Science.gov

Sample records for 4g wireless networks

  1. Mobile Applications and 4G Wireless Networks: A Framework for Analysis

    ERIC Educational Resources Information Center

    Yang, Samuel C.

    2012-01-01

    Purpose: The use of mobile wireless data services continues to increase worldwide. New fourth-generation (4G) wireless networks can deliver data rates exceeding 2 Mbps. The purpose of this paper is to develop a framework of 4G mobile applications that utilize such high data rates and run on small form-factor devices. Design/methodology/approach:…

  2. Mobile Applications and 4G Wireless Networks: A Framework for Analysis

    ERIC Educational Resources Information Center

    Yang, Samuel C.

    2012-01-01

    Purpose: The use of mobile wireless data services continues to increase worldwide. New fourth-generation (4G) wireless networks can deliver data rates exceeding 2 Mbps. The purpose of this paper is to develop a framework of 4G mobile applications that utilize such high data rates and run on small form-factor devices. Design/methodology/approach:…

  3. Radio Resource Allocation on Complex 4G Wireless Cellular Networks

    NASA Astrophysics Data System (ADS)

    Psannis, Kostas E.

    2015-09-01

    In this article we consider the heuristic algorithm which improves step by step wireless data delivery over LTE cellular networks by using the total transmit power with the constraint on users’ data rates, and the total throughput with the constraints on the total transmit power as well as users’ data rates, which are jointly integrated into a hybrid-layer design framework to perform radio resource allocation for multiple users, and to effectively decide the optimal system parameter such as modulation and coding scheme (MCS) in order to adapt to the varying channel quality. We propose new heuristic algorithm which balances the accessible data rate, the initial data rates of each user allocated by LTE scheduler, the priority indicator which signals delay- throughput- packet loss awareness of the user, and the buffer fullness by achieving maximization of radio resource allocation for multiple users. It is noted that the overall performance is improved with the increase in the number of users, due to multiuser diversity. Experimental results illustrate and validate the accuracy of the proposed methodology.

  4. Cardiac ultrasonography over 4G wireless networks using a tele-operated robot.

    PubMed

    Avgousti, Sotiris; Panayides, Andreas S; Jossif, Antonis P; Christoforou, Eftychios G; Vieyres, Pierre; Novales, Cyril; Voskarides, Sotos; Pattichis, Constantinos S

    2016-09-01

    This Letter proposes an end-to-end mobile tele-echography platform using a portable robot for remote cardiac ultrasonography. Performance evaluation investigates the capacity of long-term evolution (LTE) wireless networks to facilitate responsive robot tele-manipulation and real-time ultrasound video streaming that qualifies for clinical practice. Within this context, a thorough video coding standards comparison for cardiac ultrasound applications is performed, using a data set of ten ultrasound videos. Both objective and subjective (clinical) video quality assessment demonstrate that H.264/AVC and high efficiency video coding standards can achieve diagnostically-lossless video quality at bitrates well within the LTE supported data rates. Most importantly, reduced latencies experienced throughout the live tele-echography sessions allow the medical expert to remotely operate the robot in a responsive manner, using the wirelessly communicated cardiac ultrasound video to reach a diagnosis. Based on preliminary results documented in this Letter, the proposed robotised tele-echography platform can provide for reliable, remote diagnosis, achieving comparable quality of experience levels with in-hospital ultrasound examinations.

  5. Application of 4G wireless network-based system for remote diagnosis and nursing of stomal complications

    PubMed Central

    Xu, Xiulian; Cao, Yingjuan; Luan, Xiaorong

    2014-01-01

    Background: This study aims to apply 4G wireless network in the remote diagnosis of stoma complications for the first time. Background: Remote diagnosis and nursing care for a variety of illnesses are urgently needed in clinical settings. Objectives: Combining with relevant clinical manifestations, an Android phone-based intelligent diagnosis system was designed to construct a universe, easy access to exploitation and human-computer interaction database and exploitation environment for applications and programs. Methods: “Production rule” and forward reasoning method were utilized to design arborescence structures and logic reasoner associated with stoma complications. Stoma physicians were responsible for delivering evaluation scores on patients’ health status using analytic hierarchy process. The emphasis of this study is to exploit an “Android phone-based system for remote diagnosis of stoma”, which is of certain universe usage. Results: Such system was tested in the Medicine Information Center of Qilu Hospital of Shandong University and initially applied in the city of De Zhou, Shandong province, China. Conclusions: These results collectively demonstrated that the system is easy to carry, of high utility and free from the limitations of wire network environment, etc. It provides clinical evidence for establishing a novel type model for the exchange between patients and physicians. PMID:25550986

  6. 4G antennas for wireless eyewear devices and related SAR

    NASA Astrophysics Data System (ADS)

    Cihangir, Aykut; Whittow, Will; Panagamuwa, Chinthana; Jacquemod, Gilles; Gianesello, Frédéric; Luxey, Cyril

    2015-11-01

    In this paper, we first present a feasibility study to design 4G antennas (700-960 MHz and 1.7-2.7 GHz) for eyewear devices. Those eyewear devices should be connected to the last generation cellular networks, Wireless Local Area Networks or wireless hotspots. Three coupling element type antennas with their matching networks are evaluated in terms of reflection coefficient and total radiation efficiency when the eyewear is placed on the user's head. We also present Specific Absorption Rate (SAR) simulations when the eyewear is positioned over a homogeneous SAM phantom and over a heterogeneous VH (Visible Human) phantom: the SAR levels are compared to international limit values. In a second step, we present experimental results obtained with 3D printed eyewear and coupling elements etched on a classical PCB substrate where the matching circuits are optimized close to the feeding point of the coupling element. Simulated and measured values are in very good agreement: 7 to 16% and 9 to 35% total efficiency are respectively obtained for the low- and high-frequency bands. However, simulated SAR values are somewhat higher than authorized levels with preoccupant high electromagnetic field distribution close to the eye of the user.

  7. Traffic Dimensioning and Performance Modeling of 4G LTE Networks

    ERIC Educational Resources Information Center

    Ouyang, Ye

    2011-01-01

    Rapid changes in mobile techniques have always been evolutionary, and the deployment of 4G Long Term Evolution (LTE) networks will be the same. It will be another transition from Third Generation (3G) to Fourth Generation (4G) over a period of several years, as is the case still with the transition from Second Generation (2G) to 3G. As a result,…

  8. Traffic Dimensioning and Performance Modeling of 4G LTE Networks

    ERIC Educational Resources Information Center

    Ouyang, Ye

    2011-01-01

    Rapid changes in mobile techniques have always been evolutionary, and the deployment of 4G Long Term Evolution (LTE) networks will be the same. It will be another transition from Third Generation (3G) to Fourth Generation (4G) over a period of several years, as is the case still with the transition from Second Generation (2G) to 3G. As a result,…

  9. A Dynamic Mobile Grid System for 4G Networks

    NASA Astrophysics Data System (ADS)

    Abdelkader, Manel; Boudriga, Mohamed Hamdi Noureddine

    Future networks specially International Mobile Telecommunications-advanced, better known as 4G, will come up with a panoply of services so as to provide a comprehensive and secure IP-based solution where facilities such as voice, data and stremed multimedia will be provided to users anywhere at anytime. This solution will also provide much higher data rates compared to previous generations. More importantly, the 4G architecture will strongly promote ubiquitous computing, which involves many computational devices and systems simultaneously. Such devices and systems can even be unaware that they are contributing to computational process.

  10. Community Wireless Networks

    ERIC Educational Resources Information Center

    Feld, Harold

    2005-01-01

    With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…

  11. Community Wireless Networks

    ERIC Educational Resources Information Center

    Feld, Harold

    2005-01-01

    With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…

  12. Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Ishmael, Johnathan; Race, Nicholas

    Wireless Mesh Networks have emerged as an important technology in building next-generation networks. They are seen to have a range of benefits over traditional wired and wireless networks including low deployment costs, high scalability and resiliency to faults. Moreover, Wireless Mesh Networks (WMNs) are often described as being autonomic with self-* (healing and configuration) properties and their popularity has grown both as a research platform and as a commercially exploitable technology.

  13. Multimedia wireless networking

    NASA Astrophysics Data System (ADS)

    Jain, Rajeev; Alwan, Abeer; Gerla, Mario; Kleinrock, Leonard; Villasenor, John D.; Belzer, Ben; Boring, Walter; Molloy, Stephen; Nazareth, Sean; Siqueira, Marcio; Short, Joel; Tsai, Jack

    1996-03-01

    Current wireless network systems (e.g. metropolitan cellular) are constrained by fixed bandwidth allocations and support only a narrow range of services (voice and low bit-rate data). To overcome these constraints and advance the state of the art in wireless multimedia communications, we are developing variable-rate video and speech compression algorithms, and wireless node architectures that will enable peer-to-peer multimedia networking even with very low bandwidth. To support this objective, each wireless node must support new applications (for multimedia), advances in networking and source coding to support multimedia under limited bandwidth conditions (wireless), advances in physical layer design to support robust, low power, high packet throughput links, low power DSP for multimedia compression, and an architectural strategy to integrate these components into an efficient node. The algorithms and architectures to support this functionality are presented here, together with some preliminary results on network performance.

  14. Wireless nanosensor network system

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kwon, Hyukjun; Kegley, Lauren; Yoon, Hargsoon; Varadan, Vijay K.

    2009-03-01

    Many types of wireless modules are being developed to enhance wireless performance with low power consumption, compact size, high data rates, and wide range coverage. However trade-offs must be taken into consideration in order to satisfy all aspects of wireless performance. For example, in order to increase the data rate and wide range coverage, power consumption should be sacrificed. To overcome these drawbacks, the paper presents a wireless client module which offers low power consumption along with a wireless receiver module that has the strength to provide high data rates and wide range coverage. Adopting Zigbee protocol in the wireless client module, the power consumption performance is enhanced so that it plays a part of the mobile device. On the other hand, the wireless receiver module, as adopting Zigbee and Wi-Fi protocol, provides high data rate, wide range coverage, and easy connection to the existing Internet network so that it plays a part of the portable device. This module demonstrates monitoring of gait analysis. The results show that the sensing data being measured can be monitored in any remote place with access to the Internet network.

  15. Wireless Sensors Network (Sensornet)

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  16. Wireless Network Security Using Randomness

    DTIC Science & Technology

    2012-06-19

    REPORT WIRELESS NETWORK SECURITY USING RANDOMNESS 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The present invention provides systems and methods for... securing communications in a wireless network by utilizing the inherent randomness of propagation errors to enable legitimate users to dynamically...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Patent, security , wireless networks, randomness Sheng Xiao, Weibo Gong

  17. Enhanced Precision Geolocation in 4G Wireless Networks

    DTIC Science & Technology

    2013-03-01

    index, and cn is the speed of light in the medium [34, Eq. 35-3, p. 960]. This thesis follows the geodesy literature by discussing the refractivity of... Geodesy and Geophysics settled on a standard model [36]. Various attempts to improve on these formulae and their use have been made in the intervening... Geodesy , vol. 83, no. 11, pp. 1107–1113, 2009. [42] K. P. Birch and M. J. Downs, “The results of a comparison between calculated and measured values of the

  18. Insecurity of Wireless Networks

    SciTech Connect

    Sheldon, Frederick T; Weber, John Mark; Yoo, Seong-Moo; Pan, W. David

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  19. Advanced Wireless Integrated Navy Network

    DTIC Science & Technology

    2005-03-01

    Basing visualization of wireless technologies, Ad Hoc networks , network protocols, real-time resource allocation, Ultra Wideband (UWB) communications...4.1 TIP #1: Distributed MIMO UWB sensor networks incorporating software radio 67 4.2 TIP #2: Close-in UWB wireless with applications to Sea- Basing 68...4.3 TIP #3: Secure Ad Hoc Networks 73 4.4 TIP #4: Integration of Close-in UWB wireless with ESM crane for Sea Basing applications 75 5. FINANCIAL REPORT

  20. Wireless Networks: New Meaning to Ubiquitous Computing.

    ERIC Educational Resources Information Center

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  1. Wireless Networks: New Meaning to Ubiquitous Computing.

    ERIC Educational Resources Information Center

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  2. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  3. Views of wireless network systems.

    SciTech Connect

    Young, William Frederick; Duggan, David Patrick

    2003-10-01

    Wireless networking is becoming a common element of industrial, corporate, and home networks. Commercial wireless network systems have become reliable, while the cost of these solutions has become more affordable than equivalent wired network solutions. The security risks of wireless systems are higher than wired and have not been studied in depth. This report starts to bring together information on wireless architectures and their connection to wired networks. We detail information contained on the many different views of a wireless network system. The method of using multiple views of a system to assist in the determination of vulnerabilities comes from the Information Design Assurance Red Team (IDART{trademark}) Methodology of system analysis developed at Sandia National Laboratories.

  4. Wireless local area network security.

    PubMed

    Bergeron, Bryan P

    2004-01-01

    Wireless local area networks (WLANs) are increasingly popular in clinical settings because they facilitate the use of wireless PDAs, laptops, and other pervasive computing devices at the point of care. However, because of the relative immaturity of wireless network technology and evolving standards, WLANs, if improperly configured, can present significant security risks. Understanding the security limitations of the technology and available fixes can help minimize the risks of clinical data loss and maintain compliance with HIPAA guidelines.

  5. Case for wireless overlay networks

    NASA Astrophysics Data System (ADS)

    Katz, Randy H.; Brewer, Eric A.

    1996-03-01

    Wireless data services, other than those for electronic mail or paging, have thus far been more promising than successful. We believe that future mobile information systems must be built upon heterogeneous wireless overlay networks, extending traditional wired and internetworked processing `islands' to hosts on the move over coverage areas ranging from in-room, in- building, campus, metropolitan, and wide-areas. Unfortunately, network planners continue to think in terms of homogeneous wireless communications systems and technologies. In this paper, we describe a new wireless data networking architecture that integrates diverse wireless technologies into a seamless internetwork. In addition, we describe the applications support services needed to make it possible for applications to continue to operate as mobile hosts roam across such networks. The architecture described herein is being implemented in a testbed at the University of California, Berkeley under joint government/industry sponsorship.

  6. Wireless sensor network

    NASA Astrophysics Data System (ADS)

    Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.

    2006-05-01

    Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.

  7. A Sensible Approach to Wireless Networking.

    ERIC Educational Resources Information Center

    Ahmed, S. Faruq

    2002-01-01

    Discusses radio frequency (R.F.) wireless technology, including industry standards, range (coverage) and throughput (data rate), wireless compared to wired networks, and considerations before embarking on a large-scale wireless project. (EV)

  8. A Sensible Approach to Wireless Networking.

    ERIC Educational Resources Information Center

    Ahmed, S. Faruq

    2002-01-01

    Discusses radio frequency (R.F.) wireless technology, including industry standards, range (coverage) and throughput (data rate), wireless compared to wired networks, and considerations before embarking on a large-scale wireless project. (EV)

  9. Breaking Free with Wireless Networks.

    ERIC Educational Resources Information Center

    Fleischman, John

    2002-01-01

    Discusses wireless local area networks (LANs) which typically consist of laptop computers that connect to fixed access points via infrared or radio signals. Topics include wide area networks; personal area networks; problems, including limitations of available bandwidth, interference, and security concerns; use in education; interoperability;…

  10. Adaptive Protocols for Mobile Wireless Networks

    DTIC Science & Technology

    2005-12-22

    frequency-hop wireless networks," International Journal of Wireless Information Networks , vol. 11, no. 3, pp. 147-159, July 2004. [PRW04c] M. B. Pursley...efficient routing of multimedia traffic in frequency-hop packet radio networks," submitted for publication in the International Journal of Wireless Information Networks , August

  11. Monitoring Churn in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Holzer, Stephan; Pignolet, Yvonne Anne; Smula, Jasmin; Wattenhofer, Roger

    Wireless networks often experience a significant amount of churn, the arrival and departure of nodes. In this paper we propose a distributed algorithm for single-hop networks that detects churn and is resilient to a worst-case adversary. The nodes of the network are notified about changes quickly, in asymptotically optimal time up to an additive logarithmic overhead. We establish a trade-off between saving energy and minimizing the delay until notification for single- and multi-channel networks.

  12. Socially Aware Heterogeneous Wireless Networks

    PubMed Central

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-01-01

    The development of smart cities has been the epicentre of many researchers’ efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users’ locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402

  13. Evolutionary games in wireless networks.

    PubMed

    Tembine, Hamidou; Altman, Eitan; El-Azouzi, Rachid; Hayel, Yezekael

    2010-06-01

    We consider a noncooperative interaction among a large population of mobiles that interfere with each other through many local interactions. The first objective of this paper is to extend the evolutionary game framework to allow an arbitrary number of mobiles that are involved in a local interaction. We allow for interactions between mobiles that are not necessarily reciprocal. We study 1) multiple-access control in a slotted Aloha-based wireless network and 2) power control in wideband code-division multiple-access wireless networks. We define and characterize the equilibrium (called evolutionarily stable strategy) for these games and study the influence of wireless channels and pricing on the evolution of dynamics and the equilibrium.

  14. Gigabit Wireless for Network Connectivity

    ERIC Educational Resources Information Center

    Schoedel, Eric

    2009-01-01

    Uninterrupted, high-bandwidth network connectivity is crucial for higher education. Colleges and universities increasingly adopt gigabit wireless solutions because of their fiber-equivalent performance, quick implementation, and significant return on investment. For just those reasons, Rush University Medical Center switched from free space optics…

  15. Gigabit Wireless for Network Connectivity

    ERIC Educational Resources Information Center

    Schoedel, Eric

    2009-01-01

    Uninterrupted, high-bandwidth network connectivity is crucial for higher education. Colleges and universities increasingly adopt gigabit wireless solutions because of their fiber-equivalent performance, quick implementation, and significant return on investment. For just those reasons, Rush University Medical Center switched from free space optics…

  16. Underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2010-01-01

    The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  17. DAWN: Dynamic Ad-hoc Wireless Network

    DTIC Science & Technology

    2016-06-19

    wireless communication networks . To accomplish this, DAWN adopts a very different approach than those followed in the past and summarized above. DAWN...wireless communication networks . The members of DAWN investigated difference aspects of wireless mobile ad hoc networks (MANET). The views, opinions and/or... communication networks . To accomplish this, DAWN adopts a very different approach than those followed in the past and summarized above. DAWN

  18. Wireless Sensor Networks Approach

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  19. Capacity Limit, Link Scheduling and Power Control in Wireless Networks

    ERIC Educational Resources Information Center

    Zhou, Shan

    2013-01-01

    The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different…

  20. Capacity Limit, Link Scheduling and Power Control in Wireless Networks

    ERIC Educational Resources Information Center

    Zhou, Shan

    2013-01-01

    The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different…

  1. How Effective is Routing for Wireless Networking

    DTIC Science & Technology

    2016-03-05

    world examples of multi-hop wireless networks . Today, almost all of our wireless devices communicate directly with a base station (such as WiFi or...level measurements from an 802.11 b mesh network ,” in ACM SIGCOMM Computer Communication Review, vol. 34, no. 4. ACM, 2004, pp. 121–132. [34] D. LaI...multi-hop wireless networks ,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 1, pp. 69–74, 2004.

  2. Cellular neuron and large wireless neural network

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Ambrose, Barry; Kazantzidis, Matheos; Lin, Freddie

    2006-05-01

    A new approach to neural networks is proposed, based on wireless interconnects (synapses) and cellular neurons, both software and hardware; with the capacity of 10 10 neurons, almost fully connected. The core of the system is Spatio-Temporal-Variant (STV) kernel and cellular axon with synaptic plasticity variable in time and space. The novel large neural network hardware is based on two established wireless technologies: RF-cellular and IR-wireless.

  3. Wireless Communications. Wireless Network Integration Technology: MIRAI Architecture for Heterogeneous Network

    NASA Astrophysics Data System (ADS)

    Mizuno, Mitsuhiko; Wu, Gang; Havinga, Paul J. M.

    2001-12-01

    One of the keywords that describe next generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the MIRAI (Multimedia Integrated network by Radio Access Innovation) project has, as its goal, the development of new technologies to enable seamless integration of various wireless access systems for practical use by the year 2005. This paper describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multi-service user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-concept experimental demonstration system will be available in March, 2002.

  4. Reliability of Wireless Sensor Networks

    PubMed Central

    Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo

    2014-01-01

    Wireless Sensor Networks (WSNs) consist of hundreds or thousands of sensor nodes with limited processing, storage, and battery capabilities. There are several strategies to reduce the power consumption of WSN nodes (by increasing the network lifetime) and increase the reliability of the network (by improving the WSN Quality of Service). However, there is an inherent conflict between power consumption and reliability: an increase in reliability usually leads to an increase in power consumption. For example, routing algorithms can send the same packet though different paths (multipath strategy), which it is important for reliability, but they significantly increase the WSN power consumption. In this context, this paper proposes a model for evaluating the reliability of WSNs considering the battery level as a key factor. Moreover, this model is based on routing algorithms used by WSNs. In order to evaluate the proposed models, three scenarios were considered to show the impact of the power consumption on the reliability of WSNs. PMID:25157553

  5. Tips for Implementing a Wireless Network

    ERIC Educational Resources Information Center

    Walery, Darrell

    2005-01-01

    This article provides a quick start guide to provide educators with the basic points to consider before installing a wireless network in the school. Since many school districts have already implemented wireless networks, there is a lot of information available online to assist in the process.

  6. Performance Analysis of IIUM Wireless Campus Network

    NASA Astrophysics Data System (ADS)

    Abd Latif, Suhaimi; Masud, Mosharrof H.; Anwar, Farhat

    2013-12-01

    International Islamic University Malaysia (IIUM) is one of the leading universities in the world in terms of quality of education that has been achieved due to providing numerous facilities including wireless services to every enrolled student. The quality of this wireless service is controlled and monitored by Information Technology Division (ITD), an ISO standardized organization under the university. This paper aims to investigate the constraints of wireless campus network of IIUM. It evaluates the performance of the IIUM wireless campus network in terms of delay, throughput and jitter. QualNet 5.2 simulator tool has employed to measure these performances of IIUM wireless campus network. The observation from the simulation result could be one of the influencing factors in improving wireless services for ITD and further improvement.

  7. Epidemic Propagation In Overlaid Wireless Networks

    SciTech Connect

    Yanmaz, Evsen

    2008-01-01

    Witb tbe emergence of computer worms tbat can spread over air interfaces, wireless ad boc and sensor networks can be vulnerable to node compromises even if the deployed network is not connected to the backbone. Depending on the physical topology of the wireless network, even a single infected node can compromise the whole network. In this work, epidemic (e.g., worm) propagation in a static wireless network is studied, where a number of inCected mobile nodes are injected over the existing network. It is shown that the epidemic spread threshold and size depend on the physical topology of the underlying static wireless network as well as the mobility model employed by the infected mobile nodes. More specifically, results show that in a Cully-connected static wirelessnctwork targeted attacks are more effective, wbereas Cor a random topology random attacks can be sufficient to compromise the whole network.

  8. The optimation of random network coding in wireless MESH networks

    NASA Astrophysics Data System (ADS)

    Pang, Chunjiang; Pan, Xikun

    2013-03-01

    In order to improve the efficiency of wireless mesh network transmission, this paper focused on the network coding technology. Using network coding can significantly increase the wireless mesh network's throughput, but it will inevitably increase the computational complexity to the network, and the traditional linear network coding algorithm requires the aware of the whole network topology, which is impossible in the ever-changing topology of wireless mesh networks. In this paper, we use a distributed network coding strategy: random network coding, which don't need to know the whole topology of the network. In order to decrease the computation complexity, this paper suggests an improved strategy for random network coding: Do not code the packets which bring no good to the whole transmission. In this paper, we list several situations which coding is not necessary. Simulation results show that applying these strategies can improve the efficiency of wireless mesh network transmission.

  9. New packet scheduling algorithm in wireless CDMA data networks

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Gao, Zhuo; Li, Shaoqian; Li, Lemin

    2002-08-01

    The future 3G/4G wireless communication systems will provide internet access for mobile users. Packet scheduling algorithms are essential for QoS of diversified data traffics and efficient utilization of radio spectrum.This paper firstly presents a new packet scheduling algorithm DSTTF under the assumption of continuous transmission rates and scheduling intervals for CDMA data networks . Then considering the constraints of discrete transmission rates and fixed scheduling intervals imposed by the practical system, P-DSTTF, a modified version of DSTTF, is brought forward. Both scheduling algorithms take into consideration of channel condition, packet size and traffic delay bounds. The extensive simulation results demonstrate that the proposed scheduling algorithms are superior to some typical ones in current research. In addition, both static and dynamic wireless channel model of multi-level link capacity are established. These channel models sketch better the characterizations of wireless channel than two state Markov model widely adopted by the current literature.

  10. Analysis and Testing of Mobile Wireless Networks

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  11. Wireless Laptops and Local Area Networks.

    ERIC Educational Resources Information Center

    Tolson, Stephanie Diane

    2001-01-01

    Describes experiences at St. Louis Community College at Florissant Valley (Missouri) with the use of wireless technology and a local area network for library bibliographic instruction. Discusses faculty input and attitudes; technical challenges; and experiences at other community colleges that have found wireless connections more economical than…

  12. A guide to wireless networking by light

    NASA Astrophysics Data System (ADS)

    Haas, Harald; Chen, Cheng; O'Brien, Dominic

    2017-09-01

    The lack of wireless spectrum in the radio frequency bands has led to a rapid growth in research in wireless networking using light, known as LiFi (light fidelity). In this paper an overview of the subsystems, challenges and techniques required to achieve this is presented.

  13. Vulnerability of Wireless Networks to Interception

    DTIC Science & Technology

    2004-01-01

    S. and Yoshida, S. (1995) Propagation measurements and models for wireless communications channels, IEEE Communications Magazine , 33, 1:42 − 49...Proceedings-H, 138,1:61-73. Pahlavan, K. (1995) Trends in Local Wireless Networks, IEEE Communications Magazine , 33, 3:88-95. Science

  14. Securing radars using secure wireless sensor networking

    NASA Astrophysics Data System (ADS)

    Tahmoush, David

    2014-06-01

    Radar sensors can be viewed as a limited wireless sensor network consisting of radar transmitter nodes, target nodes, and radar receiver nodes. The radar transmitter node sends a communication signal to the target node which then reflects it in a known pattern to the radar receiver nodes. This type of wireless sensor network is susceptible to the same types of attacks as a traditional wireless sensor network, but there is less opportunity for defense. The target nodes in the network are unable to validate the return signal, and they are often uncooperative. This leads to ample opportunities for spoofing and man-in-the-middle attacks. This paper explores some of the fundamental techniques that can be used against a limited wireless network system as well as explores the techniques that can be used to counter them.

  15. On computer vision in wireless sensor networks.

    SciTech Connect

    Berry, Nina M.; Ko, Teresa H.

    2004-09-01

    Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an image capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.

  16. Availability Issues in Wireless Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2014-01-01

    Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301

  17. Intrusion detection and monitoring for wireless networks.

    SciTech Connect

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda; Tabriz, Parisa; Pelon, Kristen; McCoy, Damon (University of Colorado, Boulder); Lodato, Mark; Hemingway, Franklin; Custer, Ryan P.; Averin, Dimitry; Franklin, Jason; Kilman, Dominique Marie

    2005-11-01

    Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other

  18. Traffic Management Algorithms in Wireless Sensor Networks

    DTIC Science & Technology

    2006-09-01

    pages 48–51, Los Angeles, February 2003. [4] Ian F. Akyildiz, Weilian Su, Yogesg Sankarasubramaniam, and Erdal Cayirci. A survey on sensor networks... Mehmet C. Vuran, B. Akan, and Ian F. Akyildiz. Spatio-temporal correlation: theory and applications for wireless sensor networks. Computer Networks

  19. Analysis of blocking rate and bandwidth usage of mobile IPTV services in wireless cellular networks.

    PubMed

    Li, Mingfu

    2014-01-01

    Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes.

  20. Analysis of Blocking Rate and Bandwidth Usage of Mobile IPTV Services in Wireless Cellular Networks

    PubMed Central

    Li, Mingfu

    2014-01-01

    Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes. PMID:25379521

  1. Transport Protocols for Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Eddie Law, K. L.

    Transmission control protocol (TCP) provides reliable connection-oriented services between any two end systems on the Internet. With TCP congestion control algorithm, multiple TCP connections can share network and link resources simultaneously. These TCP congestion control mechanisms have been operating effectively in wired networks. However, performance of TCP connections degrades rapidly in wireless and lossy networks. To sustain the throughput performance of TCP connections in wireless networks, design modifications may be required accordingly in the TCP flow control algorithm, and potentially, in association with other protocols in other layers for proper adaptations. In this chapter, we explain the limitations of the latest TCP congestion control algorithm, and then review some popular designs for TCP connections to operate effectively in wireless mesh network infrastructure.

  2. Routing Protocols in Wireless Sensor Networks

    PubMed Central

    Villalba, Luis Javier García; Orozco, Ana Lucila Sandoval; Cabrera, Alicia Triviño; Abbas, Cláudia Jacy Barenco

    2009-01-01

    The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks. PMID:22291515

  3. Wireless Networking for Control: Technologies and Models

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael; Jäntti, Riku

    This chapter discusses technologies and models for low power wireless industrial communication. The aim of the text is to narrow the gap between the models used in the theoretical control literature with models that arise when tools from communication theory are used to model emerging standards for industrial wireless. The chapter provides a tutorial overview covering basic concepts and models for wireless propagation, medium access control, multi-hop networking, routing and transport protocols. Throughout, an effort is made to describe both key technologies and associated models of control-relevant characteristics such as latency and loss. Some existing and emerging specifications and standards, including Zigbee, WirelessHART and ISA100, are described in some detail, and links are made between the developed models and useful network abstractions for control design.

  4. Wireless Sensor Networks for Ambient Assisted Living

    PubMed Central

    Aquino-Santos, Raúl; Martinez-Castro, Diego; Edwards-Block, Arthur; Murillo-Piedrahita, Andrés Felipe

    2013-01-01

    This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study. PMID:24351665

  5. Environmental monitoring by wireless communication networks.

    PubMed

    Messer, Hagit; Zinevich, Artem; Alpert, Pinhas

    2006-05-05

    The global spread of wireless networks brings a great opportunity for their use in environmental studies. Weather, atmospheric conditions, and constituents cause propagation impairments on radio links. As such, while providing communication facilities, existing wireless communication systems can be used as a widely distributed, high-resolution atmospheric observation network, operating in real time with minimum supervision and without additional cost. Here we demonstrate how measurements of the received signal level, which are made in a cellular network, provide reliable measurements for surface rainfall. We compare the estimated rainfall intensity with radar and rain gauge measurements.

  6. Research Challenges for Wireless Multimedia Sensor Networks

    NASA Astrophysics Data System (ADS)

    Melodia, Tommaso; Akyildiz, Ian F.

    This chapter discusses the state of the art and the major research challenges in architectures, algorithms, and protocols, for wireless multimedia sensor networks (WMSNs). These are networks of wirelessly interconnected smart devices designed and deployed to retrieve video and audio streams, still images, and scalar sensor data. First, applications and key factors influencing the design of WMSNs are discussed. Then, the existing solutions at the application, transport, network, link, and physical layers of the communication protocol stack are investigated. Finally, fundamental open research issues are discussed and future research trends in this area are outlined.

  7. Wireless Wide Area Networks for School Districts.

    ERIC Educational Resources Information Center

    Nair, Prakash

    This paper considers a basic question that many schools districts face in attempting to develop affordable, expandable district-wide computer networks that are resistant to obsolescence: Should these wide area networks (WANs) employ wireless technology, stick to venerable hard-wired solutions, or combine both. This publication explores the…

  8. Flexible network wireless transceiver and flexible network telemetry transceiver

    DOEpatents

    Brown, Kenneth D.

    2008-08-05

    A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.

  9. Ultra wideband technology for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Xiong, Weiming

    2011-08-01

    Wireless sensor networks (WSNs) have emerged as an important method for planetary surface exploration. To investigate the optimized wireless technology for WSNs, we summarized the key requirements of WSNs and justified ultra wideband (UWB) technology by comparing with other competitive wireless technologies. We also analyzed network topologies as well as physical and MAC layer designs of IEEE 802.15.4a standard, which adopted impulse radio UWB (IR-UWB) technology. Our analysis showed that IR-UWB-based 802.15.4a standard could enable robust communication, precise ranging, and heterogeneous networking for WSNs applications. The result of our present work implies that UWB-based WSNs can be applied to future planetary surface exploration.

  10. File Transfer with Erasure Coding over Wireless Sensor Networks

    DTIC Science & Technology

    2009-03-01

    27 1. Onion Networks JAVA FEC Library ..............................................27 2. SNAIL Server Modifications...internet router , or some other device, the average person today is using wireless devices on an increasingly regular basis. A small subset of wireless...from Onion Networks were extremely helpful during this research [5]. 2. Medium Access Control for Wireless Sensor Networks One of the realizations

  11. Stochastic Congestion Control in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Seok; Lee, Seok; Kim, Namhoon

    In this paper, an effective congestion control algorithm is proposed to increase the end-to-end delivery success ratio of upstream traffic by reduction of buffer drop probabilities and their deviation in wireless sensor networks. According to the queue length of parent and child nodes, each child node chooses one of the parents as the next hop to the sink and controls the delay before transmission begins. It balances traffics among parents and mitigates congestion based on congestion level of a node. Simulation results show that the proposed algorithm reduces buffer drop probabilities and their deviation and increases the end-to-end delivery success ratio in wireless sensor networks.

  12. Quality of service for tactical wireless networks

    NASA Astrophysics Data System (ADS)

    Ordower, Rick; Newman, Nisha; Myrtle, Jeremy

    2010-04-01

    Applications resident on tactical wireless networks are levying increasing offered loads. Tradeoffs can be made between range and throughput, but the wireless network is destined to be considered a limitation in information transfer. If managed correctly, the network can be an intelligent aid in ensuring the right information gets to the right place at the right time. Over the last 5 years, SAIC has worked with Natick Soldier Center (NSRDEC) to provide reliable communication with guaranteed service quality for the dismounted soldier. The effort utilizes a series of tools to mark, shape, condense, fragment and persist information for congestion and corruption control. The critical aspect of the congestion control solution is accomplished by adaptively throttling lower priority information at the sending node before it gets pushed to the wireless realm. Of note is that the solution adapts through passive processes without control messages. The solution also implements compression of messages and images, along with fragmentation techniques to alleviate congestion. Information corruption is purely a radio phenomenon and cannot be overcome through cognitive solutions. However, the solution mitigates corruption through information persistence and reliable retransmission. The implemented solution, unlike Transport Control Protocol, is optimized for wireless networks and demonstrates reduction of added signaling traffic. Combined congestion and corruption techniques have demonstrated how soldiers can get the right information at the right time during high traffic loads or network segmentation.

  13. Wireless Network Communications Overview for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.

    2009-01-01

    The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.

  14. Implementation of Wireless Networks in Rural Areas

    DTIC Science & Technology

    2004-06-01

    access, public telephone service and fax lines to certain rural areas ( Unimas , 2004). 2. Advantages of Wireless Networking in Rural Areas With...648). Kuching. UNIMAS (2004). e-Bario Homepage: Strategy. Retrieved April 5, 2004, from http://www.unimas.my/ebario/Strategy_index.htm Cisco

  15. Clock Synchronization for Multihop Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  16. Secure Wireless Networking at Simon Fraser University.

    ERIC Educational Resources Information Center

    Johnson, Worth

    2003-01-01

    Describes the wireless local area network (WLAN) at Simon Fraser University, British Columbia, Canada. Originally conceived to address computing capacity and reduce university computer space demands, the WLAN has provided a seamless computing environment for students and solved a number of other campus problems as well. (SLD)

  17. OCP: Opportunistic Carrier Prediction for Wireless Networks

    DTIC Science & Technology

    2008-08-01

    Many protocols have been proposed for medium access control in wireless networks. MACA [13], MACAW [3], and FAMA [8] are the earlier proposals for...world performance of carrier sense. In Proceedings of ACM SIGCOMM E-WIND Workshop, 2005. [13] P. Karn. MACA : A new channel access method for packet radio

  18. Object Tracking Using Wireless Sensor Networks

    DTIC Science & Technology

    2005-09-01

    wireless networks weaknesses analogous to the power-consumptions and message-delay concerns of current systems. Medium Access Control (MAC) techniques ...... techniques and routing, like “an asymmetric many-to-one data flow” (Carle & Simplot- Ryl, 2004) to communicate. Nodes’ characteristics (size, lifetime

  19. Tunneled Data Transmission over Wireless Sensor Network

    DTIC Science & Technology

    2007-12-01

    21 1. Segmentation and Padding of Variable Length Data.....................21 2...Wireless communication has been at the forefront of technological advancement in recent years. With the introduction of WiFi and WiMax technologies...Segmentation and Padding of Variable Length Data In order for data transmission to be a viable option within the sensor network, the interface layer must be

  20. Clock Synchronization for Multihop Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  1. Wireless Network Security Vulnerabilities and Concerns

    NASA Astrophysics Data System (ADS)

    Mushtaq, Ahmad

    The dilemma of cyber communications insecurity has existed all the times since the beginning of the network communications. The problems and concerns of unauthorized access and hacking has existed form the time of introduction of world wide web communication and Internet's expansion for popular use in 1990s, and has remained till present time as one of the most important issues. The wireless network security is no exception. Serious and continuous efforts of investigation, research and development has been going on for the last several decades to achieve the goal of provision of 100 percent or full proof security for all the protocols of networking architectures including the wireless networking. Some very reliable and robust strategies have been developed and deployed which has made network communications more and more secure. However, the most desired goal of complete security has yet to see the light of the day. The latest Cyber War scenario, reported in the media of intrusion and hacking of each other's defense and secret agencies between the two super powers USA and China has further aggravated the situation. This sort of intrusion by hackers between other countries such as India and Pakistan, Israel and Middle East countries has also been going on and reported in the media frequently. The paper reviews and critically examines the strategies already in place, for wired network. Wireless Network Security and also suggests some directions and strategies for more robust aspects to be researched and deployed.

  2. High-speed digital wireless battlefield network

    NASA Astrophysics Data System (ADS)

    Dao, Son K.; Zhang, Yongguang; Shek, Eddie C.; van Buer, Darrel

    1999-07-01

    In the past two years, the Digital Wireless Battlefield Network consortium that consists of HRL Laboratories, Hughes Network Systems, Raytheon, and Stanford University has participated in the DARPA TRP program to leverage the efforts in the development of commercial digital wireless products for use in the 21st century battlefield. The consortium has developed an infrastructure and application testbed to support the digitized battlefield. The consortium has implemented and demonstrated this network system. Each member is currently utilizing many of the technology developed in this program in commercial products and offerings. These new communication hardware/software and the demonstrated networking features will benefit military systems and will be applicable to the commercial communication marketplace for high speed voice/data multimedia distribution services.

  3. LON Technology in Wireless Sensor Networking Applications

    PubMed Central

    Miskowicz, Marek; Golanski, Ryszard

    2006-01-01

    In the paper a discussion on how to optimize LonWorks/EIA-709 sensor networking technology for wireless applications, in presented. Main solutions offered by Local Operating Networks (LON, LonWorks) platform attractive for wireless communication, that is, the send-on-delta concept and the sleep mode, are displayed. The predictive p-persistent CSMA MAC protocol constituting the heart of the communication capability of LON networks is analysed in detail. Next, the message services are described, and the analytical evaluation of delivery reliability is derived. Performance evaluation based on simulation results for unicast traffic is presented first. In order to highlight the robustness of the predictive CSMA to overload situations, the saturation performance for a general case load scenario including multicast transactions is reported. The methods of effective management of energy consumption in LonWorks networks are discussed. Finally, the LON design tradeoffs are summarized.

  4. Wireless Local Area Networks: The Next Evolutionary Step.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2001-01-01

    The Institute of Electrical and Electronics Engineers recently approved a high-speed wireless standard that enables devices from different manufacturers to communicate through a common backbone, making wireless local area networks more feasible in schools. Schools can now use wireless access points and network cards to provide flexible…

  5. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    ERIC Educational Resources Information Center

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  6. Wireless Local Area Networks: The Next Evolutionary Step.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2001-01-01

    The Institute of Electrical and Electronics Engineers recently approved a high-speed wireless standard that enables devices from different manufacturers to communicate through a common backbone, making wireless local area networks more feasible in schools. Schools can now use wireless access points and network cards to provide flexible…

  7. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    ERIC Educational Resources Information Center

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  8. Potential uses of a wireless network in physical security systems.

    SciTech Connect

    Witzke, Edward L.

    2010-07-01

    Many possible applications requiring or benefiting from a wireless network are available for bolstering physical security and awareness at high security installations or facilities. These enhancements are not always straightforward and may require careful analysis, selection, tuning, and implementation of wireless technologies. In this paper, an introduction to wireless networks and the task of enhancing physical security is first given. Next, numerous applications of a wireless network are brought forth. The technical issues that arise when using a wireless network to support these applications are then discussed. Finally, a summary is presented.

  9. Channel models for wireless body area networks.

    PubMed

    Takizawa, Kenichi; Aoyagi, Akahiro; Takada, Jun-Ichi; Katayama, Norihiko; Yekeh, Kamya; Takehiko, Yazdandoost; Kohno, Kobayashi Ryuji

    2008-01-01

    Wireless patient monitoring using wearable sensors is a promising application. This paper provides stochastic channel models for wireless body area network (WBAN) on the human body. Parameters of the channel models are extracted from measured channel transfer functions (CTFs) in a hospital room. Measured frequency bands are selected so as to include permissible bands for WBAN; ultra wideband (UWB), the industry, science and medical (ISM) bands, and wireless medical telemetry system (WMTS) bands. As channel models, both a path loss model and a power delay profile (PDP) model are considered. But, even though path loss models are derived for the all frequency bands, PDP model is only for the UWB band due to the highly frequency selectiveness of UWB channels. The parameters extracted from the measurement results are summarized for each channel model.

  10. Worm epidemics in wireless ad hoc networks

    NASA Astrophysics Data System (ADS)

    Nekovee, Maziar

    2007-06-01

    A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet.

  11. Wireless Sensor Network Handles Image Data

    NASA Technical Reports Server (NTRS)

    2008-01-01

    To relay data from remote locations for NASA s Earth sciences research, Goddard Space Flight Center contributed to the development of "microservers" (wireless sensor network nodes), which are now used commercially as a quick and affordable means to capture and distribute geographical information, including rich sets of aerial and street-level imagery. NASA began this work out of a necessity for real-time recovery of remote sensor data. These microservers work much like a wireless office network, relaying information between devices. The key difference, however, is that instead of linking workstations within one office, the interconnected microservers operate miles away from one another. This attribute traces back to the technology s original use: The microservers were originally designed for seismology on remote glaciers and ice streams in Alaska, Greenland, and Antarctica-acquiring, storing, and relaying data wirelessly between ground sensors. The microservers boast three key attributes. First, a researcher in the field can establish a "managed network" of microservers and rapidly see the data streams (recovered wirelessly) on a field computer. This rapid feedback permits the researcher to reconfigure the network for different purposes over the course of a field campaign. Second, through careful power management, the microservers can dwell unsupervised in the field for up to 2 years, collecting tremendous amounts of data at a research location. The third attribute is the exciting potential to deploy a microserver network that works in synchrony with robotic explorers (e.g., providing ground truth validation for satellites, supporting rovers as they traverse the local environment). Managed networks of remote microservers that relay data unsupervised for up to 2 years can drastically reduce the costs of field instrumentation and data rec

  12. Information Transfer in Wireless Networks

    DTIC Science & Technology

    2010-07-01

    conferences with proceed- ings to be made available online in the IEEE Xplore database, namely IFIP Wireless Days (WD 2008) at Dubai, UAE, and the...Poland, May 2008, pp. 61-64, IEEE Xplore , DOI = 10.1109/INFTECH. 2008.4621591. 2. J. Konorski, IEEE 802.11 LAN Capacity: Incentives and Incentive...2008, Dubai, UAE, Nov. 2008, IEEE Xplore DOI = 10.1109/WD.2008.4812857. 4. J. Konorski, QoS Provision in an Ad Hoc IEEE 802.11 WLAN: A Bayesian War

  13. Information Transfer Ion Wireless Networks

    DTIC Science & Technology

    2010-07-01

    conferences with proceed- ings to be made available online in the IEEE Xplore database, namely IFIP Wireless Days (WD 2008) at Dubai, UAE, and the...Poland, May 2008, pp. 61-64, IEEE Xplore , DOI = 10.1109/INFTECH. 2008.4621591. 2. J. Konorski, IEEE 802.11 LAN Capacity: Incentives and Incentive...2008, Dubai, UAE, Nov. 2008, IEEE Xplore DOI = 10.1109/WD.2008.4812857. 4. J. Konorski, QoS Provision in an Ad Hoc IEEE 802.11 WLAN: A Bayesian War

  14. 47 CFR 27.1305 - Shared wireless broadband network.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  15. 47 CFR 90.1405 - Shared wireless broadband network.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  16. 47 CFR 90.1405 - Shared wireless broadband network.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  17. 47 CFR 90.1405 - Shared wireless broadband network.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  18. 47 CFR 27.1305 - Shared wireless broadband network.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  19. 47 CFR 27.1305 - Shared wireless broadband network.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  20. Scalable Video Streaming in Wireless Mesh Networks for Education

    ERIC Educational Resources Information Center

    Liu, Yan; Wang, Xinheng; Zhao, Liqiang

    2011-01-01

    In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…

  1. Formation And Maintenance of Self-Organizing Wireless Networks

    NASA Technical Reports Server (NTRS)

    Scott, Keith; Bambos, Nicholas

    1997-01-01

    There are numerous military, commercial, and scientific applications for mobile wireless networks which are able to self-Organize without recousre to any pre-existing infrastructure. We present the Self Organizing Wireless Adaptive Network protocol, a distributed networking protocol capable of managing such networks.

  2. Scalable Video Streaming in Wireless Mesh Networks for Education

    ERIC Educational Resources Information Center

    Liu, Yan; Wang, Xinheng; Zhao, Liqiang

    2011-01-01

    In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…

  3. Bridge monitoring using heterogeneous wireless sensor network

    NASA Astrophysics Data System (ADS)

    Haran, Shivan; Kher, Shubhalaxmi; Mehndiratta, Vandana

    2010-03-01

    Wireless sensor networks (WSN) are proving to be a good fit where real time monitoring of multiple physical parameters is required. In many applications such as structural health monitoring, patient data monitoring, traffic accident monitoring and analysis, sensor networks may involve interface with conventional P2P systems and it is challenging to handle heterogeneous network systems. Heterogeneous deployments will become increasingly prevalent as it allows for systems to seamlessly integrate and interoperate especially when it comes to applications involving monitoring of large infrastructures. Such networks may have wireless sensor network overlaid on a conventional computer network to pick up data from one distant location and carry out the analysis after relaying it over to another distant location. This paper discusses monitoring of bridges using WSN. As a test bed, a heterogeneous network of WSN and conventional P2P together with a combination of sensing devices (including vibration and strain) is to be used on a bridge model. Issues related to condition assessment of the bridge for situations including faults, overloads, etc., as well as analysis of network and system performance will be discussed. When conducted under controlled conditions, this is an important step towards fine tuning the monitoring system for recommendation of permanent mounting of sensors and collecting data that can help in the development of new methods for inspection and evaluation of bridges. The proposed model, design, and issues therein will be discussed, along with its implementation and results.

  4. Seamless wireless networking for video surveillance applications

    NASA Astrophysics Data System (ADS)

    Agrafiotis, D.; Chiew, T.-K.; Ferre, P.; Bull, David R.; Nix, A. R.; Doufexi, A.; Chung-How, J.; Nicholson, Didier

    2005-03-01

    The EU FP6 WCAM (Wireless Cameras and Audio-Visual Seamless Networking) project aims to study, develop and validate a wireless, seamless and secured end-to-end networked audio-visual system for video surveillance and multimedia distribution applications. This paper describes the video transmission aspects of the project, with contributions in the areas of H.264 video delivery over wireless LANs. The planned demonstrations under WCAM include the transmission of H.264 coded material over 802.11b/g networks with TCP/IP and UDP/IP being employed as the transport and network layers over unicast and multicast links. UDP based unicast and multicast transmissions pose the problem of packet erasures while TCP based transmission is associated with long delays and the need for a large jitter buffer. This paper presents measurement data that have been collected at the WCAM trial site along with analysis of the data, including characterisation of the channel conditions as well as recommendations on the optimal operating parameters for each of the above transmission scenarios (e.g. jitter buffer sizes, packet error rates, etc.). Recommendations for error resilient coding algorithms and packetisation strategies are made in order to moderate the effect of the observed packet erasures on the quality of the transmitted video. Advanced error concealment methods for masking the effects of packet erasures at the receiver/decoder are also described.

  5. Learning sensor models for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ertin, Emre

    2007-04-01

    Sensor data generation is a key component of high fidelity design and testing of applications at scale. In addition to its utility in validation of applications and network services, it provides a theoretical basis for the design of algorithms for efficient sampling, compression and exfiltration of the sensor readings. Modeling of the environmental processes that gives rise to sensor readings is the core problem in physical sciences. Sensor modeling for wireless sensor networks combine the physics of signal generation and propagation with models of transducer saturation and fault models for hardware. In this paper we introduce a novel modeling technique for constructing probabilistic models for censored sensor readings. The model is an extension of the Gaussian process regression and applies to continuous valued readings subject to censoring. We illustrate the performance of the proposed technique in modeling wireless propagation between nodes of a wireless sensor network. The model can capture the non-isotropic nature of the propagation characteristics and utilizes the information from the packet reception failures. We use measured data set from the Kansei sensor network testbed using 802.15.4 radios.

  6. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal

  7. Wireless sensor networks in a maritime environment

    NASA Astrophysics Data System (ADS)

    Kavelaars, W.; Maris, M.

    2005-10-01

    In the recent years, there has been a lot of research on sensor networks and their applications. In particular for monitoring large and potentially hostile areas these networks have proven to be very useful. The technique of land-based sensor networks can be extrapolated to sensing buoys at sea or in harbors. This is a novel and intriguing addition to existing maritime monitoring systems. At TNO, much research effort has gone into developing sensor networks. In this paper, the TNOdes sensor network is presented. Its practical employability is demonstrated in a surveillance application deploying 50 nodes. The system is capable of tracking persons in a field, as would be the situation around a military compound. A camera-system is triggered by the sensors and zooms into the detected moving objects. It is described how this system could be modified to create a wireless buoys network. Typical applications of a wireless (and potentially mobile) buoy network are bay-area surveillance, mine detection, identification and ship protection.

  8. Theoretical Foundations of Wireless Networks

    DTIC Science & Technology

    2015-07-22

    Bayesian Network Games . In this thrust our goal is to study the use of Bayesian games as models of optimal behavior in social and technological...are interested in studying the asymptotic behavior of these games and in developing algorithms to let agents compute their equilibrium actions...propagation of opinions in a social network, and herd foraging of animal groups. Thrust 5: Bayesian Network Games . In this thrust our goal is to

  9. SITRUS: Semantic Infrastructure for Wireless Sensor Networks.

    PubMed

    Bispo, Kalil A; Rosa, Nelson S; Cunha, Paulo R F

    2015-10-29

    Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS.

  10. SITRUS: Semantic Infrastructure for Wireless Sensor Networks

    PubMed Central

    Bispo, Kalil A.; Rosa, Nelson S.; Cunha, Paulo R. F.

    2015-01-01

    Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS. PMID:26528974

  11. Sinkhole Avoidance Routing in Wireless Sensor Networks

    DTIC Science & Technology

    2011-05-09

    platforms. Due to the limited memory and minimalist premises behind Wireless Sensor Networks, the installation of new programs on WSN nodes becomes a somewhat...difficult task. In order to implement a new application on the MICA2 or IRIS platform, the entire operating system must be recompiled and then...ETX using the link estimator 5 Calculate new ETX by adding neighbor ETX to message ETX 6 Send event to Table Update Handler Source code: void

  12. Data Dependent Keying for Wireless Networks

    DTIC Science & Technology

    2003-01-01

    Routing Protocols. In Proceedings of the 2002 ACM Workshop on Wireless Security (WiSe 2002), pages 1–10, September 2002. [5] A. Perrig, R. Canetti , D...Song, and D. Tygar. The TESLA Broadcast Authentication Protocol. RSA Cryptobytes, Summer 2002. [6] A. Perrig, R. Canetti , D. Song, and D. Tygar...on Mobile Computing and Networking (Mobicom 2002), Sep 2002. [8] J. Krawczyk, M. Bellare, and R. Canetti . Hmac: Keyed-hashing for message

  13. Location Privacy Issues in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kůr, Jiří; Stetsko, Andriy

    We discuss location privacy issues in wireless sensor networks. We consider sensor nodes with more responsible roles and the need to protect locations of such nodes. Available countermeasures against various types of traffic analysis attacks are examined and their problems are identified. We do not propose new traffic analysis resistance technique. Instead, we draw attention to blanks in current situation and identify several open questions, which should be answered in order to ensure location privacy of nodes.

  14. Scaling Laws for Heterogeneous Wireless Networks

    DTIC Science & Technology

    2009-09-01

    learned a lot from both of them. Further thanks go to Lizhong Zheng for agreeing to serve on my thesis committee. I am also grateful to Piyush Gupta and...Borade, Venkat Chandar, Venkat Chandrasekaran, Vijay Divi, Vishal Doshi, Ying-zong Huang, Ashish Khisti, Minji Kim, Yuval Kochman, James Krieger, Evgeny...analyzing wireless networks was pioneered by Gupta and Kumar in [15]. They show that under random node placement and assuming protocol model 1, the

  15. Cognitive radio wireless sensor networks: applications, challenges and research trends.

    PubMed

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-08-22

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  16. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    PubMed Central

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-01-01

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152

  17. Wireless sensor network for monitoring soil moisture and weather conditions

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  18. System and method for time synchronization in a wireless network

    DOEpatents

    Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.

    2010-03-30

    A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.

  19. Wireless body sensor networks for health-monitoring applications.

    PubMed

    Hao, Yang; Foster, Robert

    2008-11-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.

  20. The Systems Librarian: Implementing Wireless Networks without Compromising Security

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2005-01-01

    Many libraries are or soon will be offering Wi-Fi, also known as wireless networks. The largest perceived barriers to providing this service are concerns about security. The prime rule when deploying Wi-Fi is segregation, having a clear separation between a public wireless network and the rest of the library?s network. A number of devices can be…

  1. The Systems Librarian: Implementing Wireless Networks without Compromising Security

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2005-01-01

    Many libraries are or soon will be offering Wi-Fi, also known as wireless networks. The largest perceived barriers to providing this service are concerns about security. The prime rule when deploying Wi-Fi is segregation, having a clear separation between a public wireless network and the rest of the library?s network. A number of devices can be…

  2. A Wireless Communications Laboratory on Cellular Network Planning

    ERIC Educational Resources Information Center

    Dawy, Z.; Husseini, A.; Yaacoub, E.; Al-Kanj, L.

    2010-01-01

    The field of radio network planning and optimization (RNPO) is central for wireless cellular network design, deployment, and enhancement. Wireless cellular operators invest huge sums of capital on deploying, launching, and maintaining their networks in order to ensure competitive performance and high user satisfaction. This work presents a lab…

  3. A Wireless Communications Laboratory on Cellular Network Planning

    ERIC Educational Resources Information Center

    Dawy, Z.; Husseini, A.; Yaacoub, E.; Al-Kanj, L.

    2010-01-01

    The field of radio network planning and optimization (RNPO) is central for wireless cellular network design, deployment, and enhancement. Wireless cellular operators invest huge sums of capital on deploying, launching, and maintaining their networks in order to ensure competitive performance and high user satisfaction. This work presents a lab…

  4. NEURON: Enabling Autonomicity in Wireless Sensor Networks

    PubMed Central

    Zafeiropoulos, Anastasios; Gouvas, Panagiotis; Liakopoulos, Athanassios; Mentzas, Gregoris; Mitrou, Nikolas

    2010-01-01

    Future Wireless Sensor Networks (WSNs) will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In this paper a novel protocol for energy efficient deployment, clustering and routing in WSNs is proposed that focuses on the incorporation of autonomic functionalities in the existing approaches. The design of the protocol facilitates the design of innovative applications and services that are based on overlay topologies created through cooperation among the sensor nodes. PMID:22399931

  5. Wireless optical network for a home network

    NASA Astrophysics Data System (ADS)

    Bouchet, Olivier; Porcon, Pascal; Walewski, Joachim W.; Nerreter, Stefan; Langer, Klaus-Dieter; Fernández, Luz; Vucic, Jelena; Kamalakis, Thomas; Ntogari, Georgia; Neokosmidis, Ioannis; Gueutier, Eric

    2010-08-01

    During the European collaborative project OMEGA, two optical-wireless prototypes have been developed. The first prototype operates in the near-infrared spectral region and features Giga Ethernet connectivity, a simple transceiver architecture due to the use of on-off keying, a multi-sector transceiver, and an ultra-fast switch for sector-to-sector hand over. This full-duplex system, composed by one base station and one module, transmits data on three meters. The second prototype is a visible-light-communications system based on DMT signal processing and an adapted MAC sublayer. Data rates around to 100 Mb/s at the physical layer are achieved. This broadcast system, composed also by one base station and one module, transmits data up to two meters. In this paper we present the adapted optical wireless media-access-control sublayer protocol for visible-light communications. This protocol accommodates link adaptation from 128 Mb/s to 1024 Mb/s with multi-sector coverage, and half-duplex or full-duplex transmission.

  6. Performance Analysis of Wireless Networks

    DTIC Science & Technology

    2005-12-01

    committee, Professors John Vesecky and Patrick Mantey. I also want to thank Carol Mullane, Tracie Tucker and Jodi Rieger for their help and advice. My...2002. [17] O. Dousse, P. Thiran, and M. Hasler , “Connectivity in ad-hoc and hybrid networks,” in Proc. of IEEE Infocom, New York, New York, June 2002

  7. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  8. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  9. Graphical Model Theory for Wireless Sensor Networks

    SciTech Connect

    Davis, William B.

    2002-12-08

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm.

  10. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  11. Solution Analysis of Universal Wireless Joint Point Technologies for Heterogeneous Tactical Networks

    DTIC Science & Technology

    2006-03-01

    fluent in each of these five 38 Upkar Varshney and Radhika Jain, Issues in Emerging 4G Wireless...Application 2, Baltzer Science Publishers, 1997, 259. 46 Upkar Varshney, Network Access and Security Issues in Ubiquitous Computing, George State...Committee, http://www.ieee802.org/1/linksec/Docs/ LAN_Threat_Assessment_Rev.1.doc, Last accessed 22 Dec 05. 23. Varshney, Upkar and Jain, Radhika

  12. Wireless intelligent network: infrastructure before services?

    NASA Astrophysics Data System (ADS)

    Chu, Narisa N.

    1996-01-01

    The Wireless Intelligent Network (WIN) intends to take advantage of the Advanced Intelligent Network (AIN) concepts and products developed from wireline communications. However, progress of the AIN deployment has been slow due to the many barriers that exist in the traditional wireline carriers' deployment procedures and infrastructure. The success of AIN has not been truly demonstrated. The AIN objectives and directions are applicable to the wireless industry although the plans and implementations could be significantly different. This paper points out WIN characteristics in architecture, flexibility, deployment, and value to customers. In order to succeed, the technology driven AIN concept has to be reinforced by the market driven WIN services. An infrastructure suitable for the WIN will contain elements that are foreign to the wireline network. The deployment process is expected to seed with the revenue generated services. Standardization will be achieved by simplifying and incorporating the IS-41C, AIN, and Intelligent Network CS-1 recommendations. Integration of the existing and future systems impose the biggest challenge of all. Service creation has to be complemented with service deployment process which heavily impact the carriers' infrastructure. WIN deployment will likely start from an Intelligent Peripheral, a Service Control Point and migrate to a Service Node when sufficient triggers are implemented in the mobile switch for distributed call control. The struggle to move forward will not be based on technology, but rather on the impact to existing infrastructure.

  13. New Applications for the Testing and Visualization of Wireless Networks

    NASA Technical Reports Server (NTRS)

    Griffin, Robert I.; Cauley, Michael A.; Pleva, Michael A.; Seibert, Marc A.; Lopez, Isaac

    2005-01-01

    Traditional techniques for examining wireless networks use physical link characteristics such as Signal-to-Noise (SNR) ratios to assess the performance of wireless networks. Such measurements may not be reliable indicators of available bandwidth. This work describes two new software applications developed at NASA Glenn Research Center for the investigation of wireless networks. GPSIPerf combines measurements of Transmission Control Protocol (TCP) throughput with Global Positioning System (GPS) coordinates to give users a map of wireless bandwidth for outdoor environments where a wireless infrastructure has been deployed. GPSIPerfView combines the data provided by GPSIPerf with high-resolution digital elevation maps (DEM) to help users visualize and assess the impact of elevation features on wireless networks in a given sample area. These applications were used to examine TCP throughput in several wireless network configurations at desert field sites near Hanksville, Utah during May of 2004. Use of GPSIPerf and GPSIPerfView provides a geographically referenced picture of the extent and deterioration of TCP throughput in tested wireless network configurations. GPSIPerf results from field-testing in Utah suggest that it can be useful in assessing other wireless network architectures, and may be useful to future human-robotic exploration missions.

  14. Diagnosing degradation of services in hybrid wireless tactical networks

    NASA Astrophysics Data System (ADS)

    Tati, Srikar; Novotny, Petr; Ko, Bong Jun; Wolf, Alexander; Swami, Ananthram; La Porta, Thomas

    2013-05-01

    In this paper, we consider a problem related to service management and deployment in tactical military networks. Tactical networks are typically hybrid wireless networks in which there are both static and mobile nodes with several wireless interfaces, such as 802.11, 3G, satellite, etc. In tactical networks, performance degradation in services could prove fatal, so it must be diagnosed quickly. This degradation could be due to mobility or bottlenecks in capacity at network layer. We provide a cross-layer framework to detect and diagnose these causes of performance degradation as part of service management; it includes a monitoring model of services and a network model for hybrid wireless networks. In addition, we give a working example in tactical military networks to illustrate our framework. We provide an experimental setup to simulate our hybrid wireless tactical network scenario along with preliminary results.

  15. Low Latency in Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    McTasney, Robert; Grunwald, Dirk; Sicker, Douglas

    Multimedia requirements of the 1990s drove wired and optical network architects to examine how to combine the advantages of packet switching with the long proven methods of circuit-switching to implement traffic engineering to reduce variance in end-to-end delay. Methods, such as asynchronous transfer mode (ATM) and multiprotocol label switching (MPLS), have been used to create virtual circuits. Because both are mature and proven technologies for wired and optical network architectures, much research has been done to apply these methods to wireless mesh networks (WMNs). But as these are applied, optimal performance improvement eludes WMN designers because of the inherent shortcomings of contention-based WMNs and the differences between the wired/optical and wireless environments in the provision of noninterfering unidirectional internodal links. This chapter will present issues regarding the development of such low-latency WMNs to include multiple orthogonal channels, virtual cut-through and wormhole switching, physical layer circuit switch design, and reservation protocols.

  16. Fiber Optic Infrastructure for Wireless Communication Networks

    NASA Astrophysics Data System (ADS)

    Lau, Kam Y.; Cutrer, David M.; Georges, John B.; Yeung, Simon

    It is clear that to meet the new demands of wireless customers, conventional cellular service providers and upcoming Personal Communication Service (PCS) providers for conventional phone service and high bandwidth wireless LAN must upgrade their networks to provide complete radio coverage. This evolution has motivated the need for low-cost systems that transport radio signals to and from areas of poor signal coverage. The most important area where this problem must be solved is inside of buildings, since this is where people spend most of their time. Unfortunately, the in-building environment is also the most challenging area to provide radio coverage due to severe attenuation and multi-path effects. The problem must be tackled from the viewpoint of optimization of performance/cost ratio of the network. In this paper, we describe a system-level approach to tackle this problem. We demonstrate how one can trade-off hardware performance, which represent cost, with proper choice of system architecture which includes, among other factors, in-building radio environment, to arrive at an optimum network solution technically and economically.

  17. Track classification within wireless sensor network

    NASA Astrophysics Data System (ADS)

    Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2017-05-01

    In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  18. Mobile middleware for wireless body area network.

    PubMed

    Chen, Xiang; Waluyo, Agustinus Borgy; Pek, Isaac; Yeoh, Wee-Soon

    2010-01-01

    This paper presents a flexible, efficient and lightweight Wireless Body Area Network (WBAN) Middleware. The Middleware is developed to bridge the communication between mobile device as a gateway and the sensor nodes, and therefore it shields the underlying sensor and OS/protocol stack away from the WBAN application layer. The middleware is coded in the form of lightweight dynamic link library, which allows the application developer to simply incorporate the middleware resource dynamic link library into their application and call the required functions (i.e. data acquisition, resource management and configurations). A showcase of the middleware deployment is exhibited at the end of the paper.

  19. Utilising eduroam[TM] Architecture in Building Wireless Community Networks

    ERIC Educational Resources Information Center

    Huhtanen, Karri; Vatiainen, Heikki; Keski-Kasari, Sami; Harju, Jarmo

    2008-01-01

    Purpose: eduroam[TM] has already been proved to be a scalable, secure and feasible way for universities and research institutions to connect their wireless networks into a WLAN roaming community, but the advantages of eduroam[TM] have not yet been fully discovered in the wireless community networks aimed at regular consumers. This aim of this…

  20. Utilising eduroam[TM] Architecture in Building Wireless Community Networks

    ERIC Educational Resources Information Center

    Huhtanen, Karri; Vatiainen, Heikki; Keski-Kasari, Sami; Harju, Jarmo

    2008-01-01

    Purpose: eduroam[TM] has already been proved to be a scalable, secure and feasible way for universities and research institutions to connect their wireless networks into a WLAN roaming community, but the advantages of eduroam[TM] have not yet been fully discovered in the wireless community networks aimed at regular consumers. This aim of this…

  1. Wireless sensor network for irrigation application in cotton

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  2. Wireless Local Network Architecture for Naval Medical Treatment Facilities

    DTIC Science & Technology

    2004-09-01

    4 Gainer, Randy, van Eckhardt, Michael, Will, Rebecca, Marks, Richard. HIPAA and WiFi – Regulatory Tangles for Wireless Health Care Networks...at cracking WEP. It is not a very good means of deterring script kiddies, or the more harden hacker from gaining access into your wireless network...Once the system is compromised the ability to probe the network becomes quite easy. Network configurations can be performed to allow the hacker

  3. Self Calibrated Wireless Distributed Environmental Sensory Networks

    PubMed Central

    Fishbain, Barak; Moreno-Centeno, Erick

    2016-01-01

    Recent advances in sensory and communication technologies have made Wireless Distributed Environmental Sensory Networks (WDESN) technically and economically feasible. WDESNs present an unprecedented tool for studying many environmental processes in a new way. However, the WDESNs’ calibration process is a major obstacle in them becoming the common practice. Here, we present a new, robust and efficient method for aggregating measurements acquired by an uncalibrated WDESN, and producing accurate estimates of the observed environmental variable’s true levels rendering the network as self-calibrated. The suggested method presents novelty both in group-decision-making and in environmental sensing as it offers a most valuable tool for distributed environmental monitoring data aggregation. Applying the method on an extensive real-life air-pollution dataset showed markedly more accurate results than the common practice and the state-of-the-art. PMID:27098279

  4. Self Calibrated Wireless Distributed Environmental Sensory Networks.

    PubMed

    Fishbain, Barak; Moreno-Centeno, Erick

    2016-04-21

    Recent advances in sensory and communication technologies have made Wireless Distributed Environmental Sensory Networks (WDESN) technically and economically feasible. WDESNs present an unprecedented tool for studying many environmental processes in a new way. However, the WDESNs' calibration process is a major obstacle in them becoming the common practice. Here, we present a new, robust and efficient method for aggregating measurements acquired by an uncalibrated WDESN, and producing accurate estimates of the observed environmental variable's true levels rendering the network as self-calibrated. The suggested method presents novelty both in group-decision-making and in environmental sensing as it offers a most valuable tool for distributed environmental monitoring data aggregation. Applying the method on an extensive real-life air-pollution dataset showed markedly more accurate results than the common practice and the state-of-the-art.

  5. 78 FR 958 - Certain Wireless Devices With 3G and/or 4G Capabilities and Components Thereof Notice of Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... filed on behalf of InterDigital Communications, Inc., InterDigital Technology Corporation, IPR Licensing, Inc. and InterDigital Holdings, Inc. on January 2, 2013. The complaint alleges violations of section.../or 4g capabilities and components thereof. The complaint names as respondents Samsung Electronics...

  6. Validation of a wireless accelerometer network for energy expenditure measurement.

    PubMed

    Montoye, Alexander H K; Dong, Bo; Biswas, Subir; Pfeiffer, Karin A

    2016-11-01

    The purpose of this study was to validate a wireless network of accelerometers and compare it to a hip-mounted accelerometer for predicting energy expenditure in a semi-structured environment. Adults (n = 25) aged 18-30 engaged in 14 sedentary, ambulatory, exercise, and lifestyle activities over a 60-min protocol while wearing a portable metabolic analyser, hip-mounted accelerometer, and wireless network of three accelerometers worn on the right wrist, thigh, and ankle. Participants chose the order and duration of activities. Artificial neural networks were created separately for the wireless network and hip accelerometer for energy expenditure prediction. The wireless network had higher correlations (r = 0.79 vs. r = 0.72, P < 0.01) but similar root mean square error (2.16 vs. 2.09 METs, P > 0.05) to the hip accelerometer. Measured (from metabolic analyser) and predicted energy expenditure from the hip accelerometer were significantly different for the 3 of the 14 activities (lying down, sweeping, and cycle fast); conversely, measured and predicted energy expenditure from the wireless network were not significantly different for any activity. In conclusion, the wireless network yielded a small improvement over the hip accelerometer, providing evidence that the wireless network can produce accurate estimates of energy expenditure in adults participating in a range of activities.

  7. Multipath routing in wireless sensor networks: survey and research challenges.

    PubMed

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.

  8. Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    PubMed Central

    Radi, Marjan; Dezfouli, Behnam; Bakar, Kamalrulnizam Abu; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490

  9. HOWRAN: An Hybrid Optical Wireless Radio Access Network for WiMAX Antennas Backhauling

    NASA Astrophysics Data System (ADS)

    Gagnaire, Maurice; Youssef, Tony

    In comparison to existing 3G or 3G+ wireless systems, fourth generation (4G), long-term evolution (LTE) or mobile Wimax are characterized by higher bit rates, highly fluctuant traffic matrices and higher antenna’s density. Current backhauling techniques federating radio antennas are not suited to these new characteristics. Several investigations are carried out for the design of new generation radio access networks (NG-RAN) in charge of concentrating radio cellular traffic from the base stations to the core network. In this paper, we propose an original approach based on an Hybrid Optical Wireless Radio Access Network (HOWRAN) exploiting the benefits of radio-over-fiber technologies and of recent advances in the field of optical devices and systems. As an illustration, we apply the HOWRAN concept to the backhauling of fixed or mobile WiMAX base stations. The two main innovative aspects of HOWRAN are depicted: its hardware architecture and its control plane.

  10. Wireless Sensor Network Radio Power Management and Simulation Models

    DTIC Science & Technology

    2010-01-01

    consumption. Keywords: Wireless sensor network, power management, energy-efficiency, medium access control ( MAC ), simulation pa- rameters. 1...wireless sensor networks (WSNs) operate in a broadcast medium, these networks require a medium ac- cess control ( MAC ) layer to resolve contention in a...topology, traffic loads, and existing battery conditions. The WSN radio power management (RPM) algorithm operating in the MAC layer sets the Physical

  11. Distributed Algorithms for Beamforming in Wireless Sensor Networks

    DTIC Science & Technology

    2007-06-01

    1 A. INTRODUCTION TO WIRELESS SENSOR NETWORKS .....................1 B. RELATED WORK IN BEAMFORMING AND WIRELESS SENSOR NETWORKS...allocated to the participating sensor nodes. Two fully distributed approaches to beamforming in WSN were presented in this work , and they are both based... Sensor network x-axis Figure 1. WSN deployed over an area of interest and UAV collecting the desired information. B. RELATED WORK IN BEAMFORMING

  12. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks

    PubMed Central

    Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao

    2017-01-01

    Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network. PMID:28677639

  13. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks.

    PubMed

    Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao

    2017-07-04

    Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.

  14. Time Synchronized Wireless Sensor Network for Vibration Measurement

    NASA Astrophysics Data System (ADS)

    Uchimura, Yutaka; Nasu, Tadashi; Takahashi, Motoichi

    Network based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard based TSF counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on the synchronization accuracy and the effect is evaluated by stochastic analysis and simulation studies. A new wireless sensing system is developed and the hardware and software specifications are shown. The experiments are conducted in a reinforced concrete building and results show good performance enough for vibration measurement purpose.

  15. A Novel Energy-Driven Architecture for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Jayakody, D. N. K.; Khan, Z. A.; Rodrigo; de Lamare, C.; Thompson, J.

    2017-01-01

    This paper proposes a novel Energy-Driven Architecture (EDA) as a durable architecture and considers almost all principal energy constituents of wireless sensor networks applications. By creating a single overall model, a tolerable formulation is then offered to communicate the total energy use of a wireless sensor network application regarding the energy constituents. The formulation provides a tangible illustration for analyzing the performance of a wireless sensor network application, optimizing its constituent’s operations, as well as creating more energy saving applications. The simulations are employed to show the feasibility of our model and also energy formulation.

  16. Are Wireless Networks the Wave of the Future?

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    1999-01-01

    Some college administrators feel the next major trend in educational technology will be wireless networks that let students and professors connect to the Internet with radio waves rather than cumbersome cables. Several universities are already using the less expensive technology. However, some find the slower speed of available wireless services…

  17. Mobile-host-centric transport protocol for wireless networks

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Shu, Yantai; Yang, Zhenyu

    2005-10-01

    Reliable transport protocols such as TCP are tuned to perform well in traditional networks where packet losses occur mostly because of congestion. However, networks with wireless and other lossy links also suffer from significant non-congestion-related losses due to reasons such as bit errors and handoffs. TCP responds to all losses by invoking congestion control and avoidance algorithms, resulting in degraded end-to-end performance in wireless and lossy networks. In case of wired-wireless interaction (WLANs), the wireless link is assumed to be the last hop where most of the loss and delay occurs. Since the mobile host is adjacent to the wireless hops, it is obviously better equipped to obtain first-hand knowledge of the wireless links. In the paper, we proposed a mobile-host-centric transport protocol called MCP (Mobile-host Control Protocol) that is like TCP in its general behavior, but allows for better congestion control and loss recovery in mobile wireless networks. The MCP shifts most transport layer control policies to the mobile host side under all cases (mobile host is a sender or receiver, fixed or mobile, and so on). Therefore, mobile stations can make better transport layer control in time based on the condition of wireless link.

  18. Differential Space-Time Modulation for Wideband Wireless Networks

    DTIC Science & Technology

    2006-09-30

    modulation for wireless relay networks in Nakagami -m channels,” in Proceedings of the 2006 IEEE International Conference on Acoustic, Speech, and Signal... Nakagami -m fading channels," in Proceedings of the 6th IEEE International Workshop on Signal Processing Advances for Wireless Communications (SPAWC

  19. Are Wireless Networks the Wave of the Future?

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    1999-01-01

    Some college administrators feel the next major trend in educational technology will be wireless networks that let students and professors connect to the Internet with radio waves rather than cumbersome cables. Several universities are already using the less expensive technology. However, some find the slower speed of available wireless services…

  20. Software-defined Radio Based Measurement Platform for Wireless Networks.

    PubMed

    Chao, I-Chun; Lee, Kang B; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan

    2015-10-01

    End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc.) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks.

  1. Software-defined Radio Based Measurement Platform for Wireless Networks

    PubMed Central

    Chao, I-Chun; Lee, Kang B.; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan

    2015-01-01

    End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc.) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks. PMID:27891210

  2. Wireless networking and its application in nuclear safeguards.

    SciTech Connect

    Goncalves, Joao G. M.; Smartt, Heidi Anne; Conti, Michele; Caskey, Susan Adele; Rossini, Angelo; Glidewell, Donnie Dwight

    2004-07-01

    Wireless networking can provide a cost effective and convenient method for installing and operating an unattended or remote monitoring system in an established facility. There is concern, however, that wireless devices can interfere with each other and with other radio systems within the facility. Additionally, there is concern that these devices add a potential risk to the security of the network. Since all data is transmitted in the air, it is possible for an unauthorized user to intercept the data transmissions and/or insert data onto the network if proper security is not in place. This paper describes a study being undertaken to highlight the benefits of wireless networking, evaluate interference and methods for mitigation, recommend security architectures, and present the results of a wireless network demonstration between Sandia National Laboratories (SNL) and the Joint Research Centre (JRC).

  3. Autonomous vision networking: miniature wireless sensor networks with imaging technology

    NASA Astrophysics Data System (ADS)

    Messinger, Gioia; Goldberg, Giora

    2006-09-01

    The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor

  4. Impact of reduced scale free network on wireless sensor network

    NASA Astrophysics Data System (ADS)

    Keshri, Neha; Gupta, Anurag; Mishra, Bimal Kumar

    2016-12-01

    In heterogeneous wireless sensor network (WSN) each data-packet traverses through multiple hops over restricted communication range before it reaches the sink. The amount of energy required to transmit a data-packet is directly proportional to the number of hops. To balance the energy costs across the entire network and to enhance the robustness in order to improve the lifetime of WSN becomes a key issue of researchers. Due to high dimensionality of an epidemic model of WSN over a general scale free network, it is quite difficult to have close study of network dynamics. To overcome this complexity, we simplify a general scale free network by partitioning all of its motes into two classes: higher-degree motes and lower-degree motes, and equating the degrees of all higher-degree motes with lower-degree motes, yielding a reduced scale free network. We develop an epidemic model of WSN based on reduced scale free network. The existence of unique positive equilibrium is determined with some restrictions. Stability of the system is proved. Furthermore, simulation results show improvements made in this paper have made the entire network have a better robustness to the network failure and the balanced energy costs. This reduced model based on scale free network theory proves more applicable to the research of WSN.

  5. A Wireless Sensor Network For Soil Monitoring

    NASA Astrophysics Data System (ADS)

    Szlavecz, K.; Cogan, J.; Musaloiu-Elefteri, R.; Small, S.; Terzis, A.; Szalay, A.

    2005-12-01

    The most spatially complex stratum of a terrestrial ecosystem is its soil. Among the major challenges of studying the soil ecosystem are the diversity and the cryptic nature of biota, and the enormous heterogeneity of the soil substrate. Often this patchiness drives spatial distribution of soil organisms, yet our knowledge on the spatio-temporal patterns of soil conditions is limited. To monitor the environmental conditions at biologically meaningful spatial scales we have developed and deployed a wireless sensor network of thirty nodes. Each node is based on a MICAz mote connected to a custom-built sensor suite that includes a Watermark soil moisture sensor, an Irrometer soil temperature sensor, and sensors capable of recording ambient temperature and light intensity. To assess CO2 production at the ground level a subset of the nodes is equipped with Telaire 6004 CO2 sensor. We developed the software running on the motes from scratch, using the TinyOS development environment. Each mote collects measurements every minute, and stores them persistently in a non-volatile memory. The decision to store data locally at each node enables us to reliably retrieve the data in the face of network losses and premature node failures due to power depletion. Collected measurements are retrieved over the wireless network through a PC-class computer acting as a gateway between the sensor network and the Internet. Considering that motes are battery powered, the largest obstacle hindering long-term sensor network deployments is power consumption. To address this problem, our software powers down sensors between sampling cycles and turns off the radio (the most energy prohibitive mote component) when not in use. By doing so we were able to increase node lifetime by a factor of ten. We collected field data over several weeks. The data was ingested into a SQL Server database, which provides data access through a .NET web services interface. The database provides functions for spatial

  6. Strain energy harvesting for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Churchill, David L.; Hamel, Michael J.; Townsend, Christopher P.; Arms, Steven W.

    2003-07-01

    Our goal was to demonstrate a robust strain energy harvesting system for powering an embedded wireless sensor network without batteries. A composite material specimen was laminated with unidirectional aligned piezoelectric fibers (PZT5A, 250 um, overall 13x10x.38 mm). The fibers were embedded within a resin matrix for damage tolerance (Advanced Cerametrics, Lambertville, NJ). A foil strain gauge (Micro-Measurements, Raleigh, NC) was bonded to the piezoelectric fiber and shunt calibrated. The specimen was loaded in three point cyclic bending (75 to 300 μɛ peak) using an electrodynamic actuator operating at 60,120, and 180 Hz. Strain energy was stored by rectifying piezoelectric fiber output into a capacitor bank. When the capacitor voltage reached a preset threshold, charge was transferred to an integrated, embeddable wireless sensor node (StrainLink, MicroStrain, Inc., Williston, VT). Nodes include: 16 bit A/D converter w/programmable gain and filter, 5 single ended or 3 differential sensor inputs, microcontroller w/16 bit address, on-board EEPROM, and 418 MHz FSK RF transmitter. Transmission range was 1/3 mile (LOS, 1/4 wavelength antennas, 12 milliamps at +3 VDC). The RF receiver included EEPROM, XML output, and Ethernet connectivity. Received data from network nodes are parsed according to their individual addresses. The times required to accumulate sufficient charge to accomplish data transmission was evaluated. For peak strains of 150 μɛ, the time to transmit was 30 to 160 seconds (for 180 to 60 Hz tests).

  7. Wireless Fractal Ultra-Dense Cellular Networks.

    PubMed

    Hao, Yixue; Chen, Min; Hu, Long; Song, Jeungeun; Volk, Mojca; Humar, Iztok

    2017-04-12

    With the ever-growing number of mobile devices, there is an explosive expansion in mobile data services. This represents a challenge for the traditional cellular network architecture to cope with the massive wireless traffic generated by mobile media applications. To meet this challenge, research is currently focused on the introduction of a small cell base station (BS) due to its low transmit power consumption and flexibility of deployment. However, due to a complex deployment environment and low transmit power of small cell BSs, the coverage boundary of small cell BSs will not have a traditional regular shape. Therefore, in this paper, we discuss the coverage boundary of an ultra-dense small cell network and give its main features: aeolotropy of path loss fading and fractal coverage boundary. Simple performance analysis is given, including coverage probability and transmission rate, etc., based on stochastic geometry theory and fractal theory. Finally, we present an application scene and discuss challenges in the ultra-dense small cell network.

  8. Wireless Sensor Networks for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liang, Y.; Navarro, M.; Zhong, X.; Villalba, G.; Li, Y.; Davis, T.; Erratt, N.

    2015-12-01

    Wireless sensor networks (WSNs) have gained an increasing interest in a broad range of new scientific research and applications. WSN technologies can provide high resolution for spatial and temporal data which has not been possible before, opening up new opportunities. On the other hand, WSNs, particularly outdoor WSNs in harsh environments, present great challenges for scientists and engineers in terms of the network design, deployment, operation, management, and maintenance. Since 2010, we have been working on the deployment of an outdoor multi-hop WSN testbed for hydrological/environmental monitoring in a forested hill-sloped region at the Audubon Society of Western Pennsylvania (ASWP), Pennsylvania, USA. The ASWP WSN testbed has continuously evolved and had more than 80 nodes by now. To our knowledge, the ASWP WSN testbed represents one of the first known long-term multi-hop WSN deployments in an outdoor environment. As simulation and laboratory methods are unable to capture the complexity of outdoor environments (e.g., forests, oceans, mountains, or glaciers), which significantly affect WSN operations and maintenance, experimental deployments are essential to investigate and understand WSN behaviors and performances as well as its maintenance characteristics under these harsh conditions. In this talk, based on our empirical studies with the ASWP WSN testbed, we will present our discoveries and investigations on several important aspects including WSN energy profile, node reprogramming, network management system, and testbed maintenance. We will then provide our insight into these critical aspects of outdoor WSN deployments and operations.

  9. Optimizing Retransmission Threshold in Wireless Sensor Networks.

    PubMed

    Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang

    2016-05-10

    The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is O n Δ · max 1 ≤ i ≤ n { u i } , where u i is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based ( 1 + p m i n ) -approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O ( 1 ) -approximation algorithm with time complexity O ( 1 ) is proposed. Experimental results show that the proposed algorithms have better performance.

  10. Optimizing Retransmission Threshold in Wireless Sensor Networks

    PubMed Central

    Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang

    2016-01-01

    The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is OnΔ·max1≤i≤n{ui}, where ui is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based (1+pmin)-approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O(1)-approximation algorithm with time complexity O(1) is proposed. Experimental results show that the proposed algorithms have better performance. PMID:27171092

  11. Mobility management techniques for the next-generation wireless networks

    NASA Astrophysics Data System (ADS)

    Sun, Junzhao; Howie, Douglas P.; Sauvola, Jaakko J.

    2001-10-01

    The tremendous demands from social market are pushing the booming development of mobile communications faster than ever before, leading to plenty of new advanced techniques emerging. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Mobility management is an important issue in the area of mobile communications, which can be best solved at the network layer. One of the key features of the next generation wireless networks is all-IP infrastructure. This paper discusses the mobility management schemes for the next generation mobile networks through extending IP's functions with mobility support. A global hierarchical framework model for the mobility management of wireless networks is presented, in which the mobility management is divided into two complementary tasks: macro mobility and micro mobility. As the macro mobility solution, a basic principle of Mobile IP is introduced, together with the optimal schemes and the advances in IPv6. The disadvantages of the Mobile IP on solving the micro mobility problem are analyzed, on the basis of which three main proposals are discussed as the micro mobility solutions for mobile communications, including Hierarchical Mobile IP (HMIP), Cellular IP, and Handoff-Aware Wireless Access Internet Infrastructure (HAWAII). A unified model is also described in which the different micro mobility solutions can coexist simultaneously in mobile networks.

  12. Using AQM to improve TCP performance over wireless networks

    NASA Astrophysics Data System (ADS)

    Li, Victor H.; Liu, Zhi-Qiang; Low, Steven H.

    2002-07-01

    TCP flow control algorithms have been designed for wireline networks where congestion is measured by packet loss due to buffer overflow. However, wireless networks also suffer from significant packet losses due to bit errors and handoffs. TCP responds to all the packet losses by invoking congestion control and avoidance algorithms and this results in degraded end-to-end performance in wireless networks. In this paper, we describe an Wireless Random Exponential Marking(WREM) scheme which effectively improves TCP performance over wireless networks by decoupling loss recovery from congestion control. Moreover, WREM is capable of handling the coexistence of both ECN-Capable and Non-ECN-Capable routers. We present simulation results to show its effectiveness and compatibility.

  13. Routing to preserve energy in wireless networks

    NASA Astrophysics Data System (ADS)

    Block, Frederick J., IV

    Many applications for wireless radio networks require that some or all radios in the network rely on batteries as energy sources. In many cases, battery replacement is infeasible, expensive, or impossible. Communication protocols for such networks should be designed to preserve limited energy supplies. Because the choice of a route to a traffic sink influences how often radios must transmit and receive, poor route selection can quickly deplete the batteries of certain nodes. Previous work has shown that a network's lifetime can be extended by assigning higher routing costs to nodes with little remaining energy and nodes that must use high transmitter power to reach neighbor radios. Although using remaining energy levels in routing metrics can increase network lifetime, in practice, there may be significant error in a node's estimate of its battery level. The effect of battery level uncertainty on routing is examined. Routing metrics are presented that are designed to explicitly account for uncertainty in remaining energy. Simulation results using several statistical models for this uncertainty show that the proposed metrics perform well. In addition to knowledge of current battery levels, estimates of how quickly radios are consuming energy may be helpful in extending network lifetime. We present a family of routing metrics that incorporate a radio's rate of energy consumption. Simulation results show that the proposed family of metrics performs well under a variety of traffic models and network topologies. Route selection can also be complicated by time-varying link conditions. Radios may be subject to interference from other nearby communication systems, hostile jammers, and other, non-communication sources of noise. A route that first appears to have only a small cost may later require much greater energy expenditure when transmitting packets. Frequent route selection can help radios avoid using links with interference, but additional routing control messages

  14. Application of wireless sensor network technology in logistics information system

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-04-01

    This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.

  15. High Fidelity Simulations of Large-Scale Wireless Networks

    SciTech Connect

    Onunkwo, Uzoma; Benz, Zachary

    2015-11-01

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulations (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.

  16. Scalable Architecture for Multihop Wireless ad Hoc Networks

    NASA Technical Reports Server (NTRS)

    Arabshahi, Payman; Gray, Andrew; Okino, Clayton; Yan, Tsun-Yee

    2004-01-01

    A scalable architecture for wireless digital data and voice communications via ad hoc networks has been proposed. Although the details of the architecture and of its implementation in hardware and software have yet to be developed, the broad outlines of the architecture are fairly clear: This architecture departs from current commercial wireless communication architectures, which are characterized by low effective bandwidth per user and are not well suited to low-cost, rapid scaling in large metropolitan areas. This architecture is inspired by a vision more akin to that of more than two dozen noncommercial community wireless networking organizations established by volunteers in North America and several European countries.

  17. Scaleable wireless web-enabled sensor networks

    NASA Astrophysics Data System (ADS)

    Townsend, Christopher P.; Hamel, Michael J.; Sonntag, Peter A.; Trutor, B.; Arms, Steven W.

    2002-06-01

    Our goal was to develop a long life, low cost, scalable wireless sensing network, which collects and distributes data from a wide variety of sensors over the internet. Time division multiple access was employed with RF transmitter nodes (each w/unique16 bit address) to communicate digital data to a single receiver (range 1/3 mile). One thousand five channel nodes can communicate to one receiver (30 minute update). Current draw (sleep) is 20 microamps, allowing 5 year battery life w/one 3.6 volt Li-Ion AA size battery. The network nodes include sensor excitation (AC or DC), multiplexer, instrumentation amplifier, 16 bit A/D converter, microprocessor, and RF link. They are compatible with thermocouples, strain gauges, load/torque transducers, inductive/capacitive sensors. The receiver (418 MHz) includes a single board computer (SBC) with Ethernet capability, internet file transfer protocols (XML/HTML), and data storage. The receiver detects data from specific nodes, performs error checking, records the data. The web server interrogates the SBC (from Microsoft's Internet Explorer or Netscape's Navigator) to distribute data. This system can collect data from thousands of remote sensors on a smart structure, and be shared by an unlimited number of users.

  18. Fast notification architecture for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hahk

    2013-03-01

    In an emergency, since it is vital to transmit the message to the users immediately after analysing the data to prevent disaster, this article presents the deployment of a fast notification architecture for a wireless sensor network. The sensor nodes of the proposed architecture can monitor an emergency situation periodically and transmit the sensing data, immediately to the sink node. We decide on the grade of fire situation according to the decision rule using the sensing values of temperature, CO, smoke density and temperature increasing rate. On the other hand, to estimate the grade of air pollution, the sensing data, such as dust, formaldehyde, NO2, CO2, is applied to the given knowledge model. Since the sink node in the architecture has a ZigBee interface, it can transmit the alert messages in real time according to analysed results received from the host server to the terminals equipped with a SIM card-type ZigBee module. Also, the host server notifies the situation to the registered users who have cellular phone through short message service server of the cellular network. Thus, the proposed architecture can adapt an emergency situation dynamically compared to the conventional architecture using video processing. In the testbed, after generating air pollution and fire data, the terminal receives the message in less than 3 s. In the test results, this system can also be applied to buildings and public areas where many people gather together, to prevent unexpected disasters in urban settings.

  19. Wireless sensor network for streetlight monitoring and control

    NASA Astrophysics Data System (ADS)

    Huang, Xin-Ming; Ma, Jing; Leblanc, Lawrence E.

    2004-08-01

    Wireless sensor network has attracted considerable research attention as the world becomes more information oriented. This technology provides an opportunity of innovations in traditional industries. Management and control of streetlight system is a labor-intensive high-cost task for public facility operations. This paper applies wireless sensor network technology in streetlight monitoring and control. Wireless sensor networks are employed to replace traditional physical patrol maintenance and manual switching on every lamp in the street or along the highway at the aim of reducing the maintenance and management expense. Active control is used to preserve energy cost while ensuring public safety. A proof-of-concept network architecture operated at 900 MHz industrial, scientific, and medical (ISM) band is designed for a two-way wireless telemetry system in streetlight remote control and monitoring. The radio architecture, multi-hop protocol and system interface are discussed in detail. MOTES sensor nodes are used in simulation and experimental tests. Simulation results show that the sensor network approach provides an efficient solution to monitor and control lighting infrastructures through wireless links. The unique application in this paper addresses an immediate need in streetlight control and monitoring, the architecture developed in this research could also serve as a platform for many other applications and researches in wireless sensor network.

  20. Challenges for Environmental Wireless Sensor Networks (WSNs) (Invited)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Davis, T. W.

    2013-12-01

    There are many challenges posed to researchers looking to collect eco-hydrological information with monitoring systems exposed to the natural environment due, in part, to the unpredictable interactions between the environment and the wireless hardware and the scale of the deployment. While wireless sensor network technology has introduced autonomy and pervasiveness to studying the environment, it is not a panacea for outdoor monitoring systems. Despite the fact that each outdoor deployment will encounter its own unique set of challenges, it is often a benefit to researchers to know what problems were faced during other deployments and how these problems were mitigated or solved. This work examines a long-term (i.e., multi-year) environmental wireless sensor network which was deployed in a forested hill-sloped region of western Pennsylvania, USA and the main challenges that were encountered. These include: (1) the startup and maintenance costs of the wireless network; (2) the data collection system and remote access to the network; (3) the security of the network hardware and software; and (4) the reliability of wireless network connectivity. Based on our field study, it was found that while wireless sensor networks (WSNs) have less expensive startup costs compared to similarly sized wired systems (such as data logging), the WSN has relatively high maintenance costs as it requires frequent site visits (mean of 38 days per wireless node). One possible way to reduce the maintenance costs is by adjusting the sampling and/or collection frequency of the wireless nodes. In addition to the high maintenance costs, wireless communications, especially over complex networks, have low success rates of data capture from the field (approximately 50%). Environmental conditions, such as background noise, interference and weather conditions, may significantly influence the wireless communications. Technological advancements (such as smart sampling and data compression) are being

  1. UWIN: a universal wireless infrared network system

    NASA Astrophysics Data System (ADS)

    Medved, David B.; Halpern, Ron

    1995-09-01

    Wireless data communications are currently being implemented by the complementary technologies of RF and IR. The RF options provide larger area coverage than wireless optical communications but are limited in full bandwidth throughput to about 5 Mbps whereas infrared systems using IR-LED have achieved data rates up to 125 Mbps which makes them suitable for use in FDDI, Fast Ethernet and ATM wireless connectivity as well as Token Ring, Ethernet and PABX (voice).

  2. Ubiquitous map-image access through wireless overlay networks

    NASA Astrophysics Data System (ADS)

    Cai, Jianfei; Huang, Haijie; Ni, Zefeng; Chen, Chang Wen

    2004-10-01

    With the availability of various wireless link-layer technologies, such as Bluetooth, WLAN and GPRS, in one wireless device, ubiquitous communications can be realized through managing vertical handoff in the environment of wireless overlay networks. In this paper, we propose a vertical handoff management system based on mobile IPv6, which can automatically manage the multiple network interfaces on the mobile device, and make decisions on network interface selection according to the current situation. Moreover, we apply our proposed vertical handoff management with JPEG-2000 codec to the wireless application of map image access. The developed system is able to provide seamless communications, as well as fast retrieve any interested map region with any block size, in different resolutions and different color representations directly from the compressed bitstream.

  3. Competition in the domain of wireless networks security

    NASA Astrophysics Data System (ADS)

    Bednarczyk, Mariusz

    2017-04-01

    Wireless networks are very popular and have found wide spread usage amongst various segments, also in military environment. The deployment of wireless infrastructures allow to reduce the time it takes to install and dismantle communications networks. With wireless, users are more mobile and can easily get access to the network resources all the time. However, wireless technologies like WiFi or Bluetooth have security issues that hackers have extensively exploited over the years. In the paper several serious security flaws in wireless technologies are presented. Most of them enable to get access to the internal networks and easily carry out man-in-the-middle attacks. Very often, they are used to launch massive denial of service attacks that target the physical infrastructure as well as the RF spectrum. For instance, there are well known instances of Bluetooth connection spoofing in order to steal WiFi password stored in the mobile device. To raise the security awareness and protect wireless networks against an adversary attack, an analysis of attack methods and tools over time is presented in the article. The particular attention is paid to the severity, possible targets as well as the ability to persist in the context of protective measures. Results show that an adversary can take complete control of the victims' mobile device features if the users forget to use simple safety principles.

  4. Quality of Service in Wireless Sensor Networks (QOS in WSN)

    NASA Astrophysics Data System (ADS)

    Zolhavarieh, Seyedjamal; Barati, Molood

    2013-03-01

    In this paper, we discuss about concept of Quality of Service (QoS) in Wireless Sensor Networks (WSN) and different methods to improve data security network. The most useful methods for network traffic control are Differentiated Services (DS), Integrated Services, Multi-Protocol Labeled Switching (MPLS), Resource Reservation Protocol (RSVP) and Traffic Engineering. Quality of Service is responsible for data transfer between different parts of the network and it guarantees some series of transport properties on the network [14].

  5. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  6. Connectivity Restoration in Wireless Sensor Networks via Space Network Coding

    PubMed Central

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing

    2017-01-01

    The problem of finding the number and optimal positions of relay nodes for restoring the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree (ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network coding approach that combines Delaunay triangulation and non-uniform partitioning techniques for generating a number of candidate relay nodes, and then linear programming is applied for choosing the optimal relay nodes and computing their connection links with terminals. Subsequently, an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals, as well as any density distribution of terminals. The performance and complexity of RPSNC are analyzed and its performance is validated through simulation experiments. PMID:28425923

  7. An extra power saving scheme for prolonging lifetime of mobile handset in the 4G mobile networks.

    PubMed

    Chen, Jenhui; Tarn, Woei-Hwa; Lee, Jiann-Der

    2014-01-01

    In the fourth generation or next generation networks, services of non-real-time variable bit rate (NRT-VBR) and best effort (BE) will dominate over 85% of the total traffic in the networks. In this paper, we study the power saving mechanism of NRT-VBR and BE services for mobile handsets (MHs) to prolong their battery lifetime (i.e., the sustained operation duration) in the fourth generation networks. Because the priority of NRT-VBR and BE is lower than that of real-time VBR (RT-VBR) or guaranteed bit rate (GBR) services, we investigate an extended sleep mode for lower priority services (e.g., NRT-VBR and BE) in an MH to conserve the energy. The extended sleep mode is used when the MH wakes up from the sleep mode but it cannot obtain the bandwidth from base station (BS). The proposed mechanism, named extra power saving scheme (EPSS), uses the M/M/k/k Markovian queuing model to estimate the extended sleep duration to let MHs conserve their battery energy when the networks traffic is congested. To study the performance of EPSS, an accurate analysis model of energy is presented and validated by taking a series of simulations. Numerical experiments show that EPSS can achieve 43% extra energy conservation at most when downlink resource is saturated. We conclude that the energy of MHs can be conserved further by applying EPSS when the traffic load is saturated. The effect of energy saving becomes more obvious when the portion of NRT-VBR and BE services is greater than that of RT-VBR and GBR services.

  8. An Extra Power Saving Scheme for Prolonging Lifetime of Mobile Handset in the 4G Mobile Networks

    PubMed Central

    Chen, Jenhui; Tarn, Woei-Hwa; Lee, Jiann-Der

    2014-01-01

    In the fourth generation or next generation networks, services of non-real-time variable bit rate (NRT-VBR) and best effort (BE) will dominate over 85% of the total traffic in the networks. In this paper, we study the power saving mechanism of NRT-VBR and BE services for mobile handsets (MHs) to prolong their battery lifetime (i.e., the sustained operation duration) in the fourth generation networks. Because the priority of NRT-VBR and BE is lower than that of real-time VBR (RT-VBR) or guaranteed bit rate (GBR) services, we investigate an extended sleep mode for lower priority services (e.g., NRT-VBR and BE) in an MH to conserve the energy. The extended sleep mode is used when the MH wakes up from the sleep mode but it cannot obtain the bandwidth from base station (BS). The proposed mechanism, named extra power saving scheme (EPSS), uses the Markovian queuing model to estimate the extended sleep duration to let MHs conserve their battery energy when the networks traffic is congested. To study the performance of EPSS, an accurate analysis model of energy is presented and validated by taking a series of simulations. Numerical experiments show that EPSS can achieve 43% extra energy conservation at most when downlink resource is saturated. We conclude that the energy of MHs can be conserved further by applying EPSS when the traffic load is saturated. The effect of energy saving becomes more obvious when the portion of NRT-VBR and BE services is greater than that of RT-VBR and GBR services. PMID:25089822

  9. Wireless synapses in bio-inspired neural networks

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Degrood, Kevin

    2009-05-01

    Wireless (virtual) synapses represent a novel approach to bio-inspired neural networks that follow the infrastructure of the biological brain, except that biological (physical) synapses are replaced by virtual ones based on cellular telephony modeling. Such synapses are of two types: intracluster synapses are based on IR wireless ones, while intercluster synapses are based on RF wireless ones. Such synapses have three unique features, atypical of conventional artificial ones: very high parallelism (close to that of the human brain), very high reconfigurability (easy to kill and to create), and very high plasticity (easy to modify or upgrade). In this paper we analyze the general concept of wireless synapses with special emphasis on RF wireless synapses. Also, biological mammalian (vertebrate) neural models are discussed for comparison, and a novel neural lensing effect is discussed in detail.

  10. In-Network Processing of Joins in Wireless Sensor Networks

    PubMed Central

    Kang, Hyunchul

    2013-01-01

    The join or correlated filtering of sensor readings is one of the fundamental query operations in wireless sensor networks (WSNs). Although the join in centralized or distributed databases is a well-researched problem, join processing in WSNs has quite different characteristics and is much more difficult to perform due to the lack of statistics on sensor readings and the resource constraints of sensor nodes. Since data transmission is orders of magnitude more costly than processing at a sensor node, in-network processing of joins is essential. In this paper, the state-of-the-art techniques for join implementation in WSNs are surveyed. The requirements and challenges, join types, and components of join implementation are described. The open issues for further research are identified. PMID:23478603

  11. Geographic Wormhole Detection in Wireless Sensor Networks

    PubMed Central

    Sookhak, Mehdi; Akhundzada, Adnan; Sookhak, Alireza; Eslaminejad, Mohammadreza; Gani, Abdullah; Khurram Khan, Muhammad; Li, Xiong; Wang, Xiaomin

    2015-01-01

    Wireless sensor networks (WSNs) are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS) attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS) attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP). The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS), Authentication of Nodes Scheme (ANS), Wormhole Detection uses Hound Packet (WHOP), and Wormhole Detection with Neighborhood Information (WDI) using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR) in the geographic routing protocols. PMID:25602616

  12. Geographic wormhole detection in wireless sensor networks.

    PubMed

    Sookhak, Mehdi; Akhundzada, Adnan; Sookhak, Alireza; Eslaminejad, Mohammadreza; Gani, Abdullah; Khurram Khan, Muhammad; Li, Xiong; Wang, Xiaomin

    2015-01-01

    Wireless sensor networks (WSNs) are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS) attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS) attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP). The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS), Authentication of Nodes Scheme (ANS), Wormhole Detection uses Hound Packet (WHOP), and Wormhole Detection with Neighborhood Information (WDI) using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR) in the geographic routing protocols.

  13. Wireless Sensors and Networks for Advanced Energy Management

    SciTech Connect

    Hardy, J.E.

    2005-05-06

    Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modeling investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.

  14. An efficient management system for wireless sensor networks.

    PubMed

    Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu

    2010-01-01

    Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.

  15. Robust message routing for mobile (wireless) ad hoc networks.

    SciTech Connect

    Goldsby, Michael E.; Johnson, Michael M.; Kilman, Dominique Marie; Bierbaum, Neal Robert; Chen, Helen Y.; Ammerlahn, Heidi R.; Tsang, Rose P.; Nicol, David M.

    2004-01-01

    This report describes the results of research targeting improvements in the robustness of message transport in wireless ad hoc networks. The first section of the report provides an analysis of throughput and latency in the wireless medium access control (MAC) layer and relates the analysis to the commonly used 802.11 protocol. The second section describes enhancements made to several existing models of wireless MAC and ad hoc routing protocols; the models were used in support of the work described in the following section. The third section of the report presents a lightweight transport layer protocol that is superior to TCP for use in wireless networks. In addition, it introduces techniques that improve the performance of any ad hoc source routing protocol. The fourth section presents a novel, highly scalable ad hoc routing protocol that is based on geographic principles but requires no localization hardware.

  16. IR wireless cluster synapses of HYDRA very large neural networks

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas

    2008-04-01

    RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.

  17. Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring

    NASA Astrophysics Data System (ADS)

    Stocklöw, Carsten; Kamieth, Felix

    In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.

  18. Modeling a Wireless Network for International Space Station

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Yaprak, Ece; Lamouri, Saad

    2000-01-01

    This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows.

  19. Statistical performance evaluation of ECG transmission using wireless networks.

    PubMed

    Shakhatreh, Walid; Gharaibeh, Khaled; Al-Zaben, Awad

    2013-07-01

    This paper presents simulation of the transmission of biomedical signals (using ECG signal as an example) over wireless networks. Investigation of the effect of channel impairments including SNR, pathloss exponent, path delay and network impairments such as packet loss probability; on the diagnosability of the received ECG signal are presented. The ECG signal is transmitted through a wireless network system composed of two communication protocols; an 802.15.4- ZigBee protocol and an 802.11b protocol. The performance of the transmission is evaluated using higher order statistics parameters such as kurtosis and Negative Entropy in addition to the common techniques such as the PRD, RMS and Cross Correlation.

  20. Time Synchronization in Hierarchical TESLA Wireless Sensor Networks

    SciTech Connect

    Jason L. Wright; Milos Manic

    2009-08-01

    Time synchronization and event time correlation are important in wireless sensor networks. In particular, time is used to create a sequence events or time line to answer questions of cause and effect. Time is also used as a basis for determining the freshness of received packets and the validity of cryptographic certificates. This paper presents secure method of time synchronization and event time correlation for TESLA-based hierarchical wireless sensor networks. The method demonstrates that events in a TESLA network can be accurately timestamped by adding only a few pieces of data to the existing protocol.

  1. Performance analysis of wireless sensor networks in geophysical sensing applications

    NASA Astrophysics Data System (ADS)

    Uligere Narasimhamurthy, Adithya

    Performance is an important criteria to consider before switching from a wired network to a wireless sensing network. Performance is especially important in geophysical sensing where the quality of the sensing system is measured by the precision of the acquired signal. Can a wireless sensing network maintain the same reliability and quality metrics that a wired system provides? Our work focuses on evaluating the wireless GeoMote sensor motes that were developed by previous computer science graduate students at Mines. Specifically, we conducted a set of experiments, namely WalkAway and Linear Array experiments, to characterize the performance of the wireless motes. The motes were also equipped with the Sticking Heartbeat Aperture Resynchronization Protocol (SHARP), a time synchronization protocol developed by a previous computer science graduate student at Mines. This protocol should automatically synchronize the mote's internal clocks and reduce time synchronization errors. We also collected passive data to evaluate the response of GeoMotes to various frequency components associated with the seismic waves. With the data collected from these experiments, we evaluated the performance of the SHARP protocol and compared the performance of our GeoMote wireless system against the industry standard wired seismograph system (Geometric-Geode). Using arrival time analysis and seismic velocity calculations, we set out to answer the following question. Can our wireless sensing system (GeoMotes) perform similarly to a traditional wired system in a realistic scenario?

  2. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  3. Wireless sensor network effectively controls center pivot irrigation of sorghum

    USDA-ARS?s Scientific Manuscript database

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  4. Wireless imaging sensor network design and performance analysis

    NASA Astrophysics Data System (ADS)

    Sundaram, Ramakrishnan

    2016-05-01

    This paper discusses (a) the design and implementation of the integrated radio tomographic imaging (RTI) interface for radio signal strength (RSS) data obtained from a wireless imaging sensor network (WISN) (b) the use of model-driven methods to determine the extent of regularization to be applied to reconstruct images from the RSS data, and (c) preliminary study of the performance of the network.

  5. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  6. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    PubMed Central

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  7. Wireless local area network for the dental office.

    PubMed

    Mupparapu, Muralidhar

    2004-01-01

    Dental offices are no exception to the implementation of new and advanced technology, especially if it enhances productivity. In a rapidly transforming digital world, wireless technology has a special place, as it has truly "retired the wire" and contributed to the ease and efficient access to patient data and other software-based applications for diagnosis and treatment. If the office or the clinic is networked, access to patient management software, imaging software and treatment planning tools is enhanced. Access will be further enhanced and unrestricted if the entire network is wireless. As with any new, emerging technology, there will be issues that should be kept in mind before adapting to the wireless environment. Foremost is the network security involved in the installation and use of these wireless networks. This short, technical manuscript deals with standards and choices in wireless technology currently available for implementation within a dental office. The benefits of each network security protocol available to protect patient data and boost the efficiency of a modern dental office are discussed.

  8. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    PubMed

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  9. Journey from Mobile Ad Hoc Networks to Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Wang, Junfang; Xie, Bin; Agrawal, Dharma P.

    A wireless mesh network (WMN) is a particular type of mobile ad hoc network (MANET), which aims to provide ubiquitous high bandwidth access for a large number of users. A pure MANET is dynamically formed by mobile devices without the requirement of any existing infrastructure or prior network configuration. Similar to MANETs, a WMN also has the ability of self-organization, self-discovering, self-healing, and self-configuration. However, a WMN is typically a collection of stationary mesh routers (MRs) with each employing multiple radios. Some MRs have wired connections and act as the Internet gateways (IGWs) to provide Internet connectivity for other MRs. These new features of WMNs over MANETs enable them to be a promising alternative for high broadband Internet access. In this chapter, we elaborate on the evolution from MANETs to WMNs and provide a comprehensive understanding of WMNs from theoretical aspects to practical protocols, while comparing it with MANETs. In particular, we focus on the following critical issues with respect to WMN deployment: Network Capacity, Positioning Technique, Fairness Transmission and Multiradio Routing Protocols. We end this chapter with some open problems and future directions in WMNs.

  10. Improving the reliability of wireless body area networks.

    PubMed

    Arrobo, Gabriel E; Gitlin, Richard D

    2011-01-01

    In this paper we propose a highly reliable wireless body area network (WBAN) that provides increased throughput and avoids single points of failure. Such networks improve upon current WBANs by taking advantage of a new technology, Cooperative Network Coding (CNC). Using CNC in wireless body area network to support real-time applications is an attractive solution to combat packet loss, reduce latency due to retransmissions, avoid single points of failure, and improve the probability of successful recovery of the information at the destination. In this paper, we have extended Cooperative Network Coding, from its original configuration (one-to-one) to many-to-many as in multiple-input-multiple-output (MIMO) systems. Cooperative Network Coding results in increased throughput and network reliability because of the cooperation of the nodes in transmitting coded combination packets across spatially distinct paths to the information sinks.

  11. Wireless networking for the dental office: current wireless standards and security protocols.

    PubMed

    Mupparapu, Muralidhar; Arora, Sarika

    2004-11-15

    Digital radiography has gained immense popularity in dentistry today in spite of the early difficulty for the profession to embrace the technology. The transition from film to digital has been happening at a faster pace in the fields of Orthodontics, Oral Surgery, Endodontics, Periodontics, and other specialties where the radiographic images (periapical, bitewing, panoramic, cephalometric, and skull radiographs) are being acquired digitally, stored within a server locally, and eventually accessed for diagnostic purposes, along with the rest of the patient data via the patient management software (PMS). A review of the literature shows the diagnostic performance of digital radiography is at least comparable to or even better than that of conventional radiography. Similarly, other digital diagnostic tools like caries detectors, cephalometric analysis software, and digital scanners were used for many years for the diagnosis and treatment planning purposes. The introduction of wireless charged-coupled device (CCD) sensors in early 2004 (Schick Technologies, Long Island City, NY) has moved digital radiography a step further into the wireless era. As with any emerging technology, there are concerns that should be looked into before adapting to the wireless environment. Foremost is the network security involved in the installation and usage of these wireless networks. This article deals with the existing standards and choices in wireless technologies that are available for implementation within a contemporary dental office. The network security protocols that protect the patient data and boost the efficiency of modern day dental clinics are enumerated.

  12. Private synchronization technique for heterogeneous wireless network (WiFi and WiMAX)

    NASA Astrophysics Data System (ADS)

    Al-Sherbaz, Ali; Adams, Chris; Jassim, Sabah

    2008-04-01

    Horizontal developments in communication systems have led to the emergence of new wireless technologies like WiMAX, 3G and 4G. These expansions can provide new opportunities for further advances and exciting applications in particular if we can integrate different technology standards into heterogeneous wireless networks. WiMAX and WiFi wireless networks are two examples of different standard technologies that cannot communicate with each other using existing protocols. These two standards differ in frequency, protocol and management mechanisms, and hence to construct a heterogeneous network using WiFi and WiMAX devices these differences need to be harmonised and resolved. Synchronization is the first step towards in such a process. In this paper we propose a private synchronization technique that enables WiFi and WiMAX devices to communicate with each other. Precise time synchronization in the micro second resolution range is required. The CPU clock is used as a reference for this private synchronization. Our private synchronization solution is based on interposing an extra thin layer between MAC and PHY layers in both WiFi and WiMAX. This extra thin layer will assign alternate synchronization and other duties to the two systems.

  13. Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks

    PubMed Central

    Wang, Xue; Ma, Jun-Jie; Ding, Liang; Bi, Dao-Wei

    2007-01-01

    An important criterion of wireless sensor network is the energy efficiency in specified applications. In this wireless multimedia sensor network, the observations are derived from acoustic sensors. Focused on the energy problem of target tracking, this paper proposes a robust forecasting method to enhance the energy efficiency of wireless multimedia sensor networks. Target motion information is acquired by acoustic sensor nodes while a distributed network with honeycomb configuration is constructed. Thereby, target localization is performed by multiple sensor nodes collaboratively through acoustic signal processing. A novel method, combining autoregressive moving average (ARMA) model and radial basis function networks (RBFNs), is exploited to perform robust target position forecasting during target tracking. Then sensor nodes around the target are awakened according to the forecasted target position. With committee decision of sensor nodes, target localization is performed in a distributed manner and the uncertainty of detection is reduced. Moreover, a sensor-to-observer routing approach of the honeycomb mesh network is investigated to solve the data reporting considering the residual energy of sensor nodes. Target localization and forecasting are implemented in experiments. Meanwhile, sensor node awakening and dynamic routing are evaluated. Experimental results verify that energy efficiency of wireless multimedia sensor network is enhanced by the proposed target tracking method.

  14. Performance evaluation of TCP implementations in wireless networks

    NASA Astrophysics Data System (ADS)

    ElAarag, Hala; Bassiouni, Mostafa A.

    1999-06-01

    The performance of TCP has been well tuned for traditional networks made up of wired links and stationary hosts. Mobile networks, however, differs from conventional wired computer networks and usually suffer from high bit error rates and frequent disconnections due to handoffs. In this paper, we present simulation results for the performance of various TCP implementations in the presence of a wireless link. To concentrate on the mobility and reliability aspects of the wireless connection, our simulation tests used sufficiently large buffer sizes in the fixed host and the base station of the TCP connection. The results show that throughput of the TCP connection is largely influenced by the link-up period of the wireless link. By varying the link-up and the link- down periods, it is possible to obtain better throughput at higher disconnection probability. For example, the throughput of TCP Reno with disconnection probability of 28.6% and a link-up period of 5 is better than the throughput with disconnection probability of 9% and a link- up period of less than 3. The paper presents timing graphs tracing the movement of packets and acknowledgements between the fixed and mobile hosts. Dropped packets or acknowledgements shown in these graphs are the result of mobile disconnection or wireless bit errors and not because of buffer congestion. Unlike wired networks, Reno TCP was found to perform better than Sack in the wireless mobile environment.

  15. Lifting Scheme DWT Implementation in a Wireless Vision Sensor Network

    NASA Astrophysics Data System (ADS)

    Ong, Jia Jan; Ang, L.-M.; Seng, K. P.

    This paper presents the practical implementation of a Wireless Visual Sensor Network (WVSN) with DWT processing on the visual nodes. WVSN consists of visual nodes that capture video and transmit to the base-station without processing. Limitation of network bandwidth restrains the implementation of real time video streaming from remote visual nodes through wireless communication. Three layers of DWT filters are implemented to process the captured image from the camera. With having all the wavelet coefficients produced, it is possible just to transmit the low frequency band coefficients and obtain an approximate image at the base-station. This will reduce the amount of power required in transmission. When necessary, transmitting all the wavelet coefficients will produce the full detail of image, which is similar to the image captured at the visual nodes. The visual node combines the CMOS camera, Xilinx Spartan-3L FPGA and wireless ZigBee® network that uses the Ember EM250 chip.

  16. 3-Dimensional wireless sensor network localization: A review

    NASA Astrophysics Data System (ADS)

    Najib, Yasmeen Nadhirah Ahmad; Daud, Hanita; Aziz, Azrina Abd; Razali, Radzuan

    2016-11-01

    The proliferation of wireless sensor network (WSN) has shifted the focus to 3-Dimensional geometry rather than 2-Dimensional geometry. Since exact location of sensors has been the fundamental issue in wireless sensor network, node localization is essential for any wireless sensor network applications. Most algorithms mainly focus on 2-Dimensional geometry, where the application of this algorithm will decrease the accuracy on 3-Dimensional geometry. The low rank attribute in WSN's node estimation makes the application of nuclear norm minimization as a viable solution for dimensionality reduction problems. This research proposes a novel localization algorithm for 3-Dimensional WSN which is nuclear norm minimization. The node localization is formulated via Euclidean Distance Matrix (EDM) and is then optimized using Nuclear-Norm Minimization (NNM).

  17. Networked computing in wireless sensor networks for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jindal, Apoorva; Liu, Mingyan

    2011-04-01

    This paper studies the problem of distributed computation over a wireless network of resource constrained sensor nodes. In particular, we focus our attention on sensor networks used for structural health monitoring. Within this context, the heaviest computation is to determine the singular value decomposition (SVD) to extract mode shapes (eigenvectors) of a structure. Compared to collecting raw vibration data and performing SVD at a central location, computing SVD within the network can result in a significantly smaller energy consumption and delay. Recent results have proposed methods to decompose SVD into components that can be carried out in a distributed way. The focus of this paper is to determine a near-optimal communication structure that enables the distribution of this computation and the reassembly of the final results, with the objective of minimizing energy consumption subject to a computational delay constraint. We show that this reduces to a generalized clustering problem; a cluster forms a unit on which a component of the overall computation is performed. We establish that this problem is NP-hard. By relaxing the delay constraint, we derive a lower bound to this problem. We also show that the optimal solution to the unconstrained problem has a simple structure that reveals insights into the solution of the original constrained problem. We then propose an integer linear program (ILP) to solve the constrained problem exactly as well as an approximate algorithm with a proven approximation ratio. We also present a distributed version of the approximate algorithm. Numerical results are presented.

  18. Software structure for broadband wireless sensor network system

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Yoon, Hargsoon; Varadan, Vijay K.

    2010-04-01

    Zigbee Sensor Network system has been investigating for monitoring and analyzing the data measured from a lot of sensors because the Zigbee Sensor Network has several advantages of low power consumption, compact size, and multi-node connection. However, it has a disadvantage not to be able to monitor the data measured from sensors at the remote area such as other room that is located at other city. This paper describes the software structure to compensate the defect with combining the Zigbee Sensor Network and wireless LAN technology for remote monitoring of measured sensor data. The software structure has both benefits of Zigbee Sensor Network and the advantage of wireless LAN. The software structure has three main software structures. The first software structure consists of the function in order to acquire the data from sensors and the second software structure is to gather the sensor data through wireless Zigbee and to send the data to Monitoring system by using wireless LAN. The second part consists of Linux packages software based on 2440 CPU (Samsung corp.), which has ARM9 core. The Linux packages include bootloader, device drivers, kernel, and applications, and the applications are TCP/IP server program, the program interfacing with Zigbee RF module, and wireless LAN program. The last part of software structure is to receive the sensor data through TCP/IP client program from Wireless Gate Unit and to display graphically measured data by using MATLAB program; the sensor data is measured on 100Hz sampling rate and the measured data has 10bit data resolution. The wireless data transmission rate per each channel is 1.6kbps.

  19. Open-WiSe: a solar powered wireless sensor network platform.

    PubMed

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  20. Zone-Based Routing Protocol for Wireless Sensor Networks

    PubMed Central

    Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran

    2014-01-01

    Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads. PMID:27437455

  1. Effective Utilization of Commercial Wireless Networking Technology in Planetary Environments

    NASA Technical Reports Server (NTRS)

    Caulev, Michael (Technical Monitor); Phillip, DeLeon; Horan, Stephen; Borah, Deva; Lyman, Ray

    2005-01-01

    The purpose of this research is to investigate the use of commercial, off-the-shelf wireless networking technology in planetary exploration applications involving rovers and sensor webs. The three objectives of this research project are to: 1) simulate the radio frequency environment of proposed landing sites on Mars using actual topographic data, 2) analyze the performance of current wireless networking standards in the simulated radio frequency environment, and 3) propose modifications to the standards for more efficient utilization. In this annual report, we present our results for the second year of research. During this year, the effort has focussed on the second objective of analyzing the performance of the IEEE 802.11a and IEEE 802.1lb wireless networking standards in the simulated radio frequency environment of Mars. The approach builds upon our previous results which deterministically modelled the RF environment at selected sites on Mars using high-resolution topographical data. These results provide critical information regarding antenna coverage patterns, maximum link distances, effects of surface clutter, and multipath effects. Using these previous results, the physical layer of these wireless networking standards has now been simulated and analyzed in the Martian environment. We are looking to extending these results to the and medium access layer next. Our results give us critical information regarding the performance (data rates, packet error rates, link distances, etc.) of IEEE 802.1 la/b wireless networks. This information enables a critical examination of how these wireless networks may be utilized in future Mars missions and how they may be possibly modified for more optimal usage.

  2. 78 FR 1264 - CalAmp Wireless Networks Corporation, Waseca, MN; Notice of Negative Determination Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Employment and Training Administration CalAmp Wireless Networks Corporation, Waseca, MN; Notice of Negative... workers of the subject firm (TA-W-80,399A; CalAmp Wireless Networks Corporation, Waseca, Minnesota... Wireless Networks Corporation, Waseca, Minnesota to apply for TAA, the Department determines that an...

  3. Resource Optimization Scheme for Multimedia-Enabled Wireless Mesh Networks

    PubMed Central

    Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md. Jalil; Suh, Doug Young

    2014-01-01

    Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment. PMID:25111241

  4. Resource optimization scheme for multimedia-enabled wireless mesh networks.

    PubMed

    Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md Jalil; Suh, Doug Young

    2014-08-08

    Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment.

  5. Policy-Enabled Handoffs Across Heterogeneous Wireless Networks

    DTIC Science & Technology

    1998-12-17

    infrared, radio wireless LAN, cellular and satellite networks as an overlaid structure of room-size, building- 1 Report Documentation Page Form... Cellular Modem. Nonetheless, it is net- work independent. Any network in any numbers can be used in the system. We choose these networks because they...and GSM Cellular are on the third overlay with similar bandwidth but lower than WaveLAN’s bandwidth, and both have wide area coverage. The rest of the

  6. Cross-Layer Design and Optimization for Wireless Sensor Networks

    DTIC Science & Technology

    2006-03-01

    A survey on sensor networks,” IEEE Communications Magazine , Vol. 40, No. 8, pp. 102-116, Aug 2002. [5] Sameer Tilak, Nael B. Abu-Ghazaleh...2004. [9] Jeyhan Karagoux, “High-Rate Wireless Personal Area Networks,” IEEE Communications Magazine ,” Vol.39 No.12, pp. 96-102, Dec. 2001. [10...rate adaptation and energy-saving mechanisms based on cross-layer information for packet-switched data networks", IEEE Communications Magazine , Vol

  7. Modelling the Energy Efficient Sensor Nodes for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Dahiya, R.; Arora, A. K.; Singh, V. R.

    2015-09-01

    Energy is an important requirement of wireless sensor networks for better performance. A widely employed energy-saving technique is to place nodes in sleep mode, corresponding to low-power consumption as well as to reduce operational capabilities. In this paper, Markov model of a sensor network is developed. The node is considered to enter a sleep mode. This model is used to investigate the system performance in terms of energy consumption, network capacity and data delivery delay.

  8. Wireless Local Area Network Performance Inside Aircraft Passenger Cabins

    NASA Technical Reports Server (NTRS)

    Whetten, Frank L.; Soroker, Andrew; Whetten, Dennis A.; Whetten, Frank L.; Beggs, John H.

    2005-01-01

    An examination of IEEE 802.11 wireless network performance within an aircraft fuselage is performed. This examination measured the propagated RF power along the length of the fuselage, and the associated network performance: the link speed, total throughput, and packet losses and errors. A total of four airplanes: one single-aisle and three twin-aisle airplanes were tested with 802.11a, 802.11b, and 802.11g networks.

  9. Wireless Sensor Networks Energy-Efficient MAC Protocol

    NASA Astrophysics Data System (ADS)

    Lijuan, Du; Yuanpeng, Wang; WeiPeng, Jing

    This paper presents a new wireless sensor network energy-efficient MAC protocol, ES-MAC protocol, and shows the results of simulation experiments. During the transmission the nodes do not send ACK packages while use a small amount of new information packets, so they can reduce unnecessary energy loss and wasted time. The theoretical analysis and simulation results show that ES-MAC protocol reduces energy consumption while reducing network latency and improving network throughput.

  10. A Survey of Routing Protocols in Wireless Body Sensor Networks

    PubMed Central

    Bangash, Javed Iqbal; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Khan, Abdul Waheed

    2014-01-01

    Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses. PMID:24419163

  11. Efficient evaluation of wireless real-time control networks.

    PubMed

    Horvath, Peter; Yampolskiy, Mark; Koutsoukos, Xenofon

    2015-02-11

    In this paper, we present a system simulation framework for the design and performance evaluation of complex wireless cyber-physical systems. We describe the simulator architecture and the specific developments that are required to simulate cyber-physical systems relying on multi-channel, multihop mesh networks. We introduce realistic and efficient physical layer models and a system simulation methodology, which provides statistically significant performance evaluation results with low computational complexity. The capabilities of the proposed framework are illustrated in the example of WirelessHART, a centralized, real-time, multi-hop mesh network designed for industrial control and monitor applications.

  12. Authentication and Key Establishment in Dynamic Wireless Sensor Networks

    PubMed Central

    Qiu, Ying; Zhou, Jianying; Baek, Joonsang; Lopez, Javier

    2010-01-01

    When a sensor node roams within a very large and distributed wireless sensor network, which consists of numerous sensor nodes, its routing path and neighborhood keep changing. In order to provide a high level of security in this environment, the moving sensor node needs to be authenticated to new neighboring nodes and a key established for secure communication. The paper proposes an efficient and scalable protocol to establish and update the authentication key in a dynamic wireless sensor network environment. The protocol guarantees that two sensor nodes share at least one key with probability 1 (100%) with less memory and energy cost, while not causing considerable communication overhead. PMID:22319321

  13. Efficient Evaluation of Wireless Real-Time Control Networks

    PubMed Central

    Horvath, Peter; Yampolskiy, Mark; Koutsoukos, Xenofon

    2015-01-01

    In this paper, we present a system simulation framework for the design and performance evaluation of complex wireless cyber-physical systems. We describe the simulator architecture and the specific developments that are required to simulate cyber-physical systems relying on multi-channel, multihop mesh networks. We introduce realistic and efficient physical layer models and a system simulation methodology, which provides statistically significant performance evaluation results with low computational complexity. The capabilities of the proposed framework are illustrated in the example of WirelessHART, a centralized, real-time, multi-hop mesh network designed for industrial control and monitor applications. PMID:25679314

  14. Link-Quality Measurement and Reporting in Wireless Sensor Networks

    PubMed Central

    Chehri, Abdellah; Jeon, Gwanggil; Choi, Byoungjo

    2013-01-01

    Wireless Sensor networks (WSNs) are created by small hardware devices that possess the necessary functionalities to measure and exchange a variety of environmental data in their deployment setting. In this paper, we discuss the experiments in deploying a testbed as a first step towards creating a fully functional heterogeneous wireless network-based underground monitoring system. The system is mainly composed of mobile and static ZigBee nodes, which are deployed on the underground mine galleries for measuring ambient temperature. In addition, we describe the measured results of link characteristics such as received signal strength, latency and throughput for different scenarios. PMID:23459389

  15. Hybrid positioning with lighting LEDs and Zigbee multihop wireless network

    NASA Astrophysics Data System (ADS)

    Lee, Y. U.; Baang, S.; Park, J.; Zhou, Z.; Kavehrad, M.

    2012-01-01

    A simple, accurate, secure, long-lasting, and portable hybrid positioning system is proposed and designed in this paper. It consists of a lighting LED that generates visible light data corresponding to position information of a target and a Zigbee wireless network communication module with low power, security, and service area expansion characteristics. Under an indoor environment where there is 23.62m distance between an observer and the target, the presented hybrid positioning system is tested and is verified with the functions of Zigbee three hop wireless networking and visible light communication (VLC) scheme. The test results are analyzed and discussed.

  16. Secure Your Wireless Network: Going Wireless Comes with Its Own Special Set of Security Concerns

    ERIC Educational Resources Information Center

    Bloomquist, Jane; Musa, Atif

    2004-01-01

    Imagine a completely wireless school, an open network in which all students and staff can roam around using laptops or handheld computers to browse the Internet, access files and applications on the school server, and communicate with each other and the world via e-mail. It's a great picture--and at some schools the future is already here. But…

  17. Secure Your Wireless Network: Going Wireless Comes with Its Own Special Set of Security Concerns

    ERIC Educational Resources Information Center

    Bloomquist, Jane; Musa, Atif

    2004-01-01

    Imagine a completely wireless school, an open network in which all students and staff can roam around using laptops or handheld computers to browse the Internet, access files and applications on the school server, and communicate with each other and the world via e-mail. It's a great picture--and at some schools the future is already here. But…

  18. Wireless sensor networks for monitoring physiological signals of multiple patients.

    PubMed

    Dilmaghani, R S; Bobarshad, H; Ghavami, M; Choobkar, S; Wolfe, C

    2011-08-01

    This paper presents the design of a novel wireless sensor network structure to monitor patients with chronic diseases in their own homes through a remote monitoring system of physiological signals. Currently, most of the monitoring systems send patients' data to a hospital with the aid of personal computers (PC) located in the patients' home. Here, we present a new design which eliminates the need for a PC. The proposed remote monitoring system is a wireless sensor network with the nodes of the network installed in the patients' homes. These nodes are then connected to a central node located at a hospital through an Internet connection. The nodes of the proposed wireless sensor network are created by using a combination of ECG sensors, MSP430 microcontrollers, a CC2500 low-power wireless radio, and a network protocol called the SimpliciTI protocol. ECG signals are first sampled by a small portable device which each patient carries. The captured signals are then wirelessly transmitted to an access point located within the patients' home. This connectivity is based on wireless data transmission at 2.4-GHz frequency. The access point is also a small box attached to the Internet through a home asynchronous digital subscriber line router. Afterwards, the data are sent to the hospital via the Internet in real time for analysis and/or storage. The benefits of this remote monitoring are wide ranging: the patients can continue their normal lives, they do not need a PC all of the time, their risk of infection is reduced, costs significantly decrease for the hospital, and clinicians can check data in a short time.

  19. Real time network traffic monitoring for wireless local area networks based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza

    2017-05-01

    A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.

  20. Research trends in wireless visual sensor networks when exploiting prioritization.

    PubMed

    Costa, Daniel G; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2015-01-15

    The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, where many critical topics, such as communication efficiency and energy consumption, have been investigated in the past few years. However, when sensors are endowed with low-power cameras for visual monitoring, a new scope of challenges is raised, demanding new research efforts. In this context, the resource-constrained nature of sensor nodes has demanded the use of prioritization approaches as a practical mechanism to lower the transmission burden of visual data over wireless sensor networks. Many works in recent years have considered local-level prioritization parameters to enhance the overall performance of those networks, but global-level policies can potentially achieve better results in terms of visual monitoring efficiency. In this paper, we make a broad review of some recent works on priority-based optimizations in wireless visual sensor networks. Moreover, we envisage some research trends when exploiting prioritization, potentially fostering the development of promising optimizations for wireless sensor networks composed of visual sensors.

  1. Research Trends in Wireless Visual Sensor Networks When Exploiting Prioritization

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2015-01-01

    The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, where many critical topics, such as communication efficiency and energy consumption, have been investigated in the past few years. However, when sensors are endowed with low-power cameras for visual monitoring, a new scope of challenges is raised, demanding new research efforts. In this context, the resource-constrained nature of sensor nodes has demanded the use of prioritization approaches as a practical mechanism to lower the transmission burden of visual data over wireless sensor networks. Many works in recent years have considered local-level prioritization parameters to enhance the overall performance of those networks, but global-level policies can potentially achieve better results in terms of visual monitoring efficiency. In this paper, we make a broad review of some recent works on priority-based optimizations in wireless visual sensor networks. Moreover, we envisage some research trends when exploiting prioritization, potentially fostering the development of promising optimizations for wireless sensor networks composed of visual sensors. PMID:25599425

  2. Challenges of CAC in Heterogeneous Wireless Cognitive Networks

    NASA Astrophysics Data System (ADS)

    Wang, Jiazheng; Fu, Xiuhua

    Call admission control (CAC) is known as an effective functionality in ensuring the QoS of wireless networks. The vision of next generation wireless networks has led to the development of new call admission control (CAC) algorithms specifically designed for heterogeneous wireless Cognitive networks. However, there will be a number of challenges created by dynamic spectrum access and scheduling techniques associated with the cognitive systems. In this paper for the first time, we recommend that the CAC policies should be distinguished between primary users and secondary users. The classification of different methods of cac policies in cognitive networks contexts is proposed. Although there have been some researches within the umbrella of Joint CAC and cross-layer optimization for wireless networks, the advent of the cognitive networks adds some additional problems. We present the conceptual models for joint CAC and cross-layer optimization respectively. Also, the benefit of Cognition can only be realized fully if application requirements and traffic flow contexts are determined or inferred in order to know what modes of operation and spectrum bands to use at each point in time. The process model of Cognition involved per-flow-based CAC is presented. Because there may be a number of parameters on different levels affecting a CAC decision and the conditions for accepting or rejecting a call must be computed quickly and frequently, simplicity and practicability are particularly important for designing a feasible CAC algorithm. In a word, a more thorough understanding of CAC in heterogeneous wireless cognitive networks may help one to design better CAC algorithms.

  3. Personal Navigation Algorithms Based on Wireless Networks and Inertial Sensors

    NASA Astrophysics Data System (ADS)

    Kaňa, Zdenek; Bradáč, Zdenek; Fiedler, Petr

    2014-08-01

    The work aims at a development of positioning algorithm suitable for low-cost indoor or urban pedestrian navigation application. The sensor fusion was applied to increase the localization accuracy. Due to required low application cost only low grade inertial sensors and wireless network based ranging were taken into account. The wireless network was assumed to be preinstalled due to other required functionality (for example: building control) therefore only received signal strength (RSS) range measurement technique was considered. Wireless channel loss mapping method was proposed to overcome the natural uncertainties and restrictions in the RSS range measurements The available sensor and environment models are summarized first and the most appropriate ones are selected secondly. Their effective and novel application in the navigation task, and favorable fusion (Particle filtering) of all available information are the main objectives of this thesis.

  4. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  5. Defeating 802.11 Wireless Networks

    DTIC Science & Technology

    2008-06-01

    3 bytes are the 24-bit IV that was used in the 64-bit key to encrypt the data. The last byte of the IV field contains a 6- bit pad followed by a 2...IEEE. (1999). Part 11: Wireless LAN medium access control (MAC) and physical Electronics Engineers. Keeney, F. DEFCON WiFi shootout 2005 video

  6. Wireless Network Simulation in Aircraft Cabins

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Youssef, Mennatoallah; Vahala, Linda

    2004-01-01

    An electromagnetic propagation prediction tool was used to predict electromagnetic field strength inside airplane cabins. A commercial software package, Wireless Insite, was used to predict power levels inside aircraft cabins and the data was compared with previously collected experimental data. It was concluded that the software could qualitatively predict electromagnetic propagation inside the aircraft cabin environment.

  7. TCPL: A Defense against wormhole attacks in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Kumar, K. E. Naresh; Waheed, Mohd. Abdul; Basappa, K. Kari

    2010-10-01

    Do In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In this paper, we introduce the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against. The wormhole attack is possible even if the attacker has not compromised any hosts and even if all communication provides authenticity and confidentiality. In the wormhole attack, an attacker records packets (or bits) at one location in the network, tunnels them to another location, and retransmits them there into the network. The wormhole attack can form a serious threat in wireless networks, especially against many sensor network routing protocols and location-based wireless security systems. For example, most existing ad hoc network routing protocols, without some mechanism to defend against the wormhole attack, would be unable to find routes longer than one or two hops, severely disrupting communication. We present a new, general mechanism, called packet leashes, for detecting and thus defending against wormhole attacks, and we present a specific protocol, called TIK, that implements leashes.

  8. TCPL: A Defense against wormhole attacks in wireless sensor networks

    SciTech Connect

    Kumar, K. E. Naresh; Waheed, Mohd. Abdul; Basappa, K. Kari

    2010-10-26

    Do In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In this paper, we introduce the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against. The wormhole attack is possible even if the attacker has not compromised any hosts and even if all communication provides authenticity and confidentiality. In the wormhole attack, an attacker records packets (or bits) at one location in the network, tunnels them to another location, and retransmits them there into the network. The wormhole attack can form a serious threat in wireless networks, especially against many sensor network routing protocols and location-based wireless security systems. For example, most existing ad hoc network routing protocols, without some mechanism to defend against the wormhole attack, would be unable to find routes longer than one or two hops, severely disrupting communication. We present a new, general mechanism, called packet leashes, for detecting and thus defending against wormhole attacks, and we present a specific protocol, called TIK, that implements leashes.

  9. Security in Wireless Sensor Networks Employing MACGSP6

    ERIC Educational Resources Information Center

    Nitipaichit, Yuttasart

    2010-01-01

    Wireless Sensor Networks (WSNs) have unique characteristics which constrain them; including small energy stores, limited computation, and short range communication capability. Most traditional security algorithms use cryptographic primitives such as Public-key cryptography and are not optimized for energy usage. Employing these algorithms for the…

  10. Security in Wireless Sensor Networks Employing MACGSP6

    ERIC Educational Resources Information Center

    Nitipaichit, Yuttasart

    2010-01-01

    Wireless Sensor Networks (WSNs) have unique characteristics which constrain them; including small energy stores, limited computation, and short range communication capability. Most traditional security algorithms use cryptographic primitives such as Public-key cryptography and are not optimized for energy usage. Employing these algorithms for the…

  11. Emerging Trends in Healthcare Adoption of Wireless Body Area Networks.

    PubMed

    Rangarajan, Anuradha

    2016-01-01

    Real-time personal health monitoring is gaining new ground with advances in wireless communications. Wireless body area networks (WBANs) provide a means for low-powered sensors, affixed either on the human body or in vivo, to communicate with each other and with external telecommunication networks. The healthcare benefits of WBANs include continuous monitoring of patient vitals, measuring postacute rehabilitation time, and improving quality of medical care provided in medical emergencies. This study sought to examine emerging trends in WBAN adoption in healthcare. To that end, a systematic literature survey was undertaken against the PubMed database. The search criteria focused on peer-reviewed articles that contained the keywords "wireless body area network" and "healthcare" or "wireless body area network" and "health care." A comprehensive review of these articles was performed to identify adoption dimensions, including underlying technology framework, healthcare subdomain, and applicable lessons-learned. This article benefits healthcare technology professionals by identifying gaps in implementation of current technology and highlighting opportunities for improving products and services.

  12. Combine harvester monitor system based on wireless sensor network

    USDA-ARS?s Scientific Manuscript database

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  13. Resource Management in QoS-Aware Wireless Cellular Networks

    ERIC Educational Resources Information Center

    Zhang, Zhi

    2011-01-01

    Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study…

  14. Study of space wireless local area network application

    NASA Astrophysics Data System (ADS)

    Zhang, Qingjun

    2005-11-01

    This paper describes the standards about wireless local area network (WLAN), and discusses the applications in formatting satellite and the types of WLAN, and give one type of WLAN conception which is Bus/Token-Ring. Finally, it describes some key technologies of the space WLAN.

  15. Resource Management in QoS-Aware Wireless Cellular Networks

    ERIC Educational Resources Information Center

    Zhang, Zhi

    2011-01-01

    Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study…

  16. Adaptive Power Control MAC in Wireless Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Choi, Hong-Seok; Byun, Hee-Jung; Lim, Jong-Tae

    In this letter, we suggest APMAC (Adaptive Power Control MAC) for wireless ad hoc networks. APMAC is based on the single channel environment and improves the throughput and the energy efficiency simultaneously. Furthermore, the APMAC prevents the unfair channel starvation among the transmission pairs. We verify the performance of the APMAC through simulations.

  17. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.

    PubMed

    Sampangi, Raghav V; Sampalli, Srinivas

    2015-09-15

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.

  18. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks

    PubMed Central

    Sampangi, Raghav V.; Sampalli, Srinivas

    2015-01-01

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis. PMID:26389899

  19. A Remote Code Update Mechanism for Wireless Sensor Networks

    DTIC Science & Technology

    2003-11-01

    A Remote Code Update Mechanism for Wireless Sensor Networks Thanos Stathopoulos † John Heidemann ‡ Deborah Estrin † CENS Technical Report # 30 Center...Ganesan, L. Girod, B. Greenstein, T. Schoellhammer, T. Stathopoulos , and D. Es- trin. EmStar: An Environment for Developing Wire- less Embedded

  20. Dual Channel Transmission for Coexistence of Wireless Networks

    DTIC Science & Technology

    2007-08-01

    DD882) Inventions (DD882) TECHNICAL REPORT W911NF-06-1-0415 Dual Channel Transmission for Coexistence of Wireless Networks September 1, 2006 – August 31...2001. [28] W. P. Osborne and M. B. Luntz, “Coherent and noncoherent detection of CPFSK,” IEEE Trans. Commmunications , vol. 22, pp. 1023–1036, Aug. 1974

  1. The Audacity of Fiber-Wireless (FiWi) Networks

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Ghazisaidi, Navid; Reisslein, Martin

    A plethora of enabling optical and wireless technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi) broadband access networks. After overviewing key enabling radio-over-fiber (RoF) and radio-and-fiber (R&F) technologies and briefly surveying the state of the art of FiWi networks, we introduce an Ethernet-based access-metro FiWi network, called SuperMAN, that integrates next-generation WiFi and WiMAX networks with WDM-enhanced EPON and RPR networks. Throughout the paper we pay close attention to the technical challenges and opportunities of FiWi networks, but also elaborate on their societal benefits and potential to shift the current research focus from optical-wireless networking to the exploitation of personal and in-home computing facilities to create new unforeseen services and applications as we are about to enter the Petabyte age.

  2. Exposure assessment procedures in presence of wideband digital wireless networks.

    PubMed

    Trinchero, D

    2009-12-01

    The article analyses the applicability of traditional methods, as well as recently proposed techniques, to the exposure assessment of electromagnetic field generated by wireless transmitters. As is well known, a correct measurement of the electromagnetic field is conditioned by the complexity of the signal, which requires dedicated instruments or specifically developed extrapolation techniques. Nevertheless, it is also influenced by the typology of the deployment of the transmitting and receiving stations, which varies from network to network. These aspects have been intensively analysed in the literature and several cases of study are available for review. The present article collects the most recent analyses and discusses their applicability to different scenarios, typical of the main wireless networking applications: broadcasting services, mobile cellular networks and data access provisioning infrastructures.

  3. Challenge: How Effective is Routing for Wireless Networking

    DTIC Science & Technology

    2015-09-07

    of novel techniques for data-dissemination are being considered, such as ef- ficient flooding [39, 40] or opportunistic routing [41]. Whether it be...control information is disseminated throughout the network to identify a set of links to route data across. This technique for routing in wireless...another user only when it has data destined for that user. To find a route , a control packet is flooded across the network that iden- tifies a path

  4. Fast, Effective Transmitter Placement in Wireless Mesh Networks

    DTIC Science & Technology

    2012-01-01

    INTRODUCTION Description of Problem A wireless mesh network (WMN) is a communications network of fixed access points (APs) that exchange electronic mes- sages...the name DIviding RECTangles). Un- like Lipschitzian optimization, DIRECT does not require a priori specification of the Lipschitz con- stant, nor...algorithm is that the optimality gap at any iteration is not known. Given the Lipschitz constant, we can calculate a lower bound, but in our

  5. Flow Control in Wireless Ad-Hoc Networks

    DTIC Science & Technology

    2009-01-01

    these mechanisms can be improved in order to fine-tune TCP under various networking environments. Low, Paganini and Doyle [36] study TCP from a control...Derivative Securities, M. A. H. Dempster and S. R. Pliska, Eds., vol. 16. Cambridge University Press , 1997, pp. 504–527. [30] KUSHNER, H. J., AND DIMASI...wireless networks: Optimality and stability. IEEE Trans- actions on Information Theory 55, 9 (Sept. 2009), 4087–4098. 76 [36] LOW, S. H., PAGANINI , F

  6. Connectivity, Coverage and Placement in Wireless Sensor Networks

    PubMed Central

    Li, Ji; Andrew, Lachlan L.H.; Foh, Chuan Heng; Zukerman, Moshe; Chen, Hsiao-Hwa

    2009-01-01

    Wireless communication between sensors allows the formation of flexible sensor networks, which can be deployed rapidly over wide or inaccessible areas. However, the need to gather data from all sensors in the network imposes constraints on the distances between sensors. This survey describes the state of the art in techniques for determining the minimum density and optimal locations of relay nodes and ordinary sensors to ensure connectivity, subject to various degrees of uncertainty in the locations of the nodes. PMID:22408474

  7. Distributed Immune Systems for Wireless Network Information Assurance

    DTIC Science & Technology

    2010-04-26

    constraints. When possible , we have tried to take advantage of the special nature of wireless networks to improve assurance and security, while keeping...the protection of commercial networks from virus attacks; recent advances in complex waveform generation which can be profitably utilized to secure...tools, models or products or other technology transition results: (a) Distributed detection of spreading worms and viruses (b) On-line detection of

  8. The study and implementation of the wireless network data security model

    NASA Astrophysics Data System (ADS)

    Lin, Haifeng

    2013-03-01

    In recent years, the rapid development of Internet technology and the advent of information age, people are increasing the strong demand for the information products and the market for information technology. Particularly, the network security requirements have become more sophisticated. This paper analyzes the wireless network in the data security vulnerabilities. And a list of wireless networks in the framework is the serious defects with the related problems. It has proposed the virtual private network technology and wireless network security defense structure; and it also given the wireless networks and related network intrusion detection model for the detection strategies.

  9. Configuration of Wireless Cooperative/Sensor Networks

    DTIC Science & Technology

    2008-05-25

    advance. It is thus possible, that the source node uses one or more terminals or none at all. The purpose of this research work is to devise suitable...Force Office of Scientific Research , Air Force Material Command, USAF, under grant number FA8655-07-1-3040. The U.S Government is authorized to reproduce...available channel state information (CSI) at each node. In this research work, our goal is to investigate various configuration strategies for wireless

  10. Wireless Networks: Implications for Aircraft Loads Monitoring

    DTIC Science & Technology

    2007-05-01

    expanded. Wireless protocols like Bluetooth, GPRS1, WiFi or 802.11b/g are used to send data between communication devices like mobile phones, laptops...knowledge, few resources (often few resources are required as damage is the end goal). • Hacker – desires access, motivated by curiosity and interest...unauthorised transmissions (Blue Tooth, WiFi , etc) from defence resources. This device’s on-board data storage for later retrieval offers a significant

  11. Smart sensors wireless measurement network based on Bluetooth standard

    NASA Astrophysics Data System (ADS)

    Weremczuk, Jerzy; Jachowicz, Ryszard; Jablonski, Michal

    2003-09-01

    The paper briefly describes Bluetooth standard and authors" Bluetoth sensors modules construction. At the beginning the short comparison of existing on the market standards of wireless data transmission (IEEE802.11, IEEE802.11b/g, IEEE802.11a, HomeRF, Bluetooth, Radiometrix, Motorola, IrDA) brought out by main firms is presented. Next selected Bluetooth features and functions useful to sensors wireless network creations are discussed. At the end our own Bluetooth sensor based on the newest Ericsson ROK 101 007 module is specified.

  12. Distributed joint source-channel coding in wireless sensor networks.

    PubMed

    Zhu, Xuqi; Liu, Yu; Zhang, Lin

    2009-01-01

    Considering the fact that sensors are energy-limited and the wireless channel conditions in wireless sensor networks, there is an urgent need for a low-complexity coding method with high compression ratio and noise-resisted features. This paper reviews the progress made in distributed joint source-channel coding which can address this issue. The main existing deployments, from the theory to practice, of distributed joint source-channel coding over the independent channels, the multiple access channels and the broadcast channels are introduced, respectively. To this end, we also present a practical scheme for compressing multiple correlated sources over the independent channels. The simulation results demonstrate the desired efficiency.

  13. Data mining algorithms for wireless sensor network's data

    NASA Astrophysics Data System (ADS)

    Muntean, Maria; Vălean, Honoriu; Tulbure, Adrian; Ileană, Ioan; Kadar, Manuella

    2010-11-01

    Classification of sensory data is a major research problem in wireless sensor networks and it can be widely used in reducing the data transmission in wireless sensor networks effectively and also in process monitoring. In order to examine the huge size of data set in stream model generated by sensor network, it will be analyzed different sensor's output signal, topology of sensors network, number of sensor parameters and number of acquisition data. In our wind energy monitoring, sensor node monitors six attributes: speed, direction, temperature, pressure, humidity, and battery voltage. Every attribute value is set as four measures: average, instantaneous, minimum, and maximum. This paper presents several data mining techniques applied on the wireless sensor network's data considered: Naïve Bayes, k-nearest neighbor, decision trees, IF-THEN rules, and neural networks. Before classification, the data was clustered in order to be labeled. A similarity based algorithm, k-means, was selected in the clustering process for its simplicity and efficiency. A conclusion that decision trees are a suitable method to classify the large amount of data considered is made finally according to the mining result and its reasonable explanation.

  14. The Cable and Wireless approach to network synchronization

    NASA Technical Reports Server (NTRS)

    Calvert, Robert D.

    1990-01-01

    The philosophy adopted by Cable and Wireless for the synchronization of its world-wide network is presented. The architectures of some clock systems already deployed and how network synchronization had been implemented at selected locations are discussed. This includes some innovative designs as the network spans both first and third world countries with a combination of North Amercan and European hierarchy equipment. Different parts of the global network are linked together by a combination of terrestrial microwave, submarine cable and satellite technology. The impact of synchronization on Intelsat Intermediate Data Rate (IDR) operation and the restoration of submarine cable systems are addressed.

  15. Graphical user interface for wireless sensor networks simulator

    NASA Astrophysics Data System (ADS)

    Paczesny, Tomasz; Paczesny, Daniel; Weremczuk, Jerzy

    2008-01-01

    Wireless Sensor Networks (WSN) are currently very popular area of development. It can be suited in many applications form military through environment monitoring, healthcare, home automation and others. Those networks, when working in dynamic, ad-hoc model, need effective protocols which must differ from common computer networks algorithms. Research on those protocols would be difficult without simulation tool, because real applications often use many nodes and tests on such a big networks take much effort and costs. The paper presents Graphical User Interface (GUI) for simulator which is dedicated for WSN studies, especially in routing and data link protocols evaluation.

  16. A Data Gathering Scheme in Wireless Sensor Networks Based on Synchronization of Chaotic Spiking Oscillator Networks

    SciTech Connect

    Nakano, Hidehiro; Utani, Akihide; Miyauchi, Arata; Yamamoto, Hisao

    2011-04-19

    This paper studies chaos-based data gathering scheme in multiple sink wireless sensor networks. In the proposed scheme, each wireless sensor node has a simple chaotic oscillator. The oscillators generate spike signals with chaotic interspike intervals, and are impulsively coupled by the signals via wireless communication. Each wireless sensor node transmits and receives sensor information only in the timing of the couplings. The proposed scheme can exhibit various chaos synchronous phenomena and their breakdown phenomena, and can effectively gather sensor information with the significantly small number of transmissions and receptions compared with the conventional scheme. Also, the proposed scheme can flexibly adapt various wireless sensor networks not only with a single sink node but also with multiple sink nodes. This paper introduces our previous works. Through simulation experiments, we show effectiveness of the proposed scheme and discuss its development potential.

  17. Probabilistic Assessment of High-Throughput Wireless Sensor Networks.

    PubMed

    Kim, Robin E; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F; Song, Junho

    2016-05-31

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved.

  18. Probabilistic Assessment of High-Throughput Wireless Sensor Networks

    PubMed Central

    Kim, Robin E.; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F.; Song, Junho

    2016-01-01

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved. PMID:27258270

  19. Subsurface Event Detection and Classification Using Wireless Signal Networks

    PubMed Central

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T.

    2012-01-01

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191

  20. Pipelining in structural health monitoring wireless sensor network

    NASA Astrophysics Data System (ADS)

    Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim

    2010-04-01

    Application of wireless sensor network (WSN) for structural health monitoring (SHM), is becoming widespread due to its implementation ease and economic advantage over traditional sensor networks. Beside advantages that have made wireless network preferable, there are some concerns regarding their performance in some applications. In long-span Bridge monitoring the need to transfer data over long distance causes some challenges in design of WSN platforms. Due to the geometry of bridge structures, using multi-hop data transfer between remote nodes and base station is essential. This paper focuses on the performances of pipelining algorithms. We summarize several prevent pipelining approaches, discuss their performances, and propose a new pipelining algorithm, which gives consideration to both boosting of channel usage and the simplicity in deployment.

  1. Wireless Multimedia Sensor Networks: Current Trends and Future Directions

    PubMed Central

    Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.; Morillo-Pozo, Julian

    2010-01-01

    Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. In this paper, we outline the design challenges of WMSNs, give a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSNs, and evaluate the existing WMSN hardware and testbeds. The paper will give the reader a clear view of the state of the art at all aspects of this research area, and shed the light on its main current challenges and future trends. We also hope it will foster discussions and new research ideas among its researchers. PMID:22163571

  2. MAC layer security issues in wireless mesh networks

    NASA Astrophysics Data System (ADS)

    Reddy, K. Ganesh; Thilagam, P. Santhi

    2016-03-01

    Wireless Mesh Networks (WMNs) have emerged as a promising technology for a broad range of applications due to their self-organizing, self-configuring and self-healing capability, in addition to their low cost and easy maintenance. Securing WMNs is more challenging and complex issue due to their inherent characteristics such as shared wireless medium, multi-hop and inter-network communication, highly dynamic network topology and decentralized architecture. These vulnerable features expose the WMNs to several types of attacks in MAC layer. The existing MAC layer standards and implementations are inadequate to secure these features and fail to provide comprehensive security solutions to protect both backbone and client mesh. Hence, there is a need for developing efficient, scalable and integrated security solutions for WMNs. In this paper, we classify the MAC layer attacks and analyze the existing countermeasures. Based on attacks classification and countermeasures analysis, we derive the research directions to enhance the MAC layer security for WMNs.

  3. Hybrid Cluster Mesh Scheme for Energy Efficient Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Lee, Sungil; Lim, Jaesung

    Wireless Sensor Networks (WSNs) have become a key technology for ubiquitous computing environments. In WSNs, battery recharge or replacement is impossible because sensors are left unattended after deployment. Therefore, WSNs need a networking protocol scheme to increase the life time of sensor nodes. The clustering technique is an efficient approach for reducing energy consumption in wireless sensor networks. In cluster topology, however, there is a problem which causes a large amount of energy consumption of cluster head. In addition, in the sparsely deployed sensor field, mesh topology can be more energy-efficient than cluster topology. In this paper, we propose a Hybrid Cluster Mesh (HCM) scheme, which recognizes the density of neighbor nodes and each node decides its topology itself, and HCM-RO (reorganization) scheme which reorganizes clusters. Simulation results show that the proposed hybrid topology control scheme is more energy-efficient than each topology of cluster or mesh.

  4. Fault Tolerance in ZigBee Wireless Sensor Networks

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Gilstrap, Ray; Baldwin, Jarren; Stone, Thom; Wilson, Pete

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 PRO Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. This technology is supported by System-on-a-Chip solutions, resulting in extremely small and low-power nodes. The Wireless Connections in Space Project addresses the aerospace flight domain for both flight-critical and non-critical avionics. WSNs provide the inherent fault tolerance required for aerospace applications utilizing such technology. The team from Ames Research Center has developed techniques for assessing the fault tolerance of ZigBee WSNs challenged by radio frequency (RF) interference or WSN node failure.

  5. Composite materials with self-contained wireless sensing networks

    NASA Astrophysics Data System (ADS)

    Schaaf, Kristin; Kim, Robert; Nemat-Nasser, Sia

    2010-04-01

    The increasing demand for in-service structural health monitoring, particularly in the aircraft industry, has stimulated efforts to integrate self sensing capabilities into materials and structures. This work presents efforts to develop structural composite materials which include networks of sensors with decision-making capabilities that extend the functionality of the composite materials to be information-aware. Composite panels are outfitted with networks of self-contained wireless sensor modules which can detect damage in composite materials via active nondestructive testing techniques. The wireless sensor modules will communicate with one another and with a central processing unit to convey the sensor data while also maintaining robustness and the ability to self-reconfigure in the event that a module fails. Ultimately, this research seeks to create an idealized network that is compact in size, cost efficient, and optimized for low power consumption while providing a sufficient data transfer rate to a local host.

  6. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks.

    PubMed

    Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang

    2016-11-06

    Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.

  7. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks

    PubMed Central

    Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang

    2016-01-01

    Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture. PMID:27827971

  8. Development of an intelligent wireless sensor network with mobile nodes

    NASA Astrophysics Data System (ADS)

    St. Pierre, Joseph; Michel, Howard E.

    2009-05-01

    Wireless sensor networks have become viable solutions to many commercial and military applications. This research focuses on utilizing the I-TRM to develop an architecture which supports adaptive, self-healing, and self-aware intelligent wireless sensor networks capable of supporting mobile nodes. Sensor subsystems are crucial in the development of projects to test complex systems such as the Future Combat System, a multi-layered system consisting of soldiers and 18 subsystems connected by a network. The proposed architecture utilizes the Sensor Web Enablement (SWE), a standard for sensor networks being developed by the Open Geospatial Consortium (OGC), and the Integrated Technical Reference Model (I-TRM), a multi-layered technical reference model consisting of a behavior-centric technical reference model, information-centric technical reference model, and control technical reference model. The designed architecture has been implemented on MPR2400CA motes using the nesC programming language. Preliminary results show the architecture meets needs of systems such as the Future Combat System. The architecture supports standard and tailored sensors, mobile and immobile sensors nodes, and is scalable. Also, functionality was implemented which produces adaptive, self-healing, and self-aware behavior in the wireless sensor network.

  9. A Distributed Geo-Routing Algorithm for Wireless Sensor Networks

    PubMed Central

    Joshi, Gyanendra Prasad; Kim, Sung Won

    2009-01-01

    Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads. PMID:22408514

  10. A distributed geo-routing algorithm for wireless sensor networks.

    PubMed

    Joshi, Gyanendra Prasad; Kim, Sung Won

    2009-01-01

    Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads.

  11. Development of wireless sensor network for landslide monitoring system

    NASA Astrophysics Data System (ADS)

    Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S.

    2017-05-01

    A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km2. Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website.

  12. Enterprise Implementations of Wireless Network Technologies at the Naval Postgraduate School and Other Military Educational Institutions

    DTIC Science & Technology

    2002-09-01

    Warfare), and the creation of a robust mobile secure network (e.g., 802.11). The heart of this research will focus on the last element. Future wars...will be fought using wireless mobile networks. Wireless research is being realized at the Naval Postgraduate School (NPS) Wireless Warrior Group. The...multiplier. Wireless mobility is the future of warfare, and usable, supportable, secure mobile communication is what wins wars. This thesis

  13. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    ERIC Educational Resources Information Center

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  14. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    ERIC Educational Resources Information Center

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  15. SOUNET: Self-Organized Underwater Wireless Sensor Network

    PubMed Central

    Kim, Hee-won; Cho, Ho-Shin

    2017-01-01

    In this paper, we propose an underwater wireless sensor network (UWSN) named SOUNET where sensor nodes form and maintain a tree-topological network for data gathering in a self-organized manner. After network topology discovery via packet flooding, the sensor nodes consistently update their parent node to ensure the best connectivity by referring to the time-varying neighbor tables. Such a persistent and self-adaptive method leads to high network connectivity without any centralized control, even when sensor nodes are added or unexpectedly lost. Furthermore, malfunctions that frequently happen in self-organized networks such as node isolation and closed loop are resolved in a simple way. Simulation results show that SOUNET outperforms other conventional schemes in terms of network connectivity, packet delivery ratio (PDR), and energy consumption throughout the network. In addition, we performed an experiment at the Gyeongcheon Lake in Korea using commercial underwater modems to verify that SOUNET works well in a real environment. PMID:28157164

  16. SOUNET: Self-Organized Underwater Wireless Sensor Network.

    PubMed

    Kim, Hee-Won; Cho, Ho-Shin

    2017-02-02

    In this paper, we propose an underwater wireless sensor network (UWSN) named SOUNET where sensor nodes form and maintain a tree-topological network for data gathering in a self-organized manner. After network topology discovery via packet flooding, the sensor nodes consistently update their parent node to ensure the best connectivity by referring to the timevarying neighbor tables. Such a persistent and self-adaptive method leads to high network connectivity without any centralized control, even when sensor nodes are added or unexpectedly lost. Furthermore, malfunctions that frequently happen in self-organized networks such as node isolation and closed loop are resolved in a simple way. Simulation results show that SOUNET outperforms other conventional schemes in terms of network connectivity, packet delivery ratio (PDR), and energy consumption throughout the network. In addition, we performed an experiment at the Gyeongcheon Lake in Korea using commercial underwater modems to verify that SOUNET works well in a real environment.

  17. Radiation detection and wireless networked early warning

    NASA Astrophysics Data System (ADS)

    Burns, David A.; Litz, Marc S.; Carroll, James J.; Katsis, Dimosthenis

    2012-06-01

    We have designed a compact, wireless, GPS-enabled array of inexpensive radiation sensors based on scintillation counting. Each sensor has a scintillator, photomultiplier tube, and pulse-counting circuit that includes a comparator, digital potentiometer and microcontroller. This design provides a high level of sensitivity and reliability. A 0.2 m2 PV panel powers each sensor providing a maintenance-free 24/7 energy source. The sensor can be mounted within a roadway light-post and monitor radiological activity along transport routes. Each sensor wirelessly transmits real-time data (as counts per second) up to 2 miles with a XBee radio module, and the data is received by a XBee receive-module on a computer. Data collection software logs the information from all sensors and provides real-time identification of radiation events. Measurements performed to-date demonstrate the ability of a sensor to detect a 20 μCi source at 3.5 meters when packaged with a PVT (plastic) scintillator, and 7 meters for a sensor with a CsI crystal (more expensive but ~5 times more sensitive). It is calculated that the sensor-architecture can detect sources moving as fast as 130 km/h based on the current data rate and statistical bounds of 3-sigma threshold detection. The sensor array is suitable for identifying and tracking a radiation threat from a dirty bomb along roadways.

  18. Remote Environmental Monitoring With a Wireless Sensor Network System

    NASA Astrophysics Data System (ADS)

    Kizito, F.; Hopmans, J. W.; Bales, R.; Tuli, A.; Kamai, T.

    2007-12-01

    Wireless sensors have the potential to reveal dynamic environmental variables in remote landscapes at reduced long-term costs and offer a promising approach to revolutionize environmental monitoring. Better management of surface water in remote landscapes warrants close monitoring of moisture and temperature variability. This work describes field data demonstrating the functionality of a deployed wireless network system, consisting of various soil moisture sensors. Soil water potential sensors with an imbedded thermistor were deployed in a remote meadow along a topographic gradient with dense tree canopies in Wolverton Meadows in Sequoia National Park. The sensors responded to moisture and temperature variations and the wireless system met the goal of providing informative data on dynamic responses of soil moisture to rainfall and snowmelt. The deployed sensor system functioned well during harsh winter conditions at 7000 feet, requiring low power. The study highlights measurement accuracy limitations and presents an alternative, robust wireless Zigbee sensor network, using Crossbow motes. We demonstrate that deployment, implementation and long-term field monitoring in remote and challenging environments is possible with current technologies.

  19. A Reliable Handoff Mechanism for Mobile Industrial Wireless Sensor Networks

    PubMed Central

    Ma, Jian; Zhang, Hongke

    2017-01-01

    With the prevalence of low-power wireless devices in industrial applications, concerns about timeliness and reliability are bound to continue despite the best efforts of researchers to design Industrial Wireless Sensor Networks (IWSNs) to improve the performance of monitoring and control systems. As mobile devices have a major role to play in industrial production, IWSNs should support mobility. However, research on mobile IWSNs and practical tests have been limited due to the complicated resource scheduling and rescheduling compared with traditional wireless sensor networks. This paper proposes an effective mechanism to guarantee the performance of handoff, including a mobility-aware scheme, temporary connection and quick registration. The main contribution of this paper is that the proposed mechanism is implemented not only in our testbed but in a real industrial environment. The results indicate that our mechanism not only improves the accuracy of handoff triggering, but also solves the problem of ping-pong effect during handoff. Compared with the WirelessHART standard and the RSSI-based approach, our mechanism facilitates real-time communication while being more reliable, which can help end-to-end packet delivery remain an average of 98.5% in the scenario of mobile IWSNs. PMID:28777334

  20. A Reliable Handoff Mechanism for Mobile Industrial Wireless Sensor Networks.

    PubMed

    Ma, Jian; Yang, Dong; Zhang, Hongke; Gidlund, Mikael

    2017-08-04

    With the prevalence of low-power wireless devices in industrial applications, concerns about timeliness and reliability are bound to continue despite the best efforts of researchers to design Industrial Wireless Sensor Networks (IWSNs) to improve the performance of monitoring and control systems. As mobile devices have a major role to play in industrial production, IWSNs should support mobility. However, research on mobile IWSNs and practical tests have been limited due to the complicated resource scheduling and rescheduling compared with traditional wireless sensor networks. This paper proposes an effective mechanism to guarantee the performance of handoff, including a mobility-aware scheme, temporary connection and quick registration. The main contribution of this paper is that the proposed mechanism is implemented not only in our testbed but in a real industrial environment. The results indicate that our mechanism not only improves the accuracy of handoff triggering, but also solves the problem of ping-pong effect during handoff. Compared with the WirelessHART standard and the RSSI-based approach, our mechanism facilitates real-time communication while being more reliable, which can help end-to-end packet delivery remain an average of 98.5% in the scenario of mobile IWSNs.

  1. Enhanced Handover Decision Algorithm in Heterogeneous Wireless Network

    PubMed Central

    Abdullah, Radhwan Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Transferring a huge amount of data between different network locations over the network links depends on the network’s traffic capacity and data rate. Traditionally, a mobile device may be moved to achieve the operations of vertical handover, considering only one criterion, that is the Received Signal Strength (RSS). The use of a single criterion may cause service interruption, an unbalanced network load and an inefficient vertical handover. In this paper, we propose an enhanced vertical handover decision algorithm based on multiple criteria in the heterogeneous wireless network. The algorithm consists of three technology interfaces: Long-Term Evolution (LTE), Worldwide interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN). It also employs three types of vertical handover decision algorithms: equal priority, mobile priority and network priority. The simulation results illustrate that the three types of decision algorithms outperform the traditional network decision algorithm in terms of handover number probability and the handover failure probability. In addition, it is noticed that the network priority handover decision algorithm produces better results compared to the equal priority and the mobile priority handover decision algorithm. Finally, the simulation results are validated by the analytical model. PMID:28708067

  2. 802.11s Wireless Mesh Network Visualization Application

    NASA Technical Reports Server (NTRS)

    Mauldin, James Alexander

    2014-01-01

    Results of past experimentation at NASA Johnson Space Center showed that the IEEE 802.11s standard has better performance than the widely implemented alternative protocol B.A.T.M.A.N (Better Approach to Mobile Ad hoc Networking). 802.11s is now formally incorporated into the Wi- Fi 802.11-2012 standard, which specifies a hybrid wireless mesh networking protocol (HWMP). In order to quickly analyze changes to the routing algorithm and to support optimizing the mesh network behavior for our intended application a visualization tool was developed by modifying and integrating open source tools.

  3. Automated Negotiation for Resource Assignment in Wireless Surveillance Sensor Networks.

    PubMed

    de la Hoz, Enrique; Gimenez-Guzman, Jose Manuel; Marsa-Maestre, Ivan; Orden, David

    2015-11-24

    Due to the low cost of CMOS IP-based cameras, wireless surveillance sensor networks have emerged as a new application of sensor networks able to monitor public or private areas or even country borders. Since these networks are bandwidth intensive and the radioelectric spectrum is limited, especially in unlicensed bands, it is mandatory to assign frequency channels in a smart manner. In this work, we propose the application of automated negotiation techniques for frequency assignment. Results show that these techniques are very suitable for the problem, being able to obtain the best solutions among the techniques with which we have compared them.

  4. Differential Reprogramming Based on Constructive Interference for Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Hu, Bing; Sun, Zhixin

    2016-09-01

    To improve the performance of reprogramming in wireless sensor network, we present a novel reprogramming structure and constructive interference-based dissemination protocol (CIDP) to transmit the patch through out the network fast and reliability. CIDP disseminates the patch, which is divided into several packets, to the network exploiting constructive interference. We evaluate our implementation of CIDP using simulation under different number of nodes. Our results show that CIDP disseminates the patch less than 4 milliseconds. In general, the probability of a node receives the complete patch as high as 99.99%.

  5. Data Transport in a Novel Wireless Sensor Network

    SciTech Connect

    Roberts, R S

    2001-06-01

    The deployment and operation of large wireless sensor networks can pose difficult problems, particularly in time critical situations, over large geographic areas, or in rugged terrain. An approach to this problem is to use unmanned air vehicles to first deploy the sensors, and then provide communication services to the sensors. This paper presents a network model that describes the flow of data through such a sensor network. Simulation results are presented that illustrate the behavior of the data flow in steady state and transient conditions.

  6. Automated Negotiation for Resource Assignment in Wireless Surveillance Sensor Networks

    PubMed Central

    de la Hoz, Enrique; Gimenez-Guzman, Jose Manuel; Marsa-Maestre, Ivan; Orden, David

    2015-01-01

    Due to the low cost of CMOS IP-based cameras, wireless surveillance sensor networks have emerged as a new application of sensor networks able to monitor public or private areas or even country borders. Since these networks are bandwidth intensive and the radioelectric spectrum is limited, especially in unlicensed bands, it is mandatory to assign frequency channels in a smart manner. In this work, we propose the application of automated negotiation techniques for frequency assignment. Results show that these techniques are very suitable for the problem, being able to obtain the best solutions among the techniques with which we have compared them. PMID:26610512

  7. Wireless Security Within Hastily Formed Networks

    DTIC Science & Technology

    2006-09-01

    Fortress Management and Policy Server (MaPS) .................52 e. Newbury Networks WiFi Watchdog.......................................53 F. SUMMARY...Juniper Networks Steel Belted RADIUS Appliance HW+SW 2, 3 N/A N 2 Newbury Networks WiFi Watchdog HW+SW 1, 3 N N N/A X X Phoenix Technologies...accessed September 2, 2006. 53 e. Newbury Networks WiFi Watchdog Newbury Networks WiFi Watchdog™ detects, monitors and secures 802.11-based WLANs. Key

  8. Network coding on heterogeneous multi-core processors for wireless sensor networks.

    PubMed

    Kim, Deokho; Park, Karam; Ro, Won W

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine.

  9. Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks

    PubMed Central

    Kim, Deokho; Park, Karam; Ro, Won W.

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  10. Making Wireless Networks Secure for NASA Mission Critical Applications Using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their off ices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (LAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing

  11. Making Wireless Networks Secure for NASA Mission Critical Applications using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their offices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (IAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing

  12. Making Wireless Networks Secure for NASA Mission Critical Applications using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their offices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (IAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing

  13. Making Wireless Networks Secure for NASA Mission Critical Applications Using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their off ices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (LAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing

  14. Turtle Nest Monitoring with Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Szlavecz, K.; Terzis, A.; Musaloiu, R.; Liang, C.; Cogan, J.; Klofas, J.; Xia, L.; Swarth, C.; Matthews, S.

    2007-12-01

    We have recently developed a wireless sensor system for environmental monitoring. The system is based upon the sensor platform by Telos, soil moisture sensors from Decagon and our own temperature sensors. The system was deployed at the Jug Bay Wetland Sanctuary, around several nests of Eastern Box Turtles (Terrapene carolina). Conditions in the soil where turtles excavate their nests can have a profound effect on egg survival, hatchling survival and on the sex of hatchling turtles. Turtles prefer nesting in sunny areas where solar radiation provides the heat source that warms the developing embryos. Our system has provided a continuous monitoring of all these parameters over a period of several months in the summer of 2007. The data show several interesting phenomena about temperature gradients in the vicinity of the turtle nests. The deployment also served as a validation of our second generation sensor platform, which performed remarkably well.

  15. Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks.

    PubMed

    Janani, E Srie Vidhya; Kumar, P Ganesh

    2015-01-01

    The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio.

  16. An efficient coordination protocol for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Paruchuri, Vamsi; Durresi, Arjan; Durresi, Mimoza; Barolli, Leonard

    2005-10-01

    Backbones infrastructures in wireless sensor networks reduce the communication overhead and energy consumption. In this paper, we present BackBone Routing (BBR), a fully distributed protocol for construction and rotation of backbone networks. BBR reduces energy consumption without significantly diminishing the capacity or connectivity of the network. Another key feature of BBR is its energy balancing nature by distributing the role of being Backbone Node among all the nodes. BBR builds on the observation that when a region of a shared-channel wireless network has a sufficient density of nodes, only a small number of them need be on at any time to forward traffic for active connections. Improvement in system lifetime due to BBR increases as the ratio of idle-to-sleep energy consumption increases, and increases as the density of the network increases. Our experiments show that BBR is more efficient in saving energy and extending network life without deteriorating network performance when compared with geographical shortest path routing.

  17. Topological Analysis of Wireless Networks (TAWN)

    DTIC Science & Technology

    2016-05-31

    small tree -like network 4 1.2.2. Construct datasets using this network model under various traffic loads and adversarial jamming conditions...square Node 50 attacks 20150224 Small fixed tree Central and peripheral nodes attack 20150303 Small fixed tree Peripheral nodes attack 20150415 Small...fixed tree Peripheral nodes attack Longer runtime 20150416 Small fixed tree None Longer runtime 20150627 Rectangular networks None Varying traffic

  18. Sensor modules for wireless distributed sensor networks

    SciTech Connect

    Lee, A P; McConaghy, C F; Simon, J N; Benett, W; Jones, L; Trevino, J

    1999-02-22

    A national security need as well as environmental monitoring need exists for networks of sensors. The advantages of a network of sensors over a single sensor are improved range, sensitivity, directionality, and data readability. Depending upon the particular application, sensors can be acoustic, chemical, biological, thermal or inertial. A major desire in these sensor networks is to have the individual sensor and associated electronics small and low enough in power that the battery can also be small and of long life. Smaller, low power sensor nodes can allow more nodes per network. A typical network for security applications is depicted in Figure 1. Here a number of sensor nodes are deployed around a central hub node in a star configuration. In this scenario the hubs communicate with each other and ultimately relay information to a satellite. Future networks might follow this scenario or some other network architecture such as a hopping network where individual nodes communicate directly with each other. The focus of our research has been on development of the small low power nodes and less on the overall network topology. However, some consideration of the network must be given when designing the nodes and some consideration of the nodes must be given when designing the network. An individual sensor node contains not only the sensor but also the sensor interface electronics, analog to digital (A/D) converter, logic, RF communication link, antenna, and the battery. Future nodes will also contain some form of signal processing to allow more sophisticated network architectures. The FY98 goal for this project was to make a sensor node with a physical form factor of a 2 inch x 2 inch x 2 inch cube.

  19. Low power sensor network for wireless condition monitoring

    NASA Astrophysics Data System (ADS)

    Richter, Ch.; Frankenstein, B.; Schubert, L.; Weihnacht, B.; Friedmann, H.; Ebert, C.

    2009-03-01

    For comprehensive fatigue tests and surveillance of large scale structures, a vibration monitoring system working in the Hz and sub Hz frequency range was realized and tested. The system is based on a wireless sensor network and focuses especially on the realization of a low power measurement, signal processing and communication. Regarding the development, we met the challenge of synchronizing the wireless connected sensor nodes with sufficient accuracy. The sensor nodes ware realized by compact, sensor near signal processing structures containing components for analog preprocessing of acoustic signals, their digitization, algorithms for data reduction and network communication. The core component is a digital micro controller which performs the basic algorithms necessary for the data acquisition synchronization and the filtering. As a first application, the system was installed in a rotor blade of a wind power turbine in order to monitor the Eigen modes over a longer period of time. Currently the sensor nodes are battery powered.

  20. Energy Efficient Moving Target Tracking in Wireless Sensor Networks.

    PubMed

    Wen, Yingyou; Gao, Rui; Zhao, Hong

    2016-01-02

    Moving target tracking in wireless sensor networks is of paramount importance. This paper considers the problem of state estimation for L-sensor linear dynamic systems. Firstly, the paper establishes the fuzzy model for measurement condition estimation. Then, Generalized Kalman Filter design is performed to incorporate the novel neighborhood function and the target motion information, improving with an increasing number of active sensors. The proposed measurement selection approach has some advantages in time cost. As such, if the desired accuracy has been achieved, the parameter initialization for optimization can be readily resolved, which maximizes the expected lifespan while preserving tracking accuracy. Through theoretical justifications and empirical studies, we demonstrate that the proposed scheme achieves substantially superior performances over conventional methods in terms of moving target tracking under the resource-constrained wireless sensor networks.

  1. Wireless Sensor/Actuator Network Design for Mobile Control Applications

    PubMed Central

    Xia, Feng; Tian, Yu-Chu; Li, Yanjun; Sun, Youxian

    2007-01-01

    Wireless sensor/actuator networks (WSANs) are emerging as a new generation of sensor networks. Serving as the backbone of control applications, WSANs will enable an unprecedented degree of distributed and mobile control. However, the unreliability of wireless communications and the real-time requirements of control applications raise great challenges for WSAN design. With emphasis on the reliability issue, this paper presents an application-level design methodology for WSANs in mobile control applications. The solution is generic in that it is independent of the underlying platforms, environment, control system models, and controller design. To capture the link quality characteristics in terms of packet loss rate, experiments are conducted on a real WSAN system. From the experimental observations, a simple yet efficient method is proposed to deal with unpredictable packet loss on actuator nodes. Trace-based simulations give promising results, which demonstrate the effectiveness of the proposed approach.

  2. Convergence of broadband optical and wireless access networks

    NASA Astrophysics Data System (ADS)

    Chang, Gee-Kung; Jia, Zhensheng; Chien, Hung-Chang; Chowdhury, Arshad; Hsueh, Yu-Ting; Yu, Jianjun

    2009-01-01

    This paper describes convergence of optical and wireless access networks for delivering high-bandwidth integrated services over optical fiber and air links. Several key system technologies are proposed and experimentally demonstrated. We report here, for the first ever, a campus-wide field trial demonstration of radio-over-fiber (RoF) system transmitting uncompressed standard-definition (SD) high-definition (HD) real-time video contents, carried by 2.4-GHz radio and 60- GHz millimeter-wave signals, respectively, over 2.5-km standard single mode fiber (SMF-28) through the campus fiber network at Georgia Institute of Technology (GT). In addition, subsystem technologies of Base Station and wireless tranceivers operated at 60 GHz for real-time video distribution have been developed and tested.

  3. Cooperative MIMO technology in multiple hops wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Yuan, Lina; Chen, Huajun; Gong, Jing

    2017-03-01

    The limited lifetime is one of the important factors restricted wireless sensor networks (WSNs), when possible, wireless nodes often operate with small batteries, while battery replacement is a very difficult and expensive. So the nodes must work long hours in the case of no battery replacement. Therefore, in WSNs, minimizing energy consumption is an important design consideration, at the same time, the transmission strategies of energy efficiency must be used for data forwarding. This paper, using cooperative multiple input multiple output(MIMO) technology combined with multiple hops technology, has put forward a new transmission model, i.e., the MIMO-MISO(multi-input multi-output)/MIMO-MIMO model. Simulation results demonstrate the proposed MIMO-MISO/MIMO-MIMO to minimize energy consumption of each node every node for multi-hop WSNs, to save a great deal of energy for a larger transmission distance, which makes the life of the entire network be extended.

  4. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  5. Signal processing techniques for synchronization of wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lee, Jaehan; Wu, Yik-Chung; Chaudhari, Qasim; Qaraqe, Khalid; Serpedin, Erchin

    2010-11-01

    Clock synchronization is a critical component in wireless sensor networks, as it provides a common time frame to different nodes. It supports functions such as fusing voice and video data from different sensor nodes, time-based channel sharing, and sleep wake-up scheduling, etc. Early studies on clock synchronization for wireless sensor networks mainly focus on protocol design. However, clock synchronization problem is inherently related to parameter estimation, and recently, studies of clock synchronization from the signal processing viewpoint started to emerge. In this article, a survey of latest advances on clock synchronization is provided by adopting a signal processing viewpoint. We demonstrate that many existing and intuitive clock synchronization protocols can be interpreted by common statistical signal processing methods. Furthermore, the use of advanced signal processing techniques for deriving optimal clock synchronization algorithms under challenging scenarios will be illustrated.

  6. The design and simulation test of wireless antenna protection network

    NASA Astrophysics Data System (ADS)

    Chen, Zipeng; Dai, Yawen; Li, Peng; Li, Zhuoqiu

    2013-03-01

    In this paper, a wireless antenna protection program has been designed. In the program, the TVS diode was used as the first lever for protection, and the π-type high pass filtering network as the second lever. As a result, the program not only has the traditional function of ESD protection, which can avoid the high voltage damage to the internal circuit, but also achieves the purpose of load matching, ensuring the signal source not to distort. The ADS simulation software was used to test the ability of this program for filtering and impedance matching, which proved the feasibility of this program. The wireless antenna protection network has been practically used, and its' performance of anti-electromagnetic interference has been validated.

  7. Artificial neural network for location estimation in wireless communication systems.

    PubMed

    Chen, Chien-Sheng

    2012-01-01

    In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.

  8. Beacon-based opportunistic scheduling in wireless body area network.

    PubMed

    Yang Zhou; Zhengguo Sheng; Leung, Victor C M; Servati, Peyman

    2016-08-01

    Wireless Body Area Networks (WBANs) are one of the key technologies that support the development of digital health care, which has attracted increasing attention in recent years. Compared with general Wireless Sensor Networks (WSNs), WBANs have more stringent requirements on reliability and energy efficiency. Though WBANs are applied within limited transmission range, the on-body channel condition can be very challenging because of blocking or absorbing of signal. In this paper, we are looking into the design of Medium Access Control (MAC) protocols and propose an opportunistic scheduling scheme by applying heuristic scheduling and dynamic superframe length adjustment to improve the system performance. The simulations have been supplemented to show the advantages of the proposed solutions in outage rate performance, compared with existing solutions.

  9. Power Consumption Analysis of Operating Systems for Wireless Sensor Networks

    PubMed Central

    Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J.

    2010-01-01

    In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems—TinyOS v1.0, TinyOS v2.0, Mantis and Contiki—running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks. PMID:22219688

  10. Power consumption analysis of operating systems for wireless sensor networks.

    PubMed

    Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J

    2010-01-01

    In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems--TinyOS v1.0, TinyOS v2.0, Mantis and Contiki--running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks.

  11. Energy Efficient Moving Target Tracking in Wireless Sensor Networks

    PubMed Central

    Wen, Yingyou; Gao, Rui; Zhao, Hong

    2016-01-01

    Moving target tracking in wireless sensor networks is of paramount importance. This paper considers the problem of state estimation for L-sensor linear dynamic systems. Firstly, the paper establishes the fuzzy model for measurement condition estimation. Then, Generalized Kalman Filter design is performed to incorporate the novel neighborhood function and the target motion information, improving with an increasing number of active sensors. The proposed measurement selection approach has some advantages in time cost. As such, if the desired accuracy has been achieved, the parameter initialization for optimization can be readily resolved, which maximizes the expected lifespan while preserving tracking accuracy. Through theoretical justifications and empirical studies, we demonstrate that the proposed scheme achieves substantially superior performances over conventional methods in terms of moving target tracking under the resource-constrained wireless sensor networks. PMID:26729129

  12. Evaluation of communication in wireless underground sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, X. Q.; Zhang, Z. L.; Han, W. T.

    2017-06-01

    Wireless underground sensor networks (WUSN) are an emerging area of research that promises to provide communication capabilities to buried sensors. In this paper, experimental measurements have been conducted with commodity sensor motes at the frequency of 2.4GHz and 433 MHz, respectively. Experiments are run to examine the received signal strength of correctly received packets and the packet error rate for a communication link. The tests show the potential feasibility of the WUSN with the use of powerful RF transceivers at 433MHz frequency. Moreover, we also illustrate a classification for wireless underground sensor network communication. Finally, we conclude that the effects of burial depth, inter-node distance and volumetric water content of the soil on the signal strength and packet error rate in communication of WUSN.

  13. Wireless thermal sensor network with adaptive low power design.

    PubMed

    Lee, Ho-Yin; Chen, Shih-Lun; Chen, Chiung-An; Huang, Hong-Yi; Luo, Ching-Hsing

    2007-01-01

    There is an increasing need to develop flexible, reconfigurable, and intelligent low power wireless sensor network (WSN) system for healthcare applications. Technical advancements in micro-sensors, MEMS devices, low power electronics, and radio frequency circuits have enabled the design and development of such highly integrated system. In this paper, we present our proposed wireless thermal sensor network system, which is separated into control and data paths. Both of these paths have their own transmission frequencies. The control path sends the power and function commands from computer to each sensor elements by 2.4GHz RF circuits and the data path transmits measured data by 2.4GHz in sensor layer and 60GHz in higher layers. This hierarchy architecture would make reconfigurable mapping and pipeline applications on WSN possibly, and the average power consumption can be efficiently reduced about 60% by using the adaptive technique.

  14. Silicon photonics-wireless interface ICs for micro-/millimeter-wave fiber-wireless networks.

    PubMed

    Ko, Minsu; Lee, Myung-Jae; Rücker, Holger; Choi, Woo-Young

    2013-09-23

    We present two types of Si photonics-wireless interface (PWI) integrated circuits (ICs) realized in standard Si technology. Our PWI ICs convert optical signals into radio-frequency (RF) signals for downlink remote antenna units in fiber-wireless networks. Characterization and modeling of Si avalanche photodetectors (APDs) fabricated in two different Si technologies are carried out and used for PWI IC design. A 5-GHz RF-over-fiber PWI IC composed of APD, preamplifier, and power amplifier (PA) is fabricated in 0.18-μm CMOS technology and its performance is verified by 54-Mb/s wireless local area network data transmission. A 60-GHz baseband-over-fiber PWI IC containing APD, baseband photoreceiver, 60-GHz binary phase-shift keying (BPSK) modulator, and 60-GHz PA is realized in 0.25-μm SiGe BiCMOS technology. Error-free transmission of 1.6-Gb/s BPSK data in 60 GHz with this PWI IC is successfully achieved.

  15. Wireless networks of opportunity in support of secure field operations

    NASA Astrophysics Data System (ADS)

    Stehle, Roy H.; Lewis, Mark

    1997-02-01

    Under funding from the Defense Advanced Research Projects Agency (DARPA) for joint military and law enforcement technologies, demonstrations of secure information transfer in support of law enforcement and military operations other than war, using wireless and wired technology, were held in September 1996 at several locations in the United States. In this paper, the network architecture, protocols, and equipment supporting the demonstration's scenarios are presented, together with initial results, including lessons learned and desired system enhancements. Wireless networks of opportunity encompassed in-building (wireless-LAN), campus-wide (Metricom Inc.), metropolitan (AMPS cellular, CDPD), and national (one- and two-way satellite) systems. Evolving DARPA-sponsored packet radio technology was incorporated. All data was encrypted, using multilevel information system security initiative (MISSI)FORTEZZA technology, for carriage over unsecured and unclassified commercial networks. The identification and authentication process inherent in the security system permitted logging for database accesses and provided an audit trail useful in evidence gathering. Wireless and wireline communications support, to and between modeled crisis management centers, was demonstrated. Mechanisms for the guarded transport of data through the secret-high military tactical Internet were included, to support joint law enforcement and crisis management missions. A secure World Wide Web (WWW) browser forms the primary, user-friendly interface for information retrieval and submission. The WWW pages were structured to be sensitive to the bandwidth, error rate, and cost of the communications medium in use (e.g., the use of and resolution for graphical data). Both still and motion compressed video were demonstrated, along with secure voice transmission from laptop computers in the field. Issues of network bandwidth, airtime costs, and deployment status are discussed.

  16. Secure and Robust Clustering in Wireless Sensor Networks

    DTIC Science & Technology

    2008-07-20

    guarantee in hostile environments. For example, an adversary can create wormholes [14] or invisible nodes [20] to fool the sensor nodes that are far from each...selection and a centralized detection. The proposed neighbor validation is of independent interest; it can further improve the security of current wormhole ...Johnson. Packet leashes: A defense against wormhole attacks in wireless ad hoc networks. In Proceedings of INFOCOM, April 2003. [15] P. Krishna, N. H

  17. Ultra Wideband Wireless Body Area Network for Medical Applications

    DTIC Science & Technology

    2010-04-01

    cover a relatively wide body area ( abdominal torso). Commonly, a spatial-diversity antenna array around the torso is embedded in a recorder belt, which...etc. For in-hospital healthcare and surgery , a computer is used to process the information collected by the WBAN and other high data rate devices such...patients during surgery or intensive therapy. We described the integration architecture of all these systems into a single wireless body area network. One

  18. Factors Impacting Key Management Effectiveness in Secured Wireless Networks

    DTIC Science & Technology

    2006-03-01

    09 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright- Patterson Air Force Base, Ohio APPROVED FOR PUBLIC...Yi Yang, & Teng Yang. (2003). An overview of wireless sensor network and applications. 432-436. Romer, K., & Mattern , F. (2004). The design space...August 2004 he entered the Air Force Institute of Technology at Wright Patterson Air Force Base to earn a Master of Science Degree in Information

  19. Wireless integrated sensing, processing, and display networks for site security

    NASA Astrophysics Data System (ADS)

    Morrison, Rick L.; Brady, David J.; Rittgers, Andrew; Stack, Ronald A.

    2001-02-01

    We consider data management on ad hoc networks of sensing and processing nodes. We describe the construction of simple nodes from off the shelf components (PC 104 single board computers with flash memory, video capture cards and 802.1 lb wireless interfaces). We describe a Java interface to controlling these nodes and accessing images and image processing algorithms. We demonstrate target tracking across nodes and the potential for heterogeneous sensor types.

  20. Intrusion Detection and Forensics for Self-Defending Wireless Networks

    DTIC Science & Technology

    2012-12-01

    of security protocols for Wireless LAN, as well as the Return Routability of Mobile IPv6 , an emerging lightweight security protocol in new IPv6 ...ICNP), Nov. 2007. 5. Yao Zhao, Yan Chen, Bo Li, and Qian Zhang, Hop ID: A Virtual Coordinate based Routing for Sparse Mobile Ad Hoc Networks, in...IEEE Transaction on Mobile Computing, Volume 6, Number 9, September 2007. 6. Ehab Al-Shaer and Yan Chen, Integrated Fault and Security Management

  1. Linear and Planar Array Formation in Wireless Sensor Networks

    DTIC Science & Technology

    2007-06-01

    RELATED WORK A beamforming approach for distributed wireless sensor networks introduced by Vincent et al. [1] assembles a subset of sensor nodes into a...This work investigated the formation of arrays of nodes in a randomly deployed sensor field with the main objective of evaluating different approaches...nodes were added to the array. B. FUTURE WORK It was assumed in this work that the nodes in the sensor field have only knowledge of their

  2. Localization Algorithms of Underwater Wireless Sensor Networks: A Survey

    PubMed Central

    Han, Guangjie; Jiang, Jinfang; Shu, Lei; Xu, Yongjun; Wang, Feng

    2012-01-01

    In Underwater Wireless Sensor Networks (UWSNs), localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes’ mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs. PMID:22438752

  3. Low-power cryptographic coprocessor for autonomous wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Olszyna, Jakub; Winiecki, Wiesław

    2013-10-01

    The concept of autonomous wireless sensor networks involves energy harvesting, as well as effective management of system resources. Public-key cryptography (PKC) offers the advantage of elegant key agreement schemes with which a secret key can be securely established over unsecure channels. In addition to solving the key management problem, the other major application of PKC is digital signatures, with which non-repudiation of messages exchanges can be achieved. The motivation for studying low-power and area efficient modular arithmetic algorithms comes from enabling public-key security for low-power devices that can perform under constrained environment like autonomous wireless sensor networks. This paper presents a cryptographic coprocessor tailored to the autonomous wireless sensor networks constraints. Such hardware circuit is aimed to support the implementation of different public-key cryptosystems based on modular arithmetic in GF(p) and GF(2m). Key components of the coprocessor are described as GEZEL models and can be easily transformed to VHDL and implemented in hardware.

  4. Comparative Study on Various Authentication Protocols in Wireless Sensor Networks

    PubMed Central

    Rajeswari, S. Raja; Seenivasagam, V.

    2016-01-01

    Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated. PMID:26881272

  5. Usage Based Building Management through Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Erickson, Varick L.

    Wireless sensor networks (WSNs) is a field with broad variety of applications. Its flexibility for remote continuous measurement lends itself to applications ranging from locating snipers to measuring volcanic activity. One application that stands to substantially benefit from WSNs is building management. Buildings currently account for 41% of the total energy consumption of U.S. [bed11]. Reducing this energy is of critical importance if we are to achieve sustainability. In most commercial buildings, many rooms remain unoccupied or are conditioned assuming maximum occupancy. By relaxing temperature setbacks and adjusting ventilation to match actual occupancy, significant energy savings are possible. This Dissertation examines the use of wireless sensor networks for the purpose of building energy management and actuation. It explores the design and development of wireless sensor networks for building energy management, how data from these deployments are utilized, the development and implementation of data driven occupancy models to perform simulation and prediction, how data models are used to actuate building management systems, and how crowd-sourced data can be integrated into building control strategies. We show based on real-world data that 30% energy savings is possible through usage based strategies and that 80% occupant satisfaction rates are possible by occupant driven control strategies.

  6. The development of wireless sensor network for ECG monitoring.

    PubMed

    Lin, Jun-Liang; Liu, Hsien-Chieh; Tai, Yu-Ting; Wu, Hsin-Hsien; Hsu, Shuo-Jen; Jaw, Fu-Shan; Chen, You-Yin

    2006-01-01

    The main problem we want to solve contains two subjects: The first one is the patient's pressure due to wired physiological signal estimation. With wireless sensor network technique, patients only need to carry a few small nodes, and then the physiological signal can be transmitted in the air. The other subject of the vital problem is that some protocols, like Bluetooth, provide a peer to peer wireless communication technique, but such peer to peer network may need a complex algorithm to find the best data transmission path. In this study, we use the hierarchy routing as network topology that three-layer architecture contains PAN coordinator, router and device. The study focuses on implementation of a prototype electrocardiography (ECG) system which replaces wired connections between sensor points and a central node with wireless links. Successful implementation of the final system would be of benefit to all involved in the use of ECG as access to and movement of the patient would not be impeded by the physical constraints imposed by the cables. Most aspects of the design would also be portable to other sensor applications, making the work relevant to a vast range of systems where movement of sensors is desirable and constrained by hard-wired links.

  7. Wireless medical sensor networks: design requirements and enabling technologies.

    PubMed

    Vallejos de Schatz, Cecilia H; Medeiros, Henry Ponti; Schneider, Fabio K; Abatti, Paulo J

    2012-06-01

    This article analyzes wireless communication protocols that could be used in healthcare environments (e.g., hospitals and small clinics) to transfer real-time medical information obtained from noninvasive sensors. For this purpose the features of the three currently most widely used protocols-namely, Bluetooth(®) (IEEE 802.15.1), ZigBee (IEEE 802.15.4), and Wi-Fi (IEEE 802.11)-are evaluated and compared. The important features under consideration include data bandwidth, frequency band, maximum transmission distance, encryption and authentication methods, power consumption, and current applications. In addition, an overview of network requirements with respect to medical sensor features, patient safety and patient data privacy, quality of service, and interoperability between other sensors is briefly presented. Sensor power consumption is also discussed because it is considered one of the main obstacles for wider adoption of wireless networks in medical applications. The outcome of this assessment will be a useful tool in the hands of biomedical engineering researchers. It will provide parameters to select the most effective combination of protocols to implement a specific wireless network of noninvasive medical sensors to monitor patients remotely in the hospital or at home.

  8. Comparative Study on Various Authentication Protocols in Wireless Sensor Networks.

    PubMed

    Rajeswari, S Raja; Seenivasagam, V

    2016-01-01

    Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated.

  9. The coverage problem in video-based wireless sensor networks: a survey.

    PubMed

    Costa, Daniel G; Guedes, Luiz Affonso

    2010-01-01

    Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks.

  10. The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso

    2010-01-01

    Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651

  11. Implementing wireless sensor networks for architectural heritage conservation

    NASA Astrophysics Data System (ADS)

    Martínez-Garrido, M. I.; Aparicio, S.; Fort, R.; Izquierdo, M. A. G.; Anaya, J. J.

    2012-04-01

    Preventive conservation in architectural heritage is one of the most important aims for the development and implementation of new techniques to assess decay, lending to reduce damage before it has occurred and reducing costs in the long term. For that purpose, it is necessary to know all aspects influencing in decay evolution depending on the material under study and its internal and external conditions. Wireless sensor networks are an emerging technology and a minimally invasive technique. The use of these networks facilitates data acquisition and monitoring of a large number of variables that could provoke material damages, such as presence of harmful compounds like salts, dampness, etc. The current project presents different wireless sensors networks (WSN) and sensors used to fulfill the requirements for a complete analysis of main decay agents in a Renaissance church of the 16th century in Madrid (Spain). Current typologies and wireless technologies are studied establishing the most suitable system and the convenience of each one. Firstly, it is very important to consider that microclimate is in close correlation with material deterioration. Therefore a temperature(T) and relative humidity (RH)/moisture network has been developed, using ZigBee wireless communications protocols, and monitoring different points along the church surface. These points are recording RH/T differences depending on the height and the sensor location (inside the material or on the surface). On the other hand, T/RH button sensors have been used, minimizing aesthetical interferences, and concluding which is the most advisable way for monitoring these specific parameters. Due to the fact that microclimate is a complex phenomenon, it is necessary to examine spatial distribution and time evolution at the same time. This work shows both studies since the development expects a long term monitoring. A different wireless network has been deployed to study the effects of pollution caused by other

  12. Cyber-physical networking for wireless mesh infrastructures

    NASA Astrophysics Data System (ADS)

    Mannweiler, C.; Lottermann, C.; Klein, A.; Schneider, J.; Schotten, H. D.

    2012-09-01

    This paper presents a novel approach for cyber-physical network control. "Cyber-physical" refers to the inclusion of different parameters and information sources, ranging from physical sensors (e.g. energy, temperature, light) to conventional network information (bandwidth, delay, jitter, etc.) to logical data providers (inference systems, user profiles, spectrum usage databases). For a consistent processing, collected data is represented in a uniform way, analyzed, and provided to dedicated network management functions and network services, both internally and, through an according API, to third party services. Specifically, in this work, we outline the design of sophisticated energy management functionalities for a hybrid wireless mesh network (WLAN for both backhaul traffic and access, GSM for access only), disposing of autonomous energy supply, in this case solar power. Energy consumption is optimized under the presumption of fluctuating power availability and considerable storage constraints, thus influencing, among others, handover and routing decisions. Moreover, advanced situation-aware auto-configuration and self-adaptation mechanisms are introduced for an autonomous operation of the network. The overall objective is to deploy a robust wireless access and backbone infrastructure with minimal operational cost and effective, cyber-physical control mechanisms, especially dedicated for rural or developing regions.

  13. Using Internet of Things technologies for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Martinez, K.; Hart, J. K.; Basford, P. J.; Bragg, G. M.; Ward, T.

    2013-12-01

    Numerous authors have envisioned the future internet where anything will be connected: the Internet of Things (IoT). The idea is an extrapolation of the spread of networked devices such as phones, tablets etc. Each device is expected to have its own Internet address and thus be easy to access. The key building blocks of any IoT system are networking, hardware platforms and node software - so they are similar to wireless sensor network requirements. Most existing IoT demonstrators and applications have been gadget-style objects where power and connectivity problems are not too restricting. Environmental sensor networks can benefit from using some of the technologies involved in IoT development. However it is expected that tuning the networking and power management will be necessary to make them as efficient as state of the art wireless sensor networks. Some IoT assumptions such as always-connected nodes and full IP capability need to be considered. This paper will illustrate the advantages and disadvantages of IoT techniques for environment sensing drawing on a range of employment scenarios. We also describe a glacial 'Internet of things' project, which aims to monitor glacial processes. In particular we describe the IoT developments in a deployment in Iceland to examine glacier seismicity, velocity and provide camera images.

  14. A comprehensive survey of Wireless Body Area Networks : on PHY, MAC, and Network layers solutions.

    PubMed

    Ullah, Sana; Higgins, Henry; Braem, Bart; Latre, Benoit; Blondia, Chris; Moerman, Ingrid; Saleem, Shahnaz; Rahman, Ziaur; Kwak, Kyung Sup

    2012-06-01

    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted.

  15. Hybrid wireless sensor network for rescue site monitoring after earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Wang, Shuo; Tang, Chong; Zhao, Xiaoguang; Hu, Weijian; Tan, Min; Gao, Bowei

    2016-07-01

    This paper addresses the design of a low-cost, low-complexity, and rapidly deployable wireless sensor network (WSN) for rescue site monitoring after earthquakes. The system structure of the hybrid WSN is described. Specifically, the proposed hybrid WSN consists of two kinds of wireless nodes, i.e., the monitor node and the sensor node. Then the mechanism and the system configuration of the wireless nodes are detailed. A transmission control protocol (TCP)-based request-response scheme is proposed to allow several monitor nodes to communicate with the monitoring center. UDP-based image transmission algorithms with fast recovery have been developed to meet the requirements of in-time delivery of on-site monitor images. In addition, the monitor node contains a ZigBee module that used to communicate with the sensor nodes, which are designed with small dimensions to monitor the environment by sensing different physical properties in narrow spaces. By building a WSN using these wireless nodes, the monitoring center can display real-time monitor images of the monitoring area and visualize all collected sensor data on geographic information systems. In the end, field experiments were performed at the Training Base of Emergency Seismic Rescue Troops of China and the experimental results demonstrate the feasibility and effectiveness of the monitor system.

  16. The Study of Collective Actions in a University Anchored Community Wireless Network

    ERIC Educational Resources Information Center

    Kuchibhotla, Hari N.

    2012-01-01

    The emergence of wireless devices and the ease in setting up wireless devices has created opportunities for various entities, and in particular to universities, by partnering with their local communities in the form of a university anchored community wireless network. This provides opportunities for students to be part of the community-based…

  17. The Study of Collective Actions in a University Anchored Community Wireless Network

    ERIC Educational Resources Information Center

    Kuchibhotla, Hari N.

    2012-01-01

    The emergence of wireless devices and the ease in setting up wireless devices has created opportunities for various entities, and in particular to universities, by partnering with their local communities in the form of a university anchored community wireless network. This provides opportunities for students to be part of the community-based…

  18. RF-Embedding of Energy-Autonomous Sensors and Actuators into Wireless Sensor Networks

    DTIC Science & Technology

    2006-10-01

    RF-Embedding of Energy-Autonomous Sensors and Actuators into Wireless Sensor Networks Frank Schmidt×, Gerd Scholl +, Armin Anders×, Hans-Jörg... Scholl , G.; Anders, A.; Körber, H.-J.; Wattar, H. (2006) RF-Embedding of Energy-Autonomous Sensors and Actuators into Wireless Sensor Networks. In...and Actuators into Wireless Sensor Networks RTO-MP-AVT-141 3 - 5 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED 3.0 RADIO PLATFORM Energy

  19. Wireless Sensor Networks for Oceanographic Monitoring: A Systematic Review

    PubMed Central

    Albaladejo, Cristina; Sánchez, Pedro; Iborra, Andrés; Soto, Fulgencio; López, Juan A.; Torres, Roque

    2010-01-01

    Monitoring of the marine environment has come to be a field of scientific interest in the last ten years. The instruments used in this work have ranged from small-scale sensor networks to complex observation systems. Among small-scale networks, Wireless Sensor Networks (WSNs) are a highly attractive solution in that they are easy to deploy, operate and dismantle and are relatively inexpensive. The aim of this paper is to identify, appraise, select and synthesize all high quality research evidence relevant to the use of WSNs in oceanographic monitoring. The literature is systematically reviewed to offer an overview of the present state of this field of study and identify the principal resources that have been used to implement networks of this kind. Finally, this article details the challenges and difficulties that have to be overcome if these networks are to be successfully deployed. PMID:22163583

  20. Wireless Sensor Networks for oceanographic monitoring: a systematic review.

    PubMed

    Albaladejo, Cristina; Sánchez, Pedro; Iborra, Andrés; Soto, Fulgencio; López, Juan A; Torres, Roque

    2010-01-01

    Monitoring of the marine environment has come to be a field of scientific interest in the last ten years. The instruments used in this work have ranged from small-scale sensor networks to complex observation systems. Among small-scale networks, Wireless Sensor Networks (WSNs) are a highly attractive solution in that they are easy to deploy, operate and dismantle and are relatively inexpensive. The aim of this paper is to identify, appraise, select and synthesize all high quality research evidence relevant to the use of WSNs in oceanographic monitoring. The literature is systematically reviewed to offer an overview of the present state of this field of study and identify the principal resources that have been used to implement networks of this kind. Finally, this article details the challenges and difficulties that have to be overcome if these networks are to be successfully deployed.

  1. AEGIS: A Lightweight Firewall for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Sajjad; Raghunathan, Vijay

    Firewalls are an essential component in today's networked computing systems (desktops, laptops, and servers) and provide effective protection against a variety of over-the-network security attacks. With the development of technologies such as IPv6 and 6LoWPAN that pave the way for Internet-connected embedded systems and sensor networks, these devices will soon be subject to (and need to be defended against) similar security threats. As a first step, this paper presents Aegis, a lightweight, rule-based firewall for networked embedded systems such as wireless sensor networks. Aegis is based on a semantically rich, yet simple, rule definition language. In addition, Aegis is highly efficient during operation, runs in a transparent manner from running applications, and is easy to maintain. Experimental results obtained using real sensor nodes and cycle-accurate simulations demonstrate that Aegis successfully performs gatekeeping of a sensor node's communication traffic in a flexible manner with minimal overheads.

  2. Multi-mode clustering model for hierarchical wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hu, Xiangdong; Li, Yongfu; Xu, Huifen

    2017-03-01

    The topology management, i.e., clusters maintenance, of wireless sensor networks (WSNs) is still a challenge due to its numerous nodes, diverse application scenarios and limited resources as well as complex dynamics. To address this issue, a multi-mode clustering model (M2 CM) is proposed to maintain the clusters for hierarchical WSNs in this study. In particular, unlike the traditional time-trigger model based on the whole-network and periodic style, the M2 CM is proposed based on the local and event-trigger operations. In addition, an adaptive local maintenance algorithm is designed for the broken clusters in the WSNs using the spatial-temporal demand changes accordingly. Numerical experiments are performed using the NS2 network simulation platform. Results validate the effectiveness of the proposed model with respect to the network maintenance costs, node energy consumption and transmitted data as well as the network lifetime.

  3. Application of neural networks to the dynamic spatial distribution of nodes within an urban wireless network

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1995-04-01

    The optimal location of wireless transceivers or communicating sensor devices in an urban area and within large human-made structures is considered. The purpose of the positioning of the devices is formation of a distributed network, either in a mesh or hub-spoke topology, that achieves robust connectivity of the nodes. Real-world examples include wireless local area networks (LANs) within buildings and radio beacons in an outdoor mobile radio environment. Operating environments contain both fixed and moving interferers that correspond to both stationary and time-varying spatial distributions of path distortion of stationary and transient fading and multipath delays that impede connectivity. The positioning of the autonomous wireless devices in an area with an unknown spatial pattern of interferers would normally be a slow incremental process. The proposed objective is determination of the spatial distribution of the devices to achieve the maximum radio connectivity in a minimal number of iterative steps. Impeding the optimal distribution of wireless nodes is the corresponding distribution of environmental interferers in the area or volume of network operation. The problem of network formation is posed as an adaptive learning problem, in particular, a self-organizing map of locally competitive wireless units that recursively update their positions and individual operating configurations at each iterative step of the neural algorithm. The scheme allows the wireless units to adaptively learn the pattern distribution of interferers in their operating environment based on the level of radio interference measured at each node by an equivalent received signal strength from wireless units within the node's hearing distance. Two cases are considered. The first is an indoor human-made environment where the interference pattern is largely deterministic and stationary and the units are positioned to form a wireless LAN. The second situation applies to an outdoor urban

  4. A Network-Coding Based Event Diffusion Protocol for Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Beraldi, Roberto; Alnuweiri, Hussein

    Publish/subscribe is a well know and powerful distributed programming paradigm with many potential applications. In this paper we consider the central problem of any pub/sub implementation, namely the problem of event dissemination, in the case of a Wireless Mesh Network. We propose a protocol based on non-trivial forwarding mechanisms that employ network coding as a central tool for supporting adaptive event dissemination while exploiting the broadcast nature of wireless transmissions. Our results show that network coding provides significant improvements to event diffusion compared to standard blind dissemination solutions, namely flooding and gossiping.

  5. JTP: An Energy-conscious Transport Protocol for Wireless Ad Hoc Networks

    DTIC Science & Technology

    2006-01-01

    notification (eten) for error-prone wireless and satellite networks,” Comput. Networks, vol. 46, no. 3, pp. 343–362, 2004. [19] D. Barman and I. Matta...Communication,” Wireless Networks, vol. 6, pp. 263–277, 2000. [24] D. Barman , I. Matta, E. Altman, and R. E. Azouzi, “TCP Optimization through FEC

  6. Wireless Visual Sensor Network Resource Allocation using Cross-Layer Optimization

    DTIC Science & Technology

    2009-01-01

    channel coding. 2. RESOURCE ALLOCATION USING CROSS - LAYER OPTIMIZATION This work considers a wireless visual sensor network that...SUBJECT TERMS Cross - layer , visual sensor network , Code Division Multiple Access (CDMA), resource allocation, H.265, spread spectrum, joint source- channel ...DATES COVERED (From - To) January 2008 – August 2008 4. TITLE AND SUBTITLE WIRELESS VISUAL SENSOR NETWORK RESOURCE ALLOCATION USING CROSS -

  7. Patrol Detection for Replica Attacks on Wireless Sensor Networks

    PubMed Central

    Wang, Liang-Min; Shi, Yang

    2011-01-01

    Replica attack is a critical concern in the security of wireless sensor networks. We employ mobile nodes as patrollers to detect replicas distributed in different zones in a network, in which a basic patrol detection protocol and two detection algorithms for stationary and mobile modes are presented. Then we perform security analysis to discuss the defense strategies against the possible attacks on the proposed detection protocol. Moreover, we show the advantages of the proposed protocol by discussing and comparing the communication cost and detection probability with some existing methods. PMID:22163752

  8. Security Mechanisms with Selfish Players in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Hubaux, Jean-Pierre

    It is frequently assumed that the parties involved in a security mechanism will behave according to everyone's expectation. However, some of them might be tempted to depart from the expected (or canonical) behavior, because such a deviation is more beneficial for them. As an illustration, we will consider that phenomenon in the framework of wireless networks. We will briefly introduce some basic background in game theory and provide an overview of several recent contributions to that field. Finally, we will consider two examples in more detail, namely revocation in high-mobility (or "ephemeral") networks and pseudonym change in mix zones.

  9. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  10. Design and initial deployment of the wireless local area networking infrastructure at Sandia National Laboratories.

    SciTech Connect

    Long, John P.; Hamill, Michael J.; Mitchell, M. G.; Miller, Marc M.; Witzke, Edward L.; Wiener, Dallas J

    2006-11-01

    A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wireless networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.

  11. Non-line-of-sight underwater optical wireless communication network.

    PubMed

    Arnon, Shlomi; Kedar, Debbie

    2009-03-01

    The growing need for ocean observation systems has stimulated considerable interest within the research community in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. Sensors and ad hoc sensor networks are the emerging tools for performing extensive data-gathering operations on land, and solutions in the subsea setting are being sought. Efficient communication from the sensors and within the network is critical, but the underwater environment is extremely challenging. Addressing the special features of underwater wireless communication in sensor networks, we propose a novel non-line-of-sight network concept in which the link is implemented by means of back-reflection of the propagating optic signal at the ocean-air interface and derive a mathematical model of the channel. Point-to-multipoint links can be achieved in an energy efficient manner and broadcast broadband communications, such as video transmissions, can be executed. We show achievable bit error rates as a function of sensor node separation and demonstrate the feasibility of this concept using state-of-the-art silicon photomultiplier detectors.

  12. Degeneracy estimation in interference models on wireless networks

    NASA Astrophysics Data System (ADS)

    McBride, Neal; Bulava, John; Galiotto, Carlo; Marchetti, Nicola; Macaluso, Irene; Doyle, Linda

    2017-03-01

    We present a Monte Carlo study of interference in real-world wireless networks using the Potts model. Our approach maps the Potts energy to discrete interference levels. These levels depend on the configurations of radio frequency allocation in the network. For the first time, we estimate the degeneracy of these interference levels using the Wang-Landau algorithm. The cumulative distribution function of the resulting density of states is found to increase rapidly at a critical interference value. We compare these critical values for several different real-world interference networks and Potts models. Our results show that models with a greater number of available frequency channels and less dense interference networks result in the majority of configurations having lower interference levels. Consequently, their critical interference levels occur at lower values. Furthermore, the area under the density of states increases and shifts to lower interference values. Therefore, the probability of randomly sampling low interference configurations is higher under these conditions. This result can be used to consider dynamic and distributed spectrum allocation in future wireless networks.

  13. Mobility based multicast routing in wireless mesh networks

    NASA Astrophysics Data System (ADS)

    Jain, Sanjeev; Tripathi, Vijay S.; Tiwari, Sudarshan

    2013-01-01

    There exist two fundamental approaches to multicast routing namely minimum cost trees and shortest path trees. The (MCT's) minimum cost tree is one which connects receiver and sources by providing a minimum number of transmissions (MNTs) the MNTs approach is generally used for energy constraint sensor and mobile ad hoc networks. In this paper we have considered node mobility and try to find out simulation based comparison of the (SPT's) shortest path tree, (MST's) minimum steiner trees and minimum number of transmission trees in wireless mesh networks by using the performance metrics like as an end to end delay, average jitter, throughput and packet delivery ratio, average unicast packet delivery ratio, etc. We have also evaluated multicast performance in the small and large wireless mesh networks. In case of multicast performance in the small networks we have found that when the traffic load is moderate or high the SPTs outperform the MSTs and MNTs in all cases. The SPTs have lowest end to end delay and average jitter in almost all cases. In case of multicast performance in the large network we have seen that the MSTs provide minimum total edge cost and minimum number of transmissions. We have also found that the one drawback of SPTs, when the group size is large and rate of multicast sending is high SPTs causes more packet losses to other flows as MCTs.

  14. Extending Wireless Rechargeable Sensor Network Life without Full Knowledge.

    PubMed

    Najeeb, Najeeb W; Detweiler, Carrick

    2017-07-17

    When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes' power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values.

  15. Extending Wireless Rechargeable Sensor Network Life without Full Knowledge

    PubMed Central

    Najeeb, Najeeb W.; Detweiler, Carrick

    2017-01-01

    When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes’ power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values. PMID:28714936

  16. Simulation of Attacks for Security in Wireless Sensor Network

    PubMed Central

    Diaz, Alvaro; Sanchez, Pablo

    2016-01-01

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node’s software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work. PMID:27869710

  17. Simulation of Attacks for Security in Wireless Sensor Network.

    PubMed

    Diaz, Alvaro; Sanchez, Pablo

    2016-11-18

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node's software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work.

  18. Developing a wireless implantable body sensor network in MICS band.

    PubMed

    Fang, Qiang; Lee, Shuenn-Yuh; Permana, Hans; Ghorbani, Kamran; Cosic, Irena

    2011-07-01

    Through an integration of wireless communication and sensing technologies, the concept of a body sensor network (BSN) was initially proposed in the early decade with the aim to provide an essential technology for wearable, ambulatory, and pervasive health monitoring for elderly people and chronic patients. It has become a hot research area due to big opportunities as well as great challenges it presents. Though the idea of an implantable BSN was proposed in parallel with the on-body sensor network, the development in this area is relatively slow due to the complexity of human body, safety concerns, and some technological bottlenecks such as the design of ultralow-power implantable RF transceiver. This paper describes a new wireless implantable BSN that operates in medical implant communication service (MICS) frequency band. This system innovatively incorporates both sensing and actuation nodes to form a closed-control loop for physiological monitoring and drug delivery for critically ill patients. The sensing node, which is designed using system-on-chip technologies, takes advantage of the newly available ultralow-power Zarlink MICS transceiver for wireless data transmission. Finally, the specific absorption rate distribution of the proposed system was simulated to determine the in vivo electromagnetic field absorption and the power safety limits.

  19. Distributed Signal Processing for Wireless EEG Sensor Networks.

    PubMed

    Bertrand, Alexander

    2015-11-01

    Inspired by ongoing evolutions in the field of wireless body area networks (WBANs), this tutorial paper presents a conceptual and exploratory study of wireless electroencephalography (EEG) sensor networks (WESNs), with an emphasis on distributed signal processing aspects. A WESN is conceived as a modular neuromonitoring platform for high-density EEG recordings, in which each node is equipped with an electrode array, a signal processing unit, and facilities for wireless communication. We first address the advantages of such a modular approach, and we explain how distributed signal processing algorithms make WESNs more power-efficient, in particular by avoiding data centralization. We provide an overview of distributed signal processing algorithms that are potentially applicable in WESNs, and for illustration purposes, we also provide a more detailed case study of a distributed eye blink artifact removal algorithm. Finally, we study the power efficiency of these distributed algorithms in comparison to their centralized counterparts in which all the raw sensor signals are centralized in a near-end or far-end fusion center.

  20. Practical Rate-Based Congestion Control for Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Elrakabawy, Sherif M.; Lindemann, Christoph

    We introduce an adaptive pacing scheme to overcome the drawbacks of TCP in wireless mesh networks with Internet connectivity. The pacing scheme is implemented at the wireless TCP sender as well as at the mesh gateway, and reacts according to the direction of TCP flows running across the wireless network and the Internet. TCP packets are transmitted rate-based within the TCP congestion window according to the current out-of-interference delay and the coefficient of variation of recently measured round-trip times. Opposed to the majority of previous work which builds on simulations, we implement a Linux prototype of our approach and evaluate its feasibility in a real 20-node mesh testbed. In an experimental performance study, we compare the goodput and fairness of our approach against the widely deployed TCP NewReno. Experiments show that our approach, which we denote as Mesh Adaptive Pacing (MAP), can achieve up to 150% more goodput than TCP NewReno and significantly improves fairness between competing flows. MAP is incrementally deployable since it is TCP-compatible, does not require cross-layer information from intermediate nodes along the path, and requires no modifications in the wired domain.

  1. M-BRIDGE: Wireless portable onbody aggregator and visualizer system for Wireless Body Sensor Network.

    PubMed

    Phyo Wai, Aung Aung; Ge, Yu

    2013-01-01

    Advances made in electronics, intelligent and wireless technologies enable individuals to self-observe their health states anywhere anytime. The shift in self care becomes a promising paradigm to alleviate burdens on centralized institutional care. As a result, Wireless Body Sensor Network (WBSN) personal health solutions can be seen increasingly although medical community still has concerns on their usability and applicability. Especially, there is still lacking in portable wireless wearable gateway to integrate WBSN into existing healthcare solutions. To fulfill this gap, we design and develop MobilE on-Body aGgregator and vIsualizer Device (M-BRIDGE) system using Android smart phone. Our proposed solution fully supports the needs of flexible device interfacing, data aggregation, efficient data distribution and user-friendly visualization. We also explain how M-BRIDGE's unique features and operation can complement with and fulfill the deficiency of existing WBSN healthcare solutions. We finally present the details of implementation and technical evaluation as well as discussion on the potential issues and future works.

  2. Wireless Sensor Networks for Developmental and Flight Instrumentation

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments

  3. Joint Mobile Data Collection and Wireless Energy Transfer in Wireless Rechargeable Sensor Networks.

    PubMed

    Zhong, Ping; Li, Ya-Ting; Liu, Wei-Rong; Duan, Gui-Hua; Chen, Ying-Wen; Xiong, Neal

    2017-08-16

    In wireless rechargeable sensor networks (WRSNs), there is a way to use mobile vehicles to charge node and collect data. It is a rational pattern to use two types of vehicles, one is for energy charging, and the other is for data collecting. These two types of vehicles, data collection vehicles (DCVs) and wireless charging vehicles (WCVs), are employed to achieve high efficiency in both data gathering and energy consumption. To handle the complex scheduling problem of multiple vehicles in large-scale networks, a twice-partition algorithm based on center points is proposed to divide the network into several parts. In addition, an anchor selection algorithm based on the tradeoff between neighbor amount and residual energy, named AS-NAE, is proposed to collect the zonal data. It can reduce the data transmission delay and the energy consumption for DCVs' movement in the zonal. Besides, we design an optimization function to achieve maximum data throughput by adjusting data rate and link rate of each node. Finally, the effectiveness of proposed algorithm is validated by numerical simulation results in WRSNs.

  4. Joint Mobile Data Collection and Wireless Energy Transfer in Wireless Rechargeable Sensor Networks

    PubMed Central

    Li, Ya-Ting; Liu, Wei-Rong; Duan, Gui-Hua; Chen, Ying-Wen

    2017-01-01

    In wireless rechargeable sensor networks (WRSNs), there is a way to use mobile vehicles to charge node and collect data. It is a rational pattern to use two types of vehicles, one is for energy charging, and the other is for data collecting. These two types of vehicles, data collection vehicles (DCVs) and wireless charging vehicles (WCVs), are employed to achieve high efficiency in both data gathering and energy consumption. To handle the complex scheduling problem of multiple vehicles in large-scale networks, a twice-partition algorithm based on center points is proposed to divide the network into several parts. In addition, an anchor selection algorithm based on the tradeoff between neighbor amount and residual energy, named AS-NAE, is proposed to collect the zonal data. It can reduce the data transmission delay and the energy consumption for DCVs’ movement in the zonal. Besides, we design an optimization function to achieve maximum data throughput by adjusting data rate and link rate of each node. Finally, the effectiveness of proposed algorithm is validated by numerical simulation results in WRSNs. PMID:28813029

  5. Telesonar Signaling and Seaweb Underwater Wireless Networks

    DTIC Science & Technology

    2001-04-01

    personnel and mobile undersea systems as network nodes, contributing to this effort are Bob Creber, Chris Fletcher, The annual Seaweb and Sublink...Oceanographic deployable devices that will augment high-value space Partnership Program (NOPP), Jim Eckman (ONR and naval platforms. Distributed system

  6. Message Integrity Model for Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Qleibo, Haider W.

    2009-01-01

    WSNs are susceptible to a variety of attacks. These attacks vary in the way they are performed and executed; they include but not limited to node capture, physical tampering, denial of service, and message alteration. It is of paramount importance to protect gathered data by WSNs and defend the network against illegal access and malicious…

  7. Message Integrity Model for Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Qleibo, Haider W.

    2009-01-01

    WSNs are susceptible to a variety of attacks. These attacks vary in the way they are performed and executed; they include but not limited to node capture, physical tampering, denial of service, and message alteration. It is of paramount importance to protect gathered data by WSNs and defend the network against illegal access and malicious…

  8. Advanced Wireless Integrated Navy Network (AWINN)

    DTIC Science & Technology

    2006-03-31

    position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Quarterly progress report No. 5 on AWINN hardware and software ...2 1.2 Task 1.2 Advanced Software Radio...122 4.1 TIP #1 Distributed MIMO UJWB sensor networks incorporating software radio ...... 122 4.2 TIP

  9. Clock Synchronization in Wireless Sensor Networks: An Overview

    PubMed Central

    Rhee, Ill-Keun; Lee, Jaehan; Kim, Jangsub; Serpedin, Erchin; Wu, Yik-Chung

    2009-01-01

    The development of tiny, low-cost, low-power and multifunctional sensor nodes equipped with sensing, data processing, and communicating components, have been made possible by the recent advances in micro-electro-mechanical systems (MEMS) technology. Wireless sensor networks (WSNs) assume a collection of such tiny sensing devices connected wirelessly and which are used to observe and monitor a variety of phenomena in the real physical world. Many applications based on these WSNs assume local clocks at each sensor node that need to be synchronized to a common notion of time. This paper reviews the existing clock synchronization protocols for WSNs and the methods of estimating clock offset and clock skew in the most representative clock synchronization protocols for WSNs. PMID:22389588

  10. A Fatigue Measuring Protocol for Wireless Body Area Sensor Networks.

    PubMed

    Akram, Sana; Javaid, Nadeem; Ahmad, Ashfaq; Khan, Zahoor Ali; Imran, Muhammad; Guizani, Mohsen; Hayat, Amir; Ilahi, Manzoor

    2015-12-01

    As players and soldiers preform strenuous exercises and do difficult and tiring duties, they are usually the common victims of muscular fatigue. Keeping this in mind, we propose FAtigue MEasurement (FAME) protocol for soccer players and soldiers using in-vivo sensors for Wireless Body Area Sensor Networks (WBASNs). In FAME, we introduce a composite parameter for fatigue measurement by setting a threshold level for each sensor. Whenever, any sensed data exceeds its threshold level, the players or soldiers are declared to be in a state of fatigue. Moreover, we use a vibration pad for the relaxation of fatigued muscles, and then utilize the vibrational energy by means of vibration detection circuit to recharge the in-vivo sensors. The induction circuit achieves about 68 % link efficiency. Simulation results show better performance of the proposed FAME protocol, in the chosen scenarios, as compared to an existing Wireless Soccer Team Monitoring (WSTM) protocol in terms of the selected metrics.

  11. Interference-Aware Transmission Power Control for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Junseok; Kwon, Younggoo

    Maintaining the lowest possible transmission power in the wireless sensor networks (WSNs) is vulnerable to the interference fluctuations because of the bad signal-to-interference-plus-noise-ratio (SINR). The previous transmission power control (TPC) algorithms do not consider much for the interferences from other 2.4GHz devices, which can cause significant performance degradations in real world deployments. This paper proposes the interference-aware transmission power control (I-TPC) algorithm for WSNs. In the proposed algorithm, each node dynamically adjusts the transmission power and the received signal strength (RSS) target, hence the appropriate SINR is provided even when the wireless LAN (WLAN) interferences become strong. The experimental results show that the proposed algorithm outperforms the previous algorithms in terms of the energy and the packet reception ratio (PRR) performance in WLAN interference environments.

  12. Distributed Joint Source-Channel Coding in Wireless Sensor Networks

    PubMed Central

    Zhu, Xuqi; Liu, Yu; Zhang, Lin

    2009-01-01

    Considering the fact that sensors are energy-limited and the wireless channel conditions in wireless sensor networks, there is an urgent need for a low-complexity coding method with high compression ratio and noise-resisted features. This paper reviews the progress made in distributed joint source-channel coding which can address this issue. The main existing deployments, from the theory to practice, of distributed joint source-channel coding over the independent channels, the multiple access channels and the broadcast channels are introduced, respectively. To this end, we also present a practical scheme for compressing multiple correlated sources over the independent channels. The simulation results demonstrate the desired efficiency. PMID:22408560

  13. Embedded linear classifiers on wireless sensor networks for damage detection

    NASA Astrophysics Data System (ADS)

    Peckens, Courtney A.; Lynch, Jerome P.

    2013-04-01

    Damage detection on engineered systems is a challenging task that has been explored by numerous researchers. In recent years wireless sensors systems have arisen as a vehicle for low-power, low-cost, and localized damage detection that can be applied to various structural systems. Such sensors, however, are limited in their computational capacity and as a result, careful consideration must be taken as to which algorithms can be effectively embedded so as to balance energy constraints with computational efficiency. In this study, two classifier algorithms (least squares classifier and Fisher's linear discriminant analysis) are explored for detecting damage on a cooling system test bed. In particular, the algorithms are used to determine the valve configuration of the system and to verify if damage exists within the valves. To validate the efficiency of the algorithms in the embedded domain, the algorithms are implemented on a wireless sensing network and used to classify the system state of the test bed.

  14. ZERO: probabilistic routing for deploy and forget Wireless Sensor Networks.

    PubMed

    Vilajosana, Xavier; Llosa, Jordi; Pacho, Jose Carlos; Vilajosana, Ignasi; Juan, Angel A; Vicario, Jose Lopez; Morell, Antoni

    2010-01-01

    As Wireless Sensor Networks are being adopted by industry and agriculture for large-scale and unattended deployments, the need for reliable and energy-conservative protocols become critical. Physical and Link layer efforts for energy conservation are not mostly considered by routing protocols that put their efforts on maintaining reliability and throughput. Gradient-based routing protocols route data through most reliable links aiming to ensure 99% packet delivery. However, they suffer from the so-called "hot spot" problem. Most reliable routes waste their energy fast, thus partitioning the network and reducing the area monitored. To cope with this "hot spot" problem we propose ZERO a combined approach at Network and Link layers to increase network lifespan while conserving reliability levels by means of probabilistic load balancing techniques.

  15. On Connectivity of Wireless Sensor Networks with Directional Antennas

    PubMed Central

    Wang, Qiu; Dai, Hong-Ning; Zheng, Zibin; Imran, Muhammad; Vasilakos, Athanasios V.

    2017-01-01

    In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models. PMID:28085081

  16. On Connectivity of Wireless Sensor Networks with Directional Antennas.

    PubMed

    Wang, Qiu; Dai, Hong-Ning; Zheng, Zibin; Imran, Muhammad; Vasilakos, Athanasios V

    2017-01-12

    In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models.

  17. An Overview of Data Routing Approaches for Wireless Sensor Networks

    PubMed Central

    Anisi, Mohammad Hossein; Abdullah, Abdul Hanan; Razak, Shukor Abd; Ngadi, Md. Asri

    2012-01-01

    Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals. PMID:22666013

  18. Network efficient power control for wireless communication systems.

    PubMed

    Campos-Delgado, Daniel U; Luna-Rivera, Jose Martin; Martinez-Sánchez, C J; Gutierrez, Carlos A; Tecpanecatl-Xihuitl, J L

    2014-01-01

    We introduce a two-loop power control that allows an efficient use of the overall power resources for commercial wireless networks based on cross-layer optimization. This approach maximizes the network's utility in the outer-loop as a function of the averaged signal to interference-plus-noise ratio (SINR) by considering adaptively the changes in the network characteristics. For this purpose, the concavity property of the utility function was verified with respect to the SINR, and an iterative search was proposed with guaranteed convergence. In addition, the outer-loop is in charge of selecting the detector that minimizes the overall power consumption (transmission and detection). Next the inner-loop implements a feedback power control in order to achieve the optimal SINR in the transmissions despite channel variations and roundtrip delays. In our proposal, the utility maximization process and detector selection and feedback power control are decoupled problems, and as a result, these strategies are implemented at two different time scales in the two-loop framework. Simulation results show that substantial utility gains may be achieved by improving the power management in the wireless network.

  19. Network Efficient Power Control for Wireless Communication Systems

    PubMed Central

    Campos-Delgado, Daniel U.; Luna-Rivera, Jose Martin; Martinez-Sánchez, C. J.; Gutierrez, Carlos A.; Tecpanecatl-Xihuitl, J. L.

    2014-01-01

    We introduce a two-loop power control that allows an efficient use of the overall power resources for commercial wireless networks based on cross-layer optimization. This approach maximizes the network's utility in the outer-loop as a function of the averaged signal to interference-plus-noise ratio (SINR) by considering adaptively the changes in the network characteristics. For this purpose, the concavity property of the utility function was verified with respect to the SINR, and an iterative search was proposed with guaranteed convergence. In addition, the outer-loop is in charge of selecting the detector that minimizes the overall power consumption (transmission and detection). Next the inner-loop implements a feedback power control in order to achieve the optimal SINR in the transmissions despite channel variations and roundtrip delays. In our proposal, the utility maximization process and detector selection and feedback power control are decoupled problems, and as a result, these strategies are implemented at two different time scales in the two-loop framework. Simulation results show that substantial utility gains may be achieved by improving the power management in the wireless network. PMID:24683350

  20. Interoperable Communications for Hierarchical Heterogeneous Wireless Networks

    DTIC Science & Technology

    2016-04-01

    insights and tools for the design of practical cognitive radio networks. The remainder of this chapter is organized as follows. The system model for cogni...WARP platform designed by a team at Rice University [131], which is a high-end system with custom hardware, support packages, design tools and...8GHz. The modular design of Universal Software Radio Peripheral (USRP) allows ex- tension of the basic system using various daughter boards for RF

  1. Experience of wireless local area network in a radiation oncology department.

    PubMed

    Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan

    2010-01-01

    The aim of this work is to develop a wireless local area network (LAN) between different types of users (Radiation Oncologists, Radiological Physicists, Radiation Technologists, etc) for efficient patient data management and to made easy the availability of information (chair side) to improve the quality of patient care in Radiation Oncology department. We have used mobile workstations (Laptops) and stationary workstations, all equipped with wireless-fidelity (Wi-Fi) access. Wireless standard 802.11g (as recommended by Institute of Electrical and Electronic Engineers (IEEE, Piscataway, NJ) has been used. The wireless networking was configured with the Service Set Identifier (SSID), Media Access Control (MAC) address filtering, and Wired Equivalent Privacy (WEP) network securities. We are successfully using this wireless network in sharing the indigenously developed patient information management software. The proper selection of the hardware and the software combined with a secure wireless LAN setup will lead to a more efficient and productive radiation oncology department.

  2. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    PubMed Central

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396

  3. Wireless Sensor Network for Electric Transmission Line Monitoring

    SciTech Connect

    Alphenaar, Bruce

    2009-06-30

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform

  4. Research on trust calculation of wireless sensor networks based on time segmentation

    NASA Astrophysics Data System (ADS)

    Su, Yaoxin; Gao, Xiufeng; Qiao, Wenxin

    2017-05-01

    Because the wireless sensor network is different from the traditional network characteristics, it is easy to accept the intrusion from the compromise node. The trust mechanism is the most effective way to defend against internal attacks. Aiming at the shortcomings of the existing trust mechanism, a method of calculating the trust of wireless sensor networks based on time segmentation is proposed. It improves the security of the network and extends the life of the network

  5. Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.

    PubMed

    Prakash, R; Balaji Ganesh, A; Sivabalan, Somu

    2017-05-01

    The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.

  6. On Alarm Protocol in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Cichoń, Jacek; Kapelko, Rafał; Lemiesz, Jakub; Zawada, Marcin

    We consider the problem of efficient alarm protocol for ad-hoc radio networks consisting of devices that try to gain access for transmission through a shared radio communication channel. The problem arise in tasks that sensors have to quickly inform the target user about an alert situation such as presence of fire, dangerous radiation, seismic vibrations, and more. In this paper, we present a protocol which uses O(logn) time slots and show that Ω(logn/loglogn) is a lower bound for used time slots.

  7. Wireless Local Area Networks: Simulation and Analysis

    DTIC Science & Technology

    1998-06-01

    LOCAL AREA NETWORK: SIMULATION AND ANALYSIS 6. AUTHOR( S ) Ltjg Kyriakidis, Efstathios D. 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval... vector S is S = —ExB (3.18) Mo 20 Which by using the Equation 3.7 can be written S =c2*0 ExB (3.19) The magnitude of this vector is the power per...unit area crossing a surface whose normal is parallel to S . This vector is known as the Poynting vector (after JJHLPoynting). Now we consider the

  8. Dynamic Spectrum Management for Military Wireless Networks

    DTIC Science & Technology

    2010-09-01

    IEEE Communications Magazine , May 2004, vol. 42, No. 5, pp. 72-81. [4] I.F. Akyildiz, W.Y. Lee, M.C. Vuran and S. Mohanty, NeXt Generation / Dynamic...Mission-Critical Networks, IEEE Communications Magazine , October 2009, vol. 47, No. 10, pp. 64-71. [8] W. Heisey i in., Automated Spectrum Plan Advisor... Communications Magazine , January 2009, vol. 47, No. 1, pp. 130-138. [7] O. Younis, L. Kant, K. Chang, K. Young, C. Graff: Cognitive MANET Design for

  9. Performance Evolution of IEEE 802.11b Wireless Local Area Network

    NASA Astrophysics Data System (ADS)

    Malik, Deepak; Singhal, Ankur

    2011-12-01

    The Wireless network can be employed to connect wired network to the wireless network. Wireless local area networks (WLAN) are more bandwidth limited as compared to the wired networks because they rely on an inexpensive, but error prone, physical medium (air). Hence it is important to evaluate their performance. This paper presents a study of IEEE 802.11b wireless LAN (WLAN). The performance evaluation has been presented via a series of test with different parameters such as data rate, different number of nodes and physical characteristics. The different qualities of service parameter are chosen to be throughput, media access delay and dropped data packets. The simulation results show that an IEEE 802.11b WLAN can support up to 60 clients with modest throughput. Finally the results are compared to evaluate the performance of wireless local networks.

  10. EAP-Kerberos: A Low Latency EAP Authentication Method for Faster Handoffs in Wireless Access Networks

    NASA Astrophysics Data System (ADS)

    Zrelli, Saber; Okabe, Nobuo; Shinoda, Yoichi

    The wireless medium is a key technology for enabling ubiquitous and continuous network connectivity. It is becoming more and more important in our daily life especially with the increasing adoption of networking technologies in many fields such as medical care and transportation systems. Although most wireless technologies nowadays provide satisfying bandwidth and higher speeds, several of these technologies still lack improvements with regard to handoff performance. In this paper, we focus on wireless network technologies that rely on the Extensible Authentication Protocol for mutual authentication between the station and the access network. Such technologies include local area wireless networks (IEEE 802.11) as well as broadband wireless networks (IEEE 802.16). We present a new EAP authentication method based on a three party authentication scheme, namely Kerberos, that considerably shortens handoff delays. Compared to other methods, the proposed method has the advantage of not requiring any changes on the access points, making it readily deployable at reasonable costs.

  11. Analysis on Imai-Shin's LR-AKE Protocol for Wireless Network Security

    NASA Astrophysics Data System (ADS)

    Wang, Yingjie; Luo, Wei; Shen, Changxiang

    In 2005 Imai and Shin proposed a leakage-resilient authenticated key exchange protocol(LR-AKE) for wireless network security. For simplicity, the protocol is based on password authentication plus additional secrets to fit wireless environment (e.g., computation constraint). In this paper we show that Imai-Shin’s scheme is vulnerable to both client and server impersonation attacks and needs to be improved to provide strong security for wireless network.

  12. Future integrated broadband fiber, wireless, and satellite networks

    NASA Astrophysics Data System (ADS)

    Chan, Vincent W. S.

    2006-10-01

    With the increasing technical maturity in fiber, wireless and satellite communication technologies, new horizons are becoming feasible for future broadband networks, providing economical data rates well in excess of Gbps for stationary and mobile users as well as novel applications these advanced network services will permit. This talk explores the future architecture possibilities of such a network using new and radical technology building blocks such as: free space laser communications, multiple access multi-beam data satellite communications, novel all-optical network transport/switching and analog transmission and processing over optical carriers that support coherent distributed platform sensing and communications. We will articulate why we have to design this new network across layers from the Physical Layer to the Network and Transport Layers (even the Application Layer). Not only can future network performance and cost undergo quantum-leap improvements; such a network can have profound transforming effects on space and terrestrial system architectures for sensing, healthcare, early warning systems, disaster relief, research collaborations and other new commercial applications.

  13. Knapsack - TOPSIS Technique for Vertical Handover in Heterogeneous Wireless Network

    PubMed Central

    2015-01-01

    In a heterogeneous wireless network, handover techniques are designed to facilitate anywhere/anytime service continuity for mobile users. Consistent best-possible access to a network with widely varying network characteristics requires seamless mobility management techniques. Hence, the vertical handover process imposes important technical challenges. Handover decisions are triggered for continuous connectivity of mobile terminals. However, bad network selection and overload conditions in the chosen network can cause fallout in the form of handover failure. In order to maintain the required Quality of Service during the handover process, decision algorithms should incorporate intelligent techniques. In this paper, a new and efficient vertical handover mechanism is implemented using a dynamic programming method from the operation research discipline. This dynamic programming approach, which is integrated with the Technique to Order Preference by Similarity to Ideal Solution (TOPSIS) method, provides the mobile user with the best handover decisions. Moreover, in this proposed handover algorithm a deterministic approach which divides the network into zones is incorporated into the network server in order to derive an optimal solution. The study revealed that this method is found to achieve better performance and QoS support to users and greatly reduce the handover failures when compared to the traditional TOPSIS method. The decision arrived at the zone gateway using this operational research analytical method (known as the dynamic programming knapsack approach together with Technique to Order Preference by Similarity to Ideal Solution) yields remarkably better results in terms of the network performance measures such as throughput and delay. PMID:26237221

  14. Interoperability and security in wireless body area network infrastructures.

    PubMed

    Warren, Steve; Lebak, Jeffrey; Yao, Jianchu; Creekmore, Jonathan; Milenkovic, Aleksandar; Jovanov, Emil

    2005-01-01

    Wireless body area networks (WBANs) and their supporting information infrastructures offer unprecedented opportunities to monitor state of health without constraining the activities of a wearer. These mobile point-of-care systems are now realizable due to the convergence of technologies such as low-power wireless communication standards, plug-and-play device buses, off-the-shelf development kits for low-power microcontrollers, handheld computers, electronic medical records, and the Internet. To increase acceptance of personal monitoring technology while lowering equipment cost, advances must be made in interoperability (at both the system and device levels) and security. This paper presents an overview of WBAN infrastructure work in these areas currently underway in the Medical Component Design Laboratory at Kansas State University (KSU) and at the University of Alabama in Huntsville (UAH). KSU efforts include the development of wearable health status monitoring systems that utilize ISO/IEEE 11073, Bluetooth, Health Level 7, and OpenEMed. WBAN efforts at UAH include the development of wearable activity and health monitors that incorporate ZigBee-compliant wireless sensor platforms with hardware-level encryption and the TinyOS development environment. WBAN infrastructures are complex, requiring many functional support elements. To realize these infrastructures through collaborative efforts, organizations such as KSU and UAH must define and utilize standard interfaces, nomenclature, and security approaches.

  15. Schedule-based sequential localization in asynchronous wireless networks

    NASA Astrophysics Data System (ADS)

    Zachariah, Dave; De Angelis, Alessio; Dwivedi, Satyam; Händel, Peter

    2014-12-01

    In this paper, we consider the schedule-based network localization concept, which does not require synchronization among nodes and does not involve communication overhead. The concept makes use of a common transmission sequence, which enables each node to perform self-localization and to localize the entire network, based on noisy propagation-time measurements. We formulate the schedule-based localization problem as an estimation problem in a Bayesian framework. This provides robustness with respect to uncertainty in such system parameters as anchor locations and timing devices. Moreover, we derive a sequential approximate maximum a posteriori (AMAP) estimator. The estimator is fully decentralized and copes with varying noise levels. By studying the fundamental constraints given by the considered measurement model, we provide a system design methodology which enables a scalable solution. Finally, we evaluate the performance of the proposed AMAP estimator by numerical simulations emulating an impulse-radio ultra-wideband (IR-UWB) wireless network.

  16. Genetic algorithm application in optimization of wireless sensor networks.

    PubMed

    Norouzi, Ali; Zaim, A Halim

    2014-01-01

    There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs.

  17. Genetic Algorithm Application in Optimization of Wireless Sensor Networks

    PubMed Central

    Norouzi, Ali; Zaim, A. Halim

    2014-01-01

    There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235

  18. Potentials and Limitations of Wireless Sensor Networks for Environmental

    NASA Astrophysics Data System (ADS)

    Bumberger, J.; Remmler, P.; Hutschenreuther, T.; Toepfer, H.; Dietrich, P.

    2013-12-01

    Understanding and dealing with environmental challenges worldwide requires suitable interdisciplinary methods and a level of expertise to be able to implement these solutions, so that the lifestyles of future generations can be secured in the years to come. To characterize environmental systems it is necessary to identify and describe processes with suitable methods. Environmental systems are often characterized by their high heterogeneity, so individual measurements for their complete representation are often not sufficient. The application of wireless sensor networks in terrestrial and aquatic ecosystems offer significant benefits as a better consideration of the local test conditions becomes possible. This can be essential for the monitoring of heterogeneous environmental systems. Significant advantages in the application of wireless sensor networks are their self-organizing behaviour, resulting in a major reduction in installation and operation costs and time. In addition, a point measurement with a sensor is significantly improved by measuring at several points. It is also possible to perform analog and digital signal processing and computation on the basis of the measured data close to the sensor. Hence, a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of sensor nodes. Furthermore, their localization via satellite, the miniaturization of the nodes and long-term energy self-sufficiency are current topics under investigation. In this presentation, the possibilities and limitations of the applicability of wireless sensor networks for long-term environmental monitoring are presented. To underline the importance of this future technology, example concepts are given in the field of near-surface geothermics, groundwater observation, measurement of spatial radiation intensity and air humidity on soils, measurement of matter fluxes, greenhouse gas measurement, and landslide monitoring.

  19. Self-powered wireless sensor networks for telemedicine applications

    NASA Astrophysics Data System (ADS)

    Polk, Todd William

    Technology advances in wireless sensor networks have made it possible for these tiny systems to enter the realm of ubiquitous or pervasive computing which has been forecast for several years. These nodes, or motes as they are known, typically run off of battery power and when used sparingly can operate in excess of one year. When requirements necessitate higher usage, battery monitoring and replacement becomes a major issue. Large systems can quickly become cost prohibitive. To combat this issue, researchers have looked to energy harvesting to power these motes. However, this research has mainly centered on outdoor solar harvesting to take advantage of higher energy levels provided by the sun. Indoor harvesting has been presented in the past as not feasible. In this dissertation, we present a system that utilizes energy harvested from overhead fluorescent lights to power the infrastructure (routing) nodes of an indoor telemedicine based wireless network. The limitations of indoor harvesting are exploited and leveraged through creative hardware design. A unique message routing protocol has been developed to control these routing nodes and allow continual operation. Standard medical devices have been interfaced to the system to allow wireless transmission of patient data to a central collection point where the data is organized, stored and presented to the user via a graphical user interface (GUI). The range of the system has been extended by interfacing a cellular modem to the system to allow two-way communication between the GUI and a remote healthcare provider. Extensive physical testing has been done to determine the robustness of the system, and the boundary conditions for extremely large networks were tested via simulation.

  20. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks.

    PubMed

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-06-29

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.

  1. GPS-Free Localization Algorithm for Wireless Sensor Networks

    PubMed Central

    Wang, Lei; Xu, Qingzheng

    2010-01-01

    Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time. PMID:22219694

  2. Wireless sensor network applications and impacts in MOUT

    NASA Astrophysics Data System (ADS)

    Davis, Jesse; Berry, Nina

    2004-09-01

    In case studies of recent MOUT failures, one of the most widely given reports from soldiers in the field was that MOUT environments are extremely confusing and complex. This confusion manifests itself by creating soldier-level difficulties in determining appropriate and operationally consistent responses to various fast paced and close range changes in the mission environment. Lack of commander-level situational awareness and robust commander-to-soldier communications cripple mission effectiveness. Furthermore, current military technologies are mostly unsuitable for urban terrain since they are generally intended for long range and coarse-grained operations which are uncommon in MOUT. The emerging technology of wireless sensor networks has potential to solve many current MOUT issues, and will be a vital part of the network-centric warfare discussed in relation to the Future Combat System (FCS). This paper will discuss technological enhancements and impacts to MOUT based on wireless sensor networks with specific emphasis on low-cost and disposable sensor system opportunities.

  3. Resilient Wireless Sensor Networks Using Topology Control: A Review.

    PubMed

    Huang, Yuanjiang; Martínez, José-Fernán; Sendra, Juana; López, Lourdes

    2015-09-25

    Wireless sensor networks (WSNs) may be deployed in failure-prone environments, and WSNs nodes easily fail due to unreliable wireless connections, malicious attacks and resource-constrained features. Nevertheless, if WSNs can tolerate at most losing k - 1 nodes while the rest of nodes remain connected, the network is called k - connected. k is one of the most important indicators for WSNs' self-healing capability. Following a WSN design flow, this paper surveys resilience issues from the topology control and multi-path routing point of view. This paper provides a discussion on transmission and failure models, which have an important impact on research results. Afterwards, this paper reviews theoretical results and representative topology control approaches to guarantee WSNs to be k - connected at three different network deployment stages: pre-deployment, post-deployment and re-deployment. Multi-path routing protocols are discussed, and many NP-complete or NP-hard problems regarding topology control are identified. The challenging open issues are discussed at the end. This paper can serve as a guideline to design resilient WSNs.

  4. Development of a photovoltaic power supply for wireless sensor networks.

    SciTech Connect

    Harvey, Matthew R.; Kyker, Ronald D.

    2005-06-01

    This report examines the design process of a photovoltaic (solar) based power supply for wireless sensor networks. Such a system stores the energy produced by an array of photovoltaic cells in a secondary (rechargeable) battery that in turn provides power to the individual node of the sensor network. The goal of such a power supply is to enable a wireless sensor network to have an autonomous operation on the order of years. Ideally, such a system is as small as possible physically while transferring the maximum amount of available solar energy to the load (the node). Within this report, there is first an overview of current solar and battery technologies, including characteristics of different technologies and their impact on overall system design. Second is a general discussion of modeling, predicting, and analyzing the extended operation of a small photovoltaic power supply and setting design parameters. This is followed by results and conclusions from the testing of a few basic systems. Lastly, some advanced concepts that may be considered in order to optimize future systems will be discussed.

  5. Resilient Wireless Sensor Networks Using Topology Control: A Review

    PubMed Central

    Huang, Yuanjiang; Martínez, José-Fernán; Sendra, Juana; López, Lourdes

    2015-01-01

    Wireless sensor networks (WSNs) may be deployed in failure-prone environments, and WSNs nodes easily fail due to unreliable wireless connections, malicious attacks and resource-constrained features. Nevertheless, if WSNs can tolerate at most losing k − 1 nodes while the rest of nodes remain connected, the network is called k − connected. k is one of the most important indicators for WSNs’ self-healing capability. Following a WSN design flow, this paper surveys resilience issues from the topology control and multi-path routing point of view. This paper provides a discussion on transmission and failure models, which have an important impact on research results. Afterwards, this paper reviews theoretical results and representative topology control approaches to guarantee WSNs to be k − connected at three different network deployment stages: pre-deployment, post-deployment and re-deployment. Multi-path routing protocols are discussed, and many NP-complete or NP-hard problems regarding topology control are identified. The challenging open issues are discussed at the end. This paper can serve as a guideline to design resilient WSNs. PMID:26404272

  6. A Secure and Efficient Handover Authentication Protocol for Wireless Networks

    PubMed Central

    Wang, Weijia; Hu, Lei

    2014-01-01

    Handover authentication protocol is a promising access control technology in the fields of WLANs and mobile wireless sensor networks. In this paper, we firstly review an efficient handover authentication protocol, named PairHand, and its existing security attacks and improvements. Then, we present an improved key recovery attack by using the linearly combining method and reanalyze its feasibility on the improved PairHand protocol. Finally, we present a new handover authentication protocol, which not only achieves the same desirable efficiency features of PairHand, but enjoys the provable security in the random oracle model. PMID:24971471

  7. Wireless Sensor Networks: Some Insights Gained in West African Hydrology

    NASA Astrophysics Data System (ADS)

    Parlange, M. B.; Mande, T.; Ceperley, N. C.; Katul, G. G.; Van De Giesen, N.; Tyler, S. W.

    2015-12-01

    We present recent observations gained through a robust wireless sensor network deployed in Burkina Faso in the southeastern Savanna over a five year period. The impact of land surface and cover change due to agricultural expansion are discussed relative to precipitation patterns. It is shown that the impact on forest and land clearing results in reduced surface heat fluxes and reduction in convective rainfall. In addition, the pattern of ground water recharge is controlled by water viscosity changes due to diurnal heating in ephemeral streams and the sensors allowed further exploration of the shallow ground water system.

  8. OSI Layer Wise Security Analysis of Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Saha, Shilpi; Bhattacharyya, Debnath; Kim, Tai-Hoon

    The security in wireless sensor networks (WSNs) is a critical issue due to the inherent limitations of computational capacity and power usage. While a variety of security techniques are being developed and a lot of research is going on in security field at a brisk pace but the fields lacks a common integrated platform which provides a comprehensive comparison of the seemingly unconnected but linked issues. In this paper, we have tried to analyze some attacks and their possible countermeasures in OSI layered manner.

  9. Probabilistic QoS Analysis In Wireless Sensor Networks

    DTIC Science & Technology

    2012-04-01

    soft drink with me and for teaching me playing bridge. I would also thank Mr. Xin Dong for cooking three-flavored chicken for our dinner. Without...value from 6 s to 9 s. The optimal results found by the developed optimization framework are shown as a black star in Figure 6.8(a) - 6.8(c). It...heterogeneous wireless sensor networks. In Proc. of IEEE GLOBECOM 2002, Taipei, Taiwan , Nov 2002. [27] E.J. Duarte-Melo, M. Liu, and A. Misra. A modeling

  10. Extensible and Precise Modeling for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Akbal-Delibas, Bahar; Boonma, Pruet; Suzuki, Junichi

    Developing applications for wireless sensor networks (WSN) is a complicated process because of the wide variety of WSN applications and low-level implementation details. Model-Driven Engineering offers an effective solution to WSN application developers by hiding the details of lower layers and raising the level of abstraction. However, balancing between abstraction level and unambiguity is challenging issue. This paper presents Baobab, a metamodeling framework for designing WSN applications and generating the corresponding code, to overcome the conflict between abstraction and reusability versus unambiguity. Baobab allows users to define functional and non-functional aspects of a system separately as software models, validate them and generate code automatically.

  11. Channel allocation and load balancing in totally mobile wireless networks

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Bassiouni, Mostafa A.

    2000-07-01

    Previous studies on totally mobile wireless networks (TMWN) have been limited to non-hierarchical architectures. In this paper, we study a two-tier cellular architecture for TMWN. Under the constraints of equal power consumption, the two tier system achieves improvement over the one-tier system, especially at light and medium load levels. Performance tests have also shown that handoff prioritization can be achieved by restricting the use of the umbrella channels. Further improvement for the two-tier system was obtained by load balancing strategies with respect to the allocation of channels to the different cells.

  12. WiFiSiM: An Educational Tool for the Study and Design of Wireless Networks

    ERIC Educational Resources Information Center

    Mateo Sanguino, T. J.; Serrano Lopez, C.; Marquez Hernandez, F. A.

    2013-01-01

    A new educational simulation tool designed for the generic study of wireless networks, the Wireless Fidelity Simulator (WiFiSim), is presented in this paper. The goal of this work was to create and implement a didactic tool to improve the teaching and learning of computer networks by means of two complementary strategies: simulating the behavior…

  13. WiFiSiM: An Educational Tool for the Study and Design of Wireless Networks

    ERIC Educational Resources Information Center

    Mateo Sanguino, T. J.; Serrano Lopez, C.; Marquez Hernandez, F. A.

    2013-01-01

    A new educational simulation tool designed for the generic study of wireless networks, the Wireless Fidelity Simulator (WiFiSim), is presented in this paper. The goal of this work was to create and implement a didactic tool to improve the teaching and learning of computer networks by means of two complementary strategies: simulating the behavior…

  14. A Network Selection Algorithm Considering Power Consumption in Hybrid Wireless Networks

    NASA Astrophysics Data System (ADS)

    Joe, Inwhee; Kim, Won-Tae; Hong, Seokjoon

    In this paper, we propose a novel network selection algorithm considering power consumption in hybrid wireless networks for vertical handover. CDMA, WiBro, WLAN networks are candidate networks for this selection algorithm. This algorithm is composed of the power consumption prediction algorithm and the final network selection algorithm. The power consumption prediction algorithm estimates the expected lifetime of the mobile station based on the current battery level, traffic class and power consumption for each network interface card of the mobile station. If the expected lifetime of the mobile station in a certain network is not long enough compared the handover delay, this particular network will be removed from the candidate network list, thereby preventing unnecessary handovers in the preprocessing procedure. On the other hand, the final network selection algorithm consists of AHP (Analytic Hierarchical Process) and GRA (Grey Relational Analysis). The global factors of the network selection structure are QoS, cost and lifetime. If user preference is lifetime, our selection algorithm selects the network that offers longest service duration due to low power consumption. Also, we conduct some simulations using the OPNET simulation tool. The simulation results show that the proposed algorithm provides longer lifetime in the hybrid wireless network environment.

  15. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    PubMed

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  16. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    PubMed Central

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  17. Artillery localization using networked wireless ground sensors

    NASA Astrophysics Data System (ADS)

    Swanson, David C.

    2002-08-01

    This paper presents the results of an installation of four acoustic/seismic ground sensors built using COTS computers and networking gear and operating on a continuous basis at Yuma Proving Grounds, Arizona. A description of the design can be found as well, which is essentially a Windows 2000 PC with 24-bit data acquisition, GPS timing, and environmental sensors for wind and temperature. A 4-element square acoustic array 1.8m on a side can be used to detect the time and angle of arrival of the muzzle blast and the impact explosion. A 3-component geophone allows the seismic wave direction to be estimated. The 8th channel of the 24-bit data acquisition system has a 1-pulse-per-second time signal from the GPS. This allows acoustic/seismic 'snapshots' to be coherently related from multiple disconnected ground sensor nodes. COTS 2.4 GHz frequency hopping radios (802.11 standard) are used with either omni or yagi antennas depending on the location on the range. Localization of the artillery or impact can be done by using the time and angle of arrival of the waves at 2 or more ground sensor locations. However, this straightforward analysis can be significantly complicated by weather and wind noise and is also the subject of another research contract. This work will present a general description of the COTS ground sensor installation, show example data autonomously collected including agent-based atmospheric data, and share some of the lessons learned from operating a Windows 2000 based system continuously outdoors.

  18. Contemporary, emerging, and ratified wireless security standards: an update for the networked dental office.

    PubMed

    Mupparapu, Muralidhar

    2006-02-15

    Wireless networking is not new to contemporary dental offices around the country. Wireless routers and network cards have made access to patient records within the office handy and, thereby, saving valuable chair side time and increasing productivity. As is the case with any rapidly developing technology, wireless technology also changes with the same rate. Unless, the users of the wireless networking understand the implications of these changes and keep themselves updated periodically, the office network will become obsolete very quickly. This update of the emerging security protocols and pertaining to ratified wireless 802.11 standards will be timely for the contemporary dentist whose office is wirelessly networked. This article brings the practicing dentist up-to-date on the newer versions and standards in wireless networking that are changing at a fast pace. The introduction of newer 802.11 standards like super G, Super AG, Multiple Input Multiple Output (MIMO), and pre-n are changing the pace of adaptation of this technology. Like any other rapidly transforming technology, information pertaining to wireless networking should be a priority for the contemporary dentist, an eventual end-user in order to be a well-informed and techno-savvy consumer.

  19. Integrating wireless sensor network for monitoring subsidence phenomena

    NASA Astrophysics Data System (ADS)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing

  20. Providing Source-Location Privacy in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Li, Yun; Ren, Jian

    Wireless sensor networks (WSN) have been widely used in many areas for unattended event monitoring. Mainly due to lack of a protected physical boundary, wireless communications are vulnerable to unauthorized detection, interception and and even node capture. Privacy is becoming one of the major issues that jeopardize the successful deployment and survivability of wireless sensor networks. While confidentiality of the message can be ensured through content encryption, it is much more difficult to adequately address the source-location privacy. For WSN, source-location privacy service is further complicated by the fact that the sensor nodes consist of low-cost and low-power radio devices, computationally intensive cryptographic algorithms (such as public-key cryptosystems) and large scale broadcasting-based protocols are not suitable for WSN. In this paper, we propose a two-step routing strategy for the messages to be routed from the actual source node to the SINK node through either a single, or multiple, randomly selected intermediate node(s) away from the source node so that it is to make it infeasible for the adversaries to trace back to the source node through hop-by-hop routing analysis. In the first protocol, the messages will be routed to a single intermediate node. This scheme can provide very good local source-location privacy. We also propose routing through multiple randomly selected intermediate nodes based on angle and quadrant to further improve the performance and security. While providing source-location privacy for WSN, our simulation results demonstrate that the proposed schemes are very efficient in energy consumption, and transmission latency. The proposed schemes can also assurance high message delivery ratio. Therefore, they can be used for many practical applications.

  1. Protru: Leveraging Provenance to Enhance Network Trust in a Wireless Sensor Network

    ERIC Educational Resources Information Center

    Dogan, Gulustan

    2013-01-01

    Trust can be an important component of wireless sensor networks for believability of the produced data and historical value is a crucial asset in deciding trust of the data. A node's trust can change over time after its initial deployment due to various reasons such as energy loss, environmental conditions or exhausting sources. Provenance can…

  2. Protru: Leveraging Provenance to Enhance Network Trust in a Wireless Sensor Network

    ERIC Educational Resources Information Center

    Dogan, Gulustan

    2013-01-01

    Trust can be an important component of wireless sensor networks for believability of the produced data and historical value is a crucial asset in deciding trust of the data. A node's trust can change over time after its initial deployment due to various reasons such as energy loss, environmental conditions or exhausting sources. Provenance can…

  3. Autonomous and Decentralized Optimization of Large-Scale Heterogeneous Wireless Networks by Neural Network Dynamics

    NASA Astrophysics Data System (ADS)

    Hasegawa, Mikio; Tran, Ha Nguyen; Miyamoto, Goh; Murata, Yoshitoshi; Harada, Hiroshi; Kato, Shuzo

    We propose a neurodynamical approach to a large-scale optimization problem in Cognitive Wireless Clouds, in which a huge number of mobile terminals with multiple different air interfaces autonomously utilize the most appropriate infrastructure wireless networks, by sensing available wireless networks, selecting the most appropriate one, and reconfiguring themselves with seamless handover to the target networks. To deal with such a cognitive radio network, game theory has been applied in order to analyze the stability of the dynamical systems consisting of the mobile terminals' distributed behaviors, but it is not a tool for globally optimizing the state of the network. As a natural optimization dynamical system model suitable for large-scale complex systems, we introduce the neural network dynamics which converges to an optimal state since its property is to continually decrease its energy function. In this paper, we apply such neurodynamics to the optimization problem of radio access technology selection. We compose a neural network that solves the problem, and we show that it is possible to improve total average throughput simply by using distributed and autonomous neuron updates on the terminal side.

  4. Open Hardware: A Role to Play in Wireless Sensor Networks?

    PubMed Central

    Fisher, Roy; Ledwaba, Lehlogonolo; Hancke, Gerhard; Kruger, Carel

    2015-01-01

    The concept of the Internet of Things is rapidly becoming a reality, with many applications being deployed within industrial and consumer sectors. At the ‘thing’ level—devices and inter-device network communication—the core technical building blocks are generally the same as those found in wireless sensor network implementations. For the Internet of Things to continue growing, we need more plentiful resources for building intelligent devices and sensor networks. Unfortunately, current commercial devices, e.g., sensor nodes and network gateways, tend to be expensive and proprietary, which presents a barrier to entry and arguably slows down further development. There are, however, an increasing number of open embedded platforms available and also a wide selection of off-the-shelf components that can quickly and easily be built into device and network gateway solutions. The question is whether these solutions measure up to built-for-purpose devices. In the paper, we provide a comparison of existing built-for-purpose devices against open source devices. For comparison, we have also designed and rapidly prototyped a sensor node based on off-the-shelf components. We show that these devices compare favorably to built-for-purpose devices in terms of performance, power and cost. Using open platforms and off-the-shelf components would allow more developers to build intelligent devices and sensor networks, which could result in a better overall development ecosystem, lower barriers to entry and rapid growth in the number of IoT applications. PMID:25803706

  5. Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks

    PubMed Central

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-01-01

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate. PMID:25658394

  6. Chain-based communication in cylindrical underwater wireless sensor networks.

    PubMed

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-02-04

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.

  7. Open hardware: a role to play in wireless sensor networks?

    PubMed

    Fisher, Roy; Ledwaba, Lehlogonolo; Hancke, Gerhard; Kruger, Carel

    2015-03-20

    The concept of the Internet of Things is rapidly becoming a reality, with many applications being deployed within industrial and consumer sectors. At the 'thing' level-devices and inter-device network communication-the core technical building blocks are generally the same as those found in wireless sensor network implementations. For the Internet of Things to continue growing, we need more plentiful resources for building intelligent devices and sensor networks. Unfortunately, current commercial devices, e.g., sensor nodes and network gateways, tend to be expensive and proprietary, which presents a barrier to entry and arguably slows down further development. There are, however, an increasing number of open embedded platforms available and also a wide selection of off-the-shelf components that can quickly and easily be built into device and network gateway solutions. The question is whether these solutions measure up to built-for-purpose devices. In the paper, we provide a comparison of existing built-for-purpose devices against open source devices. For comparison, we have also designed and rapidly prototyped a sensor node based on off-the-shelf components. We show that these devices compare favorably to built-for-purpose devices in terms of performance, power and cost. Using open platforms and off-the-shelf components would allow more developers to build intelligent devices and sensor networks, which could result in a better overall development ecosystem, lower barriers to entry and rapid growth in the number of IoT applications.

  8. Directional MAC Approach for Wireless Body Area Networks

    PubMed Central

    Hussain, Md. Asdaque; Alam, Md. Nasre; Kwak, Kyung Sup

    2011-01-01

    Wireless Body Area Networks (WBANs) designed for medical, sports, and entertainment applications, have drawn the attention of academia and industry alike. A WBAN is a special purpose network, designed to operate autonomously to connect various medical sensors and appliances, located inside and/or outside of a human body. This network enables physicians to remotely monitor vital signs of patients and provide real time feedback for medical diagnosis and consultations. The WBAN system can offer two significant advantages: patient mobility due to their use of portable monitoring devices and a location independent monitoring facility. With its appealing dimensions, it brings about a new set of challenges, which we do not normally consider in such small sensor networks. It requires a scalable network in terms of heterogeneous data traffic, low power consumption of sensor nodes, integration in and around the body networking and coexistence. This work presents a medium access control protocol for WBAN which tries to overcome the aforementioned challenges. We consider the use of multiple beam adaptive arrays (MBAA) at BAN Coordinator (BAN_C) node. When used as a BAN_C, an MBAA can successfully receive two or more overlapping packets at the same time. Each beam captures a different packet by automatically pointing its pattern toward one packet while annulling other contending packets. This paper describes how an MBAA can be integrated into a single hope star topology as a BAN_C. Simulation results show the performance of our proposed protocol. PMID:22346602

  9. Defense and security of a wireless tactical network

    NASA Astrophysics Data System (ADS)

    Younger, Michael; Young, Stuart H.

    2001-08-01

    Recall the adage `a chain is as strong as its weakest link'- -a phrase that could serve as the official mantra of computer security. Operating Systems are difficult system to administer because it is not only complex and cantankerous but also hard to secure. They are enormous configurability, the fact that vendors don't ship secure systems, and that it requires significant amounts of time, resources, and expertise to safeguard a host are only some of the reasons that so many systems are insecure any type of network commercial or tactical. To compound the problem, like all modern operating systems it not only becomes less secure as time goes on (simply due to usage), but with the rapidly changing security field, it also requires considerably effort to stay abreast of the latest information. Army Research Labs is trying to address the security of the operating system in a tactical wireless environment. Through the use of public domain and/or commercial mans. ARL is evaluating monitoring, deployment, and auditing techniques to the wire commercial domain. By evaluating the wire domain ARL will determine what works and how they work in the tactical area. There are numerous ways to protect the wire/wireless network via public domain or commercial software.

  10. A Passive Testing Approach for Protocols in Wireless Sensor Networks.

    PubMed

    Che, Xiaoping; Maag, Stephane; Tan, Hwee-Xian; Tan, Hwee-Pink; Zhou, Zhangbing

    2015-11-19

    Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN). However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results.

  11. Interference-Robust Transmission in Wireless Sensor Networks.

    PubMed

    Han, Jin-Seok; Lee, Yong-Hwan

    2016-11-14

    Low-power wireless sensor networks (WSNs) operating in unlicensed spectrum bands may seriously suffer from interference from other coexisting radio systems, such as IEEE 802.11 wireless local area networks. In this paper, we consider the improvement of the transmission performance of low-power WSNs by adjusting the transmission rate and the payload size in response to the change of co-channel interference. We estimate the probability of transmission failure and the data throughput and then determine the payload size to maximize the throughput performance. We investigate that the transmission time maximizing the normalized throughput is not much affected by the transmission rate, but rather by the interference condition. We adjust the transmission rate and the transmission time in response to the change of the channel and interference condition, respectively. Finally, we verify the performance of the proposed scheme by computer simulation. The simulation results show that the proposed scheme significantly improves data throughput compared with conventional schemes while preserving energy efficiency even in the presence of interference.

  12. Data-Centric Routing for Intra Wireless Body Sensor Networks.

    PubMed

    Bangash, Javed Iqbal; Khan, Abdul Waheed; Abdullah, Abdul Hanan

    2015-09-01

    A significant proportion of the worldwide population is of the elderly people living with chronic diseases that result in high health-care cost. To provide continuous health monitoring with minimal health-care cost, Wireless Body Sensor Networks (WBSNs) has been recently emerged as a promising technology. Depending on nature of sensory data, WBSNs might require a high level of Quality of Service (QoS) both in terms of delay and reliability during data reporting phase. In this paper, we propose a data-centric routing for intra WBSNs that adapts the routing strategy in accordance with the nature of data, temperature rise issue of the implanted bio-medical sensors due to electromagnetic wave absorption, and high and dynamic path loss caused by postural movement of human body and in-body wireless communication. We consider the network models both with and without relay nodes in our simulations. Due to the multi-facet routing strategy, the proposed data-centric routing achieves better performance in terms of delay, reliability, temperature rise, and energy consumption when compared with other state-of-the-art.

  13. A Passive Testing Approach for Protocols in Wireless Sensor Networks

    PubMed Central

    Che, Xiaoping; Maag, Stephane; Tan, Hwee-Xian; Tan, Hwee-Pink; Zhou, Zhangbing

    2015-01-01

    Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN). However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results. PMID:26610495

  14. Calibration and data validation of wireless sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Jialin; Liu, Qiang; Li, Xiuhong; Niu, Hailin; Cai, Erli; Chang, Chongyan

    2015-12-01

    Soil moisture is an important parameter in the study of agriculture, ecology and carbon cycle. However, it has great difficulties to retrieve soil moisture content using remote sensing techniques. Even, field measurements can hardly reflect the spatial variation of soil moisture, due to the tremendous heterogeneity in its spatial distribution. Wireless Sensor Network (WSN), as a new technology for ground data collection, has been gradually applied to various fields. This novel technique has great advantages in monitoring soil moisture content, obtaining the soil moisture data in real time from multiple sites and different depths. Taking Huailai remote sensing comprehensive experimental station of Chinese Academy of Sciences for example, this paper introduces the calibration and data validation of soil moisture wireless sensor network. Oven drying method is used to calibrate the soil moisture sensor EC-5. The analysis indicates that the data measured by EC-5 had fairly well accuracy, so that the further calibration is not necessary. Data validation experiments had been taken from three aspects: data validity verification, temporal and spatial validation. It is clear to see that WSN data reveals the changes of soil moisture both in spatial domain and in different depths. Although the soil moisture data measured by WSN still do not have enough absolute accuracy, its continuous real-time data can clearly reflect the temporal and spatial relative variation, and the wide installation of sensors enables the data be obtained by the large amount, which was practically unavailable before.

  15. SCA security verification on wireless sensor network node

    NASA Astrophysics Data System (ADS)

    He, Wei; Pizarro, Carlos; de la Torre, Eduardo; Portilla, Jorge; Riesgo, Teresa

    2011-05-01

    Side Channel Attack (SCA) differs from traditional mathematic attacks. It gets around of the exhaustive mathematic calculation and precisely pin to certain points in the cryptographic algorithm to reveal confidential information from the running crypto-devices. Since the introduction of SCA by Paul Kocher et al [1], it has been considered to be one of the most critical threats to the resource restricted but security demanding applications, such as wireless sensor networks. In this paper, we focus our work on the SCA-concerned security verification on WSN (wireless sensor network). A detailed setup of the platform and an analysis of the results of DPA (power attack) and EMA (electromagnetic attack) is presented. The setup follows the way of low-cost setup to make effective SCAs. Meanwhile, surveying the weaknesses of WSNs in resisting SCA attacks, especially for the EM attack. Finally, SCA-Prevention suggestions based on Differential Security Strategy for the FPGA hardware implementation in WSN will be given, helping to get an improved compromise between security and cost.

  16. Interference-Robust Transmission in Wireless Sensor Networks

    PubMed Central

    Han, Jin-Seok; Lee, Yong-Hwan

    2016-01-01

    Low-power wireless sensor networks (WSNs) operating in unlicensed spectrum bands may seriously suffer from interference from other coexisting radio systems, such as IEEE 802.11 wireless local area networks. In this paper, we consider the improvement of the transmission performance of low-power WSNs by adjusting the transmission rate and the payload size in response to the change of co-channel interference. We estimate the probability of transmission failure and the data throughput and then determine the payload size to maximize the throughput performance. We investigate that the transmission time maximizing the normalized throughput is not much affected by the transmission rate, but rather by the interference condition. We adjust the transmission rate and the transmission time in response to the change of the channel and interference condition, respectively. Finally, we verify the performance of the proposed scheme by computer simulation. The simulation results show that the proposed scheme significantly improves data throughput compared with conventional schemes while preserving energy efficiency even in the presence of interference. PMID:27854249

  17. RUASN: A Robust User Authentication Framework for Wireless Sensor Networks

    PubMed Central

    Kumar, Pardeep; Choudhury, Amlan Jyoti; Sain, Mangal; Lee, Sang-Gon; Lee, Hoon-Jae

    2011-01-01

    In recent years, wireless sensor networks (WSNs) have been considered as a potential solution for real-time monitoring applications and these WSNs have potential practical impact on next generation technology too. However, WSNs could become a threat if suitable security is not considered before the deployment and if there are any loopholes in their security, which might open the door for an attacker and hence, endanger the application. User authentication is one of the most important security services to protect WSN data access from unauthorized users; it should provide both mutual authentication and session key establishment services. This paper proposes a robust user authentication framework for wireless sensor networks, based on a two-factor (password and smart card) concept. This scheme facilitates many services to the users such as user anonymity, mutual authentication, secure session key establishment and it allows users to choose/update their password regularly, whenever needed. Furthermore, we have provided the formal verification using Rubin logic and compare RUASN with many existing schemes. As a result, we found that the proposed scheme possesses many advantages against popular attacks, and achieves better efficiency at low computation cost. PMID:22163888

  18. Low-power hybrid wireless network for monitoring infant incubators.

    PubMed

    Shin, D I; Shin, K H; Kim, I K; Park, K S; Lee, T S; Kim, S I; Lim, K S; Huh, S J

    2005-10-01

    We have created a pilot wireless network for the convenient monitoring of temperature and humidity of infant incubators. This system combines infrared and radio frequency (RF) communication in order to minimize the power consumption of slave devices, and we therefore call it a hybrid wireless network. The slave module installed in the infant incubator receives the calling signal from the host with an infrared receiver, and sends temperature and humidity data to the host with an RF transmitter. The power consumption of the host system is not critical, and hence it uses the maximum power of infrared transmission and continuously operating RF receiver. In our test implementation, we included four slave devices. The PC calls each slave device every second and then waits for 6 s, resulting in a total scan period of 10 s. Slave devices receive the calling signals and transmit three data values (temperature, moisture, and skin temperature); their power demand is 1 mW, and can run for about 1000 h on four AA-size nickel-hydride batteries.

  19. From biological and social network metaphors to coupled bio-social wireless networks

    PubMed Central

    Barrett, Christopher L.; Eubank, Stephen; Anil Kumar, V.S.; Marathe, Madhav V.

    2010-01-01

    Biological and social analogies have been long applied to complex systems. Inspiration has been drawn from biological solutions to solve problems in engineering products and systems, ranging from Velcro to camouflage to robotics to adaptive and learning computing methods. In this paper, we present an overview of recent advances in understanding biological systems as networks and use this understanding to design and analyse wireless communication networks. We expand on two applications, namely cognitive sensing and control and wireless epidemiology. We discuss how our work in these two applications is motivated by biological metaphors. We believe that recent advances in computing and communications coupled with advances in health and social sciences raise the possibility of studying coupled bio-social communication networks. We argue that we can better utilise the advances in our understanding of one class of networks to better our understanding of the other. PMID:21643462

  20. From biological and social network metaphors to coupled bio-social wireless networks.

    PubMed

    Barrett, Christopher L; Channakeshava, Karthik; Eubank, Stephen; Anil Kumar, V S; Marathe, Madhav V

    2011-01-01

    Biological and social analogies have been long applied to complex systems. Inspiration has been drawn from biological solutions to solve problems in engineering products and systems, ranging from Velcro to camouflage to robotics to adaptive and learning computing methods. In this paper, we present an overview of recent advances in understanding biological systems as networks and use this understanding to design and analyse wireless communication networks. We expand on two applications, namely cognitive sensing and control and wireless epidemiology. We discuss how our work in these two applications is motivated by biological metaphors. We believe that recent advances in computing and communications coupled with advances in health and social sciences raise the possibility of studying coupled bio-social communication networks. We argue that we can better utilise the advances in our understanding of one class of networks to better our understanding of the other.

  1. Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm.

    PubMed

    Ozturk, Celal; Karaboga, Dervis; Gorkemli, Beyza

    2011-01-01

    As the usage and development of wireless sensor networks are increasing, the problems related to these networks are being realized. Dynamic deployment is one of the main topics that directly affect the performance of the wireless sensor networks. In this paper, the artificial bee colony algorithm is applied to the dynamic deployment of stationary and mobile sensor networks to achieve better performance by trying to increase the coverage area of the network. A probabilistic detection model is considered to obtain more realistic results while computing the effectively covered area. Performance of the algorithm is compared with that of the particle swarm optimization algorithm, which is also a swarm based optimization technique and formerly used in wireless sensor network deployment. Results show artificial bee colony algorithm can be preferable in the dynamic deployment of wireless sensor networks.

  2. Developing a robust wireless sensor network structure for environmental sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    The American River Hydrologic Observatory is being strategically deployed as a real-time ground-based measurement network that delivers accurate and timely information on snow conditions and other hydrologic attributes with a previously unheard of granularity of time and space. The basin-scale network involves 18 sub-networks set out at physiographically representative locations spanning the seasonally snow-covered half of the 5000 km2 American river basin. Each sub-network, covering about a 1-km2 area, consists of 10 wirelessly networked sensing nodes that continuously measure and telemeter temperature, and snow depth; plus selected locations are equipped with sensors for relative humidity, solar radiation, and soil moisture at several depths. The sensor locations were chosen to maximize the variance sampled for snow depth within the basin. Network design and deployment involves an iterative but efficient process. After sensor-station locations are determined, a robust network of interlinking sensor stations and signal repeaters must be constructed to route sensor data to a central base station with a two-way communicable data uplink. Data can then be uploaded from site to remote servers in real time through satellite and cell modems. Signal repeaters are placed for robustness of a self-healing network with redundant signal paths to the base station. Manual, trial-and-error heuristic approaches for node placement are inefficient and labor intensive. In that approach field personnel must restructure the network in real time and wait for new network statistics to be calculated at the base station before finalizing a placement, acting without knowledge of the global topography or overall network structure. We show how digital elevation plus high-definition aerial photographs to give foliage coverage can optimize planning of signal repeater placements and guarantee a robust network structure prior to the physical deployment. We can also 'stress test' the final network

  3. Finding Minimum-Power Broadcast Trees for Wireless Networks

    NASA Technical Reports Server (NTRS)

    Arabshahi, Payman; Gray, Andrew; Das, Arindam; El-Sharkawi, Mohamed; Marks, Robert, II

    2004-01-01

    Some algorithms have been devised for use in a method of constructing tree graphs that represent connections among the nodes of a wireless communication network. These algorithms provide for determining the viability of any given candidate connection tree and for generating an initial set of viable trees that can be used in any of a variety of search algorithms (e.g., a genetic algorithm) to find a tree that enables the network to broadcast from a source node to all other nodes while consuming the minimum amount of total power. The method yields solutions better than those of a prior algorithm known as the broadcast incremental power algorithm, albeit at a slightly greater computational cost.

  4. Metadata behind the Interoperability of Wireless Sensor Networks.

    PubMed

    Ballari, Daniela; Wachowicz, Monica; Callejo, Miguel Angel Manso

    2009-01-01

    Wireless Sensor Networks (WSNs) produce changes of status that are frequent, dynamic and unpredictable, and cannot be represented using a linear cause-effect approach. Consequently, a new approach is needed to handle these changes in order to support dynamic interoperability. Our approach is to introduce the notion of context as an explicit representation of changes of a WSN status inferred from metadata elements, which in turn, leads towards a decision-making process about how to maintain dynamic interoperability. This paper describes the developed context model to represent and reason over different WSN status based on four types of contexts, which have been identified as sensing, node, network and organisational contexts. The reasoning has been addressed by developing contextualising and bridges rules. As a result, we were able to demonstrate how contextualising rules have been used to reason on changes of WSN status as a first step towards maintaining dynamic interoperability.

  5. Metadata behind the Interoperability of Wireless Sensor Networks

    PubMed Central

    Ballari, Daniela; Wachowicz, Monica; Callejo, Miguel Angel Manso

    2009-01-01

    Wireless Sensor Networks (WSNs) produce changes of status that are frequent, dynamic and unpredictable, and cannot be represented using a linear cause-effect approach. Consequently, a new approach is needed to handle these changes in order to support dynamic interoperability. Our approach is to introduce the notion of context as an explicit representation of changes of a WSN status inferred from metadata elements, which in turn, leads towards a decision-making process about how to maintain dynamic interoperability. This paper describes the developed context model to represent and reason over different WSN status based on four types of contexts, which have been identified as sensing, node, network and organisational contexts. The reasoning has been addressed by developing contextualising and bridges rules. As a result, we were able to demonstrate how contextualising rules have been used to reason on changes of WSN status as a first step towards maintaining dynamic interoperability. PMID:22412330

  6. A Survey on Clustering Routing Protocols in Wireless Sensor Networks

    PubMed Central

    Liu, Xuxun

    2012-01-01

    The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions. PMID:23112649

  7. Wireless sensor networks for indoor air quality monitoring.

    PubMed

    Yu, Tsang-Chu; Lin, Chung-Chih; Chen, Chun-Chang; Lee, Wei-Lun; Lee, Ren-Guey; Tseng, Chao-Heng; Liu, Shi-Ping

    2013-02-01

    The purpose of this study is to build an indoor air quality monitoring system based on wireless sensor networks (WSNs) technology. The main functions of the system include (1) remote parameter adjustment and firmware update mechanism for the sensors to enhance the flexibility and convenience of the system, (2) sensor nodes are designed by referring to the IEEE 1451.4 standard. This way, sensor nodes can automatically adjust and be plug and play, and (3) calibration method to strength the measurement value's sensitivity and accuracy. The experimental results show that transmission speed improves 30% than Trickle, transmission volume reduced to 42% of the original volume, updating task in 5*5 network topology can be executed 1.79 times and power consumption reduced to 30%. When baseline drifts, we can use the firmware update mechanism to adjust the reference value. The way can reduce error percentage from 15% to 7%. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Herd-Based Target Tracking Protocol in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Xing, Xiaofei; Wang, Guojun; Wu, Jie

    Target tracking is a killer application in wireless sensor networks (WSNs). Energy efficiency is one of the most important design goals for target tracking. In this paper, we propose a herd-based target tracking protocol (HTTP) with the notions of node state transition and herd-based node group for target tracking. A sensor node has three states, namely, sleeping state, sensing state, and tracking state. Each sensor node is associated with a weight to be used to make a state transition among the three states. When a target moves into a monitoring area, a cluster node is selected as the herd head that is responsible for reporting the target information to the sink in the network. The sensor node can adjust the frequency of data reporting according to the velocity of the target. Simulation results show that HTTP not only improves the energy efficiency, but also enhances the tracking accuracy.

  9. On Modeling Viral Diffusion in Heterogeneous Wireless Networks

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai-Nam; Shinoda, Yoichi

    Smart phones and computers now are able to co-work in a wireless environment where malware can propagate. Although many investigations have modeled the spread of malware, little has been done to take into account different characteristics of items to see how they affect disease diffusion in an ad hoc network. We have therefore developed a novel framework, consisting of two models, which consider diversity of objects as well as interactions between their different classes. Our framework is able to produce a huge result space thus makes it appropriate to describe many viral proliferating scenarios. Additionally, we have developed a formula to calculate the possible average number of newly infected devices in the considered system. An important contribution of our work is the comprehension of item diversity, which states that a mixture of device types causes a bigger malware spread as the number of device types in the network increases.

  10. Cascading failure in the wireless sensor scale-free networks

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Ran; Dong, Ming-Ru; Yin, Rong-Rong; Han, Li

    2015-05-01

    In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014203239), the Autonomous Research Fund of Young Teacher in Yanshan University (Grant No. 14LGB017) and Yanshan University Doctoral Foundation, China (Grant No. B867).

  11. A neural networks-based hybrid routing protocol for wireless mesh networks.

    PubMed

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic-i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.

  12. A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks

    PubMed Central

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance. PMID:22969360

  13. Cross-layer optimization of video streaming in single-hop wireless networks

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hsin; Hefeeda, Mohamed

    2009-01-01

    Video streaming over wireless networks is getting very popular because of the high bandwidth and the support of quality of service offered by recent wireless standards, such as IEEE 802.11e. We consider optimizing the quality of video streaming in single-hop wireless networks that are composed of multiple wireless stations. Our optimization problem controls parameters in different layers to optimally allocate the wireless network resources among all stations. We address this problem in two steps. First, we formulate an abstract optimization problem for video streaming in single-hop wireless networks in general. This formulation exposes the important interaction between parameters belonging to different layers in the network stack. Then, we instantiate and solve the general problem for the recent IEEE 802.11e WLANs, which support prioritized traffic classes. We show how the calculated optimal solutions can efficiently be implemented in the distributed mode of the IEEE 802.11e standard. We evaluate our proposed solution using extensive simulations in the OPNET simulator, which captures most features of realistic wireless networks. In addition, to show the practicability of our solution, we have implemented it in the driver of an off-the-shelf wireless adapter that complies with the IEEE 802.11e standard. Our experimental and simulation results show that significant quality improvement in video streams can be achieved using our solution, without incurring any significant communication or computational overhead.

  14. Tactical Network Load Balancing in Multi-Gateway Wireless Sensor Networks

    DTIC Science & Technology

    2013-12-01

    monitor water temperature inside the nuclear reactor . In this case, a wired backbone is optimal to interconnect the sensors to minimize circumstances...Fukushima Wireless sensor networks play a vital role in tracking radiation levels at and around the tragic Fukushima Daiichi reactors as a result of...networking layer construct is a conceptual model that describes the internal operation of a node by separating activities into layers of abstraction

  15. Ubiquitous and Secure Certificate Service for Wireless Ad Hoc Network

    NASA Astrophysics Data System (ADS)

    Ge, Meng; Lam, Kwok-Yan; Li, Jianbin; Chung, Siu-Leung

    Wireless ad hoc network is one of the most suitable platforms for providing communication services to support mobile applications in public areas where no fixed communication infrastructure exists. However, due to the open nature of wireless links and lack of security infrastructure in an ad hoc network environment, applications operating on ad hoc network platforms are subjected to non-trivial security challenges. Asymmetric key management, which is widely adopted to be an effective basis for security services in an open network environment, typically plays a crucial role in meeting the security requirements of such applications. In this paper, we propose a secure asymmetric key management scheme, the Ubiquitous and Secure Certificate Service (USCS), which is based on a variant of the Distributed Certificate Authority (DCA) - the Fully Distributed Certificate Authority (FDCA). Similar to FDCA, USCS introduces the presence of 1-hop neighbors which hold shares of DCA's private signature key, and can collaborate to issue certificates, thereby providing asymmetric key management service. Both USCS and FDCA aim to achieve higher availability than the basic DCA scheme; however, USCS is more secure than FDCA in that the former achieves high availability by distributing existing shares to new members, rather than generating new shares as the FDCA scheme does. In order to realise the high availability potential of USCS, a share selection algorithm is also proposed. Experimental results demonstrated that USCS is a more secure approach of the DCA scheme in that it can achieve stronger security than FDCA while attaining high availability similar to that of FDCA. Experiments also showed that USCS incurs only moderate communication overheads.

  16. Advanced modulation formats for delivery of heterogeneous wired and wireless access networks

    NASA Astrophysics Data System (ADS)

    Chow, C. W.; Yeh, C. H.

    2009-12-01

    It is believed that the integration of wired and wireless access networks (or heterogeneous network) will provide high bandwidth and flexibility for both fixed and mobile users in a single and cost-effective platform. Here, we propose and demonstrate a signal remodulated wired and wireless network with wireless signal broadcast. Dark-return-to-zero (DRZ) and polarization-shift-keying (PolSK) signals are used for the downstream wired and wireless applications respectively. At the remote antenna unit (RAU), the PolSK signal is demodulated to produce the binary-phase-shift-keying (BPSK) signal, which will be used for the wireless broadcast application. Signal remodulation is demonstrated using reflective semiconductor optical amplifier (RSOA) as a colorless reflective modulator in the optical networking unit (ONU)/RAU. The downstream signal is remodulated at the ONU/RAU to produce the non-return-to-zero (NRZ) upstream signal.

  17. Exploiting node mobility for energy optimization in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    El-Moukaddem, Fatme Mohammad

    Wireless Sensor Networks (WSNs) have become increasingly available for data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit the sheer amount of data generated within an application's lifetime to the base station despite the fact that sensor nodes have limited power supplies such as batteries or small solar panels. The availability of numerous low-cost robotic units (e.g. Robomote and Khepera) has made it possible to construct sensor networks consisting of mobile sensor nodes. It has been shown that the controlled mobility offered by mobile sensors can be exploited to improve the energy efficiency of a network. In this thesis, we propose schemes that use mobile sensor nodes to reduce the energy consumption of data-intensive WSNs. Our approaches differ from previous work in two main aspects. First, our approaches do not require complex motion planning of mobile nodes, and hence can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both mobility and wireless communications into a holistic optimization framework. We consider three problems arising from the limited energy in the sensor nodes. In the first problem, the network consists of mostly static nodes and contains only a few mobile nodes. In the second and third problems, we assume essentially that all nodes in the WSN are mobile. We first study a new problem called max-data mobile relay configuration (MMRC ) that finds the positions of a set of mobile sensors, referred to as relays, that maximize the total amount of data gathered by the network during its lifetime. We show that the MMRC problem is surprisingly complex even for a trivial network topology due to the joint consideration of the energy consumption of both wireless communication and mechanical locomotion. We present optimal MMRC algorithms and practical distributed

  18. Low-power wireless sensor networks for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Musaloiu-Elefteri, Razvan

    Significant progress has been made in the field of Wireless Sensor Networks in the decade that passed since its inception. This thesis presents several advances intended to make these networks a suitable instrument for environmental monitoring. The thesis first describes Koala, a low-power data-retrieval system that can achieve duty cycles below 1% by using bulk transfers, and Low Power Probing, a novel mechanism to efficiently wake up a network. The second contribution is Serendipity, another data-retrieval system, which takes advantage of the random rendezvous inherent in the Low Power Probing mechanism to achieve a very low duty cycle for low data rate networks. The third part explores the problem of and presents a solution for the interference between WSNs using IEEE 802.15.4 radios and the ubiquitous WiFi networks in the 2.4 GHz spectrum bandwidth. The last contribution of this thesis is Latte, a restricted version of the JavaScript language, that not only can be compiled to C and dynamically loaded on a sensing node, but can also be simulated and debugged in a JavaScript-enabled browser.

  19. Wireless network interface energy consumption implications of popular streaming formats

    NASA Astrophysics Data System (ADS)

    Chandra, Surendar

    2001-12-01

    With the proliferation of mobile streaming multimedia, available battery capacity constrains the end-user experience. Since streaming applications tend to be long running, wireless network interface card's (WNIC) energy consumption is particularly an acute problem. In this work, we explore the WNIC energy consumption implications of popular multimedia streaming formats from Microsoft (Windows media), Real (Real media) and Apple (Quick Time). We investigate the energy consumption under varying stream bandwidth and network loss rates. We also explore history-based client-side strategies to reduce the energy consumed by transitioning the WNICs to a lower power consuming sleep state. We show that Microsoft media tends to transmit packets at regular intervals; streams optimized for 28.8 Kbps can save over 80% in energy consumption with 2% data loss. A high bandwidth stream (768 Kbps) can still save 57% in energy consumption with less than 0.3% data loss. For high bandwidth streams, Microsoft media exploits network-level packet fragmentation, which can lead to excessive packet loss (and wasted energy) in a lossy network. Real stream packets tend to be sent closer to each other, especially at higher bandwidths. Quicktime packets sometimes arrive in quick succession; most likely an application level fragmentation mechanism. Such packets are harder to predict at the network level without understanding the packet semantics.

  20. Distributed Optimal Power and Rate Control in Wireless Sensor Networks

    PubMed Central

    Tang, Meiqin; Bai, Jianyong; Li, Jing; Xin, Yalin

    2014-01-01

    With the rapid development of wireless sensor networks, reducing energy consumption is becoming one of the important factors to extend node lifetime, and it is necessary to adjust the launching power of each node because of the limited energy available to the sensor nodes in the networks. This paper proposes a power and rate control model based on the network utility maximization (NUM) framework, where a weighting factor is used to reflect the influence degree of the sending power and transmission rate to the utility function. In real networks, nodes interfere with each other in the procedure of transmitting signal, which may lead to signal transmission failure and may negatively have impacts on networks throughput. Using dual decomposition techniques, the NUM problem is decomposed into two distributed subproblems, and then the conjugate gradient method is applied to solve the optimization problem with the calculation of the Hessian matrix and its inverse in order to guarantee fast convergence of the algorithm. The convergence proof is also provided in this paper. Numerical examples show that the proposed solution achieves significant throughput compared with exiting approaches. PMID:24895654

  1. Distributed optimal power and rate control in wireless sensor networks.

    PubMed

    Tang, Meiqin; Bai, Jianyong; Li, Jing; Xin, Yalin

    2014-01-01

    With the rapid development of wireless sensor networks, reducing energy consumption is becoming one of the important factors to extend node lifetime, and it is necessary to adjust the launching power of each node because of the limited energy available to the sensor nodes in the networks. This paper proposes a power and rate control model based on the network utility maximization (NUM) framework, where a weighting factor is used to reflect the influence degree of the sending power and transmission rate to the utility function. In real networks, nodes interfere with each other in the procedure of transmitting signal, which may lead to signal transmission failure and may negatively have impacts on networks throughput. Using dual decomposition techniques, the NUM problem is decomposed into two distributed subproblems, and then the conjugate gradient method is applied to solve the optimization problem with the calculation of the Hessian matrix and its inverse in order to guarantee fast convergence of the algorithm. The convergence proof is also provided in this paper. Numerical examples show that the proposed solution achieves significant throughput compared with exiting approaches.

  2. Providing QoS guarantee in 3G wireless networks

    NASA Astrophysics Data System (ADS)

    Chuah, MooiChoo; Huang, Min; Kumar, Suresh

    2001-07-01

    The third generation networks and services present opportunities to offer multimedia applications and services that meet end-to-end quality of service requirements. In this article, we present UMTS QoS architecture and its requirements. This includes the definition of QoS parameters, traffic classes, the end-to-end data delivery model, and the mapping of end-to-end services to the services provided by the network elements of the UMTS. End-to-end QoS of a user flow is achieved by the combination of the QoS control over UMTS Domain and the IP core Network. In the Third Generation Wireless network, UMTS bearer service manager is responsible to manage radio and transport resources to QoS-enabled applications. The UMTS bearer service consists of the Radio Access Bearer Service between Mobile Terminal and SGSN and Core Network bearer service between SGSN and GGSN. The Radio Access Bearer Service is further realized by the Radio Bearer Service (mostly air interface) and Iu bearer service. For the 3G air interface, one can provide differentiated QoS via intelligent burst allocation scheme, adaptive spreading factor control and weighted fair queueing scheduling algorithms. Next, we discuss the requirements for the transport technologies in the radio access network to provide differentiated QoS to multiple classes of traffic. We discuss both ATM based and IP based transport solutions. Last but not least, we discuss how QoS mechanism is provided in the core network to ensure e2e quality of service requirements. We discuss how mobile terminals that use RSVP as QoS signaling mechanisms can be are supported in the 3G network which may implement only IETF diffserv mechanism. . We discuss how one can map UMTS QoS classes with IETF diffserv code points. We also discuss 2G/3G handover scenarios and how the 2G/3G QoS parameters can be mapped.

  3. Intelligent Wireless Sensor Networks for System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  4. A survey of power efficient technologies for Wireless Body Area Networks.

    PubMed

    Jovanov, Emil

    2008-01-01

    Wireless Body Area Networks (WBANs) of intelligent sensors emerged as the most promising architecture for ambulatory health monitoring. Integrated in an m-Health system they provide means for unobotrusive ubiquitous monitoring. However, proper design of wireless communication system is application dependent and critically influences system performance and user acceptance. In this paper we present a survey of existing and emerging wireless communication technologies and critical parameters for the system design.

  5. Wireless Sensor Network for Advanced Energy Management Solutions

    SciTech Connect

    Peter J. Theisen; Bin Lu, Charles J. Luebke

    2009-09-23

    Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were

  6. Operating systems and network protocols for wireless sensor networks.

    PubMed

    Dutta, Prabal; Dunkels, Adam

    2012-01-13

    Sensor network protocols exist to satisfy the communication needs of diverse applications, including data collection, event detection, target tracking and control. Network protocols to enable these services are constrained by the extreme resource scarcity of sensor nodes-including energy, computing, communications and storage-which must be carefully managed and multiplexed by the operating system. These challenges have led to new protocols and operating systems that are efficient in their energy consumption, careful in their computational needs and miserly in their memory footprints, all while discovering neighbours, forming networks, delivering data and correcting failures.

  7. Using Reputation Systems and Non-Deterministic Routing to Secure Wireless Sensor Networks

    PubMed Central

    Moya, José M.; Vallejo, Juan Carlos; Fraga, David; Araujo, Álvaro; Villanueva, Daniel; de Goyeneche, Juan-Mariano

    2009-01-01

    Security in wireless sensor networks is difficult to achieve because of the resource limitations of the sensor nodes. We propose a trust-based decision framework for wireless sensor networks coupled with a non-deterministic routing protocol. Both provide a mechanism to effectively detect and confine common attacks, and, unlike previous approaches, allow bad reputation feedback to the network. This approach has been extensively simulated, obtaining good results, even for unrealistically complex attack scenarios. PMID:22412345

  8. Security Enhancement of Wireless Sensor Networks Using Signal Intervals.

    PubMed

    Moon, Jaegeun; Jung, Im Y; Yoo, Jaesoo

    2017-04-02

    Various wireless technologies, such as RF, Bluetooth, and Zigbee, have been applied to sensor communications. However, the applications of Bluetooth-based wireless sensor networks (WSN) have a security issue. In one pairing process during Bluetooth communication, which is known as simple secure pairing (SSP), the devices are required to specify I/O capability or user interference to prevent man-in-the-middle (MITM) attacks. This study proposes an enhanced SSP in which a nonce to be transferred is converted to a corresponding signal interval. The quantization level, which is used to interpret physical signal intervals, is renewed at every connection by the transferred nonce and applied to the next nonce exchange so that the same signal intervals can represent different numbers. Even if attackers eavesdrop on the signals, they cannot understand what is being transferred because they cannot determine the quantization level. Furthermore, the proposed model does not require exchanging passkeys as data, and the devices are secure in the case of using a fixed PIN. Subsequently, the new quantization level is calculated automatically whenever the same devices attempt to connect with each other. Therefore, the pairing process can be protected from MITM attacks and be convenient for users.

  9. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.; Wagner, Raymond S.

    2009-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Any practical WSN deployment must contend with a number of difficulties in its radio frequency (RF) environment. Multi-path reflections can distort signals, limit data rates, and cause signal fades that prevent nodes from having clear access to channels, especially in a closed environment such as a spacecraft. Other RF signal sources, such as wireless internet, voice, and data systems may contend with the sensor nodes for bandwidth. Finally, RF noise from electrical systems and periodic scattering from moving objects such as crew members will all combine to give an incredibly unpredictable, time-varying communication environment.

  10. Wireless sensors and sensor networks for homeland security applications.

    PubMed

    Potyrailo, Radislav A; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M; Kelley-Loughnane, Nancy; Naik, Rajesh R

    2012-11-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers.

  11. Wireless sensors and sensor networks for homeland security applications

    PubMed Central

    Potyrailo, Radislav A.; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M.; Kelley-Loughnane, Nancy; Naik, Rajesh R.

    2012-01-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers. PMID:23175590

  12. Security Enhancement of Wireless Sensor Networks Using Signal Intervals

    PubMed Central

    Moon, Jaegeun; Jung, Im Y.; Yoo, Jaesoo

    2017-01-01

    Various wireless technologies, such as RF, Bluetooth, and Zigbee, have been applied to sensor communications. However, the applications of Bluetooth-based wireless sensor networks (WSN) have a security issue. In one pairing process during Bluetooth communication, which is known as simple secure pairing (SSP), the devices are required to specify I/O capability or user interference to prevent man-in-the-middle (MITM) attacks. This study proposes an enhanced SSP in which a nonce to be transferred is converted to a corresponding signal interval. The quantization level, which is used to interpret physical signal intervals, is renewed at every connection by the transferred nonce and applied to the next nonce exchange so that the same signal intervals can represent different numbers. Even if attackers eavesdrop on the signals, they cannot understand what is being transferred because they cannot determine the quantization level. Furthermore, the proposed model does not require exchanging passkeys as data, and the devices are secure in the case of using a fixed PIN. Subsequently, the new quantization level is calculated automatically whenever the same devices attempt to connect with each other. Therefore, the pairing process can be protected from MITM attacks and be convenient for users. PMID:28368341

  13. Flash floods warning technique based on wireless communication networks data

    NASA Astrophysics Data System (ADS)

    David, Noam; Alpert, Pinhas; Messer, Hagit

    2010-05-01

    Flash floods can occur throughout or subsequent to rainfall events, particularly in cases where the precipitation is of high-intensity. Unfortunately, each year these floods cause severe property damage and heavy casualties. At present, there are no sufficient real time flash flood warning facilities found to cope with this phenomenon. Here we show the tremendous potential of flash floods advanced warning based on precipitation measurements of commercial microwave links. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. We present the flash flood warning potential of the wireless communication system for two different cases when floods occurred at the Judean desert and at the northern Negev in Israel. In both cases, an advanced warning regarding the hazard could have been announced based on this system. • This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08). This work was also supported by a grant from the Yeshaya Horowitz Association, Jerusalem. Additional support was given by the PROCEMA-BMBF project and by the GLOWA-JR BMBF project.

  14. On wireless sensing networks in hydrology: from observation to prediction

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Bogena, H. R.; Huisman, J. A.; Wei, Q.; Fang, Z.; Vanderborght, J.; Kollet, S. J.

    2015-12-01

    The use of wireless sensor networks (WSN) has gained increasing attention in the field of hydrology, because WSNs offer a unique potential to monitor the spatial and temporal dynamics of soil moisture at scales beyond the field scale. In addition, they provide unique opportunities for the validation of numerical models, hydrogeophysical measurement techniques, as well as for the calibration and validation of remotely sensed soil moisture data. In this presentation, we will discuss results of temporal and spatially resolved measurements of soil moisture using WSNs installed in two different small-scale catchments under forest (Wüstebach, Germany) and grassland (Rollesbroich, Germany). In combination with measurements of hydrological fluxes, we were able to close the water balance of the Wüstebach catchment up to 3% of the yearly rainfall. In addition, changes between wet and dry states of the catchment could be observed and related to a critical soil moisture content. Using stochastic analysis of water flow in the unsaturated zone and pedotransfer functions, we were able to predict subgrid variability of soil moisture. This framework also allowed deriving the spatial variability of soil hydraulic parameters using the relationship between the variance of soil moisture and its mean soil water content. Finally, soil moisture data from the WSN in the Wüstebach catchment were used to validate a detailed hydrologic model of the catchment using empirical orthogonal functions and coherence wavelet analysis. Further development of wireless sensing technologies will include the monitoring of soil moisture potential and biogeochemical properties such as redox potential.

  15. Modeling and characterization of supercapacitors for wireless sensor network applications

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Yang, Hengzhao

    A simple circuit model is developed to describe supercapacitor behavior, which uses two resistor-capacitor branches with different time constants to characterize the charging and redistribution processes, and a variable leakage resistance to characterize the self-discharge process. The parameter values of a supercapacitor can be determined by a charging-redistribution experiment and a self-discharge experiment. The modeling and characterization procedures are illustrated using a 22F supercapacitor. The accuracy of the model is compared with that of other models often used in power electronics applications. The results show that the proposed model has better accuracy in characterizing the self-discharge process while maintaining similar performance as other models during charging and redistribution processes. Additionally, the proposed model is evaluated in a simplified energy storage system for self-powered wireless sensors. The model performance is compared with that of a commonly used energy recursive equation (ERE) model. The results demonstrate that the proposed model can predict the evolution profile of voltage across the supercapacitor more accurately than the ERE model, and therefore provides a better alternative for supporting research on storage system design and power management for wireless sensor networks.

  16. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  17. Efficient and Anonymous Authentication Scheme for Wireless Body Area Networks.

    PubMed

    Wu, Libing; Zhang, Yubo; Li, Li; Shen, Jian

    2016-06-01

    As a significant part of the Internet of Things (IoT), Wireless Body Area Network (WBAN) has attract much attention in this years. In WBANs, sensors placed in or around the human body collect the sensitive data of the body and transmit it through an open wireless channel in which the messages may be intercepted, modified, etc. Recently, Wang et al. presented a new anonymous authentication scheme for WBANs and claimed that their scheme can solve the security problems in the previous schemes. Unfortunately, we demonstrate that their scheme cannot withstand impersonation attack. Either an adversary or a malicious legal client could impersonate another legal client to the application provider. In this paper, we give the detailed weakness analysis of Wang et al.'s scheme at first. Then we present a novel anonymous authentication scheme for WBANs and prove that it's secure under a random oracle model. At last, we demonstrate that our presented anonymous authentication scheme for WBANs is more suitable for practical application than Wang et al.'s scheme due to better security and performance. Compared with Wang et al.'s scheme, the computation cost of our scheme in WBANs has reduced by about 31.58%.

  18. Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks

    PubMed Central

    Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif

    2017-01-01

    In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast. PMID:28335494

  19. SNR Based Digital Estimation of Security in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Ashraf, Adnan; Rajput, Abdulrauf; Mussadiq, Marvie; Chowdhry, Bhawani S.; Hashmani, Manzoor

    Security in wireless sensor networks (WSNs) is usually thought as privacy, auditing, intrusion detection and protection. In general, the quality of signal processing is considered as issue of middleware layers. The higher values of signal to noise ratio (SNR) are vital for target detection and estimation which is the most critical objective of WSN. Despite of the fact that SNR has a significant impact on objectives of WSN, not much investigation is found in literature about SNR and its security impact on such networks. The entire WSN can be rendered as useless due to SNR degradation and therefore, SNR is a prevailing security threat in WSNs. In the light of modern concepts of security, the safety should accompany the availability, scalability, efficiency and the quality parameters of inter-node communication. We show that SNR can identify suspicious activities which can exploit the performance and quality of communication in a sensor network. Also, by varying range of transmission radii and observing its impact on SNR we demonstrate that SNR-values, SNR-variance and pre-defined network threshold of SNR-variance, together can be useful in security assessment of WSN.

  20. A survey on virtualization of Wireless Sensor Networks.

    PubMed

    Islam, Md Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization.