameters derived from high-pressure mineral physics experiments. These parameters are the depth variations of thermal expansivity and of the proportionality factor between changes in density and seismic velocity. The giant plume-like structures in the lower mantle under the Pacific Ocean and Africa have outer fringes with thermal anomalies around 300-400 K, but very high temperatures are found in the center of the plumes near the base of the core-mantle boundary. These extreme values can exceed +1500 K and may reflect large hot thermal anomalies in the lower mantle, which are supported by recent measurements of high melting temperatures of perovskite and iron. Extremely cold anomalies, around -1500 K, are found for anomalies in the deep mantle around the Pacific rim and under South America. Numerical simulations show that large negative thermal anomalies in the mid-lower mantle have modest magnitudes of around -500 K. correlation pattern exists between the present-day locations of cold masses in the lower mantle and the sites of past subduction since the Cretaceous. Results from correlation analysis show that the slab mass-flux in the lower mantle did not conform to a steady-state nature but exhibited time-dependent behavior.

  2. Inversion of band-limited, downward continued multichannel seismic data by combination of travel-time and full waveform tomography

    NASA Astrophysics Data System (ADS)

    Gras Andreu, Claudia; Estela Jiménez Tejero, Clara; Dagnino Vázquez, Daniel; Meléndez Catalán, Adrià; Sallarès Casas, Valentí; Rodríguez Ranero, César

    2016-04-01

    Seismic tomography methods and in particular full waveform inversion (FWI) of controlled source data are powerful tools to obtain accurate information of the physical properties of the subsurface. One of their main drawbacks is however the strong non-linearity of the problem, which makes the solution strongly dependent on the initial model and on the low frequency content of the data set. A common strategy to mitigate these issues is to combine the robustness of Travel Time Tomography (TTT) to obtain an appropriate reference model that is subsequently refined by FWI. This combined technique is often used for long-offset acquisition geometries, where refracted waves are present as first arrivals. Conversely, its application to streamer-type multichannel seismic (MCS) data is rare, because these data are intrinsically short offset so the presence of refractions is very limited. In this work we use synthetic data to show how the downward continuation (DC) or redatuming of the MCS data prior to TTT allows obtaining velocity models that can be then used as initial models for FWI even if data lack frequencies below 4 Hz. In summary, the proposed strategy consists of the following steps: 1) We compute the downward continued wavefield using a finite difference solution of the acoustic wave equation in time domain. The solver used for the propagation was developed by the Barcelona Centre for Subsurface Imaging (BCSI) and incorporates a mutli-shooting strategy necessary to back-propagate the wavefield and reduce the computational time. Our new datum level chosen corresponds to the bathymetry of the model. 2) We use the resultant DC MCS wavefield to identify the refracted phases (first arrivals) highlighted by the redatuming process and we invert them applying TTT. The resulting model, which has the low wavenumber information needed to reduce the non-linearity problems of the FWI, is then used as initial model to perform multi-scale FWI of the original MCS data starting at

  3. Searching for the Lost Jurassic and Cretaceous Ocean Basins of the Circum-Arctic Linking Plate Models and Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Shephard, G. E.; Müller, R.

    2012-12-01

    The tectonic evolution of the circum-Arctic since the breakup of Pangea involves the opening and closing of ocean basins including the Oimyakon, Angayucham, South Anuyi, Amerasia and Eurasia basins. The time-dependent configurations and kinematic history of the basins, adjacent continental terranes, and subduction zones involved are not well understood, and many published tectonic models for particular regions are inconsistent with models for adjacent areas. The age, location, geometry and convergence rates of the subduction zones associated with these ancient ocean basins since at least the Late Jurassic have implications for mantle structure, which can be used as an additional constraint for building plate and plate boundary models. Here we integrate an analysis of both surface and deep mantle observations back to 200 Ma. Based on a digitized set of tectonic features with time-dependent rotational histories we present a refined plate model with topologically closed plate polygons for the circum-Arctic with particular focus on the northern Pacific, Siberian and Alaskan margins (Fig 1). We correlate the location, geometry and timing of subduction zones with associated seismic velocities anomalies from global P and S wave tomography models across different depths. We design a plate model that best matches slabs imaged in seismic tomography in an iterative fashion. This match depends on a combination of relative and absolute plate motions. Therefore we test two end-member absolute plate motion models, evaluating a paleomagnetic model and a model based on hotspot tracks and large igneous provinces. This method provides a novel approach to deciphering the Arctic tectonic history in a global context. Fig 1:Plate reconstruction at 200Ma and 140Ma, visualized using GPlates software. Present-day topography raster (ETOPO2) segmented into major tectonic elements of the circum-Arctic. Plate boundaries delineated in black and selected subduction and arc features labeled in

  4. Seismic anisotropy of the upper mantle beneath Fennoscandia - Preliminary results of anisotropic tomography with novel code AniTomo

    NASA Astrophysics Data System (ADS)

    Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi; Vecsey, Ludek; Babuska, Vladislav

    2016-04-01

    Seismological investigations of the continental mantle lithosphere, particularly its anisotropic structure, advance our understanding of plate tectonics and formation of continents. Orientation of the anisotropic fabrics reflect stress field during the lithosphere origin and its later deformations. We process teleseismic body waves recorded during passive seismic experiments SVEKALAPKO (1998-1999) and LAPNET (2007-2009), deployed in the south-central and northern Fennoscandia, around the contact of the Archean and Proterozoic parts of the shield, to retrieve both anisotropic and isotropic velocity images of the upper mantle. Standard isotropic teleseismic P-wave tomography distinguishes two major regions of the mantle lithosphere in the northern part of Fennoscandia, boundary of which follows the surface trace of the Baltic-Bothnia Megashear Zone (BBZ). Apart from that, joint interpretation of lateral variations of anisotropic P- and SKS-wave pattern detected domains of mantle lithosphere with differently oriented anisotropic fabrics within those two regions (Vecsey et al., Tectonophysics, 2007; Plomerova et al., Solid Earth, 2011). The retrieved anisotropy reflects fossil fabrics of the mantle lithosphere (Babuska and Plomerova, Phys. Earth Planet. Int., 2006). The contact of the Proterozoic and Archean Fennoscandia appears as a broad transition in the south-central Fennoscandia (Vecsey et al., Tectonophysics, 2007), while the contact seems to be more distinct towards the north. We have developed a novel code (AniTomo) that allows us to invert relative P-wave travel time residuals for coupled isotropic-anisotropic P-wave velocity models assuming weak hexagonal anisotropy with symmetry axis oriented generally in 3D. The code was successfully tested on synthetic data and here we present results of its first application to real data. The region of Fennoscandia seems to be a right choice for the first calculation of anisotropic tomography with the new code as this

  5. Crustal structure and relocated earthquakes in the Puget Lowland, Washington, from high-resolution seismic tomography

    USGS Publications Warehouse

    Van Wagoner, T. M.; Crosson, R.S.; Creager, K.C.; Medema, G.; Preston, L.; Symons, N.P.; Brocher, T.M.

    2002-01-01

    The availability of regional earthquake data from the Pacific Northwest Seismograph Network (PNSN), together with active source data from the Seismic Hazards Investigation in Puget Sound (SHIPS) seismic experiments, has allowed us to construct a new high-resolution 3-D, P wave velocity model of the crust to a depth of about 30 km in the central Puget Lowland. In our method, earthquake hypocenters and velocity model are jointly coupled in a fully nonlinear tomographic inversion. Active source data constrain the upper 10-15 km of the model, and earthquakes constrain the deepest portion of the model. A number of sedimentary basins are imaged, including the previously unrecognized Muckleshoot basin, and the previously incompletely defined Possession and Sequim basins. Various features of the shallow crust are imaged in detail and their structural transitions to the mid and lower crust are revealed. These include the Tacoma basin and fault zone, the Seattle basin and fault zone, the Seattle and Port Ludlow velocity highs, the Port Townsend basin, the Kingston Arch, and the Crescent basement, which is arched beneath the Lowland from its surface exposure in the eastern Olympics. Strong lateral velocity gradients, consistent with the existence of previously inferred faults, are observed, bounding the southern Port Townsend basin, the western edge of the Seattle basin beneath Dabob Bay, and portions of the Port Ludlow velocity high and the Tacoma basin. Significant velocity gradients are not observed across the southern Whidbey Island fault, the Lofall fault, or along most of the inferred location of the Hood Canal fault. Using improved earthquake locations resulting from our inversion, we determined focal mechanisms for a number of the best recorded earthquakes in the data set, revealing a complex pattern of deformation dominated by general arc-parallel regional tectonic compression. Most earthquakes occur in the basement rocks inferred to be the lower Tertiary Crescent

  6. Tomography and Methods of Travel-Time Calculation for Regional Seismic Location

    SciTech Connect

    Myers, S; Ballard, S; Rowe, C; Wagoner, G; Antolik, M; Phillips, S; Ramirez, A; Begnaud, M; Pasyanos, M E; Dodge, D A; Flanagan, M P; Hutchenson, K; Barker, G; Dwyer, J; Russell, D

    2007-07-02

    We are developing a laterally variable velocity model of the crust and upper mantle across Eurasia and North Africa to reduce event location error by improving regional travel-time prediction accuracy. The model includes both P and S velocities and we describe methods to compute travel-times for Pn, Sn, Pg, and Lg phases. For crustal phases Pg and Lg we assume that the waves travel laterally at mid-crustal depths, with added ray segments from the event and station to the mid crustal layer. Our work on Pn and Sn travel-times extends the methods described by Zhao and Xie (1993). With consideration for a continent scale model and application to seismic location, we extend the model parameterization of Zhao and Xie (1993) by allowing the upper-mantle velocity gradient to vary laterally. This extension is needed to accommodate the large variation in gradient that is known to exist across Eurasia and North African. Further, we extend the linear travel-time calculation method to mantle-depth events, which is needed for seismic locators that test many epicenters and depths. Using these methods, regional travel times are computed on-the-fly from the velocity model in milliseconds, forming the basis of a flexible travel time facility that may be implemented in an interactive locator. We use a tomographic technique to improve upon a laterally variable starting velocity model that is based on Lawrence Livermore and Los Alamos National Laboratory model compilation efforts. Our tomographic data set consists of approximately 50 million regional arrivals from events that meet the ground truth (GT) criteria of Bondar et al. (2004) and other non-seismic constraints. Each datum is tested to meet strict quality control standards that include comparison with established distance-dependent travel-time residual populations relative to the IASPIE91 model. In addition to bulletin measurements, nearly 50 thousand arrival measurements were made at the national laboratories. The tomographic

  7. Seismic imaging beneath southwest Africa based on finite-frequency body wave tomography

    NASA Astrophysics Data System (ADS)

    Youssof, Mohammad; Yuan, Xiaohui; Tilmann, Frederik; Heit, Benjamin; Weber, Michael; Jokat, Wilfried; Geissler, Wolfram; Laske, Gabi

    2016-04-01

    We present a seismic model of southwest Africa from teleseismic tomographic inversion of the P- and S- wave data recorded by an amphibious temporary seismic network. The area of study is located at the intersection of the Walvis Ridge with the continental margin of northern Namibia, and extends into the Congo craton. Utilizing 3D finite-frequency sensitivity kernels, we invert traveltime residuals of the teleseismic body waves to image seismic structures in the upper mantle. To test the robustness of our tomographic imaging, we employed various resolution assessments that allow us to inspect the extent of smearing effects and to evaluate the optimum regularization weights (i.e., damping and smoothness). These tests include applying different (ir)regular parameterizations, classical checkerboard and anomaly tests and squeezing modeling. Furthermore, we performed different kinds of weighing schemes for the traveltime dataset. These schemes account for balancing between the picks data amount with their corresponding events directions. Our assessment procedure involves also a detailed investigation of the effect of the crustal correction on the final velocity image, which strongly influenced the image resolution for the mantle structures. Our model can resolve horizontal structures of 1° x 1° below the array down to 300-350 km depth. The resulting model is mainly dominated by the difference in the oceanic and continental mantle lithosphere beneath the study area, with second-order features related to their respective internal structures. The fast lithospheric keel of the Congo Craton reaches a depth of ~250 km. The orogenic Damara Belt and continental flood basalt areas are characterized by low velocity perturbations down to a depth of ~150 km, indicating a normal fertile mantle. High velocities in the oceanic lithosphere beneath the Walvis Ridge appear to show signatures of chemical depletion. A pronounced anomaly of fast velocity is imaged underneath continental NW

  8. Crustal structure and relocated earthquakes in the Puget Lowland, Washington, from high-resolution seismic tomography

    NASA Astrophysics Data System (ADS)

    van Wagoner, T. M.; Crosson, R. S.; Creager, K. C.; Medema, G.; Preston, L.; Symons, N. P.; Brocher, T. M.

    2002-12-01

    The availability of regional earthquake data from the Pacific Northwest Seismograph Network (PNSN), together with active source data from the Seismic Hazards Investigation in Puget Sound (SHIPS) seismic experiments, has allowed us to construct a new high-resolution 3-D, P wave velocity model of the crust to a depth of about 30 km in the central Puget Lowland. In our method, earthquake hypocenters and velocity model are jointly coupled in a fully nonlinear tomographic inversion. Active source data constrain the upper 10-15 km of the model, and earthquakes constrain the deepest portion of the model. A number of sedimentary basins are imaged, including the previously unrecognized Muckleshoot basin, and the previously incompletely defined Possession and Sequim basins. Various features of the shallow crust are imaged in detail and their structural transitions to the mid and lower crust are revealed. These include the Tacoma basin and fault zone, the Seattle basin and fault zone, the Seattle and Port Ludlow velocity highs, the Port Townsend basin, the Kingston Arch, and the Crescent basement, which is arched beneath the Lowland from its surface exposure in the eastern Olympics. Strong lateral velocity gradients, consistent with the existence of previously inferred faults, are observed, bounding the southern Port Townsend basin, the western edge of the Seattle basin beneath Dabob Bay, and portions of the Port Ludlow velocity high and the Tacoma basin. Significant velocity gradients are not observed across the southern Whidbey Island fault, the Lofall fault, or along most of the inferred location of the Hood Canal fault. Using improved earthquake locations resulting from our inversion, we determined focal mechanisms for a number of the best recorded earthquakes in the data set, revealing a complex pattern of deformation dominated by general arc-parallel regional tectonic compression. Most earthquakes occur in the basement rocks inferred to be the lower Tertiary Crescent

  9. R4D on Ramp

    NASA Technical Reports Server (NTRS)

    1956-01-01

    This Photograph taken in 1956 shows the first of three R4D Skytrain aircraft on the ramp behind the NACA High-Speed Flight Station. Note the designation 'United States NACA' on the side of the aircraft. NACA stood for the National Advisory Committee for Aeronautics, which evolved into the National Aeronautics and Space Administration (NASA) in 1958. The R4D Skytrain was one of the early workhorses for NACA and NASA at Edwards Air Force Base, California, from 1952 to 1984. Designated the R4D by the U.S. Navy, the aircraft was called the C-47 by the U.S. Army and U.S. Air Force and the DC-3 by its builder, Douglas Aircraft. Nearly everyone called it the 'Gooney Bird.' In 1962, Congress consolidated the military-service designations and called all of them the C-47. After that date, the R4D at NASA's Flight Research Center (itself redesignated the Dryden Flight Research Center in 1976) was properly called a C-47. Over the 32 years it was used at Edwards, three different R4D/C-47s were used to shuttle personnel and equipment between NACA/NASA Centers and test locations throughout the country and for other purposes. One purpose was landing on 'dry' lakebeds used as alternate landing sites for the X-15, to determine whether their surfaces were hard (dry) enough for the X-15 to land on in case an emergency occurred after its launch and before it could reach Rogers Dry Lake at Edwards Air Force Base. The R4D/C-47 served a variety of needs, including serving as the first air-tow vehicle for the M2-F1 lifting body (which was built of mahogany plywood). The C-47 (as it was then called) was used for 77 tows before the M2-F1 was retired for more advanced lifting bodies that were dropped from the NASA B-52 'Mothership.' The R4D also served as a research aircraft. It was used to conduct early research on wing-tip-vortex flow visualization as well as checking out the NASA Uplink Control System. The first Gooney Bird was at the NACA High-Speed Flight Research Station (now the Dryden

  10. Imaging the Seattle Fault Zone with high-resolution seismic tomography

    USGS Publications Warehouse

    Calvert, A.J.; Fisher, M.A.

    2001-01-01

    The Seattle fault, which trends east-west through the greater Seattle metropolitan area, is a thrust fault that, around 1100 years ago, produced a major earthquake believed to have had a magnitude greater than 7. We present the first high resolution image of the shallow P wave velocity variation across the fault zone obtained by tomographic inversion of first arrivals recorded on a seismic reflection profile shot through Puget Sound adjacent to Seattle. The velocity image shows that above 500 m depth the fault zone extending beneath Seattle comprises three distinct fault splays, the northernmost of which dips to the south at around 60??. The degree of uplift of Tertiary rocks within the fault zone suggests that the slip-rate along the northernmost splay during the Quaternary is 0.5 mm a-1, which is twice the average slip-rate of the Seattle fault over the last 40 Ma.

  11. Origin of the southern Okinawa Trough volcanism from detailed seismic tomography

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Yi; Sibuet, J.-C.; Lee, Chao-Shing; Hsu, Shu-Kun; Klingelhoefer, Frauke

    2007-08-01

    Magmatism associated with subducting plate edges or slab tears has been suggested in the southern Okinawa Trough. The cross back-arc volcanic trail, which consists of a cluster of about 70 seamounts, is located above a Ryukyu slab tear lying along the 123.3°E meridian. In November 2003, more than 3300 earthquakes recorded in this area by 15 ocean bottom seismometers and surrounding land stations during a period of 12 days were used to determine the three-dimensional Vp and Vs velocity structures and Vp/Vs ratios. A mantle inflow characterized by low Vp and Vs and high Vp/Vs passing through the slab tear is imaged. The fluid and/or melt component is rising obliquely from the slab tear in the directions of the cross back-arc volcanic trail, the northern slope of the southern Okinawa Trough and to north of Iriomote Island. The asthenospheric intake is also imaged by an inclined chip-like high Vp/Vs and low Vp and Vs body dipping northerly, which might be linked to the slab retreat. West of the slab tear, most of the earthquakes are located around low Vp and Vs and high Vp/Vs bodies, which suggests that the seismicity is related to magmatic and/or fluid activities. East of it, earthquakes are concentrated in an area characterized by high Vp and Vs velocities and low Vp/Vs, suggesting that the magma chamber is absent beneath the axial part of the trough and that normal faulting is the main factor controlling the seismicity.

  12. Seismic Velocity and Attenuation Tomography of the Tonga Arc and Lau Back-arc Basin

    NASA Astrophysics Data System (ADS)

    Wei, S. S.; Zha, Y.; Wiens, D. A.; Webb, S. C.

    2014-12-01

    We apply various techniques to analyze seismic data from the 2009 - 2010 Ridge2000 Lau Spreading Center project to investigate the distribution of partial melt beneath the Tonga arc and Lau back-arc basin. The shear wave velocity structure is jointly inverted from the phase velocities of teleseismic and ambient-noise Rayleigh waves, as the former is inverted using the two-plane-wave method with finite-frequency kernels, and the latter is obtained from cross-correlation in frequency domain. Additionally, we determine the 3D attenuation structure from t* measurements of P and S waves from local earthquakes. In order to avoid the trade-off between t* and corner frequency, we analyze the spectral ratio of S coda to independently constrain the fc for each event. The QP and QS structures are inverted separately, and QP/QS is jointly inverted from QP and t*(S). Tomographic results show strong signals of low velocity and high attenuation within the upper 100-km of the mantle beneath the back-arc basin, suggesting perhaps the lowest shear velocity (VSV = 3.5 km/s) and highest seismic attenuation (QP < 35 and QS < 25) known in the mantle. These anomalies require not only the abnormally high temperature but also the existence of partial melt. The inferred partial melt aligns with the spreading centers at shallow depths, but shift westwards away from the slab, implying a passive decompression melting process governed by the mantle wedge flow pattern. The Tonga volcanic arc does not display as strong of velocity or attenuation anomalies as the spreading centers, suggesting less magmatism associate with the arc compared to the back-arc.

  13. Patterns of seismic anisotropy and mantle flow around convergent margins: predictions from 3D geodynamic modelling, comparison with observations and implications for the interpretation of seismic tomographies (Arne Richter Award Lecture for OYS)

    NASA Astrophysics Data System (ADS)

    Faccenda, Manuele

    2015-04-01

    Seismic anisotropy generated by strain-induced lattice/crystal preferred orientation (LPO/CPO) of intrinsically anisotropic minerals is commonly used to study flow in the mantle and its relations with plate motions. In this contribution, I will present results from 3D petrological-thermomechanical models of subduction/collisional settings, where the strain-induced LPO of polycrystalline aggregates of the upper and mid mantle is computed. Overall, medium to strong fabrics develop in the upper and uppermost lower mantle around the convergent margin, with distinctive patterns that are related to the margin dynamic history. The full elastic tensors obtained from each polycrystalline aggregate is then used to carry out several seismological synthetic experiments. In particular: 1) seismogram synthetics of teleseismic waves propagating sub-vertically were computed to estimate SKS splitting patterns that are mostly controlled by the anisotropy in the upper mantle. Results are compared with observations from different subduction and collisional settings, yielding a strong constrain on the recent dynamics of these convergent margins. 2) synthetic seismic tomographies were produced using realistic ray path distributions around convergent margins, showing how the interpretation of seismic anomalies could potentially be biased by the presence of seismic anisotropy and a non-uniform seismic ray coverage.

  14. Lithostratigraphic interpretation from joint analysis of seismic tomography and magnetotelluric resistivity models using self-organizing map techniques

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Muñoz, G.; Moeck, I.

    2012-12-01

    The combined interpretation of different models as derived from seismic tomography and magnetotelluric (MT) inversion represents a more efficient approach to determine the lithology of the subsurface compared with the separate treatment of each discipline. Such models can be developed independently or by application of joint inversion strategies. After the step of model generation using different geophysical methodologies, a joint interpretation work flow includes the following steps: (1) adjustment of a joint earth model based on the adapted, identical model geometry for the different methods, (2) classification of the model components (e.g. model blocks described by a set of geophysical parameters), and (3) re-mapping of the classified rock types to visualise their distribution within the earth model, and petrophysical characterization and interpretation. One possible approach for the classification of multi-parameter models is based on statistical pattern recognition, where different models are combined and translated into probability density functions. Classes of rock types are identified in these methods as isolated clusters with high probability density function values. Such techniques are well-established for the analysis of two-parameter models. Alternatively we apply self-organizing map (SOM) techniques, which have no limitations in the number of parameters to be analysed in the joint interpretation. Our SOM work flow includes (1) generation of a joint earth model described by so-called data vectors, (2) unsupervised learning or training, (3) analysis of the feature map by adopting image processing techniques, and (4) application of the knowledge to derive a lithological model which is based on the different geophysical parameters. We show the usage of the SOM work flow for a synthetic and a real data case study. Both tests rely on three geophysical properties: P velocity and vertical velocity gradient from seismic tomography, and electrical resistivity

  15. Regional Seismic Amplitude Modeling and Tomography for Earthquake-Explosion Discrimination

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Pasyanos, M. E.; Matzel, E.; Gok, R.; Sweeney, J.; Ford, S. R.; Rodgers, A. J.

    2008-12-01

    Empirically explosions have been discriminated from natural earthquakes using regional amplitude ratio techniques such as P/S in a variety of frequency bands. We demonstrate that such ratios discriminate nuclear tests from earthquakes using closely located pairs of earthquakes and explosions recorded on common, publicly available stations at test sites around the world (e.g. Nevada, Novaya Zemlya, Semipalatinsk, Lop Nor, India, Pakistan, and North Korea). We are examining if there is any relationship between the observed P/S and the point source variability revealed by longer period full waveform modeling. For example, regional waveform modeling shows strong tectonic release from the May 1998 India test, in contrast with very little tectonic release in the October 2006 North Korea test, but the P/S discrimination behavior appears similar in both events using the limited regional data available. While regional amplitude ratios such as P/S can separate events in close proximity, it is also empirically well known that path effects can greatly distort observed amplitudes and make earthquakes appear very explosion-like. Previously we have shown that the MDAC (Magnitude Distance Amplitude Correction, Walter and Taylor, 2001) technique can account for simple 1-D attenuation and geometrical spreading corrections, as well as magnitude and site effects. However in some regions 1-D path corrections are a poor approximation and we need to develop 2-D path corrections. Here we demonstrate a new 2-D attenuation tomography technique using the MDAC earthquake source model applied to a set of events and stations in both the Middle East and the Yellow Sea Korean Peninsula regions. We believe this new 2-D MDAC tomography has the potential to greatly improve earthquake-explosion discrimination, particularly in tectonically complex regions such as the Middle East.

  16. Structure of the Lesser Antilles subduction zone from seismic refraction tomography

    NASA Astrophysics Data System (ADS)

    Charvis, P.; Evain, M.; Galve, A.; Laigle, M.; Ruiz Fernandez, M.; Kopp, H.; Hirn, A.; Flueh, E. R.; Party, T.

    2011-12-01

    In 2007, two wide-angle seismic experiments were conducted to constrain the structure of the central Lesser Antilles subduction zone. During the Sismantilles II experiment, seismic refraction data recorded by a network of 27 OBSs over an area of more than 6000 km2 provide new insights on the crustal structure of the forearc offshore Martinique and Dominica islands. The tomographic inversion of first arrival travel times provides a 3D P-wave velocity model down to 15 km. Basement velocity gradient shows the forearc made of two distinct units: A high velocity gradient domain named the inner forearc in comparison to a lower velocity gradient domain located further trenchward named the outer forearc. The inner forearc is likely the extension at depth of the Mesozoic magmatic crust outcropping to the north in La Désirade Island and along the scarp of the Karukera spur and then represent the eastern limit of the Caribbean Plateau. The outer forearc probably consists of magmatic rocks of a similar origin. It could be either part of the margin of the Caribbean Plateau, like the inner forearc, but the crust was thinned and fractured during the past tectonic history of the area or by recent subduction processes, or an oceanic terrane more recently accreted to the island arc. Whereas the inner forearc appears as a rigid block uplifted and tilted as a whole to the south, short wavelength deformations of the outer forearc basement are observed, beneath a 3 to 6 km thick sedimentary pile, in relation with the subduction of the Tiburon ridge and associated seamounts. North, offshore Dominica Island, the outer forearc is 70 km wide. It extends as far as 180 km to the east of the volcanic front where it acts as a backstop on which the accretionary wedge developed. Its width decreases strongly to the south to terminate offshore Martinique where the inner forearc acts as the backstop. Two dense wide-angle seismic refraction lines, shot during the Trail experiment (2007) provides a 2

  17. Seismic structure of subducted Philippine Sea plate beneath the southern Ryukyu arc by receiver function and local earthquakes tomography

    NASA Astrophysics Data System (ADS)

    Nakamura, M.

    2012-12-01

    Seismic coupling of the Ryukyu subduction zone is assumed to be weak from the lack of historical interplate large earthquakes. However, recent investigation of repeating slow slip events (Heki & Kataoka, 2008), shallow low frequency earthquakes (Ando et al., 2012), and source of 1771 Yaeyama mega-tsunami (Nakamura, 2009), showed that the interplate coupling is not weak in the south of Ryukyu Trench. The biannually repeating SSEs (Mw=6.5) occur at the depth of 20-40 km on the upper interface of the subducted Philippine Sea plate beneath Yaeyama region, where earthquake swarm occurred on 1991 and 1992. To reveal the relation among the crustal structure, earthquake swarms, and occurrence of slow slip events (SSE), local earthquake tomography and receiver function (RF) analysis was computed in the southwestern Ryukyu arc. A tomographic inversion was used to determine P and S wave structures beneath Iriomote Island in the southwestern Ryukyu region for comparison with the locations of the SSE. The seismic tomography (Thurber & Eberhart-Phillips, 1999) was employed. The P- and S- wave arrival time data picked manually by Japan Meteorological Agency (JMA) are used. The 6750 earthquakes from January 2000 to July 2012 were used. For the calculation of the receiver function, the 212 earthquakes whose magnitudes are over 6.0 and epicentral distances are between 30 and 90 degrees were selected. The teleseicmic waveforms observed at two short-period seismometers of the JMA, and one broadband seismometer of F-net of National Research Institute for Earth Science and Disaster Prevention were used. The water level method (the water level is 0.01) is applied to original waveforms. Assuming that each later phase in a RF is the wave converted from P to S at a depth, I transformed the time domain RF into the depth domain one along each ray path in a reference velocity model. The JMA2001 velocity model is used in this study. The results of tomography show that the low Vp and high Vp

  18. Crustal seismic structure beneath the Deccan Traps area (Gujarat, India), from local travel-time tomography

    NASA Astrophysics Data System (ADS)

    Prajapati, Srichand; Kukarina, Ekaterina; Mishra, Santosh

    2016-03-01

    The Gujarat region in western India is known for its intra-plate seismic activity, including the Mw 7.7 Bhuj earthquake, a reverse-faulting event that reactivated normal faults of the Mesozoic Kachchh rift zone. The Late Cretaceous Deccan Traps, one of the largest igneous provinces on the Earth, cover the southern part of Gujarat. This study is aimed at bringing light to the crustal rift zone structure and likely origin of the Traps based on the velocity structure of the crust beneath Gujarat. Tomographic inversion of the Gujarat region was done using the non-linear, passive-source tomographic algorithm, LOTOS. We use high-quality arrival times of 22,280 P and 22,040 S waves from 3555 events recorded from August 2006 to May 2011 at 83 permanent and temporary stations installed in Gujarat state by the Institute of Seismological Research (ISR). We conclude that the resulting high-velocity anomalies, which reach down to the Moho, are most likely related to intrusives associated with the Deccan Traps. Low velocity anomalies are found in sediment-filled Mesozoic rift basins and are related to weakened zones of faults and fracturing. A low-velocity anomaly in the north of the region coincides with the seismogenic zone of the reactivated Kachchh rift system, which is apparently associated with the channel of the outpouring of Deccan basalt.

  19. Ambient seismic noise tomography of Canada and adjacent regions: Part I. Crustal structures

    NASA Astrophysics Data System (ADS)

    Kao, Honn; Behr, Yannik; Currie, Claire A.; Hyndman, Roy; Townend, John; Lin, Fan-Chi; Ritzwoller, Michael H.; Shan, Shao-Ju; He, Jiangheng

    2013-11-01

    paper presents the first continental-scale study of the crust and upper mantle shear velocity (Vs) structure of Canada and adjacent regions using ambient noise tomography. Continuous waveform data recorded between 2003 and 2009 with 788 broadband seismograph stations in Canada and adjacent regions were used in the analysis. The higher primary frequency band of the ambient noise provides better resolution of crustal structures than previous tomographic models based on earthquake waveforms. Prominent low velocity anomalies are observed at shallow depths (<20 km) beneath the Gulf of St. Lawrence in east Canada, the sedimentary basins of west Canada, and the Cordillera. In contrast, the Canadian Shield exhibits high crustal velocities. We characterize the crust-mantle transition in terms of not only its depth and velocity but also its sharpness, defined by its thickness and the amount of velocity increase. Considerable variations in the physical properties of the crust-mantle transition are observed across Canada. Positive correlations between the crustal thickness, Moho velocity, and the thickness of the transition are evident throughout most of the craton except near Hudson Bay where the uppermost mantle Vs is relatively low. Prominent vertical Vs gradients are observed in the midcrust beneath the Cordillera and beneath most of the Canadian Shield. The midcrust velocity contrast beneath the Cordillera may correspond to a detachment zone associated with high temperatures immediately beneath, whereas the large midcrust velocity gradient beneath the Canadian Shield probably represents an ancient rheological boundary between the upper and lower crust.

  20. The preliminary results: Seismic ambient noise Rayleigh wave tomography around Merapi volcano, central Java, Indonesia

    SciTech Connect

    Trichandi, Rahmantara; Yudistira, Tedi; Nugraha, Andri Dian; Zulhan, Zulfakriza; Saygin, Erdinc

    2015-04-24

    Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possible station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.

  1. Seismic velocity structure of the central Taupo Volcanic Zone, New Zealand, from local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Sherburn, Steven; Bannister, Stephen; Bibby, Hugh

    2003-03-01

    The 3-D distribution of P-wave velocity (Vp) and the P-wave/S-wave velocity ratio (Vp/Vs) are derived for the crust in the central Taupo Volcanic Zone (TVZ), New Zealand, by tomographic inversion of P- and S-wave arrival time data from local earthquakes. Resolution in the seismogenic mid-crust (4-6 km) is good, but poorer above and below these depths. The 3-D velocity model has several Vp anomalies as large as ±5% in the mid-lower crust (4-10 km) and more than ±10% in the upper crust (0-4 km). The model achieves a 55% reduction in data variance from an initial 1-D model. Young caldera structures, Okataina, Rotorua, and Reporoa, are characterised by low Vp anomalies at a depth of about 4 km and these coincide with large negative residual gravity anomalies. We attribute these anomalies to large volumes of low Vp, low-density, volcaniclastic sediments that have filled these caldera collapse structures. Although there are no Vp anomalies which suggest the presence of molten or semi-molten magma beneath the TVZ, a large, high Vp anomaly of more than +15% and a high Vp/Vs anomaly are observed coincident with a diorite pluton beneath the Ngatamariki geothermal field. However, Vp anomalies cannot be seen beneath the largest geothermal fields, Waimangu, Waiotapu, and Reporoa, and, consequently, if such anomalies exist, they must be below the resolution of our data. A prominent Vp contrast of 5-10% occurs at a depth of about 6 km beneath the boundary between the Taupo-Reporoa Depression and the Taupo Fault Belt (TFB), coincident with the eastern limit of the seismic activity beneath the TFB. We interpret this velocity contrast as being caused by the presence of extensive, non-molten, intrusives beneath the Taupo-Reporoa Depression. We suggest that the high-velocity material beneath the Taupo-Reporoa Depression is isolated from regional extension in the TVZ, and from the resulting faulting and seismicity, which occurs preferentially within the weaker material of the TFB. We

  2. Extending Seismic Tomography along the San Andreas Fault to the Lower Crust with Low Frequency Earthquakes

    NASA Astrophysics Data System (ADS)

    McClement, K.; Thurber, C. H.; Shelly, D. R.; Sumy, D. F.; Bennington, N. L.; Peterson, D. E.; Cochran, E.; Harrington, R. M.

    2013-12-01

    Similarities within families of low frequency earthquakes (LFE's) occurring within non-volcanic tremor (NVT) beneath the San Andreas fault (SAF) in central California facilitates applying high-precision location techniques to the LFE's and tomographic imaging of the tremor zone. In turn, this will allow us to examine the geometry and character of the SAF deep in the crust and evaluate the lithologies and physical conditions (e.g., fluid content) surrounding the tremor zone. We build on the work of Shelly and coworkers (Shelly et al., 2009; Shelly and Hardebeck, 2010) to stack and pick LFE "tremorgrams" for temporary array stations and other stations not previously analyzed. Our initial work focused on the 2001-2002 Parkfield Area Seismic Observatory (PASO) array and 15 LFE families directly beneath it. Augmenting our existing PASO earthquake and explosion dataset with the LFE picks allows us to extend our PASO tomographic model deeper to include the tremor zone, where we find slightly reduced Vp and more sharply reduced Vs near the LFE locations. We are now expanding our work to include PASO records of more distant LFE families and other seismic stations. We find that the high amplitudes and more frequent recurrence of LFE's to the southeast of PASO results in high quality stacks for most PASO stations. We can also produce good stacks for weaker, less frequent LFE's northwest of PASO. We will present examples of our new tremorgrams along with preliminary LFE relocations. There are three main underlying goals for this project. The first is to extend the existing Vp model and develop the new Vs model to cover the depth range of the NVT present beneath the SAF in the Parkfield region. The presence of ambient and triggered NVT in this area has mainly been attributed to the presence of fluids (Ghosh et al., 2008; Peng et al., 2008, 2009; Nadeau and Guilhem, 2009; Thomas et al., 2011; Hill et al., 2013). The velocity models we will develop will also help constrain the

  3. Flood, Seismic or Volcanic Deposits? New Insights from X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Van Daele, M. E.; Moernaut, J.; Vermassen, F.; Llurba, M.; Praet, N.; Strupler, M. M.; Anselmetti, F.; Cnudde, V.; Haeussler, P. J.; Pino, M.; Urrutia, R.; De Batist, M. A. O.

    2014-12-01

    Event deposits, such as e.g. turbidites incorporated in marine or lacustrine sediment sequences, may be caused by a wide range of possible triggering processes: failure of underwater slopes - either spontaneous or in response to earthquake shaking, hyperpycnal flows and floods, volcanic processes, etc. Determining the exact triggering process remains, however, a major challenge. Especially when studying the event deposits on sediment cores, which typically have diameters of only a few cm, only a small spatial window is available to analyze diagnostic textural and facies characteristics. We have performed X-ray CT scans on sediment cores from Chilean, Alaskan and Swiss lakes. Even when using relatively low-resolution CT scans (0.6 mm voxel size), many sedimentary structures and fabrics that are not visible by eye, are revealed. For example, the CT scans allow to distinguish tephra layers that are deposited by fall-out, from those that reached the basin by river transport or mud flows and from tephra layers that have been reworked and re-deposited by turbidity currents. The 3D data generated by the CT scans also allow to examine relative orientations of sedimentary structures (e.g. convolute lamination) and fabrics (e.g. imbricated mud clasts), which can be used to reconstruct flow directions. Such relative flow directions allow to determine whether a deposit (e.g. a turbidite) had one or several source areas, the latter being typical for seismically triggered turbidites. When the sediment core can be oriented (e.g. using geomagnetic properties), absolute flow directions can be reconstructed. X-ray CT scanning, at different resolution, is thus becoming an increasingly important tool for discriminating the exact origin of EDs, as it can help determining whether e.g. an ash layer was deposited as fall out from an ash cloud or fluvially washed into the lake, or whether a turbidite was triggered by an earthquake or a flood.

  4. Anisotropic Rayleigh wave tomography of Northeast China using ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Liu, Zhikun; Huang, Jinli; Yao, Huajian

    2016-07-01

    The ambient noise data recorded by 249 seismic stations in the permanent and temporary networks in Northeast China are used to invert for the isotropic phase velocity and azimuthal anisotropy of Rayleigh waves in the period band 5-50 s. The inversion results reflect the structure from the shallow crust to upper mantle up to approximately 120 km depth. Beneath the Songliao basin, both the fast direction in shallow crust and strike of a low-velocity anomaly in the middle crust are NNE-SSW, which is coincident with the main tectonic trend of the (Paleo) Pacific tectonic domain. This indicates that the rifting of the Songliao basin is influenced by the subduction of (Paleo) Pacific plate. The upper mantle of Songliao block (except the central area of Songliao basin) to the west of Mudanjiang fault, and the east of the North-South Gravity Lineament, is characterized by high-velocity and weak anisotropy up to approximately ​120 km depth. We infer that there is delamination of lithospheric mantle beneath the Songliao block. Obvious N-S, NE-SW, and E-W trending fast directions are found in the lithospheric mantles of the east, west, and south sides of Songliao block, respectively, which coincide with the strikes of the Paleozoic tectonic in these areas. This suggests that the frozen-in anisotropic fabric in the lithospheric mantle can be used to indicate the historical deformation of the lithosphere. In the northern margin of the North China Craton, the spatial variations of phase velocity and azimuthal anisotropy are more dramatic than those in Northeast China blocks, which indicates that the lithosphere of the North China Craton has experienced more complicated tectonic evolution than that of the Northeast China blocks.

  5. Proxies of oceanic Lithosphere/Asthenosphere Boundary from Global Seismic Anisotropy Tomography

    NASA Astrophysics Data System (ADS)

    Burgos, Gael; Montagner, Jean-Paul; Beucler, Eric; Trampert, Jeannot; Capdeville, Yann

    2013-04-01

    Surface waves provide essential information on the knowledge of the upper mantle global structure despite their low lateral resolution. This study, based on surface waves data, presents the development of a new anisotropic tomographic model of the upper mantle, a simplified isotropic model and the consequences of these results for the Lithosphere/Asthenosphere Boundary (LAB). As a first step, a large number of data is collected, these data are merged and regionalized in order to derive maps of phase and group velocity for the fundamental mode of Rayleigh and Love waves and their azimuthal dependence (maps of phase velocity are also obtained for the first six overtones). As a second step, a crustal a posteriori model is developped from the Monte-Carlo inversion of the shorter periods of the dataset, in order to take into account the effect of the shallow layers on the upper mantle. With the crustal model, a first Monte-Carlo inversion for the upper mantle structure is realized in a simplified isotropic parameterization to highlight the influence of the LAB properties on the surface waves data. Still using the crustal model, a first order perturbation theory inversion is performed in a fully anisotropic parameterization to build a 3-D tomographic model of the upper mantle (an extended model until the transition zone is also obtained by using the overtone data). Estimates of the LAB depth are derived from the upper mantle models and compared with the predictions of oceanic lithosphere cooling models. Seismic events are simulated using the Spectral Element Method in order to validate the ability of the anisotropic tomographic model of the upper mantle to re- produce observed seismograms.

  6. Seismic Tomography for the Crust and Upper Mantle behind the Japan Trench

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2014-12-01

    The Pacific plate subducts WNW under the Eurasian plates with a ~30° angle of dip and a rate of ~8 cm/yr from the Japan-Kuril Trench. The Kuril-NE Japan arc of the uppermost mantle, overlying the subducting Pacific slab, is the locus of important processes, including serpentinization of the forearc mantle wedge, repeated genesis of megathrust earthquakes, slab dehydration, arc magmatism and interplate coupling. To improve our knowledge of crustal and upper mantle structures through tomographic imaging, we determined the three-dimensional (3-D) velocity (Vp, Vs) and Vp/Vs structures under the Kuril-NE Japan subduction zone. The Vp, Vs and Vp/Vs models provide compelling evidence for a highly hydrated and serpentinized forearc mantle and the fluids related to low-velocity and high-Vp/Vs anomalies associated with the slab dehydration. Significant slow anomalous Vp and Vs with a high-Vp/Vs ratio are clearly imaged along the volcanic front with an extended depth of ~100 km under the Kuril-NE Japan arc, showing good consistency with the results of previous studies. This is caused mainly by the fluids associated with the extensive dehydration of the subducting Pacific slab. Fluid-related anomalies under the Kuril-NE Japan arc system, attributed to various processes such as slab dehydration and serpentinization of the forearc mantle wedge, are contributed mainly by arc magmatism, interplate coupling and the repeated generation of megathrust earthquakes. The characteristic distribution of high and low Vp/Vs in the forearc continental crust along the trench-parallel direction may reflects the spatial heterogeneity of the amount of the subducted water which related to the difference of the sedimentary unit and seismic activity in the oceanic crust. Our study demonstrates that the directly optimization of Vp/Vs tomographic procedure provides more stable and reliable Vp/Vs image than previous method.

  7. Curie temperature depths in the Alps and the Po Plain (northern Italy): Comparison with heat flow and seismic tomography data

    NASA Astrophysics Data System (ADS)

    Speranza, Fabio; Minelli, Liliana; Pignatelli, Alessandro; Gilardi, Matteo

    2016-08-01

    We report on the spectral analysis of the aeromagnetic residuals of the Alps and the Po Plain (northern Italy) to derive the Curie point depth (CPD), assumed to represent the 550 °C isotherm depth. We analysed both the aeromagnetic residuals of northern Italy gathered by Agip (now Eni) and the recent EMAG2 compilation. We used the centroid method on 44 and 96 (respectively) 100 × 100 km2 windows considering both a random and a fractal magnetization distribution, but found that, at least for the Alps, the fractal model yields unrealistically shallow CPDs. Analyses considering a random magnetization model give CPDs varying between 12 and 39 km (22 to 24 km on average considering the two data sets) in the Po Plain, representing the Adriatic-African foreland area of the Alps, in substantial agreement with recently reported heat flow values of 60-70 mW/m2. In the Alps, the Eni data set yields shallow CPDs ranging between 6 and 23 km (13 km on average). EMAG2 analysis basically confirms the "hot" Alpine crust, but reduces it to three 50-100 km wide patches elongated along the chain, where CPDs vary between 10 and 15 km. Such "hot" Alpine domains occur just north of maximum (50-55 km) crustal thickness zones of the Alps and correspond to low seismic wave velocity anomalies recently documented in the 20-22 to 35-38 km depth interval, whereas no relation is apparent with local geology. Assuming an average crustal thermal conductivity of 2.5 W/m °C and a steady-state conductive model, CPDs from the hot zones of the Alps translate into heat flow values of 110-120 mW/m2, and to a basal heat flow from the mantle exceeding 100 mW/m2 that is significantly greater than that expected in a mountain range. Thus we conclude that the steady-state conductive model does not apply for the Alps and granitic melts occur at ∼15-40 km depths, consistently with seismic tomography evidence.

  8. Seismic attenuation tomography of the Tonga-Fiji region using phase pair methods

    NASA Astrophysics Data System (ADS)

    Roth, Erich G.; Wiens, Douglas A.; Dorman, Leroy M.; Hildebrand, John; Webb, Spahr C.

    1999-03-01

    The anelastic structure of the region surrounding the Tonga slab and Lau back arc spreading center in the southwest Pacific is studied using data from 12 broadband island stations and 30 ocean bottom seismographs. Two differential attenuation methods determine δt* over the frequency band 0.1 to 3.5 Hz for earthquakes in the Tonga slab. The S-P method measures the difference in spectral decay between P and S waves arriving at the same station. The P-P method measures the difference in spectral decay for P waves with different paths through the upper mantle. Eight hundred sixty phase pairs are used to invert for two-dimensional 1/Qα structure using a nonnegative least squares algorithm. A grid search method determines the Qα/Qβ ratio most compatible with both the S-P and P-P differential measurements. The highest attenuation (Qα = 90) is found within the upper 100 km beneath the active portions of the Lau Basin extending westward to the Lau Ridge. These regions probably delineate the source region for the back arc spreading center magmas, expected to be within the upper 100 km based on petrological considerations. The high attenuation regions also correlate well with zones of low P wave velocity determined by regional velocity tomography. Somewhat lower attenuation is found beneath the Fiji Plateau than beneath the Lau Basin. The entire back arc is characterized by a gradual decrease in attenuation to a depth of 300 to 400 km. The slab is imaged as a region of low attenuation (Qα > 900) material. A Qα/Qβ ratio of 1.75 provides the best fit between the S-P and P-P data sets upon inversion. Spectral stacking shows no frequency dependence within the frequency band analyzed.

  9. Seismic attenuation tomography of the Southwest Japan arc: new insight into subduction dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zhao, Dapeng

    2015-04-01

    We determined the first high-resolution P- and S-wave attenuation (Qp and Qs) tomography of the crust and upper mantle under the entire Nankai subduction zone from the Nankai Trough to the Japan Sea using a large number of high-quality t* data measured from P- and S-wave spectra of local earthquakes. The suboceanic earthquakes used in this study were relocated precisely using sP depth phases and ocean-bottom-seismometer data. The overall pattern of the obtained Q models is similar to that of velocity models of the study region. Our present results show that high-Q (i.e. weak attenuation) anomalies in the upper crust generally correspond to plutonic rocks widely exposed in the Nankai arc. Some of the low-Q (i.e. strong attenuation) anomalies in the upper crust along the Pacific coast are associated with the Cretaceous-Cenozoic accretionary wedge. Obvious low-Q anomalies exist in the crust under the active arc volcanoes. Most of the large inland crustal earthquakes are located in or around the low-Q zones in the crust. The subducting Philippine Sea slab is imaged clearly as a landward dipping high-Q zone. Prominent low-Q anomalies are revealed in the mantle wedge under the volcanic front and backarc area, which reflect the source zone of arc magmatism caused by slab dehydration and corner flow in the mantle wedge. Significant low-Q anomalies exist in the forearc mantle wedge, which reflects a highly hydrated and serpentinized forearc mantle wedge due to abundant fluids released from dehydration of the young and warm Philippine Sea slab.

  10. Visualization of seismic tomography on Google Earth: Improvement of KML generator and its web application to accept the data file in European standard format

    NASA Astrophysics Data System (ADS)

    Yamagishi, Y.; Yanaka, H.; Tsuboi, S.

    2009-12-01

    We have developed a conversion tool for the data of seismic tomography into KML, called KML generator, and made it available on the web site (http://www.jamstec.go.jp/pacific21/google_earth). The KML generator enables us to display vertical and horizontal cross sections of the model on Google Earth in three-dimensional manner, which would be useful to understand the Earth's interior. The previous generator accepts text files of grid-point data having longitude, latitude, and seismic velocity anomaly. Each data file contains the data for each depth. Metadata, such as bibliographic reference, grid-point interval, depth, are described in other information file. We did not allow users to upload their own tomographic model to the web application, because there is not standard format to represent tomographic model. Recently European seismology research project, NEIRES (Network of Research Infrastructures for European Seismology), advocates that the data of seismic tomography should be standardized. They propose a new format based on JSON (JavaScript Object Notation), which is one of the data-interchange formats, as a standard one for the tomography. This format consists of two parts, which are metadata and grid-point data values. The JSON format seems to be powerful to handle and to analyze the tomographic model, because the structure of the format is fully defined by JavaScript objects, thus the elements are directly accessible by a script. In addition, there exist JSON libraries for several programming languages. The International Federation of Digital Seismograph Network (FDSN) adapted this format as a FDSN standard format for seismic tomographic model. There might be a possibility that this format would not only be accepted by European seismologists but also be accepted as the world standard. Therefore we improve our KML generator for seismic tomography to accept the data file having also JSON format. We also improve the web application of the generator so that the

  11. High velocity anomaly beneath the Deccan volcanic province: Evidence from seismic tomography

    USGS Publications Warehouse

    Iyer, H.M.; Gaur, V.K.; Rai, S.S.; Ramesh, D.S.; Rao, C.V.R.; Srinagesh, D.; Suryaprakasam, K.

    1989-01-01

    Analysis of teleseismic P-wave residuals observed at 15 seismograph stations operated in the Deccan volcanic province (DVP) in west central India points to the existence of a large, deep anomalous region in the upper mantle where the velocity is a few per cent higher than in the surrounding region. The seismic stations were operated in three deployments together with a reference station on precambrian granite at Hyderabad and another common station at Poona. The first group of stations lay along a west-northwesterly profile from Hyderabad through Poona to Bhatsa. The second group roughly formed an L-shaped profile from Poona to Hyderabad through Dharwar and Hospet. The third group of stations lay along a northwesterly profile from Hyderabad to Dhule through Aurangabad and Latur. Relative residuals computed with respect to Hyderabad at all the stations showed two basic features: a large almost linear variation from approximately +1s for teleseisms from the north to-1s for those from the southeast at the western stations, and persistance of the pattern with diminishing magnitudes towards the east. Preliminary ray-plotting and three-dimensional inversion of the P-wave residual data delineate the presence of a 600 km long approximately N-S trending anomalous region of high velocity (1-4% contrast) from a depth of about 100 km in the upper mantle encompassing almost the whole width of the DVP. Inversion of P-wave relative residuals reveal the existence of two prominent features beneath the DVP. The first is a thick high velocity zone (1-4% faster) extending from a depth of about 100 km directly beneath most of the DVP. The second feature is a prominent low velocity region which coincides with the westernmost part of the DVP. A possible explanation for the observed coherent high velocity anomaly is that it forms the root of the lithosphere which coherently translates with the continents during plate motions, an architecture characteristic of precambrian shields. The low

  12. Seismic tomography and deformation modeling of the junction of the San Andreas and Calaveras faults

    USGS Publications Warehouse

    Dorbath, C.; Oppenheimer, D.; Amelung, F.; King, G.

    1996-01-01

    Local earthquake P traveltime data is inverted to obtain a three-dimensional tomographic image of the region centered on the junction of the San Andreas and Calaveras faults. The resulting velocity model is then used to relocate more than 17,000 earthquakes and to produce a model of fault structure in the region. These faults serve as the basis for modeling the topography using elastic dislocation methods. The region is of interest because active faults join, it marks the transition zone from creeping to locked fault behavior on the San Andreas fault, it exhibits young topography, and it has a good spatial distribution of seismicity. The tomographic data set is extensive, consisting of 1445 events, 96 stations, and nearly 95,000 travel time readings. Tomographic images are resolvable to depths of 12 km and show significant velocity contrasts across the San Andreas and Calaveras faults, a low-velocity zone associated with the creeping section of the San Andreas fault, and shallow low-velocity sediments in the southern Santa Clara valley and northern Salinas valley. Relocated earthquakes only occur where vp>5 km/s and indicate that portions of the San Andreas and Calaveras faults are non vertical, although we cannot completely exclude the possibility that all or part of this results from ray tracing problems. The new dips are more consistent with geological observations that dipping faults intersect the surface where surface traces have been mapped. The topographic modeling predicts extensive subsidence in regions characterized by shallow low-velocity material, presumably the result of recent sedimentation. Some details of the topography at the junction of the San Andreas and Calaveras faults are not consistent with the modeling results, suggesting that the current position of this "triple junction" has changed with time. The model also predicts those parts of the fault subject to contraction or extension perpendicular to the fault strike and hence the sense of any

  13. Integrated test plan for crosswell compressional and shear wave seismic tomography for site characterization at the VOC Arid Site

    SciTech Connect

    Elbring, G.J.; Narbutovskih, S.M.

    1994-02-01

    This integrated test plan describes the demonstration of the crosswell acoustic tomography technique as part of the Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID). The purpose of this demonstration is to image the subsurface seismic velocity structure and to relate the resulting velocity model to lithology and saturation. In fiscal year (FY) 1994 an initial fielding will test three different downhole sources at two different sites at the Hanford US Department of Energy facility to identify which sources will provide the energy required to propagate between existing steel-cased wells at these two sites. Once this has been established, a second fielding will perform a full compressional and shear wave tomographic survey at the most favorable site. Data reduction, analysis, and interpretation of this full data set will be completed by the end of this fiscal year. Data collection for a second survey will be completed by the end of the fiscal year, and data reduction for this data set will be completed in FY 1995. The specific need is detailed subsurface characterization with minimum intrusion. This technique also has applications for long term vadose zone monitoring for both Resource Conservation and Recovery Act (RCRA) waste storage facilities and for remediation monitoring. Images produced are continuous between boreholes. This is a significant improvement over the single point data derived solely from core information. Saturation changes, either naturally occurring (e.g., perched water tables) or remediation induced (e.g., water table mounding from injection wells or during inwell air sparging) could be imaged. These crosswell data allow optimal borehole placement for groundwater remediation, associated monitoring wells and possibly evaluation of the effective influence of a particular remediation technique.

  14. Stress interaction at the Lazufre volcanic region, as constrained by InSAR, seismic tomography and boundary element modelling

    NASA Astrophysics Data System (ADS)

    Nikkhoo, Mehdi; Walter, Thomas R.; Lundgren, Paul; Spica, Zack; Legrand, Denis

    2016-04-01

    The Azufre-Lastarria volcanic complex in the central Andes has been recognized as a major region of magma intrusion. Both deep and shallow inflating reservoirs inferred through InSAR time series inversions, are the main sources of a multi-scale deformation accompanied by pronounced fumarolic activity. The possible interactions between these reservoirs, as well as the path of propagating fluids and the development of their pathways, however, have not been investigated. Results from recent seismic noise tomography in the area show localized zones of shear wave velocity anomalies, with a low shear wave velocity region at 1 km depth and another one at 4 km depth beneath Lastarria. Although the inferred shallow zone is in a good agreement with the location of the shallow deformation source, the deep zone does not correspond to any deformation source in the area. Here, using the boundary element method (BEM), we have performed an in-depth continuum mechanical investigation of the available ascending and descending InSAR data. We modelled the deep source, taking into account the effect of topography and complex source geometry on the inversion. After calculating the stress field induced by this source, we apply Paul's criterion (a variation on Mohr-Coulomb failure) to recognize locations that are liable for failure. We show that the locations of tensile and shear failure almost perfectly coincide with the shallow and deep anomalies as identified by shear wave velocity, respectively. Based on the stress-change models we conjecture that the deep reservoir controls the development of shallower hydrothermal fluids; a hypothesis that can be tested and applied to other volcanoes.

  15. Evolution in the knowledge of the origin of the Atlas Mountains topography: from structural geology to seismic wave tomography

    NASA Astrophysics Data System (ADS)

    Ayarza, Puy; Teixell, Antonio; Carbonell, Ramón; Arboleya, Maria Luisa; Palomeras, Immaculada; Kchickach, Azzouz; Charroud, Mohammed; Levander, Alan

    2014-05-01

    P and Pn) that indicate that the Moho is an asymmetric feature that locally defines a crustal root characteristic of young orogens. The crust-mantle boundary is modeled at relatively shallow depths (30-41 km) in accordance with other geophysical data, thus supporting the idea of a 'mantle upwelling' as main contributor to the High Atlas topography (Ayarza et al., submitted). Finally, MT experiments indicated that the Atlas lower crust and upper mantle are highly conductive and might contain partly molten material (Anahnah et al., 2011; Ledo et al., 2011). Seismic wave tomography and receiver function analysis have concluded that low P and S-wave velocities exist in the Atlas upper mantle (Bezada et al., 2013; Miller and Becker, 2014; Palomeras et al., 2014; Thurner et al, 2014), further supporting the existence of this asthenospheric feature and validating the models that emphasized the importance of dynamic topography for the Atlas orogenic belt.

  16. Shallow Faulting in Morelia, Mexico, Based on Seismic Tomography and Geodetically Detected Land Subsidence

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Vergara-Huerta, F.; Chaussard, E.; Wdowinski, S.; DeMets, C.; Salazar-Tlaczani, L.

    2013-12-01

    Subsidence has been a common occurrence in several cities in central Mexico for the past three decades. This process causes substantial damage to the urban infrastructure and housing in several cities and it is a major factor to be considered when planning urban development, land-use zoning and hazard mitigation strategies. Since the early 1980's the city of Morelia in Central Mexico has experienced subsidence associated with groundwater extraction in excess of natural recharge from rainfall. Previous works have focused on the detection and temporal evolution of the subsidence spatial distribution. The most recent InSAR analysis confirms the permanence of previously detected rapidly subsiding areas such as the Rio Grande Meander area and also defines 2 subsidence patches previously undetected in the newly developed suburban sectors west of Morelia at the Fraccionamiento Del Bosque along, south of Hwy. 15 and another patch located north of Morelia along Gabino Castañeda del Rio Ave. Because subsidence-induced, shallow faulting develops at high horizontal strain localization, newly developed a subsidence areas are particularly prone to faulting and fissuring. Shallow faulting increases groundwater vulnerability because it disrupts discharge hydraulic infrastructure and creates a direct path for transport of surface pollutants into the underlying aquifer. Other sectors in Morelia that have been experiencing subsidence for longer time have already developed well defined faults such as La Colina, Central Camionera, Torremolinos and La Paloma faults. Local construction codes in the vicinity of these faults define a very narrow swath along which housing construction is not allowed. In order to better characterize these fault systems and provide better criteria for future municipal construction codes we have surveyed the La Colina and Torremolinos fault systems in the western sector of Morelia using seismic tomographic techniques. Our results indicate that La Colina Fault

  17. Rayleigh-wave Tomography and Seismic Anisotropic Structures in the Region of the Philippine Sea

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Yu; Legendre, Cédric P.; Chang, Emmy T. Y.

    2016-04-01

    The Philippine Sea Plate (PSP) is surrounded by convergent boundaries, the Pacific plate is subducting beneath the PSP along the Izu-Bonin and Mariana trenches at the east, whereas the PSP is subducting beneath the Eurasian plate along the Nankai trough, Ryukyu trench and Philippine trench at the west. The PSP can be divided by three oceanic basins: the oldest West Philippine basin developing in 35-45 Ma in the west, and the Shikoku and Parece Vela basins in 15-30 Ma in the east. Previous studies show a large variety of the seismic anisotropy structures in the region of the PSP, which correspond different scenarios of tectonic evolution for this area. In this study, we analyze both isotropic and anisotropic Rayleigh-wave velocity structures of the PSP by means of two-station method. The earthquakes of magnitude (Mw) greater than 5.0 in-between the years 1998-2014 were acquired. Totally, 7914 teleseismic events are adopted to form the measurements of Rayleigh-wave dispersion curves along 467 station-pairs over the PSP. The measured dispersion curves are then inverted into the isotropic and azimuthally anisotropic (2ψ) velocity maps at different periods with the damped, lateral smoothing LSQR inversion. The inversion is framed by the triangular grids which knots are of 200 km spacing. The consequent velocity anomalies are referenced to the average of the phase velocity at the periods between 50 and 100 seconds. The resulting velocity anomalies show a consistent pattern with the locations of the sub-basins in the PSP at the periods of 50 and 60 sec, which can be considered to be the association of lithospheric velocity structure with basin ages. The positive velocity anomalies are seen in the West Philippine basin associating the relatively old lithosphere; whereas the negative anomalies are found in the Shikoku and Parece Vela basins which the lithospheric structures are relatively young. On the other hand, the resultant azimuthal anisotropy reveals an apparent

  18. Seismic Tomography Reveals Breaking Crust and Lithosphere Beneath a Classic Orogen

    NASA Astrophysics Data System (ADS)

    Byrne, T. B.; Rau, R.; Kuo-Chen, H.; Lee, Y.; Ouimet, W. B.; Van Soest, M. C.; Huang, C.; Wu, F. T.

    2013-12-01

    erosion, or lower rock uplift rates along the range crest. We propose that the surfaces represent relict topography that formed prior to a recent acceleration in rock uplift rate, consistent with the presence of a propagating crustal-scale crack and slab breakoff. Taken together, these results raise questions about the notion of steady state topography and critically tapered wedges in Taiwan. Kuo-Chen, H., Wu, F., and Roecker, S. W., 2012, Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets: Journal Geophysical Research, v. 117, no. B06306. Ching, K.-E., Hsieh, M.-L., Johnson, K., Chen, K.-H., Rau, R.-J., and Yang, M., 2011, Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000-2008: Journal Geophysical Research, v. 116, no. B08406.

  19. Crustal Fluid Distribution in the Source Area of the 2008 Iwate-Miyagi Nairiku Earthquake, NE Japan Inferred from Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Okada, T.

    2014-12-01

    Seismic tomography is an important tool for detecting the distibution of magma and other crustal fluids. In this presentation, we show the results of seismic tomography, in an area that includes the Naruko volcano and the 2008 Iwate-Miyagi Nairiku earthquake, using data from a dense temporary seismic network, and discuss the crustal fluid distribution related to the volcanic and seismic activity. The seismic velocity structure is complex within the crust and we found distinct seismic low-velocity zones (LVZs). In the shallow crust, the LVZ is located beneath each volcano (Naruko, Onikobe, and Kurikoma) in the focal area of the 2008 Iwate-Miyagi Nairiku Earthquake.In the middle to deep crust (10-20 km), a distinct LVZ beneath the volcanic front can be observed. This LVZ seems to be continuously distributed in the NNE-SSW direction, from the Yakeishi to the Naruko volcano. The lateral extent of the LVZ in the NNE-SSW direction is almost the same as the lateral extent of the aftershock area of the 2008 Iwate-Miyagi Nairiku earthquake. Some low-V areas in the upper crust have high Vp/Vs areas. The aseismic low-V and high-Vp/Vs areas just beneath the volcanoes could correspond to an area with molten magma. We also found some low-V and high Vp/Vs areas with seismicity in the upper crust. Possible reason for this low-V and relatively high-Vp/Vs area could be the presence of overpressurized fluid. For a misoriented compressional inversion fault, reduction of fault strength by overpressurized fluid along the fault is a possible cause for reactivation (Sibson 1990; Sibson 2009). The fault plane of the 2008 Iwate-Miyagi Nairiku earthquake is thought to be as compressional inversion fault (Sibson, 2009). Compressional inversion fault is the reverse fault along the pre-existing "normal" fault. The complex distribution of the aftershock alignment (i.e. fault) has been spatially correlated with the distribution of the LVZ. This suggests that the fluid path distribution could have

  20. Measurement of near-surface seismic compressional wave velocities using refraction tomography at a proposed construction site on the Presidio of Monterey, California

    USGS Publications Warehouse

    Powers, Michael H.; Burton, Bethany L.

    2012-01-01

    The U.S. Army Corps of Engineers is determining the feasibility of constructing a new barracks building on the U.S. Army Presidio of Monterey in Monterey, California. Due to the presence of an endangered orchid in the proposed area, invasive techniques such as exploratory drill holes are prohibited. To aid in determining the feasibility, budget, and design of this building, a compressional-wave seismic refraction survey was proposed by the U.S. Geological Survey as an alternative means of investigating the depth to competent bedrock. Two sub-parallel profiles were acquired along an existing foot path and a fence line to minimize impacts on the endangered flora. The compressional-wave seismic refraction tomography data for both profiles indicate that no competent rock classified as non-rippable or marginally rippable exists within the top 30 feet beneath the ground surface.

  1. The Spatial Pattern of Seismicity in Western Montana and Central Idaho: An Explanation Based on Seismic Tomography of the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Kobayashi, D.; Sprenke, K. F.

    2013-12-01

    In the recent years, resolution of seismic velocity perturbations in the upper mantle beneath the Idaho-Montana region has been significantly improved with the results from EarthScope's USArray Transportable Array. Tomographic models indicate a strong S-wave low velocity anomaly beneath the Snake River Plain (SRP) volcanic province possibly resulting from mantle flow at the tip and around an edge of a fragmented Farallon slab at depth below the SRP. The elongated low-velocity zone coincides with the axis of the Yellowstone seismic parabola. Further north we have delineated a similar pattern of parabolic seismicity surrounding an elongate low-velocity zone cutting across central Idaho and western Montana subparallel to the SRP. This low-velocity strip may represent a tip-and-edge flow from another advancing remnant of the Farallon slab--this one lying below the Idaho batholith and culminating in a vertex near Bozeman. Based on a hypothesis that lateral thermal contrast is related to the seismicity, our result may lead to refinements in current seismic hazard maps of the region.

  2. Continuous recording of seismic signals in Alpine permafrost

    NASA Astrophysics Data System (ADS)

    Hausmann, H.; Krainer, K.; Staudinger, M.; Brückl, E.

    2009-04-01

    Over the past years various geophysical methods were applied to study the internal structure and the temporal variation of permafrost whereof seismic is of importance. For most seismic investigations in Alpine permafrost 24-channel equipment in combination with long data and trigger cables is used. Due to the harsh environment source and geophone layouts are often limited to 2D profiles. With prospect for future 3D-layouts we introduce an alternative of seismic equipment that can be used for several applications in Alpine permafrost. This study is focussed on controlled and natural source seismic experiments in Alpine permafrost using continuous data recording. With recent data from an ongoing project ("Permafrost in Austria") we will highlight the potential of the used seismic equipment for three applications: (a) seismic permafrost mapping of unconsolidated sediments, (b) seismic tomography in rock mass, and (c) passive seismic monitoring of rock falls. Single recording units (REFTEK 130, 6 channels) are used to continuously record the waveforms of both the seismic signals and a trigger signal. The combination of a small number of recording units with different types of geophones or a trigger allow numerous applications in Alpine permafrost with regard to a high efficiency and flexible seismic layouts (2D, 3D, 4D). The efficiency of the light and robust seismic equipment is achieved by the simple acquisition and the flexible and fast deployment of the (omni-directional) geophones. Further advantages are short (data and trigger) cables and the prevention of trigger errors. The processing of the data is aided by 'Seismon' which is an open source software project based on Matlab® and MySQL (see SM1.0). For active-source experiments automatic stacking of the seismic signals is implemented. For passive data a program for automatic detection of events (e.g. rock falls) is available which allows event localization. In summer 2008 the seismic equipment was used for the

  3. 3-D P-wave velocity structure and seismicity in Central Costa Rica from Local Earthquake Tomography using an amphibic network

    NASA Astrophysics Data System (ADS)

    Arroyo, I.; Husen, S.; Flueh, E.; Alvarado, G. E.

    2008-12-01

    The Central Pacific sector of the erosional margin in Costa Rica shows a high seismicity rate, coincident with the subduction of rough-relief ocean floor, and generates earthquakes up to Mw 7. Precise earthquake locations and detailed knowledge of the 3-D velocity structure provide key insights into the dynamics of subduction zones. To this end, we performed a 3-D Local Earthquake Tomography using P-wave traveltimes from 595 selected events recorded by a seismological network of off- and onshore stations, deployed for 6 months in the area. The results reflect the complexity associated to subduction of bathymetric highs and the transition from normal to thickened oceanic crust (Cocos Ridge). The slab is imaged as a high-velocity anomaly with a band of low velocities (LVB) on top enclosing the intraslab events deeper than ~30 km. Below the margin slope, the LVB is locally thickened by at least two seamounts. We observe an abrupt, eastward widening of the LVB, preceded by a low-velocity anomaly under the continental shelf, which we interpret as a big seamount. The thickening coincides with an inverted basin at the inner forearc and a low-velocity anomaly under it. The latter appears in a sector where blocks of inner forearc are uplifted, possibly by underplating of eroded material against the base of the crust. The anomaly promotes seismicity by high-friction with the upper plate, and could be linked to a Mw 6.4 earthquake in 2004. In the west part of the area, the interplate seismicity forms a cluster beneath the continental shelf. Its updip limit coincides with the 150° C isotherm and an increase in Vp along the plate boundary. This further supports a proposed model in which the seismicity onset along the plate interface is mainly due to a decrease in the abundance of the fluids released by subducted sediments. Higher seismicity rates locally concur with seamounts present at the seismogenic zone, while seamounts under the margin slope may shallow the onset of

  4. A multidisciplinary approach to landslide structure characterization: integration of seismic tomography survey and high resolution LiDar data with the Sloping Local Base Level method.

    NASA Astrophysics Data System (ADS)

    Travelletti, Julien; Samyn, Kevin; Malet, Jean-Philippe; Grandjean, Gilles; Jaboyedoff, Michel

    2010-05-01

    A challenge to progress in the understanding of landslides is to precisely define their 3D geometry and structure as an input for volume estimation and further hydro-mechanical modelling. The objective of this work is to present a multidisciplinary approach to the geometrical modelling of the La Valette landslide by integrating seismic tomography survey (P and S wave) and high resolution LiDar data with the Sloping Local Base Level (SLBL) method. The La Valette landslide, triggered in March 1982, is one of the most important slope instability in the South French Alps. Its dimensions are 1380 m length and 290 m width, and the total volume is estimated at 3.5 106 m3. Since 2002, an important activity of the upper part of the landslide is observed, and consisted mainly in the retrogression of the crown through the opening of an important fracture over several meters and rotational slumps. The failed mass is currently loading the upper part of the mudslide and is a potential threat for the 170 residential communities. A seismic tomography survey combined to airborne and terrestrial LiDar data analysis have been carried out to identify the geological structures and discontinuities and characterize the stability of the failing mass. Seismic tomography allows direct and non-intrusive measurements of P and S waves velocities which are key parameters for the analysis of the mechanical properties of reworked and highly fissured masses. 4 seismic lines have been performed (3 of them in the direction of the slope and the other perpendicular). The 2 longest devices are composed of 24 geophones spaced by 5 meters and have a sufficient investigation depth for a large scale characterization of the landslide's structure with depth. The 2 shortest devices, composed of 24 geophones spaced by 2 meters bring information about the fracturing degree between the moving material of the landslide and the competent rock. 100gr of pentrite for each shot were used as seismic sources. The

  5. Upper-mantle velocity models beneath the east Qingling orogenic belt from finite-frequency tomography of a portable seismic array

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Chen, Y. J.; An, M.; Feng, Y.; Liang, X.; Dong, S.

    2013-12-01

    The east Qinling orogenic belt is located between the North China Craton and the South China Block, and is also at the northeastern boundary of Tibetan Plateau. A temporal seismic array of over 110 portable seismic stations was deployed by Peking University and the Chinese Academy of Geological Sciences (CAGS) from July 2011 to October 2013 to study the complex tectonics of this region. We used earthquake data recorded at 65 stations from this array between July 2011 and October 2012 to image the seismic velocity variations of the region using finite-frequency tomography method. The travel times used in the inversion contain 10876 P-waves and 5945 S-waves at 3 different frequencies. Preliminary results show that velocity structures of P-waves and S-waves are quite similar. The upper mantle velocities under the east Qinling orogenic belt are higher in general in the east than that in the west at depth around 80 km. A higher velocity anomaly is observed under the southern Ordos plateau from 40 km to 360km deep and a low velocity anomaly is seen beneath the Taihang uplift from the depth of 40km to the depth of 200km. These velocity anomalies in the lithosphere and the upper mantle will be interpreted with the geologic observations and tectonic process of the region.

  6. Analysis of the recharging of the volcanic feeder at Mt. Etna using pattern classification of volcanic tremor data and comparison with recent seismic tomography

    NASA Astrophysics Data System (ADS)

    Falsaperla, S. M.; Barberi, G.; Cocina, O.

    2011-12-01

    KKAnalysis is a method of pattern classification based on Self Organizing Maps and Fuzzy Cluster Analysis successfully applied to volcanic tremor data recorded at Mt. Etna [Langer et al., J. Volcan. Geoth. Res., doi:10.1016/j.jvolgeores.2010.11.019, 2010]. The classifier can detect anomalies in the seismic signal long before changes in volcanic tremor amplitude and spectral content become evident, and is particularly useful in highlighting impending paroxysmal eruptive activity, such as lava fountains and intense effusive activity. In this study we propose an application to volcanic tremor data recorded from November 1 2005 to January 31 2006, when strong changes in amplitude and frequency content were detected without any visible activity of the volcano was reported by volcanologists and alpine guides. The classifier detects patterns that we interpret as evidence of recharging of the volcanic feeder at depth. We discuss our results considering stations of the permanent network of Mt. Etna, which is run by INGV, comparing their characteristics resulting from pattern classification. To corroborate our results we also take into account VT seismicity and a recently published seismic tomography, which allows us to look at discontinuities and possible zone of magma transfer at depth.

  7. Electrical resistivity and Seismic Refraction Tomography to Detect Heavy Metals Pathways in the Tailings of the Abandoned Mine of Zeïda, Morocco

    NASA Astrophysics Data System (ADS)

    Dekayir, A.; Lachhab, A.; Rouai, M.; Benyassine, E. M.; Boujamaoui, M.; Parisot, J. C.

    2015-12-01

    The abandoned mine Zeïda (Pb) located at the center of the High Moulouya watershed is believed to have produced a total of 640,000 tons of concentrated Pb within 14 years of activities (1972-1985). Today, the mine has been abandoned with one of the largest tailings pits in Morocco without supervision and concern of environmental impacts. Several studies have shown the existence of high levels of heavy metals (Pb, Zn, Cu, Cr, Co, Cd and Ni) in samples (water and soil) taken from and around the tailings (Laghlimi et al, 2014, Benyassine et al, 2013, Iavarzzo, 2012, Makhoukh et al, 2011, Baghdad et al, 2008, Bouabdli et al, 2005). In this study, several electrical and seismic tomography profiles were taken to explore the thickness of the tailings and the potential pathways of contaminants to the aquifer. Because heavy metals were found in the surrounding areas of the tailings, there are concerns about their seepage into the groundwater aquifer. A total of 6 electric resistivity profiles together with another 16 seismic refraction profiles were completed over the 3 major mining waste piles to study this contamination. Analysis of both electric and seismic tomography profiles showed: 1) the thickness of tailings range from few cm to above 20m depending on where the survey was performed, 2) the contamination pathways of heavy metal pollutants occur predominantly right above the thickest areas of sandstone formation, and 3) water ponds at the surface of the tailing piles forms directly above the thickest part of the sandstone layer

  8. Investigating the San Andreas Fault System in the Northern Salton Trough by a Combination of Seismic Tomography and Pre-stack Depth Migration: Results from the Salton Seismic Imaging Project (SSIP)

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Ryberg, T.; Fuis, G. S.; Goldman, M.; Catchings, R.; Rymer, M. J.; Hole, J. A.; Stock, J. M.

    2013-12-01

    The Salton Trough in southern California is a tectonically active pull-apart basin which was formed in migrating step-overs between strike-slip faults, of which the San Andreas fault (SAF) and the Imperial fault are current examples. It is located within the large-scale transition between the onshore SAF strike-slip system to the north and the marine rift system of the Gulf of California to the south. Crustal stretching and sinking formed the distinct topographic features and sedimentary successions of the Salton Trough. The active SAF and related fault systems can produce potentially large damaging earthquakes. The Salton Seismic Imaging Project (SSIP), funded by NSF and USGS, was undertaken to generate seismic data and images to improve the knowledge of fault geometry and seismic velocities within the sedimentary basins and underlying crystalline crust around the SAF in this key region. The results from these studies are required as input for modeling of earthquake scenarios and prediction of strong ground motion in the surrounding populated areas and cities. We present seismic data analysis and results from tomography and pre-stack depth migration for a number of seismic profiles (Lines 1, 4-7) covering mainly the northern Salton Trough. The controlled-source seismic data were acquired in 2011. The seismic lines have lengths ranging from 37 to 72 km. On each profile, 9-17 explosion sources with charges of 110-460 kg were recorded by 100-m spaced vertical component receivers. On Line 7, additional OBS data were acquired within the Salton Sea. Travel times of first arrivals were picked and inverted for initial 1D velocity models. Alternatively, the starting models were derived from the crustal-scale velocity models developed by the Southern California Earthquake Center. The final 2D velocity models were obtained using the algorithm of Hole (1992; JGR). We have also tested the tomography packages FAST and SIMUL2000, resulting in similar velocity structures. An

  9. 4-D OCT in Developmental Cardiology

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  10. Joint pre-stack depth migration and travel-time tomography applied to a deep seismic profile across the northern Barents Sea igneous province

    NASA Astrophysics Data System (ADS)

    Minakov, Alexander; Faleide, Jan Inge; Sakulina, Tamara; Krupnova, Natalia; Dergunov, Nikolai

    2015-04-01

    The mainly Permo-Triassic North Barents Sea Basin is considered as a superdeep intracratonic basin containing over 20 km of sedimentary material. This basin was strongly affected by magmatism attributed to the formation of the Early Cretaceous High Arctic Large Igneous Province. Dolerite dikes, sills, and lava flows are observed in the northern Barents Sea and on the islands of Svalbard and Franz Josef Land. Some dike swarms can be traced over hundreds of kilometers using high-resolution airborne magnetic data. In the North Barents Sea Basin, the dikes fed giant sill complex emplaced into organic-rich Triassic siliciclastic rocks. The sill complex creates a major challenge for seismic imaging masking the underlying strata. In this contribution, we first perform refraction and reflection travel-time tomography using wide-angle ocean-bottom seismometer data (with receivers deployed every 10 km) along the 4-AR profile (Sakulina et al. 2007, Ivanova et al. 2011). The resulting tomographic model is then used to construct a background velocity model for the pre-stack depth migration. We show that the use of a combined velocity model for the time and depth imaging based on travel-time tomography and RMS velocities constitutes a substantial improvement with respect to a standard processing workflow providing a more coherent seismic structure of this volcanic province. The interpretation of multichannel seismic and high-resolution magnetic data together with P-wave velocity and density anomalies allow to create a model for the system of magmatic feeders in the crystalline basement of the northern Barents Sea region. Sakulina, T.S., Verba, M.L., Ivanova, N.M., Krupnova, N.A., Belyaev I.V., 2007. Deep structure of the north Barents-Kara Region along 4AR transect (Taimyr Peninsula - Franz Joseph Land). In: Models of the Earth's crust and upper mantle after deep seismic profiling. Proceedings of the international scientific-practical seminar. Rosnedra, VSEGEI. St

  11. Seismic imaging of the 2001 Bhuj Mw7.7 earthquake source zone: b-value, fractal dimension and seismic velocity tomography studies

    NASA Astrophysics Data System (ADS)

    Mandal, Prantik; Rodkin, Mikhail V.

    2011-11-01

    We use precisely located aftershocks of the 2001 Mw7.7 Bhuj earthquake (2001-2009) to explore the structure of the Kachchh seismic zone by mapping the 3-D distributions of b-value, fractal dimension (D) and seismic velocities. From frequency-magnitude analysis, we find that the catalog is complete above Mw = 3.0. Thus, we analyze 2159 aftershocks with Mw ≥ 3.0 to estimate the 3-D distribution of b-value and fractal dimensions using maximum-likelihood and spatial correlation dimension approaches, respectively. Our results show an area of high b-, D- and Vp/Vs ratio values at 15-35 km depth in the main rupture zone (MRZ), while relatively low b- and D values characterize the surrounding rigid regions and Gedi fault (GF) zone. We propose that higher material heterogeneities in the vicinity of the MRZ and/or circulation of deep aqueous fluid/volatile CO 2 is the main cause of the increased b-, D- and Vp/Vs ratio values at 15-35 km depth. Seismic velocity images also show some low velocity zones continuing in to the deep lower crust, supporting the existence of circulation of deep aqueous fluid / volatile CO 2 in the region (probably released from the eclogitasation of olivine rich lower crustal rocks). The presence of number of high and low velocity patches further reveals the heterogeneous and fractured nature of the MRZ. Interestingly, we observe that Aki (1981)'s relation (D = 2b) is not valid for the spatial b-D correlation of the events in the GF (D 2 = 1.2b) zone. However, the events in the MRZ (D 2 = 1.7b) show a fair agreement with the D = 2b relationship while the earthquakes associated with the remaining parts of the aftershock zone (D 2 = 1.95b) show a strong correlation with the Aki (1981)'s relationship. Thus, we infer that the remaining parts of the aftershock zone are probably behaving like locked un-ruptured zones, where larger stresses accumulate. We also propose that deep fluid involvement may play a key role in generating seismic activity in the

  12. Brain tissue segmentation in 4D CT using voxel classification

    NASA Astrophysics Data System (ADS)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  13. Rayleigh-Wave, Group-Velocity Tomography of the Borborema Province, NE Brazil, from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Dias, Rafaela Carreiro; Julià, Jordi; Schimmel, Martin

    2015-06-01

    Ambient seismic noise has traditionally been regarded as an unwanted perturbation that "contaminates" earthquake data. Over the last decade, however, it has been shown that consistent information about subsurface structure can be extracted from ambient seismic noise. By cross-correlation of noise simultaneously recorded at two seismic stations, the empirical Green's function for the propagating medium between them can be reconstructed. Moreover, for periods less than 30 s the seismic spectrum of ambient noise is dominated by microseismic energy and, because microseismic energy travels mostly as surface-waves, the reconstruction of the empirical Green's function is usually proportional to the surface-wave portion of the seismic wavefield. In this paper, we present 333 empirical Green's functions obtained from stacked cross-correlations of one month of vertical component ambient seismic noise for different pairs of seismic stations in the Borborema Province of NE Brazil. The empirical Green's functions show that the signal obtained is dominated by Rayleigh waves and that dispersion velocities can be measured reliably for periods between 5 and 20 s. The study includes permanent stations from a monitoring seismic network and temporary stations from past passive experiments in the region, resulting in a combined network of 34 stations separated by distances between approximately 40 and 1,287 km. Fundamental-mode group velocities were obtained for all station pairs and then tomographically inverted to produce maps of group velocity variation. For short periods (5-10 s) the tomographic maps correlate well with surface geology, with slow velocities delineating the main rift basins (Potiguar, Tucano, and Recôncavo) and fast velocities delineating the location of the Precambrian São Francisco craton and the Rio Grande do Norte domain. For longer periods (15-20 s) most of the velocity anomalies fade away, and only those associated with the deep Tucano basin and the S

  14. Time-dependent convection models of mantle thermal structure constrained by seismic tomography and geodynamics: implications for mantle plume dynamics and CMB heat flux

    NASA Astrophysics Data System (ADS)

    Glišović, P.; Forte, A. M.; Moucha, R.

    2012-08-01

    One of the outstanding problems in modern geodynamics is the development of thermal convection models that are consistent with the present-day flow dynamics in the Earth's mantle, in accord with seismic tomographic images of 3-D Earth structure, and that are also capable of providing a time-dependent evolution of the mantle thermal structure that is as 'realistic' (Earth-like) as possible. A successful realization of this objective would provide a realistic model of 3-D mantle convection that has optimal consistency with a wide suite of seismic, geodynamic and mineral physical constraints on mantle structure and thermodynamic properties. To address this challenge, we have constructed a time-dependent, compressible convection model in 3-D spherical geometry that is consistent with tomography-based instantaneous flow dynamics, using an updated and revised pseudo-spectral numerical method. The novel feature of our numerical solutions is that the equations of conservation of mass and momentum are solved only once in terms of spectral Green's functions. We initially focus on the theory and numerical methods employed to solve the equation of thermal energy conservation using the Green's function solutions for the equation of motion, with special attention placed on the numerical accuracy and stability of the convection solutions. A particular concern is the verification of the global energy balance in the dissipative, compressible-mantle formulation we adopt. Such validation is essential because we then present geodynamically constrained convection solutions over billion-year timescales, starting from present-day seismically constrained thermal images of the mantle. The use of geodynamically constrained spectral Green's functions facilitates the modelling of the dynamic impact on the mantle evolution of: (1) depth-dependent thermal conductivity profiles, (2) extreme variations of viscosity over depth and (3) different surface boundary conditions, in this case mobile

  15. Joint interpretation of seismic tomography and new magnetotelluric results provide evidence for support of high topography in the Southern Rocky Mountains and High Plains of eastern Colorado, USA

    NASA Astrophysics Data System (ADS)

    Feucht, D. W.; Sheehan, A. F.; Bedrosian, P.

    2015-12-01

    A recent magnetotelluric (MT) survey in central Colorado, USA, when interpreted alongside existing seismic tomography, reveals potential mechanisms of support for high topography both regionally and locally. Broadband and long period magnetotelluric data were collected at twenty-three sites along a 330 km E-W profile across the Southern Rocky Mountains and High Plains of central North America as part of the Deep RIFT Electrical Resistivity (DRIFTER) experiment. Remote-reference data processing yielded high quality MT data over a period range of 100 Hz to 10,000 seconds. A prominent feature of the regional geo-electric structure is the Denver Basin, which contains a thick package of highly conductive shales and porous sandstone aquifers. One-dimensional forward modeling was performed on stations within the Denver Basin to estimate depth to the base of this shallow conductor. Those estimates were then used to place a horizontal penalty cut in the model mesh of a regularized two-dimensional inversion. Two-dimensional modeling of the resistivity structure reveals two major anomalous regions in the lithosphere: 1) a high conductivity region in the crust under the tallest peaks of the Rocky Mountains and 2) a lateral step increase in lithospheric resistivity beneath the plains. The Rocky Mountain crustal anomaly coincides with low seismic wave speeds and enhanced heat flow and is thus interpreted as evidence of partial melt and/or high temperature fluids emplaced in the crust by tectonic activity along the Rio Grande Rift. The lateral variation in the mantle lithosphere, while co-located with a pronounced step increase in seismic velocity, appears to be a gradational boundary in resistivity across eastern Colorado and could indicate a small degree of compositional modification at the edge of the North American craton. These inferred conductivity mechanisms, namely crustal melt and modification of mantle lithosphere, likely contribute to high topography locally in the

  16. Reducing the dimension of seismic waveforms using autoencoders: A step towards fully non-linear tomography, and a practical tool

    NASA Astrophysics Data System (ADS)

    Valentine, A. P.; Trampert, J.

    2011-12-01

    What makes a seismogram look like a seismogram? An experienced seismologist can readily recognise seismic data amidst other examples of time-series, but might well be hard-pressed to describe how they do so. In effect, however, they are recognising that a given class of seismic data is expected to exhibit certain characteristics and patterns --- and this implies that the number of independent parameters required to describe a waveform may be significantly less than the number of time-series points. Understanding and harnessing this property promises much: a better understanding of seismic waveforms, simplified computational techniques, and new approaches to handling large datasets. Hinton and Salakhutdinov (2006) demonstrated that a class of neural network known as an `autoencoder' is adept at finding lower-dimensional representations of complex datasets. In essence, the technique involves recognising underlying patterns within the data. We apply this to seismic waveforms, and demonstrate that it is possible --- for example --- to reduce 512-point time-series to 32-element encodings. This has a number of potential applications. A reduction in the dimension of the data-space makes fully non-linear tomographic inversion significantly more computationally tractable, although there is much work required before this may be fully realised. On a more practical level, the technique we present may be useful for boot-strapping seismic data sets, performing data quality control, and highlighting the occurrence of unusual features within datasets. We discuss these applications, and suggest that autoencoders may be of interest to researchers across the geosciences. Hinton, G. & Salakhutdinov, R., 2006. Reducing the dimensionality of data with neural networks, Science, 313, pp.504--507.

  17. Seismic Tomography and Ground Penetrating Radar Applied On Rock Slope Instability Analysis. Application On A Limestone Cliff In The Chartreuse Massif, France

    NASA Astrophysics Data System (ADS)

    Dussauge-Peisser, C.; Wathelet, M.; Jongmans, D.; Havenith, H.; Couturier, B.; Teerlynck, H.

    Evaluating the stability state of a rock slope is a complex problem, mainly due to the number of possible failure mechanisms, and to the lack of knowledge of the real present state of the rock mass. Geophysical methods appear as a useful tool for inves- tigating the deep discontinuity pattern, which is poorly known from surface observa- tions. However they have seldom been applied on steep rock slopes. The aim of this study is to test some of these methods on subvertical cliffs. We investigate the quality of information that they can provide when investigating the stability of rock slopes in a rock-slide prone area. This test will lead to developp a proper methodology for rock-slide hazard evaluation. Among other methods, seismic tomography and ground penetrating radar proved suitable for assessing geometrical and physical properties of the rock cliff. The test site is located is the Chartreuse massif, 50 km north of Grenoble, France. It is a 10 m high limestone cliff , characterised by one main discontinuity set, subvertical with some widely open fractures. Seismic tomography has been conducted between the vertical free surface and the plateau above, along three parallel profiles. First, results show low P-wave velocities (1000-1800 m/s) in a corner bounded by the two free surfaces, with an increase of the velocity up to 3500-4000 m/s obliquely to the cliff. This corner can be interpreted as the decompression zone due to gravity effects. Second, areas with low velocities also appear where open fractures cross the seismic profile. Ground penetrating radar has also been conducted along vertical profiles on the cliff. We used three different antennas of 35, 120 and 500 MHz. The penetration depth varies from 10-12 m for the 120 MHz antenna to about 20 m with the 35 MHz an- tenna.nThe observed reflectors are subvertical, corresponding to the dip of the main discontinuity set. The reflectivity strongly varies along some reflectors, particularly for the high frequency

  18. Collision and subduction structure of the Izu-Bonin arc, central Japan: Recent studies from refraction/wide-angle reflection analysis and seismic tomography

    NASA Astrophysics Data System (ADS)

    Arai, R.; Iwasaki, T.; Sato, H.; Abe, S.; Hirata, N.

    2009-12-01

    Since the middle Miocene, the Izu-Bonin arc has been colliding from south with the Honshu arc in central Japan associated with subduction of the Philippine Sea plate. This process is responsible for forming a complex crustal structure called the Izu collision zone. Geological studies indicate the several geological blocks derived from the Izu-Bonin arc, such as the Misaka Mountains (MM), the Tanzawa Mountains (TM) and the Izu Peninsula (IP), were accreted onto the Honshu crust in the course of the collision, forming several tectonic boundaries in and around this collision zone (e.g. Amano, 1991). Recent seismic experiments succeeded in revealing the deep crustal structure in the eastern part of the Izu collision zone by reflection analysis (Sato et al., 2005) and refraction/wide-angle reflection analysis (Arai et al., 2009). Although these studies delineate the collision boundary between the Honshu crust and TM, and the upper surface of the subducting Philippine Sea plate, the southern part of the profile including the Kozu-Matsuda Fault (KMF, the tectonic boundary between TM and IP) is not well constrained due to the poor ray coverage. Moreover, clear images of tectonic boundaries are not obtained for the central or western part of the collision zone. In order to construct the structure model dominated by collision and subduction for the whole part of the collision zone, we carried out the following two analyses: (1) refraction tomography of active source data including another profile line in the western part of the collision zone (Sato et al., 2006), and (2) seismic tomography combining active and passive source data. In the analysis (1), we applied first arrival seismic tomography (Zelt and Barton, 1998) to the refraction data .We inverted over 39,000 travel times to construct a P wave velocity model for the 75-km-long transect, and a fine-scale structure with strong lateral heterogeneity was recovered. We conducted checkerboard resolution test to evaluate a

  19. Seismic tomography reveals the feeding system of the Toba supervolcano from the slab to the shallow reservoir

    NASA Astrophysics Data System (ADS)

    Koulakov, Ivan; Kasatkina, Ekaterina; Shapiro, Nikolay M.; Jaupart, Claude; Vasilevsky, Alexander; El Khrepy, Sami; Al-Arifi, Nassir

    2016-04-01

    In the Toba Caldera, several large explosive eruptions occurred in the recent geological past, including the world's largest Pleistocene eruption 74,000 years ago. The major cause of this particular behavior might be the subduction of the water rich Investigator Fracture Zone (IFZ) just underneath the continental crust of Sumatra. We present a new model of the P and S seismic velocities beneath the Toba region based of inversion of the P and S arrival times from local seismicity recorded by two networks installed in 1995 and 2008. The derived seismic anomalies clearly reveal a complex multilevel magma system beneath Toba. A large amount of volatile enriched melts is generated in the subducting IFZ at ~150 km depth that is visible as a low velocity anomaly and increased seismicity. The fluids may react with peridotites in the mantle wedge and transform them into phlogopite or amphibole bearing rocks having lower melting temperature. The ascending flow of partially molten magma is expressed as a vertical low-velocity anomaly. At depths of 30-50 km, it forms a large reservoir with strong negative anomaly of shear velocity and much weaker P-wave velocity anomaly that testifies the presence of significant amounts of melt. Following the -7% contour line of the S-wave velocity anomaly, we estimate its volume as 100x25x20=50,000 km3. Differentiated light and volatile enriched fractions from this reservoir are buoyant enough to ascend into the upper crust and to form the shallow silicic magma reservoir, which is directly responsible for supereruptions. The results of our tomographic model suggest that the Toba magma generating engine continues to be active at present and, despite its current period of inactivity, this volcano might generate strong eruptions in the future.

  20. Los Alamos National Laboratory 4D Database

    SciTech Connect

    Atencio, Julian J.

    2014-05-02

    4D is an integrated development platform - a single product comprised of the components you need to create and distribute professional applications. You get a graphical design environment, SQL database, a programming language, integrated PHP execution, HTTP server, application server, executable generator, and much more. 4D offers multi-platform development and deployment, meaning whatever you create on a Mac can be used on Windows, and vice-versa. Beyond productive development, 4D is renowned for its great flexibility in maintenance and modification of existing applications, and its extreme ease of implementation in its numerous deployment options. Your professional application can be put into production more quickly, at a lower cost, and will always be instantly scalable. 4D makes it easy, whether you're looking to create a classic desktop application, a client-server system, a distributed solution for Web or mobile clients - or all of the above!

  1. Computing Myocardial Motion in 4D Echocardiography

    PubMed Central

    Mukherjee, Ryan; Sprouse, Chad; Pinheiro, Aurélio; Abraham, Theodore; Burlina, Philippe

    2012-01-01

    4D (3D spatial+time) echocardiography is gaining widespread acceptance at clinical institutions for its high temporal resolution and relatively low cost. We describe a novel method for computing dense 3D myocardial motion with high accuracy. The method is based on a classical variational optical flow technique, but exploits modern developments in optical flow research to utilize the full capabilities of 4D echocardiography. Using a variety of metrics, we present an in-depth performance evaluation of the method on synthetic, phantom, and intraoperative 4D Transesophageal Echocardiographic (TEE) data. When compared with state-of-the-art optical flow and speckle tracking techniques currently found in 4D echocardiography, the method we present shows notable improvements in error. We believe the performance improvements shown can have a positive impact when the method is used as input for various applications, such as strain computation, biomechanical modeling, or automated diagnostics. PMID:22677256

  2. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    NASA Astrophysics Data System (ADS)

    Środa, Piotr; Dec, Monika

    2016-04-01

    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the

  3. On "new massive" 4D gravity

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric A.; Fernández-Melgarejo, J. J.; Rosseel, Jan; Townsend, Paul K.

    2012-04-01

    We construct a four-dimensional (4D) gauge theory that propagates, unitarily, the five polarization modes of a massive spin-2 particle. These modes are described by a "dual" graviton gauge potential and the Lagrangian is 4th-order in derivatives. As the construction mimics that of 3D "new massive gravity", we call this 4D model (linearized) "new massive dual gravity". We analyse its massless limit, and discuss similarities to the Eddington-Schrödinger model.

  4. Helical 4D CT and Comparison with Cine 4D CT

    NASA Astrophysics Data System (ADS)

    Pan, Tinsu

    4D CT was one of the most important developments in radiation oncology in the last decade. Its early development in single slice CT and commercialization in multi-slice CT has radically changed our practice in radiation treatment of lung cancer, and has enabled the stereotactic radiosurgery of early stage lung cancer. In this chapter, we will document the history of 4D CT development, detail the data sufficiency condition governing the 4D CT data collection; present the design of the commercial helical 4D CTs from Philips and Siemens; compare the differences between the helical 4D CT and the GE cine 4D CT in data acquisition, slice thickness, acquisition time and work flow; review the respiratory monitoring devices; and understand the causes of image artifacts in 4D CT.

  5. The three-dimensional structure beneath the Popocatépetl volcano (Mexico) based on local earthquake seismic tomography

    NASA Astrophysics Data System (ADS)

    Kuznetsov, P. Y.; Koulakov, I. Yu

    2014-04-01

    This paper presents a new seismic velocity model (P- and S-wave velocities and Vp/Vs ratio) beneath the Popocatépetl volcano to a depth of ~ 4 km below sea level (bsl). This model is based on the tomographic inversion of P- and S-wave arrival time data from earthquakes in the region of the volcano. These data were recorded by the 15 stations of a temporary seismic network that was deployed on the volcano in 1999 and 2000. The recording period was during a relatively quiet period between two strong eruptions, which occurred before and after the experiment. This period is characterized by low levels of volcano-related seismicity. Most of the recorded events occurred across an area much larger than the network. In this study, we conducted several synthetic tests, which validate the use of the out-of-network events to improve the resolution of the tomographic inversion beneath the stations. In the resulting model, we see that the main volcanic edifice is associated with high velocities that have a mushroom shape and that these high velocities are most prominent in the P-wave model. This feature may indicate the presence of overpressured solidified igneous rocks, which comprise the edifice of Popocatépetl. Below the summit of the volcano, we observe a prominent high Vp/Vs anomaly, which reaches a value of 1.9. This anomaly probably indicates the existence of cracks and pores filled with melts and fluids, and it may represent a fracture zone that serves as a conduit feeding the volcano. This model characterizes the interior structure of the Popocatépetl volcano prior to the strong September 2000 eruption, which occurred a few months after the termination of the experiment.

  6. P and S velocity tomography of the Mariana subduction system from a combined land-sea seismic deployment

    NASA Astrophysics Data System (ADS)

    Barklage, Mitchell; Wiens, Douglas A.; Conder, James A.; Pozgay, Sara; Shiobara, Hajime; Sugioka, Hiroko

    2015-03-01

    Seismic imaging provides an opportunity to constrain mantle wedge processes associated with subduction, volatile transport, arc volcanism, and back-arc spreading. We investigate the seismic velocity structure of the upper mantle across the Central Mariana subduction system using data from the 2003-2004 Mariana Subduction Factory Imaging Experiment, an 11 month deployment consisting of 20 broadband seismic stations installed on islands and 58 semibroadband ocean bottom seismographs. We determine the three-dimensional VP and VP/VS structure using over 25,000 local and over 2000 teleseismic arrival times. The mantle wedge is characterized by slow velocity and high VP/VS beneath the fore arc, an inclined zone of slow velocity underlying the volcanic front, and a strong region of slow velocity beneath the back-arc spreading center. The slow velocities are strongest at depths of 20-30 km in the fore arc, 60-70 km beneath the volcanic arc, and 20-30 km beneath the spreading center. The fore-arc slow velocity anomalies occur beneath Big Blue seamount and are interpreted as resulting from mantle serpentinization. The depths of the maximum velocity anomalies beneath the arc and back arc are nearly identical to previous estimates of the final equilibrium depths of mantle melts from thermobarometry, strongly indicating that the low-velocity zones delineate regions of melt production in the mantle. The arc and back-arc melt production regions are well separated at shallow depths, but may be connected at depths greater than 80 km.

  7. Evolution of seismic layer 2B across the Juan de Fuca Ridge from hydrophone streamer 2-D traveltime tomography

    NASA Astrophysics Data System (ADS)

    Newman, Kori R.; Nedimović, Mladen R.; Canales, J. Pablo; Carbotte, Suzanne M.

    2011-05-01

    How oceanic crust evolves has important implications for understanding both subduction earthquake hazards and energy and mass exchange between the Earth's interior and the oceans. Although considerable work has been done characterizing the evolution of seismic layer 2A, there has been little analysis of the processes that affect layer 2B after formation. Here we present high-resolution 2-D tomographic models of seismic layer 2B along ˜300 km long multichannel seismic transects crossing the Endeavour, Northern Symmetric, and Cleft segments of the Juan de Fuca Ridge. These models show that seismic layer 2B evolves rapidly following a different course than layer 2A. The upper layer 2B velocities increase on average by 0.8 km/s and reach a generally constant velocity of 5.2 ± 0.3 km/s within the first 0.5 Myr after crustal formation. This suggests that the strongest impact on layer 2B evolution may be that of mineral precipitation due to "active" hydrothermal circulation centered about the ridge crest and driven by the heat from the axial magma chamber. Variations in upper layer 2B velocity with age at time scales ≥0.5 Ma show correlation about the ridge axis indicating that in the long term, crustal accretion processes affect both sides of the ridge axis in a similar way. Below the 0.5 Ma threshold, differences in 2B velocity are likely imprinted during crustal formation or early crustal evolution. Layer 2B velocities at propagator wakes (5.0 ± 0.2 km/s), where enhanced faulting and cracking are expected, and at areas that coincide with extensional or transtensional faulting are on average slightly slower than in normal mature upper layer 2B. Analysis of the layer 2B velocities from areas where the hydrothermal patterns are known shows that the locations of current and paleohydrothermal discharge and recharge zones are marked by reduced and increased upper layer 2B velocities, respectively. Additionally, the distance between present up-flow and down-flow zones is

  8. Seismic tomography of the Colorado Rocky Mountains upper mantle from CREST: Lithosphere-asthenosphere interactions and mantle support of topography

    NASA Astrophysics Data System (ADS)

    MacCarthy, J. K.; Aster, R. C.; Dueker, K.; Hansen, S.; Schmandt, B.; Karlstrom, K.

    2014-09-01

    The CREST experiment (Colorado Rocky Mountains Experiment and Seismic Transects) integrated the EarthScope USArray Transportable Array with portable and permanent stations to provide detailed seismic imaging of crust and mantle properties beneath the highest topography region of the Rocky Mountains. Inverting approximately 14,600 P- and 3600 S-wave arrival times recorded at 160 stations for upper mantle Vp and Vs structure, we find that large Vp perturbations relative to AK135 of 7% and Vs variations of 8% take place over very short (approaching tens of kilometers) lateral distances. Highest heterogeneity is observed in the upper 300 km of the mantle, but well resolved low velocity features extend to the top of the transition zone in portions of these images. The previously noted low velocity upper mantle Aspen Anomaly is resolved into multiple features. The lowest Vp and Vs velocities in the region are found beneath the San Juan Mountains, which is clearly distinguished from other low velocity features of the northern Rio Grande Rift, Taos/Latir region, Aspen region, and below the Never Summer Mountains. We suggest that the San Juan anomaly, and a similar feature below the Taos/Latir region of northern New Mexico, are related to delamination and remnant heat (and melt) beneath these sites of extraordinarily voluminous middle-Cenozoic volcanism. We interpret a northeast-southwest grain in velocity structure that parallels the Colorado Mineral belt to depths near 150 km as being reflective of control by uppermost mantle Proterozoic accretionary lithospheric architecture. Further to the north and west, the Wyoming province and northern Colorado Plateau show high velocity features indicative of thick (∼150 km) preserved Archean and Proterozoic lithosphere, respectively. Overall, we interpret the highly heterogeneous uppermost mantle velocity structure beneath the southern Rocky Mountains as reflecting interfingered chemical Proterozoic lithosphere that has been, is

  9. Evidence for a low permeability fluid trap in the Nový Kostel Seismic Zone, Czech Republic, using double-difference tomography

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Calo, M.; Vavrycuk, V.

    2012-12-01

    The West Bohemia/Vogtland region is the border area between the Czech Republic and Germany known for frequent occurrences of earthquake swarms. The most prominent earthquake swarms occurred recently in 1985/86, 1997, 2000 (Fischer and Horálek, 2003) and 2008 (Fischer et al., 2010). They comprised thousands of microearthquakes, their duration was between 2 weeks to 2 months, and the activity focused typically at depths ranging from 7 to 12 km. The seismic activity is concentrated mostly at the same epicentral area, called the Nový Kostel Zone. This zone is located on the edge of the Cheb Basin, Eger Rift, and at the junction of the Mariánské-Lázně Fault with the Počátky-Plesná Shear Zone. Numerous gas vents and mineral springs within and around the Cheb Basin indicate that uprising magmatic fluids may act as a swarm trigger. In this study, we apply double-difference tomography to investigate the structure within and around the Nový Kostel focal zone. We use data from the 2008 earthquake swarm, as it has been extensively analyzed, and focal mechanisms, principal faults, tectonic stress, source migration and other basic characteristics are known. We selected about 500 microearthquakes recorded at 22 local seismic stations of the West Bohemia Network (WEBNET). The events were inverted for the 3-D seismic structure using the TomoDD code (Zhang and Thurber, 2003) and post-processed using the Weighted Average Model method (Calò et al., 2011). The application of double-difference tomography is advantageous for this setting as swarm foci are closely spaced and form a dense cluster. The geometry of the focal zone and the WEBNET network configuration offer good raypath coverage in all directions. Applying double-difference tomography we produce and interpret 3-D models of the P and S velocities. In this work, we interpret 3-D models of the P velocity and P-to-S ratio in and around the focal zone. The P-to-S model was obtained by calculating directly the ratio

  10. Deciphering the mechanics of an imaged fault system in the over-riding plate at the Shumagin Seismic Gap, Alaska subduction zone using MCS waveform tomography

    NASA Astrophysics Data System (ADS)

    Michaelson, C. A.; Delescluse, M.; Becel, A.; Nedimovic, M. R.; Shillington, D. J.; Louden, K. E.; Webb, S. C.

    2013-12-01

    from MCS [Bécel et al., this session] we have applied full waveform tomography to the prestack MCS data with the goal to form high-resolution velocity profiles for the shallow sections of the normal fault. The starting velocity model for waveform inversion was formed by traveltime tomography on picked refracted arrivals found at offsets from ~5-8 km. The preliminary, phase-only results along one profile show velocities reducing laterally across the shallow end of the normal fault by 200 m/s (from 2200 to 2000 m/s). We interpret this reduction in velocities to indicate that the fault system is active and that fluid flow may be involved. Some authors suggest that low or zero friction is a required mechanical condition to allow slip on such a normal fault system [McKenzie and Jackson, 2012]. Consequently, the obtained results could prove important to re-assessing both the tsunami risk and the plate interface coupling in the Shumagin Seismic Gap area.

  11. Upper mantle structure beneath southern African cratons from seismic finite-frequency P- and S-body wave tomography

    NASA Astrophysics Data System (ADS)

    Youssof, M.; Thybo, H.; Artemieva, I. M.; Levander, A.

    2015-06-01

    We present a 3D high-resolution seismic model of the southern African cratonic region from teleseismic tomographic inversion of the P- and S-body wave dataset recorded by the Southern African Seismic Experiment (SASE). Utilizing 3D sensitivity kernels, we invert traveltime residuals of teleseismic body waves to calculate velocity anomalies in the upper mantle down to a 700 km depth with respect to the ak135 reference model. Various resolution tests allow evaluation of the extent of smearing effects and help defining the optimum inversion parameters (i.e., damping and smoothness) for regularizing the inversion calculations. The fast lithospheric keels of the Kaapvaal and Zimbabwe cratons reach depths of 300-350 km and 200-250 km, respectively. The paleo-orogenic Limpopo Belt is represented by negative velocity perturbations down to a depth of ˜ 250 km, implying the presence of chemically fertile material with anomalously low wave speeds. The Bushveld Complex has low velocity down to ˜ 150 km, which is attributed to chemical modification of the cratonic mantle. In the present model, the finite-frequency sensitivity kernels allow to resolve relatively small-scale anomalies, such as the Colesberg Magnetic Lineament in the suture zone between the eastern and western blocks of the Kaapvaal Craton, and a small northern block of the Kaapvaal Craton, located between the Limpopo Belt and the Bushveld Complex.

  12. Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography

    NASA Astrophysics Data System (ADS)

    Bunge, Hans-Peter

    2002-08-01

    Earth's mantle overturns itself about once every 200 Million years (myrs). Prima facie evidence for this overturn is the motion of tectonic plates at the surface of the Earth driving the geologic activity of our planet. Supporting evidence also comes from seismic tomograms of the Earth's interior that reveal the convective currents in remarkable clarity. Much has been learned about the physics of solid state mantle convection over the past two decades aided primarily by sophisticated computer simulations. Such simulations are reaching the threshold of fully resolving the convective system globally. In this talk we will review recent progress in mantle dynamics studies. We will then turn our attention to the fundamental question of whether it is possible to explicitly reconstruct mantle flow back in time. This is a classic problem of history matching, amenable to control theory and data assimilation. The technical advances that make such approach feasible are dramatically increasing compute resources, represented for example through Beowulf clusters, and new observational initiatives, represented for example through the US-Array effort that should lead to an order-of-magnitude improvement in our ability to resolve Earth structure seismically below North America. In fact, new observational constraints on deep Earth structure illustrate the growing importance of of improving our data assimilation skills in deep Earth models. We will explore data assimilation through high resolution global adjoint models of mantle circulation and conclude that it is feasible to reconstruct mantle flow back in time for at least the past 100 myrs.

  13. TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data—synthetic test

    NASA Astrophysics Data System (ADS)

    Meléndez, A.; Korenaga, J.; Sallarès, V.; Miniussi, A.; Ranero, C. R.

    2015-10-01

    We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (˜90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.

  14. Searching Structural Control on the Evolution of the Reservoir Permeability in the Porphyry Copper-Molybdenum Rio Blanco - Los Bronces District: Structural Geology and Passive Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Comte, D.; Carrizo, D.; Vela, I.; Silva, W.

    2013-05-01

    Understand main factors that controls the crustal permeability related to giant ore deposits is a crucial goal for improving metallogenic models. Subsurface data at distrital scales, remains a key factor to reach that goal, however use of regional geophysical methodologies are still extremely expensive and poorly developed on ore exploration. We present the results associated to distrital structural analyses, combined with passive seismic tomography in a case study in Central Andes. Tectono-magmatic evolution of the Rio Blanco-Los Bronces District (Porphyry Cu-Mo Deposit) involves a complex interaction of different processes along the time which includes: Pre-Mesozoic structural inheritance, Oligo-Miocene extension, Mio-Pliocene orogenic shortening with the respective tectonic inversion associated to the uplift of the Andean western margin. Miocene volcano sedimentary units (Abanico Formation) and Pliocene syn-orogenic volcanic units form the deformed host distrital structure. These rocks are part of a trench-linked Andean deformation belt that accommodates EW shortening by NS- strike faults and NS-axes fault related folds. This structural belt controls the uplift of the western margin of the Andes by tectonic inversion of Miocene rift-type structural geometries. The reservoir structure is interpreted by the emplacement of a batholith in the core of the transfer zone between two NS-strike reverse faults, where the ore bodies are located in the center of an anticline general structure showing NW-SE mineralization trend. In turn, NE trending faults dislocate ore bodies in the transfer zone. The reservoir structure is interpreted by the emplacement of a Mio-Pliocene syntectonic batholith in the middle of a transfer zone between two NS-strike reverse faults, where the ore bodies are located in the axis of the anticlinal general structure. Passive seismic tomography results suggest a NNW-strike zone formed by fractured or/and hydrated rocks. This zone is spatially

  15. Tomography of the subducting Cocos plate in central Mexico using data from the installation of a prototype wireless seismic network: Images of a truncated slab

    NASA Astrophysics Data System (ADS)

    Husker, Allen Leroy, Jr.

    The central Mexican subduction zone exhibits an oblique strike of the volcanic arc, the Trans-Mexican Volcanic Belt (TMVB), with respect to the trench, flat-slab subduction, and has no Wadati-Benioff zone. The oblique strike of the TMVB is explained by the changing rate of subduction at the trench. The shape of the slab beyond the flat slab section has been unknown until now due to a lack of seismicity, but inferred by the position of the volcanic arc. Here we use data from the Middle America Seismic Experiment (MASE) to image the slab both with tomography and inverting for a slab temperature model. MASE is a collaboration between the Center for Embedded Networked Sensing (CENS) at UCLA, the Universidad Nacional Autonoma de Mexico (UNAM), and the California Institute of Technology (CIT). The data used in this study was from the MASE seismic network. It consisted of 100 seismic stations running, in a line, every 5-6 km from Acapulco, north through TMVB, and to almost the Gulf of Mexico. Half of the seismic stations were the typical standalone style station. These stations were visited once a month to change memory disks and for maintenance. The other 50 stations were developed to send data wirelessly through the network to a base station where the data is linked to the Internet. The 50 stations, called the Wirelessly Linked Seismological Network (WiLSoN), utilize standard Internet tools and protocols to make it both robust and portable to other systems. WiLSoN is described and compared to the standalone stations. The time to permit and install WiLSoN was double that of the standalone network. However, the benefits of WiLSoN included near real-time data and knowledge of system health as compared to only once a month visits to collect data from the standalone stations. However, the data collected from the standalone sites was more complete than that collected from WiLSoN. The lack of data completeness is attributed to the development of both software and hardware for

  16. 4D Bioprinting for Biomedical Applications.

    PubMed

    Gao, Bin; Yang, Qingzhen; Zhao, Xin; Jin, Guorui; Ma, Yufei; Xu, Feng

    2016-09-01

    3D bioprinting has been developed to effectively and rapidly pattern living cells and biomaterials, aiming to create complex bioconstructs. However, placing biocompatible materials or cells into direct contact via bioprinting is necessary but insufficient for creating these constructs. Therefore, '4D bioprinting' has emerged recently, where 'time' is integrated with 3D bioprinting as the fourth dimension, and the printed objects can change their shapes or functionalities when an external stimulus is imposed or when cell fusion or postprinting self-assembly occurs. In this review, we highlight recent developments in 4D bioprinting technology. Additionally, we review the uses of 4D bioprinting in tissue engineering and drug delivery. Finally, we discuss the major roadblocks to this approach, together with possible solutions, to provide future perspectives on this technology. PMID:27056447

  17. Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research

    PubMed Central

    Panta, Raj K.; Segars, Paul; Yin, Fang-Fang; Cai, Jing

    2015-01-01

    Aims To establish a framework to implement the 4D integrated extended cardiac torso (XCAT) digital phantom for 4D radiotherapy (RT) research. Materials and Methods A computer program was developed to facilitate the characterization and implementation of the 4D XCAT phantom. The program can (1) generate 4D XCAT images with customized parameter files; (2) review 4D XCAT images; (3) generate composite images from 4D XCAT images; (4) track motion of selected region-of-interested (ROI); (5) convert XCAT raw binary images into DICOM format; (6) analyse clinically acquired 4DCT images and real-time position management (RPM) respiratory signal. Motion tracking algorithm was validated by comparing with manual method. Major characteristics of the 4D XCAT phantom were studied. Results The comparison between motion tracking and manual measurements of lesion motion trajectory showed a small difference between them (mean difference in motion amplitude: 1.2 mm). The maximum lesion motion decreased nearly linearly (R2 = 0.97) as its distance to the diaphragm (DD) increased. At any given DD, lesion motion amplitude increased nearly linearly (R 2 range: 0.89 to 0.95) as the inputted diaphragm motion increased. For a given diaphragm motion, the lesion motion is independent of the lesion size at any given DD. The 4D XCAT phantom can closely reproduce irregular breathing profile. The end-to-end test showed that clinically comparable treatment plans can be generated successfully based on 4D XCAT images. Conclusions An integrated computer program has been developed to generate, review, analyse, process, and export the 4D XCAT images. A framework has been established to implement the 4D XCAT phantom for 4D RT research. PMID:23361276

  18. 3-D Tomography Study of Seismic Refraction/Wide-Angle Reflection Data Across the Variscides, SW Ireland

    NASA Astrophysics Data System (ADS)

    O'Reilly, B. M.; Landes, M.; Readman, P. W.; Shannon, P. M.; Prodehl, C.

    2002-12-01

    The VARNET-96 seismic experiment acquired three seismic refraction/wide-angle reflection profiles in order to examine the crustal structure in the south-west of Ireland. 170 seismic stations were used on 300 recording sites. The shotpoint geometry was designed to allow for both in-line and off-line fan shot recordings on the three profiles. A total of 34 water shots was fired. Results from 3-D raytrace and inversion modelling illustrate the pervasive lateral heterogeneity of the study area south of the Shannon Estuary. Palaeozoic strata at the south coast are about 5-6 km thick associated with the sedimentary infill of the Munster and South Munster Basins. To the north, shallow upper crust in the vicinity of the Killarney-Mallow Fault Zone is followed by a 3-4 km thick sedimentary succession in the Dingle-Shannon Basin. A zone of high-velocity upper crust (6.4-6.6 km/s) beneath the South Munster Basin correlates with a gravity high between the Kenmare-Killarney and the Leinster Granite gravity lows. Other high-velocity zones were found beneath Dingle Bay and the Kenmare River region and may be associated with the deep traces of the Killarney-Mallow Fault Zone and the Cork-Kenmare Line. The 3-D velocity model was taken as a basis for the computation of PmP reflected arrivals from the crust-mantle boundary. The Moho depth varies from about 28-29 km at the south coast to about 32-33 km beneath the Dingle-Shannon Basin, the region where the 2-D inline model shows a south-dipping reflector in the upper mantle. Pervasive Variscan deformation appears to be confined to the sedimentary and upper crustal structure and has not deformed the entire crust supporting a thin-skinned tectonic model for Variscan deformation. Deep-crustal variations only occur where they can be correlated with major tectonic features such as the Caledonian Iapetus Suture near the Shannon Estuary. The shallowing of the Moho towards the coast may result from Mesozoic crustal extension in the adjacent

  19. Three-dimensional seismic anisotropy in the crust and uppermost mantle beneath the Taiwan area revealed by passive source tomography

    NASA Astrophysics Data System (ADS)

    Koulakov, Ivan; Jakovlev, Andrey; Wu, Yih-Min; Dobretsov, Nikolay L.; El Khrepy, Sami; Al-Arifi, Nassir

    2015-11-01

    We present a 3-D anisotropic seismic model of the crust and uppermost mantle beneath the Taiwan region based on the tomographic inversion of traveltime data from regional earthquakes. In the crust beneath eastern Taiwan, we observe coast-parallel anisotropy that perfectly delineates the major geological structures. In westernmost Taiwan, we distinguish a crustal block corresponding to the Peikang High at the margin of the Eurasian Plate, where coast-perpendicular anisotropy within a high-velocity anomaly is observed. In the uppermost mantle, the direction of anisotropy beneath central Taiwan turns perpendicular to the coast, which may indicate eastward underthrusting of the Peikang Block that was induced by collisional processes. To the NE of Taiwan, the anisotropy forms circular patterns coinciding with the shape of the Ryukyu arc, which may reflect the distribution of the deformations and fractures in the accretion and arc complex.

  20. A 3D Seismic Velocity Model Offshore Southern California from Ambient Noise Tomography of the ALBACORE OBS Array

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Bowden, D. C.; Tsai, V. C.; Weeraratne, D. S.

    2015-12-01

    The Pacific-North America plate boundary in Southern California extends far west of the coastline, and a 12-month ocean bottom seismometer (OBS) array spanned the western side of the plate boundary to image lithospheric seismic velocities. Velocities are modeled through stacked cross correlations of ambient noise data. Twelve months of continuous data were used from 22 OBS stations and ~30 coastal and island Southern California Seismic Network stations. Particular attention has been paid to improving signal-to-noise ratios in the noise correlations with OBS stations by removing the effects of instrument tilt and infragravity waves. Different applications of preprocessing techniques allow us to distinguish the fundamental and first higher order Rayleigh modes, especially in deep water OBS pairs where the water layer dominates crustal sensitivity of the fundamental mode. Standard time domain and frequency domain methods are used to examine surface wave dispersion curves for group and phase velocities between 5 and 50 second periods, and these are inverted for 3D velocity structure. The results define the transition in three dimensions from continental lithospheric structure in the near-shore region to oceanic structure west of the continental borderland. While the most prominent features of the model relate to thinning of the crust west of the Patton Escarpment, other notable anomalies are present north-to-south throughout the continental borderland and along the coast from the Los Angeles Basin to the Peninsular Ranges. The velocity model will help describe the region's tectonic history, as well as provide new constraints for determination of earthquake relocations and rupture styles.

  1. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  2. Seismic refraction and electrical resistivity tomography to investigate subsurface controls on vegetation distribution in a mountain watershed

    NASA Astrophysics Data System (ADS)

    Donnelly, W.; Bradford, J. H.; Seyfried, M. S.

    2014-12-01

    The objective of this work is to investigate subsurface controls on the distribution of vegetation at two sites located within the Reynolds Creek Critical Zone Observatory (CZO). Located in southwestern Idaho, the Reynolds Creek CZO extends over a steep elevation-climatic gradient (mean annual precipitation 250 - 1100 mm/yr, mean annual temperature 5.5 °C to 11°C). The existing, publically available hydroclimatic data are long-term and spatially extensive, including precipitation (>50 yr), snow course SWE (>50 yr), temperature (30-50 yr), soil moisture and temperature (>10 yr), and some soil depth data. Both sites we investigated were at elevation greater than 2000m, and both sites showed abrupt changes in vegetation with no surface expression of changes in the underlying geology. The first site, termed Dry Meadow (DM), consists of a grassy meadow that transitions from being saturated to the surface during the spring runoff to dry with a water table at a depth of 4-6m in the late summer. The grassy meadow transitions abruptly to sage brush dominated terrain with no significant change in elevation. The second site, termed the Aspen Grove (AG), shows an abrupt transition from dry grassy terrain to an Aspen grove along a constant, and low gradient hill slope. At both sites we acquired high density seismic refraction data (1m receiver spacing) along transects that ranged from 95 to 160 m. Additionally we acquired 107 m long electrical resistivity profiles in both dipole-dipole and Wenner arrays with 2 m electrode spacing. At both sites, both seismic and ERT data indicate a distinct and abrupt drop in depth to the top of the weathered rock surface of 10-15 m. These topographic lows in the bedrock may be either erosional or structurally controlled, but in either case create accommodation space for the accumulation of sediment and an altered groundwater distribution that can accommodate a shift in the dominant vegetation type.

  3. 4D-Var Developement at GMAO

    NASA Technical Reports Server (NTRS)

    Pelc, Joanna S.; Todling, Ricardo; Akkraoui, Amal El

    2014-01-01

    The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.

  4. Constrained reconstructions for 4D intervention guidance

    NASA Astrophysics Data System (ADS)

    Kuntz, J.; Flach, B.; Kueres, R.; Semmler, W.; Kachelrieß, M.; Bartling, S.

    2013-05-01

    Image-guided interventions are an increasingly important part of clinical minimally invasive procedures. However, up to now they cannot be performed under 4D (3D + time) guidance due to the exceedingly high x-ray dose. In this work we investigate the applicability of compressed sensing reconstructions for highly undersampled CT datasets combined with the incorporation of prior images in order to yield low dose 4D intervention guidance. We present a new reconstruction scheme prior image dynamic interventional CT (PrIDICT) that accounts for specific image features in intervention guidance and compare it to PICCS and ASD-POCS. The optimal parameters for the dose per projection and the numbers of projections per reconstruction are determined in phantom simulations and measurements. In vivo experiments in six pigs are performed in a cone-beam CT; measured doses are compared to current gold-standard intervention guidance represented by a clinical fluoroscopy system. Phantom studies show maximum image quality for identical overall doses in the range of 14 to 21 projections per reconstruction. In vivo studies reveal that interventional materials can be followed in 4D visualization and that PrIDICT, compared to PICCS and ASD-POCS, shows superior reconstruction results and fewer artifacts in the periphery with dose in the order of biplane fluoroscopy. These results suggest that 4D intervention guidance can be realized with today’s flat detector and gantry systems using the herein presented reconstruction scheme.

  5. Study of Southern Tyrrhenian and Sicilian regions by a sequential procedure to integrate WAM seismic tomographies and Bouguer anomaly data

    NASA Astrophysics Data System (ADS)

    Panepinto, S.; Calo, M. M.; Luzio, D.; Dorbath, C.

    2009-12-01

    A procedure to obtain 3D velocity-density models and earthquake relocation by integrated inversion of P and S wave traveltimes and Bouguer anomaly distribution was applied to a large dataset concerning the Southern Tyrrhenian and Sicilian areas. The seismic dataset was subdivided into two subsets for separate inversions, whose results were later on joined by the WAM (Weighted Average Model) technique. This is a post-processing technique proposed by Calò et al. (2009) by which preliminary tomographic models are unified in a common 3D grid. The first dataset concerns 28873 P and 9990 S arrival times of 1800 earthquakes located in the area 14°30‧ E - 17°E, 37°N - 41°N while the second dataset contains 31250 P and 13588 S arrival-times related to 1951 events located in the area 11° E - 15°48‧ E, 36°30‧N - 39°N. The selected events were recorded at least by 10 stations in the period 1981-2005 and marked by RMS < 0.50 s. The second dataset was integrated with P-wave traveltimes picked in several sesmic profiles carried out in the study region. The Bouguer anomaly measurements were interpolated in the nodes of a 8x8 km regular grid covering the area 12° E - 16°01‧ E, 36°13‧ N - 38°31‧ N. The proposed procedure allows to invert seismic and gravimetric data with a sequential technique to avoid the problematic optimization of the relative weights to assign to the different type of data. A first WAM provides a preliminary Vp, Vs and Vp/Vs models and a first ipocentral relocation. Since the obtained Vs model seems poorly constrained by the S wave arrival times, the Vp model is converted in a new Vs model, through a Vs-Vp correlation law proposed by T.M. Brocher (2005), and used, jointly to the Vp model, as input for a second WAM. The results of this second step are used to derive, by the empirical Brocher’s equations, 2 density distributions associated to the Vp and Vs models. These density models are statistically compared and the distribution of

  6. R4D Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1956-01-01

    This Photograph taken in 1956 shows the first of three R4D Skytrain aircraft on the ramp behind the NACA High-Speed Flight Station. NACA stood for the National Advisory Committee for Aeronautics, which evolved into the National Aeronautics and Space Administration (NASA) in 1958. The R4D Skytrain was one of the early workhorses for NACA and NASA at Edwards Air Force Base, California, from 1952 to 1984. Designated the R4D by the U.S. Navy, the aircraft was called the C-47 by the U.S. Army and U.S. Air Force and the DC-3 by its builder, Douglas Aircraft. Nearly everyone called it the 'Gooney Bird.' In 1962, Congress consolidated the military-service designations and called all of them the C-47. After that date, the R4D at NASA's Flight Research Center (itself redesignated the Dryden Flight Research Center in 1976) was properly called a C-47. Over the 32 years it was used at Edwards, three different R4D/C-47s were used to shuttle personnel and equipment between NACA/NASA Centers and test locations throughout the country and for other purposes. One purpose was landing on 'dry' lakebeds used as alternate landing sites for the X-15, to determine whether their surfaces were hard (dry) enough for the X-15 to land on in case an emergency occurred after its launch and before it could reach Rogers Dry Lake at Edwards Air Force Base. The R4D/C-47 served a variety of needs, including serving as the first air-tow vehicle for the M2-F1 lifting body (which was built of mahogany plywood). The C-47 (as it was then called) was used for 77 tows before the M2-F1 was retired for more advanced lifting bodies that were dropped from the NASA B-52 'Mothership.' The R4D also served as a research aircraft. It was used to conduct early research on wing-tip-vortex flow visualization as well as checking out the NASA Uplink Control System. The first Gooney Bird was at the NACA High-Speed Flight Research Station (now the Dryden Flight Research Center) from 1952 to 1956 and flew at least one cross

  7. Seismic tomography and azimuthal anisotropy for the Southern and Eastern Alps from ambient noise cross-correlations

    NASA Astrophysics Data System (ADS)

    Qorbani, Ehsan; Zigone, Dimitri; Kolinsky, Petr; Fuchs, Florian; Bokelmann, Götz; AlpArray-EASI Working Group

    2016-04-01

    The eastern part of the Alpine chain is considered as an area of complex tectonics and lithospheric structure. Having a relatively dense network of stations in this region provides an opportunity to study the crustal and lithospheric velocity structure using ambient-noise correlations methods. We used continuous data recorded during 2014 at 50 permanent stations located in Austria, Germany, northern Italy, and Slovenia, along with data from 8 temporary stations of the Eastern Alpine Seismic Investigation (EASI) profile. Cross correlation of ambient noise are performed in order to estimate the Green's functions of surface waves propagating between station pairs. Dispersion curves of Rayleigh and Love waves are constructed between 2 and 30 seconds and are then inverted to obtain group velocity maps at different frequency (depth) levels. We present here a new crustal-lithospheric velocity model for the Southern and Eastern Alps, which reveals clear spatial velocity variation and contrasts, associated with major faults, deformed and damaged zones. In this study, we also assess the azimuthal anisotropy from the group velocity measurements. The new finding together with the previous results from SKS splitting and receiver function provides 3D images of anisotropy at scales ranging from crust to upper mantle. This allows us to discuss the strain field and deformation pattern within both shallow and lithospheric-asthenospheric depth, in relation with the most prominent tectonic processes in the region, such as eastward extrusion of the ALCAPA block (Eastern Alps, Western Carpathian, and Pannonian Basin).

  8. A new interpretation of seismic tomography in the southern Dead Sea basin using neural network clustering techniques

    NASA Astrophysics Data System (ADS)

    Braeuer, Benjamin; Bauer, Klaus

    2015-11-01

    The Dead Sea is a prime location to study the structure and development of pull-apart basins. We analyzed tomographic models of Vp, Vs, and Vp/Vs using self-organizing map clustering techniques. The method allows us to identify major lithologies by their petrophysical signatures. Remapping the clusters into the subsurface reveals the distribution of basin sediments, prebasin sedimentary rocks, and crystalline basement. The Dead Sea basin shows an asymmetric structure with thickness variation from 5 km in the west to 13 km in the east. Most importantly, we identified a distinct, well-defined body under the eastern part of the basin down to 18 km depth. Considering its geometry and petrophysical signature, this unit is interpreted as a buried counterpart of the shallow prebasin sediments encountered outside of the basin and not as crystalline basement. The seismicity distribution supports our results, where events are concentrated along boundaries of the basin and the deep prebasin sedimentary body. Our results suggest that the Dead Sea basin is about 4 km deeper than assumed from previous studies.

  9. Magma source beneath the Bezymianny volcano and its interconnection with Klyuchevskoy inferred from local earthquake seismic tomography

    NASA Astrophysics Data System (ADS)

    Ivanov, A. I.; Koulakov, I. Yu.; West, M.; Jakovlev, A. V.; Gordeev, E. I.; Senyukov, S.; Chebrov, V. N.

    2016-09-01

    We present a new 3D model of P and S wave velocities and Vp/Vs ratio to 20 km depth beneath the active Klyuchevskoy and Bezymianny volcanoes (Kamchatka, Russia). In this study, we use travel time data from local seismicity recorded by temporary stations of the PIRE experiment from October 24 to December 15, 2009 and permanent stations operated by the Kamchatkan Branch of Geophysical Survey (KBGS). The calculations were performed using the LOTOS code (Koulakov, 2009). The resolution limitations were explored using a series of synthetic tests with checkerboard patterns in the horizontal and vertical sections. At shallow depths, the resulting Vp and Vs anomalies tend to alternate on opposite sides of the lineation connecting the most active volcanic centers of the Klyuchevskoy Volcanic Group (KVG). This prominent lineation suggests the presence of a large fault zone passing throughout the KVG, consistent with regional tectonics. We suggest that this fault zone weakens the crust creating a natural pathway for magmas to reach the upper crust. Beneath Bezymianny volcano we observe a shallow anomaly of high Vp/Vs ratio extending to 5-6 km depth. Beneath Klyuchevskoy another high Vp/Vs anomaly is observed, at deeper depths of 7 and 15 km. These findings are consistent with the regional-scale model of Koulakov et al. (2013a) and provide some explanation for how very different eruption styles can be maintained at two volcanoes in close proximity over numerous eruption cycles.

  10. A Detailed 3D Seismic Velocity Structure of the Subducting Pacific Slab Beneath Hokkaido, Tohoku and Kanto, Japan, by Double-Difference Tomography

    NASA Astrophysics Data System (ADS)

    Tsuji, Y.; Nakajima, J.; Kita, S.; Okada, T.; Matsuzawa, T.; Hasegawa, A.

    2007-12-01

    Three-dimensional heterogeneous structure beneath northeastern (NE) Japan has been investigated by previous studies and an inclined seismic low-velocity zone is imaged in the mantle wedge sub-parallel to the down-dip direction of the subducting slab (Zhao et al., 1992, Nakajima et al., 2001). However, the heterogeneous structure within the slab has not been well studied even though it is very important to understand the whole process of water transportation from the slab to the surface. Here we show a detailed 3D seismic velocity structure within the subducted Pacific slab around Japan and propose a water-transportation path from the slab to the mantle wedge. In this study, we estimated 3D velocity structure within the Pacific slab by the double-difference tomography (Zhang and Thurber, 2003). We divided the study area, from Hokkaido to Kanto, into 6 areas due to the limitation of memory and computation time. In each area, arrival-time data of 7,500-17,000 events recorded at 70-170 stations were used in the analysis. The total number of absolute travel-time data was about 140,000-312,000 for P wave and 123,000-268,000 for S wave, and differential data were about 736,000-1,920,000 for P wave and 644,000-1,488,000 for S wave. Horizontal and vertical grid separations are 10-25 km and 6.5 km, respectively. RMS residuals of travel times for P wave decreased from 0.23s to 0.09s and for S wave from 0.35s to 0.13s. The obtained results are as follows: (1) a remarkable low-Vs zone exists in the uppermost part of the subducting slab, (2) it extends down to a depth of about 80 km, (3) the termination of this low-Vs zone almost corresponds to the "seismic belt" recently detected in the upper plane of the double seismic zone (Kita et al.,2006; Hasegawa et al., 2007), (4) at depths deeper than 80 km, a low-Vs and high-Vp/Vs zone is apparently distributed in the mantle wedge, immediately above the slab crust. We consider that these features reflect water-transportation processes

  11. 4D Proton treatment planning strategy for mobile lung tumors

    SciTech Connect

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei . E-mail: ldong@mdanderson.org

    2007-03-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE{sub R}IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE{sub R}IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE{sub R}IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors.

  12. Abdominal organ motion measured using 4D CT

    SciTech Connect

    Brandner, Edward D.; Wu, Andrew . E-mail: andrew.wu@jefferson.edu; Chen, Hungcheng; Heron, Dwight; Kalnicki, Shalom; Komanduri, Krishna; Gerszten, Kristina; Burton, Steve; Ahmed, Irfan; Shou, Zhenyu

    2006-06-01

    Purpose: To measure respiration-induced abdominal organ motion using four-dimensional computed tomography (4D CT) scanning and to examine the organ paths. Methods and Materials: During 4D CT scanning, consecutive CT images are acquired of the patient at each couch position. Simultaneously, the patient's respiratory pattern is recorded using an external marker block taped to the patient's abdomen. This pattern is used to retrospectively organize the CT images into multiple three-dimensional images, each representing one breathing phase. These images are analyzed to measure organ motion between each phase. The displacement from end expiration is compared to a displacement limit that represents acceptable dosimetric results (5 mm). Results: The organs measured in 13 patients were the liver, spleen, and left and right kidneys. Their average superior to inferior absolute displacements were 1.3 cm for the liver, 1.3 cm for the spleen, 1.1 cm for the left kidney, and 1.3 cm for the right kidney. Although the organ paths varied among patients, 5 mm of superior to inferior displacement from end expiration resulted in less than 5 mm of displacement in the other directions for 41 of 43 organs measured. Conclusions: Four-dimensional CT scanning can accurately measure abdominal organ motion throughout respiration. This information may result in greater organ sparing and planning target volume coverage.

  13. Interactive animation of 4D performance capture.

    PubMed

    Casas, Dan; Tejera, Margara; Guillemaut, Jean-Yves; Hilton, Adrian

    2013-05-01

    A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple mesh sequences of related motions. A real-time mesh sequence blending approach is introduced, which combines the realistic deformation of previous nonlinear solutions with efficient online computation. Transitions between different parametric motion spaces are evaluated in real time based on surface shape and motion similarity. Four-dimensional parametric motion graphs allow real-time interactive character animation while preserving the natural dynamics of the captured performance. PMID:23492379

  14. Nondipole Effects in Xe 4d Photoemission

    SciTech Connect

    Hemmers, O; Guillemin, R; Wolska, A; Lindle, D W; Rolles, D; Cheng, K T; Johnson, W R; Zhou, H L; Manson, S T

    2004-07-14

    We measured the nondipole parameters for the spin-orbit doublets Xe 4d{sub 5/2} and Xe 4d{sub 3/2} over a photon-energy range from 100 eV to 250 eV at beamline 8.0.1.3 of the Advanced Light Source at the Lawrence Berkeley National Laboratory. Significant nondipole effects are found at relatively low energies as a result of Cooper minima in dipole channels and interchannel coupling in quadrupole channels. Most importantly, sharp disagreement between experiment and theory, when otherwise excellent agreement was expected, has provided the first evidence of satellite two-electron quadrupole photoionization transitions, along with their crucial importance for a quantitatively accurate theory.

  15. Variable feeding regimes of the Kluchevskoy group volcanoes (Kamchatka, Russia) derived from time-dependent seismic tomography

    NASA Astrophysics Data System (ADS)

    Koulakov, I.; Gordeev, E.; Dobretsov, N. L.; Vernikovsky, V. A.; Senyukov, S.; Jakovlev, A.

    2011-12-01

    We present the results of time-dependent local earthquake tomography for the Kluchevskoy group of volcanoes in Kamchatka. We consider the time period from 2001 to 2008, which covers several stages of activity for Kluchevskoy and Bezymyanny volcanoes. During the entire period, we robustly observe a mantle channel below 25 km depth with anomalously high Vp/Vs values (up to 2.2), which is interpreted to be the main feeding source of the volcanoes of the group. In the crust, we derived complex structure that varies over the observation time. During the pre-eruptive period, we detected two levels of magma sources: one in the middle crust and one just below Kluchevskoy volcano. In 2005, a year of powerful eruptions of Kluchevskoy and Besymyanny volcanoes, we observe a general increase in Vp/Vs throughout the crust. In the relaxation period following the eruption, the Vp/Vs values are generally low, and no anomalous zones in the crust are observed. We propose that very rapid variations in Vp/Vs are most likely due to abrupt changes in stress and deformation regime, which cause fracturing and the active transport of fluids. This causes positive feedback, and the excessive stresses in the crust lead to volcanic eruptions.

  16. Testing Models of Magmatic and Hydrothermal Segmentation: A Three-Dimensional Seismic Tomography Experiment at the Endeavour Ridge (Invited)

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S.; Toomey, D. R.; Hooft, E. E.; Weekly, R. T.; Wells, A. E.

    2010-12-01

    Competing models for what controls the segmentation and intensity of ridge crest processes are at odds on the scale of mantle and crustal magmatic segmentation, the distribution of hydrothermal venting with respect to a volcanic segment and the properties of the thermal boundary layer that transports energy between the magmatic and hydrothermal systems. The presence of an axial magma chamber (AMC) reflector beneath the central portion of the Endeavour segment of the Juan de Fuca ridge, as well as systematic along axis changes in seafloor depth, ridge crest morphology and hydrothermal venting provide an ideal target for testing conflicting hypotheses. In late summer 2009, we conducted an active source seismic experiment on the Endeavour segment of the Juan de Fuca Ridge. A total of 5,567 airgun shots from the 36-gun, 6,600 in3 airgun array of the R/V Marcus G. Langseth were recorded by 68 short-period ocean bottom seismometers (OBSs) deployed at 64 sites. The experimental geometry utilized 3 nested scales and was designed to image (1) crustal thickness variations within 25 km of the axial high (0 to 900 kyr); (2) the map view heterogeneity and anisotropy of the topmost mantle beneath the spreading axis; (3) the three-dimensional structure of the crustal magmatic system and (4) the detailed three-dimensional, shallow crustal thermal structure beneath the Endeavour vent fields. At the segment scale, six 100-km-long ridge-parallel shot lines were obtained at distances of 16, 23 and 30 km to both sides of the ridge axis with OBSs on all but the outer lines. At the along-axis scale of the AMC reflector, shot lines are spaced 1 km apart and OBSs 8 km apart within a 60 x 20 km2 region. At the vent field scale, shots were obtained on a 500 x 500 m2 grid and OBSs spaced 5 km apart within a 20 x 10 km2 region. All the shooting lines were collected with a 9 m source depth to obtain impulsive arrivals at shorter ranges but the outer lines were also shot with a 15 m source depth

  17. Internal structure of Erebus volcano, Antarctica imaged by high-resolution active-source seismic tomography and coda interferometry

    NASA Astrophysics Data System (ADS)

    Zandomeneghi, D.; Aster, R.; Kyle, P.; Barclay, A.; Chaput, J.; Knox, H.

    2013-03-01

    Erebus volcano, Antarctica has hosted a persistent convecting phonolite lava lake for over 40 years. The lake produces small (VEI 0-1) Strombolian eruptions resulting from gas slugs rising through the upper conduit system. High-resolution (to scale lengths of several hundreds of meters) three-dimensional P-wave tomographic velocity images were obtained to a depth of approximately 600 m below the volcano surface. Data were collected using 91 seismographs deployed over an approximately 4 by 4 km area of the summit region. Seismic illumination was provided by 12 chemical shots emplaced in shallow snow and ice boreholes. P-wave direct arrival travel-time measurements were used to invert for strong velocity anomalies (with spatial variations in Vp exceeding ±1 km/s) associated with the uppermost few km. Shallow anomalies correlate with fumarolic ice caves, a prominent radial chilled dike, and ring structures associated with the caldera rim. Conduit structures feeding the lava lake and other vents within the Inner Crater are evidently too small (e.g., less than many 10 s of meters) to be imaged under the resolution limits of this experiment. However, combined velocity and coda interferometry scattering intensity images identify near-summit regions with both low velocity and high scattering that are candidates for magma accommodation. Results indicate a nonaxisymmetric near-summit magmatic system that is likely constrained by heterogeneous structures in the uppermost volcano. The most extensive volume of near-summit magma likely resides approximately 500 m NW of the active Inner Crater vents at depths of 500 m and more below the surface.

  18. Mesozoic-Cenozoic history of subduction within the Tethyan region as inferred from seismic tomography and plate tectonic reconstructions

    NASA Astrophysics Data System (ADS)

    Hafkenscheid, E.; Wortel, R.; Spakman, W.

    2003-12-01

    We have studied the large-scale history of subduction within the Tethyan region, the Alpine-Himalayan-Indonesian mountain chain that stretches from the Mediterranean to Southeast Asia. From tomographic images of the present mantle structure, the volumes and locations of the positive seismic velocity anomalies are determined. The large tomographic volumes, and the large depths at which they are found, indicate that they must have resulted from long periods of subduction in Cenozoic and Mesozoic times. We therefore examine the large-scale surface motions within the region since 200 Ma, the time window that is thought to be necessary to explain the inferred tomographic anomalies. From plate tectonic reconstructions, the amount of convergence and velocities, both relative and absolute, are determined using the relevant poles of rotation. In general, we find the tomographic volumes in the upper mantle in the eastern Mediterranean and Middle East to be similar to the tectonic volumes that are expected to have subducted during the Cenozoic. On the contrary, the results indicate that the Cenozoic amount of shortening in the Indian region was probably not accompanied by lithosphere subducting into the mantle. For all regions, the tomographic volumes found in the lower mantle are larger than the tectonic volumes expected to have subducted during mainly Mesozoic times. The volumes in the Indian region and the Middle East approximately differ a factor 1-2. However, the results suggest that much more material must have been subducted in the eastern Mediterranean than is calculated for the African-Eurasian convergence alone. This points to a major role of oceanic spreading during lithospheric subduction in the area.

  19. The anisotropic structure in the crust in the northern part of North China from ambient seismic noise tomography

    NASA Astrophysics Data System (ADS)

    Fu, Yuanyuan V.; Gao, Yuan; Li, Aibing; Lu, Laiyu; Shi, Yutao; Zhang, Yi

    2016-03-01

    We have measured radial anisotropy in the crust beneath the northern part of North China by jointly inverting Rayleigh and Love wave phase velocities at periods less than 35 s from 14 months of ambient noise data recorded by 222 broad-band seismic stations. We also estimate the azimuthal anisotropy of phase velocity from Rayleigh wave data. The fast direction of azimuthal anisotropy varies with periods, NE-SW orientation at short and intermediate periods (10-16 s) and NW-SE orientation at periods larger than 20 s. The NE-SW oriented fast direction of azimuthal anisotropy may be related to the fossilized structural fabrics due to the compression during the Indosinian orogeny from late Palaeozoic to middle Mesozoic. The NW-SE trend of anisotropic fabric in the lower crust and uppermost mantle is probably associated with the later lithospheric extension. The observed radial anisotropy also shows a two-layer feature, negative radial anisotropy (Vsh < Vsv) in the upper crust and positive (Vsh > Vsv) in the middle-lower crust. The compressional tectonics from late Palaeozoic to middle Mesozoic may cause crustal materials align vertically throughout the crust. This vertical fabric could make Vsh slower than Vsv. However, the li