Science.gov

Sample records for 4e10-resistant hiv-1 isolated

  1. [Effective components against HIV-1 replicative enzymes isolated from plants].

    PubMed

    Peng, Zong-gen; Xu, Li-jia; Ye, Wen-cai; Xiao, Pei-gen; Chen, Hong-shan

    2010-02-01

    Plant active components characterized of many different structures and activities on multiple targets, have made them to be the important sources of inhibitors on HIV-1. For finding leading compounds with new structure against HIV-1, three key HIV-1 replicative enzymes (reverse transcriptase, protease and integrase) were used as screening models. The in vitro activities of 45 plant derived components isolated from Schisandraceae, Rutaceae and Ranunculaceae were reported. Within twelve triterpene components isolated, eight compounds were found to inhibit HIV-1 protease, in these eight active compounds, kadsuranic acid A (7) and nigranoic acid (8), inhibited both HIV-1 protease and integrase; Among fifteen lignans, meso-dihydroguaiaretic acid (15) and kadsurarin (16) were active on HIV-1 reverse transcriptase, and 4, 4-di(4-hydroxy-3-methoxyphenly)-2, 3-dimethylbutanol (13) active on HIV-1 integrase. All of the six alkaloids, seven flavones, and five others compounds were not active or only with low activities against HIV-1 replicative enzymes. Further studies of the triterpene components showing strong inhibitory activities on HIV-1 were warranted.

  2. Isolation and propagation of HIV-1 on peripheral blood mononuclear cells.

    PubMed

    van 't Wout, Angélique B; Schuitemaker, Hanneke; Kootstra, Neeltje A

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection is characterized by a gradual loss of CD4+ T cells and T-cell function and an ongoing high level of virus replication. The high replication rate and the error-prone nature of HIV-1 reverse transcriptase create a diverse viral quasispecies throughout infection. To study biological properties of HIV-1 quasispecies in relation to the clinical course of infection, the in vitro preservation of phenotypical characteristics of the virus is essential. Here, we describe the method for bulk isolation of the HIV-1 quasispecies and a limiting dilution virus isolation protocol by which single coexisting HIV-1 variants can be obtained using peripheral blood mononuclear cells from a healthy donor as target cells. In addition, methods for propagation and titration of HIV-1 are provided.

  3. Isolation of human immunodeficiency virus type 1 (HIV-1) RNA from feces by a simple method and difference between HIV-1 subpopulations in feces and serum.

    PubMed Central

    van der Hoek, L; Boom, R; Goudsmit, J; Snijders, F; Sol, C J

    1995-01-01

    A simple method for the isolation and subsequent detection of human immunodeficiency virus type 1 (HIV-1) RNA from feces is described. Viral RNA was isolated by the method developed by Boom et al. (R. Boom, C.J.A. Sol, M.M.M. Salimans, C.L. Jansen, P.M.E. Wertheim-van Dillen, and J. van der Noordaa, J. Clin. Microbiol. 28:495-503, 1990), which was adapted for feces. HIV-1 RNA was detected by reverse transcription (RT) followed by a nested PCR encompassing the V3 region. Reconstruction experiments revealed that the efficiencies of the extraction technique and the subsequent RT-PCR were not considerably affected by the varied composition of feces. The method was applied on fecal specimens from 18 HIV-1-infected individuals, among which were samples that had been stored for 9 years. It appeared that HIV-1 RNA was detectable in the feces of 12 persons (67%). Viral RNA was present in the feces of persons who fulfilled the criteria for CDC class II and CDC class III HIV infection as well as in patients who were diagnosed with AIDS (CDC class IV). Direct sequencing of amplimers obtained from paired fecal and serum specimens showed that differences in sequence heterogeneity existed. In one patient a remarkable difference in the HIV-1 sequences between isolates from feces and serum was observed. In conclusion, HIV-1 RNA is frequently present in the feces of HIV-1-infected individuals, and in some cases the HIV-1 subpopulation in feces differs from the HIV-1 subpopulation in serum. PMID:7751361

  4. The transmembrane protein of HIV-1 primary isolates modulates cell surface expression of their envelope glycoproteins.

    PubMed

    Lebigot, S; Roingeard, P; Thibault, G; Lemiale, F; Verrier, B; Barin, F; Brand, D

    2001-11-10

    We have recently shown that the level of cell surface expression of envelope glycoproteins derived from various human immunodeficiency virus type 1 (HIV-1) primary isolates (PI) was lower than those of envelope glycoproteins derived from T-cell laboratory-adapted (TCLA) HIV-1 (D. Brand et al., 2000, Virology 271, 350-362). We investigated this phenomenon by comparing the cell surface expression of chimeric envelope glycoproteins constructed by swapping the gp120 surface and gp41 transmembrane glycoproteins of the TCLA HIV-1MN and the PI HIV-1(133), HIV-1G365, or HIV-1EFRA. We found that each chimeric envelope construct had a cell surface-specific pattern of expression similar to that of the parental envelope glycoproteins corresponding to the gp41. Thus, the difference in cell surface expression observed between TCLA viruses and various PI is probably due to a signal located in gp41. Identification of this signal may be important for the design of PI envelope-derived immunogens and may increase our understanding of the mechanisms by which HIV-1 escapes from the immune system.

  5. Identification of Owl Monkey CD4 Receptors Broadly Compatible with Early-Stage HIV-1 Isolates

    PubMed Central

    Meyerson, Nicholas R.; Sharma, Amit; Wilkerson, Gregory K.

    2015-01-01

    ABSTRACT Most HIV-1 variants isolated from early-stage human infections do not use nonhuman primate versions of the CD4 receptor for cellular entry, or they do so poorly. We and others have previously shown that CD4 has experienced strong natural selection over the course of primate speciation, but it is unclear whether this selection has influenced the functional characteristics of CD4 as an HIV-1 receptor. Surprisingly, we find that selection on CD4 has been most intense in the New World monkeys, animals that have never been found to harbor lentiviruses related to HIV-1. Based on this, we sampled CD4 genetic diversity within populations of individuals from seven different species, including five species of New World monkeys. We found that some, but not all, CD4 alleles found in Spix's owl monkeys (Aotus vociferans) encode functional receptors for early-stage human HIV-1 isolates representing all of the major group M clades (A, B, C, and D). However, only some isolates of HIV-1 subtype C can use the CD4 receptor encoded by permissive Spix's owl monkey alleles. We characterized the prevalence of functional CD4 alleles in a colony of captive Spix's owl monkeys and found that 88% of surveyed individuals are homozygous for permissive CD4 alleles, which encode an asparagine at position 39 of the receptor. We found that the CD4 receptors encoded by two other species of owl monkeys (Aotus azarae and Aotus nancymaae) also serve as functional entry receptors for early-stage isolates of HIV-1. IMPORTANCE Nonhuman primates, particularly macaques, are used for preclinical evaluation of HIV-1 vaccine candidates. However, a significant limitation of the macaque model is the fact that most circulating HIV-1 variants cannot use the macaque CD4 receptor to enter cells and have to be adapted to these species. This is particularly true for viral variants from early stages of infection, which represent the most relevant vaccine targets. In this study, we found that some individuals

  6. Biological, serological, and genetic characterization of HIV-1 subtype E isolates from northern Thailand.

    PubMed

    Ichimura, H; Kliks, S C; Visrutaratna, S; Ou, C Y; Kalish, M L; Levy, J A

    1994-03-01

    Twenty-three HIV-1 isolates were recovered from PBMCs from 26 HIV-1-seropositive individuals in northern Thailand. The viruses grew readily in human PBMCs but only 7 of 17 (41.2%) and 5 of 17 (29.4%) replicated and only at a low level in primary macrophages and in established T cell lines, respectively. By immunoblot assays, sera from Thai subjects were strongly reactive with gp120 from a Thailand isolate, moderately reactive with a Rwandan isolate, and weakly reactive with a North American strain. These three viruses represent, respectively, examples of subtypes E, A, and B as classified by the sequences of the envelope region. Serological assays indicated that broadly reactive rather than type-specific neutralizing activity was detected among these northern Thai sera. The majority of the sera (approximately 75%) neutralized a representative Thailand isolate and the Rwanda isolate but only 55% neutralized the North American strain. However, the difference was not statistically significant. The genetic analyses indicated that nearly all the Thai isolates were highly homogeneous and distinct from the North American/European consensus sequence (subtype B); they belong to subtype E. This is the first report providing biological, serological, and genetic characterization of HIV-1 strains from Thailand. The findings suggest these viruses were recently introduced into the country and that serological evaluation of viral strains needs to be considered along with genetic subtyping when developing an HIV-1 vaccine.

  7. Isolate-Specific Differences in the Conformational Dynamics and Antigenicity of HIV-1 gp120

    PubMed Central

    Davenport, Thaddeus M.; Guttman, Miklos; Guo, Wenjin; Cleveland, Brad; Kahn, Maria; Hu, Shiu-Lok

    2013-01-01

    The HIV-1 envelope glycoprotein (Env) mediates viral entry into host cells and is the sole target of neutralizing antibodies. Much of the sequence diversity in the HIV-1 genome is concentrated within Env, particularly within its gp120 surface subunit. While dramatic functional diversity exists among HIV-1 Env isolates—observable even in the context of monomeric gp120 proteins as differences in antigenicity and immunogenicity—we have little understanding of the structural features that distinguish Env isolates and lead to isolate-specific functional differences, as crystal structures of truncated gp120 “core” proteins from diverse isolates reveal a high level of structural conservation. Because gp120 proteins are used as prospective vaccine immunogens, it is critical to understand the structural factors that influence their reactivity with antibodies. Here, we studied four full-length, glycosylated gp120 monomers from diverse HIV-1 isolates by using small-angle X-ray scattering (SAXS) to probe the overall subunit morphology and hydrogen/deuterium-exchange with mass spectrometry (HDX-MS) to characterize the local structural order of each gp120. We observed that while the overall subunit architecture was similar among isolates by SAXS, dramatic isolate-specific differences in the conformational stability of gp120 were evident by HDX-MS. These differences persisted even with the CD4 receptor bound. Furthermore, surface plasmon resonance (SPR) and enzyme-linked immunosorbance assays (ELISAs) showed that disorder was associated with poorer recognition by antibodies targeting conserved conformational epitopes. These data provide additional insight into the structural determinants of gp120 antigenicity and suggest that conformational dynamics should be considered in the selection and design of optimized Env immunogens. PMID:23903848

  8. Differentiation between human immunodeficiency virus type 1 (HIV-1) and HIV-2 isolates by nonradioisotopic reverse transcriptase-typing assay.

    PubMed Central

    Urabe, T; Sano, K; Nakano, T; Odawara, F; Lee, M H; Otake, T; Okubo, S; Hayami, M; Misaki, H; Baba, M

    1994-01-01

    We tested whether human immunodeficiency virus type 1 (HIV-1) could be differentiated from HIV-2 by a reverse transcriptase (RT)-typing assay that measured the reduction of enzyme activity owing to specific antibody. RT-inhibiting antibody was examined for HIV type specificity by a new nonradioisotopic RT assay. Antibodies from four rabbits immunized with recombinant HIV-1 RT and from 23 HIV-1-seropositive individuals all specifically inhibited the enzyme activities of two HIV-1 strains (LAV-1 and GH-3), three zidovudine-resistant HIV-1 mutants, and a recombinant HIV-1 RT. However, none of these antisera affected the activities of six HIV-2 strains (GH-1, GH-2, GH-4, GH-5, GH-6, LAV-2ROD), Rous-associated virus type 2, and DNA polymerase I from Escherichia coli. In contrast, HIV-2 antibody from a rabbit immunized with disrupted GH-1 virions blocked the enzyme activities of the six HIV-2 strains but not those of the three HIV-1 strains, Rous-associated virus type 2, or DNA polymerase I. These results indicate that the antigenic domains of HIV-1 and HIV-2 RTs recognized by their inhibiting antibodies are distinct from each other and are highly conserved. Clinical HIV isolates from 18 HIV-1-seropositive individuals and 3 HIV-2-seropositive Ghanaian individuals were identified as HIV-1 and HIV-2, respectively, by the nonradioisotopic RT-typing assay. Images PMID:7527425

  9. Cellulose Acetate 1,2-Benzenedicarboxylate Inhibits Infection by Cell-Free and Cell-Associated Primary HIV-1 Isolates

    PubMed Central

    LU, HONG; ZHAO, QIAN; WALLACE, GREG; LIU, SHUWEN; HE, YUXIAN; SHATTOCK, ROBIN; NEURATH, A. ROBERT; JIANG, SHIBO

    2009-01-01

    Cellulose acetate 1,2-benzenedicarboxylate (CAP), a pharmaceutical excipient used for enteric film coating of capsules and tablets, was previously shown to have potent inhibitory activity against infection by human immunodeficiency virus type 1 (HIV-1) T cell line-adapted (TCLA) strains. In the present study, we determined the inhibitory activity of CAP against infection by cell-free and cell-associated primary HIV-1 isolates with distinct genotypes and biotypes in cervical explants, peripheral blood mononuclear cells (PBMCs), monocyte-derived macrophages (MDMs), and CEMx174 5.25M7 cells. CAP blocked infection by cell-free and cell-associated HIV-1 in cervical explants. It inhibited infection by cell-free primary HIV-1 isolates (clades A to G and group O) in PBMCs, MDMs, and CEMx174 5.25M7 cells and blocked transmissions of the cell-associated primary HIV-1 isolates from dendritic cells (DCs) to PBMCs, from MDMs to PBMCs, and from PBMCs to CEMx174 5.25M7 cells. The inhibitory activity of CAP on infection by the cell-free and cell-associated primary HIV-1 isolates is independent of viral subtypes and coreceptor usage. These data suggest that CAP is a good microbicide candidate that can be further developed for preventing sexual transmission of HIV-1. PMID:16706617

  10. HIV-1 sequence variation between isolates from mother-infant transmission pairs

    SciTech Connect

    Wike, C.M.; Daniels, M.R.; Furtado, M.; Wolinsky, M.; Korber, B.; Hutto, C.; Munoz, J.; Parks, W.; Saah, A.

    1991-01-01

    To examine the sequence diversity of human immunodeficiency virus type 1 (HIV-1) between known transmission sets, sequences from the V3 and V4-V5 region of the env gene from 4 mother-infant pairs were analyzed. The mean interpatient sequence variation between isolates from linked mother-infant pairs was comparable to the sequence diversity found between isolates from other close contacts. The mean intrapatient variation was significantly less in the infants' isolates then the isolates from both their mothers and other characterized intrapatient sequence sets. In addition, a distinct and characteristic difference in the glycosylation pattern preceding the V3 loop was found between each linked transmission pair. These findings indicate that selection of specific genotypic variants, which may play a role in some direct transmission sets, and the duration of infection are important factors in the degree of diversity seen between the sequence sets.

  11. HIV-1 sequence variation between isolates from mother-infant transmission pairs

    SciTech Connect

    Wike, C.M.; Daniels, M.R.; Furtado, M.; Wolinsky, M.; Korber, B.; Hutto, C.; Munoz, J.; Parks, W.; Saah, A.

    1991-12-31

    To examine the sequence diversity of human immunodeficiency virus type 1 (HIV-1) between known transmission sets, sequences from the V3 and V4-V5 region of the env gene from 4 mother-infant pairs were analyzed. The mean interpatient sequence variation between isolates from linked mother-infant pairs was comparable to the sequence diversity found between isolates from other close contacts. The mean intrapatient variation was significantly less in the infants` isolates then the isolates from both their mothers and other characterized intrapatient sequence sets. In addition, a distinct and characteristic difference in the glycosylation pattern preceding the V3 loop was found between each linked transmission pair. These findings indicate that selection of specific genotypic variants, which may play a role in some direct transmission sets, and the duration of infection are important factors in the degree of diversity seen between the sequence sets.

  12. Genetic Characterization of a Panel of Diverse HIV-1 Isolates at Seven International Sites

    PubMed Central

    Chen, Yue; Sanchez, Ana M.; Sabino, Ester; Hunt, Gillian; Ledwaba, Johanna; Hackett, John; Swanson, Priscilla; Hewlett, Indira; Ragupathy, Viswanath; Vikram Vemula, Sai; Zeng, Peibin; Tee, Kok-Keng; Chow, Wei Zhen; Ji, Hezhao; Sandstrom, Paul; Denny, Thomas N.; Busch, Michael P.; Gao, Feng

    2016-01-01

    HIV-1 subtypes and drug resistance are routinely tested by many international surveillance groups. However, results from different sites often vary. A systematic comparison of results from multiple sites is needed to determine whether a standardized protocol is required for consistent and accurate data analysis. A panel of well-characterized HIV-1 isolates (N = 50) from the External Quality Assurance Program Oversight Laboratory (EQAPOL) was assembled for evaluation at seven international sites. This virus panel included seven subtypes, six circulating recombinant forms (CRFs), nine unique recombinant forms (URFs) and three group O viruses. Seven viruses contained 10 major drug resistance mutations (DRMs). HIV-1 isolates were prepared at a concentration of 107 copies/ml and compiled into blinded panels. Subtypes and DRMs were determined with partial or full pol gene sequences by conventional Sanger sequencing and/or Next Generation Sequencing (NGS). Subtype and DRM results were reported and decoded for comparison with full-length genome sequences generated by EQAPOL. The partial pol gene was amplified by RT-PCR and sequenced for 89.4%-100% of group M viruses at six sites. Subtyping results of majority of the viruses (83%-97.9%) were correctly determined for the partial pol sequences. All 10 major DRMs in seven isolates were detected at these six sites. The complete pol gene sequence was also obtained by NGS at one site. However, this method missed six group M viruses and sequences contained host chromosome fragments. Three group O viruses were only characterized with additional group O-specific RT-PCR primers employed by one site. These results indicate that PCR protocols and subtyping tools should be standardized to efficiently amplify diverse viruses and more consistently assign virus genotypes, which is critical for accurate global subtype and drug resistance surveillance. Targeted NGS analysis of partial pol sequences can serve as an alternative approach

  13. Genetic Characterization of a Panel of Diverse HIV-1 Isolates at Seven International Sites.

    PubMed

    Hora, Bhavna; Keating, Sheila M; Chen, Yue; Sanchez, Ana M; Sabino, Ester; Hunt, Gillian; Ledwaba, Johanna; Hackett, John; Swanson, Priscilla; Hewlett, Indira; Ragupathy, Viswanath; Vikram Vemula, Sai; Zeng, Peibin; Tee, Kok-Keng; Chow, Wei Zhen; Ji, Hezhao; Sandstrom, Paul; Denny, Thomas N; Busch, Michael P; Gao, Feng

    2016-01-01

    HIV-1 subtypes and drug resistance are routinely tested by many international surveillance groups. However, results from different sites often vary. A systematic comparison of results from multiple sites is needed to determine whether a standardized protocol is required for consistent and accurate data analysis. A panel of well-characterized HIV-1 isolates (N = 50) from the External Quality Assurance Program Oversight Laboratory (EQAPOL) was assembled for evaluation at seven international sites. This virus panel included seven subtypes, six circulating recombinant forms (CRFs), nine unique recombinant forms (URFs) and three group O viruses. Seven viruses contained 10 major drug resistance mutations (DRMs). HIV-1 isolates were prepared at a concentration of 107 copies/ml and compiled into blinded panels. Subtypes and DRMs were determined with partial or full pol gene sequences by conventional Sanger sequencing and/or Next Generation Sequencing (NGS). Subtype and DRM results were reported and decoded for comparison with full-length genome sequences generated by EQAPOL. The partial pol gene was amplified by RT-PCR and sequenced for 89.4%-100% of group M viruses at six sites. Subtyping results of majority of the viruses (83%-97.9%) were correctly determined for the partial pol sequences. All 10 major DRMs in seven isolates were detected at these six sites. The complete pol gene sequence was also obtained by NGS at one site. However, this method missed six group M viruses and sequences contained host chromosome fragments. Three group O viruses were only characterized with additional group O-specific RT-PCR primers employed by one site. These results indicate that PCR protocols and subtyping tools should be standardized to efficiently amplify diverse viruses and more consistently assign virus genotypes, which is critical for accurate global subtype and drug resistance surveillance. Targeted NGS analysis of partial pol sequences can serve as an alternative approach

  14. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    SciTech Connect

    Rosa Borges, Andrew; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne

    2010-12-05

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3'-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC{sub 50}s ranging from 0.1 to 7.4 {mu}g/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. -- Research Highlights: {yields}Multivalent carbohydrates (MVCs) inhibited infection of PBMCs by HIV-1. {yields}MVCs inhibited infection by T cell line-adapted viruses. {yields}MVCs inhibited infection by primary isolates of HIV-1. {yields}MVCs inhibited Env-mediated membrane fusion.

  15. [HIV-1 subtype distribution determined by phylogenetic analysis of pol gene sequences and automated subtyping tools among HIV-1 isolates from the Aegian Region of Turkey].

    PubMed

    Uluer Biçeroğlu, Servet; Altuğlu, Imre; Nazli Zeka, Arzu; Gökengin, Deniz; Yazan Sertöz, Rüçhan

    2014-07-01

    Human immunodeficiency virus (HIV) exhibiting remarkable genetic variability, includes two genotypes namely HIV-1 (group M, N, O and P) and HIV-2 (group A-H). HIV-1 group M, which is mainly the cause of the AIDS pandemic, is divided into nine pure subtypes, more than 45 circulating recombinant forms (CRF) and numerous unique recombinant forms (URF). According to the documents of Turkish Government of Health, among a total of 6802 HIV-positive cases, 1096 of them were defined as AIDS as of June 2013 in Turkey. Although subtype B is the predominant subtype, recent studies indicate higher proportion of CRFs similar to their increasing role in the HIV pandemic. The aim of this study was to determine the subtype distribution of HIV-1 strains isolated from 70 patients (61 male, 9 female; age range: 16-73 yrs, mean age: 39.6 yrs) who presented to our institution between April 2008-June 2013. HIV-1 strains were subtyped by phylogenetic analysis of the pol gene region and commonly used automated subtyping tools namely, Stanford HIV db v6.2.0 and Rega v3.0. Pol sequences retrieved from the Los Alamos database and from GeneBank, were trimmed from full-length genomes. Phylogenetic analysis of the 1302 base pair of the pol gene region was performed using Mega v5.2 software. The sequences were aligned using Muscle and phylogenetic distances between sequences were estimated by using Kimura two-parameter model (transition/transversion ratio: 2.0). Tree topology was obtained using neighbour-joining method and bootstrap value was set at 1000. Sixty-one (87.1%) patients were antiretroviral treatment (ART)-naive and nine were on different ART regimens. The subtypes of the isolates according to phylogenetic analysis were found as follows; 31 (44.2%) subtype B, 24 (34.2%) CRF42_BF, 6 (8.5%) B/CRF02_AG recombinants, 5 (7.1%) sub-subtype A1, 1 (1.4%) sub-subtype F1, 1 (%1.4) CRF 25_cpx, 1 (1.4%) CRF02_AG and 1 (1.4%) CRF01_AE. Rega v3.0 subtyping tool produced five discrepant results (4 B

  16. Close phylogenetic relationship between Angolan and Romanian HIV-1 subtype F1 isolates

    PubMed Central

    Guimarães, Monick L; Vicente, Ana Carolina P; Otsuki, Koko; da Silva, Rosa Ferreira FC; Francisco, Moises; da Silva, Filomena Gomes; Serrano, Ducelina; Morgado, Mariza G; Bello, Gonzalo

    2009-01-01

    Background Here, we investigated the phylogenetic relationships of the HIV-1 subtype F1 circulating in Angola with subtype F1 strains sampled worldwide and reconstructed the evolutionary history of this subtype in Central Africa. Methods Forty-six HIV-1-positive samples were collected in Angola in 2006 and subtyped at the env-gp41 region. Partial env-gp120 and pol-RT sequences and near full-length genomes from those env-gp41 subtype F1 samples were further generated. Phylogenetic analyses of partial and full-length subtype F1 strains isolated worldwide were carried out. The onset date of the subtype F1 epidemic in Central Africa was estimated using a Bayesian Markov chain Monte Carlo approach. Results Nine Angolan samples were classified as subtype F1 based on the analysis of the env-gp41 region. All nine Angolan sequences were also classified as subtype F1 in both env-gp120 and pol-RT genomic regions, and near full-length genome analysis of four of these samples confirmed their classification as "pure" subtype F1. Phylogenetic analyses of subtype F1 strains isolated worldwide revealed that isolates from the Democratic Republic of Congo (DRC) were the earliest branching lineages within the subtype F1 phylogeny. Most strains from Angola segregated in a monophyletic group together with Romanian sequences; whereas South American F1 sequences emerged as an independent cluster. The origin of the subtype F1 epidemic in Central African was estimated at 1958 (1934–1971). Conclusion "Pure" subtype F1 strains are common in Angola and seem to be the result of a single founder event. Subtype F1 sequences from Angola are closely related to those described in Romania, and only distantly related to the subtype F1 lineage circulating in South America. Original diversification of subtype F1 probably occurred within the DRC around the late 1950s. PMID:19386115

  17. Isolation and characterization of a novel neutralizing antibody targeting the CD4-binding site of HIV-1 gp120.

    PubMed

    Qiao, Yuanyuan; Man, Lai; Qiu, Zonglin; Yang, Lingli; Sun, Youxiang; He, Yuxian

    2016-08-01

    Isolation and characterization of novel HIV-1 neutralizing antibodies assists the development of effective AIDS vaccines and immune therapeutics. In this study, we constructed a phage display antibody library by using the PBMC samples of a clade B' HIV-1-infected long-term nonprogressor (LTNP) whose sera exhibited broadly neutralizing activity. A novel human monoclonal antibody (hMAb), termed A16, was identified by panning the library with two clades of HIV-1 Env glycoproteins. We demonstrated that A16 neutralized 32% of 73 tested HIV-1 isolates and it targeted the CD4-binding site (CD4bs) of gp120 with high affinity. By selecting the peptide mimotopes in combination with computational algorithms and site-directed mutagenesis, the epitope of A16 was mapped to the structurally conserved sites located within the β1-α1, loop D, β20-β21 (bridging sheet) and β24-α5 of gp120, which critically determine the CD4 binding and are involved in the epitopes of CD4bs-directed antibodies. Our studies have shed new insights for the immune response of HIV-1 infection and offered a new tool for designing vaccine immunogens and antibody-based immune therapy. PMID:27387828

  18. Cytotoxic, antitopoisomerase IIα, and anti-HIV-1 activities of triterpenoids isolated from leaves and twigs of Gardenia carinata.

    PubMed

    Kongkum, Naowarat; Tuchinda, Patoomratana; Pohmakotr, Manat; Reutrakul, Vichai; Piyachaturawat, Pawinee; Jariyawat, Surawat; Suksen, Kanoknetr; Akkarawongsapat, Radeekorn; Kasisit, Jitra; Napaswad, Chanita

    2013-04-26

    Eight new cycloartane triterpenoids (1-8), named carinatins A-H, and the known compounds secaubryolide (9) and dikamaliartane D (10) were isolated from the leaves and twigs of Gardenia carinata. Their structures were determined on the basis of spectroscopic methods. Cytotoxic, antitopoisomerase IIα, and anti-HIV-1 activities of compounds 1-7, 9, and 10 were investigated.

  19. Rev-RRE Functional Activity Differs Substantially Among Primary HIV-1 Isolates.

    PubMed

    Jackson, Patrick E; Tebit, Denis M; Rekosh, David; Hammarskjold, Marie-Louise

    2016-09-01

    The HIV-1 replication cycle requires the nucleocytoplasmic export of intron-containing viral RNAs, a process that is ordinarily restricted. HIV overcomes this by means of the viral Rev protein, which binds to an RNA secondary structure called the Rev response element (RRE) present in all unspliced or incompletely spliced viral RNA transcripts. The resulting mRNP complex is exported through interaction with cellular factors. The Rev-RRE binding interaction is increasingly understood to display remarkable structural plasticity, but little is known about how Rev-RRE sequence differences affect functional activity. To study this issue, we utilized a lentiviral vector assay in which vector titer is dependent on the activity of selected Rev-RRE pairs. We found that Rev-RRE functional activity varies significantly (up to 24-fold) between naturally occurring viral isolates. The activity differences of the Rev-RRE cognate pairs track closely with Rev, but not with RRE activity. This variation in Rev activity is not correlated with differences in Rev steady state protein levels. These data suggest that Rev sequence differences drive substantial variation in Rev-RRE functional activity between patients. Such variation may play a role in viral adaptation to different immune milieus within and between patients and may be significant in the establishment of latency. The identification of differences in Rev-RRE functional activity in naturally occurring isolates may also permit more efficient production of lentiviral vectors. PMID:27147495

  20. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    SciTech Connect

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-08-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross-resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO-140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo.

  1. Discrepant amplification results during the development of an assay leads to reclassification of two AIDS reagent repository HIV-2 isolates as HIV-1.

    PubMed

    Jagodzinski, Linda L; Liu, Ying; Hack, Holly R; Kibirige, Catherine; Peel, Sheila A; Manak, Mark M

    2014-01-01

    The development and verification of HIV-2 assays depends in part on the availability of well-characterized samples, including those from reagent repositories. During the development of an HIV-2 RNA quantification assay, two HIV-2 viral isolates (CDC 301340 and CDC 301342) obtained from the NIAID AIDS Reagent and Reference Repository were not detected leading to an investigation. Two HIV-2 primers/probe sets of known performance in real-time viral RNA quantification assays, targeting different regions of the virus, also failed to generate RT-PCR products for these two isolates. These isolates were tested in the HIV-1 specific COBAS AmpliPrep/COBAS TaqMan HIV-1 Test v2.0 (Roche Molecular Diagnostics) and were quantified at high copy number. Other HIV-2 isolates tested were not amplified in the COBAS HIV-1 TaqMan assay. Furthermore, the discrepant isolates were highly reactive in an HIV-1 p24 antigen test while the other HIV-2 isolates showed very weak, if any, cross-reactivity with the HIV-1 p24 assay. Phylogenetic tree analysis of sequences from the protease-reverse transcriptase regions of the discrepant HIV-2 isolates mapped with HIV-1 Group M, Subtype CRF02_AG confirming these isolates were of HIV-1 origin and had been misclassified as HIV-2. The use of misclassified isolates in the verification of molecular and immunological assays can lead to misinterpretation of test results, misdirection of efforts into assay redesign and increased development costs. The results of this study were shared with the NIAID AIDS Reagent Program, leading to the reclassification of the two discrepant isolates as HIV-1.

  2. Entry inhibitor-based microbicides are active in vitro against HIV-1 isolates from multiple genetic subtypes

    SciTech Connect

    Ketas, Thomas J.; Schader, Susan M.; Zurita, Juan; Teo, Esther; Polonis, Victoria; Lu Min; Klasse, Per Johan; Moore, John P. . E-mail: jpm2003@med.cornell.edu

    2007-08-01

    Inhibitors of viral entry are under consideration as topical microbicides to prevent HIV-1 sexual transmission. Small molecules targeting HIV-1 gp120 (BMS-378806) or CCR5 (CMPD167), and a peptide fusion inhibitor (C52L), each blocks vaginal infection of macaques by a SHIV. A microbicide, however, must be active against multiple HIV-1 variants. We therefore tested BMS-C (a BMS-378806 derivative), CMPD167, C52L and the CXCR4 ligand AMD3465, alone and in combination, against 25 primary R5, 12 X4 and 7 R5X4 isolates from subtypes A-G. At high concentrations (0.1-1 {mu}M), the replication of most R5 isolates in human donor lymphocytes was inhibited by > 90%. At lower concentrations, double and triple combinations were more effective than individual inhibitors. Similar results were obtained with X4 viruses when AMD3465 was substituted for CMPD167. The R5X4 viruses were inhibited by combining AMD3465 with CMPD167, or by the coreceptor-independent compounds. Thus, combining entry inhibitors may improve microbicide effectiveness.

  3. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca

    PubMed Central

    Behbahani, M.; Sayedipour, S.; Pourazar, A.; Shanehsazzadeh, M.

    2014-01-01

    Previously, we reported that the kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca showed potent anti-HSV activity. In the present study the anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside are investigated at different concentrations (100, 50, 25 and 10 μg/ml) using HIV-1 p24 Antigen kit. Real-time Polymerase chain reaction (RT-PCR) assay was also used for quantification of full range of virus load observed in treated and untreated cells. According to the results of RT- PCR, tested compounds at a concentration of 100 μg/ml exerted potent inhibitory effect. Time of drug addition experiments demonstrated that these compounds exerted their inhibitory effects on the early stage of HIV infection. The results also showed potent anti-HIV-1 reverse transcriptase activity. Antiviral activity of kaempferol-7-O-glucoside was more pronounced than that of kaempferol. These findings demonstrate that kaempferol-7-O-glucoside could be considered as a new potential drug candidate for the treatment of HIV infection which requires further assessments. PMID:26339261

  4. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca.

    PubMed

    Behbahani, M; Sayedipour, S; Pourazar, A; Shanehsazzadeh, M

    2014-01-01

    Previously, we reported that the kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca showed potent anti-HSV activity. In the present study the anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside are investigated at different concentrations (100, 50, 25 and 10 μg/ml) using HIV-1 p24 Antigen kit. Real-time Polymerase chain reaction (RT-PCR) assay was also used for quantification of full range of virus load observed in treated and untreated cells. According to the results of RT- PCR, tested compounds at a concentration of 100 μg/ml exerted potent inhibitory effect. Time of drug addition experiments demonstrated that these compounds exerted their inhibitory effects on the early stage of HIV infection. The results also showed potent anti-HIV-1 reverse transcriptase activity. Antiviral activity of kaempferol-7-O-glucoside was more pronounced than that of kaempferol. These findings demonstrate that kaempferol-7-O-glucoside could be considered as a new potential drug candidate for the treatment of HIV infection which requires further assessments. PMID:26339261

  5. The replicative restriction of lymphocytotropic isolates of HIV-1 in macrophages is overcome by TGF-beta.

    PubMed

    Lazdins, J K; Klimkait, T; Woods-Cook, K; Walker, M; Alteri, E; Cox, D; Cerletti, N; Shipman, R; Bilbe, G; McMaster, G

    1992-04-01

    In vitro exposure of human blood monocyte-derived macrophages to T-cell tropic human immunodeficiency virus (HIV) isolates fails to establish a productive viral infection. Several studies have shown that such preferential HIV-1 replication in T cells or in mononuclear phagocytes (HIV tropism) may be determined by distinct viral characteristics. In the present study it was demonstrated that transforming growth factor-beta (TGF-beta), a factor known to be produced by platelets, macrophages, and other cells present at a wound site, can act as a mediator in overcoming the lymphocytotropic restriction of several well-characterized viral isolates of HIV-1 (i.e., LAV, Z84, pLAI, NY5). Macrophages infected with these isolates show cytopathic changes comparable to those seen upon infection with the monocytotropic isolate ADA. To achieve this effect with TGF-beta, the factor must be present after the infection period. The emerging virus retains its original cellular tropism. Based on these observations the authors propose a role for TGF-beta in the establishment and progression of HIV infection and disease.

  6. Evolution of HIV-1 Isolates that Use a Novel Vif-independent Mechanism to Resist Restriction by Human APOBEC3G

    PubMed Central

    Haché, Guylaine; Shindo, Keisuke; Albin, John S.; Harris, Reuben S.

    2008-01-01

    Summary The human APOBEC3G protein restricts the replication of Vif-deficient HIV-1 by deaminating nascent viral cDNA cytosines to uracils, leading to viral genomic strand G-to-A hypermutations [1–4]. However, the HIV-1 Vif protein triggers APOBEC3G degradation, helping explain why this innate defense does not protect patients [5]. The APOBEC3G-Vif interaction is a promising therapeutic target, but the benefit of enabling HIV-1 restriction in patients is unlikely to be known until Vif antagonists are developed. As a necessary prelude to such studies, cell-based HIV-1 evolution experiments were done to ask whether APOBEC3G can provide a long-term block to Vif-deficient virus replication and, if so, whether HIV-1 variants would emerge that resist restriction. APOBEC3G-expressing T cells were infected with Vif-deficient HIV-1. Virus infectivity was suppressed in 45/48 cultures for over 5 weeks, but replication was eventually detected in 3 cultures. Virus growth characteristics and sequencing demonstrated that these isolates were still Vif-deficient. Rather, these viruses had acquired a promoter mutation and a Vpr null mutation. Resistance occurred by a novel tolerance mechanism in which the resistant viruses packaged less APOBEC3G and accumulated fewer hypermutations. These data support the development of anti-retrovirals that antagonize Vif and thereby enable endogenous APOBEC3G to suppress HIV-1 replication. PMID:18501607

  7. CD4 and MHC class I down-modulation activities of nef alleles from brain- and lymphoid tissue-derived primary HIV-1 isolates

    PubMed Central

    Gray, Lachlan R.; Gabuzda, Dana; Cowley, Daniel; Ellett, Anne; Chiavaroli, Lisa; Wesselingh, Steven L.; Churchill, Melissa J.; Gorry, Paul R.

    2015-01-01

    HIV-1 nef undergoes adaptive evolution in the CNS, reflecting altered requirements for HIV-1 replication in macrophages/microglia and brain-specific immune selection pressures. The role of Nef in HIV-1 neurotropism and the pathogenesis of HIV-associated dementia (HAD) is unclear. In this study, we characterized 82 nef alleles cloned from brain, CSF, spinal cord and blood/lymphoid tissue-derived HIV-1 isolates from 7 subjects with HAD. CNS isolate-derived nef alleles were genetically compartmentalized and had reduced sequence diversity compared to those from lymphoid tissue isolates. Defective nef alleles predominated in a brain-derived isolate from one of the 7 subjects (MACS2-br). The ability of Nef to down-modulate CD4 and MHC class 1 (MHC-1) was generally conserved among nef alleles from both CNS and lymphoid tissues. However, the potency of CD4 and MHC-1 down-modulation was variable, which was associated with sequence alterations known to influence these Nef functions. These results suggest that CD4 and MHC-1 down-modulation are highly conserved functions among nef alleles from CNS- and lymphoid tissue-derived HIV-1 isolates that may contribute to viral replication and escape from immune surveillance in the CNS. PMID:21165790

  8. Accurate quantification of episomal HIV-1 two-long terminal repeat circles by use of optimized DNA isolation and droplet digital PCR.

    PubMed

    Malatinkova, Eva; Kiselinova, Maja; Bonczkowski, Pawel; Trypsteen, Wim; Messiaen, Peter; Vermeire, Jolien; Verhasselt, Bruno; Vervisch, Karen; Vandekerckhove, Linos; De Spiegelaere, Ward

    2015-02-01

    Episomal HIV-1 two-long terminal repeat (2-LTR) circles are considered markers for ongoing viral replication. Two sample processing procedures were compared to accurately quantify 2-LTR in patients by using droplet digital PCR (ddPCR). Here, we show that plasmid isolation with a spiked non-HIV plasmid for normalization enables more accurate 2-LTR quantification than genomic DNA isolation.

  9. Different Pathogenesis of CCR5-Using Primary HIV-1 Isolates from Non-Switch and Switch Virus Patients in Human Lymphoid Tissue Ex Vivo

    NASA Technical Reports Server (NTRS)

    Iarlsson, Ingrid; Grivel, Jean-Charles; Chen. Silvia; Karlsson, Anders; Albert, Jan; Fenyol, Eva Maria; Margolis, Leonid B.

    2005-01-01

    CCR5-utilizing HIV-1 variants (R5) typically transmit infection and dominate its early stages, whereas emergence of CXCR4-using (X4 or R5X4) HIV-1 is often associated with disease progression. However, such a switch in co-receptor usage can only be detected in approximately onehalf of HIV-infected patients (switch virus patients), and progression to immunodeficiency may also occur in patients without detectable switch in co-receptor usage (non-switch virus patients). Here, we used a system of ex vivo-infected tonsillar tissue to compare the pathogenesis of sequential primary R5 HIV-1 isolates from the switch and non-switch patients. Inoculation of ex vivo tissue with these R5 isolates resulted in viral replication and CCR5(+)CD4(+) T cell depletion. The levels of such depletion by HIV-1 isolated from non-switch virus patients were significantly higher than those by R5 HIV-1 isolates from switch virus patients. T cell depletion seemed to be controlled by viral factors and did not significantly vary between tissues from different donors. In contrast, viral replication did not correlate with the switch status of the patients; in tissues fiom different donors it varied 30-fold and seemed to be controlled by a combination of viral and tissue factors. Nevertheless, replication-level hierarchy among sequential isolates remained constant in tissues from various donors. Viral load in vivo was higher in switch virus patients compared to non-switch virus patients. The high cytopathogenicity of CCR5(+)CD4(+) T cells by R5 HIV-1 isolates from non-switch virus patients may explain the steady decline of CD4(+) T cells in the absence of CXCR4 using virus; elimination of target cells by these isolates may limit their own replication in vivo.

  10. Infection of human and non-human cells by a highly fusogenic primary CD4-independent HIV-1 isolate with a truncated envelope cytoplasmic tail

    SciTech Connect

    Saha, Kunal . E-mail: sahak@pediatrics.ohio-state.edu; Yan Hui; Nelson, Julie A.E.; Zerhouni-Layachi, Bouchra

    2005-06-20

    Truncation of the envelope cytoplasmic tail has enabled FIV, SIV, and some laboratory HIV-1 strains to acquire broader cellular tropism and enhanced fusogenicity. Here we have characterized a primary CD4-independent HIV-1 isolate (92UG046-T8) with a truncated cytoplasmic tail that was able to infect and induce syncytia in primary lymphocytes from human, chimpanzee, and monkey, as well as CD4-negative cell lines from human and monkey. Increased syncytia were also noticeable with 293 cells expressing the cloned envelope from the 92UG046-T8 isolate suggesting envelope-mediated cellular fusion. Except pooled serum from HIV-1-infected individuals, monoclonal anti-envelope antibodies or antibodies/antagonists against CD4, CXCR4, and CCR5 were not able to prevent infection by the 92UG046-T8 isolate. This is the first report showing a primary HIV-1 variant with truncated cytoplasmic tail which is highly fusogenic and can infect a broad range of cells from human and non-human origins. In vivo evolution of similar HIV-1 mutants may have important implications in AIDS pathogenesis.

  11. Isolation of HIV-1 RNA from plasma: evaluation of seven different methods for extraction (part two).

    PubMed

    Fransen, K; Mortier, D; Heyndrickx, L; Verhofstede, C; Janssens, W; van der Groen, G

    1998-12-01

    Some new commercial methods for the extraction of viral RNA have been introduced recently. In addition to the study published previously (Verhofstede, C., Reniers, S., Van Wanzeele. F., Plum J., 1996. AIDS 8, 1421-1427), seven different methods (four newly developed and three reference methods) for extraction of HIV-1 RNA from plasma have been evaluated. The RNA preparation method that gave the best results (acceptable reproducibility, highest sensitivity, reasonable price, fast and easy to perform), was the QIAamp Viral RNA kit from QIAgen. The High Pure Viral RNA Kit (Boehringer Mannheim) as well as the non-commercialised extraction kits were also very sensitive. The non-commercial tests seem less suitable for routine use and for the processing of large number of samples. Two methods, RNA Insta-Pure LS (Eurogentec) and PANext RNA extraction kit 1 (NTL, PANsystems GmbH) are not adapted for HIV plasma extraction. The single step methods using glass fibre or silica column are rapid (from 60 to 75 min depending on the number of wash steps) and although the price is high they are cheaper than the Boom extraction methods: High Pure Viral RNA Kit (Boehringer Mannheim) ($3.3/sample), QIAamp Viral RNA Kit (Qiagen) ($3.6/sample), Boom extraction ($5/sample). The Qiagen kit is the only kit that combines sensitivity with reproducibility, it is commercialised, rapid and affordable in price and can be automated. For most of the methods evaluated the inter-test variability was acceptable (mean variation coefficient between duplicate extractions varied between 26.4 and 48.6%).

  12. Natural Stilbenoids Isolated from Grapevine Exhibiting Inhibitory Effects against HIV-1 Integrase and Eukaryote MOS1 Transposase In Vitro Activities

    PubMed Central

    Chaignepain, Stéphane; Subra, Frederic; Munir, Soundasse; Delelis, Olivier; Lesbats, Paul; Calmels, Christina; Andreola, Marie-Line; Merillon, Jean-Michel; Auge-Gouillou, Corinne; Parissi, Vincent

    2013-01-01

    Polynucleotidyl transferases are enzymes involved in several DNA mobility mechanisms in prokaryotes and eukaryotes. Some of them such as retroviral integrases are crucial for pathogenous processes and are therefore good candidates for therapeutic approaches. To identify new therapeutic compounds and new tools for investigating the common functional features of these proteins, we addressed the inhibition properties of natural stilbenoids deriving from resveratrol on two models: the HIV-1 integrase and the eukaryote MOS-1 transposase. Two resveratrol dimers, leachianol F and G, were isolated for the first time in Vitis along with fourteen known stilbenoids: E-resveratrol, E-piceid, E-pterostilbene, E-piceatannol, (+)-E-ε-viniferin, E-ε-viniferinglucoside, E-scirpusin A, quadragularin A, ampelopsin A, pallidol, E-miyabenol C, E-vitisin B, hopeaphenol, and isohopeaphenol and were purified from stalks of Vitis vinifera (Vitaceae), and moracin M from stem bark of Milliciaexelsa (Moraceae). These compounds were tested in in vitro and in vivo assays reproducing the activity of both enzymes. Several molecules presented significant inhibition on both systems. Some of the molecules were found to be active against both proteins while others were specific for one of the two models. Comparison of the differential effects of the molecules suggested that the compounds could target specific intermediate nucleocomplexes of the reactions. Additionally E-pterostilbene was found active on the early lentiviral replication steps in lentiviruses transduced cells. Consequently, in addition to representing new original lead compounds for further modelling of new active agents against HIV-1 integrase, these molecules could be good tools for identifying such reaction intermediates in DNA mobility processes. PMID:24312275

  13. Accurate Quantification of Episomal HIV-1 Two-Long Terminal Repeat Circles by Use of Optimized DNA Isolation and Droplet Digital PCR

    PubMed Central

    Malatinkova, Eva; Kiselinova, Maja; Bonczkowski, Pawel; Trypsteen, Wim; Messiaen, Peter; Vermeire, Jolien; Verhasselt, Bruno; Vervisch, Karen; De Spiegelaere, Ward

    2014-01-01

    Episomal HIV-1 two-long terminal repeat (2-LTR) circles are considered markers for ongoing viral replication. Two sample processing procedures were compared to accurately quantify 2-LTR in patients by using droplet digital PCR (ddPCR). Here, we show that plasmid isolation with a spiked non-HIV plasmid for normalization enables more accurate 2-LTR quantification than genomic DNA isolation. PMID:25502524

  14. Comparative evaluation of trimeric envelope glycoproteins derived from subtype C and B HIV-1 R5 isolates.

    PubMed

    Srivastava, Indresh K; Kan, Elaine; Sun, Yide; Sharma, Victoria A; Cisto, Jimna; Burke, Brian; Lian, Ying; Hilt, Susan; Biron, Zohar; Hartog, Karin; Stamatatos, Leonidas; Diaz-Avalos, Ruben; Cheng, R Holland; Ulmer, Jeffrey B; Barnett, Susan W

    2008-03-15

    We previously reported that an envelope (Env) glycoprotein immunogen (o-gp140DeltaV2SF162) containing a partial deletion in the second variable loop (V2) derived from the R5-tropic HIV-1 isolate SF162 partially protected vaccinated rhesus macaques against pathogenic SHIV(SF162P4) virus. Extending our studies to subtype C isolate TV1, we have purified o-gp140DeltaV2TV1 (subtype C DeltaV2 trimer) to homogeneity, performed glycosylation analysis, and determined its ability to bind CD4, as well as a panel of well-characterized neutralizing monoclonal antibodies (mAb). In general, critical epitopes are preserved on the subtype C DeltaV2 trimer; however, we did not observe significant binding for the b12 mAb. The molecular mass of subtype C DeltaV2 trimer was found to be 450 kDa, and the hydrodynamic radius was found to be 10.87 nm. Our data suggest that subtype C DeltaV2 trimer binds to CD4 with an affinity comparable to o-gp140DeltaV2SF162 (subtype B DeltaV2 trimer). Using isothermal titration calorimetric (ITC) analysis, we demonstrated that all three CD4 binding sites (CD4-BS) in both subtype C and B trimers are exposed and accessible. However, compared to subtype B trimer, the three CD4-BS in subtype C trimer have different affinities for CD4, suggesting a cooperativity of CD4 binding in subtype C trimer but not in subtype B trimer. Negative staining electron microscopy of the subtype C DeltaV2 trimer has demonstrated that it is in fact a trimer. These results highlight the importance of studying subtype C Env, and also of developing appropriate subtype C-specific reagents that may be used for better immunological characterization of subtype C Env for developing an AIDS vaccine.

  15. Comparative evaluation of trimeric envelope glycoproteins derived from subtype C and B HIV-1 R5 isolates

    SciTech Connect

    Srivastava, Indresh K. Kan, Elaine; Sun Yide; Sharma, Victoria A.; Cisto, Jimna; Burke, Brian; Lian Ying; Hilt, Susan; Biron, Zohar; Hartog, Karin; Stamatatos, Leonidas; Cheng, R. Holland; Ulmer, Jeffrey B.; Barnett, Susan W.

    2008-03-15

    We previously reported that an envelope (Env) glycoprotein immunogen (o-gp140{delta}V2SF162) containing a partial deletion in the second variable loop (V2) derived from the R5-tropic HIV-1 isolate SF162 partially protected vaccinated rhesus macaques against pathogenic SHIV{sub SF162P4} virus. Extending our studies to subtype C isolate TV1, we have purified o-gp140{delta}V2TV1 (subtype C {delta}V2 trimer) to homogeneity, performed glycosylation analysis, and determined its ability to bind CD4, as well as a panel of well-characterized neutralizing monoclonal antibodies (mAb). In general, critical epitopes are preserved on the subtype C {delta}V2 trimer; however, we did not observe significant binding for the b12 mAb. The molecular mass of subtype C {delta}V2 trimer was found to be 450 kDa, and the hydrodynamic radius was found to be 10.87 nm. Our data suggest that subtype C {delta}V2 trimer binds to CD4 with an affinity comparable to o-gp140{delta}V2SF162 (subtype B {delta}V2 trimer). Using isothermal titration calorimetric (ITC) analysis, we demonstrated that all three CD4 binding sites (CD4-BS) in both subtype C and B trimers are exposed and accessible. However, compared to subtype B trimer, the three CD4-BS in subtype C trimer have different affinities for CD4, suggesting a cooperativity of CD4 binding in subtype C trimer but not in subtype B trimer. Negative staining electron microscopy of the subtype C {delta}V2 trimer has demonstrated that it is in fact a trimer. These results highlight the importance of studying subtype C Env, and also of developing appropriate subtype C-specific reagents that may be used for better immunological characterization of subtype C Env for developing an AIDS vaccine.

  16. Isolation of Cognate Cellular and Viral Ribonucleoprotein Complexes of HIV-1 RNA Applicable to Proteomic Discovery and Molecular Investigations.

    PubMed

    Singh, Deepali; Boeras, Ioana; Singh, Gatikrushna; Boris-Lawrie, Kathleen

    2016-01-01

    All decisions affecting the life cycle of human immunodeficiency virus (HIV-1) RNA are executed by ribonucleoprotein complexes (RNPs). HIV-1 RNA cycles through a progression of host RNPs composed of RNA-binding proteins regulating all stages of synthesis, processing, nuclear transport, translation, decay, and co-localization with assembling virions. RNA affinity chromatography is a versatile method to identify RNA-binding proteins to investigate the molecular basis of viral and cellular posttranscriptional control of gene expression. The bait is a HIV-1 RNA motif immobilized on a solid support, typically magnetic or Sepharose beads. The prey is pre-formed RNPs admixed in lysate from cells or concentrated virus particles. The methodology distinguishes high-affinity RNA-protein interactions from low-affinity complexes by increases in ionic strength during progressive elution cycles. Here, we describe RNA affinity chromatography of the 5' untranslated region of HIV-1, obtaining mixtures of high-affinity RNA binding proteins suitable for mass spectrometry and proteome identification.

  17. Prevalence, Risk Factors, and Impact of Isolated Antibody to Hepatitis B Core Antigen and Occult Hepatitis B Virus Infection in HIV-1–Infected Pregnant Women

    PubMed Central

    Khamduang, Woottichai; Ngo-Giang-Huong, Nicole; Gaudy-Graffin, Catherine; Jourdain, Gonzague; Suwankornsakul, Weerapong; Jarupanich, Tapnarong; Chalermpolprapa, Veeradate; Nanta, Sirisak; Puarattana-aroonkorn, Noossara; Tonmat, Sakchai; Lallemant, Marc; Goudeau, Alain; Sirirungsi, Wasna

    2013-01-01

    Background. Prevalence and risk factors for isolated antibody to hepatitis B core antigen (anti-HBc) and occult hepatitis B virus (HBV) infection are not well known in human immunodeficiency virus type 1 (HIV-1)–infected pregnant women. It is unclear if women with occult infections are at risk of transmitting HBV to their infants. Methods. HIV-1–infected and HBV surface antigen (HBsAg)–negative pregnant women were tested for antibody to HBsAg (anti-HBs) and anti-HBc using enzyme immunoassay. Women with isolated anti-HBc were assessed for occult HBV infection, defined as HBV DNA levels >15 IU/mL, using the Abbott RealTime HBV DNA assay. Infants born to women with isolated anti-HBc and detectable HBV DNA were tested at 4 months of age for HBV DNA. Logistic regression analysis was used to identify factors associated with isolated anti-HBc and occult HBV infection. Results. Among 1812 HIV-infected pregnant women, 1682 were HBsAg negative. Fourteen percent (95% confidence interval [CI], 12%–15%) of HBsAg-negative women had an isolated anti-HBc that was independently associated with low CD4 count, age >35 years, birth in northern Thailand, and positive anti–hepatitis C virus serology. Occult HBV infection was identified in 24% (95% CI, 18%–30%) of women with isolated anti-HBc, representing 2.6% (95% CI, 1.9%–3.5%) of HIV-1–infected pregnant women, and was inversely associated with HIV RNA levels. None of the women with isolated anti-HBc and occult HBV infection transmitted HBV to their infants. Conclusions. HIV-1–infected pregnant women with isolated anti-HBc and occult HBV infection have very low HBV DNA levels and are thus at very low risk to transmit HBV to their infants. PMID:23487379

  18. (Alkylamino) piperidine bis(heteroaryl)piperizine analogs are potent, broad-spectrum nonnucleoside reverse transcriptase inhibitors of drug-resistant isolates of human immunodeficiency virus type 1 (HIV-1) and select for drug-resistant variants of HIV-1IIIB with reduced replication phenotypes.

    PubMed Central

    Olmsted, R A; Slade, D E; Kopta, L A; Poppe, S M; Poel, T J; Newport, S W; Rank, K B; Biles, C; Morge, R A; Dueweke, T J; Yagi, Y; Romero, D L; Thomas, R C; Sharma, S K; Tarpley, W G

    1996-01-01

    The (alkylamino)piperidine bis(heteroaryl)piperizines (AAP-BHAPs) are a new class of human immunodeficiency virus type 1 (HIV-1)-specific inhibitors which were identified by targeted screening of recombinant reverse transcriptase (RT) enzymes carrying key nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance-conferring mutations and NNRTI-resistant variants of HIV-1. Phenotypic profiling of the two most potent AAP-BHAPs, U-95133 and U-104489, against in vitro-selected drug-resistant HIV-1 variants carrying the NNRTI resistance-conferring mutation (Tyr->Cys) at position 181 of the HIV-1 RT revealed submicromolar 90% inhibitory concentration estimates for these compounds. Moreover, U-104489 demonstrated potent activity against BHA-P-resistant HIV-1MF harboring the Pro-236->Leu RT substitution and significantly suppressed the replication of clinical isolates of HIV-1 resistant to both delavirdine (BHAP U-90152T) and zidovudine. Biochemical and phenotypic characterization of AAP-BHAPresistant HIV-1IIIB variants revealed that high-level resistance to the AAP-BHAPs was mediated by a Gly-190->Glu substitution in RT, which had a deleterious effect on the integrity and enzymatic activity of virion-associated RT heterodimers, as well as the replication capacity of these resistant viruses. PMID:8648704

  19. Lysine directed cross-linking of viral DNA-RNA:DNA hybrid substrate to the isolated RNase H domain of HIV-1 reverse transcriptase.

    PubMed

    Guaitiao, Juan P; Zúñiga, Roberto A; Roth, Monica J; Leon, Oscar

    2004-02-10

    An isolated ribonuclease H domain of HIV-1 reverse transcriptase is capable of specifically removing the tRNA primer within an oligonucleotide mimic. The determinants for substrate specificity are located in a region within the terminal octanucleotide of the acceptor stem of the tRNA. Recognition of the substrate by HIV-1 RNase H was analyzed by the introduction of a cross-linking reagent directed toward lysines on the thymine residue complementary to the scissile bond, facing the major groove of the DNA-RNA:DNA substrate. Cross-linking of the modified substrate to RNase H required the presence of Mn(2+). The Mn(2+) titration of cross-linking paralleled the Mn(2+) requirement for activity. Modified substrate quenched with glycine prior to binding of substrate was efficiently cleaved, whereas the RNA within the cross-linked product was intact. Tryptic digestion of the isolated RNase H-nucleic acid covalent complex revealed a main cross-linked peptide whose N-terminal peptide sequence is VVTLTDTTNQ, indicating that the cross-linked lysine corresponds to Lys476. Cross-linking to K476 was confirmed by analysis of K476C RNase H. Mutation of K476C disrupted the chemical cross-linking while maintaining activity. On the basis of the size of the cross-linker arm, the results indicate that K476 is in closer proximity to the tRNA mimic substrate within the isolated RNase H domain than observed for the RNase H-resistant polypurine tract (PPT) substrate within the HIV-1 RT.

  20. Construction and Characterization of Highly Infectious Full-Length Molecular Clones of a HIV-1 CRF07_BC Isolate from Xinjiang, China

    PubMed Central

    Wang, Zheng; Hong, Kunxue; Zhang, Jing; Zhang, Lei; Li, Dan; Ren, Li; Liang, Hua; Shao, Yiming

    2013-01-01

    Among the various subtypes of the M group of human immunodeficiency virus type 1 (HIV-1), clade CRF07_BC is the most prevalent in China. To date, no strong replicable CRF07_BC infectious clone has been constructed. Here we report on the construction and characterization of highly replicable infectious molecular clones from the isolate XJDC6291 of this HIV-1 subtype. Four full-length clones pXJDC2-7, pXJDC3-7, pXJDC2-6 and pXJDC3-6 were successfully produced, but only pXJDC2-7 presented detectable infectivity and replication capability. To improve the replication capability of pXJDC2-7, a 4.8 kb region spanning from the pol Integrase to nef gene of the clone was replaced by PCR products of the corresponding fragments from the original isolate XJDC6291, which produced two clones pXJDC13 and pXJDC17 that exhibited strong replication capability. The viral stocks obtained by pXJDC-13 and pXJDC-17 transfection into 293T cells replicated efficiently in human PBMCs, human primary CD4+ T cells and displayed CCR5 tropism. Sequence alignment between pXJDC13, pXJDC17 and pXJDC2-7 suggested that polymorphisms in the V1V2 region may influence infectivity, and reverse genetic experiment showed that V1V2 polymorphisms may influence the infectivity of the clones but did not affect the replication capability at a significant level. pXJDC13 and pXJDC17 displayed strong replication capability and are the first full-length infectious clones of HIV-1 CRF07_BC clade in the world. The availability of CRF07_BC infectious clones provides a useful tool for a wide range of studies, including antiretroviral drug and vaccine research as related to this HIV subtype. PMID:24324545

  1. Structural analysis of the unmutated ancestor of the HIV-1 envelope V2 region antibody CH58 isolated from an RV144 vaccine efficacy trial vaccinee☆

    PubMed Central

    Nicely, Nathan I.; Wiehe, Kevin; Kepler, Thomas B.; Jaeger, Frederick H.; Dennison, S. Moses; Rerks-Ngarm, Supachai; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Robb, Merlin L.; O'Connell, Robert J.; Michael, Nelson L.; Kim, Jerome H.; Liao, Hua-Xin; Munir Alam, S.; Hwang, Kwan-Ki; Bonsignori, Mattia; Haynes, Barton F.

    2015-01-01

    Human monoclonal antibody CH58 isolated from an RV144 vaccinee binds at Lys169 of the HIV-1 Env gp120 V2 region, a site of vaccine-induced immune pressure. CH58 neutralizes HIV-1 CRF_01 AE strain 92TH023 and mediates ADCC against CD4 + T cell targets infected with CRF_01 AE tier 2 virus. CH58 and other antibodies that bind to a gp120 V2 epitope have a second light chain complementarity determining region (LCDR2) bearing a glutamic acid, aspartic acid (ED) motif involved in forming salt bridges with polar, basic side amino acid side chains in V2. In an effort to learn how V2 responses develop, we determined the crystal structures of the CH58-UA antibody unliganded and bound to V2 peptide. The structures showed an LCDR2 structurally pre-conformed from germline to interact with V2 residue Lys169. LCDR3 was subject to conformational selection through the affinity maturation process. Kinetic analyses demonstrate that only a few contacts were responsible for a 2000-fold increase in KD through maturation, and this effect was predominantly due to an improvement in off-rate. This study shows that preconformation and preconfiguration can work in concert to produce antibodies with desired immunogenic properties. PMID:26288844

  2. UV and X-ray structural studies of a 101-residue long Tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate.

    PubMed

    Foucault, Marine; Mayol, Katia; Receveur-Bréchot, Véronique; Bussat, Marie-Claire; Klinguer-Hamour, Christine; Verrier, Bernard; Beck, Alain; Haser, Richard; Gouet, Patrice; Guillon, Christophe

    2010-05-01

    The 101-residue long Tat protein of primary isolate 133 of the human immunodeficiency virus type 1 (HIV-1), wt-Tat(133) displays a high transactivation activity in vitro, whereas the mutant thereof, STLA-Tat(133), a vaccine candidate for HIV-1, has none. These two proteins were chemically synthesized and their biological activity was validated. Their structural properties were characterized using circular dichroism (CD), fluorescence emission, gel filtration, dynamic light scattering, and small angle X-ray scattering (SAXS) techniques. SAXS studies revealed that both proteins were extended and belong to the family of intrinsically unstructured proteins. CD measurements showed that wt-Tat(133) or STLA-Tat(133) underwent limited structural rearrangements when complexed with specific fragments of antibodies. Crystallization trials have been performed on the two forms, assuming that the Tat(133) proteins might have a better propensity to fold in supersaturated conditions, and small crystals have been obtained. These results suggest that biologically active Tat protein is natively unfolded and requires only a limited gain of structure for its function.

  3. Structural analysis of the unmutated ancestor of the HIV-1 envelope V2 region antibody CH58 isolated from an RV144 vaccine efficacy trial vaccinee.

    PubMed

    Nicely, Nathan I; Wiehe, Kevin; Kepler, Thomas B; Jaeger, Frederick H; Dennison, S Moses; Rerks-Ngarm, Supachai; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Robb, Merlin L; O'Connell, Robert J; Michael, Nelson L; Kim, Jerome H; Liao, Hua-Xin; Munir Alam, S; Hwang, Kwan-Ki; Bonsignori, Mattia; Haynes, Barton F

    2015-07-01

    Human monoclonal antibody CH58 isolated from an RV144 vaccinee binds at Lys169 of the HIV-1 Env gp120 V2 region, a site of vaccine-induced immune pressure. CH58 neutralizes HIV-1 CRF_01 AE strain 92TH023 and mediates ADCC against CD4 + T cell targets infected with CRF_01 AE tier 2 virus. CH58 and other antibodies that bind to a gp120 V2 epitope have a second light chain complementarity determining region (LCDR2) bearing a glutamic acid, aspartic acid (ED) motif involved in forming salt bridges with polar, basic side amino acid side chains in V2. In an effort to learn how V2 responses develop, we determined the crystal structures of the CH58-UA antibody unliganded and bound to V2 peptide. The structures showed an LCDR2 structurally pre-conformed from germline to interact with V2 residue Lys169. LCDR3 was subject to conformational selection through the affinity maturation process. Kinetic analyses demonstrate that only a few contacts were responsible for a 2000-fold increase in KD through maturation, and this effect was predominantly due to an improvement in off-rate. This study shows that preconformation and preconfiguration can work in concert to produce antibodies with desired immunogenic properties. PMID:26288844

  4. Psychoneuroimmunology and HIV-1.

    ERIC Educational Resources Information Center

    Antoni, Michael H.; And Others

    1990-01-01

    Presents evidence describing benefits of behavioral interventions such as aerobic exercise training on both psychological and immunological functioning among high risk human immunodeficiency virus-Type 1 (HIV-1) seronegative and very early stage seropositive homosexual men. HIV-1 infection is cast as chronic disease for which early…

  5. Isolation, propagation, and HIV-1 infection of monocyte-derived macrophages and recovery of virus from brain and cerebrospinal fluid.

    PubMed

    Gorantla, Santhi; Che, Myhanh; Gendelman, Howard E

    2005-01-01

    Mononuclear phagocytes (MP: monocytes, dendritic cells, and tissue macrophages) are host cells for the human immunodeficiency viruses types 1 and 2. MPs are both the first lines of defense and vehicles for viral dissemination in the infected human host. Viral infection of MP can affect the disease directly during interstitial pneumonitis and HIV encephalitis. Both revolve around MP secretions of immune regulatory and neurotoxic factors. Clearly, laboratory models that mimic disease need to include primary human MP infected with viral isolates obtained from diseased tissues. Over the past two decades our laboratory has developed state-of-the-art methods for isolation and propagation of monocytes from peripheral blood. This technology directly supports work at the University of Nebraska Medical Center as well as research performed throughout the United States, including the laboratories of Drs. Mario Stevenson, William Tyor, David Volsky, Loyda Melendez, and Mary-Jane Potash, among others. The importance of these cells as targets for virus and reservoirs of persistent infection are discussed.

  6. Determining the invariant structure elements of the HIV-1 variable V3 loops: insight into the HIV-MN and HIV-Haiti isolates.

    PubMed

    Andrianov, Alexander M

    2008-10-01

    The computer approaches that combined the 3D protein structure modeling with the mathematical statistics methods were used to compute the NMR-based 3D structures of the HIV-1 gp120 V3 loop for the HIV-MN and HIV-Haiti isolates in water as well as to compare their conformational characteristics with the purpose of determining the structure elements common for the two virus modifications. As a result, the variability of the amino acid sequence was found to stimulate the considerable structural rearrangements of the V3 loop. However, despite this fact, one functionally crucial stretch of V3 and a greater portion of its residues were shown to preserve the conformations in the viral strains of interest. To reveal the structural motifs and individual amino acids giving rise to the close conformations in the HIV-MN and HIV-Haiti V3 loops regardless of the sequence and environment variability, the simulated structures were collated with those deciphered previously in terms of NMR data in a water/trifluoroethanol mixed solvent. The structure elements and single residues of V3 residing in its biologically significant sites and keeping the conformations in all of the cases at question are considered to be the promising targets for anti-AIDS drugs studies. In this context, the structurally inflexible motifs of V3 presenting the weak units in the virus protection system may be utilized as the most convenient landing-places for molecular docking of the V3 loop and ligand structures followed by selecting chemical compounds suitable as a basis for the design of safe and effective antiviral agents. PMID:18597546

  7. Envelope gene evolution and HIV-1 neuropathogenesis

    PubMed Central

    Vázquez-Santiago, Fabián J.; Rivera-Amill, Vanessa

    2016-01-01

    In the era of combined antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) account for 40 to 56% of all HIV+ cases. During the acute stage of HIV-1 infection (<6 months), the virus invades and replicates within the central nervous system (CNS). Compared to peripheral tissues, the local CNS cell population expresses distinct levels of chemokine receptors, which levels exert selective pressure on the invading virus. HIV-1 envelope (env) sequences recovered from the brains and cerebrospinal fluid (CSF) of neurocognitively impaired HIV+ subjects often display higher nucleotide variability as compared to non-impaired HIV+ subjects. Specifically, env evolution provides HIV-1 with the strategies to evade host immune response, to reduce chemokine receptor dependence, to increase co-receptor binding efficiency, and to potentiate neurotoxicity. The evolution of env within the CNS leads to changes that may result in the emergence of novel isolates with neurotoxic and neurovirulent features. However, whether specific factors of HIV-1 evolution lead to the emergence of neurovirulent and neurotropic isolates remains ill-defined. HIV-1 env evolution is an ongoing phenomenon that occurs independently of neurological and neurocognitive disease severity; thus HIV env evolution may play a pivotal and reciprocal role in the etiology of HAND. Despite the use of cART, the reactivation of latent viral reservoirs represents a clinical challenge because of the replenishment of the viral pool that may subsequently lead to persistent infection. Therefore, gaining a more complete understanding of how HIV-1 env evolves over the course of the disease should be considered for the development of future therapies aimed at controlling CNS burden, diminishing persistent viremia, and eradicating viral reservoirs. Here we review the current literature on the role of HIV-1 env evolution in the setting of HAND disease progression and on the impact of cART on the dynamics of

  8. Microvirin, a Novel α(1,2)-Mannose-specific Lectin Isolated from Microcystis aeruginosa, Has Anti-HIV-1 Activity Comparable with That of Cyanovirin-N but a Much Higher Safety Profile*

    PubMed Central

    Huskens, Dana; Férir, Geoffrey; Vermeire, Kurt; Kehr, Jan-Christoph; Balzarini, Jan; Dittmann, Elke; Schols, Dominique

    2010-01-01

    Microvirin (MVN), a recently isolated lectin from the cyanobacterium Microcystis aeruginosa PCC7806, shares 33% identity with the potent anti-human immunodeficiency virus (HIV) protein cyanovirin-N (CV-N) isolated from Nostoc ellipsosporum, and both lectins bind to similar carbohydrate structures. MVN is able to inhibit infection by a wide variety of HIV-1 laboratory-adapted strains and clinical isolates of different tropisms and subtypes in peripheral blood mononuclear cells. MVN also inhibits syncytium formation between persistently HIV-1-infected T cells and uninfected CD4+ T cells and inhibits DC-SIGN-mediated HIV-1 binding and transmission to CD4+ T cells. Long term passaging of HIV-1 exposed to dose-escalating concentrations of MVN resulted in the selection of a mutant virus with four deleted high mannose-type glycans in the envelope gp120. The MVN-resistant virus was still highly sensitive to various other carbohydrate binding lectins (e.g. CV-N, HHA, GNA, and UDA) but not anymore to the carbohydrate-specific 2G12 monoclonal antibody. Importantly, MVN is more than 50-fold less cytotoxic than CV-N. Also in sharp contrast to CV-N, MVN did not increase the level of the activation markers CD25, CD69, and HLA-DR in CD4+ T lymphocytes, and subsequently, MVN did not enhance viral replication in pretreated peripheral blood mononuclear cells. Therefore, MVN may qualify as a useful lectin for potential microbicidal use based on its broad and potent antiviral activity and virtual lack of any stimulatory properties and cellular toxicity. PMID:20507987

  9. HIV-1 infection in Juba, southern Sudan.

    PubMed

    McCarthy, M C; Khalid, I O; El Tigani, A

    1995-05-01

    Thirty years of civil war in the Sudan have resulted in the isolation of the southern provinces which border Central and East Africa. Consequently, little is known about the epidemiology of HIV-1 infection in this region. To estimate the prevalence of HIV-1 infection in southern Sudan and the risk factors associated with disease transmission, a seroepidemiologic survey was conducted in the township of Juba. Study subjects invited to participate in this study included medical outpatients, inpatients hospitalized for active tuberculosis, and female prostitutes. A total of 401 subjects participated in the study. HIV-1 infection was confirmed in 25 subjects. The prevalence of HIV-1 infection was 19% (8/42) among tuberculosis patients, 16% (8/50) among prostitutes, and 3% (9/309) among outpatients. A significantly higher prevalence of HIV-1 infection was found among female prostitutes when compared to female outpatients: 16% (8/50) vs. 2% (4/178), P < 0.001. Correspondingly, the prevalence of seropositives was significantly higher among male outpatients reporting a history of sexual relations with prostitutes during the prior 10 years compared to male outpatients denying relations with prostitutes: 14% (5/37) vs. 0% (0/94), P = 0.0011. A history of a sexually transmitted disease (STD) was also associated with HIV-1 infection among male outpatients. The findings of this study indicate that HIV-1 infection is highly prevalent in southern Sudan and that prostitutes and their sexual partners represent a major reservoir of HIV infection in this population. This epidemiologic pattern resembles that seen in the African nations neighboring southern Sudan.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. [A new unique HIV-1 recombinant form detected in Belarus].

    PubMed

    Eremin, V F; Gasich, E L; Sosinovich, S V

    2012-01-01

    Republican Research-and-Practical Center for Epidemiology and Microbiology, Ministry of Health of Belarus, Minsk The paper presents data on the molecular genetic characteristics of a new HIV-1 recombinant form. The study has shown that the virus is referred to as HIV-1 subtype B in terms of the gag gene and HIV-1 subtype A in terms of the pol and env genes. At the same time the new isolate is closer, in terms of the gag gene, to the HIV-1 DQ207943 strain isolated in Georgia, in terms of the pol gene, to the HIV-1 AF413987.1 strain isolated in Ukraine and, in terms of the env gene to the HIV-1 AY500393 strain isolated in Russia. Thus, the described new HIV-1 recombinant form has the following structure: BgagApolAenv. The gag, pol, and env gene sequences from the new unique HIV-1 recombinant form have been registered in the international database EMBL/Genbank/DDBJ under accession numbers FR775442.1, FN995656.1, and FR775443.1.

  11. Neutralization of diverse HIV-1 strains by monoclonal antibodies raised against a gp41 synthetic peptide.

    PubMed

    Dalgleish, A G; Chanh, T C; Kennedy, R C; Kanda, P; Clapham, P R; Weiss, R A

    1988-07-01

    Three IgM monoclonal antibodies raised against synthetic peptide analogs of a hydrophilic region of the gp41 transmembrane env protein of HIV-1 neutralize different HIV-1 isolates but not HIV-2 isolates, as determined by HIV titration and by syncytial inhibition assays. VSV (HIV-1) pseudotypes, however, were not neutralized, indicating that gp41 was not accessible to these antibodies on the pseudotype particles. The antibodies affect early steps in adsorption and penetration of HIV-1.

  12. Isolation of the human PC6 gene encoding the putative host protease for HIV-1 gp160 processing in CD4+ T lymphocytes.

    PubMed Central

    Miranda, L; Wolf, J; Pichuantes, S; Duke, R; Franzusoff, A

    1996-01-01

    Production of infectious HIV-1 virions is dependent on the processing of envelope glycoprotein gp160 by a host cell protease. The protease in human CD4+ T lymphocytes has not been unequivocally identified, yet members of the family of mammalian subtilisin-like protein convertases (SPCs), which are soluble or membrane-bound proteases of the secretory pathway, best fulfill the criteria. These proteases are required for proprotein maturation and cleave at paired basic amino acid motifs in numerous cellular and viral glycoprotein precursors, both in vivo and in vitro. To identify the gp160 processing protease, we have used reverse transcription-PCR and Northern blot analyses to ascertain the spectrum of SPC proteases in human CD4+ T cells. We have cloned novel members of the SPC family, known as the human PC6 genes. Two isoforms of the hPC6 protease are expressed in human T cells, hPC6A and the larger hPC6B. The patterns of SPC gene expression in human T cells has been compared with the furin-defective LoVo cell line, both of which are competent in the production of infectious HIV virions. This comparison led to the conclusion that the hPC6 gene products are the most likely candidates for the host cell protease responsible for HIV-1 gp160 processing in human CD4+ T cells. Images Fig. 1 Fig. 3 PMID:8755538

  13. Cross-resistance profile determination of two second-generation HIV-1 integrase inhibitors using a panel of recombinant viruses derived from raltegravir-treated clinical isolates.

    PubMed

    Van Wesenbeeck, L; Rondelez, E; Feyaerts, M; Verheyen, A; Van der Borght, K; Smits, V; Cleybergh, C; De Wolf, H; Van Baelen, K; Stuyver, L J

    2011-01-01

    The integrase inhibitor raltegravir (RAL) is currently used for the treatment of both treatment-naïve and treatment-experienced HIV-1-infected patients. Elvitegravir (EVG) is in late phases of clinical development. Since significant cross-resistance between RAL and EVG is observed, there is a need for second-generation integrase inhibitors (INIs) with a higher genetic barrier and limited cross-resistance to RAL/EVG. A panel of HIV-1 integrase recombinants, derived from plasma samples from raltegravir-treated patients (baseline and follow-up samples), were used to study the cross-resistance profile of two second-generation integrase inhibitors, MK-2048 and compound G. Samples with Q148H/R mutations had elevated fold change values with all compounds tested. Although samples with the Y143R/C mutation had reduced susceptibility to RAL, they remained susceptible to MK-2048 and compound G. Samples with the N155H mutation had no reduced susceptibility to compound G. In conclusion, our results allowed ranking of the INIs on the basis of the antiviral activities using recombinant virus stocks from RAL-treated patient viruses. The order according to decreasing susceptibility is compound G, MK-2048, and EVG.

  14. Pre-incubation of cell-free HIV-1 group M isolates with non-nucleoside reverse transcriptase inhibitors blocks subsequent viral replication in co-cultures of dendritic cells and T cells.

    PubMed

    Njai, Harr F; Lewi, Paul J; Janssen, Cornelus G M; Garcia, Sergio; Fransen, Katrien; Kestens, Luc; Vanham, Guido; Janssen, Paul A J

    2005-01-01

    In order to study the inhibitory effect of various reverse transcriptase inhibitors (RTIs) on cell-free HIV, we adapted a recently described in vitro system, based on co-cultures of dendritic cells and resting CD4 T cells, modelling early target cells during sexual transmission. The compounds tested included the second-generation non-nucleoside RTI (NNRTI) TMC-120 (R147681, dapivirine) and TMC-125 (R165335, travertine), as well as the reference nucleoside RTI AZT (zidovudine), the nucleotide RTI PMPA (tenofovir) and the NNRTI UC-781. The virus strains included the reference strain HIV-1Ba-L and six primary isolates, representative of the HIV-1 group M pandemic. They all display the non-syncytium-inducing and CCR5 receptor-using (NSI/R5) phenotype, important in transmission. Cell-free virus was immobilized on a poly-L-lysine (PLL)-treated microwell plate and incubated with compound for 1 h. Afterwards, the compound was thoroughly washed away; target cells were added and cultured for 2 weeks, followed by an extended culture with highly susceptible mitogen-activated T cells. Viral production in the cultures was measured on supernatant with HIV antigen ELISA. Negative results were confirmed by showing absence of proviral DNA in the cells. TMC-120 and TMC-125 inhibited replication of HIV-1Ba-L with average EC50 values of 38 nM and 117 nM, respectively, whereas the EC50 of UC-781 was 517 nM. Complete suppression of virus and provirus was observed at compound concentrations of 100, 300 and 1000 nM, respectively. Inhibition of all primary isolates followed the same pattern as HIV-1Ba-L. In contrast, pre-treating the virus with the nucleotide RTI PMPA and AZT failed to inhibit infection even at a concentration of 100000 nM. These data clearly suggest that NNRTIs inactivate RT enzymatic activity of different viral clades (predominant in the epidemic) and might be proposed for further testing as a sterilizing microbicide worldwide. PMID:15865220

  15. HIV-1 Capsid Stabilization Assay.

    PubMed

    Fricke, Thomas; Diaz-Griffero, Felipe

    2016-01-01

    The stability of the HIV-1 core in the cytoplasm is crucial for productive HIV-1 infection. Mutations that stabilize or destabilize the core showed defects in HIV-1 reverse transcription and infection. We developed a novel and simple assay to measure stability of in vitro-assembled HIV-1 CA-NC complexes. This assay allowed us to demonstrate that cytosolic extracts strongly stabilize the HIV-1 core (Fricke et al., J Virol 87:10587-10597, 2013). By using our novel assay, one can measure the ability of different drugs to modulate the stability of in vitro-assembled HIV-1 CA-NC complexes, such as PF74, CAP-1, IXN-053, cyclosporine A, Bi2, and the peptide CAI. We also found that purified CPSF6 (1-321) protein stabilizes in vitro-assembled HIV-1 CA-NC complexes (Fricke et al., J Virol 87:10587-10597, 2013). Here we describe in detail the use of this capsid stability assay. We believe that our assay can be a powerful tool to assess HIV-1 capsid stability in vitro.

  16. HIV-1 Vpr reactivates latent HIV-1 provirus by inducing depletion of class I HDACs on chromatin

    PubMed Central

    Romani, Bizhan; Kamali Jamil, Razieh; Hamidi-Fard, Mojtaba; Rahimi, Pooneh; Momen, Seyed Bahman; Aghasadeghi, Mohammad Reza; Allahbakhshi, Elham

    2016-01-01

    HIV-1 Vpr is an accessory protein that induces proteasomal degradation of multiple proteins. We recently showed that Vpr targets class I HDACs on chromatin for proteasomal degradation. Here we show that Vpr induces degradation of HDAC1 and HDAC3 in HIV-1 latently infected J-Lat cells. Degradation of HDAC1 and HDAC3 was also observed on the HIV-1 LTR and as a result, markers of active transcription were recruited to the viral promoter and induced viral activation. Knockdown of HDAC1 and HDAC3 activated the latent HIV-1 provirus and complementation with HDAC3 inhibited Vpr-induced HIV-1 reactivation. Viral reactivation and degradation of HDAC1 and HDAC3 was conserved among Vpr proteins of HV-1 group M. Serum Vpr isolated from patients or the release of virion-incorporated Vpr from viral lysates also activated HIV-1 in latently infected cell lines and PBMCs from HIV-1 infected patients. Our results indicate that Vpr counteracts HIV-1 latency by inducing proteasomal degradation of HDAC1 and 3 leading to reactivation of the viral promoter. PMID:27550312

  17. Hyperthermia Stimulates HIV-1 Replication

    PubMed Central

    Roesch, Ferdinand; Meziane, Oussama; Kula, Anna; Nisole, Sébastien; Porrot, Françoise; Anderson, Ian; Mammano, Fabrizio; Fassati, Ariberto; Marcello, Alessandro; Benkirane, Monsef; Schwartz, Olivier

    2012-01-01

    HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42–45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38–40°C) on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C) increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity. PMID:22807676

  18. Enrichment of intersubtype HIV-1 recombinants in a dual infection system using HIV-1 strain-specific siRNAs

    PubMed Central

    2011-01-01

    Background Intersubtype HIV-1 recombinants in the form of unique or stable circulating recombinants forms (CRFs) are responsible for over 20% of infections in the worldwide epidemic. Mechanisms controlling the generation, selection, and transmission of these intersubtype HIV-1 recombinants still require further investigation. All intersubtype HIV-1 recombinants are generated and evolve from initial dual infections, but are difficult to identify in the human population. In vitro studies provide the most practical system to study mechanisms, but the recombination rates are usually very low in dual infections with primary HIV-1 isolates. This study describes the use of HIV-1 isolate-specific siRNAs to enrich intersubtype HIV-1 recombinants and inhibit the parental HIV-1 isolates from a dual infection. Results Following a dual infection with subtype A and D primary HIV-1 isolates and two rounds of siRNA treatment, nearly 100% of replicative virus was resistant to a siRNA specific for an upstream target sequence in the subtype A envelope (env) gene as well as a siRNA specific for a downstream target sequence in the subtype D env gene. Only 20% (10/50) of the replicating virus had nucleotide substitutions in the siRNA-target sequence whereas the remaining 78% (39/50) harbored a recombination breakpoint that removed both siRNA target sequences, and rendered the intersubtype D/A recombinant virus resistant to the dual siRNA treatment. Since siRNAs target the newly transcribed HIV-1 mRNA, the siRNAs only enrich intersubtype env recombinants and do not influence the recombination process during reverse transcription. Using this system, a strong bias is selected for recombination breakpoints in the C2 region, whereas other HIV-1 env regions, most notably the hypervariable regions, were nearly devoid of intersubtype recombination breakpoints. Sequence conservation plays an important role in selecting for recombination breakpoints, but the lack of breakpoints in many conserved

  19. HLA-C Downmodulation by HIV-1 Vpu.

    PubMed

    Barker, Edward; Evans, David T

    2016-05-11

    It is widely held that HIV-1 Nef downmodulates HLA-A and -B to protect infected cells from CD8(+) T cells but leaves HLA-C on the cell surface to inhibit NK cells. In this issue of Cell Host & Microbe, Apps et al. (2016) revise this model by showing that the Vpu protein of primary HIV-1 isolates downmodulate HLA-C.

  20. Monocyte-derived macrophages exhibit distinct and more restricted HIV-1 integration site repertoire than CD4(+) T cells.

    PubMed

    Kok, Yik Lim; Vongrad, Valentina; Shilaih, Mohaned; Di Giallonardo, Francesca; Kuster, Herbert; Kouyos, Roger; Günthard, Huldrych F; Metzner, Karin J

    2016-01-01

    The host genetic landscape surrounding integrated HIV-1 has an impact on the fate of the provirus. Studies analysing HIV-1 integration sites in macrophages are scarce. We studied HIV-1 integration site patterns in monocyte-derived macrophages (MDMs) and activated CD4(+) T cells derived from seven antiretroviral therapy (ART)-treated HIV-1-infected individuals whose cells were infected ex vivo with autologous HIV-1 isolated during the acute phase of infection. A total of 1,484 unique HIV-1 integration sites were analysed. Their distribution in the human genome and genetic features, and the effects of HIV-1 integrase polymorphisms on the nucleotide selection specificity at these sites were indistinguishable between the two cell types, and among HIV-1 isolates. However, the repertoires of HIV-1-hosting gene clusters overlapped to a higher extent in MDMs than in CD4(+) T cells. The frequencies of HIV-1 integration events in genes encoding HIV-1-interacting proteins were also different between the two cell types. Lastly, HIV-1-hosting genes linked to clonal expansion of latently HIV-1-infected CD4(+) T cells were over-represented in gene hotspots identified in CD4(+) T cells but not in those identified in MDMs. Taken together, the repertoire of genes targeted by HIV-1 in MDMs is distinct from and more restricted than that of CD4(+) T cells.

  1. Monocyte-derived macrophages exhibit distinct and more restricted HIV-1 integration site repertoire than CD4+ T cells

    PubMed Central

    Kok, Yik Lim; Vongrad, Valentina; Shilaih, Mohaned; Di Giallonardo, Francesca; Kuster, Herbert; Kouyos, Roger; Günthard, Huldrych F.; Metzner, Karin J.

    2016-01-01

    The host genetic landscape surrounding integrated HIV-1 has an impact on the fate of the provirus. Studies analysing HIV-1 integration sites in macrophages are scarce. We studied HIV-1 integration site patterns in monocyte-derived macrophages (MDMs) and activated CD4+ T cells derived from seven antiretroviral therapy (ART)-treated HIV-1-infected individuals whose cells were infected ex vivo with autologous HIV-1 isolated during the acute phase of infection. A total of 1,484 unique HIV-1 integration sites were analysed. Their distribution in the human genome and genetic features, and the effects of HIV-1 integrase polymorphisms on the nucleotide selection specificity at these sites were indistinguishable between the two cell types, and among HIV-1 isolates. However, the repertoires of HIV-1-hosting gene clusters overlapped to a higher extent in MDMs than in CD4+ T cells. The frequencies of HIV-1 integration events in genes encoding HIV-1-interacting proteins were also different between the two cell types. Lastly, HIV-1-hosting genes linked to clonal expansion of latently HIV-1-infected CD4+ T cells were over-represented in gene hotspots identified in CD4+ T cells but not in those identified in MDMs. Taken together, the repertoire of genes targeted by HIV-1 in MDMs is distinct from and more restricted than that of CD4+ T cells. PMID:27067385

  2. Authentic HIV-1 integrase inhibitors

    PubMed Central

    Liao, Chenzhong; Marchand, Christophe; Burke, Terrence R; Pommier, Yves; Nicklaus, Marc C

    2010-01-01

    HIV-1 integrase (IN) is indispensable for HIV-1 replication and has become a validated target for developing anti-AIDS agents. In two decades of development of IN inhibition-based anti-HIV therapeutics, a significant number of compounds were identified as IN inhibitors, but only some of them showed antiviral activity. This article reviews a number of patented HIV-1 IN inhibitors, especially those that possess high selectivity for the strand transfer reaction. These compounds generally have a polar coplanar moiety, which is assumed to chelate two magnesium ions in the binding site. Resistance to those compounds, when given to patients, can develop as a result of IN mutations. We refer to those compounds as authentic IN inhibitors. Continued drug development has so far delivered one authentic IN inhibitor to the market (raltegravir in 2007). Current and future attention will be focused on the development of novel authentic IN inhibitors with the goal of overcoming viral resistance. PMID:21426159

  3. Specific sequences commonly found in the V3 domain of HIV-1 subtype C isolates affect the overall conformation of native Env and induce a neutralization-resistant phenotype independent of V1/V2 masking.

    PubMed

    Salomon, Aidy; Krachmarov, Chavdar; Lai, Zhong; Honnen, William; Zingman, Barry S; Sarlo, Julie; Gorny, Miroslaw K; Zolla-Pazner, Susan; Robinson, James E; Pinter, Abraham

    2014-01-01

    Primary HIV-1 isolates are relatively resistant to neutralization by antibodies commonly induced after infection or vaccination. This is generally attributed to masking of sensitive epitopes by the V1/V2 domain and/or glycans situated at various positions in Env. Here we identified a novel masking effect mediated by subtype C-specific V3 sequences that contributes to the V1/V2-independent and glycan-independent neutralization resistance of chimeric and primary Envs to antibodies directed against multiple neutralization domains. Positions at several conserved charged and hydrophobic sites in the V3 crown and stem were also shown to affect neutralization phenotype. These results indicated that substitutions typically present in subtype C and related V3 sequences influence the overall conformation of native Env in a way that occludes multiple neutralization targets located both within and outside of the V3 domain, and may reflect an alternative mechanism for neutralization resistance that is particularly active in subtype C and related isolates.

  4. Identification of potent maturation inhibitors against HIV-1 clade C

    PubMed Central

    Timilsina, Uddhav; Ghimire, Dibya; Timalsina, Bivek; Nitz, Theodore J.; Wild, Carl T.; Freed, Eric O.; Gaur, Ritu

    2016-01-01

    Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic. PMID:27264714

  5. HIV-1 antiretroviral drug therapy.

    PubMed

    Arts, Eric J; Hazuda, Daria J

    2012-04-01

    The most significant advance in the medical management of HIV-1 infection has been the treatment of patients with antiviral drugs, which can suppress HIV-1 replication to undetectable levels. The discovery of HIV-1 as the causative agent of AIDS together with an ever-increasing understanding of the virus replication cycle have been instrumental in this effort by providing researchers with the knowledge and tools required to prosecute drug discovery efforts focused on targeted inhibition with specific pharmacological agents. To date, an arsenal of 24 Food and Drug Administration (FDA)-approved drugs are available for treatment of HIV-1 infections. These drugs are distributed into six distinct classes based on their molecular mechanism and resistance profiles: (1) nucleoside-analog reverse transcriptase inhibitors (NNRTIs), (2) non-nucleoside reverse transcriptase inhibitors (NNRTIs), (3) integrase inhibitors, (4) protease inhibitors (PIs), (5) fusion inhibitors, and (6) coreceptor antagonists. In this article, we will review the basic principles of antiretroviral drug therapy, the mode of drug action, and the factors leading to treatment failure (i.e., drug resistance).

  6. Inhibiting early-stage events in HIV-1 replication by small-molecule targeting of the HIV-1 capsid.

    PubMed

    Kortagere, Sandhya; Madani, Navid; Mankowski, Marie K; Schön, Arne; Zentner, Isaac; Swaminathan, Gokul; Princiotto, Amy; Anthony, Kevin; Oza, Apara; Sierra, Luz-Jeannette; Passic, Shendra R; Wang, Xiaozhao; Jones, David M; Stavale, Eric; Krebs, Fred C; Martín-García, Julio; Freire, Ernesto; Ptak, Roger G; Sodroski, Joseph; Cocklin, Simon; Smith, Amos B

    2012-08-01

    The HIV-1 capsid (CA) protein plays essential roles in both early and late stages of virl replication and has emerged as a novel drug target. We report hybrid structure-based virtual screening to identify small molecules with the potential to interact with the N-terminal domain (NTD) of HIV-1 CA and disrupt early, preintegration steps of the HIV-1 replication cycle. The small molecule 4,4'-[dibenzo[b,d]furan-2,8-diylbis(5-phenyl-1H-imidazole-4,2-diyl)]dibenzoic acid (CK026), which had anti-HIV-1 activity in single- and multiple-round infections but failed to inhibit viral replication in peripheral blood mononuclear cells (PBMCs), was identified. Three analogues of CK026 with reduced size and better drug-like properties were synthesized and assessed. Compound I-XW-053 (4-(4,5-diphenyl-1H-imidazol-2-yl)benzoic acid) retained all of the antiviral activity of the parental compound and inhibited the replication of a diverse panel of primary HIV-1 isolates in PBMCs, while displaying no appreciable cytotoxicity. This antiviral activity was specific to HIV-1, as I-XW-053 displayed no effect on the replication of SIV or against a panel of nonretroviruses. Direct interaction of I-XW-053 was quantified with wild-type and mutant CA protein using surface plasmon resonance and isothermal titration calorimetry. Mutation of Ile37 and Arg173, which are required for interaction with compound I-XW-053, crippled the virus at an early, preintegration step. Using quantitative PCR, we demonstrated that treatment with I-XW-053 inhibited HIV-1 reverse transcription in multiple cell types, indirectly pointing to dysfunction in the uncoating process. In summary, we have identified a CA-specific compound that targets and inhibits a novel region in the NTD-NTD interface, affects uncoating, and possesses broad-spectrum anti-HIV-1 activity.

  7. Phenotypic Correlates of HIV-1 Macrophage Tropism

    PubMed Central

    Arrildt, Kathryn T.; LaBranche, Celia C.; Joseph, Sarah B.; Dukhovlinova, Elena N.; Graham, William D.; Ping, Li-Hua; Schnell, Gretja; Sturdevant, Christa B.; Kincer, Laura P.; Mallewa, Macpherson; Heyderman, Robert S.; Van Rie, Annelies; Cohen, Myron S.; Spudich, Serena; Price, Richard W.; Montefiori, David C.

    2015-01-01

    ABSTRACT HIV-1 is typically CCR5 using (R5) and T cell tropic (T-tropic), targeting memory CD4+ T cells throughout acute and chronic infections. However, viruses can expand into alternative cells types. Macrophage-tropic (M-tropic) HIV-1 variants have evolved to infect macrophages, which have only low levels of surface CD4. Most M-tropic variants have been isolated from the central nervous system during late-stage chronic infection. We used the HIV-1 env genes of well-defined, subject-matched M-tropic and T-tropic viruses to characterize the phenotypic features of the M-tropic Env protein. We found that, compared to T-tropic viruses, M-tropic viruses infect monocyte-derived macrophages (MDMs) on average 28-fold more efficiently, use low-density CD4 more efficiently, have increased sensitivity to soluble CD4 (sCD4), and show trends toward sensitivity to some CD4 binding site antibodies but no difference in sensitivity to antibodies targeting the CD4-bound conformation. M-tropic viruses also displayed a trend toward resistance to neutralization by monoclonal antibodies targeting the V1/V2 region of Env, suggesting subtle changes in Env protein conformation. The paired M- and T-tropic viruses did not differ in autologous serum neutralization, temperature sensitivity, entry kinetics, intrinsic infectivity, or Env protein incorporation. We also examined viruses with modestly increased CD4 usage. These variants have significant sensitivity to sCD4 and may represent evolutionary intermediates. CD4 usage is strongly correlated with infectivity of MDMs over a wide range of CD4 entry phenotypes. These data suggest that emergence of M-tropic HIV-1 includes multiple steps in which a phenotype of increased sensitivity to sCD4 and enhanced CD4 usage accompany subtle changes in Env conformation. IMPORTANCE HIV-1 typically replicates in CD4+ T cells. However, HIV-1 can evolve to infect macrophages, especially within the brain. Understanding how CCR5-using macrophage-tropic viruses

  8. Characterization of HIV-1 Resistance to Tenofovir Alafenamide In Vitro.

    PubMed

    Margot, Nicolas A; Johnson, Audun; Miller, Michael D; Callebaut, Christian

    2015-10-01

    Tenofovir alafenamide (TAF) is an investigational prodrug of the HIV-1 nucleotide reverse transcriptase (RT) inhibitor (NtRTI) tenofovir (TFV), with improved potency and drug delivery properties over the current prodrug, tenofovir disoproxil fumarate (TDF). TAF is currently in phase 3 clinical studies for the treatment of HIV-1 infection, in combination with other antiretroviral agents. Phase 1 and 2 studies have shown that TAF was associated with increased peripheral blood mononuclear cell (PBMC) drug loading and increased suppression of HIV-1 replication compared to treatment with TDF. In this study, selection of in vitro resistance to both TAF and the parent compound, TFV, led to the emergence of HIV-1 with the K65R amino acid substitution in RT with 6.5-fold-reduced susceptibility to TAF. Although TAF is more potent than TFV in vitro, the antiviral susceptibilities to TAF and TFV of a large panel of nucleoside/nucleotide RT inhibitor (NRTI)-resistant mutants were highly correlated (R(2) = 0.97), indicating that the two compounds have virtually the same resistance profile when assessed as fold change from the wild type. TAF showed full antiviral activity in PBMCs against primary HIV-1 isolates with protease inhibitor, nonnucleoside RT inhibitor (NNRTI), or integrase strand transfer inhibitor resistance but reduced activity against isolates with extensive NRTI resistance amino acid substitutions. However, the increased cell loading of TFV with TAF versus TDF observed in vivo suggests that TAF may retain activity against TDF-resistant mutant viruses. PMID:26149983

  9. Mother-to-Child HIV-1 Transmission Events Are Differentially Impacted by Breast Milk and Its Components from HIV-1-Infected Women.

    PubMed

    Shen, Ruizhong; Achenbach, Jenna; Shen, Yue; Palaia, Jana; Rahkola, Jeremy T; Nick, Heidi J; Smythies, Lesley E; McConnell, Michelle; Fowler, Mary G; Smith, Phillip D; Janoff, Edward N

    2015-01-01

    Breast milk is a vehicle of infection and source of protection in post-natal mother-to-child HIV-1 transmission (MTCT). Understanding the mechanism by which breast milk limits vertical transmission will provide critical insight into the design of preventive and therapeutic approaches to interrupt HIV-1 mucosal transmission. However, characterization of the inhibitory activity of breast milk in human intestinal mucosa, the portal of entry in postnatal MTCT, has been constrained by the limited availability of primary mucosal target cells and tissues to recapitulate mucosal transmission ex vivo. Here, we characterized the impact of skimmed breast milk, breast milk antibodies (Igs) and non-Ig components from HIV-1-infected Ugandan women on the major events of HIV-1 mucosal transmission using primary human intestinal cells and tissues. HIV-1-specific IgG antibodies and non-Ig components in breast milk inhibited the uptake of Ugandan HIV-1 isolates by primary human intestinal epithelial cells, viral replication in and transport of HIV-1- bearing dendritic cells through the human intestinal mucosa. Breast milk HIV-1-specific IgG and IgA, as well as innate factors, blocked the uptake and transport of HIV-1 through intestinal mucosa. Thus, breast milk components have distinct and complementary effects in reducing HIV-1 uptake, transport through and replication in the intestinal mucosa and, therefore, likely contribute to preventing postnatal HIV-1 transmission. Our data suggests that a successful preventive or therapeutic approach would require multiple immune factors acting at multiple steps in the HIV-1 mucosal transmission process. PMID:26680219

  10. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding

    PubMed Central

    Lin, Pin-Fang; Blair, Wade; Wang, Tao; Spicer, Timothy; Guo, Qi; Zhou, Nannan; Gong, Yi-Fei; Wang, H.-G. Heidi; Rose, Ronald; Yamanaka, Gregory; Robinson, Brett; Li, Chang-Ben; Fridell, Robert; Deminie, Carol; Demers, Gwendeline; Yang, Zheng; Zadjura, Lisa; Meanwell, Nicholas; Colonno, Richard

    2003-01-01

    BMS-378806 is a recently discovered small molecule HIV-1 inhibitor that blocks viral entrance to cells. The compound exhibits potent inhibitory activity against a panel of R5-(virus using the CCR5 coreceptor), X4-(virus using the CXCR4 coreceptor), and R5/X4 HIV-1 laboratory and clinical isolates of the B subtype (median EC50 of 0.04 μM) in culture assays. BMS-378806 is selective for HIV-1 and inactive against HIV-2, SIV and a panel of other viruses, and exhibits no significant cytotoxicity in the 14 cell types tested (concentration for 50% reduction of cell growth, >225 μM). Mechanism of action studies demonstrated that BMS-378806 binds to gp120 and inhibits the interactions of the HIV-1 envelope protein to cellular CD4 receptors. Further confirmation that BMS-378806 targets the envelope in infected cells was obtained through the isolation of resistant variants and the mapping of resistance substitutions to the HIV-1 envelope. In particular, two substitutions, M426L and M475I, are situated in the CD4 binding pocket of gp120. Recombinant HIV-1 carrying these two substitutions demonstrated significantly reduced susceptibility to compound inhibition. BMS-378806 displays many favorable pharmacological traits, such as low protein binding, minimal human serum effect on anti-HIV-1 potency, good oral bioavailability in animal species, and a clean safety profile in initial animal toxicology studies. Together, the data show that BMS-378806 is a representative of a new class of HIV inhibitors that has the potential to become a valued addition to our current armamentarium of antiretroviral drugs. PMID:12930892

  11. Curcumin derivatives as HIV-1 protease inhibitors

    SciTech Connect

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R.

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  12. Phylodynamics of the HIV-1 epidemic in Cuba.

    PubMed

    Delatorre, Edson; Bello, Gonzalo

    2013-01-01

    Previous studies have shown that the HIV-1 epidemic in Cuba displayed a complex molecular epidemiologic profile with circulation of several subtypes and circulating recombinant forms (CRF); but the evolutionary and population history of those viral variants remains unknown. HIV-1 pol sequences of the most prevalent Cuban lineages (subtypes B, C and G, CRF18_cpx, CRF19_cpx, and CRFs20/23/24_BG) isolated between 1999 and 2011 were analyzed. Maximum-likelihood analyses revealed multiple introductions of subtype B (n≥66), subtype C (n≥10), subtype G (n≥8) and CRF18_cpx (n≥2) viruses in Cuba. The bulk of HIV-1 infections in this country, however, was caused by dissemination of a few founder strains probably introduced from North America/Europe (clades B(CU-I) and B(CU-II)), east Africa (clade C(CU-I)) and central Africa (clades G(CU), CRF18(CU) and CRF19(CU)), or locally generated (clades CRFs20/23/24_BG). Bayesian-coalescent analyses show that the major HIV-1 founder strains were introduced into Cuba during 1985-1995; whereas the CRFs_BG strains emerged in the second half of the 1990s. Most HIV-1 Cuban clades appear to have experienced an initial period of fast exponential spread during the 1990s and early 2000s, followed by a more recent decline in growth rate. The median initial growth rate of HIV-1 Cuban clades ranged from 0.4 year⁻¹ to 1.6 year⁻¹. Thus, the HIV-1 epidemic in Cuba has been a result of the successful introduction of a few viral strains that began to circulate at a rather late time of the AIDS pandemic, but then were rapidly disseminated through local transmission networks.

  13. Bioorthogonal mimetics of palmitoyl-CoA and myristoyl-CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host-proteins modified by HIV-1 infection.

    PubMed

    Colquhoun, David R; Lyashkov, Alexey E; Ubaida Mohien, Ceereena; Aquino, Veronica N; Bullock, Brandon T; Dinglasan, Rhoel R; Agnew, Brian J; Graham, David R M

    2015-06-01

    Protein acylation plays a critical role in protein localization and function. Acylation is essential for human immunodeficiency virus 1 (HIV-1) assembly and budding of HIV-1 from the plasma membrane in lipid raft microdomains and is mediated by myristoylation of the Gag polyprotein and the copackaging of the envelope protein is facilitated by colocalization mediated by palmitoylation. Since the viral accessory protein NEF has been shown to alter the substrate specificity of myristoyl transferases, and alter cargo trafficking lipid rafts, we hypothesized that HIV-1 infection may alter protein acylation globally. To test this hypothesis, we labeled HIV-1 infected cells with biomimetics of acyl azides, which are incorporated in a manner analogous to natural acyl-Co-A. A terminal azide group allowed us to use a copper catalyzed click chemistry to conjugate the incorporated modifications to a number of substrates to carry out SDS-PAGE, fluorescence microscopy, and enrichment for LC-MS/MS. Using LC-MS/MS, we identified 103 and 174 proteins from the myristic and palmitic azide enrichments, with 27 and 45 proteins respectively that differentiated HIV-1 infected from uninfected cells. This approach has provided us with important insights into HIV-1 biology and is widely applicable to many virological systems.

  14. Fucoidans as Potential Inhibitors of HIV-1

    PubMed Central

    Prokofjeva, Maria M.; Imbs, Tatyana I.; Shevchenko, Natalya M.; Spirin, Pavel V.; Horn, Stefan; Fehse, Boris; Zvyagintseva, Tatyana N.; Prassolov, Vladimir S.

    2013-01-01

    The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans) was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV). It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001–100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001–0.05 µg/mL). High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan), and S. japonica (galactofucan) were the most effective inhibitors. PMID:23966033

  15. Fucoidans as potential inhibitors of HIV-1.

    PubMed

    Prokofjeva, Maria M; Imbs, Tatyana I; Shevchenko, Natalya M; Spirin, Pavel V; Horn, Stefan; Fehse, Boris; Zvyagintseva, Tatyana N; Prassolov, Vladimir S

    2013-08-19

    The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans) was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV). It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001-100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001-0.05 µg/mL). High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan), and S. japonica (galactofucan) were the most effective inhibitors.

  16. Regional Differences in Prevalence of HIV-1 Discordance in Africa and Enrollment of HIV-1 Discordant Couples into an HIV-1 Prevention Trial

    PubMed Central

    Lingappa, Jairam R.; Lambdin, Barrot; Bukusi, Elizabeth Ann; Ngure, Kenneth; Kavuma, Linda; Inambao, Mubiana; Kanweka, William; Allen, Susan; Kiarie, James N.; Makhema, Joseph; Were, Edwin; Manongi, Rachel; Coetzee, David; de Bruyn, Guy; Delany-Moretlwe, Sinead; Magaret, Amalia; Mugo, Nelly; Mujugira, Andrew; Ndase, Patrick; Celum, Connie

    2008-01-01

    Background Most HIV-1 transmission in Africa occurs among HIV-1-discordant couples (one partner HIV-1 infected and one uninfected) who are unaware of their discordant HIV-1 serostatus. Given the high HIV-1 incidence among HIV-1 discordant couples and to assess efficacy of interventions for reducing HIV-1 transmission, HIV-1 discordant couples represent a critical target population for HIV-1 prevention interventions and prevention trials. Substantial regional differences exist in HIV-1 prevalence in Africa, but regional differences in HIV-1 discordance among African couples, has not previously been reported. Methodology/Principal Findings The Partners in Prevention HSV-2/HIV-1 Transmission Trial (“Partners HSV-2 Study”), the first large HIV-1 prevention trial in Africa involving HIV-1 discordant couples, completed enrollment in May 2007. Partners HSV-2 Study recruitment data from 12 sites from East and Southern Africa were used to assess HIV-1 discordance among couples accessing couples HIV-1 counseling and testing, and to correlate with enrollment of HIV-1 discordant couples. HIV-1 discordance at Partners HSV-2 Study sites ranged from 8–31% of couples tested from the community. Across all study sites and, among all couples with one HIV-1 infected partner, almost half (49%) of couples were HIV-1 discordant. Site-specific monthly enrollment of HIV-1 discordant couples into the clinical trial was not directly associated with prevalence of HIV-1 discordance, but was modestly correlated with national HIV-1 counseling and testing rates and access to palliative care/basic health care (r = 0.74, p = 0.09). Conclusions/Significance HIV-1 discordant couples are a critical target for HIV-1 prevention in Africa. In addition to community prevalence of HIV-1 discordance, national infrastructure for HIV-1 testing and healthcare delivery and effective community outreach strategies impact recruitment of HIV-1 discordant couples into HIV-1 prevention trials. PMID

  17. Cross-reactive lysis of human targets infected with prototypic and clinical human immunodeficiency virus type 1 (HIV-1) strains by murine anti-HIV-1 IIIB env-specific cytotoxic T lymphocytes.

    PubMed Central

    Chada, S; DeJesus, C E; Townsend, K; Lee, W T; Laube, L; Jolly, D J; Chang, S M; Warner, J F

    1993-01-01

    To evaluate the ability of murine anti-human immunodeficiency virus type 1 (HIV-1) IIIB env cytotoxic T lymphocytes (CTL) to recognize and lyse HIV-1-infected cells, we have constructed a human cell line (Hu/Dd) expressing both the CD4 receptor and the murine H-2Dd major histocompatibility complex (MHC) class I protein. This cell line can be productively infected with HIV-1 and can also function as a target for murine CD8+, class I MHC-restricted CTL directed against the envelope glycoprotein of HIV-1 IIIB. The ability of BALB/c anti-HIV-1 IIIB env CTL to specifically recognize and lyse Hu/Dd target cells infected with divergent HIV-1 strains was tested by using both prototypic and clinical HIV-1 strains. CTL generated by immunization of mice with syngeneic cells expressing either the native or V3 loop-deleted (delta V3) envelope glycoprotein from HIV-1 IIIB were able to recognize and specifically lyse Hu/Dd target cells infected with the HIV-1 prototypic isolates IIIB, MN, WMJ II, SF2, and CC as well as several HIV-1 clinical isolates. These results demonstrate that CTL determinants for HIV-1 env exist outside the hypervariable V3 region, anti-HIV-1 IIIB env CTL appear to recognize common determinants on diverse HIV-1 strains, and classification of HIV-1 strains based on neutralizing antibody reactivities does not appear to correspond to CTL recognition and lysis. The results suggest that the cell-mediated components of the immune system may have a broader recognition of divergent HIV-1 strains than do the humoral components. Images PMID:8497058

  18. Rare HIV-1 Subtype J Genomes and a New H/U/CRF02_AG Recombinant Genome Suggests an Ancient Origin of HIV-1 in Angola.

    PubMed

    Bártolo, Inês; Calado, Rita; Borrego, Pedro; Leitner, Thomas; Taveira, Nuno

    2016-08-01

    Angola has an extremely diverse HIV-1 epidemic fueled in part by the frequent interchange of people with the Democratic Republic of Congo (DRC) and Republic of Congo (RC). Characterization of HIV-1 strains circulating in Angola should help to better understand the origin of HIV-1 subtypes and recombinant forms and their transmission dynamics. In this study we characterize the first near full-length HIV-1 genomic sequences from HIV-1 infected individuals from Angola. Samples were obtained in 1993 from three HIV-1 infected patients living in Cabinda, Angola. Near full-length genomic sequences were obtained from virus isolates. Maximum likelihood phylogenetic tree inference and analyses of potential recombination patterns were performed to evaluate the sequence classifications and origins. Phylogenetic and recombination analyses revealed that one virus was a pure subtype J, another mostly subtype J with a small uncertain region, and the final virus was classified as a H/U/CRF02_AG recombinant. Consistent with their epidemiological data, the subtype J sequences were more closely related to each other than to other J sequences previously published. Based on the env gene, taxa from Angola occur throughout the global subtype J phylogeny. HIV-1 subtypes J and H are present in Angola at low levels since at least 1993. Low transmission efficiency and/or high recombination potential may explain their limited epidemic success in Angola and worldwide. The high diversity of rare subtypes in Angola suggests that Angola was part of the early establishment of the HIV-1 pandemic.

  19. Cocaine enhances HIV-1-induced CD4(+) T-cell apoptosis: implications in disease progression in cocaine-abusing HIV-1 patients.

    PubMed

    Pandhare, Jui; Addai, Amma B; Mantri, Chinmay K; Hager, Cynthia; Smith, Rita M; Barnett, Louis; Villalta, Fernando; Kalams, Spyros A; Dash, Chandravanu

    2014-04-01

    Substance abuse is a major barrier in eradication of the HIV epidemic because it serves as a powerful cofactor for viral transmission, disease progression, and AIDS-related mortality. Cocaine, one of the commonly abused drugs among HIV-1 patients, has been suggested to accelerate HIV disease progression. However, the underlying mechanism remains largely unknown. Therefore, we tested whether cocaine augments HIV-1-associated CD4(+) T-cell decline, a predictor of HIV disease progression. We examined apoptosis of resting CD4(+) T cells from HIV-1-negative and HIV-1-positive donors in our study, because decline of uninfected cells plays a major role in HIV-1 disease progression. Treatment of resting CD4(+) T cells with cocaine (up to 100 μmol/L concentrations) did not induce apoptosis, but 200 to 1000 μmol/L cocaine induced apoptosis in a dose-dependent manner. Notably, treatment of CD4(+) T cells isolated from healthy donors with both HIV-1 virions and cocaine significantly increased apoptosis compared with the apoptosis induced by cocaine or virions alone. Most important, our biochemical data suggest that cocaine induces CD4(+) T-cell apoptosis by increasing intracellular reactive oxygen species levels and inducing mitochondrial depolarization. Collectively, our results provide evidence of a synergy between cocaine and HIV-1 on CD4(+) T-cell apoptosis that may, in part, explain the accelerated disease observed in HIV-1-infected drug abusers.

  20. In Vitro Reactivation of Replication-Competent and Infectious HIV-1 by Histone Deacetylase Inhibitors

    PubMed Central

    Banga, Riddhima; Procopio, Francesco Andrea; Cavassini, Matthias

    2015-01-01

    ABSTRACT The existence of long-lived HIV-1-infected resting memory CD4 T cells is thought to be the primary obstacle to HIV-1 eradication. In the search for novel therapeutic approaches that may reverse HIV-1 latency, inhibitors of histone deacetylases (HDACis) have been tested to reactivate HIV-1 replication with the objective of rendering HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In the present study, we evaluated the efficiency of HDACis to reactivate HIV-1 replication from resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. We demonstrate that following prolonged/repeated treatment of resting memory CD4 T cells with HDACis, HIV-1 replication may be induced from primary resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. More importantly, we demonstrate that HIV-1 reactivated in the cell cultures was not only replication competent but also infectious. Interestingly, givinostat, an HDACi that has not been investigated in clinical trials, was more efficient than vorinostat, panobinostat, and romidepsin in reversing HIV-1 latency in vitro. Taken together, these results support further evaluation of givinostat as a latency-reversing agent (LRA) in aviremic long-term-treated HIV-1-infected subjects. IMPORTANCE The major barrier to HIV cure is the existence of long-lived latently HIV-1-infected resting memory CD4 T cells. Latently HIV-1-infected CD4 T cells are transcriptionally silent and are therefore not targeted by conventional antiretroviral therapy (ART) or the immune system. In this context, one strategy to target latently infected cells is based on pharmacological molecules that may force the virus to replicate and would therefore render HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In this context, we developed an

  1. Maternal HIV-1 envelope–specific antibody responses and reduced risk of perinatal transmission

    PubMed Central

    Permar, Sallie R.; Fong, Youyi; Vandergrift, Nathan; Fouda, Genevieve G.; Gilbert, Peter; Parks, Robert; Jaeger, Frederick H.; Pollara, Justin; Martelli, Amanda; Liebl, Brooke E.; Lloyd, Krissey; Yates, Nicole L.; Overman, R. Glenn; Shen, Xiaoying; Whitaker, Kaylan; Chen, Haiyan; Pritchett, Jamie; Solomon, Erika; Friberg, Emma; Marshall, Dawn J.; Whitesides, John F.; Gurley, Thaddeus C.; Von Holle, Tarra; Martinez, David R.; Cai, Fangping; Kumar, Amit; Xia, Shi-Mao; Lu, Xiaozhi; Louzao, Raul; Wilkes, Samantha; Datta, Saheli; Sarzotti-Kelsoe, Marcella; Liao, Hua-Xin; Ferrari, Guido; Alam, S. Munir; Montefiori, David C.; Denny, Thomas N.; Moody, M. Anthony; Tomaras, Georgia D.; Gao, Feng; Haynes, Barton F.

    2015-01-01

    Despite the wide availability of antiretroviral drugs, more than 250,000 infants are vertically infected with HIV-1 annually, emphasizing the need for additional interventions to eliminate pediatric HIV-1 infections. Here, we aimed to define humoral immune correlates of risk of mother-to-child transmission (MTCT) of HIV-1, including responses associated with protection in the RV144 vaccine trial. Eighty-three untreated, HIV-1–transmitting mothers and 165 propensity score–matched nontransmitting mothers were selected from the Women and Infants Transmission Study (WITS) of US nonbreastfeeding, HIV-1–infected mothers. In a multivariable logistic regression model, the magnitude of the maternal IgG responses specific for the third variable loop (V3) of the HIV-1 envelope was predictive of a reduced risk of MTCT. Neutralizing Ab responses against easy-to-neutralize (tier 1) HIV-1 strains also predicted a reduced risk of peripartum transmission in secondary analyses. Moreover, recombinant maternal V3–specific IgG mAbs mediated neutralization of autologous HIV-1 isolates. Thus, common V3-specific Ab responses in maternal plasma predicted a reduced risk of MTCT and mediated autologous virus neutralization, suggesting that boosting these maternal Ab responses may further reduce HIV-1 MTCT. PMID:26053661

  2. Intracellular and cell-free (infectious) HIV-1 in rectal mucosa.

    PubMed

    Di Stefano, M; Favia, A; Monno, L; Lopalco, P; Caputi, O; Scardigno, A C; Pastore, G; Fiore, J R; Angarano, G

    2001-12-01

    The intestinal mucosa contains most of the total lymphocyte pool and plays an important role in viral transmission, but only slight attention has been given to the immunological and virological aspects of human immunodeficiency virus-1 (HIV-1) infection at this site. In this study, before initiating or changing antiretroviral therapy, paired blood samples and rectal biopsies (RB) were obtained from 26 consecutive HIV-infected subjects. HIV-1 isolation and biological characterization, DNA, and HIV-1 RNA titration were assessed, as were in vitro tumor necrosis factor-alpha (TNF-alpha) and interleukin-beta (IL-1beta) spontaneous production. The rate of HIV-1 isolation from peripheral blood mononuclear cells (PBMCs) and RBs was 75% and 58%, respectively. All RB-derived isolates were nonsyncytium inducing (NSI), independent of the phenotype of blood-derived isolates. Proviral DNA and detectable HIV-1 RNA levels were measured in 100% and 77% of RBs, respectively. A statistical correlation was observed between HIV-1 DNA and HIV-1 RNA levels in rectal mucosa (P = 0.0075), whereas no correlation was found between these levels in blood samples (P > 0.05). Antiretroviral treatment did not seem to influence HIV-1 detection in RBs. Higher levels of in vitro proinflammmatory cytokine production were found in the RBs of most infected patients when compared with healthy controls. Therefore, the rectal mucosa is an important HIV-1 reservoir that demonstrates a discordant viral evolution with respect to blood. Both the virus type and the mucosa pathway of immunoactive substances might have important implications for therapeutic decision-making and monitoring and could influence the bidirectional transmission of HIV-1 in mucosal surfaces.

  3. Restricted isotype, distinct variable gene usage, and high rate of gp120 specificity of HIV-1 envelope-specific B cells in colostrum compared with those in blood of HIV-1-infected, lactating African women.

    PubMed

    Sacha, C R; Vandergrift, N; Jeffries, T L; McGuire, E; Fouda, G G; Liebl, B; Marshall, D J; Gurley, T C; Stiegel, L; Whitesides, J F; Friedman, J; Badiabo, A; Foulger, A; Yates, N L; Tomaras, G D; Kepler, T B; Liao, H X; Haynes, B F; Moody, M A; Permar, S R

    2015-03-01

    A successful HIV-1 vaccine must elicit immune responses that impede mucosal virus transmission, though functional roles of protective HIV-1 Envelope (Env)-specific mucosal antibodies remain unclear. Colostrum is a rich source of readily accessible mucosal B cells that may help define the mucosal antibody response contributing to prevention of postnatal HIV-1 transmission. To examine the HIV-1 Env-specific colostrum B-cell repertoire, single B cells were isolated from 17 chronically HIV-infected, lactating women, producing 51 blood and 39 colostrum HIV-1 Env-specific B-cell antibodies. All HIV-1 Env-specific colostrum-derived antibodies were immunoglobulin (Ig)G1 isotype and had mean heavy chain complementarity-determining region 3 (CDR3) lengths and mutation frequencies similar to those isolated from blood. However, variable heavy chain (VH) gene subfamily 1(∼)69 usage was higher among colostrum than blood HIV-1 Env-reactive antibodies (49% vs. 20%, P=0.006, Fisher's exact test). Additionally, more HIV-1 Env-specific colostrum antibodies were gp120 specific than those isolated from blood (44% vs. 16%, P=0.005, Fisher's exact test). One cross-compartment HIV-1 Env-specific clonal B-cell lineage was identified. These unique characteristics of colostrum B-cell antibodies suggest selective homing of HIV-1-specific IgG1-secreting memory B cells to the mammary gland and have implications for targeting mucosal B-cell populations by vaccination. PMID:25100291

  4. Syndecan-Fc Hybrid Molecule as a Potent In Vitro Microbicidal Anti-HIV-1 Agent▿

    PubMed Central

    Bobardt, Michael D.; Chatterji, Udayan; Schaffer, Lana; de Witte, Lot; Gallay, Philippe A.

    2010-01-01

    In the absence of a vaccine, there is an urgent need for the development of safe and effective topical microbicides to prevent the sexual transmission of human immunodeficiency virus type 1 (HIV-1). In this study, we proposed to develop a novel class of microbicides using syndecan as the antiviral agent. Specifically, we generated a soluble syndecan-Fc hybrid molecule by fusing the ectodomain of syndecan-1 to the Fc domain of a human IgG. We then tested the syndecan-Fc hybrid molecule for various in vitro microbicidal anti-HIV-1 properties. Remarkably, the syndecan-Fc hybrid molecule possesses multiple attractive microbicidal properties: (i) it blocks HIV-1 infection of primary targets including T cells, macrophages, and dendritic cells (DC); (ii) it exhibits a broad range of antiviral activity against primary HIV-1 isolates, multidrug resistant HIV-1 isolates, HIV-2, and simian immunodeficiency virus (SIV); (iii) it prevents transmigration of HIV-1 through human primary genital epithelial cells; (iv) it prevents HIV-1 transfer from dendritic cells to CD4+ T cells; (v) it is potent when added 2 h prior to addition of HIV-1 to target cells; (vi) it is potent at a low pH; (vii) it blocks HIV-1 infectivity when diluted in genital fluids; and (viii) it prevents herpes simplex virus infection. The heparan sulfate chains of the syndecan-Fc hybrid molecule are absolutely required for HIV-1 neutralization. Several lines of evidence suggest that the highly conserved Arg298 in the V3 region of gp120 serves as the locus for the syndecan-Fc hybrid molecule neutralization. In conclusion, this study suggests that the syndecan-Fc hybrid molecule represents the prototype of a new generation of microbicidal agents that may have promise for HIV-1 prevention. PMID:20439611

  5. Mechanisms for macrophage-mediated HIV-1 induction.

    PubMed

    Devadas, Krishnakumar; Hardegen, Neil J; Wahl, Larry M; Hewlett, Indira K; Clouse, Kathleen A; Yamada, Kenneth M; Dhawan, Subhash

    2004-12-01

    Viral latency is a long-term pathogenic condition in patients infected with HIV-1. Low but sustained virus replication in chronically infected cells can be activated by stimulation with proinflammatory cytokines such as TNF-alpha, IL-1 beta, or other host factors. However, the precise mechanism by which cellular activation induces latently infected cells to produce virions has remained unclear. In the present report, we present evidence that activation of HIV-1 replication in latently infected U1 or ACH2 cells by human macrophages is mediated by a rapid nuclear localization of NF-kappaB p50/p65 dimer with concomitant increased expression of proinflammatory cytokines. Multiplexed RT-PCR amplification of mRNA isolated from cocultures of macrophages and U1 and ACH2 cells showed significant induction of IL-1beta, IL-6, IL-8, TNF-alpha, and TGF-beta expression within 3 h of coincubation. Fixation of macrophages, U-1, or ACH2 cells with paraformaldehyde before coculture completely abrogated the induction of NF-kappaB subunits and HIV-1 replication, suggesting that cooperative interaction between the two cell types is an essential process for cellular activation. Pretreatment of macrophage-U1 or macrophage-ACH2 cocultures with neutralizing anti-TNF-alpha Ab down-regulated the replication of HIV-1. In addition, pretreatment of macrophage-U1 or macrophage-ACH2 cocultures with the NF-kappaB inhibitor (E)3-[(4-methylphenyl)sulfonyl]-2-propenenitrile (BAY 11-7082) prevented the induction of cytokine expression, indicating a pivotal role of NF-kappaB-mediated signaling in the reactivation of HIV-1 in latently infected cells by macrophages. These results provide a mechanism by which macrophages induce HIV-1 replication in latently infected cells.

  6. Measuring glutathione redox potential of HIV-1-infected macrophages.

    PubMed

    Bhaskar, Ashima; Munshi, MohamedHusen; Khan, Sohrab Zafar; Fatima, Sadaf; Arya, Rahul; Jameel, Shahid; Singh, Amit

    2015-01-01

    Redox signaling plays a crucial role in the pathogenesis of human immunodeficiency virus type-1 (HIV-1). The majority of HIV redox research relies on measuring redox stress using invasive technologies, which are unreliable and do not provide information about the contributions of subcellular compartments. A major technological leap emerges from the development of genetically encoded redox-sensitive green fluorescent proteins (roGFPs), which provide sensitive and compartment-specific insights into redox homeostasis. Here, we exploited a roGFP-based specific bioprobe of glutathione redox potential (E(GSH); Grx1-roGFP2) and measured subcellular changes in E(GSH) during various phases of HIV-1 infection using U1 monocytic cells (latently infected U937 cells with HIV-1). We show that although U937 and U1 cells demonstrate significantly reduced cytosolic and mitochondrial E(GSH) (approximately -310 mV), active viral replication induces substantial oxidative stress (E(GSH) more than -240 mV). Furthermore, exposure to a physiologically relevant oxidant, hydrogen peroxide (H2O2), induces significant deviations in subcellular E(GSH) between U937 and U1, which distinctly modulates susceptibility to apoptosis. Using Grx1-roGFP2, we demonstrate that a marginal increase of about ∼25 mV in E(GSH) is sufficient to switch HIV-1 from latency to reactivation, raising the possibility of purging HIV-1 by redox modulators without triggering detrimental changes in cellular physiology. Importantly, we show that bioactive lipids synthesized by clinical drug-resistant isolates of Mycobacterium tuberculosis reactivate HIV-1 through modulation of intracellular E(GSH). Finally, the expression analysis of U1 and patient peripheral blood mononuclear cells demonstrated a major recalibration of cellular redox homeostatic pathways during persistence and active replication of HIV.

  7. Macrophages and HIV-1: An Unhealthy Constellation.

    PubMed

    Sattentau, Quentin J; Stevenson, Mario

    2016-03-01

    Lentiviruses have a long-documented association with macrophages. Abundant evidence exists for in vitro and, in a tissue-specific manner, in vivo infection of macrophages by the primate lentiviruses HIV-1 and SIV. However, macrophage contribution to aspects of HIV-1 and SIV pathogenesis, and their role in viral persistence in individuals on suppressive antiretroviral therapy, remains unclear. Here we discuss recent evidence implicating macrophages in HIV-1-mediated disease and highlight directions for further investigation.

  8. Wide distribution of two subtypes of HIV-1 in Thailand.

    PubMed

    Ou, C Y; Takebe, Y; Luo, C C; Kalish, M; Auwanit, W; Bandea, C; de la Torre, N; Moore, J L; Schochetman, G; Yamazaki, S

    1992-08-01

    Scientists wanted to identify the genetic characteristics of 2 HIV-1 subtypes in Thailand. Staff from regional laboratories of the Ministry of Public Health took blood samples from people in various high risk groups and from all regions of the country. Staff at the National Institutes of Health in Bangkok then did lymphocyte separation, DNA extraction, and virus culture. They took the extracted DNA specimens and sent them to the US Centers for Disease Control where scientists did serologic testing, polymerase chain reaction, and sequence determination. They used Kimura's method to study sequence variations. They sequenced 300 nucleotides, including the C2-V3 domains of HIV-1 envelope gene and/or hybridization. Every risk group had HIV-1 subtype A, but subtype B was mostly found in drug users. Subtype A had spread mainly among heterosexuals. The mean intraperson variation for subtypes A and B stood at 2% and 2.7%, respectively, while the interperson variation within subtype A and B stood at 3.8% and 3.7%, respectively. The mean interperson variation between subtypes A and B from different persons was 18.1%. Phylogenetic tree analysis showed that subtype B identified with about 85% of the sequence as that of the North American isolates, making it more closely related to them than to African isolates (about 75% sequence identity). On the other hand, subtype A had a GPGQ motif at the V3 crown which was common among African HIV-1 isolates. Antibodies which usually recognize HIV-1 MN strains (which have the GPGR motif) may not react wholly with the V3 loop from the Thailand subtype A viruses, thus the GPGQ motif at the V3 crown may pose a problem. Now for the first time, scientists can follow the natural history of 2 HIV-1 subtypes and determine their relative pathogenicity and transmission efficiency between adults or from mother to infant. The relative homogeneity of the HIV-1 strains in Thailand presents a theoretical advantage in designing vaccines for potential

  9. Harnessing the protective potential of HIV-1 neutralizing antibodies

    PubMed Central

    Smith, S Abigail; Derdeyn, Cynthia A

    2016-01-01

    Recent biological, structural, and technical advances are converging within the HIV-1 vaccine field to harness the power of antibodies for prevention and therapy. Numerous monoclonal antibodies with broad neutralizing activity against diverse HIV-1 isolates have now been identified, revealing at least five sites of vulnerability on the envelope (Env) glycoproteins. While there are practical and technological barriers blocking a clear path from broadly neutralizing antibodies (bNAb) to a protective vaccine, this is not a dead end. Scientists are revisiting old approaches with new technology, cutting new trails through unexplored territory, and paving new roads in the hopes of preventing HIV-1 infection. Other promising avenues to capitalize on the power of bNAbs are also being pursued, such as passive antibody immunotherapy and gene therapy approaches. Moreover, non-neutralizing antibodies have inhibitory activities that could have protective potential, alone or in combination with bNAbs. With a new generation of bNAbs, and a clinical trial that associated antibodies with reduced acquisition, the field is closer than ever to developing strategies to use antibodies against HIV-1. PMID:26918160

  10. Contribution of Epidemiological Predictors in Unraveling the Phylogeographic History of HIV-1 Subtype C in Brazil

    PubMed Central

    Vrancken, Bram; Maletich Junqueira, Dennis; de Medeiros, Rúbia Marília; Suchard, Marc A.; Lemey, Philippe; Esteves de Matos Almeida, Sabrina; Pinto, Aguinaldo Roberto

    2015-01-01

    ABSTRACT The phylogeographic history of the Brazilian HIV-1 subtype C (HIV-1C) epidemic is still unclear. Previous studies have mainly focused on the capital cities of Brazilian federal states, and the fact that HIV-1C infections increase at a higher rate than subtype B infections in Brazil calls for a better understanding of the process of spatial spread. A comprehensive sequence data set sampled across 22 Brazilian locations was assembled and analyzed. A Bayesian phylogeographic generalized linear model approach was used to reconstruct the spatiotemporal history of HIV-1C in Brazil, considering several potential explanatory predictors of the viral diffusion process. Analyses were performed on several subsampled data sets in order to mitigate potential sample biases. We reveal a central role for the city of Porto Alegre, the capital of the southernmost state, in the Brazilian HIV-1C epidemic (HIV-1C_BR), and the northward expansion of HIV-1C_BR could be linked to source populations with higher HIV-1 burdens and larger proportions of HIV-1C infections. The results presented here bring new insights to the continuing discussion about the HIV-1C epidemic in Brazil and raise an alternative hypothesis for its spatiotemporal history. The current work also highlights how sampling bias can confound phylogeographic analyses and demonstrates the importance of incorporating external information to protect against this. IMPORTANCE Subtype C is responsible for the largest HIV infection burden worldwide, but our understanding of its transmission dynamics remains incomplete. Brazil witnessed a relatively recent introduction of HIV-1C compared to HIV-1B, but it swiftly spread throughout the south, where it now circulates as the dominant variant. The northward spread has been comparatively slow, and HIV-1B still prevails in that region. While epidemiological data and viral genetic analyses have both independently shed light on the dynamics of spread in isolation, their combination

  11. Anti-human immunodeficiency virus 1 (HIV-1) activities of 3-deazaadenosine analogs: increased potency against 3'-azido-3'-deoxythymidine-resistant HIV-1 strains.

    PubMed Central

    Mayers, D L; Mikovits, J A; Joshi, B; Hewlett, I K; Estrada, J S; Wolfe, A D; Garcia, G E; Doctor, B P; Burke, D S; Gordon, R K

    1995-01-01

    3-Deazaadenosine (DZA), 3-deaza-(+/-)-aristeromycin (DZAri), and 3-deazaneplanocin A (DZNep) are powerful modulators of cellular processes. When tested against H9 cells infected acutely with two different strains of human immunodeficiency virus 1 (HIV-1) and in the chronically infected monocytoid cell lines U1 and THP-1, the 3-deazanucleosides caused a marked reduction in p24 antigen production. Similar reductions in p24 antigen were seen in phytohemagglutinin-stimulated peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Strikingly, in comparing the therapeutic indices between the paired pre- and post-3'-azido-3'-deoxythymidine (AZT) treatment HIV-1 isolates, DZNep and neplanocin A showed an increase of 3- to 18-fold in their potency against AZT-resistant HIV-1 isolates. In H9 cells treated with DZNep and DZAri, the formation of triphosphate nucleotides of DZNep and DZAri was observed. The mode of action of DZNep and DZAri appears complex, at least in part, at the level of infectivity as shown by decreases in syncytia formation in HIV-1-infected H9 cells and at the level of transcription as both drugs inhibited the expression of basal or tat-induced HIV-1 long terminal repeat chloramphenicol acetyltransferase activity in stably transfected cell lines. Since DZNep induced in H9 cells a rapid expression of nuclear binding factors that recognize the AP-1 transcription site, the anti-HIV-1 activity of the DZA analogs could partly be the induction of critical factors in the host cells. Thus, the 3-deazanucleoside drugs belong to an unusual class of anti-HIV-1 drugs, which may have therapeutic potential, in particular against AZT-resistant strains. Images Fig. 4 Fig. 5 PMID:7816820

  12. Replication potentials of HIV-1/HSIV in PBMCs from northern pig-tailed macaque (Macaca leonina).

    PubMed

    Lei, Ai-Hua; Zhang, Gao-Hong; Tian, Ren-Rong; Zhu, Jia-Wu; Zheng, Hong-Yi; Pang, Wei; Zheng, Yong-Tang

    2014-05-01

    The northern pig-tailed macaque (Macaca leonina) has been identified as an independent species of Old World monkey, and we previously found that PBMCs from M. leonina were susceptible to human immunodeficiency virus type 1 (HIV-1), which may be due to the absence of a TRIM5 protein restricting HIV-1 replication. Here we investigated the infection potentials of six laboratory adapted HIV-1 strains and three primary HIV-1 isolates in PBMCs from M. leonina. The results indicate that these strains are characterized by various but low replication levels, and among which, HIV-1NL4-3 shows the highest replication ability. Based on the abundant evidence of species-specific interactions between restriction factors APOBEC3 and HIV/SIV-derived Vif protein, we subsequently examined the replication potentials of vif-substituted HIV-1 (HSIV) in M. leonina PBMCs. Notably, HSIV-vifmac and stHIV-1SV chimeras, two HIV-1NL4-3-derived viruses encoding the viral infectivity factor (Vif) protein from SIVmac239, replicated robustly in cells from M. leonina, which suggests that HSIV could effectively antagonize the antiviral activity of APOBEC3 proteins expressed in cells of M. leonina. Therefore, our data demonstrate that M. leonina has the potential to be developed into a promising animal model for human AIDS.

  13. Replication potentials of HIV-1/HSIV in PBMCs from northern pigtailed macaque (Macaca leonina)

    PubMed Central

    LEI, Ai-Hua; ZHANG, Gao-Hong; TIAN, Ren-Rong; ZHU, Jia-Wu; ZHENG, Hong-Yi; PANG, Wei; ZHENG, Yong-Tang

    2014-01-01

    The northern pig-tailed macaque (Macaca leonina) has been identified as an independent species of Old World monkey, and we previously found that PBMCs from M. leonina were susceptible to human immunodeficiency virus type 1 (HIV-1), which may be due to the absence of a TRIM5 protein restricting HIV-1 replication. Here we investigated the infection potentials of six laboratory adapted HIV-1 strains and three primary HIV-1 isolates in PBMCs from M. leonina. The results indicate that these strains are characterized by various but low replication levels, and among which, HIV-1NL4-3 shows the highest replication ability. Based on the abundant evidence of species-specific interactions between restriction factors APOBEC3 and HIV/SIV-derived Vif protein, we subsequently examined the replication potentials of vif-substituted HIV-1 (HSIV) in M. leonina PBMCs. Notably, HSIV-vifmac and stHIV-1SV chimeras, two HIV-1NL4-3-derived viruses encoding the viral infectivity factor (Vif) protein from SIVmac239, replicated robustly in cells from M. leonina, which suggests that HSIV could effectively antagonize the antiviral activity of APOBEC3 proteins expressed in cells of M. leonina. Therefore, our data demonstrate that M. leonina has the potential to be developed into a promising animal model for human AIDS. PMID:24866489

  14. Identification of HIV-1 Genitourinary Tract Compartmentalization by Analyzing the env Gene Sequences in Urine

    PubMed Central

    BLASI, Maria; CARPENTER, J. Harris; BALAKUMARAN, Bala; CARA, Andrea; GAO, Feng; KLOTMAN, Mary E.

    2015-01-01

    Objective HIV-1 persists indefinitely in memory CD4+ T cells and other long-lived cellular reservoirs despite antiretroviral therapy (ART). Our group had previously demonstrated that HIV-1 can establish a productive infection in renal epithelial cells and that the kidney represents a separate compartment for HIV-1 replication. Here, to better understand the viruses in this unique site, we genetically characterized and compared the viruses in blood and urine specimens from twenty-four HIV-1 infected subjects with detectable viremia. Design and Methods Blood and urine samples were obtained from 35 HIV-1 positive subjects. Single-genome amplification was performed on HIV-1 env RNA and DNA isolated from urine supernatants and urine derived cell pellets respectively, as well as from plasma and PBMC from the same individuals. Neighbor-joining trees were constructed under the Kimura 2-parameter mode. Results We amplified and sequenced the full-length HIV-1 envelope (env) gene from twelve of the twenty-four individuals, indicating that fifty percent (50%) of the viremic HIV-1 positive patients had viral RNA in their urine. Phylogenetic analysis of the env sequences from four subjects with more than fifteen urine-derived env sequences showed that the majority of the sequences from urine formed distinct cluster(s) independent of those PBMC and plasma-derived sequences, consistent with viral compartmentalization in the urine. Conclusions Our results suggest the presence of a distinct HIV compartment in the genitourinary tract. PMID:26372275

  15. Engineering Cellular Resistance to HIV-1 Infection In Vivo Using a Dual Therapeutic Lentiviral Vector.

    PubMed

    Burke, Bryan P; Levin, Bernard R; Zhang, Jane; Sahakyan, Anna; Boyer, Joshua; Carroll, Maria V; Colón, Joanna Camba; Keech, Naomi; Rezek, Valerie; Bristol, Gregory; Eggers, Erica; Cortado, Ruth; Boyd, Maureen P; Impey, Helen; Shimizu, Saki; Lowe, Emily L; Ringpis, Gene-Errol E; Kim, Sohn G; Vatakis, Dimitrios N; Breton, Louis R; Bartlett, Jeffrey S; Chen, Irvin S Y; Kitchen, Scott G; An, Dong Sung; Symonds, Geoff P

    2015-01-01

    We described earlier a dual-combination anti-HIV type 1 (HIV-1) lentiviral vector (LVsh5/C46) that downregulates CCR5 expression of transduced cells via RNAi and inhibits HIV-1 fusion via cell surface expression of cell membrane-anchored C46 antiviral peptide. This combinatorial approach has two points of inhibition for R5-tropic HIV-1 and is also active against X4-tropic HIV-1. Here, we utilize the humanized bone marrow, liver, thymus (BLT) mouse model to characterize the in vivo efficacy of LVsh5/C46 (Cal-1) vector to engineer cellular resistance to HIV-1 pathogenesis. Human CD34+ hematopoietic stem/progenitor cells (HSPC) either nonmodified or transduced with LVsh5/C46 vector were transplanted to generate control and treatment groups, respectively. Control and experimental groups displayed similar engraftment and multilineage hematopoietic differentiation that included robust CD4+ T-cell development. Splenocytes isolated from the treatment group were resistant to both R5- and X4-tropic HIV-1 during ex vivo challenge experiments. Treatment group animals challenged with R5-tropic HIV-1 displayed significant protection of CD4+ T-cells and reduced viral load within peripheral blood and lymphoid tissues up to 14 weeks postinfection. Gene-marking and transgene expression were confirmed stable at 26 weeks post-transplantation. These data strongly support the use of LVsh5/C46 lentiviral vector in gene and cell therapeutic applications for inhibition of HIV-1 infection. PMID:25872029

  16. GADD45 proteins inhibit HIV-1 replication through specific suppression of HIV-1 transcription.

    PubMed

    Liang, Zhibin; Liu, Ruikang; Zhang, Hui; Zhang, Suzhen; Hu, Xiaomei; Tan, Juan; Liang, Chen; Qiao, Wentao

    2016-06-01

    GADD45 proteins are a group of stress-induced proteins and participate in various cellular pathways including cell cycle regulation, cell survival and death, DNA repair and demethylation. It was recently shown that HIV-1 infection induces the expression of GADD45 proteins. However, the effect of GADD45 on HIV-1 replication has not been studied. Here, we report that overexpression of GADD45 proteins reduces HIV-1 production through suppressing transcription from the HIV-1 LTR promoter. This inhibitory effect is specific to HIV-1, since GADD45 proteins neither inhibit the LTR promoters from other retroviruses nor reduce the production of these viruses. Knockdown of endogenous GADD45 modestly activates HIV-1 in the J-Lat A72 latency cell line, which suggests GADD45 proteins might play a role in maintaining HIV-1 latency.

  17. Discovery of a small molecule agonist of phosphatidylinositol 3-kinase p110α that reactivates latent HIV-1.

    PubMed

    Doyon, Geneviève; Sobolewski, Michele D; Huber, Kelly; McMahon, Deborah; Mellors, John W; Sluis-Cremer, Nicolas

    2014-01-01

    Combination antiretroviral therapy (cART) can effectively suppress HIV-1 replication, but the latent viral reservoir in resting memory CD4(+) T cells is impervious to cART and represents a major barrier to curing HIV-1 infection. Reactivation of latent HIV-1 represents a possible strategy for elimination of this reservoir. In this study we describe the discovery of 1,2,9,10-tetramethoxy-7H-dibenzo[de,g]quinolin-7-one (57704) which reactivates latent HIV-1 in several cell-line models of latency (J89GFP, U1 and ACH-2). 57704 also increased HIV-1 expression in 3 of 4 CD8(+)-depleted blood mononuclear cell preparations isolated from HIV-1-infected individuals on suppressive cART. In contrast, vorinostat increased HIV-1 expression in only 1 of the 4 donors tested. Importantly, 57704 does not induce global T cell activation. Mechanistic studies revealed that 57704 reactivates latent HIV-1 via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. 57704 was found to be an agonist of PI3K with specificity to the p110α isoform, but not the p110β, δ or γ isoforms. Taken together, our work suggests that 57704 could serve as a scaffold for the development of more potent activators of latent HIV-1. Furthermore, it highlights the involvement of the PI3K/Akt pathway in the maintenance of HIV-1 latency.

  18. HIV-1 vaccine development: constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 MAb.

    PubMed

    McGaughey, G B; Citron, M; Danzeisen, R C; Freidinger, R M; Garsky, V M; Hurni, W M; Joyce, J G; Liang, X; Miller, M; Shiver, J; Bogusky, M J

    2003-03-25

    The human immunodeficiency virus type I (HIV-1) transmembrane glycoprotein gp41 mediates viral entry through fusion of the target cellular and viral membranes. A segment of gp41 containing the sequence Glu-Leu-Asp-Lys-Trp-Ala has previously been identified as the epitope of the HIV-1 neutralizing human monoclonal antibody 2F5 (MAb 2F5). The 2F5 epitope is highly conserved among HIV-1 envelope glycoproteins. Antibodies directed at the 2F5 epitope have neutralizing effects on a broad range of laboratory-adapted HIV-1 variants and primary isolates. Recently, a crystal structure of the epitope bound to the Fab fragment of MAb 2F5 has shown that the 2F5 peptide adopts a beta-turn conformation [Pai, E. F., Klein, M. H., Chong, P., and Pedyczak, A. (2000) World Intellectual Property Organization Patent WO-00/61618]. We have designed cyclic peptides to adopt beta-turn conformations by the incorporation of a side-chain to side-chain lactam bridge between the i and i + 4 residues containing the Asp-Lys-Trp segment. Synthesis of extended, nonconstrained peptides encompassing the 2F5 epitope revealed that the 13 amino acid sequence, Glu-Leu-Leu-Glu-Leu-Asp-Lys-Trp-Ala-Ser-Leu-Trp-Asn, maximized MAb 2F5 binding. Constrained analogues of this sequence were explored to optimize 2F5 binding affinity. The solution conformations of the constrained peptides have been characterized by NMR spectroscopy and molecular modeling techniques. The results presented here demonstrate that both inclusion of the lactam constraint and extension of the 2F5 segment are necessary to elicit optimal antibody binding activity. The ability of these peptide immunogens to stimulate a high titer, peptide-specific immune response incapable of viral neutralization is discussed in regard to developing an HIV-1 vaccine designed to elicit a 2F5-like immune response. PMID:12641452

  19. Tailored enrichment strategy detects low abundant small noncoding RNAs in HIV-1 infected cells

    PubMed Central

    2012-01-01

    Background The various classes of small noncoding RNAs (sncRNAs) are important regulators of gene expression across divergent types of organisms. While a rapidly increasing number of sncRNAs has been identified over recent years, the isolation of sncRNAs of low abundance remains challenging. Virally encoded sncRNAs, particularly those of RNA viruses, can be expressed at very low levels. This is best illustrated by HIV-1 where virus encoded sncRNAs represent approximately 0.1-1.0% of all sncRNAs in HIV-1 infected cells or were found to be undetected. Thus, we applied a novel, sequence targeted enrichment strategy to capture HIV-1 derived sncRNAs in HIV-1 infected primary CD4+ T-lymphocytes and macrophages that allows a greater than 100-fold enrichment of low abundant sncRNAs. Results Eight hundred and ninety-two individual HIV-1 sncRNAs were cloned and sequenced from nine different sncRNA libraries derived from five independent experiments. These clones represent up to 90% of all sncRNA clones in the generated libraries. Two hundred and sixteen HIV-1 sncRNAs were distinguishable as unique clones. They are spread throughout the HIV-1 genome, however, forming certain clusters, and almost 10% show an antisense orientation. The length of HIV-1 sncRNAs varies between 16 and 89 nucleotides with an unexpected peak at 31 to 50 nucleotides, thus, longer than cellular microRNAs or short-interfering RNAs (siRNAs). Exemplary HIV-1 sncRNAs were also generated in cells infected with different primary HIV-1 isolates and can inhibit HIV-1 replication. Conclusions HIV-1 infected cells generate virally encoded sncRNAs, which might play a role in the HIV-1 life cycle. Furthermore, the enormous capacity to enrich low abundance sncRNAs in a sequence specific manner highly recommends our selection strategy for any type of investigation where origin or target sequences of the sought-after sncRNAs are known. PMID:22458358

  20. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress

    PubMed Central

    Rowson, Sydney A.; Harrell, Constance S.; Bekhbat, Mandakh; Gangavelli, Apoorva; Wu, Matthew J.; Kelly, Sean D.; Reddy, Renuka; Neigh, Gretchen N.

    2016-01-01

    Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was

  1. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress.

    PubMed

    Rowson, Sydney A; Harrell, Constance S; Bekhbat, Mandakh; Gangavelli, Apoorva; Wu, Matthew J; Kelly, Sean D; Reddy, Renuka; Neigh, Gretchen N

    2016-01-01

    Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was

  2. Quantitation of HIV-1 DNA with a sensitive TaqMan assay that has broad subtype specificity.

    PubMed

    van der Sluis, Renée M; van Montfort, Thijs; Centlivre, Mireille; Schopman, Nick C T; Cornelissen, Marion; Sanders, Rogier W; Berkhout, Ben; Jeeninga, Rienk E; Paxton, William A; Pollakis, Georgios

    2013-01-01

    The increasing diversity of HIV-1 isolates makes virus quantitation challenging, especially when diverse isolates co-circulate in a geographical area. Measuring the HIV-1 DNA levels in cells has become a valuable practical tool for fundamental and clinical research. A quantitative HIV-1 DNA assay was developed based on TaqMan(®) technology. Primers that target the highly conserved LTR region were designed to detect a broad array of HIV-1 variants, including viral isolates from many subtypes, with high sensitivity. Introduction of a pre-amplification step prior to the TaqMan(®) reaction allowed the specific amplification of fully reverse transcribed viral DNA. Execution of the pre-amplification step with a second primer set enables for the exclusive quantitation of the 2-LTR circular HIV-1 DNA form. PMID:23059551

  3. Citron kinase enhances ubiquitination of HIV-1 Gag protein and intracellular HIV-1 budding.

    PubMed

    Ding, Jiwei; Zhao, Jianyuan; Sun, Lei; Mi, Zeyun; Cen, Shan

    2016-09-01

    Assembly and budding of human immunodeficiency virus type 1 (HIV-1) particles is a complex process involving a number of host proteins. We have previously reported that the RhoA effector citron kinase enhances HIV-1 production. However, the underlying mechanism is not clear. In this study, we found that citron kinase interacted with HIV-1 Gag protein via its zinc finger and leucine zipper domains. Electron microscopy analysis revealed that citron kinase induced viral particle assembly in multivesicular bodies (MVBs). Citron kinase enhanced ubiquitination of HIV-1 Gag protein. Knockdown of Nedd4L, a member of the HECT ubiquitin E3 ligase family, partly decreased the ability of citron kinase to enhance HIV-1 production and reduced ubiquitination of HIV-1 Gag. Interestingly, the function of citron kinase to promote HIV-1 budding was severely impaired when endogenous ALIX was knocked down. Overexpression of the AAA-type ATPase VPS4 eliminated citron-kinase-mediated enhancement of HIV-1 production. Our results suggest that citron kinase interacts with HIV-1 Gag and enhances HIV-1 production by promoting Gag ubiquitination and inducing viral release via the MVB pathway. PMID:27339686

  4. HIV-1 RNA quantification in CRF02_AG HIV-1 infection: too easy to make mistakes.

    PubMed

    Tatarelli, Paola; Taramasso, Lucia; Di Biagio, Antonio; Sticchi, Laura; Nigro, Nicola; Barresi, Renata; Viscoli, Claudio; Bruzzone, Bianca

    2016-04-01

    The number of patients newly infected by HIV-1 non-B subtypes and circulating recombinant forms (CRFs) is increasing worldwide, including in the western countries. We report on a primary HIV-1 infection in a Caucasian patient. A routine quantitative assay (Nuclisens EasyQ HIV-1 2.0, BioMérieux SA) showed 6,700 HIV-1 RNA copies/ml. A combined antiretroviral therapy (cART) consistent with low baseline HIV-1 RNA was started. Few days later, the analysis performed with REGA HIV-1 Subtyping Tool - Version 3.0 attributed the HIV-1 sequence to the CRF02_AG recombinant form. Therefore, a second real-time PCR assay was performed, using the Versant HIV-1 RNA 1.0 Assay (kPCR) (Siemens HealthCare Diagnostics) which revealed a HIV-1 RNA of 230,000 copies/ml. Consequently, the ongoing cART was potentiated. This case suggests that the wide genetic variability of HIV-1 subtypes may affect the capability of the commonly used assays to detect and accurately quantify HIV-1 RNA in non-B subtypes and CRFs. In presence of CRFs different commercial HIV-1 RNA tests should be performed to find the most reliable for viral load quantification at the diagnosis, because it influences the choice of cART, and during the follow-up. Indeed, international guidelines for HIV-1 infection management suggest to monitor patient' HIV-RNA with the same assay over the course of treatment. As different commercial tests can be performed in the same laboratory with considerable difficulty, the laboratory should select an assay that is suitable not only for the more prevalent strain, but also for less frequent ones that, nevertheless, can occur. Then, knowing and investigating the spread of non-B strains has essential clinical and laboratory implications. PMID:27196556

  5. Characterization of a folding intermediate from HIV-1 ribonuclease H.

    PubMed Central

    Kern, G.; Handel, T.; Marqusee, S.

    1998-01-01

    The RNase H domain from HIV-1 (HIV RNase H) encodes an essential retroviral activity. Refolding of the isolated HIV RNase H domain shows a kinetic intermediate detectable by stopped-flow far UV circular dichroism and pulse-labeling H/D exchange. In this intermediate, strands 1, 4, and 5 as well as helices A and D appear to be structured. Compared to its homolog from Escherichia coli, the rate limiting step in refolding of HIV RNase H appears closer to the native state. We have modeled this kinetic intermediate using a C-terminal deletion fragment lacking helix E. Like the kinetic intermediate, this variant folds rapidly and shows a decrease in stability. We propose that inhibition of the docking of helix E to this folding intermediate may present a novel strategy for anti HIV-1 therapy. PMID:9792104

  6. Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells

    PubMed Central

    Jiang, Ai-Ping; Jiang, Jin-Feng; Wei, Ji-Fu; Guo, Ming-Gao; Qin, Yan; Guo, Qian-Qian; Ma, Li; Liu, Bao-Chi; Wang, Xiaolei; Veazey, Ronald S.

    2015-01-01

    ABSTRACT The gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4+ T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viral trans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection. IMPORTANCE In this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1 trans-infection of CD4+ T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination. PMID:26719250

  7. Drug-Induced Reactivation of Apoptosis Abrogates HIV-1 Infection

    PubMed Central

    Hanauske-Abel, Hartmut M.; Saxena, Deepti; Palumbo, Paul E.; Hanauske, Axel-Rainer; Luchessi, Augusto D.; Cambiaghi, Tavane D.; Hoque, Mainul; Spino, Michael; Gandolfi, Darlene D'Alliessi; Heller, Debra S.; Singh, Sukhwinder; Park, Myung Hee; Cracchiolo, Bernadette M.; Tricta, Fernando; Connelly, John; Popowicz, Anthony M.; Cone, Richard A.; Holland, Bart; Pe’ery, Tsafi; Mathews, Michael B.

    2013-01-01

    HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal

  8. The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor.

    PubMed

    Helfer, Markus; Koppensteiner, Herwig; Schneider, Martha; Rebensburg, Stephanie; Forcisi, Sara; Müller, Constanze; Schmitt-Kopplin, Philippe; Schindler, Michael; Brack-Werner, Ruth

    2014-01-01

    Global HIV-1 treatment would benefit greatly from safe herbal medicines with scientifically validated novel anti-HIV-1 activities. The root extract from the medicinal plant Pelargonium sidoides (PS) is licensed in Germany as the herbal medicine EPs®7630, with numerous clinical trials supporting its safety in humans. Here we provide evidence from multiple cell culture experiments that PS extract displays potent anti-HIV-1 activity. We show that PS extract protects peripheral blood mononuclear cells and macrophages from infection with various X4 and R5 tropic HIV-1 strains, including clinical isolates. Functional studies revealed that the extract from PS has a novel mode-of-action. It interferes directly with viral infectivity and blocks the attachment of HIV-1 particles to target cells, protecting them from virus entry. Analysis of the chemical footprint of anti-HIV activity indicates that HIV-1 inhibition is mediated by multiple polyphenolic compounds with low cytotoxicity and can be separated from other extract components with higher cytotoxicity. Based on our data and its excellent safety profile, we propose that PS extract represents a lead candidate for the development of a scientifically validated herbal medicine for anti-HIV-1 therapy with a mode-of-action different from and complementary to current single-molecule drugs.

  9. The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor.

    PubMed

    Helfer, Markus; Koppensteiner, Herwig; Schneider, Martha; Rebensburg, Stephanie; Forcisi, Sara; Müller, Constanze; Schmitt-Kopplin, Philippe; Schindler, Michael; Brack-Werner, Ruth

    2014-01-01

    Global HIV-1 treatment would benefit greatly from safe herbal medicines with scientifically validated novel anti-HIV-1 activities. The root extract from the medicinal plant Pelargonium sidoides (PS) is licensed in Germany as the herbal medicine EPs®7630, with numerous clinical trials supporting its safety in humans. Here we provide evidence from multiple cell culture experiments that PS extract displays potent anti-HIV-1 activity. We show that PS extract protects peripheral blood mononuclear cells and macrophages from infection with various X4 and R5 tropic HIV-1 strains, including clinical isolates. Functional studies revealed that the extract from PS has a novel mode-of-action. It interferes directly with viral infectivity and blocks the attachment of HIV-1 particles to target cells, protecting them from virus entry. Analysis of the chemical footprint of anti-HIV activity indicates that HIV-1 inhibition is mediated by multiple polyphenolic compounds with low cytotoxicity and can be separated from other extract components with higher cytotoxicity. Based on our data and its excellent safety profile, we propose that PS extract represents a lead candidate for the development of a scientifically validated herbal medicine for anti-HIV-1 therapy with a mode-of-action different from and complementary to current single-molecule drugs. PMID:24489923

  10. Anti-HIV-1 activity of eight monofloral Iranian honey types.

    PubMed

    Behbahani, Mandana

    2014-01-01

    Monofloral Iranian honeys from eight floral sources were analyzed to determine their anti-HIV-1 activities as well as their effects on lymphocyte proliferation. The Peripheral Blood Mononuclear Cells (PBMCs) used in this study were prepared from five healthy volunteers who were seronegative for HIV, HCV, HBV and TB. The anti-HIV-1 activity of eight different honeys was performed by quantitative polymerase chain reaction (PCR) assay and high pure viral nucleic acid kit. The results demonstrated that monofloral honeys from Petro selinum sativum, Nigella sativa, Citrus sinensis, Zataria multiflora, Citrus aurantium and Zizyphus mauritiana flowers had potent anti-HIV-1 activity with half maximal effective concentration (EC50) values of 37.5, 88, 70, 88, 105 and 5 µg/ml respectively. However, monofloral Iranian honeys from Astragalus gummifer and Chamaemelum nobile flowers had weak anti-HIV-1 activity. The frequency and intensity of CD4 expression on PBMCs increased in the presence of all honey types. CD19 marker were also increased after the treatment with monofloral honeys from Z. multiflora and N. sativa. The anti-HIV-1 agent in monofloral honeys from P. sativum, N. sativa, Z. multiflora and Z. mauritiana flowers was detected by spectroscopic analysis as methylglyoxal. Time of drug addition studies demonstrated that the inhibitory effect of methylglyoxal is higher on the late stage of HIV-1 infection. The result demonstrated that methylglyoxal isolated from monofloral honey types is a good candidate for preclinical evaluation of anti-HIV-1 therapies. PMID:25333699

  11. The Root Extract of the Medicinal Plant Pelargonium sidoides Is a Potent HIV-1 Attachment Inhibitor

    PubMed Central

    Helfer, Markus; Koppensteiner, Herwig; Schneider, Martha; Rebensburg, Stephanie; Forcisi, Sara; Müller, Constanze; Schmitt-Kopplin, Philippe; Schindler, Michael; Brack-Werner, Ruth

    2014-01-01

    Global HIV-1 treatment would benefit greatly from safe herbal medicines with scientifically validated novel anti-HIV-1 activities. The root extract from the medicinal plant Pelargonium sidoides (PS) is licensed in Germany as the herbal medicine EPs®7630, with numerous clinical trials supporting its safety in humans. Here we provide evidence from multiple cell culture experiments that PS extract displays potent anti-HIV-1 activity. We show that PS extract protects peripheral blood mononuclear cells and macrophages from infection with various X4 and R5 tropic HIV-1 strains, including clinical isolates. Functional studies revealed that the extract from PS has a novel mode-of-action. It interferes directly with viral infectivity and blocks the attachment of HIV-1 particles to target cells, protecting them from virus entry. Analysis of the chemical footprint of anti-HIV activity indicates that HIV-1 inhibition is mediated by multiple polyphenolic compounds with low cytotoxicity and can be separated from other extract components with higher cytotoxicity. Based on our data and its excellent safety profile, we propose that PS extract represents a lead candidate for the development of a scientifically validated herbal medicine for anti-HIV-1 therapy with a mode-of-action different from and complementary to current single-molecule drugs. PMID:24489923

  12. Substance abuse, HIV-1 and hepatitis

    PubMed Central

    Parikh, Nirzari; Nonnemacher, Michael R.; Pirrone, Vanessa; Block, Timothy; Mehta, Anand; Wigdahl, Brian

    2013-01-01

    During the course of human immunodeficiency virus type 1 (HIV-1) disease, the virus has been shown to effectively escape the immune response with the subsequent establishment of latent viral reservoirs in specific cell populations within the peripheral blood (PB) and associated lymphoid tissues, bone marrow (BM), brain, and potentially other end organs. HIV-1, along with hepatitis B and C viruses (HBV and HCV), are known to share similar routes of transmission, including intravenous drug use, blood transfusions, sexual intercourse, and perinatal exposure. Substance abuse, including the use of opioids and cocaine, is a significant risk factor for exposure to HIV-1 and the development of acquired immune deficiency syndrome, as well as HBV and HCV exposure, infection, and disease. Thus, coinfection with HIV-1 and HBV or HCV is common and may be impacted by chronic substance abuse during the course of disease. HIV-1 impacts the natural course of HBV and HCV infection by accelerating the progression of HBV/HCV-associated liver disease toward end-stage cirrhosis and quantitative depletion of the CD4+ T-cell compartment. HBV or HCV coinfection with HIV-1 is also associated with increased mortality when compared to either infection alone. This review focuses on the impact of substance abuse and coinfection with HBV and HCV in the PB, BM, and brain on the HIV-1 pathogenic process as it relates to viral pathogenesis, disease progression, and the associated immune response during the course of this complex interplay. The impact of HIV-1 and substance abuse on hepatitis virus-induced disease is also a focal point. PMID:22973853

  13. Combination genetic therapy to inhibit HIV-1.

    PubMed

    Strayer, David S; Branco, Francisco; Landré, Julien; BouHamdan, Mohamad; Shaheen, Farida; Pomerantz, Roger J

    2002-01-01

    Compared with single agents, combination antilentiviral pharmacotherapy targets multiple HIV-1 functions simultaneously, maximizing efficacy and decreasing chances of escape mutations. Combination genetic therapy could theoretically enhance efficacy similarly, but delivery of even single genes to high percentages of hematopoietic cells or their derivatives has proven problematic. Because of their high efficiency of gene delivery, we tested recombinant SV40-derived vectors (rSV40s) for this purpose. We made six rSV40s, each carrying a different transgene that targeted a different lentiviral function. We tested the ability of these constructs, individually and in double and triple combinations, to protect SupT1 human T lymphoma cells from HIV-1 challenge. Single chain antibodies (SFv) against CXCR4 and against HIV-1 reverse transcriptase (RT) and integrase (IN) were used, as were polymeric TAR decoys (PolyTAR) and a dominant-negative mutant of HIV-1 Rev (RevM10). Immunostaining showed that virtually all doubly treated cells expressed both transgenes. All transgenes individually protected from HIV-1 but, except for anti-CXCR4 SFv, their effectiveness diminished as challenge doses increased from 40 through 2500 tissue culture infectious dose(50) (TCID(50))/10(6) cells. However, all combinations of transgenes protected target cells better than individual transgenes, even from the highest challenge doses. Thus, combination gene therapies may inhibit HIV-1 better than single agents, and rSV40s may facilitate delivery of multigene therapeutics.

  14. Exosomes: Implications in HIV-1 Pathogenesis

    PubMed Central

    Madison, Marisa N.; Okeoma, Chioma M.

    2015-01-01

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission. PMID:26205405

  15. Exosomes: Implications in HIV-1 Pathogenesis.

    PubMed

    Madison, Marisa N; Okeoma, Chioma M

    2015-07-20

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission.

  16. HIV-1 transmission linkage in an HIV-1 prevention clinical trial

    SciTech Connect

    Leitner, Thomas; Campbell, Mary S; Mullins, James I; Hughes, James P; Wong, Kim G; Raugi, Dana N; Scrensen, Stefanie

    2009-01-01

    HIV-1 sequencing has been used extensively in epidemiologic and forensic studies to investigate patterns of HIV-1 transmission. However, the criteria for establishing genetic linkage between HIV-1 strains in HIV-1 prevention trials have not been formalized. The Partners in Prevention HSV/HIV Transmission Study (ClinicaITrials.gov NCT00194519) enrolled 3408 HIV-1 serodiscordant heterosexual African couples to determine the efficacy of genital herpes suppression with acyclovir in reducing HIV-1 transmission. The trial analysis required laboratory confirmation of HIV-1 linkage between enrolled partners in couples in which seroconversion occurred. Here we describe the process and results from HIV-1 sequencing studies used to perform transmission linkage determination in this clinical trial. Consensus Sanger sequencing of env (C2-V3-C3) and gag (p17-p24) genes was performed on plasma HIV-1 RNA from both partners within 3 months of seroconversion; env single molecule or pyrosequencing was also performed in some cases. For linkage, we required monophyletic clustering between HIV-1 sequences in the transmitting and seroconverting partners, and developed a Bayesian algorithm using genetic distances to evaluate the posterior probability of linkage of participants sequences. Adjudicators classified transmissions as linked, unlinked, or indeterminate. Among 151 seroconversion events, we found 108 (71.5%) linked, 40 (26.5%) unlinked, and 3 (2.0%) to have indeterminate transmissions. Nine (8.3%) were linked by consensus gag sequencing only and 8 (7.4%) required deep sequencing of env. In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner, illustrating the relevance of these methods in the design of future HIV-1 prevention trials in serodiscordant couples. A hierarchy of sequencing techniques, analysis methods, and expert adjudication contributed to the linkage

  17. Increasing HIV-1 molecular complexity among men who have sex with men in Bangkok.

    PubMed

    Leelawiwat, Wanna; Rutvisuttinunt, Wiriya; Arroyo, Miguel; Mueanpai, Famui; Kongpechsatit, Oranuch; Chonwattana, Wannee; Chaikummao, Supaporn; de Souza, Mark; vanGriensven, Frits; McNicholl, Janet M; Curlin, Marcel E

    2015-04-01

    In Thailand, new HIV-1 infections are largely concentrated in certain risk groups such as men who have sex with men (MSM), where annual incidence may be as high as 12% per year. The paucity of information on the molecular epidemiology of HIV-1 in Thai MSM limits progress in understanding the epidemic and developing new prevention methods. We evaluated HIV-1 subtypes in seroincident and seroprevalent HIV-1-infected men enrolled in the Bangkok MSM Cohort Study (BMCS) between 2006 and 2011. We characterized HIV-1 subtype in 231 seroprevalent and 194 seroincident subjects using the multihybridization assay (MHA). Apparent dual infections, recombinant strains, and isolates found to be nontypeable by MHA were further characterized by targeted genomic sequencing. Most subjects were infected with HIV-1 CRF01_AE (82%), followed by infections with recombinants (11%, primarily CRF01_AE/B recombinants), subtype B (5%), and dual infections (2%). More than 11 distinct chimeric patterns were observed among CRF01B_AE/B recombinants, most involving recombination within integrase. A significant increase in the proportion of nontypeable strains was observed among seroincident MSM between 2006 and 2011. CRF01_AE and subtype B were the most and least common infecting strains, respectively. The predominance of CRF01_AE among HIV-1 infections in Thai MSM participating in the BMCS parallels trends observed in Thai heterosexuals and injecting drug users. The presence of complex recombinants and a significant rise in nontypeable strains suggest ongoing changes in the genetic makeup of the HIV-1 epidemic in Thailand, which may pose challenges for HIV-1 prevention efforts and vaccine development.

  18. Genetic and phylogenetic evolution of HIV-1 in a low subtype heterogeneity epidemic: the Italian example

    PubMed Central

    Buonaguro, Luigi; Tagliamonte, Maria; Tornesello, Maria Lina; Buonaguro, Franco M

    2007-01-01

    The Human Immunodeficiency Virus type 1 (HIV-1) is classified into genetic groups, subtypes and sub-subtypes which show a specific geographic distribution pattern. The HIV-1 epidemic in Italy, as in most of the Western Countries, has traditionally affected the Intra-venous drug user (IDU) and Homosexual (Homo) risk groups and has been sustained by the genetic B subtype. In the last years, however, the HIV-1 transmission rate among heterosexuals has dramatically increased, becoming the prevalent transmission route. In fact, while the traditional risk groups have high levels of knowledge and avoid high-risk practices, the heterosexuals do not sufficiently perceive the risk of HIV-1 infection. This misperception, linked to the growing number of immigrants from non-Western Countries, where non-B clades and circulating recombinant forms (CRFs) are prevalent, is progressively introducing HIV-1 variants of non-B subtype in the Italian epidemic. This is in agreement with reports from other Western European Countries. In this context, the Italian HIV-1 epidemic is still characterized by low subtype heterogeneity and represents a paradigmatic example of the European situation. The continuous molecular evolution of the B subtype HIV-1 isolates, characteristic of a long-lasting epidemic, together with the introduction of new subtypes as well as recombinant forms may have significant implications for diagnostic, treatment, and vaccine development. The study and monitoring of the genetic evolution of the HIV-1 represent, therefore, an essential strategy for controlling the local as well as global HIV-1 epidemic and for developing efficient preventive and therapeutic strategies. PMID:17517125

  19. Increasing HIV-1 molecular complexity among men who have sex with men in Bangkok.

    PubMed

    Leelawiwat, Wanna; Rutvisuttinunt, Wiriya; Arroyo, Miguel; Mueanpai, Famui; Kongpechsatit, Oranuch; Chonwattana, Wannee; Chaikummao, Supaporn; de Souza, Mark; vanGriensven, Frits; McNicholl, Janet M; Curlin, Marcel E

    2015-04-01

    In Thailand, new HIV-1 infections are largely concentrated in certain risk groups such as men who have sex with men (MSM), where annual incidence may be as high as 12% per year. The paucity of information on the molecular epidemiology of HIV-1 in Thai MSM limits progress in understanding the epidemic and developing new prevention methods. We evaluated HIV-1 subtypes in seroincident and seroprevalent HIV-1-infected men enrolled in the Bangkok MSM Cohort Study (BMCS) between 2006 and 2011. We characterized HIV-1 subtype in 231 seroprevalent and 194 seroincident subjects using the multihybridization assay (MHA). Apparent dual infections, recombinant strains, and isolates found to be nontypeable by MHA were further characterized by targeted genomic sequencing. Most subjects were infected with HIV-1 CRF01_AE (82%), followed by infections with recombinants (11%, primarily CRF01_AE/B recombinants), subtype B (5%), and dual infections (2%). More than 11 distinct chimeric patterns were observed among CRF01B_AE/B recombinants, most involving recombination within integrase. A significant increase in the proportion of nontypeable strains was observed among seroincident MSM between 2006 and 2011. CRF01_AE and subtype B were the most and least common infecting strains, respectively. The predominance of CRF01_AE among HIV-1 infections in Thai MSM participating in the BMCS parallels trends observed in Thai heterosexuals and injecting drug users. The presence of complex recombinants and a significant rise in nontypeable strains suggest ongoing changes in the genetic makeup of the HIV-1 epidemic in Thailand, which may pose challenges for HIV-1 prevention efforts and vaccine development. PMID:25366819

  20. Anti HIV-1 flavonoid glycosides from Ochna integerrima.

    PubMed

    Reutrakul, Vichai; Ningnuek, Niwat; Pohmakotr, Manat; Yoosook, Chalobon; Napaswad, Chanita; Kasisit, Jitra; Santisuk, Thawatchai; Tuchinda, Patoomratana

    2007-06-01

    Bioassay-guided fractionation of the anti-HIV-1 active EtOAc extract from leaves and twigs of Ochna integerrima led to the isolation of five new flavonoid glycosides 1 - 5, five known flavonoids 6 - 10, and two known flavonoid glycosides 11 and 12. Structures were determined based on spectroscopic analyses. 6- gamma, gamma-Dimethylallyldihydrokaempferol 7- O- beta-D-glucoside (1), 6-gamma, gamma-dimethylallylquercetin 7- O- beta- D-glucoside (3), 6-(3-hydroxy-3-methylbutyl)taxifolin 7- O- beta-D-glucoside (4), 6-(3-hydroxy-3-methylbutyl)quercetin 7- O-beta-D-glucoside (5), and 6-gamma, gamma-dimethylallyltaxifolin 7-O-beta-D-glucoside (11) showed anti-HIV-1 activities in the syncytium assay using the (Delta Tat/rev)MC99 virus and the 1A2 cell line system with EC(50) values ranging from 14.0 - 102.4 microg/mL. Furthermore, ochnaflavone 7''-O-methyl ether (7) and 2'', 3''-dihydroochnaflavone 7''-O-methyl ether (8) were very active; they exerted activities in the syncytium assay with EC(50) values of 2.0 and 0.9 microg/mL, respectively, and likewise inhibited HIV-1 reverse transcriptase (RT) with IC(50) values of 2.0 and 2.4 microg/mL, respectively.

  1. Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells

    PubMed Central

    Braaten, Douglas; Luban, Jeremy

    2001-01-01

    The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein binds most members of the cyclophilin family of peptidyl-prolyl isomerases. Of 15 known human cyclophilins, cyclophilin A (CypA) has been the focus of investigation because it was detected in HIV-1 virions. To determine whether CypA promotes HIV-1 replication, we deleted the gene encoding CypA (PPIA) in human CD4+ T cells by homologous recombination. HIV-1 replication in PPIA–/– cells was decreased and not inhibited further by cyclosporin or gag mutations that disrupt Gag’s interaction with cyclophilins, indicating that no other cyclophilin family members promote HIV-1 replication. The defective replication phenotype was specific for wild-type HIV-1 since HIV-2/SIV isolates, as well as HIV-1 bearing a gag mutation that confers cyclosporin resistance, replicated the same in PPIA+/+ and PPIA–/– cells. Stable re-expression of CypA in PPIA–/– cells restored HIV-1 replication to an extent that correlated with steady-state levels of CypA. Finally, virions from PPIA–/– cells possessed no obvious biochemical abnormalities but were less infectious than virions from wild-type cells. These data formally demonstrate that CypA regulates the infectivity of HIV-1 virions. PMID:11250896

  2. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii.

    PubMed

    Dinesh, Subramaniam; Menon, Thangam; Hanna, Luke E; Suresh, V; Sathuvan, M; Manikannan, M

    2016-01-01

    Sargassum swartzii, a marine brown algae with wide range of biological properties belongs to the family Sargassaceae. Bioactive fucoidan fractions (CFF, FF1 and FF2) were isolated from S. swartzii and characterized by linear gradient anion-exchange chromatography and FT-IR. The characterized fucoidan fractions contained mainly sugars, sulfate and uronic acid. In the present study, anti-HIV-1 property of the fucoidan fractions was investigated. Fraction FF2 was found to exhibit significant anti-HIV-1 activity at concentrations of 1.56 and 6.25 μg/ml as observed by >50% reduction in HIV-1 p24 antigen levels and reverse transcriptase activity. Fucoidan fractions have no cytotoxic effects on PBMCs at the concentration range of 1.56-1000 μg/ml. These results suggest that fucoidan fractions could have inhibitory activity against HIV and has potential as an anti-HIV-1 agent.

  3. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii.

    PubMed

    Dinesh, Subramaniam; Menon, Thangam; Hanna, Luke E; Suresh, V; Sathuvan, M; Manikannan, M

    2016-01-01

    Sargassum swartzii, a marine brown algae with wide range of biological properties belongs to the family Sargassaceae. Bioactive fucoidan fractions (CFF, FF1 and FF2) were isolated from S. swartzii and characterized by linear gradient anion-exchange chromatography and FT-IR. The characterized fucoidan fractions contained mainly sugars, sulfate and uronic acid. In the present study, anti-HIV-1 property of the fucoidan fractions was investigated. Fraction FF2 was found to exhibit significant anti-HIV-1 activity at concentrations of 1.56 and 6.25 μg/ml as observed by >50% reduction in HIV-1 p24 antigen levels and reverse transcriptase activity. Fucoidan fractions have no cytotoxic effects on PBMCs at the concentration range of 1.56-1000 μg/ml. These results suggest that fucoidan fractions could have inhibitory activity against HIV and has potential as an anti-HIV-1 agent. PMID:26472515

  4. Longitudinal studies on maternal HIV-1 variants by biological phenotyping, sequence analysis and viral load.

    PubMed

    Renta, J Y; Cadilla, C L; Vega, M E; Hillyer, G V; Estrada, C; Jiménez, E; Abreu, E; Méndez, I; Gandía, J; Meléndez-Guerrero, L M

    1997-11-01

    In this study, the HIV-1 variant viruses from ten pregnant women and their infants were isolated and characterized longitudinally in order to determine the role that viral envelope (gp120-V3 loop) gene variation and viral tropism play in vertical transmission. Biological phenotyping of each HIV variant was accomplished by growth in MT-2, and macrophages from healthy and non-HIV-infected donors. Genetic characterization of the variants was accomplished by DNA sequence analysis. All the women enrolled in this study received ZDV therapy. Virus was cultured from eight out of ten env V3-PCR positive mothers. HIV-1 isolates were all non-syncitium inducing variants. None of the mothers were found to transmit HIV, as determined by DNA PCR and quantitative co-cultures on their infants which were seronegative for HIV-1 through one year after birth. Viral cultures from infant blood samples were negative and infants were all healthy. However, nested env V3-PCR detected proviral DNA in five out of ten infants. In contrast, conventional gag-PCR was negative in the same five infants. Sequences of the five maternal-infant pairs were different, suggesting unique infant HIV-1 variants. The three highest maternal viral load values corresponded to infants that were env V3-PCR positive. These results suggest that HIV-1 particles are transmitted from ZDV-treated mothers to infants. Infant follow up is recommended to determine if HIV-1 has been inhibited by the immune system of the infants.

  5. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression

    PubMed Central

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N6-methyladenosine (m6A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1–3) bind to m6A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1–3 proteins recognize m6A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4+ T-cells. We further mapped the YTHDF1–3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1–3 in cells had the opposite effects. Moreover, silencing the m6A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m6A erasers increased Gag expression. Our findings suggest an important role of m6A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. DOI: http://dx.doi.org/10.7554/eLife.15528.001 PMID:27371828

  6. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules

    PubMed Central

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S. Y.

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This “shock” approach is then followed by “kill” of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  7. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    PubMed

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells.

  8. N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression.

    PubMed

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N(6)-methyladenosine (m(6)A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m(6)A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1-3) bind to m(6)A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1-3 proteins recognize m(6)A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4(+) T-cells. We further mapped the YTHDF1-3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1-3 in cells had the opposite effects. Moreover, silencing the m(6)A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m(6)A erasers increased Gag expression. Our findings suggest an important role of m(6)A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. PMID:27371828

  9. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    PubMed

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  10. Herpes simplex virus type-2 stimulates HIV-1 replication in cervical tissues: implications for HIV-1 transmission and efficacy of anti-HIV-1 microbicides.

    PubMed

    Rollenhagen, C; Lathrop, M J; Macura, S L; Doncel, G F; Asin, S N

    2014-09-01

    Herpes Simplex virus Type-2 (HSV-2) increases the risk of HIV-1 acquisition, yet the mechanism for this viral pathogen to regulate the susceptibility of the cervicovaginal mucosa to HIV-1 is virtually unknown. Using ex vivo human ectocervical tissue models, we report greater levels of HIV-1 reverse transcription, DNA integration, RNA expression, and virions release in HIV-1/HSV-2 co-infected tissues compared with HIV-1 only infected tissues (P<0.05). Enhanced HIV-1 replication was associated with increased CD4, CCR5, and CD38 transcription (P<0.05) and increased number of CD4(+)/CCR5(+)/CD38(+) T cells in HIV-1/HSV-2 co-infected tissues compared with tissues infected with HIV-1 alone. Tenofovir (TFV) 1% gel, the leading microbicide candidate, demonstrated only partial protection against HIV-1, when applied vaginally before and after sexual intercourse. It is possible that mucosal inflammation, in particular that induced by HSV-2 infection, may have decreased TFV efficacy. HSV-2 upregulated the number of HIV-1-infected cells and elevated the concentration of TFV needed to decrease HIV-1 infection. Similarly, only high concentrations of TFV inhibited HSV-2 replication in HIV-1/HSV-2-infected tissues. Thus, HSV-2 co-infection and mucosal immune cell activation should be taken into consideration when designing preventative strategies for sexual transmission of HIV-1.

  11. Platelets and erythrocyte-bound platelets bind infectious HIV-1 in plasma of chronically infected patients.

    PubMed

    Beck, Zoltan; Jagodzinski, Linda L; Eller, Michael A; Thelian, Doris; Matyas, Gary R; Kunz, Anjali N; Alving, Carl R

    2013-01-01

    Chronic HIV-1 infection is associated with persistent viremia in most patients, but it remains unclear how free virus may survive the potential hostile effects of plasma. We investigated whether sites might exist on the surfaces of circulating blood cells for protection of infectious HIV-1 particles. Red blood cells (RBC) either from blood of uninfected normal individuals, or from blood obtained without EDTA from chronically infected HIV-1 patients, invariably contained a small number of RBC having attached platelets as determined by flow cytometry, light microscopy, and immunofluorescence microscopy. After mixing normal RBC with platelet-rich plasma, discrete populations of RBC, platelets, and complexes of platelets attached to RBC were purified by fluorescence-activated cell sorting. Upon incubation of purified cells or platelets with HIV-1 followed by washing and co-incubation with CD4-positive peripheral blood mononuclear cells (PBMC), platelets, and platelet-RBC complexes, but not platelet-free RBC, caused infection of PBMC. Infection was prevented by pre-treating the platelet-RBC complexes with EDTA. Plasma and RBC (comprising a RBC/platelet-RBC mixture) from chronically infected patients with low viral loads were also co-incubated with PBMC ex vivo to determine the presence of infectious HIV-1. All freshly isolated plasmas from the HIV-1-infected donors, obtained in the absence of anticoagulant, were noninfectious. Interestingly, the RBC from most of the patients caused cell-cell infection of PBMC that was prevented by stripping the RBC with EDTA. A monoclonal antibody to DC-SIGN partially inhibited cell-cell HIV-1 infection of PBMC by normal RBC pre-incubated with platelets and HIV-1. We conclude: (a) platelet-free EDTA-free plasma from chronically infected HIV-1 patients, although containing viral RNA, is an environment that lacks detectable infectious HIV-1; (b) platelets and platelet-RBC complexes, but not purified RBC, bind infectious HIV-1; (c) DC

  12. HIV-1 Genetic Variability and Clinical Implications

    PubMed Central

    Santoro, Maria Mercedes; Perno, Carlo Federico

    2013-01-01

    Despite advances in antiretroviral therapy that have revolutionized HIV disease management, effective control of the HIV infection pandemic remains elusive. Beyond the classic non-B endemic areas, HIV-1 non-B subtype infections are sharply increasing in previous subtype B homogeneous areas such as Europe and North America. As already known, several studies have shown that, among non-B subtypes, subtypes C and D were found to be more aggressive in terms of disease progression. Luckily, the response to antiretrovirals against HIV-1 seems to be similar among different subtypes, but these results are mainly based on small or poorly designed studies. On the other hand, differences in rates of acquisition of resistance among non-B subtypes are already being observed. This different propensity, beyond the type of treatment regimens used, as well as access to viral load testing in non-B endemic areas seems to be due to HIV-1 clade specific peculiarities. Indeed, some non-B subtypes are proved to be more prone to develop resistance compared to B subtype. This phenomenon can be related to the presence of subtype-specific polymorphisms, different codon usage, and/or subtype-specific RNA templates. This review aims to provide a complete picture of HIV-1 genetic diversity and its implications for HIV-1 disease spread, effectiveness of therapies, and drug resistance development. PMID:23844315

  13. The hunt for HIV-1 integrase inhibitors.

    PubMed

    Lataillade, Max; Kozal, Michael J

    2006-07-01

    Currently, there are three distinct mechanistic classes of antiretrovirals: inhibitors of the HIV- 1 reverse transcriptase and protease enzymes and inhibitors of HIV entry, including receptor and coreceptor binding and cell fusion. A new drug class that inhibits the HIV-1 integrase enzyme (IN) is in development and may soon be available in the clinic. IN is an attractive drug target because it is essential for a stable and productive HIV-1 infection and there is no mammalian homologue of IN. Inhibitors of integrase enzyme (INI) block the integration of viral double-stranded DNA into the host cell's chromosomal DNA. HIV-1 integration has many potential steps that can be inhibited and several new compounds that target specific integration steps have been identified by drug developers. Recently, two INIs, GS-9137 and MK-0518, demonstrated promising early clinical trial results and have been advanced into later stage trials. In this review, we describe how IN facilitates HIV-1 integration, the needed enzyme cofactors, and the resultant byproducts created during integration. Furthermore, we review the different INIs under development, their mechanism of actions, site of IN inhibition, potency, resistance patterns, and discuss the early clinical trial results.

  14. Restriction Factors in HIV-1 Disease Progression.

    PubMed

    Merindol, Natacha; Berthoux, Lionel

    2015-01-01

    About 35 million people worldwide were living with HIV-1 at the end of 2013 and over 25 million have already died of AIDS. AIDS patients show high variability in the speed of disease progression in the absence of treatment. While certain immunological traits have been shown to correlate with accelerated or slowed progression in some subjects, including slow progressors, factors controlling HIV-1 replication and disease kinetics remain largely enigmatic. The importance of T lymphocytes and of protective HLA-alleles is undeniable, but not sufficient to explain every attenuated phenotype. A thorough understanding of HIV-1 infection control in these patient subsets may help the development of novel strategies for treatment and prevention. Restriction factors are type I interferon-induced specialized cellular proteins that block viruses at different steps of their life cycle. TRIM5α, Mx2/MxB, TRIM22/Staf50, SAMHD1, p21/CDKN1, tetherin/BST2/CD137, APOBEC3G and APOBEC3F have all been proposed to inhibit HIV-1, often with gene variant- or cellular context-specificity. Recent evidence highlights their possible implication in AIDS disease progression. In this review, we depict their restrictive activity against HIV-1 and recapitulate the latest data on their potential role in vivo, in both normal and slow progressors.

  15. Population genomics of intrapatient HIV-1 evolution.

    PubMed

    Zanini, Fabio; Brodin, Johanna; Thebo, Lina; Lanz, Christa; Bratt, Göran; Albert, Jan; Neher, Richard A

    2015-01-01

    Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100 bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity. PMID:26652000

  16. Assessment of mucosal immunity to HIV-1.

    PubMed

    Jespers, Vicky; Harandi, Ali M; Hinkula, Jorma; Medaglini, Donata; Le Grand, Roger; Stahl-Hennig, Christiane; Bogers, Willy; El Habib, Raphaelle; Wegmann, Frank; Fraser, Carol; Cranage, Martin; Shattock, Robin J; Spetz, Anna-Lena

    2010-04-01

    A key gap in the development and evaluation of HIV-1 vaccines is insufficient knowledge with regard to sampling techniques and assessment of mucosal immune responses required for early prevention and inhibition of viral dissemination. In an attempt to start bridging this gap, the EUROPRISE network of scientists working on HIV-1 vaccine and microbicide research organized a workshop with the aim to review the types of mucosal responses/biomarkers currently measured in mucosal immunology and to define how the mucosal responses/biomarkers are measured and/or the assays and sampling methods used. The Workshop addressed two critical questions: first whether, with current knowledge, it would be possible to define a consensus set of mucosal sampling methods to facilitate cross-species comparisons and ensure standardized implementation in clinical trials; second to determine the remaining challenges (technical and logistical) and their possible solutions for assessing mucosal responses to HIV-1 vaccines. PMID:20370549

  17. Population genomics of intrapatient HIV-1 evolution.

    PubMed

    Zanini, Fabio; Brodin, Johanna; Thebo, Lina; Lanz, Christa; Bratt, Göran; Albert, Jan; Neher, Richard A

    2015-01-01

    Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100 bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity.

  18. Memory CD4(+) T cells are the earliest detectable human immunodeficiency virus type 1 (HIV-1)-infected cells in the female genital mucosal tissue during HIV-1 transmission in an organ culture system.

    PubMed

    Gupta, Phalguni; Collins, Kelly B; Ratner, Deena; Watkins, Simon; Naus, Gregory J; Landers, Daniel V; Patterson, Bruce K

    2002-10-01

    The virologic and cellular factors that are involved in transmission of human immunodeficiency virus type 1 (HIV-1) across the female genital tissue are poorly understood. We have recently developed a human cervical tissue-derived organ culture model to study heterosexual transmission of HIV-1 that mimics the in vivo situation. Using this model we investigated the role of phenotypic characteristics of HIV-1 and identified the cell types that are first infected during transmission. Our data indicate that the cell-free R5 HIV-1 was more efficiently transmitted than cell-free X4 HIV-1. Cell-free and cell-associated HIV-1 had comparable transmission efficiency regardless of whether the virus was of R5 or X4 type. We have demonstrated that memory CD4(+) T cells and not Langerhans cells were the first HIV-1 RNA-positive cells detected at the epithelial-submucosal junction 6 h after virus exposure. Multicolor laser confocal microscopy demonstrated a globular distribution of HIV-1 gag-pol mRNA in the cytoplasm, and the distribution of CD4 and the CD45RO isoform was irregular on the cellular membrane. At 96 h postinoculation, in addition to memory CD4(+) T cells, HIV-1 RNA-positive Langerhans cells and macrophages were also detected. The identification of CD4(+) T cells in the tissue at 6 h was confirmed by flow cytometric simultaneous immunophenotyping and ultrasensitive fluorescence in situ hybridization assay on immune cells isolated from disaggregated tissue. Furthermore, PMPA [9-[2-(phosphonomethoxy)propyl] adenine], an antiretroviral compound, and UC781, a microbicide, inhibited HIV-1 transmission across the mucosa, indicating the utility of the organ culture to screen topical microbicides for their ability to block sexual transmission of HIV-1.

  19. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  20. Novel vaccine vectors for HIV-1

    PubMed Central

    Picker, Louis J.

    2014-01-01

    The ultimate solution to the global HIV-1 epidemic will probably require the development of a safe and effective vaccine. Multiple vaccine platforms have been evaluated in both preclinical and clinical trials, but, given the disappointing results of the clinical efficacy studies so far, novel vaccine approaches are needed. In this Opinion article, we discuss the scientific basis and clinical potential of novel adenovirus and cytomegalovirus vaccine vectors for HIV-1 as two contrasting, but potentially complementary, vector approaches. Both of these vector platforms have demonstrated partial protection against stringent simian immunodeficiency virus challenges in rhesus monkeys using different immunological mechanisms. PMID:25296195

  1. HIV-1 Protease: Structure, Dynamics and Inhibition

    SciTech Connect

    Louis, John M.; Ishima, R.; Torchia, D.A.; Weber, Irene T.

    2008-06-03

    The HIV-1 protease is synthesized as part of a large Gag-Pol precursor protein. It is responsible for its own release from the precursor and the processing of the Gag and Gag-Pol polyproteins into the mature structural and functional proteins required for virus maturation. Because of its indispensable role, the mature HIV-1 protease dimer has proven to be a successful target for the development of antiviral agents. In the last 5 years, a major emphasis in protease research has been to improve inhibitor design and treatment regimens.

  2. Evidence of at Least Two Introductions of HIV-1 in the Amerindian Warao Population from Venezuela

    PubMed Central

    Rangel, Héctor R.; Maes, Mailis; Villalba, Julian; Sulbarán, Yoneira; de Waard, Jacobus H.; Bello, Gonzalo; Pujol, Flor H.

    2012-01-01

    Background The Venezuelan Amerindians were, until recently, free of human immunodeficiency virus (HIV) infection. However, in 2007, HIV-1 infection was detected for the first time in the Warao Amerindian population living in the Eastern part of Venezuela, in the delta of the Orinoco river. The aim of this study was to analyze the genetic diversity of the HIV-1 circulating in this population. Methodology/Principal Findings The pol genomic region was sequenced for 16 HIV-1 isolates and for some of them, sequences from env, vif and nef genomic regions were obtained. All HIV-1 isolates were classified as subtype B, with exception of one that was classified as subtype C. The 15 subtype B isolates exhibited a high degree of genetic similarity and formed a highly supported monophyletic cluster in each genomic region analyzed. Evolutionary analyses of the pol genomic region indicated that the date of the most recent common ancestor of the Waraos subtype B clade dates back to the late 1990s. Conclusions/Significance At least two independent introductions of HIV-1 have occurred in the Warao Amerindians from Venezuela. The HIV-1 subtype B was successfully established and got disseminated in the community, while no evidence of local dissemination of the HIV-1 subtype C was detected in this study. These results warrant further surveys to evaluate the burden of this disease, which can be particularly devastating in this Amerindian population, with a high prevalence of tuberculosis, hepatitis B, among other infectious diseases, and with limited access to primary health care. PMID:22808212

  3. Monocytotropic human immunodeficiency virus type 1 (HIV-1) variants detectable in all stages of HIV-1 infection lack T-cell line tropism and syncytium-inducing ability in primary T-cell culture.

    PubMed Central

    Schuitemaker, H; Kootstra, N A; de Goede, R E; de Wolf, F; Miedema, F; Tersmette, M

    1991-01-01

    We previously demonstrated a correlation between the presence of syncytium-inducing (SI) human immunodeficiency virus type 1 (HIV-1) variants showing tropism for cell line H9 and the occurrence of rapid CD4 cell decline and progression to AIDS. In contrast, in stable asymptomatic individuals, we detected only isolates with low replication rates that were non-syncytium-inducing (NSI) and nontropic for the H9 cell line. Here, we investigated the monocytotropism of established HIV-1 isolates with a panel of isolates and with biological HIV-1 clones with distinct phenotypes. Moreover, the prevalence and biological phenotypes of monocytotropic HIV-1 variants in the course of HIV-1 infection were analyzed in comparative primary isolation studies on peripheral blood lymphocytes (PBL) and monocyte-derived macrophages (MDM). In cell-free infection studies with MDM from eight blood donors, 13 of 17 NSI isolates but only 4 of 14 SI isolates were able to infect MDM. NSI isolates also infected significantly more different donors than SI variants (median, 3 of 8 versus 0 of 8). This enhanced monocytotropism of NSI isolates was confirmed in experiments with biological HIV-1 clones with distinct phenotypes recovered from the same donor. To investigate the prevalence and biological phenotypes of monocytotropic variants in different stages of HIV-1 infection, sequential isolates from peripheral blood mononuclear cell samples from nine asymptomatic individuals, five of whom progressed to AIDS and seven of whom had a known time of seroconversion, were recovered by cocultivation with both PBL and MDM. Monocytotropic variants were obtained from 37 of 42 time points. All monocytotropic variants were NSI in PBL culture and non-T-cell-line tropic, even when SI, T-cell-line-tropic HIV-1 variants could be recovered from the same patient sample by cocultivation with PBL. We conclude that monocytotropic HIV-1 variants mostly have an NSI phenotype in PBL and, in contrast to SI variants, are

  4. Calculating HIV-1 infectious titre using a virtual TCID(50) method.

    PubMed

    Gao, Yong; Nankya, Immaculate; Abraha, Awet; Troyer, Ryan M; Nelson, Kenneth N; Rubio, Andrea; Arts, Eric J

    2009-01-01

    Studies of HIV-1 replication kinetics and fitness require an accurate determination of the level of infectious HIV-1 present in virus stocks. The standard technique for measuring the level of replication-competent infectious virus in culture supernatants or patient samples is the tissue culture dose for 50% infectivity (TCID(50)), which provides an accurate assessment of the level of infectious HIV-1. However, it is a time-consuming technique which typically takes two or more weeks to complete and requires PHA-stimulated PBMC from HIV-1 seronegative donors or an appropriate cell line. Thus rapid, cell-free surrogate measures for TCID(50) are desirable. Here, we introduce the virtual TCID(50) technique: a new cell-free method estimating a surrogate of infectious titer by comparing the reverse transcriptase activity in virus stock to that of reference viruses with a known TCID(50) value. We have demonstrated that the virtual TCID(50) obtained through this technique is comparable to the actual infectious TCID(50). This method greatly simplifies the process of accurate HIV-1 titration and is particularly beneficial for studies which require titration of large number of HIV-1 isolates.

  5. An efficient procedure for the expression and purification of HIV-1 protease from inclusion bodies.

    PubMed

    Nguyen, Hong-Loan Thi; Nguyen, Thuy Thi; Vu, Quy Thi; Le, Hang Thi; Pham, Yen; Trinh, Phuong Le; Bui, Thuan Phuong; Phan, Tuan-Nghia

    2015-12-01

    Several studies have focused on HIV-1 protease for developing drugs for treating AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. However, large-scale expression and purification of this enzyme is difficult mainly because of its low expression and solubility. In this study, we constructed 9 recombinant plasmids containing a sequence encoding HIV-1 protease along with different fusion tags and examined the expression of the enzyme from these plasmids. Of the 9 plasmids, pET32a(+) plasmid containing the HIV-1 protease-encoding sequence along with sequences encoding an autocleavage site GTVSFNF at the N-terminus and TEV plus 6× His tag at the C-terminus showed the highest expression of the enzyme and was selected for further analysis. The recombinant protein was isolated from inclusion bodies by using 2 tandem Q- and Ni-Sepharose columns. SDS-PAGE of the obtained HIV-1 protease produced a single band of approximately 13 kDa. The enzyme was recovered efficiently (4 mg protein/L of cell culture) and had high specific activity of 1190 nmol min(-1) mg(-1) at an optimal pH of 4.7 and optimal temperature of 37 °C. This procedure for expressing and purifying HIV-1 protease is now being scaled up to produce the enzyme on a large scale for its application.

  6. Prognostic value of a CCR5 defective allele in pediatric HIV-1 infection.

    PubMed Central

    Romiti, M. L.; Colognesi, C.; Cancrini, C.; Mas, A.; Berrino, M.; Salvatori, F.; Orlandi, P.; Jansson, M.; Palomba, E.; Plebani, A.; Bertran, J. M.; Hernandez, M.; de Martino, M.; Amoroso, A.; Tovo, P. A.; Rossi, P.; Espanol, T.; Scarlatti, G.

    2000-01-01

    BACKGROUND: A deletion of 32 base pairs in the CCR5 gene (delta32 CCR5) has been linked to resistance to HIV-1 infection in exposed adults and to the delay of disease progression in infected adults. MATERIALS AND METHODS: To determine the role of delta32 CCR5 in disease progression of HIV-1 infected children born to seropositive mothers, we studied a polymerase chain reaction in 301 HIV-1 infected, 262 HIV-1 exposed-uninfected and 47 HIV-1 unexposed-uninfected children of Spanish and Italian origin. Infected children were further divided into two groups according to their rate of HIV-1 disease progression: rapid progressors who developed severe clinical and/or immunological conditions within the second year of life, and delayed progressors with any other evolution of disease. Among the latter were the long-term, non-progressors (LTNP) who presented with mild or no symptoms of HIV-1 infection above 8 years of age. Viral phenotype was studied for 45 delayed progressors. RESULTS: No correlation was found between delta32 CCR5 and mother-to-child transmission of HIV-1. However, the frequency of the deletion was substantially higher in LTNP, compared with delayed (p = 0.019) and rapid progressors (p = 0.0003). In children carrying the delta32 CCRS mutation, the presence of MT-2 tropic virus isolate was associated with a severe immune suppression (p = 0.028); whereas, the presence of MT-2 negative viruses correlated with LTNP (p = 0.010). CONCLUSIONS: Given the rapidity and simplicity of the assay, the delta32 CCR5 mutation may be a useful predictive marker to identify children with delayed disease progression who, consequently, may not require immediate antiretroviral treatment. PMID:10803406

  7. In vitro anti-HIV-1 activity of salicylidene acylhydrazide compounds.

    PubMed

    Forthal, Donald N; Phan, Tran B; Slepenkin, Anatoly V; Landucci, Gary; Chu, Hencelyn; Elofsson, Mikael; Peterson, Ellena

    2012-10-01

    Salicylidene acylhydrazide compounds have been shown to inhibit bacterial pathogens, including Chlamydia and Neisseria gonorrhoeae. If such compounds could also target HIV-1, their potential use as topical microbicides to prevent sexually transmitted infections would be considerable. In this study, the in vitro anti-HIV-1 activity, cytotoxicity and mechanism of action of several salicylidene acylhydrazides were determined. Inhibitory activity was assessed using TZM-bl cells and primary peripheral blood mononuclear cells (PBMCs) as targets for HIV-1 infection. Antiviral activity was measured against cell-free and cell-associated virus and in vaginal fluid and semen simulants. Since the antibacterial activity of salicylidene acylhydrazides is reversible by Fe(2+), the ability of Fe(2+) and other cations to reverse the anti-HIV-1 activity of the compounds was determined. Real-time PCR was also employed to determine the stage affected in the HIV-1 replication cycle. Four compounds with 50% inhibitory concentrations against HIV-1 of 1-7 μM were identified. In vitro toxicity varied but was generally limited. Activity was similar against three R5 clade B primary isolates and whether the target for virus replication was TZM-bl cells or PBMCs. Compounds inhibited cell-free and cell-associated virus and were active in vaginal fluid and semen simulants. Fe(2+), but not other cations, reversed the anti-HIV-1 effect. Finally, the inhibitory effect of the compounds occurred at a post-integration step. In conclusion, salicylidene acylhydrazides were identified with in vitro anti-HIV-1 activity in the micromolar range. The activity of these compounds against other sexually transmitted pathogens makes them potential candidates to formulate for use as a broad-spectrum topical genital microbicide. PMID:22819150

  8. Novel Assays for Measurement of Total Cell-Associated HIV-1 DNA and RNA

    PubMed Central

    Aga, Evgenia; Cillo, Anthony R.; Yates, Aarika L.; Besson, Guillaume; Fyne, Elizabeth; Koontz, Dianna L.; Jennings, Cheryl; Zheng, Lu; Mellors, John W.

    2016-01-01

    Although a number of PCR-based quantitative assays for measuring HIV-1 persistence during suppressive antiretroviral therapy (ART) have been reported, a simple, sensitive, reproducible method is needed for application to large clinical trials. We developed novel quantitative PCR assays for cell-associated (CA) HIV-1 DNA and RNA, targeting a highly conserved region in HIV-1 pol, with sensitivities of 3 to 5 copies/1 million cells. We evaluated the performance characteristics of the assays using peripheral blood mononuclear cells (PBMCs) from 5 viremic patients and 20 patients receiving effective ART. Total and resting CD4+ T cells were isolated from a subset of patients and tested for comparison with PBMCs. The estimated standard deviations including interassay variability and intra-assay variability of the assays were modest, i.e., 0.15 and 0.10 log10 copies/106 PBMCs, respectively, for CA HIV-1 DNA and 0.40 and 0.19 log10 copies/106 PBMCs for CA HIV-1 RNA. Testing of longitudinally obtained PBMC samples showed little variation for either viremic patients (median fold differences of 0.80 and 0.88 for CA HIV-1 DNA and RNA, respectively) or virologically suppressed patients (median fold differences of 1.14 and 0.97, respectively). CA HIV-1 DNA and RNA levels were strongly correlated (r = 0.77 to 1; P = 0.0001 to 0.037) for assays performed using PBMCs from different sources (phlebotomy versus leukapheresis) or using total or resting CD4+ T cells purified by either bead selection or flow cytometric sorting. Their sensitivity, reproducibility, and broad applicability to small numbers of mononuclear cells make these assays useful for observational and interventional studies that examine longitudinal changes in the numbers of HIV-1-infected cells and their levels of transcription. PMID:26763968

  9. Cobalamin inhibition of HIV-1 integrase and integration of HIV-1 DNA into cellular DNA.

    PubMed

    Weinberg, J B; Shugars, D C; Sherman, P A; Sauls, D L; Fyfe, J A

    1998-05-19

    Our prior studies showed that certain cobalamins inhibit productive HIV-1 infection of primary cultures of blood lymphocytes and monocytes. We demonstrate here that this antiviral activity may be mediated by an inhibition of HIV-1 integrase, an enzyme required for productive infection. Purified recombinant HIV-1 integrase activity was inhibited in vitro by hydroxocobalamin (OH-Cbl), methylcobalamin (Me-Cbl), adenosylcobalamin (Ado-Cbl), and dicyanocobinamide (CN2-Cbi) with IC50 values of approximately 17, 17, 17, and 4 microM, respectively. The agents inhibited HIV-1 infection of cultured monocytes (IC50 values for OH-Cbl, Me-Cbl, Ado-Cbl, and CN2-Cbi of 6, 7, 4, and 1 microM, respectively) and of cultured lymphocytes (IC50 values of 60, 50, 60, and 11 microM, respectively). Experiments using cultured monocytes or lymphocytes demonstrated that OH-Cbl inhibited integration of HIV-1 DNA into cellular DNA. Thus, cobalamins and cobinamides represent novel inhibitors of HIV-1 integrase. These or related agents may be useful as anti-viral treatments that target HIV-1 integrase. PMID:9610370

  10. National survey of prevalent HIV strains: limited genetic variation of Korean HIV-1 clade B within the population of Korean men who have sex with men.

    PubMed

    Kim, Gab Jung; Nam, Jeong-Gu; Shin, Bo Gyeong; Kee, Mee Kyeong; Kim, Eun-Jin; Lee, Joo-Shil; Kim, Sung Soon

    2008-06-01

    The evolution of HIV is the result of an explosive combination of factors-a high rate of mutation, replication dynamics, frequent recombination, and natural selection. To understand the evolution of the distinctive Korean HIV-1 B clade, we investigated the characteristics of the genetic variation of the HIV-1 subtype B env gene within the group of Korean men who have sex with men (MSM). From 1985 to 2005, 700 HIV-1-infected Koreans were sequenced at the V1 to V5 region of the HIV-1 env gene. In the phylogenetic analysis, 560 isolates were identified as HIV-1 subtype B, and 489 of the 560 isolates were HIV-1 Korean clade B. Based on epidemiologic investigation, 249 of 700 HIV-1-infected patients were HIV-1 subtype B-infected MSM. Interestingly, the proportion of the GPGS motif in MSM infected by Koreans was 1.6 times higher than in MSM infected by foreigners, and the genetic expansions of diversity and divergence for HIV-1 subtype B in Korean MSM were 2.1% and 2.5%, respectively. This was much lower than those observed in other countries. Therefore, our findings imply that the HIV strains in this group were closely related. This result may be helpful for understanding the evolution of the distinct HIV-1 Korean B clade.

  11. HIV-1 Capsid: The Multifaceted Key Player in HIV-1 infection

    PubMed Central

    Campbell, Edward M.; Hope, Thomas J.

    2016-01-01

    In a mature, infectious HIV-1 virion, the viral genome is housed within a conical capsid core comprised of the viral capsid (CA) protein. The CA protein, and the structure into which it assembles, facilitate virtually every step of infection through a series of interactions with multiple host cell factors. This review describes our understanding of the interactions between the viral capsid core and several cellular factors that enable efficient HIV-1 genome replication, timely core disassembly, nuclear import and the integration of the viral genome into the genome of the target cell. We then discuss how elucidating these interactions can reveal new targets for therapeutic interactions against HIV-1. PMID:26179359

  12. HIV-1 transcription and latency: an update

    PubMed Central

    2013-01-01

    Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs. PMID:23803414

  13. Antibody-dependent complement-mediated cytotoxicity in sera from patients with HIV-1 infection is controlled by CD55 and CD59.

    PubMed Central

    Schmitz, J; Zimmer, J P; Kluxen, B; Aries, S; Bögel, M; Gigli, I; Schmitz, H

    1995-01-01

    Various immune mechanisms have been reported to contribute to the progressive destruction of Th cells in HIV-1-infected patients. Among these, complement mediated lysis of infected cells has been suggested. An increased sensitivity of lymphocytes from HIV-1-infected patients to lysis by monoclonal antibodies directed to MHC class I antigen and complement has been directly correlated with a decreased expression of the decay accelerating factor (CD55). It also has been reported that the expression of the membrane inhibitor of reactive lysis (CD59) is decreased during HIV-1 infection. We examined the effect of antibodies in the serum of HIV-1-positive individuals and normal human serum (NHS) as source of complement on several HIV-1-infected cell lines differing in their expression of CD55 and CD59. When HIV-1-infected target cells without membrane expression of CD55 and CD59 were used, a highly significant cytotoxic effect was observed in the presence of heat inactivated anti-HIV-1-positive sera and NHS, while heat-inactivated anti-HIV-1-negative sera and NHS were unable to induce cytolysis. Similar results were obtained using purified IgG isolated from HIV-1-positive sera and either NHS or guinea pig serum as source of complement. Lysis of HIV-1-infected cells correlated with expression of viral antigens on the cell surface. HIV-1-infected CD55 and CD59 positive target cells showed specific lysis, when the function of these molecules was abrogated by blocking antibodies to CD55 and CD59. The finding of anti-HIV-1-specific cytotoxic antibodies in sera from HIV-1-infected patients should be considered in the pathogenesis of the HIV-1-infection. PMID:7544808

  14. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1.

    PubMed

    Schoofs, Till; Klein, Florian; Braunschweig, Malte; Kreider, Edward F; Feldmann, Anna; Nogueira, Lilian; Oliveira, Thiago; Lorenzi, Julio C C; Parrish, Erica H; Learn, Gerald H; West, Anthony P; Bjorkman, Pamela J; Schlesinger, Sarah J; Seaman, Michael S; Czartoski, Julie; McElrath, M Juliana; Pfeifer, Nico; Hahn, Beatrice H; Caskey, Marina; Nussenzweig, Michel C

    2016-05-20

    3BNC117 is a broad and potent neutralizing antibody to HIV-1 that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1-infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 affects host antibody responses in viremic individuals. In comparison to untreated controls that showed little change in their neutralizing activity over a 6-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1. PMID:27199429

  15. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo.

    PubMed

    Lu, Ching-Lan; Murakowski, Dariusz K; Bournazos, Stylianos; Schoofs, Till; Sarkar, Debolina; Halper-Stromberg, Ariel; Horwitz, Joshua A; Nogueira, Lilian; Golijanin, Jovana; Gazumyan, Anna; Ravetch, Jeffrey V; Caskey, Marina; Chakraborty, Arup K; Nussenzweig, Michel C

    2016-05-20

    Antiretroviral drugs and antibodies limit HIV-1 infection by interfering with the viral life cycle. In addition, antibodies also have the potential to guide host immune effector cells to kill HIV-1-infected cells. Examination of the kinetics of HIV-1 suppression in infected individuals by passively administered 3BNC117, a broadly neutralizing antibody, suggested that the effects of the antibody are not limited to free viral clearance and blocking new infection but also include acceleration of infected cell clearance. Consistent with these observations, we find that broadly neutralizing antibodies can target CD4(+) T cells infected with patient viruses and can decrease their in vivo half-lives by a mechanism that requires Fcγ receptor engagement in a humanized mouse model. The results indicate that passive immunotherapy can accelerate elimination of HIV-1-infected cells. PMID:27199430

  16. [Mutation frequencies in HIV-1 subtype-A genome in regions containing efficient RNAi targets].

    PubMed

    Kravatsky, Y V; Chechetkin, V R; Fedoseeva, D M; Gorbacheva, M A; Kretova, O V; Tchurikov, N A

    2016-01-01

    The development of gene-therapy technology using RNAi for AIDS/HIV-1 treatment is a prospective alternative to traditional anti-retroviral therapy. RNAi targets could be selected in HIV-1 transcripts and in CCR5 mRNA. Previously, we experimentally selected a number of efficient siRNAs that target HIV-1 RNAs. The viral genome mutates frequently, and RNAi strength is very sensitive, even for a single mismatches. That is why it is important to study nucleotide sequences of targets in clinical isolates of HIV-1. In the present study, we analyzed mutations in 6 of about 300-bp regions containing RNAi targets from HIV-1 subtype A isolates in Russia. Estimates of the mean frequencies of mutations in the targets were obtained and the frequencies of mutations in the different codon positions were compared. The frequencies of mutations in the vicinity of the targets and directly within the targets were also compared and have been shown to be approximately the same. The frequencies of indels in the chosen regions have been assessed. Their frequencies have proved to be two to three orders of magnitude less compared to that for mutations. PMID:27414786

  17. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

    PubMed Central

    Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S. Munir; Boyd, Scott D.; Fire, Andrew Z.; Roskin, Krishna M.; Schramm, Chaim A.; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; Mullikin, James C.; Gnanakaran, S.; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C.; Parks, Robert; Lloyd, Krissey E.; Scearce, Richard M.; Soderberg, Kelly A.; Cohen, Myron; Kaminga, Gift; Louder, Mark K.; Tran, Lillan M.; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, Gordon M.; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M.; Hahn, Beatrice H.; Kepler, Thomas B.; Korber, Bette T.M.; Kwong, Peter D.; Mascola, John R.; Haynes, Barton F.

    2013-01-01

    Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation could provide a roadmap for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from time of infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies and provide insights into strategies to elicit similar antibodies via vaccination. PMID:23552890

  18. Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr.

    PubMed

    Datta, Prasun K; Deshmane, Satish; Khalili, Kamel; Merali, Salim; Gordon, John C; Fecchio, Chiara; Barrero, Carlos A

    2016-09-01

    HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages. We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation. The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages. Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS. PMID:27245560

  19. Progesterone augments cell susceptibility to HIV-1 and HIV-1/HSV-2 co-infections.

    PubMed

    Ragupathy, Viswanath; Xue, Wang; Tan, Ji; Devadas, Krishnakumar; Gao, Yamei; Hewlett, Indira

    2016-10-01

    In human immunodeficiency virus type 1 (HIV-1)-infected women, oral or injectable progesterone containing contraceptive pills may enhance HIV-1 acquisition in vivo, and the mechanism by which this occurs is not fully understood. In developing countries, Herpes simplex virus type-2 (HSV-2) co-infection has been shown to be a risk for increase of HIV-1 acquisition and, if co-infected women use progesterone pills, infections may increase several fold. In this study, we used an in vitro cell culture system to study the effects of progesterone on HIV-1 replication and to explore the molecular mechanism of progesterone effects on infected cells. In our in vitro model, CEMss cells (lymphoblastoid cell line) were infected with either HIV-1 alone or co-infected with HSV-2. HIV-1 viral load was measured with and without sex hormone treatment. Progesterone-treated cells showed an increase in HIV-1 viral load (1411.2 pg/mL) compared with cells without progesterone treatment (993.1 pg/mL). Increased cell death was noted with HSV-2 co-infection and in progesterone-treated cells. Similar observations were noted in peripheral blood mononuclear cells (PBMC) cells derived from three female donors. Progesterone-treated cells also showed reduced antiviral efficacy. Inflammatory cytokines and associations with biomarkers of disease progression were explored. Progesterone upregulated inflammatory cytokines and chemokines conversely and downregulated anti-apoptotic Bcl-2 expression. Nuclear protein analysis by electrophoretic mobility shift assay showed the association of progesterone with progesterone response element (PRE), which may lead to downregulation of Bcl-2. These data indicate that progesterone treatment enhances HIV-1 replication in infected cells and co-infection with HSV-2 may further fuel this process. PMID:27538988

  20. Genetic Analysis of HIV-1 Subtypes in Nairobi, Kenya

    PubMed Central

    Khoja, Suhail; Ojwang, Peter; Khan, Saeed; Okinda, Nancy; Harania, Reena; Ali, Syed

    2008-01-01

    Background Genetic analysis of a viral infection helps in following its spread in a given population, in tracking the routes of infection and, where applicable, in vaccine design. Additionally, sequence analysis of the viral genome provides information about patterns of genetic divergence that may have occurred during viral evolution. Objective In this study we have analyzed the subtypes of Human Immunodeficiency Virus -1 (HIV-1) circulating in a diverse sample population of Nairobi, Kenya. Methodology 69 blood samples were collected from a diverse subject population attending the Aga Khan University Hospital in Nairobi, Kenya. Total DNA was extracted from peripheral blood mononuclear cells (PBMCs), and used in a Polymerase Chain Reaction (PCR) to amplify the HIV gag gene. The PCR amplimers were partially sequenced, and alignment and phylogenetic analysis of these sequences was performed using the Los Alamos HIV Database. Results Blood samples from 69 HIV-1 infected subjects from varying ethnic backgrounds were analyzed. Sequence alignment and phylogenetic analysis showed 39 isolates to be subtype A, 13 subtype D, 7 subtype C, 3 subtype AD and CRF01_AE, 2 subtype G and 1 subtype AC and 1 AG. Deeper phylogenetic analysis revealed HIV subtype A sequences to be highly divergent as compared to subtypes D and C. Conclusion Our analysis indicates that HIV-1 subtypes in the Nairobi province of Kenya are dominated by a genetically diverse clade A. Additionally, the prevalence of highly divergent, complex subtypes, intersubtypes, and the recombinant forms indicates viral mixing in Kenyan population, possibly as a result of dual infections. PMID:18784834

  1. Neutrophils Turn Plasma Proteins into Weapons against HIV-1

    PubMed Central

    Hagleitner, Magdalena; Rambach, Günter; Van Aken, Hugo; Dierich, Manfred; Kehrel, Beate E.

    2013-01-01

    As a consequence of innate immune activation granulocytes and macrophages produce hypochlorite/hypochlorous acid (HOCl) via secretion of myeloperoxidase (MPO) to the outside of the cells, where HOCl immediately reacts with proteins. Most proteins that become altered by this system do not belong to the invading microorganism but to the host. While there is no doubt that the myeloperoxidase system is capable of directly inactivating HIV-1, we hypothesized that it may have an additional indirect mode of action. We show in this article that HOCl is able to chemically alter proteins and thus turn them into Idea-Ps (Idea-P = immune defence-altered protein), potent amyloid-like and SH-groups capturing antiviral weapons against HIV-1. HOCl-altered plasma proteins (Idea-PP) have the capacity to bind efficiently and with high affinity to the HIV-1 envelope protein gp120, and to its receptor CD4 as well as to the protein disulfide isomerase (PDI). Idea-PP was able to inhibit viral infection and replication in a cell culture system as shown by reduced number of infected cells and of syncytia, resulting in reduction of viral capsid protein p24 in the culture supernatant. The unmodified plasma protein fraction had no effect. HOCl-altered isolated proteins antithrombin III and human serum albumin, taken as representative examples of the whole pool of plasma proteins, were both able to exert the same activity of binding to gp120 and inhibition of viral proliferation. These data offer an opportunity to improve the understanding of the intricacies of host-pathogen interactions and allow the generation of the following hypothetical scheme: natural immune defense mechanisms generate by posttranslational modification of plasma proteins a potent virucidal weapon that immobilizes the virus as well as inhibits viral fusion and thus entry into the host cells. Furthermore simulation of this mechanism in vitro might provide an interesting new therapeutic approach against microorganisms

  2. The Global Transmission Network of HIV-1

    PubMed Central

    Wertheim, Joel O.; Leigh Brown, Andrew J.; Hepler, N. Lance; Mehta, Sanjay R.; Richman, Douglas D.; Smith, Davey M.; Kosakovsky Pond, Sergei L.

    2014-01-01

    Human immunodeficiency virus type 1 (HIV-1) is pandemic, but its contemporary global transmission network has not been characterized. A better understanding of the properties and dynamics of this network is essential for surveillance, prevention, and eventual eradication of HIV. Here, we apply a simple and computationally efficient network-based approach to all publicly available HIV polymerase sequences in the global database, revealing a contemporary picture of the spread of HIV-1 within and between countries. This approach automatically recovered well-characterized transmission clusters and extended other clusters thought to be contained within a single country across international borders. In addition, previously undescribed transmission clusters were discovered. Together, these clusters represent all known modes of HIV transmission. The extent of international linkage revealed by our comprehensive approach demonstrates the need to consider the global diversity of HIV, even when describing local epidemics. Finally, the speed of this method allows for near-real-time surveillance of the pandemic's progression. PMID:24151309

  3. Latency: the hidden HIV-1 challenge

    PubMed Central

    Marcello, Alessandro

    2006-01-01

    Eradication of HIV-1 from an infected individual cannot be achieved by current regimens. Viral reservoirs established early during the infection remain unaffected by anti-retroviral therapy for a long time and are able to replenish systemic infection upon interruption of the treatment. Therapeutic targeting of viral latency will require a better understanding of the basic mechanisms underlying the establishment and long-term maintenance of HIV-1 in resting memory CD4 T cells, the most prominent reservoir of transcriptionally silent provirus. Since the molecular mechanisms that permit long term transcriptional control of proviral gene expression in these cells are still obscure, this review aims at summarizing the various aspects of the problem that need to be considered. In particular, this review will focus the attention on the control of transcription imposed by chromatin through various epigenetic mechanisms. Exploring the molecular details of viral latency will provide new insights for eventual future therapeutics that aim at viral eradication. PMID:16412247

  4. Tertiary Element Interaction in HIV-1 TAR.

    PubMed

    Krawczyk, Konrad; Sim, Adelene Y L; Knapp, Bernhard; Deane, Charlotte M; Minary, Peter

    2016-09-26

    HIV-1 replication requires binding to occur between Trans-activation Response Element (TAR) RNA and the TAT protein. This TAR-TAT binding depends on the conformation of TAR, and therapeutic development has attempted to exploit this dynamic behavior. Here we simulate TAR dynamics in the context of mutations inhibiting TAR binding. We find that two tertiary elements, the apical loop and the bulge, can interact directly, and this interaction may be linked to the affinity of TAR for TAT. PMID:27500460

  5. Nanochemistry-based immunotherapy for HIV-1.

    PubMed

    Lori, F; Calarota, S A; Lisziewicz, J

    2007-01-01

    Highly active antiretroviral treatment (HAART), i.e. the combination of three or more drugs against human immunodeficiency virus type 1 (HIV-1), has greatly improved the clinical outcome of HIV-1-infected individuals. However, HAART is unable to reconstitute HIV-specific immunity and eradicate the virus. Several observations in primate models and in humans support the notion that cell-mediated immunity can control viral replication and slow disease progression. Thus, besides drugs, an immunotherapy that induces long-lasting HIV-specific T-cell responses could play a role in the treatment of HIV/AIDS. To induce such immune responses, DermaVir Patch has been developed. DermaVir consists of an HIV-1 antigen-encoding plasmid DNA that is chemically formulated in a nanoparticle. DermaVir is administered under a patch after a skin preparation that supports the delivery of the nanoparticle to Langerhans cells (LC). Epidermal LC trap and transport the nanomedicine to draining lymph nodes. While in transit, LC mature into dendritic cells (DC), which can efficiently present the DNA-encoded antigens to naïve T-cells for the induction of cellular immunity. Pre-clinical studies and Phase I clinical testing of DermaVir in HIV-1-infected individuals have demonstrated the safety and tolerability of DermaVir Patch. To further modulate cellular immunity, molecular adjuvants might be added into the nanoparticle. DermaVir Patch represents a new nanomedicine platform for immunotherapy of HIV/AIDS. In this review, the antiviral activity of DermaVir-induced cellular immunity is discussed. Furthermore, the action of some cytokines currently being tested as adjuvants are highlighted and the adjuvant effect of cytokine plasmid DNA included in the DermaVir nanoparticle is reviewed.

  6. Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    PubMed Central

    Neurath, A Robert; Strick, Nathan; Li, Yun-Yao; Debnath, Asim K

    2004-01-01

    Background For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. Methods Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1) infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2) binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s) to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. Results HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. Conclusion These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored. PMID:15485580

  7. Inhibition of HIV-1 entry by antibodies: potential viral and cellular targets

    PubMed Central

    Phogat, S.; Wyatt, R. T.; Hedestam, G. B. Karlsson

    2008-01-01

    Phogat S, Wyatt RT, Karlsson Hedestam GB (National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm; and the Swedish Institute for Infectious Disease Control, Solna, Sweden). Inhibition of HIV-1 entry by antibodies: potential viral and cellular targets (Review). Vaccine-induced antibodies that interfere with viral entry are the protective correlate of most existing prophylactic vaccines. However, for highly variable viruses such as HIV-1, the ability to elicit broadly neutralizing antibody responses through vaccination has proven to be extremely difficult. The major targets for HIV-1 neutralizing antibodies are the viral envelope glycoprotein trimers on the surface of the virus that mediate receptor binding and entry. HIV-1 has evolved many mechanisms on the surface of envelope glyco-proteins to evade antibody-mediated neutralization, including the masking of conserved regions by glycan, quaternary protein interactions and the presence of immunodominant variable elements. The primary challenge in the development of an HIV-1 vaccine that elicits broadly neutralizing antibodies therefore lies in the design of suitable envelope glycoprotein immunogens that circumvent these barriers. Here, we describe neutralizing determinants on the viral envelope glyco-proteins that are defined by their function in receptor binding or by rare neutralizing antibodies isolated from HIV-infected individuals. We also describe the nonvariable cellular receptors involved in the HIV-1 entry process, or other cellular proteins, and ongoing studies to determine if antibodies against these proteins have efficacy as therapeutic reagents or, in some cases, as vaccine targets to interfere with HIV-1 entry. PMID:17598813

  8. HIV-1 infection kinetics in tissue cultures.

    PubMed

    Spouge, J I; Shrager, R I; Dimitrov, D S

    1996-11-01

    Despite intensive experimental work on HIV-1, very little theoretical work has focused on HIV-1 spread in tissue culture. This article uses two systems of ordinary differential equations to model two modes of viral spread, cell-free virus and cell-to-cell contact. The two models produce remarkably similar qualitative results. Simulations using realistic parameter regimes showed that starting with a small fraction of cells infected, both cell-free viral spread and direct cell-to-cell transmission give an initial exponential phase of viral growth, followed by either a crash or a gradual decline, extinguishing the culture. Under some conditions, an oscillatory phase may precede the extinction. Some previous models of in vivo HIV-1 infection oscillate, but only in unrealistic parameter regimes. Experimental tissue infections sometimes display several sequential cycles of oscillation, however, so our models can at least mimic them qualitatively. Significantly, the models show that infective oscillations can be explained by infection dynamics; biological heterogeneity is not required. The models also display proportionality between infected cells and cell-free virus, which is reassuringly consistent with assumptions about the equivalence of several measures of viral load, except that the proportionality requires a relatively constant total cell concentration. Tissue culture parameter values can be determined from accurate, controlled experiments. Therefore, if verified, our models should make interpreting experimental data and extrapolating it to in vivo conditions sharper and more reliable.

  9. Progress in HIV-1 Vaccine Development

    PubMed Central

    Haynes, Barton F.; McElrath, M. Juliana

    2014-01-01

    Purpose of the Review In this review, examples of recent progress in HIV-1 vaccine research are discussed. Recent Findings New insights from the immune correlates analyses of the RV144 efficacy trial have accelerated vaccine development with leads to follow in non-human primate studies and improved vaccine designs. Several new vaccine vector approaches offer promise in exquisite control of acute infection and in improving the breadth of T cell responses. New targets of broadly neutralizing antibodies (BnAbs) have been elucidated, and improved understanding of how the human host controls BnAb development have emerged from BnAb knockin mice and from analyses of BnAb maturation and virus evolution in subjects followed from the time of HIV-1 transmission to BnAb induction. Summary Based on these observations, it is clear that development of a successful HIV-1 vaccine will require new vaccine approaches and iterative testing of immunogens in well-designed animal and human trials. PMID:23743722

  10. In vivo SELEX of single-stranded domains in the HIV-1 leader RNA.

    PubMed

    van Bel, Nikki; Das, Atze T; Berkhout, Ben

    2014-02-01

    The 5' untranslated leader region of the human immunodeficiency virus type 1 (HIV-1) RNA genome is a strongly conserved sequence that encodes several regulatory motifs important for viral replication. Most of these motifs are exposed as hairpin structures, including the dimerization initiation signal (DIS), the major splice donor site (SD), and the packaging signal (Ψ), which are connected by short single-stranded regions. Mutational analysis revealed many functions of these hairpins, but only a few studies have focused on the single-stranded purine-rich sequences. Using the in vivo SELEX (systematic evolution of ligands by exponential enrichment) approach, we probed the sequence space in these regions that is compatible with efficient HIV-1 replication and analyzed the impact on the RNA secondary structure of the leader RNA. Our results show a strong sequence requirement for the DIS hairpin flanking regions. We postulate that these sequences are important for the binding of specific protein factors that support leader RNA-mediated functions. The sequence between the SD and Ψ hairpins seems to have a less prominent role, despite the strong conservation of the stretch of 5 A residues in natural isolates. We hypothesize that this may reflect the subtle evolutionary pressure on HIV-1 to acquire an A-rich RNA genome. In silico analyses indicate that sequences are avoided in all 3 single-stranded domains that affect the local or overall leader RNA folding. IMPORTANCE Many regulatory RNA sequences are clustered in the untranslated leader domain of the HIV-1 RNA genome. Several RNA hairpin structures in this domain have been proposed to fulfill specific roles, e.g., mediating RNA dimer formation to facilitate HIV-1 recombination. We now focus on the importance of a few well-conserved single-stranded sequences that connect these hairpins. We created libraries of HIV-1 variants in which these segments were randomized and selected the best-replicating variants. For two

  11. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    SciTech Connect

    Di Nunzio, Francesca; Fricke, Thomas; Miccio, Annarita; Valle-Casuso, Jose Carlos; Perez, Patricio; Souque, Philippe; Rizzi, Ermanno; Severgnini, Marco; Mavilio, Fulvio; Charneau, Pierre; Diaz-Griffero, Felipe

    2013-05-25

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites.

  12. HIV-1 Neutralizing Antibodies with Limited Hypermutation from an Infant.

    PubMed

    Simonich, Cassandra A; Williams, Katherine L; Verkerke, Hans P; Williams, James A; Nduati, Ruth; Lee, Kelly K; Overbaugh, Julie

    2016-06-30

    HIV-1 broadly neutralizing antibodies (bnAbs) develop in a subset of infected adults and exhibit high levels of somatic hypermutation (SHM) due to years of affinity maturation. There is no precedent for eliciting highly mutated antibodies by vaccination, nor is it practical to wait years for a desired response. Infants develop broad responses early, which may suggest a more direct path to generating bnAbs. Here, we isolated ten neutralizing antibodies (nAbs) contributing to plasma breadth of an infant at ∼1 year post-infection, including one with cross-clade breadth. The nAbs bind to envelope trimer from the transmitted virus, suggesting that this interaction may have initiated development of the infant nAbs. The infant cross-clade bnAb targets the N332 supersite on envelope but, unlike adult bnAbs targeting this site, lacks indels and has low SHM. The identification of this infant bnAb illustrates that HIV-1-specific neutralization breadth can develop without prolonged affinity maturation and extensive SHM. PMID:27345369

  13. Suppression of HIV-1 Infectivity by Human Glioma Cells.

    PubMed

    Hoque, Sheikh Ariful; Tanaka, Atsushi; Islam, Salequl; Ahsan, Gias Uddin; Jinno-Oue, Atsushi; Hoshino, Hiroo

    2016-05-01

    HIV-1 infection to the central nervous system (CNS) is very common in AIDS patients. The predominant cell types infected in the brain are monocytes and macrophages, which are surrounded by several HIV-1-resistant cell types, such as astrocytes, oligodendrocytes, neurons, and microvascular cells. The effect of these HIV-1-resistant cells on HIV-1 infection is largely unknown. In this study, we examined the stability of HIV-1 cultured with several human glioblastoma cell lines, for example, NP-2, U87MG, T98G, and A172, to determine whether these HIV-1-resistant brain cells could enhance or suppress HIV-1 infection and thus modulate HIV-1 infection in the CNS. The HIV-1 titer was determined using the MAGIC-5A indicator cell line as well as naturally occurring CD4(+) T cells. We found that the stability of HIV-1 incubated with NP-2 or U87MG cells at 37°C was significantly shorter (half-life, 2.5-4 h) compared to that of HIV-1 incubated with T98G or A172 cells or in culture medium without cells (half-life, 8-18 h). The spent culture media (SCM) of NP-2 and U87MG cells had the ability to suppress both R5- and X4-HIV-1 infection by inhibiting HIV-1 attachment to target cells. This inhibitory effect was eliminated by the treatment of the SCM with chondroitinase ABC but not heparinase, suggesting that the inhibitory factor(s) secreted by NP-2 and U87MG cells was chiefly mediated by chondroitin sulfate (CS) or CS-like moiety. Thus, this study reveals that some but not all glioma cells secrete inhibitory molecules to HIV-1 infection that may contribute in lowering HIV-1 infection in the CNS in vivo. PMID:26650729

  14. Suppression of HIV-1 Infectivity by Human Glioma Cells.

    PubMed

    Hoque, Sheikh Ariful; Tanaka, Atsushi; Islam, Salequl; Ahsan, Gias Uddin; Jinno-Oue, Atsushi; Hoshino, Hiroo

    2016-05-01

    HIV-1 infection to the central nervous system (CNS) is very common in AIDS patients. The predominant cell types infected in the brain are monocytes and macrophages, which are surrounded by several HIV-1-resistant cell types, such as astrocytes, oligodendrocytes, neurons, and microvascular cells. The effect of these HIV-1-resistant cells on HIV-1 infection is largely unknown. In this study, we examined the stability of HIV-1 cultured with several human glioblastoma cell lines, for example, NP-2, U87MG, T98G, and A172, to determine whether these HIV-1-resistant brain cells could enhance or suppress HIV-1 infection and thus modulate HIV-1 infection in the CNS. The HIV-1 titer was determined using the MAGIC-5A indicator cell line as well as naturally occurring CD4(+) T cells. We found that the stability of HIV-1 incubated with NP-2 or U87MG cells at 37°C was significantly shorter (half-life, 2.5-4 h) compared to that of HIV-1 incubated with T98G or A172 cells or in culture medium without cells (half-life, 8-18 h). The spent culture media (SCM) of NP-2 and U87MG cells had the ability to suppress both R5- and X4-HIV-1 infection by inhibiting HIV-1 attachment to target cells. This inhibitory effect was eliminated by the treatment of the SCM with chondroitinase ABC but not heparinase, suggesting that the inhibitory factor(s) secreted by NP-2 and U87MG cells was chiefly mediated by chondroitin sulfate (CS) or CS-like moiety. Thus, this study reveals that some but not all glioma cells secrete inhibitory molecules to HIV-1 infection that may contribute in lowering HIV-1 infection in the CNS in vivo.

  15. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE PAGES

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  16. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    SciTech Connect

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth of IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.

  17. Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing

    SciTech Connect

    Wu, Xueling; Zhou, Tongqing; Zhu, Jiang; Zhang, Baoshan; Georgiev, Ivelin; Wang, Charlene; Chen, Xuejun; Longo, Nancy S.; Louder, Mark; McKee, Krisha; O’Dell, Sijy; Perfetto, Stephen; Schmidt, Stephen D.; Shi, Wei; Wu, Lan; Yang, Yongping; Yang, Zhi-Yong; Yang, Zhongjia; Zhang, Zhenhai; Bonsignori, Mattia; Crump, John A.; Kapiga, Saidi H.; Sam, Noel E.; Haynes, Barton F.; Simek, Melissa; Burton, Dennis R.; Koff, Wayne C.; Doria-Rose, Nicole A.; Connors, Mark; Mullikin, James C.; Nabel, Gary J.; Roederer, Mario; Shapiro, Lawrence; Kwong, Peter D.; Mascola, John R.

    2013-03-04

    Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution of antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.

  18. Modulation of the proteome of peripheral blood mononuclear cells from HIV-1 infected patients by drugs of abuse

    PubMed Central

    Reynolds, Jessica L.; Mahajan, Supriya D.; Aalinkeel, Ravikunar; Nair, Bindukumar; Sykes, Donald E.; Agosto-Mujica, Arnadri; Hsiao, Chiu Bin; Schwartz, Stanley A.

    2010-01-01

    We used proteomic analyses to assess how drug abuse modulates immunologic responses to infections with the human immunodeficiency virus type 1 (HIV-1). Two dimensional (2D) difference gel electrophoresis was utilized to determine changes in the proteome of peripheral blood mononuclear cells (PBMC) isolated from HIV-1 positive donors that occurred after treatment with cocaine or methamphetamine. Both drugs differentially regulated the expression of several functional classes of proteins. We further isolated specific subpopulations of PBMC to determine which subpopulations were selectively affected by treatment with drugs of abuse. Monocytes, B cells and T cells were positively or negatively selected from PBMC isolated from HIV-1 positive donors. Our results demonstrate that cocaine and methamphetamine modulate gene expression primarily in monocytes and T cells, the primary targets of HIV-1 infection. Proteomic data were validated with quantitative, real-time PCR. These studies elucidate the molecular mechanisms underlying the effects of drugs of abuse on HIV-1 infections. Several functionally relevant classes of proteins were identified as potential mediators of HIV-1 pathogenesis and disease progression associated with drug abuse. PMID:19543960

  19. Influence of mutation and recombination on HIV-1 in vitro fitness recovery.

    PubMed

    Arenas, Miguel; Lorenzo-Redondo, Ramon; Lopez-Galindez, Cecilio

    2016-01-01

    The understanding of the evolutionary processes underlying HIV-1 fitness recovery is fundamental for HIV-1 pathogenesis, antiretroviral treatment and vaccine design. It is known that HIV-1 can present very high mutation and recombination rates, however the specific contribution of these evolutionary forces in the "in vitro" viral fitness recovery has not been simultaneously quantified. To this aim, we analyzed substitution, recombination and molecular adaptation rates in a variety of HIV-1 biological clones derived from a viral isolate after severe population bottlenecks and a number of large population cell culture passages. These clones presented an overall but uneven fitness gain, mean of 3-fold, respect to the initial passage values. We found a significant relationship between the fitness increase and the appearance and fixation of mutations. In addition, these fixed mutations presented molecular signatures of positive selection through the accumulation of non-synonymous substitutions. Interestingly, viral recombination correlated with fitness recovery in most of studied viral quasispecies. The genetic diversity generated by these evolutionary processes was positively correlated with the viral fitness. We conclude that HIV-1 fitness recovery can be derived from the genetic heterogeneity generated through both mutation and recombination, and under diversifying molecular adaptation. The findings also suggest nonrandom evolutionary pathways for in vitro fitness recovery.

  20. HIV-1 prevalence in selected Tijuana sub-populations.

    PubMed Central

    Güereña-Burgueño, F; Benenson, A S; Sepúlveda-Amor, J

    1991-01-01

    To assess the prevalence of HIV-1 (human immunodeficiency virus) infection among high-risk populations in Tijuana, Mexico, HIV-1 antibody status was determined and information on risk behavior was obtained from 1,069 individuals in three high-risk groups. The prevalence of HIV-1 among 415 prostitutes was 0.5 percent; 410 prisoners, 1.2 percent; 233 homosexual/bisexual men, 11.6 percent; and 106 intravenous drug abusers, 1.9 percent. The potential for spread of HIV-1 exists in Tijuana despite the current relatively low seroprevalence of HIV-1. PMID:2014864

  1. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues.

    PubMed

    Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S

    2011-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy.

  2. The function and affinity maturation of HIV-1 gp120-specific monoclonal antibodies derived from colostral B cells.

    PubMed

    Jeffries, T L; Sacha, C R; Pollara, J; Himes, J; Jaeger, F H; Dennison, S M; McGuire, E; Kunz, E; Eudailey, J A; Trama, A M; LaBranche, C; Fouda, G G; Wiehe, K; Montefiori, D C; Haynes, B F; Liao, H-X; Ferrari, G; Alam, S M; Moody, M A; Permar, S R

    2016-03-01

    Despite the risk of transmitting HIV-1, mothers in resource-poor areas are encouraged to breastfeed their infants because of beneficial immunologic and nutritional factors in milk. Interestingly, in the absence of antiretroviral prophylaxis, the overwhelming majority of HIV-1-exposed, breastfeeding infants are naturally protected from infection. To understand the role of HIV-1 envelope (Env)-specific antibodies in breast milk in natural protection against infant virus transmission, we produced 19 HIV-1 Env-specific monoclonal antibodies (mAbs) isolated from colostrum B cells of HIV-1-infected mothers and investigated their specificity, evolution, and anti-HIV-1 functions. Despite the previously reported genetic compartmentalization and gp120-specific bias of colostrum HIV Env-specific B cells, the colostrum Env-specific mAbs described here demonstrated a broad range of gp120 epitope specificities and functions, including inhibition of epithelial cell binding and dendritic cell-mediated virus transfer, neutralization, and antibody-dependent cellular cytotoxicity. We also identified divergent patterns of colostrum Env-specific B-cell lineage evolution with respect to crossreactivity to gastrointestinal commensal bacteria, indicating that commensal bacterial antigens play a role in shaping the local breast milk immunoglobulin G (IgG) repertoire. Maternal vaccine strategies to specifically target this breast milk B-cell population may be necessary to achieve safe breastfeeding for all HIV-1-exposed infants. PMID:26242599

  3. The function and affinity maturation of HIV-1 gp120-specific monoclonal antibodies derived from colostral B cells

    PubMed Central

    Jeffries, Thomas L; Sacha, CR; Pollara, Justin; Himes, Jon; Jaeger, Frederick H; Dennison, S Moses; McGuire, Erin; Kunz, Erika; Eudailey, Joshua A; Trama, Ashley M; LaBranche, Celia; Fouda, Genevieve G; Wiehe, Kevin; Montefiori, David C; Haynes, Barton F; Liao, Hua-Xin; Ferrari, Guido; Alam, S Munir; Moody, M Anthony; Permar, Sallie R

    2015-01-01

    Despite the risk of transmitting HIV-1, mothers in resource-poor areas are encouraged to breastfeed their infants due to beneficial immunologic and nutritional factors in milk. Interestingly, in the absence of antiretroviral prophylaxis, the overwhelming majority of HIV-1-exposed, breastfeeding infants are naturally protected from infection. To understand the role of HIV-1 Envelope (Env)-specific antibodies in breast milk in natural protection against infant virus transmission, we produced 19 HIV-1 Env-specific monoclonal antibodies (mAbs) isolated from colostrum B cells of HIV-1-infected mothers and investigated their specificity, evolution and anti-HIV-1 functions. Despite the previously reported genetic compartmentalization and gp120-specific bias of colostrum HIV Env-specific B cells, the colostrum Env-specific mAbs described here demonstrated a broad range of gp120 epitope specificities and functions, including inhibition of epithelial cell binding and dendritic cell mediated virus transfer, neutralization, and antibody-dependent cellular cytotoxicity. Interestingly, we also identified divergent patterns of colostrum Env-specific B cell lineage evolution with respect to cross-reactivity to gastrointestinal commensal bacteria, indicating that commensal bacterial antigens play a role in shaping the local breast milk IgG repertoire. Maternal vaccine strategies to specifically target this breast milk B cell population may be necessary to achieve safe breastfeeding for all HIV-1-exposed infants. PMID:26242599

  4. Deglycosylation of HIV-1 AE Gp140 enhances the capacity to elicit neutralizing antibodies against the heterologous HIV-1 clade.

    PubMed

    Zhang, Congyou; Wan, Yanmin; Shi, Jijing; Zhou, Mingzhe; Meng, Zhefeng; Yuan, Songhua; Qiu, Chao; Zhang, Xiaoyan; Xu, Xuemei; Liu, Chaoqi; Xu, Jianqing

    2010-05-01

    The aim of this study was to test whether deglycosylation of an HIV-1 AE recombinant-derived gp140 could enhance the induction of neutralizing antibodies. N-to-Q mutations were introduced in the V1/V2 (m157/161) or V4 (m382/388) loops by using overlapping PCR. BALB/c mice were inoculated with different DNA vaccines at weeks 0, 2, 4, and 7. The Elispot assay was used to quantify Env-specific T-cell immunity, and the TZM-bl cell-based in vitro neutralizing assay with primary isolates was used to assess humoral immune responses. Our data showed that two mutant DNA vaccines, designated m157/161 and m382/388, mounted total T-cell responses that were at levels similar those of the unmutated vaccine. Although the levels of binding antibodies elicited by the two mutants were significantly lower than the levels elicited by the unmutated vaccine, cross-reactive neutralizing antibodies were observed only in the sera that received the mutant DNA vaccines. These data demonstrate that deglycosylation of HIV-1 Env could enhance the capacity to elicit cross-reactive neutralizing antibodies. PMID:20455767

  5. Raman spectroscopy of HIV-1 antigen and antibody

    NASA Astrophysics Data System (ADS)

    Zinin, Pavel V.; Hu, Ningjie; Kamemoto, Lori E.; Yu, Qigui; Misra, Anupam K.; Sharma, Shiv K.

    2011-05-01

    Raman spectra of anti-HIV-1 antibody, HIV-1 antigen (p24), and HIV-1 antibody-antigen complex have been measured in near-infrared and UV regions: 785 nm; 830 nm; and 244 nm laser excitations. The spectrum of the HIV-1 antigen was excited with an infrared laser and contains numerous Raman peaks. The most prominent peaks are broad bands at 1343, 1449, 1609 and 1655 cm-1, which are characteristic of the Raman spectra of biological cells. The UV Raman spectrum of the HIV-1 antigen has a completely different structure. It has two strong peaks at 1613 cm-1 and 1173 cm-1. The peak at 1613 cm-1 is associated with vibrations of the aromatic amino acids tyrosine (Tyr) and tryptophan (Try). The second strongest peak at 1173 cm-1 is associated with the vibration of Tyr. The Raman peak pattern of the HIV-1 antigen-antibody complex is very similar to that of the HIV-1 antigen. The only difference is that the peak at 1007 cm-1 of the Raman spectrum of the HIV-1 antigen-antibody complex is slightly enhanced compared to that of the HIV-1 antigen. This indicates that the peaks of the HIV-1 antigen dominate the Raman spectrum of the HIV-1 antigen-antibody complex.

  6. Short Communication: Neutralizing Antibodies in HIV-1-Infected Brazilian Individuals

    PubMed Central

    Morgado, Mariza Gonçalvez; Côrtes, Fernanda Heloise; Guimarães, Monick Lindermeyer; Mendonça-Lima, Leila; Pilotto, Jose Henrique; Grinsztejn, Beatriz; Veloso, Valdiléa Gonçalves; Bongertz, Vera

    2013-01-01

    Abstract Tests for the detection of the humoral immune response to HIV-1 have to be standardized and established, demanding regional efforts. For this purpose the neutralizing antibody (NAb) assay for HIV-1 in TZM-bl cells was introduced in Brazil. Twenty plasma samples from HIV-1-infected individuals were assayed: 10 progressors and 10 long-term nonprogressors. These were tested against eight env-pseudotyped viruses (psVs) in the TZM-bl NAb assay and against HIV-1 strain HTLV/IIIB (HIV-1 IIIB) in primary lymphocytes. Forty-four percent of the samples showed neutralizing titers for psVs and 55% for HIV-1 IIIB. Plasma from progressors showed a broader neutralization and a higher potency. The introduction of these reference reagents encourages the participation of Brazil in future comparative assessments of anti-HIV-1 antibodies. PMID:23145941

  7. Semi-synthesis of oxygenated dolabellane diterpenes with highly in vitro anti-HIV-1 activity.

    PubMed

    Pardo-Vargas, Alonso; Ramos, Freddy A; Cirne-Santos, Claudio Cesar; Stephens, Paulo Roberto; Paixão, Izabel Christina Palmer; Teixeira, Valeria Laneuville; Castellanos, Leonardo

    2014-09-15

    Research on dolabellane diterpenes of brown algae Dictyota spp. has shown that these diterpenoids have strong anti-HIV-1 activity, but there are not data about antiviral activity of dolabellane diterpenes isolated from octocorals, which are antipodes of those isolated from the brown algae. Dolabellanes 13-keto-1(R),11(S)-dolabella-3(E),7(E),12(18)-triene (1) and β-Araneosene (2) were isolated from the Caribbean octocoral Eunicea laciniata, and both showed low anti-HIV-1 activity and low toxicity. Since it was shown that oxygenated dolabellanes from algae have better anti-HIV-1 activity, in this work some derivatives of the main dolabellane of E. laciniata1 were obtained by epoxidation (3), epoxide opening (4), and allylic oxidation (5). The derivatives showed significant improvement in the anti-HIV-1potency (100-fold), being compounds 3 and 5 the most active ones. Their high antiviral activities, along with their low cytotoxicity, make them promissory antiviral compounds; and it is worth noting that the absolute configuration at the ring junction in the dolabellane skeleton does not seem to be determinant in the antiviral potency of these diterpeneoids. PMID:25176328

  8. Semi-synthesis of oxygenated dolabellane diterpenes with highly in vitro anti-HIV-1 activity.

    PubMed

    Pardo-Vargas, Alonso; Ramos, Freddy A; Cirne-Santos, Claudio Cesar; Stephens, Paulo Roberto; Paixão, Izabel Christina Palmer; Teixeira, Valeria Laneuville; Castellanos, Leonardo

    2014-09-15

    Research on dolabellane diterpenes of brown algae Dictyota spp. has shown that these diterpenoids have strong anti-HIV-1 activity, but there are not data about antiviral activity of dolabellane diterpenes isolated from octocorals, which are antipodes of those isolated from the brown algae. Dolabellanes 13-keto-1(R),11(S)-dolabella-3(E),7(E),12(18)-triene (1) and β-Araneosene (2) were isolated from the Caribbean octocoral Eunicea laciniata, and both showed low anti-HIV-1 activity and low toxicity. Since it was shown that oxygenated dolabellanes from algae have better anti-HIV-1 activity, in this work some derivatives of the main dolabellane of E. laciniata1 were obtained by epoxidation (3), epoxide opening (4), and allylic oxidation (5). The derivatives showed significant improvement in the anti-HIV-1potency (100-fold), being compounds 3 and 5 the most active ones. Their high antiviral activities, along with their low cytotoxicity, make them promissory antiviral compounds; and it is worth noting that the absolute configuration at the ring junction in the dolabellane skeleton does not seem to be determinant in the antiviral potency of these diterpeneoids.

  9. Significant impact of non-B HIV-1 variants genetic diversity in Gabon on plasma HIV-1 RNA quantitation.

    PubMed

    Mouinga-Ondémé, Augustin; Mabika-Mabika, Arsène; Alalade, Patrick; Mongo, Arnaud Delis; Sica, Jeanne; Liégeois, Florian; Rouet, François

    2014-01-01

    Evaluations of HIV-1 RNA viral load assays are lacking in Central Africa. The main objective of our study was to assess the reliability of HIV-1 RNA results obtained with three different assays for samples collected in Gabon. A total of 137 plasma specimens were assessed for HIV-1 RNA using the Abbott RealTime HIV-1® and Nuclisens HIV-1 EasyQ® version 2.0 assays. It included HIV-1 non-B samples (n = 113) representing six subtypes, 10 CRFs and 18 URFs from patients infected with HIV-1 and treated with antiretrovirals that were found HIV-1 RNA positive (≥300 copies/ml) with the Generic HIV viral load® assay; and samples (n = 24) from untreated individuals infected with HIV-1 but showing undetectable (<300 copies/ml) results with the Biocentric kit. For samples found positive with the Generic HIV viral load® test, correlation coefficients obtained between the three techniques were relatively low (R = 0.65 between Generic HIV viral load® and Abbott RealTime HIV-1®, 0.50 between Generic HIV viral load® and Nuclisens HIV-1 EasyQ®, and 0.66 between Abbott RealTime HIV-1® and Nuclisens HIV-1 EasyQ®). Discrepancies by at least one log10 were obtained for 19.6%, 33.7%, and 20% of samples, respectively, irrespective of genotype. Most of samples (22/24) from untreated study patients, found negative with the Biocentric kit, were also found negative with the two other techniques. In Central Africa, HIV-1 genetic diversity remains challenging for viral load testing. Further studies are required in the same area to confirm the presence of HIV-1 strains that are not amplified with at least two different viral load assays.

  10. Human Rhinovirus Type 14:Human Immunodeficiency Virus Type 1 (HIV-1) V3 Loop Chimeras from a Combinatorial Library Induce Potent Neutralizing Antibody Responses against HIV-1

    PubMed Central

    Smith, Allen D.; Geisler, Sheila C.; Chen, Anne A.; Resnick, Dawn A.; Roy, Birgit M.; Lewi, Paul J.; Arnold, Edward; Arnold, Gail Ferstandig

    1998-01-01

    In an effort to develop a useful AIDS vaccine or vaccine component, we have generated a combinatorial library of chimeric viruses in which the sequence IGPGRAFYTTKN from the V3 loop of the MN strain of human immunodeficiency virus type 1 (HIV-1) is displayed in many conformations on the surface of human rhinovirus 14 (HRV14). The V3 loop sequence was inserted into a naturally immunogenic site of the cold-causing HRV14, bridged by linkers consisting of zero to three randomized amino acids on each side. The library of chimeric viruses obtained was subjected to a variety of immunoselection schemes to isolate viruses that provided the most useful presentations of the V3 loop sequence for potential use in a vaccine against HIV. The utility of the presentations was assessed by measures of antigenicity and immunogenicity. Most of the immunoselected chimeras examined were potently neutralized by each of the four different monoclonal anti-V3 loop antibodies tested. Seven of eight chimeric viruses were able to elicit neutralizing antibody responses in guinea pigs against the MN and ALA-1 strains of HIV-1. Three of the chimeras elicited HIV neutralization titers that exceeded those of all but a small number of previously described HIV immunogens. These results indicate that HRV14:HIV-1 chimeras may serve as useful immunogens for stimulating immunity against HIV-1. This method can be used to flexibly reconstruct varied immunogens on the surface of a safe and immunogenic vaccine vehicle. PMID:9420270

  11. Relationship between Functional Profile of HIV-1 Specific CD8 T Cells and Epitope Variability with the Selection of Escape Mutants in Acute HIV-1 Infection

    PubMed Central

    Goonetilleke, Nilu; Liu, Michael K. P.; Turnbull, Emma L.; Salazar-Gonzalez, Jesus F.; Hawkins, Natalie; Self, Steve; Watson, Sydeaka; Betts, Michael R.; Gay, Cynthia; McGhee, Kara; Pellegrino, Pierre; Williams, Ian; Tomaras, Georgia D.; Haynes, Barton F.; Gray, Clive M.; Borrow, Persephone; Roederer, Mario; McMichael, Andrew J.; Weinhold, Kent J.

    2011-01-01

    In the present study, we analyzed the functional profile of CD8+ T-cell responses directed against autologous transmitted/founder HIV-1 isolates during acute and early infection, and examined whether multifunctionality is required for selection of virus escape mutations. Seven anti-retroviral therapy-naïve subjects were studied in detail between 1 and 87 weeks following onset of symptoms of acute HIV-1 infection. Synthetic peptides representing the autologous transmitted/founder HIV-1 sequences were used in multiparameter flow cytometry assays to determine the functionality of HIV-1-specific CD8+ T memory cells. In all seven patients, the earliest T cell responses were predominantly oligofunctional, although the relative contribution of multifunctional cell responses increased significantly with time from infection. Interestingly, only the magnitude of the total and not of the poly-functional T-cell responses was significantly associated with the selection of escape mutants. However, the high contribution of MIP-1β-producing CD8+ T-cells to the total response suggests that mechanisms not limited to cytotoxicity could be exerting immune pressure during acute infection. Lastly, we show that epitope entropy, reflecting the capacity of the epitope to tolerate mutational change and defined as the diversity of epitope sequences at the population level, was also correlated with rate of emergence of escape mutants. PMID:21347345

  12. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers.

    PubMed

    Sanders, Rogier W; van Gils, Marit J; Derking, Ronald; Sok, Devin; Ketas, Thomas J; Burger, Judith A; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne C; Julien, Jean-Philippe; Rakasz, Eva G; Seaman, Michael S; Guttman, Miklos; Lee, Kelly K; Klasse, Per Johan; LaBranche, Celia; Schief, William R; Wilson, Ian A; Overbaugh, Julie; Burton, Dennis R; Ward, Andrew B; Montefiori, David C; Dean, Hansi; Moore, John P

    2015-07-10

    A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505 SOSIP.664, induced NAbs potently against the sequence-matched tier 2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (tier 1) viruses. Tier 2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas tier 1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous tier 2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for the development of HIV-1 vaccines aimed at inducing bNAbs.

  13. Human cytosolic extracts stabilize the HIV-1 core.

    PubMed

    Fricke, Thomas; Brandariz-Nuñez, Alberto; Wang, Xiaozhao; Smith, Amos B; Diaz-Griffero, Felipe

    2013-10-01

    The stability of the HIV-1 core in the cytoplasm is crucial for productive HIV-1 infection. Mutations that stabilize or destabilize the core showed defects on HIV-1 reverse transcription and infection. We developed a novel and simple assay to measure the stability of in vitro-assembled HIV-1 CA-NC complexes. The assay allowed us to demonstrate that cytosolic extracts strongly stabilize the HIV-1 core. Interestingly, stabilization of in vitro-assembled HIV-1 CA-NC complexes is not due solely to macromolecular crowding, suggesting the presence of specific cellular factors that stabilize the HIV-1 core. By using our novel assay, we measured the abilities of different drugs, such as PF74, CAP-1, IXN-053, cyclosporine, Bi2 (also known as BI-2), and the peptide CAI, to modulate the stability of in vitro-assembled HIV-1 CA-NC complexes. Interestingly, we found that PF74 and Bi2 strongly stabilized HIV-1 CA-NC complexes. On the other hand, the peptide CAI destabilized HIV-1 CA-NC complexes. We also found that purified cyclophilin A destabilizes in vitro-assembled HIV-1 CA-NC complexes in the presence of cellular extracts in a cyclosporine-sensitive manner. In agreement with previous observations using the fate-of-the-capsid assay, we also demonstrated the ability of recombinant CPSF6 to stabilize HIV-1 CA-NC complexes. Overall, our findings suggested that cellular extracts specifically stabilize the HIV-1 core. We believe that our assay can be a powerful tool to assess HIV-1 core stability in vitro.

  14. Bispecific Antibodies Targeting Different Epitopes on the HIV-1 Envelope Exhibit Broad and Potent Neutralization

    PubMed Central

    Asokan, M.; Rudicell, R. S.; Louder, M.; McKee, K.; O'Dell, S.; Stewart-Jones, G.; Wang, K.; Xu, L.; Chen, X.; Choe, M.; Chuang, G.; Georgiev, I. S.; Joyce, M. G.; Kirys, T.; Ko, S.; Pegu, A.; Shi, W.; Todd, J. P.; Yang, Z.; Bailer, R. T.; Rao, S.; Kwong, P. D.; Nabel, G. J.

    2015-01-01

    ABSTRACT The potency and breadth of the recently isolated neutralizing human monoclonal antibodies to HIV-1 have stimulated interest in their use to prevent or to treat HIV-1 infection. Due to the antigenically diverse nature of the HIV-1 envelope (Env), no single antibody is highly active against all viral strains. While the physical combination of two broadly neutralizing antibodies (bNAbs) can improve coverage against the majority of viruses, the clinical-grade manufacturing and testing of two independent antibody products are time and resource intensive. In this study, we constructed bispecific immunoglobulins (IgGs) composed of independent antigen-binding fragments with a common Fc region. We developed four different bispecific IgG variants that included antibodies targeting four major sites of HIV-1 neutralization. We show that these bispecific IgGs display features of both antibody specificities and, in some cases, display improved coverage over the individual parental antibodies. All four bispecific IgGs neutralized 94% to 97% of antigenically diverse viruses in a panel of 206 HIV-1 strains. Among the bispecific IgGs tested, VRC07 × PG9-16 displayed the most favorable neutralization profile. It was superior in breadth to either of the individual antibodies, neutralizing 97% of viruses with a median 50% inhibitory concentration (IC50) of 0.055 μg/ml. This bispecific IgG also demonstrated in vivo pharmacokinetic parameters comparable to those of the parental bNAbs when administered to rhesus macaques. These results suggest that IgG-based bispecific antibodies are promising candidates for the prevention and treatment of HIV-1 infection in humans. IMPORTANCE To prevent or treat HIV-1 infection, antibodies must potently neutralize nearly all strains of HIV-1. Thus, the physical combination of two or more antibodies may be needed to broaden neutralization coverage and diminish the possibility of viral resistance. A bispecific antibody that has two different

  15. Vpu Protein: The Viroporin Encoded by HIV-1

    PubMed Central

    González, María Eugenia

    2015-01-01

    Viral protein U (Vpu) is a lentiviral viroporin encoded by human immunodeficiency virus type 1 (HIV-1) and some simian immunodeficiency virus (SIV) strains. This small protein of 81 amino acids contains a single transmembrane domain that allows for supramolecular organization via homoligomerization or interaction with other proteins. The topology and trafficking of Vpu through subcellular compartments result in pleiotropic effects in host cells. Notwithstanding the high variability of its amino acid sequence, the functionality of Vpu is well conserved in pandemic virus isolates. This review outlines our current knowledge on the interactions of Vpu with the host cell. The regulation of cellular physiology by Vpu and the validity of this viroporin as a therapeutic target are also discussed. PMID:26247957

  16. Crystallization studies on HIV-1 reverse transcriptase

    NASA Astrophysics Data System (ADS)

    Lloyd, Lesley F.; Brick, Peter; Blow, David M.; Mei-Zhen, Lou

    1992-08-01

    HIV-1 reverse transcriptase has been crystallized in a variety of forms. Various ligands used for co-crystallization are described and the results presented. All of these crystals showed disorder when examined in the X-ray beam. The best diffraction currently achieved has been approximately 7A˚. The possible reasons for crystal disorder are discussed. An example of another protein, car☐ypeptidase G 2, which initially yielded non-diffracting crystals, is used to illustrate the value of applying random or incomplete factorial screens to sample wider parameter space for conditions to grow well-ordered crystals.

  17. Rigidity analysis of HIV-1 protease

    NASA Astrophysics Data System (ADS)

    Heal, J. W.; Wells, S. A.; Jimenez-Roldan, E.; Freedman, R. F.; Römer, R. A.

    2011-03-01

    We present a rigidity analysis on a large number of X-ray crystal structures of the enzyme HIV-1 protease using the 'pebble game' algorithm of the software FIRST. We find that although the rigidity profile remains similar across a comprehensive set of high resolution structures, the profile changes significantly in the presence of an inhibitor. Our study shows that the action of the inhibitors is to restrict the flexibility of the β-hairpin flaps which allow access to the active site. The results are discussed in the context of full molecular dynamics simulations as well as data from NMR experiments.

  18. An empiric risk scoring tool for identifying high-risk heterosexual HIV-1 serodiscordant couples for targeted HIV-1 prevention

    PubMed Central

    KAHLE, Erin M.; HUGHES, James P.; LINGAPPA, Jairam R.; JOHN-STEWART, Grace; CELUM, Connie; NAKKU-JOLOBA, Edith; NJUGUNA, Stella; MUGO, Nelly; BUKUSI, Elizabeth; MANONGI, Rachel; BAETEN, Jared M.

    2012-01-01

    Background and objectives Heterosexual HIV-1 serodiscordant couples are increasingly recognized as an important source of new HIV-1 infections in sub-Saharan Africa. A simple risk assessment tool could be useful for identifying couples at highest risk for HIV-1 transmission. Methods Using data from three prospective studies of HIV-1 serodiscordant couples from seven African countries and standard methods for development of clinical prediction rules, we derived and validated a risk scoring tool developed from multivariate modeling and composed of key predictors for HIV-1 risk that could be measured in standard research and clinical settings. Results The final risk score included age of the HIV-1 uninfected partner, married and/or cohabiting partnership, number of children, unprotected sex, uncircumcised male HIV-1 uninfected partner, and plasma HIV-1 RNA in the HIV-1 infected partner. The maximum risk score was 12, scores ≥5 were associated with an annual HIV-1 incidence of >3%, and couples with a score ≥6 accounted for only 28% of the population but 67% of HIV-1 transmissions. The area under the curve for predictive ability of the score was 0.74 (95% CI 0.70–0.78). Internal and external validation showed similar predictive ability of the risk score, even when plasma viral load was excluded from the risk score. Conclusions A discrete combination of clinical and behavioral characteristics defines highest-risk HIV-1 serodiscordant couples. Discriminating highest-risk couples for HIV-1 prevention programs and clinical trials using a validated risk score could improve research efficiency and maximize the impact of prevention strategies for reducing HIV-1 transmission. PMID:23187945

  19. β-Chemokines and neutralizing antibody titers correlate with sterilizing immunity generated in HIV-1 vaccinated macaques

    PubMed Central

    Heeney, Jonathan L.; Teeuwsen, Vera J. P.; van Gils, Mariélle; Bogers, Willy M. J. M.; Morghen, Carlo De Giuli; Radaelli, Antonia; Barnett, Susan; Morein, Bror; Åkerblom, Lennart; Wang, Yufei; Lehner, Thomas; Davis, David

    1998-01-01

    One of the obstacles to AIDS vaccine development is the variability of HIV-1 within individuals and within infected populations, enabling viral escape from highly specific vaccine induced immune responses. An understanding of the different immune mechanisms capable of inhibiting HIV infection may be of benefit in the eventual design of vaccines effective against HIV-1 variants. To study this we first compared the immune responses induced in Rhesus monkeys by using two different immunization strategies based on the same vaccine strain of HIV-1. We then utilized a chimeric simian/HIV that expressed the envelope of a dual tropic HIV-1 escape variant isolated from a later time point from the same patient from which the vaccine strain was isolated. Upon challenge, one vaccine group was completely protected from infection, whereas all of the other vaccinees and controls became infected. Protected macaques developed highest titers of heterologous neutralizing antibodies, and consistently elevated HIV-1-specific T helper responses. Furthermore, only protected animals had markedly increased concentrations of RANTES, macrophage inflammatory proteins 1α and 1β produced by circulating CD8+ T cells. These results suggest that vaccine strategies that induce multiple effector mechanisms in concert with β-chemokines may be desired in the generation of protective immune responses by HIV-1 vaccines. PMID:9724785

  20. The impact of HIV-1 genetic diversity on the efficacy of a combinatorial RNAi-based gene therapy.

    PubMed

    Herrera-Carrillo, E; Berkhout, B

    2015-06-01

    A hurdle for human immunodeficiency virus (HIV-1) therapy is the genomic diversity of circulating viruses and the possibility that drug-resistant virus variants are selected. Although RNA interference (RNAi) is a powerful tool to stably inhibit HIV-1 replication by the expression of antiviral short hairpin RNAs (shRNAs) in transduced T cells, this approach is also vulnerable to pre-existing genetic variation and the development of viral resistance through mutation. To prevent viral escape, we proposed to combine multiple shRNAs against important regions of the HIV-1 RNA genome, which should ideally be conserved in all HIV-1 subtypes. The vulnerability of RNAi therapy to viral escape has been studied for a single subtype B strain, but it is unclear whether the antiviral shRNAs can inhibit diverse virus isolates and subtypes, including drug-resistant variants that could be present in treated patients. To determine the breadth of the RNAi gene therapy approach, we studied the susceptibility of HIV-1 subtypes A-E and drug-resistant variants. In addition, we monitored the evolution of HIV-1 escape variants. We demonstrate that the combinatorial RNAi therapy is highly effective against most isolates, supporting the future testing of this gene therapy in appropriate in vivo models.

  1. High Degree of HIV-1 Group M (HIV-1M) Genetic Diversity within Circulating Recombinant Forms: Insight into the Early Events of HIV-1M Evolution

    PubMed Central

    2015-01-01

    ABSTRACT The existence of various highly divergent HIV-1 lineages and of recombination-derived sequence tracts of indeterminate origin within established circulating recombinant forms (CRFs) strongly suggests that HIV-1 group M (HIV-1M) diversity is not fully represented under the current classification system. Here we used a fully exploratory screen for recombination on a set of 480 near-full-length genomes representing the full known diversity of HIV-1M. We decomposed recombinant sequences into their constituent parts and then used maximum-likelihood phylogenetic analyses of this mostly recombination-free data set to identify rare divergent sequence lineages that fall outside the major named HIV-1M taxonomic groupings. We found that many of the sequence fragments occurring within CRFs (including CRF04_cpx, CRF06_cpx, CRF11_cpx, CRF18_cpx, CRF25_cpx, CRF27_cpx, and CRF49_cpx) are in fact likely derived from divergent unclassified parental lineages that may predate the current subtypes, even though they are presently identified as derived from currently defined HIV-1M subtypes. Our evidence suggests that some of these CRFs are descended predominantly from what were or are major previously unidentified HIV-1M lineages that were likely epidemiologically relevant during the early stages of the HIV-1M epidemic. The restriction of these divergent lineages to the Congo basin suggests that they were less infectious and/or simply not present at the time and place of the initial migratory wave that triggered the global epidemic. IMPORTANCE HIV-1 group M (HIV-1M) likely spread to the rest of the world from the Congo basin in the mid-1900s (N. R. Faria et al., Science 346:56–61, 2014, http://dx.doi.org/10.1126/science.1256739) and is today the principal cause of the AIDS pandemic. Here, we show that large sequence fragments from several HIV-1M circulating recombinant forms (CRFs) are derived from divergent parental lineages that cannot reasonably be classified within the

  2. Human Immunodeficiency Virus Type 1 (HIV-1) Integration: a Potential Target for Microbicides To Prevent Cell-Free or Cell-Associated HIV-1 Infection ▿

    PubMed Central

    Terrazas-Aranda, Katty; Van Herrewege, Yven; Hazuda, Daria; Lewi, Paul; Costi, Roberta; Di Santo, Roberto; Cara, Andrea; Vanham, Guido

    2008-01-01

    Conceptually, blocking human immunodeficiency virus type 1 (HIV-1) integration is the last possibility for preventing irreversible cellular infection. Using cocultures of monocyte-derived dendritic cells and CD4+ T cells, which represent primary targets in sexual transmission, we demonstrated that blocking integration with integrase strand transfer inhibitors (InSTIs), particularly L-870812, could consistently block cell-free and cell-associated HIV-1 infection. In a pretreatment setting in which the compound was present before and during infection and was afterwards gradually diluted during the culture period, the naphthyridine carboxamide L-870812 blocked infection with the cell-free and cell-associated HIV-1 Ba-L strain at concentrations of, respectively, 1,000 and 10,000 nM. The potency of L-870812 was similar to that of the nucleotide reverse transcriptase inhibitor R-9-(2-phosphonylmethoxypropyl) adenine (PMPA) but one or two orders of magnitude lower than those of the nonnucleoside reverse transcriptase inhibitors UC781 and TMC120. In contrast, the diketo acid RDS derivative InSTIs showed clear-cut but weaker antiviral activity than L-870812. Moreover, L-870812 completely blocked subtype C and CRFO2_AG primary isolates, which are prevalent in the African heterosexual epidemic. Furthermore, the addition of micromolar concentrations of L-870812 even 24 h after infection could still block both cell-free and cell-associated Ba-L, opening the prospect of postexposure prophylaxis. Finally, an evaluation of the combined activity of L-870812 with either T20, zidovudine, PMPA, UC781, or TMC120 against replication-deficient HIV-1 Ba-L (env) pseudovirus suggested synergistic activity for all combinations. Importantly, compounds selected for the study by using the coculture model were devoid of acute or delayed cytotoxic effects at HIV-blocking concentrations. Therefore, these findings provide evidence supporting consideration of HIV-1 integration as a target for

  3. HIV-1 Integrates Widely throughout the Genome of the Human Blood Fluke Schistosoma mansoni

    PubMed Central

    Mann, Victoria H.; Dubrovsky, Larisa; Yan, Hong-bin; Huckvale, Thomas; Protasio, Anna V.; Pushkarsky, Tatiana; Iordanskiy, Sergey; Bukrinsky, Michael I.

    2016-01-01

    Schistosomiasis is the most important helminthic disease of humanity in terms of morbidity and mortality. Facile manipulation of schistosomes using lentiviruses would enable advances in functional genomics in these and related neglected tropical diseases pathogens including tapeworms, and including their non-dividing cells. Such approaches have hitherto been unavailable. Blood stream forms of the human blood fluke, Schistosoma mansoni, the causative agent of the hepatointestinal schistosomiasis, were infected with the human HIV-1 isolate NL4-3 pseudotyped with vesicular stomatitis virus glycoprotein. The appearance of strong stop and positive strand cDNAs indicated that virions fused to schistosome cells, the nucleocapsid internalized and the RNA genome reverse transcribed. Anchored PCR analysis, sequencing HIV-1-specific anchored Illumina libraries and Whole Genome Sequencing (WGS) of schistosomes confirmed chromosomal integration; >8,000 integrations were mapped, distributed throughout the eight pairs of chromosomes including the sex chromosomes. The rate of integrations in the genome exceeded five per 1,000 kb and HIV-1 integrated into protein-encoding loci and elsewhere with integration bias dissimilar to that of human T cells. We estimated ~ 2,100 integrations per schistosomulum based on WGS, i.e. about two or three events per cell, comparable to integration rates in human cells. Accomplishment in schistosomes of post-entry processes essential for HIV-1replication, including integrase-catalyzed integration, was remarkable given the phylogenetic distance between schistosomes and primates, the natural hosts of the genus Lentivirus. These enigmatic findings revealed that HIV-1 was active within cells of S. mansoni, and provided the first demonstration that HIV-1 can integrate into the genome of an invertebrate. PMID:27764257

  4. Reviewing the History of HIV-1: Spread of Subtype B in the Americas

    PubMed Central

    Junqueira, Dennis Maletich; de Medeiros, Rúbia Marília; Matte, Maria Cristina Cotta; Araújo, Leonardo Augusto Luvison; Chies, Jose Artur Bogo; Ashton-Prolla, Patricia; Almeida, Sabrina Esteves de Matos

    2011-01-01

    The dispersal of HIV-1 subtype B (HIV-1B) is a reflection of the movement of human populations in response to social, political, and geographical issues. The initial dissemination of HIV-1B outside Africa seems to have included the passive involvement of human populations from the Caribbean in spreading the virus to the United States. However, the exact pathways taken during the establishment of the pandemic in the Americas remain unclear. Here, we propose a geographical scenario for the dissemination of HIV-1B in the Americas, based on phylogenetic and genetic statistical analyses of 313 available sequences of the pol gene from 27 countries. Maximum likelihood and Bayesian inference methods were used to explore the phylogenetic relationships between HIV-1B sequences, and molecular variance estimates were analyzed to infer the genetic structure of the viral population. We found that the initial dissemination and subsequent spread of subtype B in the Americas occurred via a single introduction event in the Caribbean around 1964 (1950–1967). Phylogenetic trees present evidence of several primary outbreaks in countries in South America, directly seeded by the Caribbean epidemic. Cuba is an exception insofar as its epidemic seems to have been introduced from South America. One clade comprising isolates from different countries emerged in the most-derived branches, reflecting the intense circulation of the virus throughout the American continents. Statistical analysis supports the genetic compartmentalization of the virus among the Americas, with a close relationship between the South American and Caribbean epidemics. These findings reflect the complex establishment of the HIV-1B pandemic and contribute to our understanding between the migration process of human populations and virus diffusion. PMID:22132104

  5. Reviewing the history of HIV-1: spread of subtype B in the Americas.

    PubMed

    Junqueira, Dennis Maletich; de Medeiros, Rúbia Marília; Matte, Maria Cristina Cotta; Araújo, Leonardo Augusto Luvison; Chies, Jose Artur Bogo; Ashton-Prolla, Patricia; Almeida, Sabrina Esteves de Matos

    2011-01-01

    The dispersal of HIV-1 subtype B (HIV-1B) is a reflection of the movement of human populations in response to social, political, and geographical issues. The initial dissemination of HIV-1B outside Africa seems to have included the passive involvement of human populations from the Caribbean in spreading the virus to the United States. However, the exact pathways taken during the establishment of the pandemic in the Americas remain unclear. Here, we propose a geographical scenario for the dissemination of HIV-1B in the Americas, based on phylogenetic and genetic statistical analyses of 313 available sequences of the pol gene from 27 countries. Maximum likelihood and bayesian inference methods were used to explore the phylogenetic relationships between HIV-1B sequences, and molecular variance estimates were analyzed to infer the genetic structure of the viral population. We found that the initial dissemination and subsequent spread of subtype B in the Americas occurred via a single introduction event in the Caribbean around 1964 (1950-1967). Phylogenetic trees present evidence of several primary outbreaks in countries in South America, directly seeded by the Caribbean epidemic. Cuba is an exception insofar as its epidemic seems to have been introduced from South America. One clade comprising isolates from different countries emerged in the most-derived branches, reflecting the intense circulation of the virus throughout the American continents. Statistical analysis supports the genetic compartmentalization of the virus among the Americas, with a close relationship between the South American and Caribbean epidemics. These findings reflect the complex establishment of the HIV-1B pandemic and contribute to our understanding between the migration process of human populations and virus diffusion.

  6. Evaluation of Hologic Aptima HIV-1 Quant Dx Assay on the Panther System on HIV Subtypes.

    PubMed

    Manak, Mark M; Hack, Holly R; Nair, Sangeetha V; Worlock, Andrew; Malia, Jennifer A; Peel, Sheila A; Jagodzinski, Linda L

    2016-10-01

    Quantitation of the HIV-1 viral load in plasma is the current standard of care for clinical monitoring of HIV-infected individuals undergoing antiretroviral therapy. This study evaluated the analytical and clinical performances of the Aptima HIV-1 Quant Dx assay (Hologic, San Diego, CA) for monitoring viral load by using 277 well-characterized subtype samples, including 171 cultured virus isolates and 106 plasma samples from 35 countries, representing all major HIV subtypes, recombinants, and circulating recombinant forms (CRFs) currently in circulation worldwide. Linearity of the Aptima assay was tested on each of 6 major HIV-1 subtypes (A, B, C, D, CRF01_AE, and CRF02_AG) and demonstrated an R(2) value of ≥0.996. The performance of the Aptima assay was also compared to those of the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 v.2 (CAP/CTM) and Abbott m2000 RealTime HIV-1 (RealTime) assays on all subtype samples. The Aptima assay values averaged 0.21 log higher than the CAP/CTM values and 0.30 log higher than the RealTime values, and the values were >0.4 log higher than CAP/CTM values for subtypes F and G and than RealTime values for subtypes C, F, and G and CRF02_AG. Two samples demonstrated results with >1-log differences from RealTime results. When the data were adjusted by the average difference, 94.9% and 87.0% of Aptima results fell within 0.5 log of the CAP/CTM and RealTime results, respectively. The linearity and accuracy of the Aptima assay in correctly quantitating all major HIV-1 subtypes, coupled with the completely automated format and high throughput of the Panther system, make this system well suited for reliable measurement of viral load in the clinical laboratory. PMID:27510829

  7. Evaluation of Hologic Aptima HIV-1 Quant Dx Assay on the Panther System on HIV Subtypes.

    PubMed

    Manak, Mark M; Hack, Holly R; Nair, Sangeetha V; Worlock, Andrew; Malia, Jennifer A; Peel, Sheila A; Jagodzinski, Linda L

    2016-10-01

    Quantitation of the HIV-1 viral load in plasma is the current standard of care for clinical monitoring of HIV-infected individuals undergoing antiretroviral therapy. This study evaluated the analytical and clinical performances of the Aptima HIV-1 Quant Dx assay (Hologic, San Diego, CA) for monitoring viral load by using 277 well-characterized subtype samples, including 171 cultured virus isolates and 106 plasma samples from 35 countries, representing all major HIV subtypes, recombinants, and circulating recombinant forms (CRFs) currently in circulation worldwide. Linearity of the Aptima assay was tested on each of 6 major HIV-1 subtypes (A, B, C, D, CRF01_AE, and CRF02_AG) and demonstrated an R(2) value of ≥0.996. The performance of the Aptima assay was also compared to those of the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 v.2 (CAP/CTM) and Abbott m2000 RealTime HIV-1 (RealTime) assays on all subtype samples. The Aptima assay values averaged 0.21 log higher than the CAP/CTM values and 0.30 log higher than the RealTime values, and the values were >0.4 log higher than CAP/CTM values for subtypes F and G and than RealTime values for subtypes C, F, and G and CRF02_AG. Two samples demonstrated results with >1-log differences from RealTime results. When the data were adjusted by the average difference, 94.9% and 87.0% of Aptima results fell within 0.5 log of the CAP/CTM and RealTime results, respectively. The linearity and accuracy of the Aptima assay in correctly quantitating all major HIV-1 subtypes, coupled with the completely automated format and high throughput of the Panther system, make this system well suited for reliable measurement of viral load in the clinical laboratory.

  8. Purinergic Receptors: Key Mediators of HIV-1 Infection and Inflammation

    PubMed Central

    Swartz, Talia H.; Dubyak, George R.; Chen, Benjamin K.

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) causes a chronic infection that afflicts more than 30 million individuals worldwide. While the infection can be suppressed with potent antiretroviral therapies, individuals infected with HIV-1 have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV-1 pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here, we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets. PMID:26635799

  9. [Inhibitory effect of human saliva on HIV-1 infectivity].

    PubMed

    Etsuko, K; Wei, S

    2001-08-01

    Human saliva is known to decrease human immunodeficiency virus type 1 (HIV-1) infectivity in vitro. The purpose of this study was to confirm these findings and to explore the mechanism of action of saliva. Whole saliva from seronegative donors was incubated with HIV-1IIIB chronically infected MOLT 4 cells (MOLT 4/HIV-1IIIB cells) or cell-free HIV-1IIIB or KMT strains. We monitored viral infectivity by using MAGI/CCR5 cells. Whole saliva with Na levels less than 20 mEq/l rapidly damaged MOLT 4/HIV-1IIIB cells, thereby HIV infection to MAGI/CCR5 cells by MOLT 4/HIV-1IIIB cells was nearly abolished. On the contrary, in the cace of whole saliva with Na levels more than 23 mEq/l which damaged few cells, cell-to-cell transmission of HIV-1IIIB was prevented by more than 50%. The infectivity of cell-free HIV-1IIIB to MAGI/CCR5 cells was abolished after incubating and filtering the HIV with whole saliva. Depletion of secretory leukocyte protease inhibitor (SLPI) from whole saliva resulted in a 11-28% decrease in the anti HIV-1KMT activity of saliva. Preincubation of host cells with whole saliva led to an enhancement of the HIV infection rather than inhibition. Whole saliva had no effect on the expression level of the cellular receptors (CD4, CXCR4 and CCR5). These results suggest that the inhibitory effect of whole saliva on HIV-1 infectivity is directly linked to the virus itself rather than on the host cell. Moreover, the physical entrapment of cell-free HIV-1 by whole saliva seems to have major salivaly defence mechanisms against HIV-1 infection through the oral cavity. PMID:16578966

  10. Raltegravir, an HIV-1 integrase inhibitor for HIV infection.

    PubMed

    Cabrera, Cecilia

    2008-08-01

    Merck & Co has developed and launched raltegravir, an HIV-1 integrase inhibitor for the treatment of HIV-1 infection in treatment-experienced adult patients who have evidence of viral replication and HIV-1 strains resistant to multiple antiretroviral agents. This drug is the lead from a series of integrase strand transfer inhibitors and, by April 2008, it had been launched in Canada, the US, the UK, France, Germany and Spain, and had been filed for approval in Japan.

  11. TGFβ Induces a SAMHD1-Independent Post-Entry Restriction to HIV-1 Infection of Human Epithelial Langerhans Cells.

    PubMed

    Czubala, Magdalena A; Finsterbusch, Katja; Ivory, Matthew O; Mitchell, J Paul; Ahmed, Zahra; Shimauchi, Takatoshi; Karoo, Richard O S; Coulman, Sion A; Gateley, Christopher; Birchall, James C; Blanchet, Fabien P; Piguet, Vincent

    2016-10-01

    Sterile alpha motif (SAM) and histidine-aspartic (HD) domains protein 1 (SAMHD1) was previously identified as a critical post-entry restriction factor to HIV-1 infection in myeloid dendritic cells. Here we show that SAMHD1 is also expressed in epidermis-isolated Langerhans cells (LC), but degradation of SAMHD1 does not rescue HIV-1 or vesicular stomatitis virus G-pseudotyped lentivectors infection in LC. Strikingly, using Langerhans cells model systems (mutz-3-derived LC, monocyte-derived LC [MDLC], and freshly isolated epidermal LC), we characterize previously unreported post-entry restriction activity to HIV-1 in these cells, which acts at HIV-1 reverse transcription, but remains independent of restriction factors SAMHD1 and myxovirus resistance 2 (MX2). We demonstrate that transforming growth factor-β signaling confers this potent HIV-1 restriction in MDLC during their differentiation and blocking of mothers against decapentaplegic homolog 2 (SMAD2) signaling in MDLC restores cells' infectivity. Interestingly, maturation of MDLC with a toll-like receptor 2 agonist or transforming growth factor-α significantly increases cells' susceptibility to HIV-1 infection, which may explain why HIV-1 acquisition is increased during coinfection with sexually transmitted infections. In conclusion, we report a SAMHD1-independent post-entry restriction in MDLC and LC isolated from epidermis, which inhibits HIV-1 replication. A better understanding of HIV-1 restriction and propagation from LC to CD4(+) T cells may help in the development of new microbicides or vaccines to curb HIV-1 infection at its earliest stages during mucosal transmission. PMID:27375111

  12. Disseminated human immunodeficiency virus 1 (HIV-1) infection in SCID- hu mice after peripheral inoculation with HIV-1

    PubMed Central

    1994-01-01

    A small animal model that could be infected with human immunodeficiency virus 1 (HIV-1) after peripheral inoculation would greatly facilitate the study of the pathophysiology of acute HIV-1 infection. The utility of SCID mice implanted with human fetal thymus and liver (SCID-hu mice) for studying peripheral HIV-1 infection in vivo has been hampered by the requirement for direct intraimplant injection of HIV-1 and the continued restriction of the resultant HIV-1 infection to the human thymus and liver (hu-thy/liv) implant. This may have been due to the very low numbers of human T cells present in the SCID-hu mouse peripheral lymphoid compartment. Since the degree of the peripheral reconstitution of SCID-hu mice with human T cells may be a function of the hu-thy/liv implant size, we increased the quantity of hu-thy/liv tissue implanted under the renal capsule and implanted hu-thy/liv tissue under the capsules of both kidneys. This resulted in SCID-hu mice in which significant numbers of human T cells were detected in the peripheral blood, spleens, and lymph nodes. After intraimplant injection of HIV-1 into these modified SCID-hu mice, significant HIV-1 infection was detected by quantitative coculture not only in the hu- thy/liv implant, but also in the spleen and peripheral blood. This indicated that HIV-1 infection can spread from the thymus to the peripheral lymphoid compartment. More importantly, a similar degree of infection of the hu-thy/liv implant and peripheral lymphoid compartment occurred after peripheral intraperitoneal inoculation with HIV-1. Active viral replication was indicated by the detection of HIV-1 gag DNA, HIV-1 gag RNA, and spliced tat/rev RNA in the hu-thy/liv implants, peripheral blood mononuclear cells (PBMC), spleens, and lymph nodes of these HIV-1-infected SCID-hu mice. As a first step in using our modified SCID-hu mouse model to investigate the pathophysiological consequences of HIV-1 infection, the effect of HIV-1 infection on the

  13. Structured treatment interruptions to control HIV-1 infection.

    PubMed

    Lori, F; Maserati, R; Foli, A; Seminari, E; Timpone, J; Lisziewicz, J

    2000-01-22

    Structured treatment interruptions progressively lowered the rate of viral rebound in some HIV-1 infected patients. This approach should be explored as an alternative to continuous antiretroviral therapies.

  14. Broad activation of latent HIV-1 in vivo.

    PubMed

    Barton, Kirston; Hiener, Bonnie; Winckelmann, Anni; Rasmussen, Thomas Aagaard; Shao, Wei; Byth, Karen; Lanfear, Robert; Solomon, Ajantha; McMahon, James; Harrington, Sean; Buzon, Maria; Lichterfeld, Mathias; Denton, Paul W; Olesen, Rikke; Østergaard, Lars; Tolstrup, Martin; Lewin, Sharon R; Søgaard, Ole Schmeltz; Palmer, Sarah

    2016-01-01

    The 'shock and kill' approach to cure human immunodeficiency virus (HIV) includes transcriptional induction of latent HIV-1 proviruses using latency-reversing agents (LRAs) with targeted immunotherapy to purge infected cells. The administration of LRAs (panobinostat or vorinostat) to HIV-1-infected individuals on antiretroviral therapy induces a significant increase in cell-associated unspliced (CA-US) HIV-1 RNA from CD4(+) T cells. However, it is important to discern whether the increases in CA-US HIV-1 RNA are due to limited or broad activation of HIV-1 proviruses. Here we use single-genome sequencing to find that the RNA transcripts observed following LRA administration are genetically diverse, indicating activation of transcription from an extensive range of proviruses. Defective sequences are more frequently found in CA HIV-1 RNA than in HIV-1 DNA, which has implications for developing an accurate measure of HIV-1 reservoir size. Our findings provide insights into the effects of panobinostat and vorinostat as LRAs for latent HIV-1. PMID:27605062

  15. Impaired IL-2 expression in latent HIV-1 infection.

    PubMed

    Shin, YoungHyun; Yoon, Cheol-Hee; Lim, Hoyong; Park, Jihwan; Roh, Tae-Young; Kang, Chun; Choi, Byeong-Sun

    2015-08-01

    Regarding the T cell function in HIV-1 infection, activation of T cells is enhanced in acutely HIV-1-infected T cells upon stimuli. However, T cell immune responses underlying the activation of T cell receptor (TCR) signaling molecules and interleukin (IL)-2 production in latently HIV-1-infected cells are poorly understood. The expression and activation of TCR components and its downstream molecules in acutely and latently HIV-1-infected T cells were compared using quantitative reverse transcription polymerase chain reaction (RT-PCR) for mRNA expression and enzyme-linked immunosorbent assay (ELISA) for levels of IL-2 in phytohemagglutinin M (PHA-M). The levels of T cell surface molecules and TCR signaling molecules in latently HIV-1-infected cells were greatly decreased without changes in their mRNA levels. In addition, downstream TCR-signaling molecules in latently HIV-1-infected cells were not activated even in the presence of PHA-M. The phosphorylation of mitogen-activated protein kinases (MAPKs) in the presence of PHA-M was weakly induced in latently HIV-1-infected cells but was greater in acutely HIVNL4-3-infected cells. Finally, the production of IL-2 was significantly decreased in latently HIV-1-infected cells compared with uninfected parent cells. Thus, IL-2-related immunological functions in latently HIV-1-infected T cells were markedly impaired even in the presence of stimuli.

  16. Broad activation of latent HIV-1 in vivo

    PubMed Central

    Barton, Kirston; Hiener, Bonnie; Winckelmann, Anni; Rasmussen, Thomas Aagaard; Shao, Wei; Byth, Karen; Lanfear, Robert; Solomon, Ajantha; McMahon, James; Harrington, Sean; Buzon, Maria; Lichterfeld, Mathias; Denton, Paul W.; Olesen, Rikke; Østergaard, Lars; Tolstrup, Martin; Lewin, Sharon R.; Søgaard, Ole Schmeltz; Palmer, Sarah

    2016-01-01

    The ‘shock and kill' approach to cure human immunodeficiency virus (HIV) includes transcriptional induction of latent HIV-1 proviruses using latency-reversing agents (LRAs) with targeted immunotherapy to purge infected cells. The administration of LRAs (panobinostat or vorinostat) to HIV-1-infected individuals on antiretroviral therapy induces a significant increase in cell-associated unspliced (CA-US) HIV-1 RNA from CD4+ T cells. However, it is important to discern whether the increases in CA-US HIV-1 RNA are due to limited or broad activation of HIV-1 proviruses. Here we use single-genome sequencing to find that the RNA transcripts observed following LRA administration are genetically diverse, indicating activation of transcription from an extensive range of proviruses. Defective sequences are more frequently found in CA HIV-1 RNA than in HIV-1 DNA, which has implications for developing an accurate measure of HIV-1 reservoir size. Our findings provide insights into the effects of panobinostat and vorinostat as LRAs for latent HIV-1. PMID:27605062

  17. Detection of diverse HIV-1 genetic subtypes in the USA.

    PubMed

    Brodine, S K; Mascola, J R; Weiss, P J; Ito, S I; Porter, K R; Artenstein, A W; Garland, F C; McCutchan, F E; Burke, D S

    1995-11-01

    Of the nine genetic subtypes of HIV-1 that exist world wide, subtype B predominates in North America and Europe. Thus, most knowledge about HIV-1 and most vaccine development efforts are based on subtype B viruses. We document here the detection of HIV-1 subtypes A, D, and E in five US servicemen who acquired these non-subtype-B infections during overseas deployments. The dispersal of diverse HIV-1 subtypes into regions of the world with previously restricted genetic diversity may have important implications for the epidemiology of the epidemic and for the design and implementation of vaccine trials. PMID:7475661

  18. Genome editing strategies: potential tools for eradicating HIV-1/AIDS

    PubMed Central

    Khalili, Kamel; Gordon, Jennifer; Cosentino, Laura; Hu, Wenhui

    2015-01-01

    Current therapy for controlling HIV-1 infection and preventing AIDS progression has profoundly decreased viral replication in cells susceptible to HIV-1 infection, but it does not eliminate the low level of viral replication in latently infected cells which contain integrated copies of HIV-1 proviral DNA. There is an urgent need for the development of HIV-1 genome eradication strategies that will lead to a permanent or “sterile” cure of HIV-1/AIDS. In the past few years, novel nuclease-initiated genome editing tools have been developing rapidly, including ZFNs, TALENs, and the CRISPR/Cas9 system. These surgical knives, which can excise any genome, provide a great opportunity to eradicate the HIV-1 genome by targeting highly conserved regions of the HIV-1 long terminal repeats or essential viral genes. Given the time consuming and costly engineering of target-specific ZFNs and TALENs, the RNA-guided endonuclease Cas9 technology has emerged as a simpler and more versatile technology to allow permanent removal of integrated HIV-1 proviral DNA in eukaryotic cells, and hopefully animal models or human patients. The major unmet challenges of this approach at present include inefficient nuclease gene delivery, potential off-target cleavage, and cell-specific genome targeting. Nanoparticle or lentivirus-mediated delivery of next generation Cas9 technologies including nickase or RNA-guided FokI nuclease (RFN) will further improve the potential for genome editing to become a promising approach for curing HIV-1/AIDS. PMID:25716921

  19. Broad activation of latent HIV-1 in vivo.

    PubMed

    Barton, Kirston; Hiener, Bonnie; Winckelmann, Anni; Rasmussen, Thomas Aagaard; Shao, Wei; Byth, Karen; Lanfear, Robert; Solomon, Ajantha; McMahon, James; Harrington, Sean; Buzon, Maria; Lichterfeld, Mathias; Denton, Paul W; Olesen, Rikke; Østergaard, Lars; Tolstrup, Martin; Lewin, Sharon R; Søgaard, Ole Schmeltz; Palmer, Sarah

    2016-09-08

    The 'shock and kill' approach to cure human immunodeficiency virus (HIV) includes transcriptional induction of latent HIV-1 proviruses using latency-reversing agents (LRAs) with targeted immunotherapy to purge infected cells. The administration of LRAs (panobinostat or vorinostat) to HIV-1-infected individuals on antiretroviral therapy induces a significant increase in cell-associated unspliced (CA-US) HIV-1 RNA from CD4(+) T cells. However, it is important to discern whether the increases in CA-US HIV-1 RNA are due to limited or broad activation of HIV-1 proviruses. Here we use single-genome sequencing to find that the RNA transcripts observed following LRA administration are genetically diverse, indicating activation of transcription from an extensive range of proviruses. Defective sequences are more frequently found in CA HIV-1 RNA than in HIV-1 DNA, which has implications for developing an accurate measure of HIV-1 reservoir size. Our findings provide insights into the effects of panobinostat and vorinostat as LRAs for latent HIV-1.

  20. Platelets and HIV-1 infection: old and new aspects.

    PubMed

    Torre, Donato; Pugliese, Agostino

    2008-09-01

    In this review we summarize the data on interaction of platelets with HIV-1 infection. Thrombocytopenia is a common finding among HIV-1 infected patients; several combined factors contribute to low peripheral platelet counts, which are present during all the stages of the disease. In addition, a relationship between platelet count, plasma viral load and disease progression has been reported, and this shows the potential influence platelets may have on the natural history of HIV-1 disease. Several lines of evidence have shown that platelets are an integral part of inflammation, and can be also potent effector cells of innate immune response as well as of adaptive immunity. Thus, we rewieved the role of inflammatory cytokines, and chemokines as activators of platelets during HIV-1 infection. Moreover, platelets show a direct interaction with HIV-1 itself, through different pathogenic mechanisms as binding, engulfment, internalisation of HIV-1, playing a role in host defence during HIV-1 infection, by limiting viral spread and probably by inactivating viral particles. Platelets may also play an intriguing role on endothelial dysfunction present in HIV-1 infection, and this topic begins to receive systematic study, inasmuch as interaction between platelets and endothelial cells is important in the pathogenesis of atherosclerosis in HIV-1 infected patients, especially in those patients treated with antiretroviral drugs. Finally, this review attempts to better define the state of this emerging issue, to focus areas of potential clinical relevance, and to suggest several directions for future research.

  1. Transcriptional Bursting from the HIV-1 Promoter is a Significant Source of Stochastic Noise in HIV-1 Gene Expression

    SciTech Connect

    Singh, A; Razooky, B; Cox, Chris D.; Simpson, Michael L; Weinberger, Leor S.

    2010-01-01

    Analysis of noise in gene expression has proven a powerful approach for analyzing gene regulatory architecture. To probe the regulatory mechanisms controlling expression of HIV-1, we analyze noise in gene-expression from HIV-1 s long terminal repeat (LTR) promoter at different HIV-1 integration sites across the human genome. Flow cytometry analysis of GFP expression from the HIV-1 LTR shows high variability (noise) at each integration site. Notably, the measured noise levels are inconsistent with constitutive gene expression models. Instead, quantification of expression noise indicates that HIV-1 gene expression occurs through randomly timed bursts of activity from the LTR and that each burst generates an average of 2 10 mRNA transcripts before the promoter returns to an inactive state. These data indicate that transcriptional bursting can generate high variability in HIV-1 early gene products, which may critically influence the viral fate-decision between active replication and proviral latency.

  2. [Sensitivity of the COBAS AmpliScreen™ HIV-1 test v1.5 for HIV-1 detection].

    PubMed

    Gomez, Lucía P; Balangero, Marcos C; Castro, Gonzalo; Kademian, Silvia; Mangeaud, Arnaldo; Barbas, María G; Cudolá, Analía; de León, Juan F; Carrizo, Horacio; Gallego, Sandra V

    2014-01-01

    The introduction of nucleic acid amplification techniques (NAT) in blood banks was intended to reduce the residual risk of transfusion-transmitted infections. Co-circulation of a great diversity of HIV-1 variants in Argentina portrays the need to assess the sensitivity of serological and molecular assays available for their detection. In this study, we evaluated the sensitivity of the COBAS AmpliScreen™ HIV-1 Test, version 1.5 (Roche) for the detection of HIV-1 RNA in plasma samples of infected individuals from Argentina. The results of this study reveal that this technique has high sensitivity for the detection of HIV-1 RNA under assay conditions: using mini-pool testing, pools ≥ 50 RNA copies per ml achieved ≥ 92 % sensitivity, whereas in the standard procedure, samples ≥ 207 RNA copies/ml achieved 100 % sensitivity. Moreover, the COBAS AmpliScreen™ HIV-1 Test, version 1.5 (Roche) is suitable for detecting prevailing HIV-1 variants.

  3. Effect of mimetic CDK9 inhibitors on HIV-1 activated transcription

    PubMed Central

    Van Duyne, Rachel; Guendel, Irene; Jaworski, Elizabeth; Sampey, Gavin; Klase, Zachary; Chen, Hao; Zeng, Chen; Kovalskyy, Dmytro; el Kouni, Mahmoud H.; Lepene, Benjamin; Patanarut, Alexis; Nekhai, Sergei; Price, David H.; Kashanchi, Fatah

    2013-01-01

    Potent antiretroviral therapy (ART) has transformed HIV-1 infection into a chronic manageable disease; however drug resistance remains a common problem that limits the effectiveness and clinical benefits of this type of treatment. The discovery of viral reservoirs in the body, in which HIV-1 may persist, has helped to explain why therapeutic eradication of HIV-1 has proved so difficult. In the current study we utilized a combination of structure based analysis of Cyclin/CDK complexes with our previously published Tat peptide derivatives. We modeled the Tat peptide inhibitors with CDKs and found a particular pocket which showed the most stable binding site (Cavity 1) using in silico analysis. Furthermore, we were able to find peptide mimetics that bound to similar regions using in silico searches of a chemical library, followed by cell based biological assays. Using these methods we obtained the first generation mimetic drugs and tested these compounds on HIV-1 LTR activated transcription. Using biological assays followed by similar in silico analysis to find a 2nd generation drugs resembling the original mimetic, we found the new targets of Cavity 1 and Cavity 2 regions on CDK9. We examined the 2nd generation mimetic against various viral isolates, and observed a generalized suppression of most HIV-1 isolates. Finally, the drug inhibited viral replication in humanized mouse models of Rag2-/-γc-/- with no toxicity to the animals at tested concentrations. Our results suggest that it may be possible to model peptide inhibitors into available crystal structures and further find drug mimetics using in silico analysis. PMID:23247501

  4. ETS family proteins activate transcription from HIV-1 long terminal repeat.

    PubMed

    Seth, A; Hodge, D R; Thompson, D M; Robinson, L; Panayiotakis, A; Watson, D K; Papas, T S

    1993-10-01

    ets is a multigene family and its members share a common ETS DNA-binding domain. ETS proteins activate transcription via binding to a purine-rich GGAA core sequence located in promoters/enhancers of various genes, including several that are transcriptionally active in T cells. The ETS1, ETS2, and ERBG/Hu-FLI-1 gene expression pattern also suggests a role for these genes in cells of hematopoietic lineage. The HIV-1 LTR core enhancer contains two 10-base pair direct repeat sequences (left and right) that are required for regulation of HIV-1 mRNA expression by host transcription factors, including NF kappa B. Two ETS-binding sites are present in the core enhancer of all the HIV-1 isolates reported so far. In our studies, we utilized HIV-1 HXB2 and HIV-1 Z2Z6 core enhancers because the Z2Z6 strain has a single point mutation flanking the right ETS-binding site. We demonstrate that the ETS1, ETS2, and ERGB/Hu-FLI-1 proteins can trans-activate transcription from both the HXB2 and Z2Z6 core enhancer when linked to a reporter (cat) gene. In addition, we show that the DNA binding and trans-activation with the Z2Z6 core enhancer is at least 40-fold higher than that observed with the HXB2 core enhancer. Further, we provide evidence that the marked increase in binding and trans-activation with Z2Z6 core enhancer sequences is due to the substitution of a flanking T residue in HXB2 TGGAA) by a C residue in Z2Z6 (CGGAA) isolate, thus generating an optimal ETS-binding core (CGGAA) sequence. PMID:8280476

  5. HIV-1 and Human PEG10 Frameshift Elements Are Functionally Distinct and Distinguished by Novel Small Molecule Modulators

    PubMed Central

    Sleebs, Brad E.; Lackovic, Kurt; Parisot, John P.; Moss, Rebecca M.; Crowe-McAuliffe, Caillan; Mathew, Suneeth F.; Edgar, Christina D.; Kleffmann, Torsten; Tate, Warren P.

    2015-01-01

    Frameshifting during translation of viral or in rare cases cellular mRNA results in the synthesis of proteins from two overlapping reading frames within the same mRNA. In HIV-1 the protease, reverse transcriptase, and integrase enzymes are in a second reading frame relative to the structural group-specific antigen (gag), and their synthesis is dependent upon frameshifting. This ensures that a strictly regulated ratio of structural proteins and enzymes, which is critical for HIV-1 replication and viral infectivity, is maintained during protein synthesis. The frameshift element in HIV-1 RNA is an attractive target for the development of a new class of anti HIV-1 drugs. However, a number of examples are now emerging of human genes using −1 frameshifting, such as PEG10 and CCR5. In this study we have compared the HIV-1 and PEG10 frameshift elements and shown they have distinct functional characteristics. Frameshifting occurs at several points within each element. Moreover, frameshift modulators that were isolated by high-throughput screening of a library of 114,000 lead-like compounds behaved differently with the PEG10 frameshift element. The most effective compounds affecting the HIV-1 element enhanced frameshifting by 2.5-fold at 10 μM in two different frameshift reporter assay systems. HIV-1 protease:gag protein ratio was affected by a similar amount in a specific assay of virally-infected cultured cell, but the modulation of frameshifting of the first-iteration compounds was not sufficient to show significant effects on viral infectivity. Importantly, two compounds did not affect frameshifting with the human PEG10 element, while one modestly inhibited rather than enhanced frameshifting at the human element. These studies indicate that frameshift elements have unique characteristics that may allow targeting of HIV-1 and of other viruses specifically for development of antiviral therapeutic molecules without effect on human genes like PEG10 that use the same

  6. Evaluation of Immune Survival Factors in Pediatric HIV-1 Infection

    PubMed Central

    SHEARER, WILLIAM T.; EASLEY, KIRK A.; GOLDFARB, JOHANNA; JENSON, HAL B.; ROSENBLATT, HOWARD M.; KOVACS, ANDREA; MCINTOSH, KENNETH

    2015-01-01

    Peripheral blood CD4+ and CD8+ T cells, CD19+/20+ B cells, and serum immunoglobulins (Igs) have been implicated as survival factors for pediatric HIV-1 infection. To determine which of these immune factors might be important in predicting survival, we studied HIV-1 vertically infected (HIV-1+) children over a 5-year period. Peripheral blood lymphocytes and Igs were measured in 298 HIV-1+ children, who were classified as survivors or nonsurvivors, and in 463 HIV-1 vertically exposed and noninfected (HIV-1–) children. Measurements of other possible survival factors were included in this study: albumin, hemoglobin, lactic dehydrogenase (LDH), and HIV-1 RNA levels. Survivors had significantly higher CD4+ T-cell, CD8+ T-cell, and CD19+/CD20+ B-cell counts and serum IgG levels, but lower serum IgA and IgM levels than nonsurvivors. Serum albumin and blood hemoglobin levels were higher, but serum LDH and HIV-1 RNA levels were lower in the survivors compared to non-survivors. In univariable analysis, factors affecting survival were baseline CD4+ T-cell and CD8+ T-cell counts, IgG, albumin, hemoglobin, LDH, and HIV-1 RNA (all p < 0.001). In multivariable analysis, high baseline CD4+ T-cell count, IgG and albumin levels, and low baseline HIV-1 RNA load remained important factors for survival. Serum IgG level has been identified as an immune factor that independently predicts survival, in addition to the already established CD4+ T-cell count. The HIV-1 RNA and serum albumin levels also predicted survival. PMID:11144332

  7. HIV-1 infection may be on the rise in Peru.

    PubMed

    The results of a national survey have indicated that "... HIV-1 infection is epidemic in Peru among groups at high risk of sexually and parenterally transmitted diseases," a multicenter group reported (AIDS 1996; 10: 1141-1145). Although the risk of infection appears to be very low in the general population, it may possibly be increasing, according to Dr. Michael C. McCarthy, US National Naval Medical Center in Bethesda, Maryland. McCarthy's group evaluated over 140,000 serum samples for antibodies to HIV-1 between January 1986 and December 1990 in Peru. HIV-1 antibody was detected in 26% of samples from homosexual men, 10% of samples from male sexually transmitted disease patients, and 13% of samples from drug users. 10% of the samples from hemophiliacs and unlicensed female prostitutes were positive for antibodies to HIV-1. In general, he concluded that the patterns of the HIV-1 epidemic in Peru are similar to those seen in Brazil and "... are also similar to initial transmission patterns of HIV-1 infection of North America." However, McCarthy also noted a substantial increase in the prevalence of HIV-1 infection between the beginning and the end of the survey period. Although there was a low prevalence of HIV-1 infection among military personnel and among women seen at prenatal clinics, a "low but rising prevalence of HIV-1 antibody" among military personnel points to a potential increase in the general population. "The fact that many HIV-1 antibody-positive men were married and reported bisexual behavior (28%) highlights the potential of this group to transmit HIV-1 to female partners," he added.

  8. The Genetic Diversity and Evolution of HIV-1 Subtype B Epidemic in Puerto Rico

    PubMed Central

    López, Pablo; Rivera-Amill, Vanessa; Rodríguez, Nayra; Vargas, Freddie; Yamamura, Yasuhiro

    2015-01-01

    HIV-1 epidemics in Caribbean countries, including Puerto Rico, have been reported to be almost exclusively associated with the subtype B virus (HIV-1B). However, while HIV infections associated with other clades have been only sporadically reported, no organized data exist to accurately assess the prevalence of non-subtype B HIV-1 infection. We analyzed the nucleotide sequence data of the HIV pol gene associated with HIV isolates from Puerto Rican patients. The sequences (n = 945) were obtained from our “HIV Genotyping” test file, which has been generated over a period of 14 years (2001–2014). REGA subtyping tool found the following subtypes: B (90%), B-like (3%), B/D recombinant (6%), and D/B recombinant (0.6%). Though there were fewer cases, the following subtypes were also found (in the given proportions): A1B (0.3%), BF1 (0.2%), subtype A (01-AE) (0.1%), subtype A (A2) (0.1%), subtype F (12BF) (0.1%), CRF-39 BF-like (0.1%), and others (0.1%). Some of the recombinants were identified as early as 2001. Although the HIV epidemic in Puerto Rico is primarily associated with HIV-1B virus, our analysis uncovered the presence of other subtypes. There was no indication of subtype C, which has been predominantly associated with heterosexual transmission in other parts of the world. PMID:26703695

  9. Pulsed EPR Characterization of HIV-1 Protease Conformational Sampling and Inhibitor-Induced Population Shifts

    PubMed Central

    Liu, Zhanglong; Casey, Thomas M.; Blackburn, Mandy E.; Huang, Xi; Pham, Linh; de Vera, Ian Mitchelle S.; Carter, Jeffrey D.; Kear-Scott, Jamie L.; Veloro, Angelo M.; Galiano, Luis; Fanucci, Gail E.

    2015-01-01

    The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed “curled/tucked”, “closed”, “semi-open” and “wide-open” conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function. PMID:26489725

  10. Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer

    PubMed Central

    Sliepen, Kwinten; van Montfort, Thijs; Ozorowski, Gabriel; Pritchard, Laura K.; Crispin, Max; Ward, Andrew B.; Sanders, Rogier W.

    2015-01-01

    Generation of a stable, soluble mimic of the HIV-1 envelope glycoprotein (Env) trimer on the virion surface has been considered an important first step for developing a successful HIV-1 vaccine. Recently, a soluble native-like Env trimer (BG505 SOSIP.664) has been described. This protein has facilitated major advances in the HIV-1 vaccine field, since it was the first Env immunogen that induced consistent neutralizing antibodies against a neutralization-resistant (tier 2) virus. Moreover, BG505 SOSIP.664 enabled elucidation of the atomic resolution structure of the Env trimer and facilitated the isolation and characterization of new broadly neutralizing antibodies against HIV-1. Here, we designed and characterized the BG505 SOSIP.664 trimer fused to fluorescent superfolder GFP (sfGFP), a GFP variant that allows efficient folding (BG505 SOSIP.664-sfGFP). Despite the presence of the sfGFP, the Env protein largely retained its morphology, antigenicity, glycan composition, and thermostability. In addition, we show that BG505 SOSIP.664-sfGFP can be used for fluorescence-based assays, such as flow cytometry. PMID:26512709

  11. Anti-human immunodeficiency virus type 1 (HIV-1) activity of lectins from Narcissus species.

    PubMed

    López, Susana; Armand-Ugon, Mercedes; Bastida, Jaume; Viladomat, Francesc; Esté, José A; Stewart, Derek; Codina, Carles

    2003-02-01

    Mannose-specific lectins (MSLs) were isolated from bulbs of fifteen wild Narcissus species growing in Spain and assayed for their HIV-1 infection inhibitory activity in MT-4 cells and compared to the Narcissus pseudonarcissus agglutinin (NPA), the commercially available MSL obtained from daffodils. Almost all the tested MSLs were found to be active, showing EC50 values (microg/mL) similar to that of NPA, with some being comparable to those obtained with dextran sulfate without significant cytotoxicity. However, on a molar basis almost all of the MSLs tested exhibited lower EC50 values than dextran sulfate whilst six MSLs had values lower than AZT. The most efficacious anti-HIV-1 activity was exhibited by the Narcissus tortifolious MSL, which was 10- (microg/mL) and 100- (molarity) fold more potent than dextran sulfate. Significantly, although this MSL was 15-fold less potent than AZT in terms of quantity (microg/mL), it was 68-fold more potent on a molar basis. The antiviral indices, a ratio of the concentrations that produce cytotoxicity and HIV-1 replication, were calculated and three of the MSLs, N. confusus, N. leonensis and N. tortifolius reported 1.5-, 2- and 8.5-fold greater AI values than dextran sulfate or AZT. Comparison of MSL haemagglutination activities (HAA) to their anti-HIV-1 activities showed that there was no significant correlation. It was suggested that this may be due to a dissociation between both activities as a consequence of multiple isolectin composition.

  12. Striking HIV-1 Entry by Targeting HIV-1 gp41. But, Where Should We Target?

    PubMed Central

    Teixeira, Cátia; Barbault, Florent; Couesnon, Thierry; Gomes, José R. B.; Gomes, Paula; Maurel, François

    2016-01-01

    HIV-1 gp41 facilitates the viral fusion through a conformational switch involving the association of three C-terminal helices along the conserved hydrophobic grooves of three N-terminal helices coiled-coil. The control of these structural rearrangements is thought to be central to HIV-1 entry and, therefore, different strategies of intervention are being developed. Herewith, we describe a procedure to simulate the folding of an HIV-1 gp41 simplified model. This procedure is based on the construction of plausible conformational pathways, which describe protein transition between non-fusogenic and fusogenic conformations. The calculation of the paths started with 100 molecular dynamics simulations of the non-fusogenic conformation, which were found to converge to different intermediate states. Those presenting defined criteria were selected for separate targeted molecular dynamics simulations, subjected to a force constant imposing a movement towards the gp41 fusogenic conformation. Despite significant diversity, a preferred sequence of events emerged when the simulations were analyzed in terms of the formation, breakage and evolution of the contacts. We pointed out 29 residues as the most relevant for the movement of gp41; also, 2696 possible interactions were reduced to only 48 major interactions, which reveals the efficiency of the method. The analysis of the evolution of the main interactions lead to the detection of four main behaviors for those contacts: stable, increasing, decreasing and repulsive interactions. Altogether, these results suggest a specific small cavity of the HIV-1 gp41 hydrophobic groove as the preferred target to small molecules. PMID:26785380

  13. A Novel Tricyclic Ligand-Containing Nonpeptidic HIV-1 Protease Inhibitor, GRL-0739, Effectively Inhibits the Replication of Multidrug-Resistant HIV-1 Variants and Has a Desirable Central Nervous System Penetration Property In Vitro

    PubMed Central

    Amano, Masayuki; Tojo, Yasushi; Salcedo-Gómez, Pedro Miguel; Parham, Garth L.; Nyalapatla, Prasanth R.; Das, Debananda; Ghosh, Arun K.

    2015-01-01

    We report here that GRL-0739, a novel nonpeptidic HIV-1 protease inhibitor containing a tricycle (cyclohexyl-bis-tetrahydrofuranylurethane [THF]) and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC50], 0.0019 to 0.0036 μM), with minimal cytotoxicity (50% cytotoxic concentration [CC50], 21.0 μM). GRL-0739 blocked the infectivity and replication of HIV-1NL4-3 variants selected by concentrations of up to 5 μM ritonavir or atazanavir (EC50, 0.035 to 0.058 μM). GRL-0739 was also highly active against multidrug-resistant clinical HIV-1 variants isolated from patients who no longer responded to existing antiviral regimens after long-term antiretroviral therapy, as well as against the HIV-2ROD variant. The development of resistance against GRL-0739 was substantially delayed compared to that of amprenavir (APV). The effects of the nonspecific binding of human serum proteins on the anti-HIV-1 activity of GRL-0739 were insignificant. In addition, GRL-0739 showed a desirable central nervous system (CNS) penetration property, as assessed using a novel in vitro blood-brain barrier model. Molecular modeling demonstrated that the tricyclic ring and methoxybenzene of GRL-0739 have a larger surface and make greater van der Waals contacts with protease than in the case of darunavir. The present data demonstrate that GRL-0739 has desirable features as a compound with good CNS-penetrating capability for treating patients infected with wild-type and/or multidrug-resistant HIV-1 variants and that the newly generated cyclohexyl-bis-THF moiety with methoxybenzene confers highly desirable anti-HIV-1 potency in the design of novel protease inhibitors with greater CNS penetration profiles. PMID:25691652

  14. Quantitative HIV-1 proviral DNA detection: a multicentre analysis.

    PubMed

    De Rossi, Anita; Zanchetta, Marisa; Vitone, Francesca; Antonelli, Guido; Bagnarelli, Patrizia; Buonaguro, Luigi; Capobianchi, Maria Rosaria; Clementi, Massimo; Abbate, Isabella; Canducci, Filippo; Monachetti, Alessia; Riva, Elisabetta; Rozera, Gabriella; Scagnolari, Carolina; Tagliamonte, Maria; Re, Maria Carla

    2010-10-01

    Despite the widespread use of molecular biology techniques, standardized methods for the measurement of HIV-1 proviral DNA are currently lacking and several discordant results are still present in different studies. To assess the clinical meaning of the proviral DNA load, a study group comprising seven different laboratories was set up to standardize a HIV-1 proviral DNA quantification method able to assess the DNA proviral load of the most relevant circulating HIV-1 subtypes. Reference samples (24 cellular samples infected with HIV-1 clade B, and 40 samples of peripheral blood mononuclear cells containing different concentrations of plasmids expressing different HIV-1 clades) were distributed and tested blindly. All laboratories employed hTERT gene as housekeeping gene and primers within the gag gene to quantify different HIV-1 clades. Inter-laboratory results did not differ statistically but showed only minor variations concerning HIV-1 DNA amounts and different HIV clades, with a good agreement among the laboratories participating in the study. Since test standardization represents a key step for future application in clinical practice, further studies of the patients' samples are in progress to establish the real meaning and utility of the proviral DNA load for clinical management of HIV-1 infected patients. PMID:21213587

  15. Iron chelators ICL670 and 311 inhibit HIV-1 transcription

    SciTech Connect

    Debebe, Zufan; Ammosova, Tatyana; Jerebtsova, Marina; Kurantsin-Mills, Joseph; Niu, Xiaomei; Charles, Sharroya; Richardson, Des R.; Ray, Patricio E.; Gordeuk, Victor R.; Nekhai, Sergei

    2007-10-25

    HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics.

  16. Multifarious immunotherapeutic approaches to cure HIV-1 infection.

    PubMed

    Imami, Nesrina; Herasimtschuk, Anna A

    2015-01-01

    Immunotherapy in the context of treated HIV-1 infection aims to improve immune responses to achieve better control of the virus. To date, multifaceted immunotherapeutic approaches have been shown to reduce immune activation and increase CD4 T-lymphocyte counts, further to the effects of antiretroviral therapy alone, in addition to improving HIV-1-specific T-cell responses. While sterilizing cure of HIV-1 would involve elimination of all replication-competent virus, a functional cure in which the host has long-lasting control of viral replication may be more feasible. In this commentary, we discuss novel strategies aimed at targeting the latent viral reservoir with cure of HIV-1 infection being the ultimate goal, an achievement that would have considerable impact on worldwide HIV-1 infection.

  17. Which therapeutic strategy will achieve a cure for HIV-1?

    PubMed

    Cillo, Anthony R; Mellors, John W

    2016-06-01

    Strategies to achieve a cure for HIV-1 infection can be broadly classified into three categories: eradication cure (elimination of all viral reservoirs), functional cure (immune control without reservoir eradication), or a hybrid cure (reservoir reduction with improved immune control). The many HIV-1 cure strategies being investigated include modification of host cells to resist HIV-1, engineered T cells to eliminate HIV-infected cells, broadly HIV-1 neutralizing monoclonal antibodies, and therapeutic vaccination, but the 'kick and kill' strategy to expose latent HIV-1 with latency reversing agents (LRAs) and kill the exposed cells through immune effector functions is currently the most actively pursued. It is unknown, however, whether LRAs can deplete viral reservoirs in vivo or whether current LRAs are sufficiently safe for clinical use.

  18. Modeling HIV-1 Mucosal Transmission and Prevention in Humanized Mice.

    PubMed

    Veselinovic, Milena; Charlins, Paige; Akkina, Ramesh

    2016-01-01

    The new generation humanized mice (hu-mice) that permit continuous de novo generation of human hematopoietic cells have led to novel strategies in studying HIV-1 pathogenesis, prevention and therapies. HIV-1 infection of hu-mice results in chronic viremia and CD4+ T cell loss, thus mimicking key aspects of the disease progression. In addition, the new generation hu-mice are permissive for HIV-1 sexual transmission by vaginal and rectal routes thus allowing in vivo efficacy testing of new anti-HIV-1 drugs for prevention. Two leading models are currently being used, namely the hu-HSC mice and the BLT mice. Here we describe the methodology for generating both hu-HSC and BLT mice and their use in the study of HIV-1 transmission and prevention of infection by topical and oral administration of anti-retroviral drugs. Practical aspects of the methodologies are emphasized.

  19. HIV-1 and interferons: who's interfering with whom?

    PubMed

    Doyle, Tomas; Goujon, Caroline; Malim, Michael H

    2015-07-01

    The ability of interferons (IFNs) to inhibit HIV-1 replication in cell culture models has long been recognized, and the therapeutic administration of IFNα to HIV-1-infected patients who are not receiving antiretroviral therapy produces a clear but transient decrease in plasma viral load. Conversely, studies of chronic HIV-1 infection in humans and SIV-infected animal models of AIDS show positive correlations between elevated plasma levels of IFNs, increased expression of IFN-stimulated genes (ISGs), biomarkers of inflammation and disease progression. In this Review, we discuss the evidence that IFNs can control HIV-1 replication in vivo and debate the controversial role of IFNs in promoting the pathological sequelae of chronic HIV-1 infection.

  20. Transmitted drug resistance in nonsubtype B HIV-1 infection

    PubMed Central

    Chan, Philip A; Kantor, Rami

    2009-01-01

    HIV-1 nonsubtype B variants account for the majority of HIV infections worldwide. Drug resistance in individuals who have never undergone antiretroviral therapy can lead to early failure and limited treatment options and, therefore, is an important concern. Evaluation of reported transmitted drug resistance (TDR) is challenging owing to varying definitions and study designs, and is further complicated by HIV-1 subtype diversity. In this article, we discuss the importance of various mutation lists for TDR definition, summarize TDR in nonsubtype B HIV-1 and highlight TDR reporting and interpreting challenges in the context of HIV-1 diversity. When examined carefully, TDR in HIV-1 non-B protease and reverse transcriptase is still relatively low in most regions. Whether it will increase with time and therapy access, as observed in subtype-B-predominant regions, remains to be determined. PMID:20161523

  1. HIV-1 infection, microenvironment and endothelial cell dysfunction.

    PubMed

    Mazzuca, Pietro; Caruso, Arnaldo; Caccuri, Francesca

    2016-09-01

    HIV-1 promotes a generalized immune activation that involves the main targets of HIV-1 infection but also cells that are not sensitive to viral infection. ECs display major dysfunctions in HIV+ patients during long-standing viral infection that persist even in the current cART era, in which new-generation drugs have reduced dysmetabolic side effects and successfully impeded viral replication. In vivo studies have failed to demonstrate the presence of replicating virus in ECs suggesting that a direct role of the virus is unlikely, and implying that the mechanism accounting for vascular dysfunction may rely on the indirect action of molecules released in the microenvironment by HIV-1-infected cells. This article reviews the current understanding of how HIV-1 infection can contribute to vascular dysfunction. In particular, we discuss the emerging role played by different HIV-1 proteins in driving inflammation and EC dysregulation, and highlight the need to target them for therapeutic benefit. PMID:27602413

  2. HIV-1 differentially modulates autophagy in neurons and astrocytes.

    PubMed

    Mehla, Rajeev; Chauhan, Ashok

    2015-08-15

    Autophagy, a lysosomal degradative pathway that maintains cellular homeostasis, has emerged as an innate immune defense against pathogens. The role of autophagy in the deregulated HIV-infected central nervous system (CNS) is unclear. We have found that HIV-1-induced neuro-glial (neurons and astrocytes) damage involves modulation of the autophagy pathway. Neuro-glial stress induced by HIV-1 led to biochemical and morphological dysfunctions. X4 HIV-1 produced neuro-glial toxicity coupled with suppression of autophagy, while R5 HIV-1-induced toxicity was restricted to neurons. Rapamycin, a specific mTOR inhibitor (autophagy inducer) relieved the blockage of the autophagy pathway caused by HIV-1 and resulted in neuro-glial protection. Further understanding of the regulation of autophagy by cytokines and chemokines or other signaling events may lead to recognition of therapeutic targets for neurodegenerative diseases.

  3. APOBEC3H Haplotypes and HIV-1 Pro-Viral vif DNA Sequence Diversity in Early Untreated HIV-1 Infection

    PubMed Central

    Gourraud, PA; Karaouni, A; Woo, JM; Schmidt, T; Oksenberg, JR; Hecht, FM; Liegler, TJ; Barbour, JD

    2011-01-01

    We examined single nucleotide polymorphisms (SNP) in the APOBEC3 locus on chromosome 22, paired to population sequences of pro-viral HIV-1 vif of peripheral blood mononuclear cells (PBMC), from 96 recently HIV-1 infected treatment naïve adults. We found evidence for the existence of an APOBEC3H linkage disequilibrium (LD) block associated with variation in GA->AA, or APOBEC3F signature, sequence changes in pro-viral HIV-1 vif sequence (top significant 10 SNPs with a top-significant p=4.8×10−3). We identified a common 5 position risk haplotype distal to APOBEC3H (A3Hrh). These markers were in high LD (D′ = 1; r2=0.98) to a previously described A3H ‘RED’ haplotype containing a variant (E121) with enhanced susceptibility to HIV-1 Vif (Zhen et al 2009 [1]). This association is confirmed by a haplotype analysis: Homozygote carriers of the A3Hrh had lower GA->AA (A3F) sequence editing on pro-viral HIV-1 vif sequence (p = 0.01), and lower HIV-1 RNA levels over time during early, untreated HIV-1 infection, (p = 0.015 mixed effects model). This effect may be due to enhanced susceptibility of A3H forms to HIV-1 Vif mediated viral suppression of sequence editing activity, slowing viral diversification and escape from immune responses. PMID:21167246

  4. Natural polymorphisms and unusual mutations in HIV-1 protease with potential antiretroviral resistance: a bioinformatic analysis

    PubMed Central

    2014-01-01

    Background The correlations of genotypic and phenotypic tests with treatment, clinical history and the significance of mutations in viruses of HIV-infected patients are used to establish resistance mutations to protease inhibitors (PIs). Emerging mutations in human immunodeficiency virus type 1 (HIV-1) protease confer resistance to PIs by inducing structural changes at the ligand interaction site. The aim of this study was to establish an in silico structural relationship between natural HIV-1 polymorphisms and unusual HIV-1 mutations that confer resistance to PIs. Results Protease sequences isolated from 151 Mexican HIV-1 patients that were naïve to, or subjected to antiretroviral therapy, were examined. We identified 41 unrelated resistance mutations with a prevalence greater than 1%. Among these mutations, nine exhibited positive selection, three were natural polymorphisms (L63S/V/H) in a codon associated with drug resistance, and six were unusual mutations (L5F, D29V, L63R/G, P79L and T91V). The D29V mutation, with a prevalence of 1.32% in the studied population, was only found in patients treated with antiretroviral drugs. Using in silico modelling, we observed that D29V formed unstable protease complexes when were docked with lopinavir, saquinavir, darunavir, tipranavir, indinavir and atazanavir. Conclusions The structural correlation of natural polymorphisms and unusual mutations with drug resistance is useful for the identification of HIV-1 variants with potential resistance to PIs. The D29V mutation likely confers a selection advantage in viruses; however, in silico, presence of this mutation results in unstable enzyme/PI complexes, that possibly induce resistance to PIs. PMID:24629078

  5. Tracing the Origin and Northward Dissemination Dynamics of HIV-1 Subtype C in Brazil

    PubMed Central

    Delatorre, Edson; Couto-Fernandez, José C.; Guimarães, Monick Lindenmayer; Vaz Cardoso, Ludimila Paula; de Alcantara, Keila Correia; Martins de Araújo Stefani, Mariane; Romero, Hector; Freire, Caio C. M.; Iamarino, Atila; de A Zanotto, Paolo M.; Morgado, Mariza G.; Bello, Gonzalo

    2013-01-01

    Previous studies indicate that the HIV-1 subtype C epidemic in southern Brazil was initiated by the introduction of a single founder strain probably originating from east Africa. However, the exact country of origin of such a founder strain as well as the origin of the subtype C viruses detected outside the Brazilian southern region remains unknown. HIV-1 subtype C pol sequences isolated in the southern, southeastern and central-western Brazilian regions (n = 209) were compared with a large number (n ~ 2,000) of subtype C pol sequences of African origin. Maximum-likelihood analyses revealed that most HIV-1 subtype C Brazilian sequences branched in a single monophyletic clade (CBR-I), nested within a larger monophyletic lineage characteristic of east Africa. Bayesian analyses indicate that the CBR-I clade most probably originated in Burundi and was introduced into the Paraná state (southern region) around the middle 1970s, after which it rapidly disseminated to neighboring regions. The states of Paraná and Santa Catarina have been the most important hubs of subtype C dissemination, and routine travel and spatial accessibility seems to have been the major driving forces of this process. Five additional introductions of HIV-1 subtype C strains probably originated in eastern (n = 2), southern (n = 2) and central (n = 1) African countries were detected in the Rio de Janeiro state (southeastern region). These results indicate a continuous influx of HIV-1 subtype C strains of African origin into Brazil and also unveil the existence of unrecognized transmission networks linking this country to east Africa. PMID:24069269

  6. Effect on HIV-1 Gene Expression, Tat-Vpr Interaction and Cell Apoptosis by Natural Variants of HIV-1 Tat Exon 1 and Vpr from Northern India

    PubMed Central

    Lata, Sneh; Ronsard, Larance; Sood, Vikas; Dar, Sajad A.; Ramachandran, Vishnampettai G.; Das, Shukla; Banerjea, Akhil C.

    2013-01-01

    Background Since HIV-1 Tat and Vpr genes are involved in promoter transactivation, apoptosis, etc, we carried out studies to find out nature and extent of natural variation in the two genes from seropositive patients from Northern India and determined their functional implications. Methods HIV-1 tat exon 1 and vpr were amplified from the genomic DNA isolated from the blood of HIV-1 infected individuals using specific primers by Polymerase Chain reaction (PCR) and subjected to extensive genetic analysis (CLUSTAL W, Simplot etc). Their expression was monitored by generating myc fusion clones. Tat exon 1 and Vpr variants were co-transfected with the reporter gene construct (LTR-luc) and their transactivation potential was monitored by measuring luciferase activity. Apoptosis and cell cycle analysis was done by Propidium Iodide (PI) staining followed by FACS. Results Exon 1 of tat was amplified from 21 samples and vpr was amplified from 16 samples. One of the Tat exon 1 variants showed phylogenetic relatedness to subtype B & C and turned out to be a unique recombinant. Two of the Vpr variants were B/C/D recombinants. These natural variations were found to have no impact on the stability of Tat and Vpr. These variants differed in their ability to transactivate B LTR and C LTR promoters. B/C recombinant Tat showed better co-operative interaction with Vpr. B/C/D recombination in Vpr was found to have no effect on its co-operativity with Tat. Recombinant Tat (B/C) induced more apoptosis than wild type B and C Tat. The B/C/D recombination in Vpr did not affect its G2 arrest induction potential but reduced its apoptosis induction ability. Conclusions Extensive sequence and region-specific variations were observed in Tat and Vpr genes from HIV-1 infected individuals from Northern India. These variations have functional implications & therefore important for the pathogenicity of virus. PMID:24367500

  7. High prevalence of human T-lymphotropic virus type 1 (HTLV-1) in immigrant male-to-female transsexual sex workers with HIV-1 infection.

    PubMed

    Zehender, Gianguglielmo; Colasante, Chiara; De Maddalena, Chiara; Bernini, Flavia; Savasi, Valeria; Persico, Tiziana; Merli, Stefania; Ridolfo, Annalisa; Santambrogio, Sara; Moroni, Mauro; Galli, Massimo

    2004-10-01

    Human T-lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2) infections in Europe are limited to intravenous drug users and migrants coming from areas in which they are endemic. A survey was undertaken of HTLV-1 and HTLV-2 infections in 393 recent immigrants: 167 HIV-1 positive subjects (including 52 male-to-female transsexual sex workers) and 226 pregnant HIV-1 negative women. The prevalence of HTLV-1 was 3.6% in the HIV-1 positive group and 0.9% in the HIV-1 negative group. The highest HTLV-1 prevalence in both groups was found in persons from Latin America, particularly those born in Peru (up to 26% in the HIV-1 positive group). All of the HIV-1/HTLV-1 co-infected individuals were male-to-female transsexual sex workers in whom the overall prevalence of HTLV-1 infection was 11.5%. HTLV-2 was only found in the HIV-1 positive group (prevalence 1.2%); all of the infected subjects were transsexual sex workers from Brazil (overall prevalence 6.4%). Phylogenetic analysis showed that all of the HTLV-1 isolates were of the cosmopolitan type, clustering with other strains circulating in the patients' birthplaces; the HTLV-2 isolates were of subtype 2a, and clustered significantly with other Brazilian strains. These results suggest the independent origin of each infection in the patient's birthplace. The data raise concerns about the further spread of HTLV infections mainly through the sexual route.

  8. Differential Expression of CD163 on Monocyte Subsets in Healthy and HIV-1 Infected Individuals

    PubMed Central

    Tippett, Emma; Cheng, Wan-Jung; Westhorpe, Clare; Cameron, Paul U.; Brew, Bruce J.; Lewin, Sharon R.; Jaworowski, Anthony; Crowe, Suzanne M.

    2011-01-01

    CD163, a haptoglobin-hemoglobin (Hp-Hb) scavenger receptor, expressed by monocytes and macrophages, is important in resolution of inflammation. Age-related non-AIDS co-morbidities in HIV-infected individuals, particularly dementia and cardiovascular disease, result in part from effects of HIV-1 infection on monocyte and macrophage biology. CD163 co-expression on CD14+CD16++ monocytes has been proposed as a useful biomarker for HIV-1 disease progression and the presence of HIV associated dementia. Here we investigated CD163 expression on monocyte subsets ex vivo, on cultured macrophages, and soluble in plasma, in the setting of HIV-1 infection. Whole blood immunophenotyping revealed CD163 expression on CD14++CD16- monocytes but not on CD14+CD16++ monocytes (P = 0.004), supported by CD163 mRNA levels. Incubation with M-CSF induced CD163 protein expression on CD14+CD16++ monocytes to the same extent as CD14++CD16− monocytes. CD163 expression on CD14++CD16+ monocytes from HIV-infected subjects was significantly higher than from uninfected individuals, with a trend towards increased expression on CD14++CD16− monocytes (P = 0.019 and 0.069 respectively), which is accounted for by HIV-1 therapy including protease inhibitors. Shedding of CD163 was shown to predominantly occur from the CD14++CD16− subset after Ficoll isolation and LPS stimulation. Soluble CD163 concentration in plasma from HIV-1 infected donors was similar to HIV-1 uninfected donors. Monocyte CD163 expression in HIV-1 infected patients showed a complicated relationship with classical measures of disease progression. Our findings clarify technical issues regarding CD163 expression on monocyte subsets and further elucidates its role in HIV-associated inflammation by demonstrating that CD163 is readily lost from CD14++CD16− monocytes and induced in pro-inflammatory CD14+CD16++ monocytes by M-CSF. Our data show that all monocyte subsets are potentially capable of differentiating into CD163

  9. Cyclophilin B enhances HIV-1 infection.

    PubMed

    DeBoer, Jason; Madson, Christian J; Belshan, Michael

    2016-02-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. PMID:26774171

  10. A review of HIV-1 in Africa.

    PubMed

    Ronald, A R; Ndinya-Achola, J O; Plummer, F A; Simonsen, J N; Cameron, D W; Ngugi, E N; Pamba, H

    1988-01-01

    As the AIDS epidemic reaches a dramatic stage of development, the time for African countries to establish effective control programs has come. The history of AIDS in Africa is different from that other regions of the world. The disease developed among heterosexual communities. By 1987, over 8,000 cases of AIDS had been reported from 37 of the 47 nations of Africa. Over 2,000 of these cases were found in Uganda. However, under-reporting and under-representation of the number of actual cases is still a problem. In many cases, there has been a failure to recognize the disease. The demographic and geographic distribution of seroprevalence is discussed. Because of the inaccuracies in AIDS reporting in Africa, epidemic forecasting is difficult. If 5 million are currently infected, a potential 50 million Africans may be infected by 1993. A further discussion of the risk factors for HIV-1 holds that promiscuity is the major problem. Cures and inexpensive treatments for the infection are years away. Energy, resources, and national committees in Africa and the world must be coordinated to combat the ultimate crisis of this century.

  11. Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model.

    PubMed

    Pasetto, Silvana; Pardi, Vanessa; Murata, Ramiro Mendonça

    2014-01-01

    HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01-100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic), H9 and PBMC cells plus HIV-1 MN (X4 tropic), and the dual tropic (X4R5) HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research.

  12. Anti-HIV-1 Activity of Flavonoid Myricetin on HIV-1 Infection in a Dual-Chamber In Vitro Model

    PubMed Central

    Pasetto, Silvana; Pardi, Vanessa; Murata, Ramiro Mendonça

    2014-01-01

    HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01–100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic), H9 and PBMC cells plus HIV-1 MN (X4 tropic), and the dual tropic (X4R5) HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research. PMID:25546350

  13. Aqueous Extracts of the Marine Brown Alga Lobophora variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells

    PubMed Central

    Kremb, Stephan; Helfer, Markus; Kraus, Birgit; Wolff, Horst; Wild, Christian; Schneider, Martha; Voolstra, Christian R.; Brack-Werner, Ruth

    2014-01-01

    In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC) from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs). Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors. PMID:25144758

  14. The Complex Interaction between Methamphetamine Abuse and HIV-1 pathogenesis

    PubMed Central

    Passaro, Ryan Colby; Pandhare, Jui; Qian, Han-Zhu; Dash, Chandravanu

    2016-01-01

    The global HIV/AIDS pandemic has claimed the lives of an estimated 35 million people. A significant barrier for combating this global pandemic is substance use since it is associated with HIV transmission, delayed diagnosis/initiation of therapy, and poor adherence to therapy. Clinical studies also suggest a link between substance use and HIV-disease progression/AIDS-associated mortality. Methamphetamine (METH) use is one of the fastest-growing substance use problems in the world. METH use enhances high-risk sexual behaviors, therefore increases the likelihood of HIV-1 acquisition. METH use is also associated with higher viral loads, immune dysfunction, and antiretroviral resistance. Moreover, METH use has also been correlated with rapid progression to AIDS. However, direct effects of METH on HIV-1 disease progression remains poorly understood because use of METH and other illicit drugs is often associated with reduced/non adherence to ART. Nevertheless, in vitro studies demonstrate that METH increases HIV-1 replication in cell cultures and animal models. Thus, it has been proposed that METH’s potentiating effects on HIV-1 replication may in part contribute to the worsening of HIV-1 pathogenesis. However, our recent data demonstrate that METH inhibits HIV-1 replication in CD4+ T cells and challenges this paradigm. Thus, the goal of this review is to systematically examine the published literature to better understand the complex interaction between METH abuse and HIV-1 disease progression. PMID:25850893

  15. Identification of Siglec-1 null individuals infected with HIV-1.

    PubMed

    Martinez-Picado, Javier; McLaren, Paul J; Erkizia, Itziar; Martin, Maureen P; Benet, Susana; Rotger, Margalida; Dalmau, Judith; Ouchi, Dan; Wolinsky, Steven M; Penugonda, Sudhir; Günthard, Huldrych F; Fellay, Jacques; Carrington, Mary; Izquierdo-Useros, Nuria; Telenti, Amalio

    2016-01-01

    Siglec-1/CD169 is a myeloid-cell surface receptor critical for HIV-1 capture and infection of bystander target cells. To dissect the role of SIGLEC1 in natura, we scan a large population genetic database and identify a loss-of-function variant (Glu88Ter) that is found in ∼1% of healthy people. Exome analysis and direct genotyping of 4,233 HIV-1-infected individuals reveals two Glu88Ter homozygous and 97 heterozygous subjects, allowing the analysis of ex vivo and in vivo consequences of SIGLEC1 loss-of-function. Cells from these individuals are functionally null or haploinsufficient for Siglec-1 activity in HIV-1 capture and trans-infection ex vivo. However, Siglec-1 protein truncation does not have a measurable impact on HIV-1 acquisition or AIDS outcomes in vivo. This result contrasts with the known in vitro functional role of Siglec-1 in HIV-1 trans-infection. Thus, it provides evidence that the classical HIV-1 infectious routes may compensate for the lack of Siglec-1 in fuelling HIV-1 dissemination within infected individuals. PMID:27510803

  16. Identification of Siglec-1 null individuals infected with HIV-1

    PubMed Central

    Martinez-Picado, Javier; McLaren, Paul J.; Erkizia, Itziar; Martin, Maureen P.; Benet, Susana; Rotger, Margalida; Dalmau, Judith; Ouchi, Dan; Wolinsky, Steven M.; Penugonda, Sudhir; Günthard, Huldrych F.; Fellay, Jacques; Carrington, Mary; Izquierdo-Useros, Nuria; Telenti, Amalio

    2016-01-01

    Siglec-1/CD169 is a myeloid-cell surface receptor critical for HIV-1 capture and infection of bystander target cells. To dissect the role of SIGLEC1 in natura, we scan a large population genetic database and identify a loss-of-function variant (Glu88Ter) that is found in ∼1% of healthy people. Exome analysis and direct genotyping of 4,233 HIV-1-infected individuals reveals two Glu88Ter homozygous and 97 heterozygous subjects, allowing the analysis of ex vivo and in vivo consequences of SIGLEC1 loss-of-function. Cells from these individuals are functionally null or haploinsufficient for Siglec-1 activity in HIV-1 capture and trans-infection ex vivo. However, Siglec-1 protein truncation does not have a measurable impact on HIV-1 acquisition or AIDS outcomes in vivo. This result contrasts with the known in vitro functional role of Siglec-1 in HIV-1 trans-infection. Thus, it provides evidence that the classical HIV-1 infectious routes may compensate for the lack of Siglec-1 in fuelling HIV-1 dissemination within infected individuals. PMID:27510803

  17. Defining the roles for Vpr in HIV-1-associated neuropathogenesis.

    PubMed

    James, Tony; Nonnemacher, Michael R; Wigdahl, Brian; Krebs, Fred C

    2016-08-01

    It is increasingly evident that the human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has a unique role in neuropathogenesis. Its ability to induce G2/M arrest coupled with its capacity to increase viral gene transcription gives it a unique role in sustaining viral replication and aiding in the establishment and maintenance of a systemic infection. The requirement of Vpr for HIV-1 infection and replication in cells of monocytic origin (a key lineage of cells involved in HIV-1 neuroinvasion) suggests an important role in establishing and sustaining infection in the central nervous system (CNS). Contributions of Vpr to neuropathogenesis can be expanded further through (i) naturally occurring HIV-1 sequence variation that results in functionally divergent Vpr variants; (ii) the dual activities of Vpr as a intracellular protein delivered and expressed during HIV-1 infection and as an extracellular protein that can act on neighboring, uninfected cells; (iii) cell type-dependent consequences of Vpr expression and exposure, including cell cycle arrest, metabolic dysregulation, and cytotoxicity; and (iv) the effects of Vpr on exosome-based intercellular communication in the CNS. Revealing that the effects of this pleiotropic viral protein is an essential part of a greater understanding of HIV-1-associated pathogenesis and potential approaches to treating and preventing disease caused by HIV-1 infection.

  18. Defining the roles for Vpr in HIV-1-associated neuropathogenesis.

    PubMed

    James, Tony; Nonnemacher, Michael R; Wigdahl, Brian; Krebs, Fred C

    2016-08-01

    It is increasingly evident that the human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has a unique role in neuropathogenesis. Its ability to induce G2/M arrest coupled with its capacity to increase viral gene transcription gives it a unique role in sustaining viral replication and aiding in the establishment and maintenance of a systemic infection. The requirement of Vpr for HIV-1 infection and replication in cells of monocytic origin (a key lineage of cells involved in HIV-1 neuroinvasion) suggests an important role in establishing and sustaining infection in the central nervous system (CNS). Contributions of Vpr to neuropathogenesis can be expanded further through (i) naturally occurring HIV-1 sequence variation that results in functionally divergent Vpr variants; (ii) the dual activities of Vpr as a intracellular protein delivered and expressed during HIV-1 infection and as an extracellular protein that can act on neighboring, uninfected cells; (iii) cell type-dependent consequences of Vpr expression and exposure, including cell cycle arrest, metabolic dysregulation, and cytotoxicity; and (iv) the effects of Vpr on exosome-based intercellular communication in the CNS. Revealing that the effects of this pleiotropic viral protein is an essential part of a greater understanding of HIV-1-associated pathogenesis and potential approaches to treating and preventing disease caused by HIV-1 infection. PMID:27056720

  19. Estimation of HIV-1 DNA Level Interfering with Reliability of HIV-1 RNA Quantification Performed on Dried Blood Spots Collected from Successfully Treated Patients.

    PubMed

    Zida, Sylvie; Tuaillon, Edouard; Barro, Makoura; Kwimatouo Lekpa Franchard, Arnaud; Kagoné, Thérèse; Nacro, Boubacar; Ouedraogo, Abdoul Salam; Bolloré, Karine; Sanosyan, Armen; Plantier, Jean-Christophe; Meda, Nicolas; Sangaré, Lassana; Rouzioux, Christine; Rouet, François; Kania, Dramane

    2016-06-01

    The impact of HIV-1 DNA coamplification during HIV-1 RNA quantification on dried blood spots (DBS) was explored. False-positive HIV RNA detection (22/62, 35%) was associated with high HIV-1 DNA levels. Specificity of HIV-1 RNA assays on DBS should be evaluated following manufacturer protocols on samples with HIV-1 DNA levels of ≥1,000 copies/10(6) peripheral blood mononuclear cells. PMID:27008874

  20. Early Combination Antiretroviral Therapy Limits Exposure to HIV-1 Replication and Cell-Associated HIV-1 DNA Levels in Infants

    PubMed Central

    McManus, Margaret; Mick, Eric; Hudson, Richard; Mofenson, Lynne M.; Sullivan, John L.; Somasundaran, Mohan; Luzuriaga, Katherine

    2016-01-01

    The primary aim of this study was to measure HIV-1 persistence following combination antiretroviral therapy (cART) in infants and children. Peripheral blood mononuclear cell (PBMC) HIV-1 DNA was quantified prior to and after 1 year of cART in 30 children, stratified by time of initiation (early, age <3 months, ET; late, age >3 months-2 years, LT). Pre-therapy PBMC HIV-1 DNA levels correlated with pre-therapy plasma HIV-1 levels (r = 0.59, p<0.001), remaining statistically significant (p = 0.002) after adjustment for prior perinatal antiretroviral exposure and age at cART initiation. PBMC HIV-1 DNA declined significantly after 1 year of cART (Overall: -0.91±0.08 log10 copies per million PBMC, p<0.001; ET: -1.04±0.11 log10 DNA copies per million PBMC, p<0.001; LT: -0.74 ±0.13 log10 DNA copies per million PBMC, p<0.001) but rates of decline did not differ significantly between ET and LT. HIV-1 replication exposure over the first 12 months of cART, estimated as area-under-the-curve (AUC) of circulating plasma HIV-1 RNA levels, was significantly associated with PBMC HIV-1 DNA at one year (r = 0.51, p = 0.004). In 21 children with sustained virologic suppression after 1 year of cART, PBMC HIV-1 DNA levels continued to decline between years 1 and 4 (slope -0.21 log10 DNA copies per million PBMC per year); decline slopes did not differ significantly between ET and LT. PBMC HIV-1 DNA levels at 1 year and 4 years of cART correlated with age at cART initiation (1 year: p = 0.04; 4 years: p = 0.03) and age at virologic control (1 and 4 years, p = 0.02). Altogether, these data indicate that reducing exposure to HIV-1 replication and younger age at cART initiation are associated with lower HIV-1 DNA levels at and after one year of age, supporting the concept that HIV-1 diagnosis and cART initiation in infants should occur as early as possible. PMID:27104621

  1. Assessment of Recent HIV-1 Infection by a Line Immunoassay for HIV-1/2 Confirmation

    PubMed Central

    Schüpbach, Jörg; Gebhardt, Martin D; Tomasik, Zuzana; Niederhauser, Christoph; Yerly, Sabine; Bürgisser, Philippe; Matter, Lukas; Gorgievski, Meri; Dubs, Rolf; Schultze, Detlev; Steffen, Ingrid; Andreutti, Corinne; Martinetti, Gladys; Güntert, Bruno; Staub, Roger; Daneel, Synove; Vernazza, Pietro

    2007-01-01

    Background Knowledge of the number of recent HIV infections is important for epidemiologic surveillance. Over the past decade approaches have been developed to estimate this number by testing HIV-seropositive specimens with assays that discriminate the lower concentration and avidity of HIV antibodies in early infection. We have investigated whether this “recency” information can also be gained from an HIV confirmatory assay. Methods and Findings The ability of a line immunoassay (INNO-LIA HIV I/II Score, Innogenetics) to distinguish recent from older HIV-1 infection was evaluated in comparison with the Calypte HIV-1 BED Incidence enzyme immunoassay (BED-EIA). Both tests were conducted prospectively in all HIV infections newly diagnosed in Switzerland from July 2005 to June 2006. Clinical and laboratory information indicative of recent or older infection was obtained from physicians at the time of HIV diagnosis and used as the reference standard. BED-EIA and various recency algorithms utilizing the antibody reaction to INNO-LIA's five HIV-1 antigen bands were evaluated by logistic regression analysis. A total of 765 HIV-1 infections, 748 (97.8%) with complete test results, were newly diagnosed during the study. A negative or indeterminate HIV antibody assay at diagnosis, symptoms of primary HIV infection, or a negative HIV test during the past 12 mo classified 195 infections (26.1%) as recent (≤ 12 mo). Symptoms of CDC stages B or C classified 161 infections as older (21.5%), and 392 patients with no symptoms remained unclassified. BED-EIA ruled 65% of the 195 recent infections as recent and 80% of the 161 older infections as older. Two INNO-LIA algorithms showed 50% and 40% sensitivity combined with 95% and 99% specificity, respectively. Estimation of recent infection in the entire study population, based on actual results of the three tests and adjusted for a test's sensitivity and specificity, yielded 37% for BED-EIA compared to 35% and 33% for the two

  2. Ex vivo gene therapy for HIV-1 treatment

    PubMed Central

    Scherer, Lisa J.; Rossi, John J.

    2011-01-01

    Until recently, progress in ex vivo gene therapy (GT) for human immunodeficiency virus-1 (HIV-1) treatment has been incremental. Long-term HIV-1 remission in a patient who received a heterologous stem cell transplant for acquired immunodeficiency syndrome-related lymphoma from a CCR5−/– donor, even after discontinuation of conventional therapy, has energized the field. We review the status of current approaches as well as future directions in the areas of therapeutic targets, combinatorial strategies, vector design, introduction of therapeutics into stem cells and enrichment/expansion of gene-modified cells. Finally, we discuss recent advances towards clinical application of HIV-1 GT. PMID:21505069

  3. Current Perspectives on HIV-1 Antiretroviral Drug Resistance

    PubMed Central

    Iyidogan, Pinar; Anderson, Karen S.

    2014-01-01

    Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly. PMID:25341668

  4. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    PubMed Central

    Guerrero, Santiago; Batisse, Julien; Libre, Camille; Bernacchi, Serena; Marquet, Roland; Paillart, Jean-Christophe

    2015-01-01

    Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication. PMID:25606970

  5. Gelsolin activity controls efficient early HIV-1 infection

    PubMed Central

    2013-01-01

    Background HIV-1 entry into target lymphocytes requires the activity of actin adaptors that stabilize and reorganize cortical F-actin, like moesin and filamin-A. These alterations are necessary for the redistribution of CD4-CXCR4/CCR5 to one pole of the cell, a process that increases the probability of HIV-1 Envelope (Env)-CD4/co-receptor interactions and that generates the tension at the plasma membrane necessary to potentiate fusion pore formation, thereby favouring early HIV-1 infection. However, it remains unclear whether the dynamic processing of F-actin and the amount of cortical actin available during the initial virus-cell contact are required to such events. Results Here we show that gelsolin restructures cortical F-actin during HIV-1 Env-gp120-mediated signalling, without affecting cell-surface expression of receptors or viral co-receptor signalling. Remarkably, efficient HIV-1 Env-mediated membrane fusion and infection of permissive lymphocytes were impaired when gelsolin was either overexpressed or silenced, which led to a loss or gain of cortical actin, respectively. Indeed, HIV-1 Env-gp120-induced F-actin reorganization and viral receptor capping were impaired under these experimental conditions. Moreover, gelsolin knockdown promoted HIV-1 Env-gp120-mediated aberrant pseudopodia formation. These perturbed-actin events are responsible for the inhibition of early HIV-1 infection. Conclusions For the first time we provide evidence that through its severing of cortical actin, and by controlling the amount of actin available for reorganization during HIV-1 Env-mediated viral fusion, entry and infection, gelsolin can constitute a barrier that restricts HIV-1 infection of CD4+ lymphocytes in a pre-fusion step. These findings provide important insights into the complex molecular and actin-associated dynamics events that underlie early viral infection. Thus, we propose that gelsolin is a new factor that can limit HIV-1 infection acting at a pre-fusion step

  6. Towards an HIV-1 cure: measuring the latent reservoir

    PubMed Central

    Bruner, Katherine M.; Hosmane, Nina N.; Siliciano, Robert F.

    2015-01-01

    The latent reservoir of HIV-1 in resting memory CD4+ T cells serves as a major barrier to curing HIV-1 infection. While many PCR- and culture-based assays have been used to measure the size of the latent reservoir, correlation between results of different assays is poor and recent studies indicate that no available assay provides an accurate measurement of reservoir size. The discrepancies between assays are a hurdle to clinical trials that aim to measure the efficacy of HIV-1 eradication strategies. Here we describe the advantages and disadvantages of various approaches to measure the latent reservoir. PMID:25747663

  7. MicroRNAs and HIV-1: Complex Interactions*

    PubMed Central

    Klase, Zachary; Houzet, Laurent; Jeang, Kuan-Teh

    2012-01-01

    RNAi plays important roles in many biological processes, including cellular defense against viral infection. Components of the RNAi machinery are widely conserved in plants and animals. In mammals, microRNAs (miRNAs) represent an abundant class of cell encoded small noncoding RNAs that participate in RNAi-mediated gene silencing. Here, findings that HIV-1 replication in cells can be regulated by miRNAs and that HIV-1 infection of cells can alter cellular miRNA expression are reviewed. Lessons learned from and questions outstanding about the complex interactions between HIV-1 and cellular miRNAs are discussed. PMID:23043098

  8. Abasic Phosphorothioate Oligomers Inhibit HIV-1 Reverse Transcription and Block Virus Transmission across Polarized Ectocervical Organ Cultures

    PubMed Central

    Fraietta, Joseph A.; Mueller, Yvonne M.; Lozenski, Karissa L.; Ratner, Deena; Boesteanu, Alina C.; Hancock, Aidan S.; Lackman-Smith, Carol; Zentner, Isaac J.; Chaiken, Irwin M.; Chung, Suhman; LeGrice, Stuart F. J.; Snyder, Beth A.; Mankowski, Marie K.; Jones, Natalie M.; Hope, Jennifer L.; Gupta, Phalguni; Anderson, Sharon H.; Wigdahl, Brian

    2014-01-01

    In the absence of universally available antiretroviral (ARV) drugs or a vaccine against HIV-1, microbicides may offer the most immediate hope for controlling the AIDS pandemic. The most advanced and clinically effective microbicides are based on ARV agents that interfere with the earliest stages of HIV-1 replication. Our objective was to identify and characterize novel ARV-like inhibitors, as well as demonstrate their efficacy at blocking HIV-1 transmission. Abasic phosphorothioate 2′ deoxyribose backbone (PDB) oligomers were evaluated in a variety of mechanistic assays and for their ability to inhibit HIV-1 infection and virus transmission through primary human cervical mucosa. Cellular and biochemical assays were used to elucidate the antiviral mechanisms of action of PDB oligomers against both lab-adapted and primary CCR5- and CXCR4-utilizing HIV-1 strains, including a multidrug-resistant isolate. A polarized cervical organ culture was used to test the ability of PDB compounds to block HIV-1 transmission to primary immune cell populations across ectocervical tissue. The antiviral activity and mechanisms of action of PDB-based compounds were dependent on oligomer size, with smaller molecules preventing reverse transcription and larger oligomers blocking viral entry. Importantly, irrespective of molecular size, PDBs potently inhibited virus infection and transmission within genital tissue samples. Furthermore, the PDB inhibitors exhibited excellent toxicity and stability profiles and were found to be safe for vaginal application in vivo. These results, coupled with the previously reported intrinsic anti-inflammatory properties of PDBs, support further investigations in the development of PDB-based topical microbicides for preventing the global spread of HIV-1. PMID:25224013

  9. Human herpes virus-6 increases HIV-1 expression in co-infected T cells via nuclear factors binding to the HIV-1 enhancer.

    PubMed Central

    Ensoli, B; Lusso, P; Schachter, F; Josephs, S F; Rappaport, J; Negro, F; Gallo, R C; Wong-Staal, F

    1989-01-01

    Human Herpes virus-6 (HHV-6) can co-infect with HIV-1 human CD4+ T-cells, leading to accelerated cell death, and factors in HHV-6-infected cells stimulate HIV-1 LTR directed gene expression. In this study, we have examined the mechanism of HIV-1 activation by HHV-6 and localized the cis-acting sequences of HIV-1 LTR responsive to trans-activation. Increased HIV-1 LTR directed gene expression is obtained in HIV-1 infected cells co-infected with HHV-6, or in HHV-6 infected cells co-transfected with the HIV-1 tat gene. Parallel increases of HIV-1-specific transcripts are seen by in situ hybridization in HHV-6/HIV-1 doubly infected cells as compared to single HIV-1 infection. Similarly, infection by HHV-6 increases the steady-state level of HIV-1 LTR mRNA that parallels CAT enzymatic activity, suggesting a transcriptional and/or post-transcriptional activation. Sequences necessary for HIV-1 LTR activation by HHV-6 are distinct from those required for that tat response and map to a region of the HIV-1 LTR from -103 to -48. The HIV-1 enhancer sequence (-105 to -80) is sufficient to confer HHV-6 inducibility to a heterologous promoter, and nuclear protein(s) activated or induced by HHV-6 infection specifically bind to the NF kappa B motifs of the HIV-1 enhancer region.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2573513

  10. Isolation, propagation, and titration of human immunodeficiency virus type 1 from peripheral blood of infected individuals.

    PubMed

    Schuitemaker, Hanneke; Kootstra, Neeltje A

    2005-01-01

    HIV-1 can be isolated from peripheral blood mononuclear cells and is easily propagated on primary cells in vitro. Here we describe the method for bulk isolation of the HIV-1 quasispecies and a limiting dilution virus isolation protocol by which single coexisting clones can be obtained. In addition, methods for propagation and titration of HIV-1 are provided.

  11. Comparison of the Cepheid GeneXpert and Abbott M2000 HIV-1 real time molecular assays for monitoring HIV-1 viral load and detecting HIV-1 infection.

    PubMed

    Ceffa, Susanna; Luhanga, Richard; Andreotti, Mauro; Brambilla, Davide; Erba, Fulvio; Jere, Haswel; Mancinelli, Sandro; Giuliano, Marina; Palombi, Leonardo; Marazzi, Maria Cristina

    2016-03-01

    Assessing treatment efficacy and early infant diagnosis (EID) are critical issues in HIV disease management. Point-of-care assays may greatly increase the possibility to access laboratory monitoring also in rural areas. Recently two new laboratory tests have been developed by Cepheid (Sunnyvale, California) the Xpert HIV-1 Viral Load for viral load determination and the Xpert HIV-1 Qualitative for early infant diagnosis. We conducted a study in Blantyre, Malawi, comparing the 2 methods versus the Abbott real time quantitative and qualitative assays, for viral load and EID respectively. We tested 300 plasma samples for viral load determination and 200 samples for infant diagnosis. HIV-1 RNA values of the 274 samples quantified by both assays were highly correlated (Pearson r=0.95, R(2)=0.90). In 90.9% of the cases the two methods were concordant in defining the HIV-1 RNA levels as detectable or undetectable. For EID, the Xpert HIV-1 Qualitative assay yielded the same identical results as the Abbott assay. Both the quantitative and the qualitative Xpert assays are promising tools to monitor treatment efficacy in HIV patients receiving treatment and for early diagnosis in HIV-exposed infants. PMID:26709099

  12. Trimeric Glycosylphosphatidylinositol-Anchored HCDR3 of Broadly Neutralizing Antibody PG16 Is a Potent HIV-1 Entry Inhibitor

    PubMed Central

    Liu, Lihong; Wang, Weiming; Yang, Lifei; Ren, Huanhuan; Kimata, Jason T.

    2013-01-01

    PG9 and PG16 are two quaternary-structure-specific broadly neutralizing antibodies with unique HCDR3 subdomains. Previously, we showed that glycosylphosphatidylinositol (GPI)-anchored HCDR3 subdomains (GPI-HCDR3) can be targeted to lipid rafts of the plasma membrane, bind to the epitope recognized by HCDR3 of PG16, and neutralize diverse HIV-1 isolates. In this study, we further developed trimeric GPI-HCDR3s and demonstrated that trimeric GPI-HCDR3 (PG16) dramatically improves anti-HIV-1 neutralization, suggesting that a stoichiometry of recognition of 3 or 2 HCDR3 molecules (PG16) to 1 viral spike is possible. PMID:23152526

  13. Comparison of a conventional HIV 1/2 line immunoassay with a rapid confirmatory HIV 1/2 assay.

    PubMed

    Tinguely, Caroline; Schild-Spycher, Therese; Bahador, Zahra; Gowland, Peter; Stolz, Martin; Niederhauser, Christoph

    2014-09-01

    The performance of the rapid confirmatory HIV 1/2 assay Geenius was compared with the conventional HIV 1/2 line immunoblot (INNO-LIA HIV I/II Score). One hundred HIV 1/2 confirmed positive samples from donors and patients and 136 negative screening samples from blood donors were evaluated with both assays. A 20 member performance panel consisting of different HIV 1 and 2 subtypes was also analysed. Ninety-nine of the confirmed HIV positive samples were positive with both assays. One sample was positive with the INNO-LIA HIV I/II Score but indeterminate with the Geenius HIV 1/2. From 136 negative blood donor samples (negative with a combo HIV assay and a highly sensitive ID-NAT), 125 were concordant negative. Six and five samples were incorrectly indeterminate with the INNO-LIA HIV I/II Score and the Geenius HIV 1/2, respectively. One sample was weak positive with the INNO-LIA HIV I/II Score but negative with the Geenius HIV 1/2. The 20 member performance showed equivalent results with both assays. The rapid assay showed a comparable sensitivity and specificity for confirmation for positive and negative HIV donor and patient samples as well for a 20 member performance panel.

  14. Efficient Interaction of HIV-1 with Purified Dendritic Cells via Multiple Chemokine Coreceptors

    PubMed Central

    Granelli-Piperno, Angela; Moser, Bernhard; Pope, Melissa; Chen, Dongling; Wei, Yang; Isdell, Frank; O'Doherty, Una; Paxton, William; Koup, Richard; Mojsov, Svetlana; Bhardwaj, Nina; Clark-Lewis, Ian; Baggiolini, Marco; Steinman, Ralph M.

    1996-01-01

    HIV-1 actively replicates in dendritic cell (DC)-T cell cocultures, but it has been difficult to demonstrate substantial infection of purified mature DCs. We now find that HIV-1 begins reverse transcription much more efficiently in DCs than T cells, even though T cells have higher levels of CD4 and gp120 binding. DCs isolated from skin or from blood precursors behave similarly. Several M-tropic strains and the T-tropic strain IIIB enter DCs efficiently, as assessed by the progressive formation of the early products of reverse transcription after a 90-min virus pulse at 37°C. However, few late gag-containing sequences are detected, so that active viral replication does not occur. The formation of these early transcripts seems to follow entry of HIV-1, rather than binding of virions that contain viral DNA. Early transcripts are scarce if DCs are exposed to virus on ice for 4 h, or for 90 min at 37°C, conditions which allow virus binding. Also the early transcripts once formed are insensitive to trypsin. The entry of a M-tropic isolates is blocked by the chemokine RANTES, and the entry of IIIB by SDF-1. RANTES interacts with CCR5 and SDF-1 with CXCR4 receptors. Entry of M-tropic but not T-tropic virus is ablated in DCs from individuals who lack a functional CCR5 receptor. DCs express more CCR5 and CXCR4 mRNA than T cells. Therefore, while HIV-1 does not replicate efficiently in mature DCs, viral entry can be active and can be blocked by chemokines that act on known receptors for M- and T-tropic virus. PMID:8976200

  15. Recent developments in the search for a cure for HIV-1 infection: targeting the latent reservoir for HIV-1.

    PubMed

    Siliciano, Janet D; Siliciano, Robert F

    2014-07-01

    HIV-1 infection can now be readily controlled with combination antiretroviral therapy. However, the virus persists indefinitely in a stable latent reservoir in resting CD4(+) T cells. This reservoir generally prevents cure of the infection with combination antiretroviral therapy alone. However, several recent cases of potential HIV-1 cure have generated renewed optimism. Here we review these cases and consider new developments in our understanding of the latent reservoir. In addition, we consider clinical aspects of curative strategies to provide a more realistic picture of what a generally applicable cure for HIV-1 infection is likely to entail.

  16. ZNF10 inhibits HIV-1 LTR activity through interaction with NF-κB and Sp1 binding motifs.

    PubMed

    Nishitsuji, Hironori; Sawada, Leila; Sugiyama, Ryuichi; Takaku, Hiroshi

    2015-07-01

    Kruppel-associated box-containing zinc finger (KRAB-ZNF) genes constitute the single largest gene family of transcriptional repressors in the genomes of higher organisms. In this study, we isolated 52 cDNA clones of KRAB-ZFPs from U1 cell lines and screened them to identify which were capable of regulating HIV-1 gene expression. We identified 5 KRAB-ZFPs that suppressed ⩾50% of HIV-1 LTR. Of the 5 identified KRAB-ZFPs, the expression of ZNF10 significantly enhanced the transcriptional repression activity of the LTR compared with other ZNFs. In addition, the depletion of endogenous ZNF10 led to the activation of HIV-1 LTR. The repressor activity of ZNF10 was required for TRIM28, SETDB1 and HP1-gamma binding. These results indicate that ZNF10 could be involved in a potent intrinsic antiretroviral defense. PMID:26096782

  17. A Phylogenetic Survey on the Structure of the HIV-1 Leader RNA Domain That Encodes the Splice Donor Signal.

    PubMed

    Mueller, Nancy; Das, Atze T; Berkhout, Ben

    2016-01-01

    RNA splicing is a critical step in the human immunodeficiency virus type 1 (HIV-1) replication cycle because it controls the expression of the complex viral proteome. The major 5' splice site (5'ss) that is positioned in the untranslated leader of the HIV-1 RNA transcript is of particular interest because it is used for the production of the more than 40 differentially spliced subgenomic mRNAs. HIV-1 splicing needs to be balanced tightly to ensure the proper levels of all viral proteins, including the Gag-Pol proteins that are translated from the unspliced RNA. We previously presented evidence that the major 5'ss is regulated by a repressive local RNA structure, the splice donor (SD) hairpin, that masks the 11 nucleotides (nts) of the 5'ss signal for recognition by U1 small nuclear RNA (snRNA) of the spliceosome machinery. A strikingly different multiple-hairpin RNA conformation was recently proposed for this part of the HIV-1 leader RNA. We therefore inspected the sequence of natural HIV-1 isolates in search for support, in the form of base pair (bp) co-variations, for the different RNA conformations. PMID:27455303

  18. miRNA Profiles of Monocyte-Lineage Cells Are Consistent with Complicated Roles in HIV-1 Restriction

    PubMed Central

    Sisk, Jeanne M.; Clements, Janice E.; Witwer, Kenneth W.

    2012-01-01

    Long-lived HIV-1 reservoirs include tissue macrophages. Monocyte-derived macrophages are more susceptible to infection and more permissive to HIV-1 replication than monocytes for reasons that may include the effects of different populations of miRNAs in these two cell classes. Specifically, miRs-28-3p, -150, -223, -198, and -382 exert direct or indirect negative effects on HIV-1 and are reportedly downmodulated during monocyte-to-macrophage differentiation. Here, new experimental results are presented along with reviews and analysis of published studies and publicly available datasets, supporting a broader role of miRNAs in HIV-1 restriction than would be suggested by a simple and uniform downregulation of anti-HIV miRNAs during monocyte-to-macrophage differentiation. Although miR-223 is downregulated in macrophages, other putatively antiviral miRNAs are more abundant in macrophages than in monocytes or are rare and/or variably present in both cell classes. Our analyses point to the need for further studies to determine miRNA profiles of monocytes and macrophages, including classic and newly identified subpopulations; examine the sensitivity of miRNA profiling to cell isolation and differentiation protocols; and characterize rigorously the antiviral effects of previously reported and novel predicted miRNA-HIV-1 interactions in cell-specific contexts. PMID:23202444

  19. A Phylogenetic Survey on the Structure of the HIV-1 Leader RNA Domain That Encodes the Splice Donor Signal

    PubMed Central

    Mueller, Nancy; Das, Atze T.; Berkhout, Ben

    2016-01-01

    RNA splicing is a critical step in the human immunodeficiency virus type 1 (HIV-1) replication cycle because it controls the expression of the complex viral proteome. The major 5′ splice site (5′ss) that is positioned in the untranslated leader of the HIV-1 RNA transcript is of particular interest because it is used for the production of the more than 40 differentially spliced subgenomic mRNAs. HIV-1 splicing needs to be balanced tightly to ensure the proper levels of all viral proteins, including the Gag-Pol proteins that are translated from the unspliced RNA. We previously presented evidence that the major 5′ss is regulated by a repressive local RNA structure, the splice donor (SD) hairpin, that masks the 11 nucleotides (nts) of the 5′ss signal for recognition by U1 small nuclear RNA (snRNA) of the spliceosome machinery. A strikingly different multiple-hairpin RNA conformation was recently proposed for this part of the HIV-1 leader RNA. We therefore inspected the sequence of natural HIV-1 isolates in search for support, in the form of base pair (bp) co-variations, for the different RNA conformations. PMID:27455303

  20. Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1).

    PubMed

    O'Rourke, Aubrie; Kremb, Stephan; Bader, Theresa Maria; Helfer, Markus; Schmitt-Kopplin, Philippe; Gerwick, William H; Brack-Werner, Ruth; Voolstra, Christian R

    2016-02-01

    The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1) infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH), hymenialdisine (HD), and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%-40% inhibition of HIV-1 at 3.1 μM and 13 μM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 μM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 μM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery. PMID:26861355

  1. HIV-1, interferon and the interferon regulatory factor system: an interplay between induction, antiviral responses and viral evasion.

    PubMed

    Marsili, Giulia; Remoli, Anna Lisa; Sgarbanti, Marco; Perrotti, Edvige; Fragale, Alessandra; Battistini, Angela

    2012-01-01

    Thirty years after the first isolation of the etiological agent of AIDS, the virus HIV-1 is still a major threat worldwide with millions of individuals currently infected. Although current combination therapies allow viral replication to be controlled, HIV-1 is not eradicated and persists in drug- and immune system-insensitive reservoirs and a cure is still lacking. Pathogens such as HIV-1 that cause chronic infections are able to adapt to the host in a manner that ensures long term residence and survival, via the evolution of numerous mechanisms that evade various aspects of the innate and adaptive immune response. One such mechanism is targeted to members of the interferon (IFN) regulatory factor (IRF) family of proteins. These transcription factors regulate a variety of biological processes including interferon induction, immune cell activation and downstream pattern recognition receptors (PRRs). HIV-1 renders IRFs harmless and hijacks them to its own advantage in order to facilitate its replication and evasion of immune responses. Type I interferon (IFN), the canonical antiviral innate response, can be induced in both acute and chronic HIV-1 infection in vivo, but in the majority of individuals this initial response is not protective and can contribute to disease progression. Type I IFN expression is largely inhibited in T cells and macrophages in order to successfully establish productive infection, whereas sustained IFN production by plasmacytoid dendritic cells is considered an important source of chronic immune activation, a hallmark to AIDS progression.

  2. Production of Mucosally Transmissible SHIV Challenge Stocks from HIV-1 Circulating Recombinant Form 01_AE env Sequences

    PubMed Central

    Tartaglia, Lawrence J.; Chang, Hui-Wen; Lee, Benjamin C.; Abbink, Peter; Ng’ang’a, David; Boyd, Michael; Lavine, Christy L.; Lim, So-Yon; Sanisetty, Srisowmya; Whitney, James B.; Seaman, Michael S.; Rolland, Morgane; Tovanabutra, Sodsai; Ananworanich, Jintanat; Robb, Merlin L.; Kim, Jerome H.; Michael, Nelson L.; Barouch, Dan H.

    2016-01-01

    Simian-human immunodeficiency virus (SHIV) challenge stocks are critical for preclinical testing of vaccines, antibodies, and other interventions aimed to prevent HIV-1. A major unmet need for the field has been the lack of a SHIV challenge stock expressing circulating recombinant form 01_AE (CRF01_AE) env sequences. We therefore sought to develop mucosally transmissible SHIV challenge stocks containing HIV-1 CRF01_AE env derived from acutely HIV-1 infected individuals from Thailand. SHIV-AE6, SHIV-AE6RM, and SHIV-AE16 contained env sequences that were >99% identical to the original HIV-1 isolate and did not require in vivo passaging. These viruses exhibited CCR5 tropism and displayed a tier 2 neutralization phenotype. These challenge stocks efficiently infected rhesus monkeys by the intrarectal route, replicated to high levels during acute infection, and established chronic viremia in a subset of animals. SHIV-AE16 was titrated for use in single, high dose as well as repetitive, low dose intrarectal challenge studies. These SHIV challenge stocks should facilitate the preclinical evaluation of vaccines, monoclonal antibodies, and other interventions targeted at preventing HIV-1 CRF01_AE infection. PMID:26849216

  3. Characteristic of HIV-1 in V3 loop region based on seroreactivity and amino acid sequences in Thailand.

    PubMed

    Balachandra, Kruavon; Matsuo, Kazuhiro; Sutthent, Ruengpung; Hoisanka, Narin; Boonsarthorn, Naphasawan; Sawanpanyalert, Pathom; Warachit, Paijit; Yamazaki, Shudo; Honda, Mitsuo

    2002-06-01

    The third variable (V3) domain of the envelop (env) protein has been used for determining genetic subtype and phenotypic characteristics of human immunodeficiency virus type 1 (HIV-1) isolates. Based on the seroreactivity of the HIV-1 subtype by V3 peptide binding enzyme immunoassay (EIA) of 351 samples obtained in 1998 from HIV-1 infected individuals and AIDS patients, we found that 283 (80.6%) were subtype E, 20 (5.7%) were subtype B, 28 (8.0%) were cross-reactive between both types and 20 (5.7%) were non-typeable. The degree of seroreactivity of HIV-1 subtype E decreased significantly when the amino acid at the crown of the V3 loop was substituted from a GPGQ motif to GPGR motif. Interestingly, AIDS patients who had V3 sequences of subtype E as GPGR motif had a stronger immunoreactivity to GPGQ motif peptides than to GPGR motif peptides, in contradiction for their proviral sequences. The results suggested that mutations in the V3 loop may lead to a changed immunoreactivity that makes HIV-1 mutants unrecognizable or allow escape from the primary immune response by means of neutralizing sensitivity. In connection with vaccine development, it should be pointed out that the combination of V3 sequencing and peptide EIA could provide a novel approach to obtain a primarily infected virus sequence as a target for a preventive AIDS vaccine.

  4. A Phylogenetic Survey on the Structure of the HIV-1 Leader RNA Domain That Encodes the Splice Donor Signal.

    PubMed

    Mueller, Nancy; Das, Atze T; Berkhout, Ben

    2016-07-21

    RNA splicing is a critical step in the human immunodeficiency virus type 1 (HIV-1) replication cycle because it controls the expression of the complex viral proteome. The major 5' splice site (5'ss) that is positioned in the untranslated leader of the HIV-1 RNA transcript is of particular interest because it is used for the production of the more than 40 differentially spliced subgenomic mRNAs. HIV-1 splicing needs to be balanced tightly to ensure the proper levels of all viral proteins, including the Gag-Pol proteins that are translated from the unspliced RNA. We previously presented evidence that the major 5'ss is regulated by a repressive local RNA structure, the splice donor (SD) hairpin, that masks the 11 nucleotides (nts) of the 5'ss signal for recognition by U1 small nuclear RNA (snRNA) of the spliceosome machinery. A strikingly different multiple-hairpin RNA conformation was recently proposed for this part of the HIV-1 leader RNA. We therefore inspected the sequence of natural HIV-1 isolates in search for support, in the form of base pair (bp) co-variations, for the different RNA conformations.

  5. Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1)

    PubMed Central

    O’Rourke, Aubrie; Kremb, Stephan; Bader, Theresa Maria; Helfer, Markus; Schmitt-Kopplin, Philippe; Gerwick, William H.; Brack-Werner, Ruth; Voolstra, Christian R.

    2016-01-01

    The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1) infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH), hymenialdisine (HD), and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%–40% inhibition of HIV-1 at 3.1 μM and 13 μM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 μM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 μM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery. PMID:26861355

  6. High recombination potential of subtype A HIV-1.

    PubMed

    Nikolaitchik, Olga; Keele, Brandon; Gorelick, Robert; Alvord, W Gregory; Mazurov, Dmitriy; Pathak, Vinay K; Hu, Wei-Shau

    2015-10-01

    Recombination can assort polymorphic alleles to increase diversity in the HIV-1 population. To better understand the recombination potential of subtype A HIV-1, we generated viruses containing sequences from two variants circulating in Russia and analyzed the polymerase gene (pol) of the recombinants after one round of HIV-1 replication using single-genome sequencing. We observed that recombination occurred throughout pol and could easily assort alleles containing mutations that conferred resistance to currently approved antivirals. We measured the recombination rate in various regions of pol including a G-rich region that has been previously proposed to be a recombination hot spot. Our study does not support a recombination hot spot in this G-rich region. Importantly, of the 58 proviral sequences containing crossover event(s) in pol, we found that each sequence was a unique genotype indicating that recombination is a powerful genetic mechanism in assorting the genomes of subtype A HIV-1 variants.

  7. Evaluation of the Aptima(®) HIV-1 Quant Dx assay for HIV-1 RNA viral load detection and quantitation in plasma of HIV-1-infected individuals: A comparison with Abbott RealTime HIV-1 assay.

    PubMed

    Amendola, Alessandra; Pisciotta, Maria; Aleo, Loredana; Ferraioli, Valeria; Angeletti, Claudio; Capobianchi, Maria Rosaria

    2016-09-01

    The Hologic Aptima(®) HIV-1 Quant Dx assay (Aptima HIV) is a real-time transcription-mediated amplification method CE-approved for use in diagnosis and monitoring of HIV-1 infection. The analytical performance of this new assay was compared to the FDA-approved Abbott RealTime HIV-1 (RealTime). The evaluation was performed using 220 clinical plasma samples, the WHO 3rd HIV-1 International Standard, and the QCMD HIV-1 RNA EQA. Concordance on qualitative results, correlation between quantitative results, accuracy, and reproducibility of viral load data were analyzed. The ability to measure HIV-1 subtypes was assessed on the second WHO International Reference Preparation Panel for HIV-1 Subtypes. With clinical samples, inter-assay agreement for qualitative results was high (91.8%) with Cohen's kappa statistic equal to 0.836. For samples with quantitative results in both assays (n = 93), Lin's concordance correlation coefficient was 0.980 (P < 0.0001) and mean differences of measurement, conducted according to Bland-Altman method, was low (0.115 log10  copies/ml). The Aptima HIV quantified the WHO 3rd HIV-1 International Standard diluted from 2000 to 31 cp/ml (5,700-88 IU/ml) at expected values with excellent linearity (R(2)  > 0.970) and showed higher sensitivity compared to RealTime being able to detect HIV-1 RNA in 10 out of 10 replicates containing down to 7 cp/ml (20 IU/ml). Reproducibility was very high, even at low HIV-1 RNA values. The Aptima HIV was able to detect and accurately quantify all the main HIV-1 subtypes in both reference panels and clinical samples. Besides excellent performance, Aptima HIV shows full automation, ease of use, and improved workflow compared to RealTime. J. Med. Virol. 88:1535-1544, 2016. © 2016 Wiley Periodicals, Inc.

  8. Evaluation of the Aptima(®) HIV-1 Quant Dx assay for HIV-1 RNA viral load detection and quantitation in plasma of HIV-1-infected individuals: A comparison with Abbott RealTime HIV-1 assay.

    PubMed

    Amendola, Alessandra; Pisciotta, Maria; Aleo, Loredana; Ferraioli, Valeria; Angeletti, Claudio; Capobianchi, Maria Rosaria

    2016-09-01

    The Hologic Aptima(®) HIV-1 Quant Dx assay (Aptima HIV) is a real-time transcription-mediated amplification method CE-approved for use in diagnosis and monitoring of HIV-1 infection. The analytical performance of this new assay was compared to the FDA-approved Abbott RealTime HIV-1 (RealTime). The evaluation was performed using 220 clinical plasma samples, the WHO 3rd HIV-1 International Standard, and the QCMD HIV-1 RNA EQA. Concordance on qualitative results, correlation between quantitative results, accuracy, and reproducibility of viral load data were analyzed. The ability to measure HIV-1 subtypes was assessed on the second WHO International Reference Preparation Panel for HIV-1 Subtypes. With clinical samples, inter-assay agreement for qualitative results was high (91.8%) with Cohen's kappa statistic equal to 0.836. For samples with quantitative results in both assays (n = 93), Lin's concordance correlation coefficient was 0.980 (P < 0.0001) and mean differences of measurement, conducted according to Bland-Altman method, was low (0.115 log10  copies/ml). The Aptima HIV quantified the WHO 3rd HIV-1 International Standard diluted from 2000 to 31 cp/ml (5,700-88 IU/ml) at expected values with excellent linearity (R(2)  > 0.970) and showed higher sensitivity compared to RealTime being able to detect HIV-1 RNA in 10 out of 10 replicates containing down to 7 cp/ml (20 IU/ml). Reproducibility was very high, even at low HIV-1 RNA values. The Aptima HIV was able to detect and accurately quantify all the main HIV-1 subtypes in both reference panels and clinical samples. Besides excellent performance, Aptima HIV shows full automation, ease of use, and improved workflow compared to RealTime. J. Med. Virol. 88:1535-1544, 2016. © 2016 Wiley Periodicals, Inc. PMID:26864171

  9. Innate Invariant NKT Cell Recognition of HIV-1–Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion

    PubMed Central

    Paquin-Proulx, Dominic; Gibbs, Anna; Bächle, Susanna M.; Checa, Antonio; Introini, Andrea; Leeansyah, Edwin; Wheelock, Craig E.; Nixon, Douglas F.; Broliden, Kristina; Tjernlund, Annelie; Moll, Markus

    2016-01-01

    Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell–mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms. PMID:27481843

  10. Innate Invariant NKT Cell Recognition of HIV-1-Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion.

    PubMed

    Paquin-Proulx, Dominic; Gibbs, Anna; Bächle, Susanna M; Checa, Antonio; Introini, Andrea; Leeansyah, Edwin; Wheelock, Craig E; Nixon, Douglas F; Broliden, Kristina; Tjernlund, Annelie; Moll, Markus; Sandberg, Johan K

    2016-09-01

    Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell-mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms.

  11. High HIV-1 Genetic Diversity in Patients from Northern Brazil.

    PubMed

    da Costa, Carolina Marinho; Costa de Oliveira, Cintia Mara; Chehuan de Melo, Yonne Francis; Delatorre, Edson; Bello, Gonzalo; Couto-Fernandez, Jose Carlos

    2016-09-01

    The HIV-1 epidemic in Brazil is driven by subtypes B, F1, and C and recombinants forms among those subtypes. The distribution of HIV-1 subtypes, however, may vary across different Brazilian regions and the molecular epidemiologic profile in Northern Brazil remains poorly explored. HIV-1 pol sequences were obtained from 305 patients failing antiretroviral therapy followed at outpatient clinics from five Northern Brazilian states. The most prevalent HIV-1 clade observed in the Northern Brazilian region was subtype B (81%), followed by BF1 recombinants (10%), subtype F1 (4%), subtype C (3%), BC recombinants (2%), and BU recombinants (1%). Although HIV-1 subtype B was the predominant HIV-1 clade in Northern Brazil, its prevalence greatly varies among different states, ranging from 63% in Rondônia to 92% in Acre. Among the 37 HIV-1 recombinant sequences detected in the Northern Brazilian region, nine (24%) displayed a unique recombinant form structure, five (14%) a CRF28/29_BF-like structure, and four (11%) a CRF31_BC-like structure. Two other BF1 recombinant patterns were identified in 16 (43%) and three (8%) samples that may correspond to two potentially new CRFs_BF characteristic of the Northern region. This study reveals that despite the low spatial connectivity with other Brazilian regions, the genetic complexity of the HIV-1 epidemic in Northern Brazil is very high and that the molecular epidemiologic pattern may vary across different northern states, reflecting a complex epidemic with multiple independent viral introductions into this Brazilian region. PMID:27091699

  12. High HIV-1 Genetic Diversity in Patients from Northern Brazil.

    PubMed

    da Costa, Carolina Marinho; Costa de Oliveira, Cintia Mara; Chehuan de Melo, Yonne Francis; Delatorre, Edson; Bello, Gonzalo; Couto-Fernandez, Jose Carlos

    2016-09-01

    The HIV-1 epidemic in Brazil is driven by subtypes B, F1, and C and recombinants forms among those subtypes. The distribution of HIV-1 subtypes, however, may vary across different Brazilian regions and the molecular epidemiologic profile in Northern Brazil remains poorly explored. HIV-1 pol sequences were obtained from 305 patients failing antiretroviral therapy followed at outpatient clinics from five Northern Brazilian states. The most prevalent HIV-1 clade observed in the Northern Brazilian region was subtype B (81%), followed by BF1 recombinants (10%), subtype F1 (4%), subtype C (3%), BC recombinants (2%), and BU recombinants (1%). Although HIV-1 subtype B was the predominant HIV-1 clade in Northern Brazil, its prevalence greatly varies among different states, ranging from 63% in Rondônia to 92% in Acre. Among the 37 HIV-1 recombinant sequences detected in the Northern Brazilian region, nine (24%) displayed a unique recombinant form structure, five (14%) a CRF28/29_BF-like structure, and four (11%) a CRF31_BC-like structure. Two other BF1 recombinant patterns were identified in 16 (43%) and three (8%) samples that may correspond to two potentially new CRFs_BF characteristic of the Northern region. This study reveals that despite the low spatial connectivity with other Brazilian regions, the genetic complexity of the HIV-1 epidemic in Northern Brazil is very high and that the molecular epidemiologic pattern may vary across different northern states, reflecting a complex epidemic with multiple independent viral introductions into this Brazilian region.

  13. Enhancing of anti-viral activity against HIV-1 by stimulation of CD8+ T cells with thymic peptides

    PubMed Central

    MÜLLER, H; MAYER, G; BEHNKE, B; HEIMÜLLER, E; HAMSCHER, G; IMMLER, D; SIETHOFF, C; MEYER, HE; SCHREIBER, M

    1999-01-01

    HIV-1 can be neutralized by soluble factors produced and secreted by activated CD8+ T cells. Production of such anti-viral CD8 factors (including chemokines) can be induced with IL-2 or phytohaemagglutinin (PHA). In addition to PHA or IL-2, we have co-stimulated CD8+ T cells with PHA/IL-2 and a mixture of thymic peptides (TP) of molecular weights below 10 kD. For the activation, CD8+ T cells were purified from peripheral blood mononuclear cells of HIV-1− individuals and any resultant anti-viral activity was monitored using an HIV-1 neutralization assay. Using HIV-1 isolates highly resistant to chemokine inhibition we detected significantly higher levels of HIV-1 neutralizing activity in CD8+ T cell culture supernatants which had been co-activated with TP. When the TP-induced anti-viral activity was monitored, neutralization of both non-syncytia-inducing (NSI) and syncytia-inducing (SI) patient isolates was enhanced by 38% (NSI, PHA +/− TP), 66% (SI, PHA +/− TP), 28% (NSI, IL-2 +/− TP), and 57% (SI, IL-2 +/− TP) compared with the anti-viral activity present in supernatants from CD8+ T cell cultures stimulated only with PHA or IL-2. Peptide sequence analysis of purified TP showed that the TP mixture predominantly contains peptides with homology to human histone and collagen sequences. Our data demonstrate that CD8+ T cells are additionally activated by a mixture of TP. In this way, the production of HIV-1 neutralizing CD8 factors can be enhanced. PMID:10403919

  14. Further Evidence that Human Endogenous Retrovirus K102 is a Replication Competent Foamy Virus that may Antagonize HIV-1 Replication

    PubMed Central

    Laderoute, Marian P.; Larocque, Louise J.; Giulivi, Antonio; Diaz-Mitoma, Francisco

    2015-01-01

    Objective: The goals of the research were to determine if a foamy effect on macrophages was due to human endogenous retrovirus K102 (HERV-K102) replication, and to further address its potential significance in HIV-1 infection. Methods: An RT-PCR HERV-K HML-2 pol method was used to screen the unknown HERV, and isolated bands were sent for sequencing. Confirmation of RNA expression was performed by a real time quantitative PCR (qPCR) pol ddCt method. Rabbit antibodies to Env peptides were used to assess expression by immunohistology and processing of Env by western blots. A qPCR pol ddCt method to ascertain genomic copy number was performed on genomic DNA isolated from plasma comparing HIV-1 exposed seronegative (HESN) commercial sex workers (CSW) to normal controls and contrasted with HIV-1 patients. Results: HERV-K102 expression, particle production and replication were associated with foamy macrophage generation in the cultures of cord blood mononuclear cells under permissive conditions. A five-fold increased HERV-K102 pol genomic copy number was found in the HESN cohort over normal which was not found in HIV-1 positive patients (p=0.0005). Conclusions: This work extends the evidence that HERV-K102 has foamy virus attributes, is replication competent, and is capable of high replication rate in vivo and in vitro. This may be the first characterization of a replication-competent, foamy-like virus of humans. High particle production inferred by increased integration in the HESN cohort over HIV-1 patients raises the issue of the clinical importance of HERV-K102 particle production as an early protective innate immune response against HIV-1 replication. PMID:26793281

  15. Engineering T Cells to Functionally Cure HIV-1 Infection.

    PubMed

    Leibman, Rachel S; Riley, James L

    2015-07-01

    Despite the ability of antiretroviral therapy to minimize human immunodeficiency virus type 1 (HIV-1) replication and increase the duration and quality of patients' lives, the health consequences and financial burden associated with the lifelong treatment regimen render a permanent cure highly attractive. Although T cells play an important role in controlling virus replication, they are themselves targets of HIV-mediated destruction. Direct genetic manipulation of T cells for adoptive cellular therapies could facilitate a functional cure by generating HIV-1-resistant cells, redirecting HIV-1-specific immune responses, or a combination of the two strategies. In contrast to a vaccine approach, which relies on the production and priming of HIV-1-specific lymphocytes within a patient's own body, adoptive T-cell therapy provides an opportunity to customize the therapeutic T cells prior to administration. However, at present, it is unclear how to best engineer T cells so that sustained control over HIV-1 replication can be achieved in the absence of antiretrovirals. This review focuses on T-cell gene-engineering and gene-editing strategies that have been performed in efforts to inhibit HIV-1 replication and highlights the requirements for a successful gene therapy-mediated functional cure.

  16. Potent inhibition of HIV-1 replication by a Tat mutant.

    PubMed

    Meredith, Luke W; Sivakumaran, Haran; Major, Lee; Suhrbier, Andreas; Harrich, David

    2009-11-10

    Herein we describe a mutant of the two-exon HIV-1 Tat protein, termed Nullbasic, that potently inhibits multiple steps of the HIV-1 replication cycle. Nullbasic was created by replacing the entire arginine-rich basic domain of wild type Tat with glycine/alanine residues. Like similarly mutated one-exon Tat mutants, Nullbasic exhibited transdominant negative effects on Tat-dependent transactivation. However, unlike previously reported mutants, we discovered that Nullbasic also strongly suppressed the expression of unspliced and singly-spliced viral mRNA, an activity likely caused by redistribution and thus functional inhibition of HIV-1 Rev. Furthermore, HIV-1 virion particles produced by cells expressing Nullbasic had severely reduced infectivity, a defect attributable to a reduced ability of the virions to undergo reverse transcription. Combination of these inhibitory effects on transactivation, Rev-dependent mRNA transport and reverse transcription meant that permissive cells constitutively expressing Nullbasic were highly resistant to a spreading infection by HIV-1. Nullbasic and its activities thus provide potential insights into the development of potent antiviral therapeutics that target multiple stages of HIV-1 infection.

  17. Quantitative Phosphoproteomics Reveals Extensive Cellular Reprogramming During HIV-1 Entry

    PubMed Central

    Wojcechowskyj, Jason A.; Didigu, Chuka A.; Lee, Jessica Y.; Parrish, Nicholas F.; Sinha, Rohini; Hahn, Beatrice H.; Bushman, Frederic D.; Jensen, Shane T.; Seeholzer, Steven H.; Doms, Robert W.

    2014-01-01

    SUMMARY Receptor engagement by HIV-1 during host cell entry activates signaling pathways that can reprogram the cell for optimal viral replication. To obtain a global view of the signaling events induced during HIV-1 entry, we conducted a quantitative phosphoproteomics screen of primary human CD4+ T cell after infection with an HIV-1 strain that engages the receptors CD4 and CXCR4. We quantified 1,757 phosphorylation sites with high stringency. The abundance of 239 phosphorylation sites from 175 genes, including several proteins in pathways known to be impacted by HIV-receptor binding, changed significantly within a minute after HIV-1 exposure. Several previously uncharacterized HIV-1 host factors were also identified and confirmed through RNAi depletion studies. Surprisingly, 5 serine/arginine-rich (SR)-proteins involved in mRNA splicing, including the splicing factor SRm300 (SRRM2) were differentially phosophorylated. Mechanistic studies with SRRM2 suggest that HIV-1 modulates host cell alternative splicing machinery during entry in order to facilitate virus replication and release. PMID:23684312

  18. Engineering T Cells to Functionally Cure HIV-1 Infection

    PubMed Central

    Leibman, Rachel S; Riley, James L

    2015-01-01

    Despite the ability of antiretroviral therapy to minimize human immunodeficiency virus type 1 (HIV-1) replication and increase the duration and quality of patients' lives, the health consequences and financial burden associated with the lifelong treatment regimen render a permanent cure highly attractive. Although T cells play an important role in controlling virus replication, they are themselves targets of HIV-mediated destruction. Direct genetic manipulation of T cells for adoptive cellular therapies could facilitate a functional cure by generating HIV-1–resistant cells, redirecting HIV-1–specific immune responses, or a combination of the two strategies. In contrast to a vaccine approach, which relies on the production and priming of HIV-1–specific lymphocytes within a patient's own body, adoptive T-cell therapy provides an opportunity to customize the therapeutic T cells prior to administration. However, at present, it is unclear how to best engineer T cells so that sustained control over HIV-1 replication can be achieved in the absence of antiretrovirals. This review focuses on T-cell gene-engineering and gene-editing strategies that have been performed in efforts to inhibit HIV-1 replication and highlights the requirements for a successful gene therapy–mediated functional cure. PMID:25896251

  19. Histone acetyltransferases regulate HIV-1 enhancer activity in vitro

    PubMed Central

    Sheridan, Philip L.; Mayall, Timothy P.; Verdin, Eric; Jones, Katherine A.

    1997-01-01

    Specific inhibitors of histone deacetylase, such as trichostatin A (TSA) and trapoxin (TPX), are potent inducers of HIV-1 transcription in latently infected T-cell lines. Activation of the integrated HIV-1 promoter is accompanied by the loss or rearrangement of a positioned nucleosome (nuc-1) near the viral RNA start site. Here we show that TSA strongly induces HIV-1 transcription on chromatin in vitro, concomitant with an enhancer factor-assisted increase in the level of acetylated histone H4. TSA treatment, however, did not detectably alter enhancer factor binding or the positioning of nuc-1 on the majority of the chromatin templates indicating that protein acetylation and chromatin remodeling may be limiting steps that occur only on transcriptionally competent templates, or that remodeling of nuc-1 requires additional factors. To assess the number of active chromatin templates in vitro, transcription was limited to a single round with low levels of the detergent Sarkosyl. Remarkably, HIV-1 transcription on chromatin was found to arise from a small number of active templates that can each support nearly 100 rounds of transcription, and TSA increased the number of active templates in each round. In contrast, transcription on naked DNA was limited to only a few rounds and was not responsive to TSA. We conclude that HIV-1 enhancer complexes greatly facilitate transcription reinitiation on chromatin in vitro, and act at a limiting step to promote the acetylation of histones or other transcription factors required for HIV-1 enhancer activity. PMID:9407026

  20. Negative Feedback Regulation of HIV-1 by Gene Editing Strategy.

    PubMed

    Kaminski, Rafal; Chen, Yilan; Salkind, Julian; Bella, Ramona; Young, Won-Bin; Ferrante, Pasquale; Karn, Jonathan; Malcolm, Thomas; Hu, Wenhui; Khalili, Kamel

    2016-01-01

    The CRISPR/Cas9 gene editing method is comprised of the guide RNA (gRNA) to target a specific DNA sequence for cleavage and the Cas9 endonuclease for introducing breaks in the double-stranded DNA identified by the gRNA. Co-expression of both a multiplex of HIV-1-specific gRNAs and Cas9 in cells results in the modification and/or excision of the segment of viral DNA, leading to replication-defective virus. In this study, we have personalized the activity of CRISPR/Cas9 by placing the gene encoding Cas9 under the control of a minimal promoter of HIV-1 that is activated by the HIV-1 Tat protein. We demonstrate that functional activation of CRISPR/Cas9 by Tat during the course of viral infection excises the designated segment of the integrated viral DNA and consequently suppresses viral expression. This strategy was also used in a latently infected CD4+ T-cell model after treatment with a variety of HIV-1 stimulating agents including PMA and TSA. Controlled expression of Cas9 by Tat offers a new strategy for safe implementation of the Cas9 technology for ablation of HIV-1 at a very early stage of HIV-1 replication during the course of the acute phase of infection and the reactivation of silent proviral DNA in latently infected cells. PMID:27528385

  1. Negative Feedback Regulation of HIV-1 by Gene Editing Strategy

    PubMed Central

    Kaminski, Rafal; Chen, Yilan; Salkind, Julian; Bella, Ramona; Young, Won-bin; Ferrante, Pasquale; Karn, Jonathan; Malcolm, Thomas; Hu, Wenhui; Khalili, Kamel

    2016-01-01

    The CRISPR/Cas9 gene editing method is comprised of the guide RNA (gRNA) to target a specific DNA sequence for cleavage and the Cas9 endonuclease for introducing breaks in the double-stranded DNA identified by the gRNA. Co-expression of both a multiplex of HIV-1-specific gRNAs and Cas9 in cells results in the modification and/or excision of the segment of viral DNA, leading to replication-defective virus. In this study, we have personalized the activity of CRISPR/Cas9 by placing the gene encoding Cas9 under the control of a minimal promoter of HIV-1 that is activated by the HIV-1 Tat protein. We demonstrate that functional activation of CRISPR/Cas9 by Tat during the course of viral infection excises the designated segment of the integrated viral DNA and consequently suppresses viral expression. This strategy was also used in a latently infected CD4+ T-cell model after treatment with a variety of HIV-1 stimulating agents including PMA and TSA. Controlled expression of Cas9 by Tat offers a new strategy for safe implementation of the Cas9 technology for ablation of HIV-1 at a very early stage of HIV-1 replication during the course of the acute phase of infection and the reactivation of silent proviral DNA in latently infected cells. PMID:27528385

  2. Myelopathy in a previously asymptomatic HIV-1-infected patient.

    PubMed

    Eyer-Silva, W A; Auto, I; Pinto, J F; Morais-de-Sá, C A

    2001-01-01

    A wide variety of disorders of diverse pathogenic mechanisms can trigger spinal cord dysfunction in HIV-1-infected patients. The most common such condition is HIV-1-associated myelopathy (HM) which characteristically complicates advanced HIV-1 disease in patients with low CD4 cell counts and previous AIDS-defining diagnoses. We describe an unusual presentation of HM in a previously asymptomatic patient with a relatively preserved CD4 cell count (458 cells/mm3) who was even unaware of his serological status. The patient presented with a clinically severe, slowly progressive myelopathy and could not walk unassisted. Significant neurological improvement could be obtained as rapidly as within 4 weeks after the institution of an antiretroviral combination of only two nucleoside analog HIV-1 reverse transcriptase inhibitors (zidovudine and didanosine). An HIV-1 protease inhibitor was also prescribed at that point but could only be added to intensify the regimen 3 months later, when significant neurological improvement had already been recorded. We also review the disorders reported to derange spinal cord function in previously asymptomatic HIV-1-infected patients.

  3. HIV-1 Reservoir Dynamics after Vaccination and Antiretroviral Therapy Interruption Are Associated with Dendritic Cell Vaccine-Induced T Cell Responses

    PubMed Central

    Andrés, Cristina; Plana, Montserrat; Guardo, Alberto C.; Alvarez-Fernández, Carmen; Climent, Nuria; Gallart, Teresa; León, Agathe; Clotet, Bonaventura; Autran, Brigitte; Chomont, Nicolas; Gatell, Josep M.; Sánchez-Palomino, Sonsoles

    2015-01-01

    ABSTRACT HIV-1-specific immune responses induced by a dendritic cell (DC)-based therapeutic vaccine might have some effect on the viral reservoir. Patients on combination antiretroviral therapy (cART) were randomized to receive DCs pulsed with autologous HIV-1 (n = 24) (DC-HIV-1) or nonpulsed DCs (n = 12) (DC-control). We measured the levels of total and integrated HIV-1 DNA in CD4 T cells isolated from these patients at 6 time points: before any cART; before the first cART interruption, which was at 56 weeks before the first immunization to isolate virus for pulsing DCs; before and after vaccinations (VAC1 and VAC2); and at weeks 12 and 48 after the second cART interruption. The vaccinations did not influence HIV-1 DNA levels in vaccinated subjects. After the cART interruption at week 12 postvaccination, while total HIV-1 DNA increased significantly in both arms, integrated HIV-1 DNA did not change in vaccinees (mean of 1.8 log10 to 1.9 copies/106 CD4 T cells, P = 0.22) and did increase in controls (mean of 1.8 log10 to 2.1 copies/106 CD4 T cells, P = 0.02) (P = 0.03 for the difference between groups). However, this lack of increase of integrated HIV-1 DNA observed in the DC-HIV-1 group was transient, and at week 48 after cART interruption, no differences were observed between the groups. The HIV-1-specific T cell responses at the VAC2 time point were inversely correlated with the total and integrated HIV-1 DNA levels after cART interruption in vaccinees (r [Pearson's correlation coefficient] = −0.69, P = 0.002, and r = −0.82, P < 0.0001, respectively). No correlations were found in controls. HIV-1-specific T cell immune responses elicited by DC therapeutic vaccines drive changes in HIV-1 DNA after vaccination and cART interruption. (This study has been registered at ClinicalTrials.gov under registration no. NCT00402142.) IMPORTANCE There is an intense interest in developing strategies to target HIV-1 reservoirs as they create barriers to curing the disease

  4. HIV-1 subtype characteristics of infected persons living in southwestern Greece

    PubMed Central

    Davanos, Nikolaos; Panos, George; Gogos, Charalambos A; Mouzaki, Athanasia

    2015-01-01

    Background The rapid replication rate of HIV-1, coupled with a high mutation rate and recombination, is the underlying force driving its genetic diversity. In the infected individual, a population of highly related but nonidentical strains exists. At the population level, multiple subtypes often cocirculate, leading to the generation of intersubtype recombinant forms. As a result, the geographic distribution of subtypes and recombinant forms is complex and uneven. Genetic subtyping of HIV-1 isolates has been shown to be helpful for understanding the genetic evolution, the worldwide spread of the virus, and the evaluation of drug resistance. Materials and methods We determined the genetic heterogeneity of HIV-1 group M in southwestern Greece. Protease and partial reverse-transcriptase sequences were generated from 150 HIV-1-infected individuals attending the Division of Infectious Diseases of Patras University Hospital, Greece, from 2006 to 2012, and analyzed using online subtyping tools and phylogenetic methods. Results The majority of the infected individuals were male (77%). HIV-1 subtype A1 was responsible for 51.3% of infections, followed by subtypes B (34%), G (4%), F1 (2%), and the circulating recombinant forms 02_AG (2.7%), 14_BG (1.3%), 35_AD (1.3%), and 01_AE (0.7%). Additionally, we identified three cases with a recombinant B/CRF02_AG strain (2%) and one with a recombinant G/GRF_AG strain. Sexual transmission was responsible for 96.3% of cases. Heterosexual transmission was responsible for 70.2% of subtype-A1 infections, whereas subtype B was transmitted by men who have sex with men in 75.5% of cases. Protease substitutions I13V, E35D, M36I, R57K, H69K, and L89M, which serve as drug-resistance support mutations in subtype B, were present in the majority of subtype-A1 sequences of the population. Conclusion HIV-1 infection in southwestern Greece is sexually transmitted and highly heterogeneous. Subtype A1 has surpassed subtype B, and is the most prevalent

  5. Trypanosoma cruzi (Chagas' disease agent) reduces HIV-1 replication in human placenta

    PubMed Central

    Dolcini, Guillermina Laura; Solana, María Elisa; Andreani, Guadalupe; Celentano, Ana María; Parodi, Laura María; Donato, Ana María; Elissondo, Natalia; Cappa, Stella Maris González; Giavedoni, Luis David; Peralta, Liliana Martínez

    2008-01-01

    Background Several factors determine the risk of HIV mother-to-child transmission (MTCT), such as coinfections in placentas from HIV-1 positive mothers with other pathogens. Chagas' disease is one of the most endemic zoonoses in Latin America, caused by the protozoan Trypanosoma cruzi. The purpose of the study was to determine whether T. cruzi modifies HIV infection of the placenta at the tissue or cellular level. Results Simple and double infections were carried out on a placental histoculture system (chorionic villi isolated from term placentas from HIV and Chagas negative mothers) and on the choriocarcinoma BeWo cell line. Trypomastigotes of T. cruzi (VD lethal strain), either purified from mouse blood or from Vero cell cultures, 24 h-supernatants of blood and cellular trypomastigotes, and the VSV-G pseudotyped HIV-1 reporter virus were used for the coinfections. Viral transduction was evaluated by quantification of luciferase activity. Coinfection with whole trypomastigotes, either from mouse blood or from cell cultures, decreased viral pseudotype luciferase activity in placental histocultures. Similar results were obtained from BeWo cells. Supernatants of stimulated histocultures were used for the simultaneous determination of 29 cytokines and chemokines with the Luminex technology. In histocultures infected with trypomastigotes, as well as in coinfected tissues, IL-6, IL-8, IP-10 and MCP-1 production was significantly lower than in controls or HIV-1 transducted tissue. A similar decrease was observed in histocultures treated with 24 h-supernatants of blood trypomastigotes, but not in coinfected tissues. Conclusion Our results demonstrated that the presence of an intracellular pathogen, such as T. cruzi, is able to impair HIV-1 transduction in an in vitro system of human placental histoculture. Direct effects of the parasite on cellular structures as well as on cellular/viral proteins essential for HIV-1 replication might influence viral transduction in this

  6. HIV-1 VACCINES. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies.

    PubMed

    Williams, Wilton B; Liao, Hua-Xin; Moody, M Anthony; Kepler, Thomas B; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly E; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, M Juliana; Mascola, John R; Koup, Richard A; Corey, Lawrence; Nabel, Gary J; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S; Baden, Lindsey R; Tomaras, Georgia D; Haynes, Barton F

    2015-08-14

    An HIV-1 DNA prime vaccine, with a recombinant adenovirus type 5 (rAd5) boost, failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than to gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells responded to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies were non-neutralizing and frequently polyreactive with host and environmental antigens, including intestinal microbiota (IM). Next-generation sequencing of an immunoglobulin heavy chain variable region repertoire before vaccination revealed an Env-IM cross-reactive Ab that was clonally related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy.

  7. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity.

    PubMed

    Zhou, Jiehua; Satheesan, Sangeetha; Li, Haitang; Weinberg, Marc S; Morris, Kevin V; Burnett, John C; Rossi, John J

    2015-03-19

    The C-C chemokine receptor type 5 (CCR5) is a receptor expressed by T cells and macrophages that serves as a coreceptor for macrophage-tropic HIV-1. Loss of CCR5 is associated with resistance to HIV-1. Here, we combine the live-cell-based SELEX with high-throughput sequencing technology to generate CCR5 RNA aptamers capable of specifically targeting HIV-1 susceptible cells (as small interfering RNA [siRNA] delivery agent) and inhibiting HIV-1 infectivity (as antiviral agent) via block of the CCR5 required for HIV-1 to enter cells. One of the best candidates, G-3, efficiently bound and was internalized into human CCR5-expressing cells. The G-3 specifically neutralized R5 virus infection in primary peripheral blood mononuclear cells, and in vivo generated human CD4(+) T cells with a nanomolar inhibitory concentration 50%. G-3 was also capable of transferring functional siRNAs to CCR5-expressing cells. Collectively, the cell-specific, internalizing, CCR5-targeted aptamers and aptamer-siRNA conjugates offer promise for overcoming some of the current challenges of drug resistance in HIV-1 by providing cell-type- or tissue-specific delivery of various therapeutic moieties.

  8. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible and inhibits HIV-1 infectivity

    PubMed Central

    Zhou, Jiehua; Satheesan, Sangeetha; Li, Haitang; Weinberg, Marc S.; Morris, Kevin V.; Burnett, John; Rossi, John

    2015-01-01

    SUMMARY The C-C chemokine receptor type 5 (CCR5) is a receptor expressed by T-cells and macrophages that serves as a co-receptor for macrophage-tropic HIV-1. Loss of CCR5 is associated with resistance to HIV-1. Here we combine the live cell-based SELEX with high throughput sequencing technology to generate CCR5 RNA aptamers capable of specifically targeting HIV-1 susceptible cells (as siRNA delivery agent) and inhibiting HIV-1 infectivity (as antiviral agent) via block of the CCR5 required for HIV-1 to enter cells. One of the best candidates, G-3, efficiently bound and was internalized into human CCR5 expressing cells. The G-3 specifically neutralized R5 virus infection in primary peripheral blood mononuclear cells, and in vivo generated human CD4+ T cells with a nanomolar IC50. G-3 was also capable of transferring functional siRNAs to CCR5 expressing cells. Collectively, the cell-specific, internalizing, CCR5-targeted aptamers and aptamer-siRNA conjugates offer promise for overcoming some of the current challenges of drug resistance in HIV-1 by providing cell-type- or tissue-specific delivery of various therapeutic moieties. PMID:25754473

  9. Conformational Evaluation of HIV-1 Trimeric Envelope Glycoproteins Using a Cell-based ELISA Assay

    PubMed Central

    Veillette, Maxime; Désormeaux, Anik; Roger, Michel; Finzi, Andrés

    2014-01-01

    HIV-1 envelope glycoproteins (Env) mediate viral entry into target cells and are essential to the infectious cycle. Understanding how those glycoproteins are able to fuel the fusion process through their conformational changes could lead to the design of better, more effective immunogens for vaccine strategies. Here we describe a cell-based ELISA assay that allows studying the recognition of trimeric HIV-1 Env by monoclonal antibodies. Following expression of HIV-1 trimeric Env at the surface of transfected cells, conformation specific anti-Env antibodies are incubated with the cells. A horseradish peroxidase-conjugated secondary antibody and a simple chemiluminescence reaction are then used to detect bound antibodies. This system is highly flexible and can detect Env conformational changes induced by soluble CD4 or cellular proteins. It requires minimal amount of material and no highly-specialized equipment or know-how. Thus, this technique can be established for medium to high throughput screening of antigens and antibodies, such as newly-isolated antibodies. PMID:25286159

  10. Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody.

    PubMed

    Bonsignori, Mattia; Zhou, Tongqing; Sheng, Zizhang; Chen, Lei; Gao, Feng; Joyce, M Gordon; Ozorowski, Gabriel; Chuang, Gwo-Yu; Schramm, Chaim A; Wiehe, Kevin; Alam, S Munir; Bradley, Todd; Gladden, Morgan A; Hwang, Kwan-Ki; Iyengar, Sheelah; Kumar, Amit; Lu, Xiaozhi; Luo, Kan; Mangiapani, Michael C; Parks, Robert J; Song, Hongshuo; Acharya, Priyamvada; Bailer, Robert T; Cao, Allen; Druz, Aliaksandr; Georgiev, Ivelin S; Kwon, Young D; Louder, Mark K; Zhang, Baoshan; Zheng, Anqi; Hill, Brenna J; Kong, Rui; Soto, Cinque; Mullikin, James C; Douek, Daniel C; Montefiori, David C; Moody, Michael A; Shaw, George M; Hahn, Beatrice H; Kelsoe, Garnett; Hraber, Peter T; Korber, Bette T; Boyd, Scott D; Fire, Andrew Z; Kepler, Thomas B; Shapiro, Lawrence; Ward, Andrew B; Mascola, John R; Liao, Hua-Xin; Kwong, Peter D; Haynes, Barton F

    2016-04-01

    Antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. Here, we define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. We integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.

  11. Enhanced HIV-1 neutralization by a CD4-VH3-IgG1 fusion protein

    SciTech Connect

    Meyuhas, Ronit; Noy, Hava; Fishman, Sigal; Margalit, Alon; Montefiori, David C.; Gross, Gideon

    2009-08-21

    HIV-1 gp120 is an alleged B cell superantigen, binding certain VH3+ human antibodies. We reasoned that a CD4-VH3 fusion protein could possess higher affinity for gp120 and improved HIV-1 inhibitory capacity. To test this we produced several human IgG1 immunoligands harboring VH3. Unlike VH3-IgG1 or VH3-CD4-IgG1, CD4-VH3-IgG1 bound gp120 considerably stronger than CD4-IgG1. CD4-VH3-IgG1 exhibited {approx}1.5-2.5-fold increase in neutralization of two T-cell laboratory-adapted strains when compared to CD4-IgG1. CD4-VH3-IgG1 improved neutralization of 7/10 clade B primary isolates or pseudoviruses, exceeding 20-fold for JR-FL and 13-fold for Ba-L. It enhanced neutralization of 4/8 clade C viruses, and had negligible effect on 1/4 clade A pseudoviruses. We attribute this improvement to possible pairing of VH3 with CD4 D1 and stabilization of an Ig Fv-like structure, rather than to superantigen interactions. These novel findings support the current notion that CD4 fusion proteins can act as better HIV-1 entry inhibitors with potential clinical implications.

  12. Regulation of the Human Endogenous Retrovirus K (HML-2) Transcriptome by the HIV-1 Tat Protein

    PubMed Central

    Gonzalez-Hernandez, Marta J.; Cavalcoli, James D.; Sartor, Maureen A.; Contreras-Galindo, Rafael; Meng, Fan; Dai, Manhong; Dube, Derek; Saha, Anjan K.; Gitlin, Scott D.; Omenn, Gilbert S.; Kaplan, Mark H.

    2014-01-01

    ABSTRACT Approximately 8% of the human genome is made up of endogenous retroviral sequences. As the HIV-1 Tat protein activates the overall expression of the human endogenous retrovirus type K (HERV-K) (HML-2), we used next-generation sequencing to determine which of the 91 currently annotated HERV-K (HML-2) proviruses are regulated by Tat. Transcriptome sequencing of total RNA isolated from Tat- and vehicle-treated peripheral blood lymphocytes from a healthy donor showed that Tat significantly activates expression of 26 unique HERV-K (HML-2) proviruses, silences 12, and does not significantly alter the expression of the remaining proviruses. Quantitative reverse transcription-PCR validation of the sequencing data was performed on Tat-treated PBLs of seven donors using provirus-specific primers and corroborated the results with a substantial degree of quantitative similarity. IMPORTANCE The expression of HERV-K (HML-2) is tightly regulated but becomes markedly increased following infection with HIV-1, in part due to the HIV-1 Tat protein. The findings reported here demonstrate the complexity of the genome-wide regulation of HERV-K (HML-2) expression by Tat. This work also demonstrates that although HERV-K (HML-2) proviruses in the human genome are highly similar in terms of DNA sequence, modulation of the expression of specific proviruses in a given biological situation can be ascertained using next-generation sequencing and bioinformatics analysis. PMID:24872592

  13. Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody.

    PubMed

    Bonsignori, Mattia; Zhou, Tongqing; Sheng, Zizhang; Chen, Lei; Gao, Feng; Joyce, M Gordon; Ozorowski, Gabriel; Chuang, Gwo-Yu; Schramm, Chaim A; Wiehe, Kevin; Alam, S Munir; Bradley, Todd; Gladden, Morgan A; Hwang, Kwan-Ki; Iyengar, Sheelah; Kumar, Amit; Lu, Xiaozhi; Luo, Kan; Mangiapani, Michael C; Parks, Robert J; Song, Hongshuo; Acharya, Priyamvada; Bailer, Robert T; Cao, Allen; Druz, Aliaksandr; Georgiev, Ivelin S; Kwon, Young D; Louder, Mark K; Zhang, Baoshan; Zheng, Anqi; Hill, Brenna J; Kong, Rui; Soto, Cinque; Mullikin, James C; Douek, Daniel C; Montefiori, David C; Moody, Michael A; Shaw, George M; Hahn, Beatrice H; Kelsoe, Garnett; Hraber, Peter T; Korber, Bette T; Boyd, Scott D; Fire, Andrew Z; Kepler, Thomas B; Shapiro, Lawrence; Ward, Andrew B; Mascola, John R; Liao, Hua-Xin; Kwong, Peter D; Haynes, Barton F

    2016-04-01

    Antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. Here, we define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. We integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages. PMID:26949186

  14. A broad HIV-1 inhibitor blocks envelope glycoprotein transitions critical for entry

    PubMed Central

    Herschhorn, Alon; Gu, Christopher; Espy, Nicole; Richard, Jonathan; Finzi, Andrés; Sodroski, Joseph G.

    2014-01-01

    Binding to the primary receptor, CD4, triggers conformational changes in the metastable envelope glycoprotein (Env) trimer (gp1203/gp413) of human immunodeficiency virus (HIV-1) that are important for virus entry into host cells. These changes include an “opening” of the trimer, creation of a binding site for the CCR5 coreceptor, and formation/exposure of a gp41 coiled coil. Here we identify a new compound, 18A (1), that specifically inhibits the entry of a wide range of HIV-1 isolates. 18A does not interfere with CD4 or CCR5 binding, but inhibits the CD4-induced disruption of quaternary structures at the trimer apex and the formation/exposure of the gp41 HR1 coiled coil. Analysis of HIV-1 variants exhibiting increased or reduced sensitivity to 18A suggests that the inhibitor can distinguish distinct conformational states of gp120 in the unliganded Env trimer. The broad-range activity and observed hypersensitivity of resistant mutants to antibody neutralization support further investigation of 18A. PMID:25174000

  15. Quantification of infectious HIV-1 plasma viral load using a boosted in vitro infection protocol.

    PubMed

    Rusert, Peter; Fischer, Marek; Joos, Beda; Leemann, Christine; Kuster, Herbert; Flepp, Markus; Bonhoeffer, Sebastian; Günthard, Huldrych F; Trkola, Alexandra

    2004-08-15

    Methods currently used for HIV-1 viral load measurements are very sensitive, but cannot distinguish between infectious and noninfectious particles. Here we describe the development of a novel, sensitive, and highly reproducible method that allows rapid isolation and quantification of infectious particles from patient plasma. By immobilizing HIV-1 particles in human plasma to platelets using polybrene, we observed a 10- to 1000-fold increase in infectivity over infection protocols using free virus particles. Using this method, we evaluated infectivity in plasma from 52 patients at various disease stages. At plasma viral loads of 1000-10000 HIV-1 RNA copies/ml 18%, at 10,000-50,000 copies/ml 73%, at 50,000-100,000 copies/ml 90%, and above 100,000 copies 96% of cultures were positive. We found that infectious titers among patients vary distinctively but are characteristic for a patient over extended time periods. Furthermore, we demonstrate that by evaluating infectious titers in conjunction with total HIV RNA loads, subtle effects of treatment intervention on viremia levels can be detected. The immobilization procedure does not interfere with viral entry and does not restore the infectivity of neutralized virus. Therefore, this assay system can be utilized to investigate the influence of substances that specifically affect virion infectivity such as neutralizing antibodies, soluble CD4, or protease inhibitors. Measuring viral infectivity may thereby function as an additional, useful marker in monitoring disease progression and evaluating efficacy of antivirals in vivo.

  16. Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody

    DOE PAGES

    Bonsignori, Mattia; Zhou, Tongqing; Sheng, Zizhang; Chen, Lei; Gao, Feng; Joyce, M.  Gordon; Ozorowski, Gabriel; Chuang, Gwo-Yu; Schramm, Chaim A.; Wiehe, Kevin; et al

    2016-04-01

    Here, we report that antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. We define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level ofmore » somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. Lastly, we integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.« less

  17. Inhibition of Rev-mediated HIV-1 expression by an RNA binding protein encoded by the interferon-inducible 9-27 gene

    SciTech Connect

    Constantoulakis, P.; Campbell, M.; Felber, B.K.; Nasioulas, G.; Afonina, E.; Pavlakis, G.N. )

    1993-02-26

    Interferon inhibits expression of human immunodeficiency virus type-1 (HIV-1) through unknown mechanisms. A gene inducible by interferon-[alpha] (IFN-[alpha]) and interferon-[gamma] (IFN-[gamma]) was isolated by screening of a human complementary DNA library for proteins binding to the Rev-responsive element (RRE) of HIV-1. The product of this gene, RBP9-27, was shown to bind RNA in vitro and to inhibit HIV-1 expression after transfection into human cells. RBP9-27 primarily inhibited Rev-dependent posttransscriptional steps of viral gene expression. Thus, RBP9-27 is a cellular factor that antagonizes Rev function. These results suggest an inteferon-induced antiviral mechanism operating through the induction of RNA binding proteins such as RBP9-27. Elucidation of RBP9-27 function may lead to a better understanding of the mechanism of interferon action during HIV-1 infection. 29 refs., 4 figs.

  18. Fluorescent image analysis of HIV-1 and HIV-2 uncoating kinetics in the presence of old world monkey TRIM5α.

    PubMed

    Takeda, Eri; Kono, Ken; Hulme, Amy E; Hope, Thomas J; Nakayama, Emi E; Shioda, Tatsuo

    2015-01-01

    Uncoating of Human Immunodeficiency Virus type 1 (HIV-1) and type 2 (HIV-2) conical cores is an important early step for establishment of infection. In Old World Monkey (OWM) cells, the TRIM5α cellular factor potently suppresses an early step of infection by HIV-1. Previously, biochemical studies using whole cell lysates of infected cells revealed that OWM TRIM5α accelerates the uncoating of HIV-1, leading to premature reverse transcription. In the present study, we re-evaluated uncoating kinetics of HIV-1 in the presence of OWM TRIM5α by using an in situ uncoating assay, which allowed us to differentiate productive HIV-1 entry from simple (non-productive) endocytosis. Results showed that the uncoating kinetics of HIV-1 was indeed accelerated in the presence of OWM TRIM5α. Furthermore, we adapted an in situ uncoating assay to HIV-2, which showed wide variations in TRIM5α sensitivity among different isolates. HIV-2 isolate GH123, whose infectivity was suppressed by cynomolgus monkey (CM) TRIM5α, showed accelerated uncoating in the presence of CM TRIM5α. In contrast, mutant HIV-2 ASA, whose infectivity was unaltered by CM TRIM5α, showed no change in uncoating kinetics in the presence of CM TRIM5α. These results confirmed and further extended the previous notion that accelerated uncoating is associated with restriction activity of TRIM5α against lentiviruses.

  19. Genetic relatedness of human immunodeficiency virus-1 (HIV-1) strains in a 12-year-old daughter and her father in a household setting.

    PubMed

    Shao, Jiasheng; Wang, Jiangrong; Abubakar, Yassir F; Zhou, Dapeng; Chen, Jun; Shen, Yinzhong; Wang, Zhenyan; Lu, Hongzhou

    2014-06-01

    Modalities of intra-familial transmission of HIV-1 are not always clear. Here we describe an uncommon case of HIV transmission in a family setting, analyzed using clinical, epidemiological and nucleic-acid-based methods, and assess risk factors for intrafamilial transmission of HIV-1 infection. All sequences from the father and the daughter were grouped in the same cluster with a 100 % bootstrap value, which means that the father and his daughter were infected with highly homologous CRF01_AE. The diversity of genetic clones between env and pol genes was insignificant (p > 0.05). Moreover, the results of analysis of drug-resistance-associated mutation positions of the two viral isolates were almost identical, indicating that both were susceptible to the first-line anti-HIV drugs prior to the initiation of antiretroviral treatment (ART), and this presented additional evidence of a high similarity between the two family members' HIV-1 quasispecies. In this family, HIV-1 isolates from a father and his daughter had very highly genetic relatedness. By combining their clinical histories, we could draw the conclusion that the daughter was probably infected via contact with her father's blood or other body fluids, but no obvious transmission route was found, suggesting that HIV-1 infection in similar household settings should be taken into consideration whenever the origin of HIV-1 infection cannot be identified. PMID:24385159

  20. HIV-1 evades innate immune recognition through specific cofactor recruitment

    NASA Astrophysics Data System (ADS)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  1. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads

    PubMed Central

    Borgmann, Kathleen; Ghorpade, Anuja

    2015-01-01

    As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation. PMID:26579077

  2. Bioinformatic Analysis of HIV-1 Entry and Pathogenesis

    PubMed Central

    Aiamkitsumrit, Benjamas; Dampier, Will; Antell, Gregory; Rivera, Nina; Martin-Garcia, Julio; Pirrone, Vanessa; Nonnemacher, Michael R.; Wigdahl, Brian

    2015-01-01

    The evolution of human immunodeficiency virus type 1 (HIV-1) with respect to co-receptor utilization has been shown to be relevant to HIV-1 pathogenesis and disease. The CCR5-utilizing (R5) virus has been shown to be important in the very early stages of transmission and highly prevalent during asymptomatic infection and chronic disease. In addition, the R5 virus has been proposed to be involved in neuroinvasion and central nervous system (CNS) disease. In contrast, the CXCR4-utilizing (X4) virus is more prevalent during the course of disease progression and concurrent with the loss of CD4+ T cells. The dual-tropic virus is able to utilize both co-receptors (CXCR4 and CCR5) and has been thought to represent an intermediate transitional virus that possesses properties of both X4 and R5 viruses that can be encountered at many stages of disease. The use of computational tools and bioinformatic approaches in the prediction of HIV-1 co-receptor usage has been growing in importance with respect to understanding HIV-1 pathogenesis and disease, developing diagnostic tools, and improving the efficacy of therapeutic strategies focused on blocking viral entry. Current strategies have enhanced the sensitivity, specificity, and reproducibility relative to the prediction of co-receptor use; however, these technologies need to be improved with respect to their efficient and accurate use across the HIV-1 subtypes. The most effective approach may center on the combined use of different algorithms involving sequences within and outside of the env-V3 loop. This review focuses on the HIV-1 entry process and on co-receptor utilization, including bioinformatic tools utilized in the prediction of co-receptor usage. It also provides novel preliminary analyses for enabling identification of linkages between amino acids in V3 with other components of the HIV-1 genome and demonstrates that these linkages are different between X4 and R5 viruses. PMID:24862329

  3. Developmental Pathway of the MPER-Directed HIV-1-Neutralizing Antibody 10E8.

    PubMed

    Soto, Cinque; Ofek, Gilad; Joyce, M Gordon; Zhang, Baoshan; McKee, Krisha; Longo, Nancy S; Yang, Yongping; Huang, Jinghe; Parks, Robert; Eudailey, Joshua; Lloyd, Krissey E; Alam, S Munir; Haynes, Barton F; Mullikin, James C; Connors, Mark; Mascola, John R; Shapiro, Lawrence; Kwong, Peter D

    2016-01-01

    Antibody 10E8 targets the membrane-proximal external region (MPER) of HIV-1 gp41, neutralizes >97% of HIV-1 isolates, and lacks the auto-reactivity often associated with MPER-directed antibodies. The developmental pathway of 10E8 might therefore serve as a promising template for vaccine design, but samples from time-of-infection-often used to infer the B cell record-are unavailable. In this study, we used crystallography, next-generation sequencing (NGS), and functional assessments to infer the 10E8 developmental pathway from a single time point. Mutational analysis indicated somatic hypermutation of the 2nd-heavy chain-complementarity determining region (CDR H2) to be critical for neutralization, and structures of 10E8 variants with V-gene regions reverted to genomic origin for heavy-and-light chains or heavy chain-only showed structural differences >2 Å relative to mature 10E8 in the CDR H2 and H3. To understand these developmental changes, we used bioinformatic sieving, maximum likelihood, and parsimony analyses of immunoglobulin transcripts to identify 10E8-lineage members, to infer the 10E8-unmutated common ancestor (UCA), and to calculate 10E8-developmental intermediates. We were assisted in this analysis by the preservation of a critical D-gene segment, which was unmutated in most 10E8-lineage sequences. UCA and early intermediates weakly bound a 26-residue-MPER peptide, whereas HIV-1 neutralization and epitope recognition in liposomes were only observed with late intermediates. Antibody 10E8 thus develops from a UCA with weak MPER affinity and substantial differences in CDR H2 and H3 from the mature 10E8; only after extensive somatic hypermutation do 10E8-lineage members gain recognition in the context of membrane and HIV-1 neutralization.

  4. Pokeweed antiviral protein alters splicing of HIV-1 RNAs, resulting in reduced virus production.

    PubMed

    Zhabokritsky, Alice; Mansouri, Sheila; Hudak, Katalin A

    2014-08-01

    Processing of HIV-1 transcripts results in three populations in the cytoplasm of infected cells: full-length RNA, singly spliced, and multiply spliced RNAs. Rev, regulator of virion expression, is an essential regulatory protein of HIV-1 required for transporting unspliced and singly spliced viral transcripts from the nucleus to the cytoplasm. Export allows these RNAs to be translated and the full-length RNA to be packaged into virus particles. In our study, we investigate the activity of pokeweed antiviral protein (PAP), a glycosidase isolated from the pokeweed plant Phytolacca americana, on the processing of viral RNAs. We show that coexpression of PAP with a proviral clone alters the splicing ratio of HIV-1 RNAs. Specifically, PAP causes the accumulation of multiply spliced 2-kb RNAs at the expense of full-length 9-kb and singly spliced 4-kb RNAs. The change in splicing ratio is due to a decrease in activity of Rev. We show that PAP depurinates the rev open reading frame and that this damage to the viral RNA inhibits its translation. By decreasing Rev expression, PAP indirectly reduces the availability of full-length 9-kb RNA for packaging and translation of the encoded structural proteins required for synthesis of viral particles. The decline we observe in virus protein expression is not due to cellular toxicity as PAP did not diminish translation rate. Our results describing the reduced activity of a regulatory protein of HIV-1, with resulting change in virus mRNA ratios, provides new insight into the antiviral mechanism of PAP.

  5. The Origin and Evolutionary History of HIV-1 Subtype C in Senegal

    PubMed Central

    Jung, Matthieu; Leye, Nafissatou; Vidal, Nicole; Fargette, Denis; Diop, Halimatou; Toure Kane, Coumba; Gascuel, Olivier; Peeters, Martine

    2012-01-01

    Background The classification of HIV-1 strains in subtypes and Circulating Recombinant Forms (CRFs) has helped in tracking the course of the HIV pandemic. In Senegal, which is located at the tip of West Africa, CRF02_AG predominates in the general population and Female Sex Workers (FSWs). In contrast, 40% of Men having Sex with Men (MSM) in Senegal are infected with subtype C. In this study we analyzed the geographical origins and introduction dates of HIV-1 C in Senegal in order to better understand the evolutionary history of this subtype, which predominates today in the MSM population Methodology/Principal Findings We used a combination of phylogenetic analyses and a Bayesian coalescent-based approach, to study the phylogenetic relationships in pol of 56 subtype C isolates from Senegal with 3,025 subtype C strains that were sampled worldwide. Our analysis shows a significantly well supported cluster which contains all subtype C strains that circulate among MSM in Senegal. The MSM cluster and other strains from Senegal are widely dispersed among the different subclusters of African HIV-1 C strains, suggesting multiple introductions of subtype C in Senegal from many different southern and east African countries. More detailed analyses show that HIV-1 C strains from MSM are more closely related to those from southern Africa. The estimated date of the MRCA of subtype C in the MSM population in Senegal is estimated to be in the early 80's. Conclusions/Significance Our evolutionary reconstructions suggest that multiple subtype C viruses with a common ancestor originating in the early 1970s entered Senegal. There was only one efficient spread in the MSM population, which most likely resulted from a single introduction, underlining the importance of high-risk behavior in spread of viruses. PMID:22470456

  6. Developmental Pathway of the MPER-Directed HIV-1-Neutralizing Antibody 10E8

    PubMed Central

    Zhang, Baoshan; McKee, Krisha; Longo, Nancy S.; Yang, Yongping; Huang, Jinghe; Parks, Robert; Eudailey, Joshua; Lloyd, Krissey E.; Alam, S. Munir; Haynes, Barton F.; Mullikin, James C.; Connors, Mark; Mascola, John R.; Shapiro, Lawrence; Kwong, Peter D.

    2016-01-01

    Antibody 10E8 targets the membrane-proximal external region (MPER) of HIV-1 gp41, neutralizes >97% of HIV-1 isolates, and lacks the auto-reactivity often associated with MPER-directed antibodies. The developmental pathway of 10E8 might therefore serve as a promising template for vaccine design, but samples from time-of-infection—often used to infer the B cell record—are unavailable. In this study, we used crystallography, next-generation sequencing (NGS), and functional assessments to infer the 10E8 developmental pathway from a single time point. Mutational analysis indicated somatic hypermutation of the 2nd-heavy chain-complementarity determining region (CDR H2) to be critical for neutralization, and structures of 10E8 variants with V-gene regions reverted to genomic origin for heavy-and-light chains or heavy chain-only showed structural differences >2 Å relative to mature 10E8 in the CDR H2 and H3. To understand these developmental changes, we used bioinformatic sieving, maximum likelihood, and parsimony analyses of immunoglobulin transcripts to identify 10E8-lineage members, to infer the 10E8-unmutated common ancestor (UCA), and to calculate 10E8-developmental intermediates. We were assisted in this analysis by the preservation of a critical D-gene segment, which was unmutated in most 10E8-lineage sequences. UCA and early intermediates weakly bound a 26-residue-MPER peptide, whereas HIV-1 neutralization and epitope recognition in liposomes were only observed with late intermediates. Antibody 10E8 thus develops from a UCA with weak MPER affinity and substantial differences in CDR H2 and H3 from the mature 10E8; only after extensive somatic hypermutation do 10E8-lineage members gain recognition in the context of membrane and HIV-1 neutralization. PMID:27299673

  7. Immunising with the transmembrane envelope proteins of different retroviruses including HIV-1

    PubMed Central

    Denner, Joachim

    2013-01-01

    The induction of neutralizing antibodies is a promising way to prevent retrovirus infections. Neutralizing antibodies are mainly directed against the envelope proteins, which consist of two molecules, the surface envelope (SU) protein and the transmembrane envelope (TM) protein. Antibodies broadly neutralizing the human immunodeficiencvy virus-1 (HIV-1) and binding to the TM protein gp41 of the virus have been isolated from infected individuals. Their epitopes are located in the membrane proximal external region (MPER). Since there are difficulties to induce such neutralizing antibodies as basis for an effective AIDS vaccine, we performed a comparative analysis immunising with the TM proteins of different viruses from the family Retroviridae. Both subfamilies, the Orthoretrovirinae and the Spumaretrovirinae were included. In this study, the TM proteins of three gammaretroviruses including (1) the porcine endogenous retrovirus (PERV), (2) the Koala retrovirus (KoRV), (3) the feline leukemia virus (FeLV), of two lentiviruses, HIV-1, HIV-2, and of two spumaviruses, the feline foamy virus (FFV) and the primate foamy virus (PFV) were used for immunisation. Whereas in all immunisation studies binding antibodies were induced, neutralizing antibodies were only found in the case of the gammaretroviruses. The induced antibodies were directed against the MPER and the fusion peptide proximal region (FPPR) of their TM proteins; however only the antibodies against the MPER were neutralizing. Most importantly, the epitopes in the MPER were localized in the same position as the epitopes of the antibodies broadly neutralizing HIV-1 in the TM protein gp41 of HIV-1, indicating that the MPER is an effective target for the neutralization of retroviruses. PMID:23249763

  8. Selection of intracellular single-domain antibodies targeting the HIV-1 Vpr protein by cytoplasmic yeast two-hybrid system.

    PubMed

    Matz, Julie; Hérate, Cécile; Bouchet, Jérôme; Dusetti, Nelson; Gayet, Odile; Baty, Daniel; Benichou, Serge; Chames, Patrick

    2014-01-01

    The targeting of HIV-1 using antibodies is of high interest as molecular tools to better understand the biology of the virus or as a first step toward the design of new inhibitors targeting critical viral intracellular proteins. Small and highly stable llama-derived single-domain antibodies can often be functionally expressed as intracellular antibodies in the cytoplasm of eukaryotic cells. Using a selection method based on the Sos Recruitment System, a cytoplasmic yeast two-hybrid approach, we have isolated single-domain antibodies able to bind HIV-1 Vpr and Capside proteins in the yeast cytoplasm. One anti-Vpr single domain antibody was able to bind the HIV-1 regulatory Vpr protein in the cytoplasm of eukaryotic cells, leading to its delocalization from the nucleus to the cytoplasm. To our knowledge, this is the first description of a functional single-domain intrabody targeting HIV-1 Vpr, isolated using an in vivo cytoplasmic selection method that alleviates some limitations of the conventional yeast two-hybrid system.

  9. Selection of Intracellular Single-Domain Antibodies Targeting the HIV-1 Vpr Protein by Cytoplasmic Yeast Two-Hybrid System

    PubMed Central

    Matz, Julie; Hérate, Cécile; Bouchet, Jérôme; Dusetti, Nelson; Gayet, Odile; Baty, Daniel; Benichou, Serge; Chames, Patrick

    2014-01-01

    The targeting of HIV-1 using antibodies is of high interest as molecular tools to better understand the biology of the virus or as a first step toward the design of new inhibitors targeting critical viral intracellular proteins. Small and highly stable llama-derived single-domain antibodies can often be functionally expressed as intracellular antibodies in the cytoplasm of eukaryotic cells. Using a selection method based on the Sos Recruitment System, a cytoplasmic yeast two-hybrid approach, we have isolated single-domain antibodies able to bind HIV-1 Vpr and Capside proteins in the yeast cytoplasm. One anti-Vpr single domain antibody was able to bind the HIV-1 regulatory Vpr protein in the cytoplasm of eukaryotic cells, leading to its delocalization from the nucleus to the cytoplasm. To our knowledge, this is the first description of a functional single-domain intrabody targeting HIV-1 Vpr, isolated using an in vivo cytoplasmic selection method that alleviates some limitations of the conventional yeast two-hybrid system. PMID:25436999

  10. Gp120/CD4 blocking antibodies are frequently elicited in ART-naïve chronically HIV-1 infected individuals.

    PubMed

    Carrillo, Jorge; Molinos-Albert, Luis Manuel; Rodríguez de la Concepción, Maria Luisa; Marfil, Silvia; García, Elisabet; Derking, Ronald; Sanders, Rogier W; Clotet, Bonaventura; Blanco, Julià

    2015-01-01

    Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV-1 vaccine. PMID:25803681

  11. Insensitivity of Paediatric HIV-1 Subtype C Viruses to Broadly Neutralising Monoclonal Antibodies Raised against Subtype B

    PubMed Central

    Gray, Elin Solomonovna; Meyers, Tammy; Gray, Glenda; Montefiori, David Charles; Morris, Lynn

    2006-01-01

    Background A Phase I clinical trial has been proposed that uses neutralising monoclonal antibodies (MAbs) as passive immunoprophylaxis to prevent mother-to-child transmission of HIV-1 in South Africa. To assess the suitability of such an approach, we determined the sensitivity of paediatric HIV-1 subtype C viruses to the broadly neutralising MAbs IgG1b12, 2G12, 2F5, and 4E10. Methods and Findings The gp160 envelope genes from seven children with HIV-1 subtype C infection were cloned and used to construct Env-pseudotyped viruses that were tested in a single-cycle neutralisation assay. The epitopes defining three of these MAbs were determined from sequence analysis of the envelope genes. None of the seven HIV-1 subtype C pseudovirions was sensitive to 2G12 or 2F5, which correlated with the absence of crucial N-linked glycans that define the 2G12 epitope and substitutions of residues integral to the 2F5 epitope. Four viruses were sensitive to IgG1b12, and all seven viruses were sensitive to 4E10. Conclusions Only 4E10 showed significant activity against HIV-1 subtype C isolates, while 2G12 and 2F5 MAbs were ineffective and IgG1b12 was partly effective. It is therefore recommended that 2G12 and 2F5 MAbs not be used for passive immunization experiments in southern Africa and other regions where HIV-1 subtype C viruses predominate. PMID:16834457

  12. The HIV epidemic in the Amazon Basin is driven by prototypic and recombinant HIV-1 subtypes B and F.

    PubMed

    Vicente, A C; Otsuki, K; Silva, N B; Castilho, M C; Barros, F S; Pieniazek, D; Hu, D; Rayfield, M A; Bretas, G; Tanuri, A

    2000-04-01

    This paper describes genetic subtypes of HIV-1 found in blood samples from 31 HIV-1-infected people who visited the Counseling and Testing AIDS Center of Instituto de Medicina Tropical in Manaus, Brazil. Manaus, the main city in Brazil's Amazon Basin, is also the closest urban connection for more than 100,000 Indians living in the rain forests of this region. Although to date there is no evidence of increased incidence of HIV-1 infection among the indigenous population, our understanding of both the prevalence and nature of the epidemic in the region as a whole is limited. From the 31 samples analyzed by C2V3 sequencing, we found almost equal proportions of HIV-1 strains belonging to subtype B (n = 16; 51.6%) and subtype F (n = 15; 48.4%), a finding that differs from results from previous studies conducted in urban areas of southeastern Brazil. We also observed the presence of the GWGR amino-acid sequence in the critical tetra-peptide crown of the env V3 loop in the HIV-1 subtype B samples analyzed. Among these samples, we also found 14 mosaic genomes (45.16%) in which different combinations of subtypes B, C, and F were identified between the p24 gag, pro, and env regions. Our data support the hypothesis that the Amazonian HIV-1 infections linked to the urban epidemic in southeastern Brazil. The genetic diversity and the prevalence of mosaic genomes among the isolates in our study confirm an integral role of recombination in the complex Brazilian epidemic.

  13. Increased breadth and depth of cytotoxic T lymphocytes responses against HIV-1-B Nef by inclusion of epitope variant sequences.

    PubMed

    Rolland, Morgane; Frahm, Nicole; Nickle, David C; Jojic, Nebojsa; Deng, Wenjie; Allen, Todd M; Brander, Christian; Heckerman, David E; Mullins, James I

    2011-03-28

    Different vaccine approaches cope with HIV-1 diversity, ranging from centralized(1-4) to variability-encompassing(5-7) antigens. For all these strategies, a concern remains: how does HIV-1 diversity impact epitope recognition by the immune system? We studied the relationship between HIV-1 diversity and CD8(+) T Lymphocytes (CTL) targeting of HIV-1 subtype B Nef using 944 peptides (10-mers overlapping by nine amino acids (AA)) that corresponded to consensus peptides and their most common variants in the HIV-1-B virus population. IFN-γ ELISpot assays were performed using freshly isolated PBMC from 26 HIV-1-infected persons. Three hundred and fifty peptides elicited a response in at least one individual. Individuals targeted a median of 7 discrete regions. Overall, 33% of responses were directed against viral variants but not elicited against consensus-based test peptides. However, there was no significant relationship between the frequency of a 10-mer in the viral population and either its frequency of recognition (Spearman's correlation coefficient ρ = 0.24) or the magnitude of the responses (ρ = 0.16). We found that peptides with a single mutation compared to the consensus were likely to be recognized (especially if the change was conservative) and to elicit responses of similar magnitude as the consensus peptide. Our results indicate that cross-reactivity between rare and frequent variants is likely to play a role in the expansion of CTL responses, and that maximizing antigenic diversity in a vaccine may increase the breadth and depth of CTL responses. However, since there are few obvious preferred pathways to virologic escape, the diversity that may be required to block all potential escape pathways may be too large for a realistic vaccine to accommodate. Furthermore, since peptides were not recognized based on their frequency in the population, it remains unclear by which mechanisms variability-inclusive antigens (i.e., constructs enriched with frequent

  14. Gp120/CD4 Blocking Antibodies Are Frequently Elicited in ART-Naïve Chronically HIV-1 Infected Individuals

    PubMed Central

    Carrillo, Jorge; Molinos-Albert, Luis Manuel; de la Concepción, Maria Luisa Rodríguez; Marfil, Silvia; García, Elisabet; Derking, Ronald; Sanders, Rogier W.; Clotet, Bonaventura; Blanco, Julià

    2015-01-01

    Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV-1 vaccine. PMID:25803681

  15. A New Neolignan, and the Cytotoxic and Anti-HIV-1 Activities of Constituents from the Roots of Dasymaschalon sootepense.

    PubMed

    Hongthong, Sakchai; Kuhakarn, Chutima; Jaipetch, Thaworn; Piyachaturawat, Pawinee; Jariyawat, Surawat; Suksen, Kanoknetr; Limthongkul, Jitra; Nuntasaen, Narong; Reutrakul, Vichai

    2016-06-01

    Bioassay-guided isolation from the ethyl acetate extract of Dasymaschalon sootepense roots led to the isolation of twelve compounds including a new dihydrobenzo-furan neolignan, (+)-(2S,3S)-2,3-dihydro-2-(3,4-dimethoxyphenyl)-3-methylbenzofuran-5-carbaldehyde (5), and eleven known compounds (1-4, and 6-12). The chemical structures and stereochemistry of all the isolated compounds were established by spectroscopic techniques. The known compounds 4 and 6 have been fully characterized spectroscopically, including their absolute configurations. Cytotoxic and anti-HIV-1 reverse transcriptase (RT) activities of compounds 1-3, 5 and 8-12 were determined. Among compounds screened, compounds 2, 3 and 10 displayed weak cytotoxic activity with ED50 values ranging from 9.6-47.5 μM and only compound 2 was found weakly active against HIV-1 RT with an IC50 value of 323.2 μM. PMID:27534123

  16. HIV-1, human interaction database: current status and new features.

    PubMed

    Ako-Adjei, Danso; Fu, William; Wallin, Craig; Katz, Kenneth S; Song, Guangfeng; Darji, Dakshesh; Brister, J Rodney; Ptak, Roger G; Pruitt, Kim D

    2015-01-01

    The 'Human Immunodeficiency Virus Type 1 (HIV-1), Human Interaction Database', available through the National Library of Medicine at http://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions, serves the scientific community exploring the discovery of novel HIV vaccine candidates and therapeutic targets. Each HIV-1 human protein interaction can be retrieved without restriction by web-based downloads and ftp protocols and includes: Reference Sequence (RefSeq) protein accession numbers, National Center for Biotechnology Information Gene identification numbers, brief descriptions of the interactions, searchable keywords for interactions and PubMed identification numbers (PMIDs) of journal articles describing the interactions. In addition to specific HIV-1 protein-human protein interactions, included are interaction effects upon HIV-1 replication resulting when individual human gene expression is blocked using siRNA. A total of 3142 human genes are described participating in 12,786 protein-protein interactions, along with 1316 replication interactions described for each of 1250 human genes identified using small interfering RNA (siRNA). Together the data identifies 4006 human genes involved in 14,102 interactions. With the inclusion of siRNA interactions we introduce a redesigned web interface to enhance viewing, filtering and downloading of the combined data set.

  17. HIV-1 functional cure: will the dream come true?

    PubMed

    Liu, Chao; Ma, Xiancai; Liu, Bingfeng; Chen, Cancan; Zhang, Hui

    2015-11-20

    The reservoir of human immunodeficiency virus type 1 (HIV-1), a long-lived pool of latently infected cells harboring replication-competent viruses, is the major obstacle to curing acquired immune deficiency syndrome (AIDS). Although the combination antiretroviral therapy (cART) can successfully suppress HIV-1 viremia and significantly delay the progression of the disease, it cannot eliminate the viral reservoir and the patient must continue to take anti-viral medicines for life. Currently, the appearance of the 'Berlin patient', the 'Boston patients', and the 'Mississippi baby' have inspired many therapeutic strategies for HIV-1 aimed at curing efforts. However, the specific eradication of viral latency and the recovery and optimization of the HIV-1-specific immune surveillance are major challenges to achieving such a cure. Here, we summarize recent studies addressing the mechanisms underlying the viral latency and define two categories of viral reservoir: 'shallow' and 'deep'. We also present the current strategies and recent advances in the development of a functional cure for HIV-1, focusing on full/partial replacement of the immune system, 'shock and kill', and 'permanent silencing' approaches.

  18. The HIV-1 transgenic rat model of neuroHIV

    PubMed Central

    Vigorito, Michael; Connaghan, Kaitlyn P.; Chang, Sulie L.

    2016-01-01

    Despite the ability of current combination anti-retroviral therapy (cART) to limit the progression of HIV-1 to AIDS, HIV-positive individuals continue to experience neuroHIV in the form of HIV-associated neurological disorders (HAND), which can range from subtle to substantial neurocognitive impairment. NeuroHIV may also influence substance use, abuse, and dependence in HIV-positive individuals. Because of the nature of the virus, variables such as mental health co-morbidities make it difficult to study the interaction between HIV and substance abuse in human populations. Several rodent models have been developed in an attempt to study the transmission and pathogenesis of the HIV-1 virus. The HIV-1 transgenic (HIV-1Tg) rat is a reliable model of neuroHIV because it mimics the condition of HIV-infected patients on cART. Research using this model supports the hypothesis that the presence of HIV-1 viral proteins in the central nervous system increases the sensitivity and susceptibility of HIV-positive individuals to substance abuse. PMID:25733103

  19. Neutralizing antibodies decrease the envelope fluidity of HIV-1

    SciTech Connect

    Harada, Shinji Monde, Kazuaki; Tanaka, Yuetsu; Kimura, Tetsuya; Maeda, Yosuke; Yusa, Keisuke

    2008-01-05

    For successful penetration of HIV-1, the formation of a fusion pore may be required in order to accumulate critical numbers of fusion-activated gp41 with the help of fluidization of the plasma membrane and viral envelope. An increase in temperature to 40 {sup o}C after viral adsorption at 25 {sup o}C enhanced the infectivity by 1.4-fold. The enhanced infectivity was inhibited by an anti-CXCR4 peptide, T140, and anti-V3 monoclonal antibodies (0.5{beta} and 694/98-D) by post-attachment neutralization, but not by non-neutralizing antibodies (670-30D and 246-D) specific for the C5 of gp120 and cluster I of gp41, respectively. Anti-HLA-II and an anti-HTLV-I gp46 antibody, LAT27, neutralized the molecule-carrying HIV-1{sub C-2(MT-2)}. The anti-V3 antibodies suppressed the fluidity of the HIV-1{sub C-2} envelope, whereas the non-neutralizing antibodies did not. The anti-HLA-II antibody decreased the envelope fluidity of HIV-1{sub C-2(MT-2)}, but not that of HIV-1{sub C-2}. Therefore, fluidity suppression by these antibodies represents an important neutralization mechanism, in addition to inhibition of viral attachment.

  20. APOBEC4 Enhances the Replication of HIV-1

    PubMed Central

    Hofmann, Henning; Hanschmann, Kay-Martin; Mühlebach, Michael D.; Schumann, Gerald G.; König, Renate; Cichutek, Klaus; Häussinger, Dieter; Münk, Carsten

    2016-01-01

    APOBEC4 (A4) is a member of the AID/APOBEC family of cytidine deaminases. In this study we found a high mRNA expression of A4 in human testis. In contrast, there were only low levels of A4 mRNA detectable in 293T, HeLa, Jurkat or A3.01 cells. Ectopic expression of A4 in HeLa cells resulted in mostly cytoplasmic localization of the protein. To test whether A4 has antiviral activity similar to that of proteins of the APOBEC3 (A3) subfamily, A4 was co-expressed in 293T cells with wild type HIV-1 and HIV-1 luciferase reporter viruses. We found that A4 did not inhibit the replication of HIV-1 but instead enhanced the production of HIV-1 in a dose-dependent manner and seemed to act on the viral LTR. A4 did not show detectable cytidine deamination activity in vitro and weakly interacted with single-stranded DNA. The presence of A4 in virus producer cells enhanced HIV-1 replication by transiently transfected A4 or stably expressed A4 in HIV-susceptible cells. APOBEC4 was capable of similarly enhancing transcription from a broad spectrum of promoters, regardless of whether they were viral or mammalian. We hypothesize that A4 may have a natural role in modulating host promoters or endogenous LTR promoters. PMID:27249646

  1. Diversity of in-vivo assembled HIV-1 capsids

    NASA Astrophysics Data System (ADS)

    Lee, Se Il; Nguyen, Toan

    2008-03-01

    Understanding the capsid assembly process of Human Immunodeficiency Virus (HIV), the causative agent of Acute Immuno Deficiency Syndrom (AIDS), is very important because of recent intense interest in capsid-oriented viral therapy. The unique conical shapes of mature HIV-1 capsid have drawn significant interests in the biological community and started to attract attention from the physics community. Previous studies showed that in a free assembly process, the HIV-1 conical shape is not thermodynamically stable. However, if the volume of the capsid is constrained during assembly and the capsid protein shell has high spontaneous curvature, the conical shape is stable. In this work, we focus on in-vivo HIV-1 capsid assembly. For this case, the viral envelope membrane present during assembly imposes constraint on the length of the capsid. We use an elastic continuum shell theory to approximate the energies of various HIV-1 capsid shapes (spherical, cylindrical and conical). We show that for certain range of viral membrane diameter, the conical and cylindrical shapes are both thermodynamically stable. This result is supported by experimental observation that in-vivo assembled HIV-1 capsids are very heterogeneous in shapes and sizes. Numerical calculation is also performed to improve theoretical approximation.

  2. Inhibitors of HIV-1 replication that inhibit HIV integrase.

    PubMed Central

    Robinson, W E; Reinecke, M G; Abdel-Malek, S; Jia, Q; Chow, S A

    1996-01-01

    HIV-1 replication depends on the viral enzyme integrase that mediates integration of a DNA copy of the virus into the host cell genome. This enzyme represents a novel target to which antiviral agents might be directed. Three compounds, 3,5-dicaffeoylquinic acid, 1-methoxyoxalyl-3,5-dicaffeoylquinic acid, and L-chicoric acid, inhibit HIV-1 integrase in biochemical assays at concentrations ranging from 0.06-0.66 microgram/ml; furthermore, these compounds inhibit HIV-1 replication in tissue culture at 1-4 microgram/ml. The toxic concentrations of these compounds are fully 100-fold greater than their antiviral concentrations. These compounds represent a potentially important new class of antiviral agents that may contribute to our understanding of the molecular mechanisms of viral integration. Thus, the dicaffeoylquinic acids are promising leads to new anti-HIV therapeutics and offer a significant advance in the search for new HIV enzyme targets as they are both specific for HIV-1 integrase and active against HIV-1 in tissue culture. Images Fig. 3 PMID:8692814

  3. HIV-1 subtype B: Traces of a pandemic.

    PubMed

    Junqueira, Dennis Maletich; Almeida, Sabrina Esteves de Matos

    2016-08-01

    Human migration is a major process that shaped the origin and dissemination of HIV. Within HIV-1, subtype B (HIV-1B) is the most disseminated variant and it is assumed to be the causative agent in approximately 11% of all cases of HIV worldwide. Phylogenetic studies have revealed that HIV-1B emerged in Kinshasa (Africa) and was introduced into the Caribbean region via Haiti in or around 1966 by human migration. After localized dispersion, the virus was brought to the United States of America via homosexual/bisexual contact around 1969. Inside USA, the incidence of HIV-1B infection increased exponentially and it became established in the population, affecting not only homosexual individuals but also heterosexual individuals and injecting drug users. Soon after, the virus was disseminated and became established in other regions, including Europe, Asia, Latin America, and Australia. Recent studies suggest that, in addition to this pandemic clade, several lineages have emerged from Haiti and reached other Caribbean and Latin American countries via short-distance dissemination. Different subtype B genetic variants have also been detected in these epidemics. Four genetic variants have been described to date: subtype B', which mainly circulates in Thailand and other Asian countries; a specific variant mainly found in Trinidad and Tobago; the GPGS variant, which is primarily detected in Korea; and the GWGR variant, which is mainly detected in Brazil. This paper reviews the evolution of HIV-1B and its impact on the human population.

  4. HIV-1 functional cure: will the dream come true?

    PubMed

    Liu, Chao; Ma, Xiancai; Liu, Bingfeng; Chen, Cancan; Zhang, Hui

    2015-01-01

    The reservoir of human immunodeficiency virus type 1 (HIV-1), a long-lived pool of latently infected cells harboring replication-competent viruses, is the major obstacle to curing acquired immune deficiency syndrome (AIDS). Although the combination antiretroviral therapy (cART) can successfully suppress HIV-1 viremia and significantly delay the progression of the disease, it cannot eliminate the viral reservoir and the patient must continue to take anti-viral medicines for life. Currently, the appearance of the 'Berlin patient', the 'Boston patients', and the 'Mississippi baby' have inspired many therapeutic strategies for HIV-1 aimed at curing efforts. However, the specific eradication of viral latency and the recovery and optimization of the HIV-1-specific immune surveillance are major challenges to achieving such a cure. Here, we summarize recent studies addressing the mechanisms underlying the viral latency and define two categories of viral reservoir: 'shallow' and 'deep'. We also present the current strategies and recent advances in the development of a functional cure for HIV-1, focusing on full/partial replacement of the immune system, 'shock and kill', and 'permanent silencing' approaches. PMID:26588898

  5. HIV-1 subtype B: Traces of a pandemic.

    PubMed

    Junqueira, Dennis Maletich; Almeida, Sabrina Esteves de Matos

    2016-08-01

    Human migration is a major process that shaped the origin and dissemination of HIV. Within HIV-1, subtype B (HIV-1B) is the most disseminated variant and it is assumed to be the causative agent in approximately 11% of all cases of HIV worldwide. Phylogenetic studies have revealed that HIV-1B emerged in Kinshasa (Africa) and was introduced into the Caribbean region via Haiti in or around 1966 by human migration. After localized dispersion, the virus was brought to the United States of America via homosexual/bisexual contact around 1969. Inside USA, the incidence of HIV-1B infection increased exponentially and it became established in the population, affecting not only homosexual individuals but also heterosexual individuals and injecting drug users. Soon after, the virus was disseminated and became established in other regions, including Europe, Asia, Latin America, and Australia. Recent studies suggest that, in addition to this pandemic clade, several lineages have emerged from Haiti and reached other Caribbean and Latin American countries via short-distance dissemination. Different subtype B genetic variants have also been detected in these epidemics. Four genetic variants have been described to date: subtype B', which mainly circulates in Thailand and other Asian countries; a specific variant mainly found in Trinidad and Tobago; the GPGS variant, which is primarily detected in Korea; and the GWGR variant, which is mainly detected in Brazil. This paper reviews the evolution of HIV-1B and its impact on the human population. PMID:27228177

  6. HIV-1, human interaction database: current status and new features

    PubMed Central

    Ako-Adjei, Danso; Fu, William; Wallin, Craig; Katz, Kenneth S.; Song, Guangfeng; Darji, Dakshesh; Brister, J. Rodney; Ptak, Roger G.; Pruitt, Kim D.

    2015-01-01

    The ‘Human Immunodeficiency Virus Type 1 (HIV-1), Human Interaction Database’, available through the National Library of Medicine at http://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions, serves the scientific community exploring the discovery of novel HIV vaccine candidates and therapeutic targets. Each HIV-1 human protein interaction can be retrieved without restriction by web-based downloads and ftp protocols and includes: Reference Sequence (RefSeq) protein accession numbers, National Center for Biotechnology Information Gene identification numbers, brief descriptions of the interactions, searchable keywords for interactions and PubMed identification numbers (PMIDs) of journal articles describing the interactions. In addition to specific HIV-1 protein–human protein interactions, included are interaction effects upon HIV-1 replication resulting when individual human gene expression is blocked using siRNA. A total of 3142 human genes are described participating in 12 786 protein–protein interactions, along with 1316 replication interactions described for each of 1250 human genes identified using small interfering RNA (siRNA). Together the data identifies 4006 human genes involved in 14 102 interactions. With the inclusion of siRNA interactions we introduce a redesigned web interface to enhance viewing, filtering and downloading of the combined data set. PMID:25378338

  7. Ketone bodies protection against HIV-1 Tat-induced neurotoxicity

    PubMed Central

    Hui, Liang; Chen, Xuesong; Bhatt, Dhaval; Geiger, Nicholas H.; Rosenberger, Thad A.; Haughey, Norman J.; Masino, Susan A.; Geiger, Jonathan D.

    2012-01-01

    HIV-1 associated neurocognitive disorder (HAND) is a syndrome that ranges clinically from subtle neuropsychological impairments to profoundly disabling HIV-associated dementia. Not only is the pathogenesis of HAND unclear, but also effective treatments are unavailable. The HIV-1 transactivator of transcription protein (HIV-1 Tat) is strongly implicated in the pathogenesis of HAND, in part, because of its well-characterized ability to directly excite neurons and cause neurotoxicity. Consistent with previous findings from others, we demonstrate here that HIV-1 Tat induced neurotoxicity, increased intracellular calcium, and disrupted a variety of mitochondria functions, such as reducing mitochondrial membrane potential, increasing levels of reactive oxygen species, and decreasing bioenergetic efficiency. Of therapeutic importance, we show that treatment of cultured neurons with ketone bodies normalized HIV-1 Tat induced changes in levels of intracellular calcium, mitochondrial function, and neuronal cell death. Ketone bodies are normally produced in the body and serve as alternative energy substrates in tissues including brain and can cross the blood-brain barrier. Ketogenic strategies have been used clinically for treatment of neurological disorders and our current results suggest that similar strategies may also provide clinical benefits in the treatment of HAND. PMID:22524563

  8. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    PubMed

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. PMID:25462990

  9. [Advances in the Immunogenic Design of HIV-1 Vaccine].

    PubMed

    Zhang, Xiaohong; Wang, Tao; Yu, Xiaofang

    2016-01-01

    A safe and effective vaccine against the human immunodeficiency virus type 1 (HIV-1) is expected to have a considerable impact on elimination of acquired immune deficiency syndrome. Despite decades of effort, an effective vaccine against HIV-1 remains elusive. In recent years, the Thai HIV Vaccine Efficacy Trial (known as RV144) showed a reduction in HIV-1 acquisition by 31%, but this agent could not delay disease progression in vaccinated individuals. Clinical analyses of experimental data and experiments in vitro have revealed two main types of immunogen design: induction of broad-spectrum neutralizing antibody (bNAb) and cytotoxic T lymphocyte (CTL) responses. bNAb can prevent or reduce acquisition of infection, and its main immunogens are virus-like particles, natural envelope trimers and stable bNAb epitopes. An effective CTL response can slow-down viral infection, and its main immunogens are "mosaic" vaccines, "conserved immunogens", and the "fitness landscape" of HIV-1 proteins. This review summarizes the strategies as well as progress in the design and testing of HIV-1 immunogens to elicit bNAb and CTL responses. PMID:27295889

  10. The triple threat of HIV-1 protease inhibitors.

    PubMed

    Potempa, Marc; Lee, Sook-Kyung; Wolfenden, Richard; Swanstrom, Ronald

    2015-01-01

    Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy. PMID:25778681

  11. Antiretroviral Therapy and Central Nervous System HIV-1 Infection

    PubMed Central

    Price, Richard W.; Spudich, Serena

    2008-01-01

    Central nervous system (CNS) HIV-1 infection begins during primary viremia and continues throughout the course of untreated systemic infection. While frequently accompanied by local inflammatory reactions detectable in cerebrospinal fluid (CSF), CNS HIV-1 infection is not usually clinically apparent. In a minority of patients, CNS HIV-1 infection evolves late in the course of systemic infection into encephalitis, which compromises brain function and presents clinically as AIDS dementia complex (ADC). Combination highly active antiretroviral therapy (HAART) has had a major impact on all aspects of HIV-1 CNS infection and disease. In those with asymptomatic infection, HAART usually effectively suppresses CSF HIV-1 and markedly reduces the incidence of symptomatic ADC. In those presenting with ADC, HAART characteristically prevents neurological progression and leads to variable, and at times substantial, recovery. Treatment has similarly reduced CNS opportunistic infections. With better control of these severe disorders, attention has turned to the possible consequences of chronic silent infection, and the issue of whether indolent, low-grade brain injury might require earlier treatment intervention. PMID:18447615

  12. Combinatorial Latency Reactivation for HIV-1 Subtypes and Variants▿ †

    PubMed Central

    Burnett, John C.; Lim, Kwang-il; Calafi, Arash; Rossi, John J.; Schaffer, David V.; Arkin, Adam P.

    2010-01-01

    The eradication of HIV-1 will likely require novel clinical approaches to purge the reservoir of latently infected cells from a patient. We hypothesize that this therapy should target a wide range of latent integration sites, act effectively against viral variants that have acquired mutations in their promoter regions, and function across multiple HIV-1 subtypes. By using primary CD4+ and Jurkat cell-based in vitro HIV-1 latency models, we observe that single-agent latency reactivation therapy is ineffective against most HIV-1 subtypes. However, we demonstrate that the combination of two clinically promising drugs—namely, prostratin and suberoylanilide hydroxamic acid (SAHA)—overcomes the limitations of single-agent approaches and can act synergistically for many HIV-1 subtypes, including A, B, C, D, and F. Finally, by identifying the proviral integration position of latent Jurkat cell clones, we demonstrate that this drug combination does not significantly enhance the expression of endogenous genes nearest to the proviral integration site, indicating that its effects may be selective. PMID:20357084

  13. The Role of Interleukin-23 in the Early Development of Emphysema in HIV1+ Smokers

    PubMed Central

    Barjaktarevic, Igor Z.; Crystal, Ronald G.

    2016-01-01

    Rationale. Matrix metalloproteinase-9 (MMP-9) expression is upregulated in alveolar macrophages (AM) of HIV1+ smokers who develop emphysema. Knowing that lung epithelial lining fluid (ELF) of HIV1+ smokers contains increased levels of inflammatory cytokines compared to HIV1− smokers, we hypothesized that upregulation of lung cytokines in HIV1+ smokers may be functionally related to increased MMP-9 expression. Methods. Cytokine arrays evaluated cytokine protein levels in ELF obtained from 5 groups of individuals: HIV1− healthy nonsmokers, HIV1− healthy smokers, HIV1− smokers with low diffusing capacity (DLCO), HIV1+ nonsmokers, and HIV1+ smokers with low DLCO. Results. Increased levels of the Th17 related cytokine IL-23 were found in HIV1− smokers with low DLCO and HIV1+ smokers and nonsmokers. Relative IL-23 gene expression was increased in AM of HIV1+ individuals, with greater expression in AM of HIV1+ smokers with low DLCO. Infection with HIV1 in vitro induced IL-23 expression in normal AM. IL-23 stimulation of AM/lymphocyte cocultures in vitro induced upregulation of MMP-9. Lung T lymphocytes express receptor IL-23R and interact with AM in order to upregulate MMP-9. Conclusion. This mechanism may contribute to the increased tissue destruction in the lungs of HIV1+ smokers and suggests that Th17 related inflammation may play a role. PMID:27446965

  14. The Role of Interleukin-23 in the Early Development of Emphysema in HIV1(+) Smokers.

    PubMed

    Barjaktarevic, Igor Z; Crystal, Ronald G; Kaner, Robert J

    2016-01-01

    Rationale. Matrix metalloproteinase-9 (MMP-9) expression is upregulated in alveolar macrophages (AM) of HIV1(+) smokers who develop emphysema. Knowing that lung epithelial lining fluid (ELF) of HIV1(+) smokers contains increased levels of inflammatory cytokines compared to HIV1(-) smokers, we hypothesized that upregulation of lung cytokines in HIV1(+) smokers may be functionally related to increased MMP-9 expression. Methods. Cytokine arrays evaluated cytokine protein levels in ELF obtained from 5 groups of individuals: HIV1(-) healthy nonsmokers, HIV1(-) healthy smokers, HIV1(-) smokers with low diffusing capacity (DLCO), HIV1(+) nonsmokers, and HIV1(+) smokers with low DLCO. Results. Increased levels of the Th17 related cytokine IL-23 were found in HIV1(-) smokers with low DLCO and HIV1(+) smokers and nonsmokers. Relative IL-23 gene expression was increased in AM of HIV1(+) individuals, with greater expression in AM of HIV1(+) smokers with low DLCO. Infection with HIV1 in vitro induced IL-23 expression in normal AM. IL-23 stimulation of AM/lymphocyte cocultures in vitro induced upregulation of MMP-9. Lung T lymphocytes express receptor IL-23R and interact with AM in order to upregulate MMP-9. Conclusion. This mechanism may contribute to the increased tissue destruction in the lungs of HIV1(+) smokers and suggests that Th17 related inflammation may play a role. PMID:27446965

  15. Genotype dependent QSAR for HIV-1 protease inhibition.

    PubMed

    Boutton, Carlo W; De Bondt, Hendrik L; De Jonge, Marc R

    2005-03-24

    The development of drug-resistant viruses limits the therapeutic success of anti-HIV therapies. Some of these genetic HIV-variants display complex mutational patterns in their pol gene that codes for protease and reverse transcriptase, the most investigated molecular targets for antiretroviral therapy. In this paper, we present a computational structure-based approach to predict the resistance of a HIV-1 protease strain to amprenavir by calculating the interaction energy of the drug with HIV-1 protease. By considering the interaction energy per residue, we can identify what residue mutations contribute to drug-resistance. This approach is presented here as a structure-based tool for the prediction of resistance of HIV-1 protease toward amprenavir, with a view to use the drug-protein interaction-energy pattern in a lead-optimization procedure for the discovery of new anti-HIV drugs. PMID:15771454

  16. Structural basis for membrane anchoring of HIV-1 envelope spike.

    PubMed

    Dev, Jyoti; Park, Donghyun; Fu, Qingshan; Chen, Jia; Ha, Heather Jiwon; Ghantous, Fadi; Herrmann, Tobias; Chang, Weiting; Liu, Zhijun; Frey, Gary; Seaman, Michael S; Chen, Bing; Chou, James J

    2016-07-01

    HIV-1 envelope spike (Env) is a type I membrane protein that mediates viral entry. We used nuclear magnetic resonance to determine an atomic structure of the transmembrane (TM) domain of HIV-1 Env reconstituted in bicelles that mimic a lipid bilayer. The TM forms a well-ordered trimer that protects a conserved membrane-embedded arginine. An amino-terminal coiled-coil and a carboxyl-terminal hydrophilic core stabilize the trimer. Individual mutations of conserved residues did not disrupt the TM trimer and minimally affected membrane fusion and infectivity. Major changes in the hydrophilic core, however, altered the antibody sensitivity of Env. These results show how a TM domain anchors, stabilizes, and modulates a viral envelope spike and suggest that its influence on Env conformation is an important consideration for HIV-1 immunogen design. PMID:27338706

  17. Immunological biomarkers predict HIV-1 viral rebound after treatment interruption

    PubMed Central

    Hurst, Jacob; Hoffmann, Matthias; Pace, Matthew; Williams, James P.; Thornhill, John; Hamlyn, Elizabeth; Meyerowitz, Jodi; Willberg, Chris; Koelsch, Kersten K.; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David A.; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Babiker, Abdel; Weber, Jonathan; Kelleher, Anthony D.; Phillips, Rodney E.; Frater, John

    2015-01-01

    Treatment of HIV-1 infection with antiretroviral therapy (ART) in the weeks following transmission may induce a state of ‘post-treatment control' (PTC) in some patients, in whom viraemia remains undetectable when ART is stopped. Explaining PTC could help our understanding of the processes that maintain viral persistence. Here we show that immunological biomarkers can predict time to viral rebound after stopping ART by analysing data from a randomized study of primary HIV-1 infection incorporating a treatment interruption (TI) after 48 weeks of ART (the SPARTAC trial). T-cell exhaustion markers PD-1, Tim-3 and Lag-3 measured prior to ART strongly predict time to the return of viraemia. These data indicate that T-cell exhaustion markers may identify those latently infected cells with a higher proclivity to viral transcription. Our results may open new avenues for understanding the mechanisms underlying PTC, and eventually HIV-1 eradication. PMID:26449164

  18. Immunological biomarkers predict HIV-1 viral rebound after treatment interruption.

    PubMed

    Hurst, Jacob; Hoffmann, Matthias; Pace, Matthew; Williams, James P; Thornhill, John; Hamlyn, Elizabeth; Meyerowitz, Jodi; Willberg, Chris; Koelsch, Kersten K; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David A; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Babiker, Abdel; Weber, Jonathan; Kelleher, Anthony D; Phillips, Rodney E; Frater, John

    2015-01-01

    Treatment of HIV-1 infection with antiretroviral therapy (ART) in the weeks following transmission may induce a state of 'post-treatment control' (PTC) in some patients, in whom viraemia remains undetectable when ART is stopped. Explaining PTC could help our understanding of the processes that maintain viral persistence. Here we show that immunological biomarkers can predict time to viral rebound after stopping ART by analysing data from a randomized study of primary HIV-1 infection incorporating a treatment interruption (TI) after 48 weeks of ART (the SPARTAC trial). T-cell exhaustion markers PD-1, Tim-3 and Lag-3 measured prior to ART strongly predict time to the return of viraemia. These data indicate that T-cell exhaustion markers may identify those latently infected cells with a higher proclivity to viral transcription. Our results may open new avenues for understanding the mechanisms underlying PTC, and eventually HIV-1 eradication.

  19. Lipids and Membrane Microdomains in HIV-1 Replication

    PubMed Central

    Waheed, Abdul A.; Freed, Eric O.

    2009-01-01

    Several critical steps in the replication cycle of human immunodeficiency virus type 1 (HIV-1) – entry, assembly and budding – are complex processes that take place at the plasma membrane of the host cell. A growing body of data indicates that these early and late steps in HIV-1 replication take place in specialized plasma membrane microdomains, and that many of the viral and cellular components required for entry, assembly, and budding are concentrated in these microdomains. In particular, a number of studies have shown that cholesterol- and sphingolipid-enriched microdomains known as lipid rafts play important roles in multiple steps in the virus replication cycle. In this review, we provide an overview of what is currently known about the involvement of lipids and membrane microdomains in HIV-1 replication. PMID:19383519

  20. HIV-1 and the immune response to TB

    PubMed Central

    Walker, Naomi F; Meintjes, Graeme; Wilkinson, Robert J

    2013-01-01

    TB causes 1.4 million deaths annually. HIV-1 infection is the strongest risk factor for TB. The characteristic immunological effect of HIV is on CD4 cell count. However, the risk of TB is elevated in HIV-1 infected individuals even in the first few years after HIV acquisition and also after CD4 cell counts are restored with antiretroviral therapy. In this review, we examine features of the immune response to TB and how this is affected by HIV-1 infection and vice versa. We discuss how the immunology of HIV–TB coinfection impacts on the clinical presentation and diagnosis of TB, and how antiretroviral therapy affects the immune response to TB, including the development of TB immune reconstitution inflammatory syndrome. We highlight important areas of uncertainty and future research needs. PMID:23653664

  1. Anti-HIV-1 protease- and HIV-1 integrase activities of Thai medicinal plants known as Hua-Khao-Yen.

    PubMed

    Tewtrakul, Supinya; Itharat, Arunporn; Rattanasuwan, Pranee

    2006-04-21

    Ethanolic- and water extracts from five species of Thai medicinal plants known as Hua-Khao-Yen were tested for their inhibitory effects against HIV-1 protease (HIV-PR) and HIV-1 integrase (HIV-1 IN). The result revealed that the ethanolic (EtOH) extract of Smilax corbularia exhibited anti-HIV-1 IN activity with an IC50 value of 1.9 microg/ml, followed by the water extract of Dioscorea birmanica (IC50 = 4.5 microg/ml), the EtOH extract of Dioscorea birmanica (IC50 = 4.7 microg/ml), the water extract of Smilax corbularia (IC50 = 5.4 microg/ml), the EtOH extract of Smilax glabra (IC50 = 6.7 microg/ml) and the water extract of Smilax glabra (IC50 = 8.5 microg/ml). The extracts of Pygmaeopremna herbacea and Dioscorea membranacea were apparently inactive (IC50 > 100 microg/ml). Interestingly, only the EtOH extract of Dioscorea membranacea showed appreciable activity (IC50 = 48 microg/ml) against HIV-1 PR, while the other extracts possessed mild activity. This result strongly supported the basis for the use of Smilax corbularia and Dioscorea membranacea for AIDS treatment by Thai traditional doctors. PMID:16406414

  2. Selective elimination of HIV-1-infected cells by Env-directed, HIV-1-based virus-like particles

    SciTech Connect

    Peretti, Silvia; Schiavoni, Ilaria; Pugliese, Katherina; Federico, Maurizio . E-mail: federico@iss.it

    2006-02-05

    We recently showed that both replicating and resting cells cultivated with ganciclovir (GCV) were killed when challenged with vesicular stomatitis virus G glycoprotein pseudotyped HIV-1-based virus-like particles (VLPs) carrying the Nef7 (i.e., an HIV-1 Nef mutant incorporating in virions at high levels)/herpes simplex virus-1 thymidine kinase (HSV-TK) fusion product. On this basis, a novel anti-HIV therapeutic approach based on Nef7/TK VLPs expressing X4 or R5 HIV cell receptor complexes has been attempted. We here report that (CD4-CXCR4) and (CD4-CCR5) Nef7-based VLPs efficiently enter cells infected by X4- or R5-tropic HIV-1 strains, respectively. Importantly, the delivery of the VLP-associated Nef7/TK led to cell death upon GCV treatment. Of interest, VLPs were effective also against non-replicating, HIV-1-infected primary human monocyte-derived macrophages. HIV-targeted VLPs represent a promising candidate for the treatment of persistently HIV-1-infected cells that are part of virus reservoirs resistant to HAART therapies.

  3. No SEVI-mediated enhancement of rectal HIV-1 transmission of HIV-1 in two humanized mouse cohorts.

    PubMed

    Van Dis, Erik S; Moore, Tyler C; Lavender, Kerry J; Messer, Ronald J; Keppler, Oliver T; Verheyen, Jens; Dittmer, Ulf; Hasenkrug, Kim J

    2016-01-15

    Amyloid fibrils from semen-derived peptide (SEVI) enhance HIV-1 infectivity in vitro but the ability of SEVI to mediate enhancement of HIV infection in vivo has not been tested. In this study we used immunodeficient mice reconstituted with human immune systems to test for in vivo enhancement of HIV-1 transmission. This mouse model supports mucosal transmission of HIV-1 via the intrarectal route leading to productive infection. In separate experiments with humanized mouse cohorts reconstituted with two different donor immune systems, high dose HIV-1JR-CSF that had been incubated with SEVI amyloid fibrils at physiologically relevant concentrations did not show an increased incidence of infection compared to controls. In addition, SEVI failed to enhance rectal transmission with a reduced concentration of HIV-1. Although we confirmed potent SEVI-mediated enhancement of HIV infectivity in vitro, this model showed no evidence that it plays a role in the much more complex situation of in vivo transmission. PMID:26609939

  4. 2´,3´-Dialdehyde of ATP, ADP, and adenosine inhibit HIV-1 reverse transcriptase and HIV-1 replication.

    PubMed

    Schachter, Julieta; Valadao, Ana Luiza Chaves; Aguiar, Renato Santana; Barreto-de-Souza, Victor; Rossi, Atila Duque; Arantes, Pablo Ricardo; Verli, Hugo; Quintana, Paula Gabriela; Heise, Norton; Tanuri, Amilcar; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis

    2014-01-01

    The 2´3´-dialdehyde of ATP or oxidized ATP (oATP) is a compound known for specifically making covalent bonds with the nucleotide-binding site of several ATP-binding enzymes and receptors. We investigated the effects of oATP and other oxidized purines on HIV-1 infection and we found that this compound inhibits HIV-1 and SIV infection by blocking early steps of virus replication. oATP, oxidized ADP (oADP), and oxidized Adenosine (oADO) impact the natural activity of endogenous reverse transcriptase enzyme (RT) in cell free virus particles and are able to inhibit viral replication in different cell types when added to the cell cultures either before or after infection. We used UFLC-UV to show that both oADO and oATP can be detected in the cell after being added in the extracellular medium. oATP also suppresses RT activity and replication of the HIV-1 resistant variants M184V and T215Y. We conclude that oATP, oADP and oADO display anti HIV-1 activity that is at in least in part due to inhibitory activity on HIV-1 RT.

  5. A New Approach to Produce HIV-1 Envelope Trimers

    PubMed Central

    AlSalmi, Wadad; Mahalingam, Marthandan; Ananthaswamy, Neeti; Hamlin, Christopher; Flores, Dalia; Gao, Guofen; Rao, Venigalla B.

    2015-01-01

    The trimeric envelope spike of HIV-1 mediates virus entry into human cells. The exposed part of the trimer, gp140, consists of two noncovalently associated subunits, gp120 and gp41 ectodomain. A recombinant vaccine that mimics the native trimer might elicit entry-blocking antibodies and prevent virus infection. However, preparation of authentic HIV-1 trimers has been challenging. Recently, an affinity column containing the broadly neutralizing antibody 2G12 has been used to capture recombinant gp140 and prepare trimers from clade A BG505 that naturally produces stable trimers. However, this antibody-based approach may not be as effective for the diverse HIV-1 strains with different epitope signatures. Here, we report a new and simple approach to produce HIV-1 envelope trimers. The C terminus of gp140 was attached to Strep-tag II with a long linker separating the tag from the massive trimer base and glycan shield. This allowed capture of nearly homogeneous gp140 directly from the culture medium. Cleaved, uncleaved, and fully or partially glycosylated trimers from different clade viruses were produced. Extensive biochemical characterizations showed that cleavage of gp140 was not essential for trimerization, but it triggered a conformational change that channels trimers into correct glycosylation pathways, generating compact three-blade propeller-shaped trimers. Uncleaved trimers entered aberrant pathways, resulting in hyperglycosylation, nonspecific cross-linking, and conformational heterogeneity. Even the cleaved trimers showed microheterogeneity in gp41 glycosylation. These studies established a broadly applicable HIV-1 trimer production system as well as generating new insights into their assembly and maturation that collectively bear on the HIV-1 vaccine design. PMID:26088135

  6. C-5-Modified Tetrahydropyrano-Tetrahydofuran-Derived Protease Inhibitors (PIs) Exert Potent Inhibition of the Replication of HIV-1 Variants Highly Resistant to Various PIs, including Darunavir

    PubMed Central

    Aoki, Manabu; Hayashi, Hironori; Yedidi, Ravikiran S.; Martyr, Cuthbert D.; Takamatsu, Yuki; Aoki-Ogata, Hiromi; Nakamura, Teruya; Nakata, Hirotomo; Das, Debananda; Yamagata, Yuriko; Ghosh, Arun K.

    2015-01-01

    ABSTRACT We identified three nonpeptidic HIV-1 protease inhibitors (PIs), GRL-015, -085, and -097, containing tetrahydropyrano-tetrahydrofuran (Tp-THF) with a C-5 hydroxyl. The three compounds were potent against a wild-type laboratory HIV-1 strain (HIV-1WT), with 50% effective concentrations (EC50s) of 3.0 to 49 nM, and exhibited minimal cytotoxicity, with 50% cytotoxic concentrations (CC50) for GRL-015, -085, and -097 of 80, >100, and >100 μM, respectively. All the three compounds potently inhibited the replication of highly PI-resistant HIV-1 variants selected with each of the currently available PIs and recombinant clinical HIV-1 isolates obtained from patients harboring multidrug-resistant HIV-1 variants (HIVMDR). Importantly, darunavir (DRV) was >1,000 times less active against a highly DRV-resistant HIV-1 variant (HIV-1DRVRP51); the three compounds remained active against HIV-1DRVRP51 with only a 6.8- to 68-fold reduction. Moreover, the emergence of HIV-1 variants resistant to the three compounds was considerably delayed compared to the case of DRV. In particular, HIV-1 variants resistant to GRL-085 and -097 did not emerge even when two different highly DRV-resistant HIV-1 variants were used as a starting population. In the structural analyses, Tp-THF of GRL-015, -085, and -097 showed strong hydrogen bond interactions with the backbone atoms of active-site amino acid residues (Asp29 and Asp30) of HIV-1 protease. A strong hydrogen bonding formation between the hydroxyl moiety of Tp-THF and a carbonyl oxygen atom of Gly48 was newly identified. The present findings indicate that the three compounds warrant further study as possible therapeutic agents for treating individuals harboring wild-type HIV and/or HIVMDR. IMPORTANCE Darunavir (DRV) inhibits the replication of most existing multidrug-resistant HIV-1 strains and has a high genetic barrier. However, the emergence of highly DRV-resistant HIV-1 strains (HIVDRVR) has recently been observed in vivo and in

  7. Antiretroviral Therapy for the Prevention of HIV-1 Transmission.

    PubMed

    Cohen, Myron S; Chen, Ying Q; McCauley, Marybeth; Gamble, Theresa; Hosseinipour, Mina C; Kumarasamy, Nagalingeswaran; Hakim, James G; Kumwenda, Johnstone; Grinsztejn, Beatriz; Pilotto, Jose H S; Godbole, Sheela V; Chariyalertsak, Suwat; Santos, Breno R; Mayer, Kenneth H; Hoffman, Irving F; Eshleman, Susan H; Piwowar-Manning, Estelle; Cottle, Leslie; Zhang, Xinyi C; Makhema, Joseph; Mills, Lisa A; Panchia, Ravindre; Faesen, Sharlaa; Eron, Joseph; Gallant, Joel; Havlir, Diane; Swindells, Susan; Elharrar, Vanessa; Burns, David; Taha, Taha E; Nielsen-Saines, Karin; Celentano, David D; Essex, Max; Hudelson, Sarah E; Redd, Andrew D; Fleming, Thomas R

    2016-09-01

    Background An interim analysis of data from the HIV Prevention Trials Network (HPTN) 052 trial showed that antiretroviral therapy (ART) prevented more than 96% of genetically linked infections caused by human immunodeficiency virus type 1 (HIV-1) in serodiscordant couples. ART was then offered to all patients with HIV-1 infection (index participants). The study included more than 5 years of follow-up to assess the durability of such therapy for the prevention of HIV-1 transmission. Methods We randomly assigned 1763 index participants to receive either early or delayed ART. In the early-ART group, 886 participants started therapy at enrollment (CD4+ count, 350 to 550 cells per cubic millimeter). In the delayed-ART group, 877 participants started therapy after two consecutive CD4+ counts fell below 250 cells per cubic millimeter or if an illness indicative of the acquired immunodeficiency syndrome (i.e., an AIDS-defining illness) developed. The primary study end point was the diagnosis of genetically linked HIV-1 infection in the previously HIV-1-negative partner in an intention-to-treat analysis. Results Index participants were followed for 10,031 person-years; partners were followed for 8509 person-years. Among partners, 78 HIV-1 infections were observed during the trial (annual incidence, 0.9%; 95% confidence interval [CI], 0.7 to 1.1). Viral-linkage status was determined for 72 (92%) of the partner infections. Of these infections, 46 were linked (3 in the early-ART group and 43 in the delayed-ART group; incidence, 0.5%; 95% CI, 0.4 to 0.7) and 26 were unlinked (14 in the early-ART group and 12 in the delayed-ART group; incidence, 0.3%; 95% CI, 0.2 to 0.4). Early ART was associated with a 93% lower risk of linked partner infection than was delayed ART (hazard ratio, 0.07; 95% CI, 0.02 to 0.22). No linked infections were observed when HIV-1 infection was stably suppressed by ART in the index participant. Conclusions The early initiation of ART led to a sustained

  8. Constructing the Average Natural History of HIV-1 Infection

    NASA Astrophysics Data System (ADS)

    Diambra, L.; Capurro, A.; Malta, C. P.

    2007-05-01

    Many aspects of the natural course of the HIV-1 infection remains unclear, despite important efforts towards understanding its long-term dynamics. Using a scaling approach that places progression markers (viral load, CD4+, CD8+) of many individuals on a single average natural course of disease progression, we introduce the concept of inter-individual scaling and time scaling. Our quantitative assessment of the natural course of HIV-1 infection indicates that the dynamics of the evolution for the individual that developed AIDS (opportunistic infections) is different from that of the individual that did not develop AIDS. This means that the rate of progression is not relevant for the infection evolution.

  9. Can we cure HIV-1-associated nephropathy in transgenic mice?

    PubMed

    Ray, Patricio E

    2012-05-01

    HIV-1-associated nephropathy (HIVAN) is a rapidly progressive form of focal segmental glomerulosclerosis. HIV transgenic mice can develop a HIVAN-like renal disease. Zhong et al. show that the oral administration of a cyclic nucleotide phosphodiesterase 4 inhibitor and a retinoic acid receptor-α agonist can prevent the development of HIVAN in transgenic mice, acting through a cAMP-dependent mechanism that is independent of HIV-1 genes. These findings suggest that endogenous host factors play a critical role in HIVAN.

  10. Can we cure HIV-1 associated nephropathy in transgenic mice?

    PubMed Central

    Ray, Patricio E.

    2012-01-01

    HIV-1 associated nephropathy is a rapidly progressive form of focal segmental glomerulosclerosis typically seen in patients of African ancestry. HIV-transgenic mice can develop an HIVAN-like renal disease. Zhong et al. show that the oral administration of a cyclic nucleotide phosphodiesterase 4 inhibitor and a retinoic acid receptor-alpha agonist can prevent the development of HIVAN in transgenic mice, acting through a cAMP dependent mechanism that is independent of HIV-1 genes. These findings suggest that endogenous host factors play a critical role in HIVAN. PMID:22499139

  11. Dual Neonate Vaccine Platform against HIV-1 and M. tuberculosis

    PubMed Central

    Hopkins, Richard; Bridgeman, Anne; Joseph, Joan; Gilbert, Sarah C.; McShane, Helen; Hanke, Tomáš

    2011-01-01

    Acquired immunodeficiency syndrome and tuberculosis (TB) are two of the world's most devastating diseases. The first vaccine the majority of infants born in Africa receive is Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a prevention against TB. BCG protects against disseminated disease in the first 10 years of life, but provides a variable protection against pulmonary TB and enhancing boost delivered by recombinant modified vaccinia virus Ankara (rMVA) expressing antigen 85A (Ag85A) of M. tuberculosis is currently in phase IIb evaluation in African neonates. If the newborn's mother is positive for human immunodeficiency virus type 1 (HIV-1), the baby is at high risk of acquiring HIV-1 through breastfeeding. We suggested that a vaccination consisting of recombinant BCG expressing HIV-1 immunogen administered at birth followed by a boost with rMVA sharing the same immunogen could serve as a strategy for prevention of mother-to-child transmission of HIV-1 and rMVA expressing an African HIV-1-derived immunogen HIVA is currently in phase I trials in African neonates. Here, we aim to develop a dual neonate vaccine platform against HIV-1 and TB consisting of BCG.HIVA administered at birth followed by a boost with MVA.HIVA.85A. Thus, mMVA.HIVA.85A and sMVA.HIVA.85A vaccines were constructed, in which the transgene transcription is driven by either modified H5 or short synthetic promoters, respectively, and tested for immunogenicity alone and in combination with BCG.HIVA222. mMVA.HIVA.85A was produced markerless and thus suitable for clinical manufacture. While sMVA.HIVA.85A expressed higher levels of the immunogens, it was less immunogenic than mMVA.HIVA.85A in BALB/c mice. A BCG.HIVA222–mMVA.HIVA.85A prime-boost regimen induced robust T cell responses to both HIV-1 and M. tuberculosis. Therefore, proof-of-principle for a dual anti-HIV-1/M. tuberculosis infant vaccine platform is established. Induction of immune responses against these pathogens soon after

  12. Prevalence of HIV-1 Subtypes and Drug Resistance-Associated Mutations in HIV-1-Positive Treatment-Naive Pregnant Women in Pointe Noire, Republic of the Congo (Kento-Mwana Project).

    PubMed

    Bruzzone, Bianca; Saladini, Francesco; Sticchi, Laura; Mayinda Mboungou, Franc A; Barresi, Renata; Caligiuri, Patrizia; Calzi, Anna; Zazzi, Maurizio; Icardi, Giancarlo; Viscoli, Claudio; Bisio, Francesca

    2015-08-01

    The Kento-Mwana project was carried out in Pointe Noire, Republic of the Congo, to prevent mother-to-child HIV-1 transmission. To determine the prevalence of different subtypes and transmitted drug resistance-associated mutations, 95 plasma samples were collected at baseline from HIV-1-positive naive pregnant women enrolled in the project during the years 2005-2008. Full protease and partial reverse transcriptase sequencing was performed and 68/95 (71.6%) samples were successfully sequenced. Major mutations to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors were detected in 4/68 (5.9%), 3/68 (4.4%), and 2/68 (2.9%) samples, respectively. Phylogenetic analysis of HIV-1 isolates showed a high prevalence of unique recombinant forms (24/68, 35%), followed by CRF45_cpx (7/68, 10.3%) and subsubtype A3 and subtype G (6/68 each, 8.8%). Although the prevalence of transmitted drug resistance mutations appears to be currently limited, baseline HIV-1 genotyping is highly advisable in conjunction with antiretroviral therapy scale-up in resource-limited settings to optimize treatment and prevent perinatal transmission. PMID:25970260

  13. Exceptionally Potent and Broadly Cross-Reactive, Bispecific Multivalent HIV-1 Inhibitors Based on Single Human CD4 and Antibody Domains

    PubMed Central

    Feng, Yang; Prabakaran, Ponraj; Ying, Tianlei; Wang, Yanping; Sun, Jianping; Macedo, Camila D. S.; Zhu, Zhongyu; He, Yuxian; Polonis, Victoria R.

    2014-01-01

    Soluble forms of the human immunodeficiency virus type 1 (HIV-1) primary receptor CD4 (soluble CD4 [sCD4]) have been extensively characterized for a quarter of a century as promising HIV-1 inhibitors, but they have not been clinically successful. By combining a protein cavity-filling strategy and the power of library technology, we identified an engineered cavity-altered single-domain sCD4 (mD1.22) with a unique combination of excellent properties, including broad and potent neutralizing activity, high specificity, stability, solubility, and affinity for the HIV-1 envelope glycoprotein gp120, and small molecular size. To further improve its neutralizing potency and breadth, we generated bispecific multivalent fusion proteins of mD1.22 with another potent HIV-1 inhibitor, an antibody domain (m36.4) that targets the coreceptor-binding site on gp120. The fusion proteins neutralized all HIV-1 isolates tested, with potencies about 10-, 50-, and 200-fold higher than those of the broadly neutralizing antibody VRC01, the U.S. FDA-approved peptide inhibitor T20, and the clinically tested sCD4-Fc fusion protein CD4-Ig, respectively. In addition, they exhibited higher stability and specificity and a lower aggregation propensity than CD4-Ig. Therefore, mD1.22 and related fusion proteins could be useful for HIV-1 prevention and therapy, including eradication of the virus. PMID:24198429

  14. Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure.

    PubMed

    Paxton, W A; Martin, S R; Tse, D; O'Brien, T R; Skurnick, J; VanDevanter, N L; Padian, N; Braun, J F; Kotler, D P; Wolinsky, S M; Koup, R A

    1996-04-01

    Some individuals remain uninfected with human immunodeficiency virus type-1 (HIV-1) despite multiple high-risk sexual exposures. We studied a cohort of 25 subjects with histories of multiple high-risk sexual exposures to HIV-1 and found that their CD8+ lymphocytes had greater anti-HIV-1 activity than did CD8+ lymphocytes from nonexposed controls. Further studies indicated that their purified CD4+ lymphocytes were less susceptible to infection with multiple primary isolates of HIV-1 than were CD4+ lymphocytes from the nonexposed controls. This relative resistance to HIV-1 infection did not extend to T-cell line-adapted strains, was restricted by the envelope glycoprotein, was not explained by the cell surface density of CD4 molecules, but was associated with the activity of the C-C chemokines RANTES, MIP-1alpha, and MIP-1beta. This relative resistance of CD4+ lymphocytes may contribute to protection from HIV-1 in multiply exposed persons. PMID:8597950

  15. The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence.

    PubMed

    Murray, Alexandra J; Kwon, Kyungyoon J; Farber, Donna L; Siliciano, Robert F

    2016-07-15

    Combination antiretroviral therapy (ART) for HIV-1 infection reduces plasma virus levels to below the limit of detection of clinical assays. However, even with prolonged suppression of viral replication with ART, viremia rebounds rapidly after treatment interruption. Thus, ART is not curative. The principal barrier to cure is a remarkably stable reservoir of latent HIV-1 in resting memory CD4(+) T cells. In this review, we consider explanations for the remarkable stability of the latent reservoir. Stability does not appear to reflect replenishment from new infection events but rather normal physiologic processes that provide for immunologic memory. Of particular importance are proliferative processes that drive clonal expansion of infected cells. Recent evidence suggests that in some infected cells, proliferation is a consequence of proviral integration into host genes associated with cell growth. Efforts to cure HIV-1 infection by targeting the latent reservoir may need to consider the potential of latently infected cells to proliferate.

  16. The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence.

    PubMed

    Murray, Alexandra J; Kwon, Kyungyoon J; Farber, Donna L; Siliciano, Robert F

    2016-07-15

    Combination antiretroviral therapy (ART) for HIV-1 infection reduces plasma virus levels to below the limit of detection of clinical assays. However, even with prolonged suppression of viral replication with ART, viremia rebounds rapidly after treatment interruption. Thus, ART is not curative. The principal barrier to cure is a remarkably stable reservoir of latent HIV-1 in resting memory CD4(+) T cells. In this review, we consider explanations for the remarkable stability of the latent reservoir. Stability does not appear to reflect replenishment from new infection events but rather normal physiologic processes that provide for immunologic memory. Of particular importance are proliferative processes that drive clonal expansion of infected cells. Recent evidence suggests that in some infected cells, proliferation is a consequence of proviral integration into host genes associated with cell growth. Efforts to cure HIV-1 infection by targeting the latent reservoir may need to consider the potential of latently infected cells to proliferate. PMID:27382129

  17. Incidence, Prevalence and Epidemiology of Herpes Simplex Virus-2 in HIV-1-positive and HIV-1-negative Adolescents

    PubMed Central

    Sudenga, Staci L.; Kempf, Mirjam-Colette; McGwin, Gerald; Wilson, Craig M.; Hook, Edward; Shrestha, Sadeep

    2012-01-01

    Background Several studies have assessed risk factors associated with herpes simplex virus-2 (HSV-2) prevalence in adults; however, few have focused on HSV-2 incidence, particularly in adolescents. The objective of this study was to determine HSV-2 prevalence and incidence and associated risk factors in a HIV-1-positive and at risk HIV-1-negative adolescent population. Methods Sera were tested for HSV-2 antibodies in 518 adolescents in the Reaching for Excellence in Adolescent Care and Health (REACH) cohort at baseline and again at the final follow-up visit. Prevalence at baseline and incidence (per person years) of HSV-2 infection were calculated. Furthermore, among HIV-1-positive individuals, a subgroup analysis was performed to assess risk factors for HSV-2 infection. Conditional logistic regression was used to estimate odds ratios (OR) and p-values (p) for associations between CD4+ T-cell (CD4+) count, HIV-1 viral load (VL), and HSV-2 acquisition, adjusting for antiretroviral therapy use, other sexually transmitted infections, gender, race, and number of sexual partners. Results At baseline, 179 (35%) subjects were HSV-2 positive, with an additional 47 (16%) new cases being identified during a median follow-up time of 1.95 years and an incidence rate of 7.35 cases per 100 person years (py). Several risk factors were associated with HSV-2 prevalence (being female, non-Hispanic, uncertainty of sexual preference, and HIV-1 positive) and incidence (using drugs, alcohol, and number of new sexual partners). Among HIV-1 positives, an increase in CD4+ count by 50 cell/mm3 (OR, 1.17; 95% CI 1.04–1.31, p=0.008) was associated with HSV-2 acquisition. Conclusions The high prevalence and incidence of HSV-2 infection among adolescents, compared to the general population at this age group suggests a critical need for screening and preventive programs among this targeted group. PMID:22421698

  18. An RNAi in silico approach to find an optimal shRNA cocktail against HIV-1

    PubMed Central

    2010-01-01

    Background HIV-1 can be inhibited by RNA interference in vitro through the expression of short hairpin RNAs (shRNAs) that target conserved genome sequences. In silico shRNA design for HIV has lacked a detailed study of virus variability constituting a possible breaking point in a clinical setting. We designed shRNAs against HIV-1 considering the variability observed in naïve and drug-resistant isolates available at public databases. Methods A Bioperl-based algorithm was developed to automatically scan multiple sequence alignments of HIV, while evaluating the possibility of identifying dominant and subdominant viral variants that could be used as efficient silencing molecules. Student t-test and Bonferroni Dunn correction test were used to assess statistical significance of our findings. Results Our in silico approach identified the most common viral variants within highly conserved genome regions, with a calculated free energy of ≥ -6.6 kcal/mol. This is crucial for strand loading to RISC complex and for a predicted silencing efficiency score, which could be used in combination for achieving over 90% silencing. Resistant and naïve isolate variability revealed that the most frequent shRNA per region targets a maximum of 85% of viral sequences. Adding more divergent sequences maintained this percentage. Specific sequence features that have been found to be related with higher silencing efficiency were hardly accomplished in conserved regions, even when lower entropy values correlated with better scores. We identified a conserved region among most HIV-1 genomes, which meets as many sequence features for efficient silencing. Conclusions HIV-1 variability is an obstacle to achieving absolute silencing using shRNAs designed against a consensus sequence, mainly because there are many functional viral variants. Our shRNA cocktail could be truly effective at silencing dominant and subdominant naïve viral variants. Additionally, resistant isolates might be targeted

  19. The multi-epitope polypeptide approach in HIV-1 vaccine development.

    PubMed

    Cano, C A

    1999-11-01

    The application of a preventive HIV vaccine is the only hope for most developing countries to halt the AIDS pandemic. A project aimed to develop a preventive AIDS vaccine is being carried out since 1992 by three Cuban research institutions: Centro de Ingeniería Genética y Biotecnologia de La Habana, Instituto de Medicina Tropical 'Pedro Kouri' and Laboratorio de Investigaciones de SIDA de La Habana. The project includes two main strategies: (a) generation of recombinant multi-epitope polypeptides (MEPs) bearing several copies of the V3 loop from different HIV-1 isolates; and (b) development of immunogens capable of inducing a cytotoxic T cell response (CTL) specific for human immunodeficiency virus type 1 (HIV-1) antigens. This article summarizes the work in the first of these strategies. Based on the sequence of the V3 loop of HIV-1 we constructed a series of MEPs and evaluated their immunogenicity in mice, rabbits and macaques. The MEP TAB9, containing six V3 epitopes from isolates LR10, JY1, RF, MN, BRVA and IIIB, was selected together with the oil adjuvant Montanide ISA720 (SEPPIC, France) to perform a Phase I clinical trial in HIV seronegative Cuban volunteers. The trial was double blinded, randomized, and fulfilled all ethical and regulatory requirements. All TAB9 vaccinated volunteers developed a strong immune response and neutralizing antibodies were observed in the 50% of the subjects. However the second and third inoculations of the vaccine were not well tolerated because transient severe local reactions appeared in some individuals. A new formulation of TAB9 is currently in pre-clinical studies and is expected to enter clinical trials in 1999.

  20. The HIV-1 Subtype C Epidemic in South America Is Linked to the United Kingdom

    PubMed Central

    de Oliveira, Tulio; Pillay, Deenan; Gifford, Robert J.

    2010-01-01

    Background The global spread of HIV-1 has been accompanied by the emergence of genetically distinct viral strains. Over the past two decades subtype C viruses, which predominate in Southern and Eastern Africa, have spread rapidly throughout parts of South America. Phylogenetic studies indicate that subtype C viruses were introduced to South America through a single founder event that occurred in Southern Brazil. However, the external route via which subtype C viruses spread to the South American continent has remained unclear. Methodology/Principal Findings We used automated genotyping to screen 8,309 HIV-1 subtype C pol gene sequences sampled within the UK for isolates genetically linked to the subtype C epidemic in South America. Maximum likelihood and Bayesian approaches were used to explore the phylogenetic relationships between 54 sequences identified in this screen, and a set of globally sampled subtype C reference sequences. Phylogenetic trees disclosed a robustly supported relationship between sequences from Brazil, the UK and East Africa. A monophyletic cluster comprised exclusively of sequences from the UK and Brazil was identified and dated to approximately the early 1980s using a Bayesian coalescent-based method. A sub-cluster of 27 sequences isolated from homosexual men of UK origin was also identified and dated to the early 1990s. Conclusions Phylogenetic, demographic and temporal data support the conclusion that the UK was a crucial staging post in the spread of subtype C from East Africa to South America. This unexpected finding demonstrates the role of diffuse international networks in the global spread of HIV-1 infection, and the utility of globally sampled viral sequence data in revealing these networks. Additionally, we show that subtype C viruses are spreading within the UK amongst men who have sex with men. PMID:20174561

  1. Relative Resistance of HLA-B to Downregulation by Naturally Occurring HIV-1 Nef Sequences

    PubMed Central

    Mahiti, Macdonald; Toyoda, Mako; Jia, Xiaofei; Kuang, Xiaomei T.; Mwimanzi, Francis; Mwimanzi, Philip; Walker, Bruce D.; Xiong, Yong; Brumme, Zabrina L.; Brockman, Mark A.

    2016-01-01

    ABSTRACT HIV-1 Nef binds to the cytoplasmic region of HLA-A and HLA-B and downregulates these molecules from the surface of virus-infected cells, thus evading immune detection by CD8+ T cells. Polymorphic residues within the HLA cytoplasmic region may affect Nef’s downregulation activity. However, the effects of HLA polymorphisms on recognition by primary Nef isolates remain elusive, as do the specific Nef regions responsible for downregulation of HLA-A versus HLA-B. Here, we examined 46 Nef clones isolated from chronically HIV-1 subtype B-infected subjects for their ability to downregulate various HLA-A, HLA-B, and HLA-C molecules on the surface of virus-infected cells. Overall, HLA-B exhibited greater resistance to Nef-mediated downregulation than HLA-A, regardless of the cell type examined. As expected, no Nef clone downregulated HLA-C. Importantly, the differential abilities of patient-derived Nef clones to downregulate HLA-A and HLA-B correlated inversely with the sensitivities of HIV-infected target cells to recognition by effector cells expressing an HIV-1 Gag-specific T cell receptor. Nef codon function analysis implicated amino acid variation at position 202 (Nef-202) in differentially affecting the ability to downregulate HLA-A and HLA-B, an observation that was subsequently confirmed by experiments using Nef mutants constructed by site-directed mutagenesis. The in silico and mutagenesis analyses further suggested that Nef-202 may interact with the C-terminal Cys-Lys-Val residues of HLA-A, which are absent in HLA-B. Taken together, the results show that natural polymorphisms within Nef modulate its interaction with natural polymorphisms in the HLA cytoplasmic tails, thereby affecting the efficiency of HLA downregulation and consequent recognition by HIV-specific T cells. These results thus extend our understanding of this complex pathway of retroviral immune evasion. PMID:26787826

  2. Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses.

    PubMed

    Moody, M Anthony; Gao, Feng; Gurley, Thaddeus C; Amos, Joshua D; Kumar, Amit; Hora, Bhavna; Marshall, Dawn J; Whitesides, John F; Xia, Shi-Mao; Parks, Robert; Lloyd, Krissey E; Hwang, Kwan-Ki; Lu, Xiaozhi; Bonsignori, Mattia; Finzi, Andrés; Vandergrift, Nathan A; Alam, S Munir; Ferrari, Guido; Shen, Xiaoying; Tomaras, Georgia D; Kamanga, Gift; Cohen, Myron S; Sam, Noel E; Kapiga, Saidi; Gray, Elin S; Tumba, Nancy L; Morris, Lynn; Zolla-Pazner, Susan; Gorny, Miroslaw K; Mascola, John R; Hahn, Beatrice H; Shaw, George M; Sodroski, Joseph G; Liao, Hua-Xin; Montefiori, David C; Hraber, Peter T; Korber, Bette T; Haynes, Barton F

    2015-09-01

    The third variable (V3) loop and the CD4 binding site (CD4bs) of the HIV-1 envelope are frequently targeted by neutralizing antibodies (nAbs) in infected individuals. In chronic infection, HIV-1 escape mutants repopulate the plasma, and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3 and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tier 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses.

  3. Strain-specific V3 and CD4 binding site autologous HIV-1 neutralizing antibodies select neutralization-resistant viruses

    PubMed Central

    Moody, M. Anthony; Gao, Feng; Gurley, Thaddeus C.; Amos, Joshua D.; Kumar, Amit; Hora, Bhavna; Marshall, Dawn J.; Whitesides, John F.; Xia, Shi-Mao; Parks, Robert; Lloyd, Krissey E.; Hwang, Kwan-Ki; Lu, Xiaozhi; Bonsignori, Mattia; Finzi, Andrés; Vandergrift, Nathan A.; Alam, S. Munir; Ferrari, Guido; Shen, Xiaoying; Tomaras, Georgia D.; Kamanga, Gift; Cohen, Myron S.; Sam, Noel E.; Kapiga, Saidi; Gray, Elin S.; Tumba, Nancy L.; Morris, Lynn; Zolla-Pazner, Susan; Gorny, Miroslaw K.; Mascola, John R.; Hahn, Beatrice; Shaw, George M.; Sodroski, Joseph G.; Liao, Hua-Xin; Montefiori, David C.; Hraber, Peter T.; Korber, Bette T.; Haynes, Barton F.

    2015-01-01

    Summary The third variable (V3) loop and the CD4 binding site (CD4bs) of the HIV-1 envelope are frequently targeted by neutralizing antibodies (nAbs) in infected individuals. In chronic infection, HIV-1 escape mutants repopulate the plasma, and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize, but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tier 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses. PMID:26355218

  4. Aspernigrins with anti-HIV-1 activities from the marine-derived fungus Aspergillus niger SCSIO Jcsw6F30.

    PubMed

    Zhou, Xuefeng; Fang, Wei; Tan, Suiyi; Lin, Xiuping; Xun, Tianrong; Yang, Bingjie; Liu, Shuwen; Liu, Yonghong

    2016-01-15

    Two new 2-benzylpyridin-4-one containing metabolites, aspernigrins C (3) and D (4), together with six known compounds (1, 2, and 5-8), were isolated from the marine-derived fungus Aspergillus niger SCSIO Jcsw6F30. The structures of the new compounds were determined by NMR, MS, and optical rotation analyses. All the isolated compounds were evaluated for their inhibitory activities against infection with HIV-1 SF162 in TZM-bl cells. Malformin C (5) showed the strongest anti-HIV-1 activity with IC50 of 1.4±0.06μM (selectivity index, 11.4), meanwhile aspernigrin C (3) also exhibited potent activity with IC50 of 4.7±0.4μM (selectivity index, 7.5).

  5. New insights into HIV-1-primary skin disorders.

    PubMed

    Cedeno-Laurent, Filiberto; Gómez-Flores, Minerva; Mendez, Nora; Ancer-Rodríguez, Jesús; Bryant, Joseph L; Gaspari, Anthony A; Trujillo, Jose R

    2011-01-24

    Since the first reports of AIDS, skin involvement has become a burdensome stigma for seropositive patients and a challenging task for dermatologist and infectious disease specialists due to the severe and recalcitrant nature of the conditions. Dermatologic manifestations in AIDS patients act as markers of disease progression, a fact that enhances the importance of understanding their pathogenesis.Broadly, cutaneous disorders associated with HIV type-1 infection can be classified as primary and secondary. While the pathogenesis of secondary complications, such as opportunistic infections and skin tumours, is directly correlated with a decline in the CD4+ T cell count, the origin of the certain manifestations primarily associated with the retroviral infection itself still remains under investigation.The focus of this review is to highlight the immunological phenomena that occur in the skin of HIV-1-seropositive patients, which ultimately lead to skin disorders, such as seborrhoeic dermatitis, atopic dermatitis, psoriasis and eosinophilic folliculitis. Furthermore, we compile the latest data on how shifts in the cytokines milieu, impairments of the innate immune compartment, reactions to xenobiotics and autoimmunity are causative agents in HIV-1-driven skin diseases. Additionally, we provide a thorough analysis of the small animal models currently used to study HIV-1-associated skin complications, centering on transgenic rodent models, which unfortunately, have not been able to fully unveil the role of HIV-1 genes in the pathogenesis of their primarily associated dermatological manifestations.

  6. New insights into HIV-1-primary skin disorders

    PubMed Central

    2011-01-01

    Since the first reports of AIDS, skin involvement has become a burdensome stigma for seropositive patients and a challenging task for dermatologist and infectious disease specialists due to the severe and recalcitrant nature of the conditions. Dermatologic manifestations in AIDS patients act as markers of disease progression, a fact that enhances the importance of understanding their pathogenesis. Broadly, cutaneous disorders associated with HIV type-1 infection can be classified as primary and secondary. While the pathogenesis of secondary complications, such as opportunistic infections and skin tumours, is directly correlated with a decline in the CD4+ T cell count, the origin of the certain manifestations primarily associated with the retroviral infection itself still remains under investigation. The focus of this review is to highlight the immunological phenomena that occur in the skin of HIV-1-seropositive patients, which ultimately lead to skin disorders, such as seborrhoeic dermatitis, atopic dermatitis, psoriasis and eosinophilic folliculitis. Furthermore, we compile the latest data on how shifts in the cytokines milieu, impairments of the innate immune compartment, reactions to xenobiotics and autoimmunity are causative agents in HIV-1-driven skin diseases. Additionally, we provide a thorough analysis of the small animal models currently used to study HIV-1-associated skin complications, centering on transgenic rodent models, which unfortunately, have not been able to fully unveil the role of HIV-1 genes in the pathogenesis of their primarily associated dermatological manifestations. PMID:21261982

  7. Curcumin inhibits HIV-1 by promoting Tat protein degradation

    PubMed Central

    Ali, Amjad; Banerjea, Akhil C.

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected HEK-293T cells showed a dose and time dependent degradation of Tat protein. Contrary to this HIV-1 Gag which is a properly folded protein, remained unaffected with curcumin. Semi-quantitative RT-PCR analysis showed that curcumin treatment did not affect Tat gene transcription. Curcumin increased the rate of Tat protein degradation as shown by cycloheximide (CHX) chase assay. Degradation of the Tat protein is accomplished through proteasomal pathway as proteasomal inhibitor MG132 blocked Tat degradation. Curcumin also decreased Tat mediated LTR promoter transactivation and inhibited virus production from HIV-1 infected cells. Taken together our study reveals a novel observation that curcumin causes potent degradation of Tat which may be one of the major mechanisms behind its anti HIV activity. PMID:27283735

  8. Curcumin inhibits HIV-1 by promoting Tat protein degradation.

    PubMed

    Ali, Amjad; Banerjea, Akhil C

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected HEK-293T cells showed a dose and time dependent degradation of Tat protein. Contrary to this HIV-1 Gag which is a properly folded protein, remained unaffected with curcumin. Semi-quantitative RT-PCR analysis showed that curcumin treatment did not affect Tat gene transcription. Curcumin increased the rate of Tat protein degradation as shown by cycloheximide (CHX) chase assay. Degradation of the Tat protein is accomplished through proteasomal pathway as proteasomal inhibitor MG132 blocked Tat degradation. Curcumin also decreased Tat mediated LTR promoter transactivation and inhibited virus production from HIV-1 infected cells. Taken together our study reveals a novel observation that curcumin causes potent degradation of Tat which may be one of the major mechanisms behind its anti HIV activity. PMID:27283735

  9. Structural Insight into HIV-1 Restriction by MxB

    PubMed Central

    Alvarez, Frances Joan D.; Summers, Brady J.; Dewdney, Tamaria G.; Aiken, Christopher; Zhang, Peijun; Engelman, Alan; Xiong, Yong

    2014-01-01

    Summary The myxovirus resistance (Mx) proteins are interferon-induced dynamin GTPases that can inhibit a variety of viruses. Recently, MxB, but not MxA, was shown to restrict HIV-1 by an unknown mechanism that likely occurs in close proximity to the host cell nucleus and involves the viral capsid. Here, we present the crystal structure of MxB and reveal determinants involved in HIV-1 restriction. MxB adopts an extended anti-parallel dimer and dimerization, but not higher-ordered oligomerization, is critical for restriction. Although MxB is structurally similar to MxA, the orientation of individual domains differs between MxA and MxB and their antiviral functions rely on separate determinants, indicating distinct mechanisms for virus inhibition. Additionally, MxB directly binds the HIV-1 capsid and this interaction depends on dimerization and the N-terminus of MxB as well as the assembled capsid lattice. These insights establish a framework for understanding the mechanism by which MxB restricts HIV-1. PMID:25312384

  10. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility

    SciTech Connect

    White, Tommy E.; Brandariz-Nuñez, Alberto; Valle-Casuso, Jose Carlos; Knowlton, Caitlin; Kim, Baek; Sawyer, Sara L.; Diaz-Griffero, Felipe

    2014-07-15

    SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did not lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition. - Highlights: • Human SAMHD1 single-nucleotide polymorphisms block HIV-1 and HIV-2 infection. • SAMHD1 polymorphisms do not affect its ability to block LINE-1 retrotransposition. • SAMHD1 polymorphisms decrease the cellular levels of dNTPs.

  11. Is the central nervous system a reservoir of HIV-1?

    PubMed Central

    Gray, Lachlan R.; Roche, Michael; Flynn, Jacqueline K.; Wesselingh, Steve L.; Gorry, Paul R.; Churchill, Melissa J.

    2014-01-01

    Purpose of the review To summarize the evidence in the literature that supports the CNS as a viral reservoir for HIV-1 and to prioritise future research efforts. Recent findings HIV-1 DNA has been detected in brain tissue of patients with undetectable viral load or neurocognitive disorders, and is associated with long-lived cells such as astrocytes and microglia. In neurocognitively normal patients, HIV-1 can be found at high frequency in these cells (4% of astrocytes and 20% of macrophages). CNS cells have unique molecular mechanisms to suppress viral replication and induce latency, which include increased expression of dominant negative transcription factors and suppressive epigenetic factors. There is also evidence of continued inflammation in patients lacking a CNS viral load, suggesting the production and activity of viral neurotoxins (for example Tat). Summary Together, these findings provide evidence that the CNS can potentially act as a viral reservoir of HIV-1. However, the majority of these studies were performed in historical cohorts (absence of cART or presence of viral load) which do not reflect modern day patients (cART-treated and undetectable viral load). Future studies will need to examine patient samples with these characteristics to conclusively determine if the CNS represents a relevant and important viral reservoir. PMID:25203642

  12. HIV-1 Vpr—a still “enigmatic multitasker”

    PubMed Central

    Guenzel, Carolin A.; Hérate, Cécile; Benichou, Serge

    2014-01-01

    Like other HIV-1 auxiliary proteins, Vpr is conserved within all the human (HIV-1, HIV-2) and simian (SIV) immunodeficiency viruses. However, Vpr and homologous HIV-2, and SIV Vpx are the only viral auxiliary proteins specifically incorporated into virus particles through direct interaction with the Gag precursor, indicating that this presence in the core of the mature virions is mainly required for optimal establishment of the early steps of the virus life cycle in the newly infected cell. In spite of its small size, a plethora of effects and functions have been attributed to Vpr, including induction of cell cycle arrest and apoptosis, modulation of the fidelity of reverse transcription, nuclear import of viral DNA in macrophages and other non-dividing cells, and transcriptional modulation of viral and host cell genes. Even if some more recent studies identified a few cellular targets that HIV-1 Vpr may utilize in order to perform its different tasks, the real role and functions of Vpr during the course of natural infection are still enigmatic. In this review, we will summarize the main reported functions of HIV-1 Vpr and their significance in the context of the viral life cycle. PMID:24744753

  13. Differentially-Expressed Pseudogenes in HIV-1 Infection.

    PubMed

    Gupta, Aditi; Brown, C Titus; Zheng, Yong-Hui; Adami, Christoph

    2015-10-01

    Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these "functional" pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit.

  14. Chemical crosslinking of the subunits of HIV-1 reverse transcriptase.

    PubMed Central

    Debyser, Z.; De Clercq, E.

    1996-01-01

    The reverse transcriptase (RT) of the human immunodeficiency virus type 1 (HIV-1) is composed of two subunits of 66 and 51 kDa in a 1 to 1 ratio. Because dimerization is a prerequisite for enzymatic activity, interference with the dimerization process could constitute an alternative antiviral strategy for RT inhibition. Here we describe an in vitro assay for the study of the dimerization state of HIV-1 reverse transcriptase based on chemical crosslinking of the subunits with dimethylsuberimidate. Crosslinking results in the formation of covalent bonds between the subunits, so that the crosslinked species can be resolved by denaturing gel electrophoresis. Crosslinked RT species with molecular weight greater than that of the dimeric form accumulate during a 1-15-min time course. Initial evidence suggests that those high molecular weight species represent trimers and tetramers and may be the result of intramolecular crosslinking of the subunits of a higher-order RT oligomer. A peptide that corresponds to part of the tryptophan repeat motif in the connection domain of HIV-1 RT inhibits crosslink formation as well as enzymatic activity. The crosslinking assay thus allows the investigation of the effect of inhibitors on the dimerization of HIV-1 RT. PMID:8745406

  15. High levels of CC-chemokine expression and downregulated levels of CCR5 during HIV-1/HTLV-1 and HIV-1/HTLV-2 coinfections.

    PubMed

    Oo, Z; Barrios, C S; Castillo, L; Beilke, M A

    2015-05-01

    The human T-cell lymphotropic virus type 1 (HTLV-1) and HTLV-2 are common copathogens among Human Immunodeficiency Virus (HIV)-infected individuals. HTLV-2 may confer a survival benefit among patients with HIV-1/HTLV-2 coinfections, along with lower plasma HIV-1 levels and delayed rates of CD4(+) T-cell decline. These effects have been attributed to the ability of the HTLV-2 viral transactivating Tax2 protein to induce the production of high levels of antiviral CC-chemokines and to downregulate expression of the CCR5 receptor, resulting in impaired entry of HIV-1 into CD4(+) T-cells. This study investigated the innate immunity of coinfected HIV/HTLV individuals by testing the ability of patient PBMCs to produce CC-chemokines in association CCR5 receptor modulation. The cellular proliferative responses of HIV/HTLV coinfected versus HIV monoinfected individuals were also evaluated. Higher levels of MIP-1α, MIP-1β, and RANTES (P < 0.05) were found in HIV-1/HTLV-2 coinfected group compared to HIV-1 monoinfected population. Upregulated levels of RANTES were shown in HIV-1/HTLV-1 after 1 and 3 days of culture (P < 0.05). Lymphocytes from HIV-1/HTLV-2 coinfected individuals showed significant CCR5 downregulation after 1 and 3 days of culture compared to lymphocytes from HIV-1 and uninfected groups (P < 0.05). Lower percentages of CCR5-positive cells were found in HIV-1/HTLV-1 coinfected after 3 days of incubation (P < 0.05). Levels of proliferation were significantly higher in the HIV-1/HTLV-1 group compared to HIV-1 alone (P < 0.05). HTLV-2 and HTLV-1 infections may induce the involvement of innate immunity against HIV-1 via stimulation of CC-chemokines and receptors, potentially modifying CCR5/HIV-1 binding and HIV-1 progression in coinfected individuals.

  16. The Nucleoside Analog BMS-986001 Shows Greater In Vitro Activity against HIV-2 than against HIV-1.

    PubMed

    Smith, Robert A; Raugi, Dana N; Wu, Vincent H; Leong, Sally S; Parker, Kate M; Oakes, Mariah K; Sow, Papa Salif; Ba, Selly; Seydi, Moussa; Gottlieb, Geoffrey S

    2015-12-01

    Treatment options for individuals infected with human immunodeficiency virus type 2 (HIV-2) are restricted by the intrinsic resistance of the virus to nonnucleoside reverse transcriptase inhibitors (NNRTIs) and the reduced susceptibility of HIV-2 to several protease inhibitors (PIs) used in antiretroviral therapy (ART). In an effort to identify new antiretrovirals for HIV-2 treatment, we evaluated the in vitro activity of the investigational nucleoside analog BMS-986001 (2',3'-didehydro-3'-deoxy-4'-ethynylthymidine; also known as censavudine, festinavir, OBP-601, 4'-ethynyl stavudine, or 4'-ethynyl-d4T). In single-cycle assays, BMS-986001 inhibited HIV-2 isolates from treatment-naive individuals, with 50% effective concentrations (EC50s) ranging from 30 to 81 nM. In contrast, EC50s for group M and O isolates of HIV-1 ranged from 450 to 890 nM. Across all isolates tested, the average EC50 for HIV-2 was 9.5-fold lower than that for HIV-1 (64 ± 18 nM versus 610 ± 200 nM, respectively; mean ± standard deviation). BMS-986001 also exhibited full activity against HIV-2 variants whose genomes encoded the single amino acid changes K65R and Q151M in reverse transcriptase, whereas the M184V mutant was 15-fold more resistant to the drug than the parental HIV-2ROD9 strain. Taken together, our findings show that BMS-986001 is an effective inhibitor of HIV-2 replication. To our knowledge, BMS-986001 is the first nucleoside analog that, when tested against a diverse collection of HIV-1 and HIV-2 isolates, exhibits more potent activity against HIV-2 than against HIV-1 in culture. PMID:26392486

  17. The Nucleoside Analog BMS-986001 Shows Greater In Vitro Activity against HIV-2 than against HIV-1

    PubMed Central

    Raugi, Dana N.; Wu, Vincent H.; Leong, Sally S.; Parker, Kate M.; Oakes, Mariah K.; Sow, Papa Salif; Ba, Selly; Seydi, Moussa; Gottlieb, Geoffrey S.

    2015-01-01

    Treatment options for individuals infected with human immunodeficiency virus type 2 (HIV-2) are restricted by the intrinsic resistance of the virus to nonnucleoside reverse transcriptase inhibitors (NNRTIs) and the reduced susceptibility of HIV-2 to several protease inhibitors (PIs) used in antiretroviral therapy (ART). In an effort to identify new antiretrovirals for HIV-2 treatment, we evaluated the in vitro activity of the investigational nucleoside analog BMS-986001 (2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine; also known as censavudine, festinavir, OBP-601, 4′-ethynyl stavudine, or 4′-ethynyl-d4T). In single-cycle assays, BMS-986001 inhibited HIV-2 isolates from treatment-naive individuals, with 50% effective concentrations (EC50s) ranging from 30 to 81 nM. In contrast, EC50s for group M and O isolates of HIV-1 ranged from 450 to 890 nM. Across all isolates tested, the average EC50 for HIV-2 was 9.5-fold lower than that for HIV-1 (64 ± 18 nM versus 610 ± 200 nM, respectively; mean ± standard deviation). BMS-986001 also exhibited full activity against HIV-2 variants whose genomes encoded the single amino acid changes K65R and Q151M in reverse transcriptase, whereas the M184V mutant was 15-fold more resistant to the drug than the parental HIV-2ROD9 strain. Taken together, our findings show that BMS-986001 is an effective inhibitor of HIV-2 replication. To our knowledge, BMS-986001 is the first nucleoside analog that, when tested against a diverse collection of HIV-1 and HIV-2 isolates, exhibits more potent activity against HIV-2 than against HIV-1 in culture. PMID:26392486

  18. The Nucleoside Analog BMS-986001 Shows Greater In Vitro Activity against HIV-2 than against HIV-1.

    PubMed

    Smith, Robert A; Raugi, Dana N; Wu, Vincent H; Leong, Sally S; Parker, Kate M; Oakes, Mariah K; Sow, Papa Salif; Ba, Selly; Seydi, Moussa; Gottlieb, Geoffrey S

    2015-12-01

    Treatment options for individuals infected with human immunodeficiency virus type 2 (HIV-2) are restricted by the intrinsic resistance of the virus to nonnucleoside reverse transcriptase inhibitors (NNRTIs) and the reduced susceptibility of HIV-2 to several protease inhibitors (PIs) used in antiretroviral therapy (ART). In an effort to identify new antiretrovirals for HIV-2 treatment, we evaluated the in vitro activity of the investigational nucleoside analog BMS-986001 (2',3'-didehydro-3'-deoxy-4'-ethynylthymidine; also known as censavudine, festinavir, OBP-601, 4'-ethynyl stavudine, or 4'-ethynyl-d4T). In single-cycle assays, BMS-986001 inhibited HIV-2 isolates from treatment-naive individuals, with 50% effective concentrations (EC50s) ranging from 30 to 81 nM. In contrast, EC50s for group M and O isolates of HIV-1 ranged from 450 to 890 nM. Across all isolates tested, the average EC50 for HIV-2 was 9.5-fold lower than that for HIV-1 (64 ± 18 nM versus 610 ± 200 nM, respectively; mean ± standard deviation). BMS-986001 also exhibited full activity against HIV-2 variants whose genomes encoded the single amino acid changes K65R and Q151M in reverse transcriptase, whereas the M184V mutant was 15-fold more resistant to the drug than the parental HIV-2ROD9 strain. Taken together, our findings show that BMS-986001 is an effective inhibitor of HIV-2 replication. To our knowledge, BMS-986001 is the first nucleoside analog that, when tested against a diverse collection of HIV-1 and HIV-2 isolates, exhibits more potent activity against HIV-2 than against HIV-1 in culture.

  19. Accuracy of the TRUGENE HIV-1 Genotyping Kit

    PubMed Central

    Grant, Robert M.; Kuritzkes, Daniel R.; Johnson, Victoria A.; Mellors, John W.; Sullivan, John L.; Swanstrom, Ronald; D'Aquila, Richard T.; Van Gorder, Mark; Holodniy, Mark; Lloyd, Jr., Robert M.; Reid, Caroline; Morgan, Gillian F.; Winslow, Dean L.

    2003-01-01

    Drug resistance and poor virological responses are associated with well-characterized mutations in the viral reading frames that encode the proteins that are targeted by currently available antiretroviral drugs. An integrated system was developed that includes target gene amplification, DNA sequencing chemistry (TRUGENE HIV-1 Genotyping Kit), and hardware and interpretative software (the OpenGene DNA Sequencing System) for detection of mutations in the human immunodeficiency virus type 1 (HIV-1) protease and reverse transcriptase sequences. The integrated system incorporates reverse transcription-PCR from extracted HIV-1 RNA, a coupled amplification and sequencing step (CLIP), polyacrylamide gel electrophoresis, semiautomated analysis of data, and generation of an interpretative report. To assess the accuracy and robustness of the assay system, 270 coded plasma specimens derived from nine patients were sent to six laboratories for blinded analysis. All specimens contained HIV-1 subtype B viruses. Results of 270 independent assays were compared to “gold standard” consensus sequences of the virus populations determined by sequence analysis of 16 to 20 clones of viral DNA amplicons derived from two independent PCRs using primers not used in the kit. The accuracy of the integrated system for nucleotide base identification was 98.7%, and the accuracy for codon identification at 54 sites associated with drug resistance was 97.6%. In a separate analysis of plasma spiked with infectious molecular clones, the assay reproducibly detected all 72 different drug resistance mutations that were evaluated. There were no significant differences in accuracy between laboratories, between technologists, between kit lots, or between days. This integrated assay system for the detection of HIV-1 drug resistance mutations has a high degree of accuracy and reproducibility in several laboratories. PMID:12682149

  20. Inhibition of HIV-1 Tat-mediated LTR transactivation and HIV-1 infection by anti-Tat single chain intrabodies.

    PubMed Central

    Mhashilkar, A M; Bagley, J; Chen, S Y; Szilvay, A M; Helland, D G; Marasco, W A

    1995-01-01

    Genes encoding the rearranged immunoglobulin heavy and light chain variable regions of anti-HIV-1 Tat, exon 1 or exon 2 specific monoclonal antibodies have been used to construct single chain intracellular antibodies 'intrabodies' for expression in the cytoplasm of mammalian cells. These anti-Tat single chain intrabodies (anti-Tat sFvs) are additionally modified with a C-terminal human C kappa domain to increase cytoplasmic stability and/or the C-terminal SV40 nuclear localization signal to direct the nascent intrabody to the nuclear compartment, respectively. The anti-Tat sFvs with specific binding activity against the N-terminal activation domain of Tat, block Tat-mediated transactivation of HIV-1 LTR as well as intracellular trafficking of Tat in mammalian cells. As a result, the transformed lymphocytes expressing anti-Tat sFvs are resistant to HIV-1 infection. Thus, these studies demonstrate that stably expressed single chain intrabodies and their modified forms can effectively target molecules in the cytoplasm and nuclear compartments of eukaryotic cells. Furthermore, these studies suggest that anti-Tat sFvs used either alone or in combination with other genetically based strategies may be useful for the gene therapy of HIV-1 infection and AIDS. Images PMID:7537216

  1. Performance of rapid tests for discrimination between HIV-1 and/or HIV-2 infections.

    PubMed

    Gautheret-Dejean, Agnès; Bocobza, Jonathan; Brunet, Sylvie; Damond, Florence; Plantier, Jean-Christophe; Barin, Francis

    2015-12-01

    Major differences exist between HIV-1 and HIV-2 in terms of epidemiology, pathogenicity, sensitivity to antiretrovirals. Determining the type of HIV infecting a patient is essential for management. The aim of this study was to evaluate the ability of simple/rapid tests to differentiate between HIV-1 and/or HIV-2 infections. We analyzed 116 samples from patients infected with HIV-1 (n = 61), HIV-2 (n = 47), or HIV-1+HIV-2 (n = 8) at the chronic stage of infection. Each sample was tested with SD Bioline HIV-1/2 3.0, ImmunoFlow HIV1-HIV2, ImmunoFlow HIV1-HIV2 (WB), Genie III HIV-1/HIV-2, ImmunoComb HIV1&2 BiSpot. HIV-1, or HIV-2 single infection was identified with a sensitivity ranging from 90% to 100%. The ability to detect dual infection was less sensitive (12.5-100%). SD Bioline HIV-1/2 3.0, ImmunoFlow HIV1-HIV2, and Genie III were unable to detect HIV-1 group O infection in one, one and two cases, respectively. The specificity of detection of HIV-1, HIV-2, or HIV-1+HIV-2 antibodies differed greatly (36-100%). ImmunoComb BiSpot had the highest sensitivity values (99-100% for HIV-1, 98% for HIV-2, and 75-87.5% for dual infection) and specificity values (94-100% for HIV-1, 100% for HIV-2, and 97-100% for dual infection). In conclusion, this study showed that no single rapid test had a perfect sensitivity/specificity ratio, particularly in the case of the double infections.

  2. Vaccine Induction of Antibodies Against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2

    PubMed Central

    Liao, Hua-Xin; Bonsignori, Mattia; Alam, S. Munir; McLellan, Jason S.; Tomaras, Georgia D.; Moody, M. Anthony; Kozink, Daniel M.; Hwang, Kwan-Ki; Chen, Xi; Tsao, Chun-Yen; Liu, Pinghuang; Lu, Xiaozhi; Parks, Robert J.; Montefiori, David C.; Ferrari, Guido; Pollara, Justin; Rao, Mangala; Peachman, Kristina K.; Santra, Sampa; Letvin, Norman L.; Karasavvas, Nicos; Yang, Zhi-Yong; Dai, Kaifan; Pancera, Marie; Gorman, Jason; Wiehe, Kevin; Nicely, Nathan I.; Rerks-Ngarm, Supachai; Nitayaphan, Sorachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Tartaglia, James; Sinangil, Faruk; Kim, Jerome H.; Michael, Nelson L.; Kepler, Thomas B.; Kwong, Peter D.; Mascola, John R.; Nabel, Gary J.; Pinter, Abraham; Zolla-Pazner, Susan; Haynes, Barton F.

    2013-01-01

    Summary The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, that correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1–V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field isolate HIV-1-infected CD4+ T cells. Crystal structures of two of the V2 antibodies demonstrated residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the beta strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options. PMID:23313589

  3. German-austrian recommendations for HIV1-therapy in pregnancy and in HIV1-exposed newborn - update 2008

    PubMed Central

    2009-01-01

    German-Austrian recommendations for HIV1-therapy in pregnancy - Update 2008 Bernd Buchholz (University Medical Centre Mannheim, Pediatric Clinic), Matthias Beichert (Mannheim, Gynecology and Obstetrics Practice), Ulrich Marcus (Robert Koch Institute, Berlin), Thomas Grubert, Andrea Gingelmaier (Gynecology Clinic of the Ludwig Maximilians University of Munich), Dr. med. Annette Haberl (HIV-Department, J. W. Goethe-University Hospital, Frankfurt), Dr. med. Brigitte Schmied (Otto-Wagner Spital, Wien). In Germany during the last years about 200-250 HIV1-infected pregnant women delivered a baby each year, a number that is currently increasing. To determine the HIV-status early in pregnancy voluntary HIV-testing of all pregnant women is recommended in Germany and Austria as part of prenatal care. In those cases, where HIV1-infection was known during pregnancy, since 1995 the rate of vertical transmission of HIV1 was reduced to 1-2%. This low transmission rate has been achieved by the combination of anti-retroviral therapy of pregnant women, caesarean section scheduled before onset of labour, anti-retroviral post exposition prophylaxis in the newborn and refraining from breast-feeding by the HIV1-infected mother. To keep pace with new results in research, approval of new anti-retroviral drugs and changes in the general treatment recommendations for HIV1-infected adults, in 1998, 2001, 2003 and 2005 an interdisciplinary consensus meeting was held. Gynaecologists, infectious disease specialists, paediatricians, pharmacologists, virologists and members of the German AIDS Hilfe (NGO) were participating in this conference to update the prevention strategies. A fifth update became necessary in 2008. The updating process was started in January 2008 and was terminated in September 2008. The guidelines provide new recommendations on the indication and the starting point for HIV-therapy in pregnancies without complications, drugs and drug combinations to be used preferably in these

  4. Characteristics of HIV-1 Discordant Couples Enrolled in a Trial of HSV-2 Suppression to Reduce HIV-1 Transmission: The Partners Study

    PubMed Central

    Lingappa, Jairam R.; Kahle, Erin; Mugo, Nelly; Mujugira, Andrew; Magaret, Amalia; Baeten, Jared; Bukusi, Elizabeth A.; Cohen, Craig R.; Katabira, Elly; Ronald, Allan; Kiarie, James; Farquhar, Carey; Stewart, Grace John; Makhema, Joseph; Essex, M.; Were, Edwin; Fife, Kenneth; deBruyn, Guy; Gray, Glenda; McIntyre, James; Manongi, Rachel; Kapiga, Saidi; Coetzee, David; Allen, Susan; Inambao, Mubiana; Kayitenkore, Kayitesi; Karita, Etienne; Kanweka, William; Delany, Sinead; Rees, Helen; Vwalika, Bellington; Coombs, Robert W.; Morrow, Rhoda; Whittington, William; Corey, Lawrence; Wald, Anna; Celum, Connie

    2009-01-01

    Background The Partners HSV-2/HIV-1 Transmission Study (Partners Study) is a phase III, placebo-controlled trial of daily acyclovir for genital herpes (HSV-2) suppression among HIV-1/HSV-2 co-infected persons to reduce HIV-1 transmission to their HIV-1 susceptible partners, which requires recruitment of HIV-1 serodiscordant heterosexual couples. We describe the baseline characteristics of this cohort. Methods HIV-1 serodiscordant heterosexual couples, in which the HIV-1 infected partner was HSV-2 seropositive, had a CD4 count ≥250 cells/mcL and was not on antiretroviral therapy, were enrolled at 14 sites in East and Southern Africa. Demographic, behavioral, clinical and laboratory characteristics were assessed. Results Of the 3408 HIV-1 serodiscordant couples enrolled, 67% of the HIV-1 infected partners were women. Couples had cohabitated for a median of 5 years (range 2–9) with 28% reporting unprotected sex in the month prior to enrollment. Among HIV-1 susceptible participants, 86% of women and 59% of men were HSV-2 seropositive. Other laboratory-diagnosed sexually transmitted infections were uncommon (<5%), except for Trichomonas vaginalis in 14% of HIV-1 infected women. Median baseline CD4 count for HIV-1 infected participants was 462cells/mcL and median HIV-1 plasma RNA was 4.2 log10 copies/mL. After adjusting for age and African region, correlates of HIV-1 RNA level included male gender (+0.24 log10 copies/mL; p<0.001) and CD4 count (−0.25 and −0.55 log10 copies/mL for CD4 350–499 and >500 relative to <350, respectively, p<0.001). Conclusions The Partners Study successfully enrolled a cohort of 3408 heterosexual HIV-1 serodiscordant couples in Africa at high risk for HIV-1 transmission. Follow-up of this cohort will evaluate the efficacy of acyclovir for HSV-2 suppression in preventing HIV-1 transmission and provide insights into biological and behavioral factors determining heterosexual HIV-1 transmission. Trial Registration ClinicalTrials.gov NCT

  5. Association of HIV-1 Envelope-Specific Breast Milk IgA Responses with Reduced Risk of Postnatal Mother-to-Child Transmission of HIV-1

    PubMed Central

    Pollara, Justin; McGuire, Erin; Fouda, Genevieve G.; Rountree, Wes; Eudailey, Josh; Overman, R. Glenn; Seaton, Kelly E.; Deal, Aaron; Edwards, R. Whitney; Tegha, Gerald; Kamwendo, Deborah; Kumwenda, Jacob; Nelson, Julie A. E.; Liao, Hua-Xin; Brinkley, Christie; Denny, Thomas N.; Ochsenbauer, Christina; Ellington, Sascha; King, Caroline C.; Jamieson, Denise J.; van der Horst, Charles; Kourtis, Athena P.; Tomaras, Georgia D.; Ferrari, Guido

    2015-01-01

    ABSTRACT Infants born to HIV-1-infected mothers in resource-limited areas where replacement feeding is unsafe and impractical are repeatedly exposed to HIV-1 throughout breastfeeding. Despite this, the majority of infants do not contract HIV-1 postnatally, even in the absence of maternal antiretroviral therapy. This suggests that immune factors in breast milk of HIV-1-infected mothers help to limit vertical transmission. We compared the HIV-1 envelope-specific breast milk and plasma antibody responses of clade C HIV-1-infected postnatally transmitting and nontransmitting mothers in the control arm of the Malawi-based Breastfeeding Antiretrovirals and Nutrition Study using multivariable logistic regression modeling. We found no association between milk or plasma neutralization activity, antibody-dependent cell-mediated cytotoxicity, or HIV-1 envelope-specific IgG responses and postnatal transmission risk. While the envelope-specific breast milk and plasma IgA responses also did not reach significance in predicting postnatal transmission risk in the primary model after correction for multiple comparisons, subsequent exploratory analysis using two distinct assay methodologies demonstrated that the magnitudes of breast milk total and secretory IgA responses against a consensus HIV-1 envelope gp140 (B.con env03) were associated with reduced postnatal transmission risk. These results suggest a protective role for mucosal HIV-1 envelope-specific IgA responses in the context of postnatal virus transmission. This finding supports further investigations into the mechanisms by which mucosal IgA reduces risk of HIV-1 transmission via breast milk and into immune interventions aimed at enhancing this response. IMPORTANCE Infants born to HIV-1-infected mothers are repeatedly exposed to the virus in breast milk. Remarkably, the transmission rate is low, suggesting that immune factors in the breast milk of HIV-1-infected mothers help to limit transmission. We compared the antibody

  6. A novel RealTime HIV-1 Qualitative assay for the detection of HIV-1 nucleic acids in dried blood spots and plasma.

    PubMed

    Huang, Shihai; Erickson, Brian; Mak, Wai Bing; Salituro, John; Abravaya, Klara

    2011-12-01

    Abbott RealTime HIV-1 Qualitative is an in vitro real-time PCR assay for detecting HIV-1 nucleic acids in human plasma and dried blood spots (DBS). The assay was designed to be used in diagnosis of HIV-1 infections in pediatric and adult patients, with an emphasis on the applicability in resource-limited settings. Use of DBS facilitates specimen collection from remote areas and transportation to testing laboratories. Small sample input requirement facilitates testing of specimens with limited collection volume. The Abbott RealTime HIV-1 Qualitative assay is capable of detecting HIV-1 group M subtypes A-H, group O and group N samples. HIV-1 virus concentrations detected with 95% probability were 80 copies/mL of plasma using the plasma protocol, and 2469 copies/mL of whole blood using the DBS protocol. The assay detected HIV-1 infection in 13 seroconversion panels an average 10.5 days earlier than an HIV-1 antibody test and 4.9 days earlier than a p24 antigen test. For specimens collected from 6 weeks to 18 months old infants born to HIV-1 positive mothers, assay results using both the DBS and plasma protocols agreed well with the Roche Amplicor HIV-1 DNA Test version 1.5 (95.5% agreement for DBS and 97.8% agreement for plasma).

  7. Human Immunodeficiency Virus Type 1 (HIV-1) Vpr Functions as an Immediate-Early Protein during HIV-1 Infection

    PubMed Central

    Hrimech, Mohammed; Yao, Xiao-Jian; Bachand, François; Rougeau, Nicole; Cohen, Éric A.

    1999-01-01

    Human immunodeficiency virus type 1 (HIV-1) Vpr is a virion-associated protein which facilitates HIV-1 infection of nondividing cells by contributing to the nuclear transport of the preintegration complex (PIC). Vpr was also shown to induce a cell cycle G2 arrest in infected proliferating cells that optimizes HIV-1 long terminal repeat (LTR)-directed gene expression and viral production. However, it is unclear whether this activity is mediated primarily early by virion-associated Vpr or alternatively late during infection when Vpr is de novo expressed. We report here that in the absence of de novo expression, virion-associated Vpr induces a transient G2 arrest that can subsequently lead to cell killing by apoptosis. Interestingly, the induction of both cell cycle G2 arrest and apoptosis by virion-associated Vpr requires viral entry but not viral replication, since reverse transcriptase and protease inhibitor treatments do not prevent these Vpr effects. These results raise the possibility that in vivo both infectious and noninfectious viruses contribute to the dysfunction and killing of CD4+ cells. In addition, our results reveal that virion-associated Vpr stimulates viral replication in proliferating cells after establishing a cell cycle G2 arrest by increasing LTR-directed gene expression. Importantly, this Vpr-mediated LTR activation appears to be a requirement for subsequent optimal Tat transactivation. Taken together, these results strongly suggest that in addition to participating in the HIV PIC nuclear transport in nondividing cells, virion-associated Vpr activates HIV-1 LTR-directed gene expression by manipulating the host cell cycle. From this, we conclude that Vpr functions as an immediate-early protein during HIV-1 infection. PMID:10196306

  8. HIV-1 Induced Nuclear Factor I-B (NF-IB) Expression Negatively Regulates HIV-1 Replication through Interaction with the Long Terminal Repeat Region

    PubMed Central

    Vemula, Sai Vikram; Veerasamy, Ravichandran; Ragupathy, Viswanath; Biswas, Santanu; Devadas, Krishnakumar; Hewlett, Indira

    2015-01-01

    Background: Retroviruses rely on host factors for cell entry, replication, transcription, and other major steps during their life cycle. Human Immunodeficiency Virus-1 (HIV-1) is well known for utilizing a plethora of strategies to evade the host immune response, including the establishment of latent infection within a subpopulation of susceptible cells. HIV-1 also manipulates cellular factors in latently infected cells and persists for long periods of time, despite the presence of successful highly active antiretroviral therapy (HAART). Results: In this study we demonstrate that Nuclear Factor-IB (NF-IB) is induced during HIV-1 infection and its expression negatively impacts viral replication. During HIV-1 infection in peripheral blood mononuclear cells (PBMCs), and the T cell line, Jurkat or during induction of virus replication in latently infected cells, ACH2 and J1.1, we observed a time-dependent alteration in NF-IB expression pattern that correlated with HIV-1 viral expression. Using the Chip assay, we observed an association of NF-IB with the long terminal repeat region of HIV-1 (LTR) (-386 to -453 nt), and this association negatively correlated with HIV-1 transcription. Furthermore, knock-down of NF-IB levels in J1.1 cells resulted in an increase of HIV-1 levels. Knock-down of NF-IB levels in J-Lat-Tat-GFP (A1), (a Jurkat cell GFP reporter model for latent HIV-1 infection) resulted in an increase in GFP levels, indicating a potential negative regulatory role of NF-IB in HIV-1 replication. Conclusion: Overall, our results suggest that NF-IB may play a role in intrinsic antiretroviral defenses against HIV-1. These observations may offer new insights into the correlation of the latently infected host cell types and HIV-1, and help to define new therapeutic approaches for triggering the switch from latency to active replication thereby eliminating HIV-1 latent infection. PMID:25664610

  9. Residue-Level Prediction of HIV-1 Antibody Epitopes Based on Neutralization of Diverse Viral Strains

    PubMed Central

    Chuang, Gwo-Yu; Acharya, Priyamvada; Schmidt, Stephen D.; Yang, Yongping; Louder, Mark K.; Zhou, Tongqing; Kwon, Young Do; Pancera, Marie; Bailer, Robert T.; Doria-Rose, Nicole A.; Nussenzweig, Michel C.; Mascola, John R.; Kwong, Peter D.

    2013-01-01

    Delineation of antibody epitopes at the residue level is key to understanding antigen resistance mutations, designing epitope-specific probes for antibody isolation, and developing epitope-based vaccines. Ideally, epitope residues are determined in the context of the atomic-level structure of the antibody-antigen complex, though structure determination may in many cases be impractical. Here we describe an efficient computational method to predict antibody-specific HIV-1 envelope (Env) epitopes at the residue level, based on neutralization panels of diverse viral strains. The method primarily utilizes neutralization potency data over a set of diverse viral strains representing the antigen, and enhanced accuracy could be achieved by incorporating information from the unbound structure of the antigen. The method was evaluated on 19 HIV-1 Env antibodies with neutralization panels comprising 181 diverse viral strains and with available antibody-antigen complex structures. Prediction accuracy was shown to improve significantly over random selection, with an average of greater-than-8-fold enrichment of true positives at the 0.05 false-positive rate level. The method was used to prospectively predict epitope residues for two HIV-1 antibodies, 8ANC131 and 8ANC195, for which we experimentally validated the predictions. The method is inherently applicable to antigens that exhibit sequence diversity, and its accuracy was found to correlate inversely with sequence conservation of the epitope. Together the results show how knowledge inherent to a neutralization panel and unbound antigen structure can be utilized for residue-level prediction of antibody epitopes. PMID:23843642

  10. Mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    DOEpatents

    Korber, Bette T.; Fischer, William; Liao, Hua-Xin; Haynes, Barton F.; Letvin, Norman; Hahn; Beatrice H.

    2011-05-31

    The present invention relates to mosaic clade M HIV-1 Env polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  11. Abrogation of contaminating RNA activity in HIV-1 Gag VLPs

    PubMed Central

    2011-01-01

    Background HIV-1 Gag virus like particles (VLPs) used as candidate vaccines are regarded as inert particles as they contain no replicative nucleic acid, although they do encapsidate cellular RNAs. During HIV-1 Gag VLP production in baculovirus-based expression systems, VLPs incorporate the baculovirus Gp64 envelope glycoprotein, which facilitates their entry into mammalian cells. This suggests that HIV-1 Gag VLPs produced using this system facilitate uptake and subsequent expression of encapsidated RNA in mammalian cells - an unfavourable characteristic for a vaccine. Methods HIV-1 Gag VLPs encapsidating reporter chloramphenicol acetyl transferase (CAT) RNA, were made in insect cells using the baculovirus expression system. The presence of Gp64 on the VLPs was verified by western blotting and RT-PCR used to detect and quantitate encapsidated CAT RNA. VLP samples were heated to inactivate CAT RNA. Unheated and heated VLPs incubated with selected mammalian cell lines and cell lysates tested for the presence of CAT protein by ELISA. Mice were inoculated with heated and unheated VLPs using a DNA prime VLP boost regimen. Results HIV-1 Gag VLPs produced had significantly high levels of Gp64 (~1650 Gp64 molecules/VLP) on their surfaces. The amount of encapsidated CAT RNA/μg Gag VLPs ranged between 0.1 to 7 ng. CAT protein was detected in 3 of the 4 mammalian cell lines incubated with VLPs. Incubation with heated VLPs resulted in BHK-21 and HeLa cell lysates showing reduced CAT protein levels compared with unheated VLPs and HEK-293 cells. Mice inoculated with a DNA prime VLP boost regimen developed Gag CD8 and CD4 T cell responses to GagCAT VLPs which also boosted a primary DNA response. Heating VLPs did not abrogate these immune responses but enhanced the Gag CD4 T cell responses by two-fold. Conclusions Baculovirus-produced HIV-1 Gag VLPs encapsidating CAT RNA were taken up by selected mammalian cell lines. The presence of CAT protein indicates that encapsidated RNA was

  12. [Identification of Env-specific monoclonal antibodies from Chinese HIV-1 infected person by B cell activation and RT-PCR cloning].

    PubMed

    Wang, Hui-Min; Xu, Ke; Yu, Shuang-Qing; Ding, Lin-Lin; Luo, Hai-Yan; Flinko, Robin; Lewis, George K; Feng, Xia; Shao, Ji-Rong; Guan, Yong-Jun; Zeng, Yi

    2012-06-01

    To obtain protective human monoclonal antibody from HIV-1 infected person, we adapted a technology for isolating antigen specific monoclonal antibody from human memory B cells through in vitro B cell activation coupled with RT-PCT and expression cloning. Human B cells were purified by negative sorting from PBMCs of HIV-1 infected individuals and memory B cells were further enriched using anti-CD27 microbeads. Two hundred memory B cells per well were cultured in 96-well round-bottom plates Env-specific antibodies in supernatants were with feeder cells in medium containing EBV and CpG. screened by ELISA after 1-2 weeks' culture. Cells from positive wells of Env-specific antibody were harvested and total RNA was isolated. Human VH and Vkappa or Vlambda genes were amplified by RT-PCR and cloned into IgG1 and kappa or lambda expressing vectors. Functional VH and Vkappa or Vlambda were identified by cotransfecting 293T cells with individual heavy chain and light chain clones followed by analysis of culture supernatants by ELISA for Env-specific antibodies. Finally, corresponding mAb was produced by transient transfection of 293T cells with the identified VH and Vkappa/lambda pair and purified by protein A affinity chromatography. Purified monocolonal antibodies were used for HIV-1 specific antibody-dependent cell-mediated cytotoxicity (ADCC) and neutralizing activity assay. Four monocolonal Env-specific antibodies were isolated from one HIV-1 subtype B' infected individual. Two of them showed strong ADCC activity and one showed weak neutralizing activity against HIV-1. Its further studies on their application in therapeutic or prophylactic vaccines against HIV-1 should be grounded. PMID:22978159

  13. Quantitation of HIV-1 RNA in breast milk by real time PCR.

    PubMed

    Becquart, Pierre; Foulongne, Vincent; Willumsen, Juana; Rouzioux, Christine; Segondy, Michel; Van de Perre, Philippe

    2006-04-01

    HIV-1 RNA in breast milk is a strong predictor of HIV-1 transmission through breastfeeding. In the present report, breast milk samples from HIV-1 uninfected donors were spiked with dilution of quantified culture supernatant from HIV-1(NDK) infected PBMC. Two RNA extraction techniques based on silica extraction, Nuclisens (BioMerieux) and Triazol (Qiagen), two techniques based on guanidine thiocynanate/chloroforme extraction, TRIzol (Life Technologie) and Amplicor HIV-1 Monitor (Roche Diagnostic Systems), and one technique based on electrostatic adsorption on iron oxide micro beads (Promega) were compared. HIV-1 RNA was quantitated by real time PCR (LTR gene) and Amplicor HIV-1 Monitor. Combining magnetic micro beads extraction and real time PCR quantitation allowed to correctly quantify breast milk HIV-1 RNA, with a difference between the expected and measured HIV-1 RNA levels always lower than 0.3 log copies/ml. The same combination was confirmed on 25 breast milk samples from HIV-1 infected women collected in Kwazulu-Natal, South Africa, by comparing measurements with those obtained by the Amplicor HIV-1 Monitor (r(2)=0.88). Nucleic acid extraction by magnetic micro beads followed by real time PCR is a reliable, sensitive, rapid and simple procedure to quantify HIV-1 RNA in breast milk and allows for PCR inhibitors found frequently in these samples.

  14. Study of HIV-1 Evolution by Coding Thory and Entropic Chaos Degree

    NASA Astrophysics Data System (ADS)

    Sato, Keiko

    2011-01-01

    We studied the evolution of HIV-1 (Human Immuno-deficiency Virus Type 1) by means of coding theory and information dynamics. More precisely, (1) we applied various artificial codes to look for the similarity between these codes and the code of HIV-1; (2) the entropic chaos degree was used to describe the evolution of HIV-1.

  15. Activation of HIV-1 with Nanoparticle-Packaged Small-Molecule Protein Phosphatase-1-Targeting Compound

    PubMed Central

    Smith, Kahli A.; Lin, Xionghao; Bolshakov, Oleg; Griffin, James; Niu, Xiaomei; Kovalskyy, Dmytro; Ivanov, Andrey; Jerebtsova, Marina; Taylor, Robert E.; Akala, Emmanuel; Nekhai, Sergei

    2015-01-01

    Complete eradication of HIV-1 infection is impeded by the existence of latent HIV-1 reservoirs in which the integrated HIV-1 provirus is transcriptionally inactive. Activation of HIV-1 transcription requires the viral Tat protein and host cell factors, including protein phosphatase-1 (PP1). We previously developed a library of small compounds that targeted PP1 and identified a compound, SMAPP1, which induced HIV-1 transcription. However, this compound has a limited bioavailability in vivo and may not be able to reach HIV-1-infected cells and induce HIV-1 transcription in patients. We packaged SMAPP1 in polymeric polyethylene glycol polymethyl methacrylate nanoparticles and analyzed its release and the effect on HIV-1 transcription in a cell culture. SMAPP1 was efficiently packaged in the nanoparticles and released during a 120-hr period. Treatment of the HIV-1-infected cells with the SMAPP1-loaded nanoparticles induced HIV-1 transcription. Thus, nanoparticles loaded with HIV-1-targeting compounds might be useful for future anti-HIV-1 therapeutics. PMID:26839837

  16. Activation of HIV-1 with Nanoparticle-Packaged Small-Molecule Protein Phosphatase-1-Targeting Compound.

    PubMed

    Smith, Kahli A; Lin, Xionghao; Bolshakov, Oleg; Griffin, James; Niu, Xiaomei; Kovalskyy, Dmytro; Ivanov, Andrey; Jerebtsova, Marina; Taylor, Robert E; Akala, Emmanuel; Nekhai, Sergei

    2015-01-01

    Complete eradication of HIV-1 infection is impeded by the existence of latent HIV-1 reservoirs in which the integrated HIV-1 provirus is transcriptionally inactive. Activation of HIV-1 transcription requires the viral Tat protein and host cell factors, including protein phosphatase-1 (PP1). We previously developed a library of small compounds that targeted PP1 and identified a compound, SMAPP1, which induced HIV-1 transcription. However, this compound has a limited bioavailability in vivo and may not be able to reach HIV-1-infected cells and induce HIV-1 transcription in patients. We packaged SMAPP1 in polymeric polyethylene glycol polymethyl methacrylate nanoparticles and analyzed its release and the effect on HIV-1 transcription in a cell culture. SMAPP1 was efficiently packaged in the nanoparticles and released during a 120-hr period. Treatment of the HIV-1-infected cells with the SMAPP1-loaded nanoparticles induced HIV-1 transcription. Thus, nanoparticles loaded with HIV-1-targeting compounds might be useful for future anti-HIV-1 therapeutics. PMID:26839837

  17. Latency reversal and viral clearance to cure HIV-1.

    PubMed

    Margolis, David M; Garcia, J Victor; Hazuda, Daria J; Haynes, Barton F

    2016-07-22

    Research toward a cure for human immunodeficiency virus type 1 (HIV-1) infection has joined prevention and treatment efforts in the global public health agenda. A major approach to HIV eradication envisions antiretroviral suppression, paired with targeted therapies to enforce the expression of viral antigen from quiescent HIV-1 genomes, and immunotherapies to clear latent infection. These strategies are targeted to lead to viral eradication--a cure for AIDS. Paired testing of latency reversal and clearance strategies has begun, but additional obstacles to HIV eradication may emerge. Nevertheless, there is reason for optimism that advances in long-acting antiretroviral therapy and HIV prevention strategies will contribute to efforts in HIV cure research and that the implementation of these efforts will synergize to markedly blunt the effect of the HIV pandemic on society.

  18. Latency reversal and viral clearance to cure HIV-1.

    PubMed

    Margolis, David M; Garcia, J Victor; Hazuda, Daria J; Haynes, Barton F

    2016-07-22

    Research toward a cure for human immunodeficiency virus type 1 (HIV-1) infection has joined prevention and treatment efforts in the global public health agenda. A major approach to HIV eradication envisions antiretroviral suppression, paired with targeted therapies to enforce the expression of viral antigen from quiescent HIV-1 genomes, and immunotherapies to clear latent infection. These strategies are targeted to lead to viral eradication--a cure for AIDS. Paired testing of latency reversal and clearance strategies has begun, but additional obstacles to HIV eradication may emerge. Nevertheless, there is reason for optimism that advances in long-acting antiretroviral therapy and HIV prevention strategies will contribute to efforts in HIV cure research and that the implementation of these efforts will synergize to markedly blunt the effect of the HIV pandemic on society. PMID:27463679

  19. The HIV-1 Epidemic: Low- to Middle-Income Countries

    PubMed Central

    Shao, Yiming; Williamson, Carolyn

    2012-01-01

    Low- to middle-income countries bear the overwhelming burden of the human immunodeficiency virus type 1 (HIV-1) epidemic in terms of the numbers of their citizens living with HIV/AIDS (acquired immunodeficiency syndrome), the high degrees of viral diversity often involving multiple HIV-1 clades circulating within their populations, and the social and economic factors that compromise current control measures. Distinct epidemics have emerged in different geographical areas. These epidemics differ in their severity, the population groups they affect, their associated risk behaviors, and the viral strains that drive them. In addition to inflicting great hum