Science.gov

Sample records for 4h-sic p-i-n diodes

  1. Strain tunable light emitting diodes with germanium P-I-N heterojunctions

    DOEpatents

    Lagally, Max G; Sanchez Perez, Jose Roberto

    2016-10-18

    Tunable p-i-n diodes comprising Ge heterojunction structures are provided. Also provided are methods for making and using the tunable p-i-n diodes. Tunability is provided by adjusting the tensile strain in the p-i-n heterojunction structure, which enables the diodes to emit radiation over a range of wavelengths.

  2. Carbon nanotube intramolecular p-i-n junction diodes with symmetric and asymmetric contacts

    NASA Astrophysics Data System (ADS)

    Chen, Changxin; Liao, Chenghao; Wei, Liangming; Zhong, Hanqing; He, Rong; Liu, Qinran; Liu, Xiaodong; Lai, Yunfeng; Song, Chuanjuan; Jin, Tiening; Zhang, Yafei

    2016-02-01

    A p-i-n junction diode based on the selectively doped single-walled carbon nanotube (SWCNT) had been investigated, in which two opposite ends of individual SWCNT channel were doped into the p- and n-type SWCNT respectively while the middle segment of SWCNT was kept as the intrinsic. The symmetric and asymmetric contacts were used to fabricate the p-i-n junction diodes respectively and studied the effect of the contact on the device characteristics. It was shown that a low reverse saturation current of ~20 pA could be achieved by these both diodes. We found that the use of the asymmetric contact can effectively improve the performance of the p-i-n diode, with the rectification ratio enhanced from ~102 for the device with the Au/Au symmetric contact to >103 for the one with the Pd/Al asymmetric contact. The improvement of the device performance by the asymmetric-contact structure was attributed to the decrease of the effective Schottky-barrier height at the contacts under forward bias, increasing the forward current of the diode. The p-i-n diode with asymmetric contact also had a higher rectification ratio than its counterpart before doping the SWCNT channel, which is because that the p-i-n junction in the device decreased the reverse saturated current.

  3. Carbon nanotube intramolecular p-i-n junction diodes with symmetric and asymmetric contacts

    PubMed Central

    Chen, Changxin; Liao, Chenghao; Wei, Liangming; Zhong, Hanqing; He, Rong; Liu, Qinran; Liu, Xiaodong; Lai, Yunfeng; Song, Chuanjuan; Jin, Tiening; Zhang, Yafei

    2016-01-01

    A p-i-n junction diode based on the selectively doped single-walled carbon nanotube (SWCNT) had been investigated, in which two opposite ends of individual SWCNT channel were doped into the p- and n-type SWCNT respectively while the middle segment of SWCNT was kept as the intrinsic. The symmetric and asymmetric contacts were used to fabricate the p-i-n junction diodes respectively and studied the effect of the contact on the device characteristics. It was shown that a low reverse saturation current of ~20 pA could be achieved by these both diodes. We found that the use of the asymmetric contact can effectively improve the performance of the p-i-n diode, with the rectification ratio enhanced from ~102 for the device with the Au/Au symmetric contact to >103 for the one with the Pd/Al asymmetric contact. The improvement of the device performance by the asymmetric-contact structure was attributed to the decrease of the effective Schottky-barrier height at the contacts under forward bias, increasing the forward current of the diode. The p-i-n diode with asymmetric contact also had a higher rectification ratio than its counterpart before doping the SWCNT channel, which is because that the p-i-n junction in the device decreased the reverse saturated current. PMID:26915400

  4. A p-i-n junction diode based on locally doped carbon nanotube network

    PubMed Central

    Liu, Xiaodong; Chen, Changxin; Wei, Liangming; Hu, Nantao; Song, Chuanjuan; Liao, Chenghao; He, Rong; Dong, Xusheng; Wang, Ying; Liu, Qinran; Zhang, Yafei

    2016-01-01

    A p-i-n junction diode constructed by the locally doped network of single-walled carbon nanotubes (SWNTs) was investigated. In this diode, the two opposite ends of the SWNT-network channel were selectively doped by triethyloxonium hexachloroantimonate (OA) and polyethylenimine (PEI) to obtain the air-stable p- and n-type SWNTs respectively while the central area of the SWNT-network remained intrinsic state, resulting in the formation of a p-i-n junction with a strong built-in electronic field in the SWNTs. The results showed that the forward current and the rectification ratio of the diode increased as the doping degree increased. The forward current of the device could also be increased by decreasing the channel length. A high-performance p-i-n junction diode with a high rectification ratio (~104), large forward current (~12.2 μA) and low reverse saturated current (~1.8 nA) was achieved with the OA and PEI doping time of 5 h and 18 h for a channel length of ~6 μm. PMID:26996610

  5. Waveguide photonic crystals with characteristics controlled with p-i-n diodes

    SciTech Connect

    Usanov, D. A. Skripal, A. V.; Abramov, A. V.; Bogolyubov, A. S.; Skvortsov, V. S.; Merdanov, M. K.

    2010-12-15

    A one-dimensional waveguide photonic structure-specifically, a photonic crystal with a controllable frequency characteristic-is designed. The central frequency of the spectral window of the photonic crystal can be tuned by choosing the parameters of disturbance of periodicity in the photonic crystal, whereas the transmission coefficient at a particular frequency can be controlled by varying the voltage at a p-i-n diode. It is shown that the possibility exists of using the waveguide photonic crystal to design a microwave device operating in the 3-cm-wavelength region, with a transmission band of 70 MHz at a level 3 dB and the transmission coefficient controllable in the range from -1.5 to -25 dB under variations in the forward voltage bias at the p-i-n diode from zero to 700 mV.

  6. Highly Efficient White Organic Light-Emitting Diodes with a p-i-n Tandem Structure

    NASA Astrophysics Data System (ADS)

    Yokoyama, Meiso; Su, Shui-Hsiang; Hou, Cheng-Chieh; Wu, Chung-Ta; Kung, Chun-Hao

    2011-04-01

    In this study, we demonstrate the fabrication of highly efficient white organic light-emitting diodes (WOLEDs) with a p-i-n tandem structure using lithium (Li)-doped tris(8-hydroxyquinoline) aluminum (Alq3)/molybdenum oxide (MoOx)-doped 4,4',4''-tris[2-naphthyl(phenyl)amino] triphenylamine (2-TNATA) as an effective interconnecting layer (ICL). The tandem device exhibited a luminance of 3800 cd/m2, a luminous efficiency of 18.8 cd/A, a power efficiency of 5.48 lm/W, an external quantum efficiency of 6.5%, and the Commission Internationale d'Eclairage (CIE) coordinates of (x=0.312, y=0.396) at 20 mA/cm2. The electroluminescence color of this p-i-n tandem device nearly did not change significantly with driving voltage variation and viewing angle. The various interfaces of ICL in such a tandem device were studied using a photovoltaic setup and were used to elucidate the mechanisms of the tandem devices.

  7. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    DOE PAGES

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; ...

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 1013 cm-2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaN P-i-Ns remainmore » superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.« less

  8. Absorption properties of GaAsBi based p-i-n heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Zhize; Mendes, Danuta F.; Richards, Robert D.; Bastiman, Faebian; David, John PR

    2015-09-01

    The absorption properties of GaAsBi have been investigated using GaAsBi based p-i-n diodes with different bismuth compositions (˜2.1 and ˜3.4%). The absorption behaviour of GaAsBi as a function of incident photon energy above the band gap follows that of a direct band gap material. With increasing bismuth content, the absorption of photons with energy lower than the band gap in GaAsBi is enhanced, probably due to localized states caused by Bi-related defects. A simplified analysis has been undertaken on the behaviour of absorption as a function of bias voltage. By undertaking photoresponsivity measurements as a function of reverse bias, the background doping type and the minority carriers diffusion lengths in GaAsBi have been determined.

  9. Dead layer on silicon p-i-n diode charged-particle detectors

    SciTech Connect

    Wall, B. L.; Amsbaugh, John F.; Beglarian, A.; Bergmann, T.; Bichsel, H. C.; Bodine, L. I.; Boyd, N. M.; Burritt, Tom H.; Chaoui, Z.; Corona, T. J.; Doe, Peter J.; Enomoto, S.; Harms, F.; Harper, Gregory; Howe, M. A.; Martin, E. L.; Parno, D. S.; Peterson, David; Petzold, Linda; Renschler, R.; Robertson, R. G. H.; Schwarz, J.; Steidl, M.; Van Wechel, T. D.; VanDevender, Brent A.; Wustling, S.; Wierman, K. J.; Wilkerson, J. F.

    2014-04-21

    Abstract Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon p-i-n diode used in the KATRIN neutrinomass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra to the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the "dead" layer evidently escapes by discussion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored.

  10. Lead Halide Perovskite Photovoltaic as a Model p-i-n Diode.

    PubMed

    Miyano, Kenjiro; Tripathi, Neeti; Yanagida, Masatoshi; Shirai, Yasuhiro

    2016-02-16

    The lead halide perovskite photovoltaic cells, especially the iodide compound CH3NH3PbI3 family, exhibited enormous progress in the energy conversion efficiency in the past few years. Although the first attempt to use the perovskite was as a sensitizer in a dye-sensitized solar cell, it has been recognized at the early stage of the development that the working of the perovskite photovoltaics is akin to that of the inorganic thin film solar cells. In fact, theoretically perovskite is always treated as an ordinary direct band gap semiconductor and hence the perovskite photovoltaics as a p-i-n diode. Despite this recognition, research effort along this line of thought is still in pieces and incomplete. Different measurements have been applied to different types of devices (different not only in the materials but also in the cell structures), making it difficult to have a coherent picture. To make the situation worse, the perovskite photovoltaics have been plagued by the irreproducible optoelectronic properties, most notably the sweep direction dependent current-voltage relationship, the hysteresis problem. Under such circumstances, it is naturally very difficult to analyze the data. Therefore, we set out to make hysteresis-free samples and apply time-tested models and numerical tools developed in the field of inorganic semiconductors. A series of electrical measurements have been performed on one type of CH3NH3PbI3 photovoltaic cells, in which a special attention was paid to ensure that their electronic reproducibility was better than the fitting error in the numerical analysis. The data can be quantitatively explained in terms of the established models of inorganic semiconductors: current/voltage relationship can be very well described by a two-diode model, while impedance spectroscopy revealed the presence of a thick intrinsic layer with the help of a numerical solver, SCAPS, developed for thin film solar cell analysis. These results point to that CH3NH3PbI3 is an

  11. Enhanced efficiency and stability in organic light-emitting diodes by employing a p-i-n-p structure

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhou, Dong-Ying; Wang, Bo; Shi, Xiao-Bo; Hu, Yun; Wang, Zhao-Kui; Liao, Liang-Sheng

    2016-10-01

    Organic light-emitting diodes (OLEDs) with a p-i-n-p structure were developed by inserting a p-doped layer, MoO3 doped N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB), between an n-doped electron injection layer and the cathode. The device showed a 33.5% improvement in the power efficiency and 70.7% improvement in the half operational lifetime compared with the conventional p-i-n structure based device. The improved device performance is mainly ascribed to an improved conductivity, an enhanced thermal stability, and the protection of the electron injection layer by the NPB:MoO3 p-doped layer. The finding indicates that the p-i-n-p structure is beneficial for improving the efficiency and the stability of OLEDs.

  12. Si nanocrystal p-i-n diodes fabricated on quartz substrates for third generation solar cell applications

    NASA Astrophysics Data System (ADS)

    Perez-Wurfl, Ivan; Hao, Xiaojing; Gentle, Angus; Kim, Dong-Ho; Conibeer, Gavin; Green, Martin. A.

    2009-10-01

    We fabricated p-i-n diodes by sputtering alternating layers of silicon dioxide and silicon rich oxide with a nominal atomic ratio O/Si=0.7 onto quartz substrates with in situ boron for p-type and phosphorus for n-type doping. After crystallization, dark and illuminated I-V characteristics show a diode behavior with an open circuit voltage of 373 mV. Due to the thinness of the layers and their corresponding high resistivity, lateral current flow results in severe current crowding. This effect is taken into account when extracting the electronic bandgap based on temperature dependent diode I-V measurements.

  13. Current impulse response of thin InP p+-i-n+ diodes using full band structure Monte Carlo method

    NASA Astrophysics Data System (ADS)

    You, A. H.; Cheang, P. L.

    2007-02-01

    A random response time model to compute the statistics of the avalanche buildup time of double-carrier multiplication in avalanche photodiodes (APDs) using full band structure Monte Carlo (FBMC) method is discussed. The effect of feedback impact ionization process and the dead-space effect on random response time are included in order to simulate the speed of APD. The time response of InP p+-i-n+ diodes with the multiplication region of 0.2μm is presented. Finally, the FBMC model is used to calculate the current impulse response of the thin InP p+-i-n+ diodes with multiplication lengths of 0.05 and 0.2μm using Ramo's theorem [Proc. IRE 27, 584 (1939)]. The simulated current impulse response of the FBMC model is compared to the results simulated from a simple Monte Carlo model.

  14. A study of the coupling between LO phonons and plasmons in InP p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Thao, Dinh Nhu

    2017-03-01

    This paper reports a study investigating the coupling between longitudinal optical (LO) phonons and plasmons in InP p-i-n diodes by a numerical simulation. A significant change is observed in the Fourier transform spectra of transient electric field when taking the coupling into account. The findings show two separate peaks instead of a single plasma peak as for non-coupling case. In addition, the bulk-like dispersion relations of the frequencies of those two peaks on the carrier density are found. Therefore, it is proposed that those behaviors manifest the LO phonon-plasmon coupling in the diodes. Also, there is evidence of the peak clipping by the diode itself, a phenomenon not being seen in the bulk InP semiconductor.

  15. Comprehensive physics-based compact model for fast p-i-n diode using MATLAB and Simulink

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Fu, Guicui; Zhang, Dong

    2016-07-01

    In this study, a physics-based model for the fast p-i-n diode is proposed. The model is based on the 1-D Fourier-based solution of ambipolar diffusion equation (ADE) implemented in MATLAB and Simulink. The physical characteristics of fast diode design concepts such as local lifetime control (LLC), emitter control (EMCON) and deep field stop are taken into account. Based on these fast diode design concepts, the ADE is solved for all injection levels instead of high-level injection only as usually done. The variation of high-level lifetime due to local lifetime control is also included in the solution. With the deep field stop layer taken into consideration, the depletion behavior in the N-base during reverse recovery is redescribed. Some physical effects such as avalanche generation and carrier recombination in the depletion region are also taken into account. To be self contained, a parameter extraction method is proposed to extract all the parameters of the model. In the end, the static and reverse recovery experiments for a commercial EMCON diode and a LLC diode are used to validate the proposed model. The simulation results are compared with experiment results and good agreement is obtained.

  16. Resonant metallic nanostructure for enhanced two-photon absorption in a thin GaAs p-i-n diode

    SciTech Connect

    Portier, Benjamin; Pardo, Fabrice; Péré-Laperne, Nicolas; Steveler, Emilie; Dupuis, Christophe; Bardou, Nathalie; Lemaître, Aristide; Pelouard, Jean-Luc; Vest, Benjamin; Jaeck, Julien; Rosencher, Emmanuel; Haïdar, Riad

    2014-07-07

    Degenerate two-photon absorption (TPA) is investigated in a 186 nm thick gallium arsenide (GaAs) p-i-n diode embedded in a resonant metallic nanostructure. The full device consists in the GaAs layer, a gold subwavelength grating on the illuminated side, and a gold mirror on the opposite side. For TM-polarized light, the structure exhibits a resonance close to 1.47 μm, with a confined electric field in the intrinsic region, far from the metallic interfaces. A 109 times increase in photocurrent compared to a non-resonant device is obtained experimentally, while numerical simulations suggest that both gain in TPA-photocurrent and angular dependence can be further improved. For optimized grating parameters, a maximum gain of 241 is demonstrated numerically and over incidence angle range of (−30°; +30°).

  17. Effects of Be acceptors on the spin polarization of carriers in p-i-n resonant tunneling diodes

    SciTech Connect

    Awan, I. T.; Galvão Gobato, Y.; Galeti, H. V. A.; Brasil, M. J. S. P.; Taylor, D.; Henini, M.

    2014-08-07

    In this paper, we have investigated the effect of Be acceptors on the electroluminescence and the spin polarization in GaAs/AlAs p-i-n resonant tunneling diodes. The quantum well emission comprise two main lines separated by ∼20 meV attributed to excitonic and Be-related transitions, which intensities show remarkably abrupt variations at critical voltages, particularly at the electron resonant peak where it shows a high-frequency bistability. The circular-polarization degree of the quantum-well electroluminescence also shows strong and abrupt variations at the critical bias voltages and it attains relatively large values (of ∼−75% at 15 T). These effects may be explored to design novel devices for spintronic applications such as a high-frequency spin-oscillators.

  18. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    SciTech Connect

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; Vizkelethy, G.; Fleming, R. M.; Campbell, J.; Wampler, W. R.; Kizilyalli, I. C.; Bour, D. P.; Aktas, O.; Nie, H.; Disney, D.; Wierer, Jr., J.; Allerman, A. A.; Moseley, M. W.; Kaplar, R. J.

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 1013 cm-2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaN P-i-Ns remain superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.

  19. Optimizing photon-pair generation electronically using a p-i-n diode incorporated in a silicon microring resonator

    SciTech Connect

    Savanier, Marc Kumar, Ranjeet; Mookherjea, Shayan

    2015-09-28

    Silicon photonic microchips may be useful for compact, inexpensive, room-temperature optically pumped photon-pair sources, which unlike conventional photon-pair generators based on crystals or optical fibers, can be manufactured using CMOS-compatible processes on silicon wafers. It has been shown that photon pairs can be created in simple structures such as microring resonators at a rate of a few hundred kilohertz using less than a milliwatt of optical pump power, based on the process of spontaneous four-wave mixing. To create a practical photon-pair source, however, also requires some way of monitoring the device and aligning the pump wavelength when the temperature varies, since silicon resonators are highly sensitive to temperature. In fact, monitoring photodiodes are standard components in classical laser diodes, but the incorporation of germanium or InGaAs photodiodes would raise the cost and fabrication complexity. Here, we present a simple and effective all-electronic technique for finding the optimum operating point for the microring used to generate photon pairs, based on measuring the reverse-biased current in a silicon p-i-n junction diode fabricated across the waveguide that constitutes the silicon microring. We show that by monitoring the current, and using it to tune the pump laser wavelength, the photon-pair generation properties of the microring can be preserved over a temperature range of more than 30 °C.

  20. Optimizing photon-pair generation electronically using a p-i-n diode incorporated in a silicon microring resonator

    NASA Astrophysics Data System (ADS)

    Savanier, Marc; Kumar, Ranjeet; Mookherjea, Shayan

    2015-09-01

    Silicon photonic microchips may be useful for compact, inexpensive, room-temperature optically pumped photon-pair sources, which unlike conventional photon-pair generators based on crystals or optical fibers, can be manufactured using CMOS-compatible processes on silicon wafers. It has been shown that photon pairs can be created in simple structures such as microring resonators at a rate of a few hundred kilohertz using less than a milliwatt of optical pump power, based on the process of spontaneous four-wave mixing. To create a practical photon-pair source, however, also requires some way of monitoring the device and aligning the pump wavelength when the temperature varies, since silicon resonators are highly sensitive to temperature. In fact, monitoring photodiodes are standard components in classical laser diodes, but the incorporation of germanium or InGaAs photodiodes would raise the cost and fabrication complexity. Here, we present a simple and effective all-electronic technique for finding the optimum operating point for the microring used to generate photon pairs, based on measuring the reverse-biased current in a silicon p-i-n junction diode fabricated across the waveguide that constitutes the silicon microring. We show that by monitoring the current, and using it to tune the pump laser wavelength, the photon-pair generation properties of the microring can be preserved over a temperature range of more than 30 °C.

  1. InGaAs/AlAs triple-barrier p-i-n junction diode for realizing superlattice-based FET for steep slope

    NASA Astrophysics Data System (ADS)

    Yukimachi, Atsushi; Miyamoto, Yasuyuki

    2016-11-01

    The subthreshold slope of a conventional FET is over 60 mV/dec at room temperature. One of the proposed devices capable of overcoming this limitation is a superlattice FET (SLFET). In this study, we determined the feasibility of an SLFET experimentally. To overcome the limitations of conventional FETs, we proposed a “leaned” superlattice structure for an FET. With the help of calculations, we fabricated InGaAs/AlAs triple-barrier p-i-n diodes instead of FETs. By using measurements recorded at room and low temperatures, we confirmed the change in slope at the expected bias through calculations.

  2. Nuclear radiation detectors based on a matrix of ion-implanted p-i-n diodes on undoped GaAs epilayers

    SciTech Connect

    Baryshnikov, F. M.; Britvich, G. I.; Chernykh, A. V.; Chernykh, S. V.; Chubenko, A. P.; Didenko, S. I.; Koltsov, G. I.

    2012-11-06

    Samples of nuclear detectors which represent matrices of p-i-n diodes were fabricated based on undoped gallium arsenide epitaxial layers by ion implantation technology. The detectors have a size of the active area of 0.4 Multiplication-Sign 0.4 and 0.9 Multiplication-Sign 0.9 cm{sup 2}. Electrical characteristics of fabricated detectors and results of measurements of fast neutrons spectra of {sup 241}Am-Be source by the recoil protons method are discussed.

  3. Effect of tunable dot charging on photoresponse spectra of GaAs p-i-n diode with InAs quantum dots

    SciTech Connect

    Shang, Xiangjun; Yu, Ying; Li, Mifeng; Wang, Lijuan; Zha, Guowei; Ni, Haiqiao; Niu, Zhichuan; Pettersson, Håkan

    2015-12-28

    Quantum dot (QD)-embedded photodiodes have demonstrated great potential for use as detectors. A modulation of QD charging opens intriguing possibilities for adaptive sensing with bias-tunable detector characteristics. Here, we report on a p-i-n GaAs photodiode with InAs QDs whose charging is tunable due to unintentional Be diffusion and trap-assisted tunneling of holes, from bias- and temperature (T)-dependent photocurrent spectroscopy. For the sub-bandgap spectra, the T-dependent relative intensities “QD-s/WL” and “WL/GaAs” (WL: wetting layer) indicate dominant tunneling under −0.9 V (trap-assisted tunneling from the top QDs) and dominant thermal escape under −0.2 ∼ 0.5 V (from the bottom QDs since the top ones are charged and inactive for optical absorption) from the QD s-state, dominant tunneling from WL, and enhanced QD charging at >190 K (related to trap level ionization). For the above-bandgap spectra, the degradation of the spectral profile (especially near the GaAs bandedge) as the bias and T tune (especially under −0.2 ∼ 0.2 V and at >190 K) can be explained well by the enhanced photoelectron capture in QDs with tunable charging. The dominant spectral profile with no degradation under 0.5 V is due to a saturated electron capture in charged QDs (i.e., charging neutralization). QD level simulation and schematic bandstructures can help one understand these effects.

  4. Semiconductor P-I-N detector

    DOEpatents

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  5. Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction.

    PubMed

    Gajda, Andrzej; Zimmermann, Lars; Jazayerifar, Mahmoud; Winzer, Georg; Tian, Hui; Elschner, Robert; Richter, Thomas; Schubert, Colja; Tillack, Bernd; Petermann, Klaus

    2012-06-04

    In this paper we present four-wave mixing (FWM) based parametric conversion experiments in p-i-n diode assisted silicon-on-insulator (SOI) nano-rib waveguides using continuous-wave (CW) light around 1550 nm wavelength. Using a reverse biased p-i-n waveguide diode we observe an increase of the wavelength conversion efficiency of more than 4.5 dB compared to low loss nano-rib waveguides without p-i-n junction, achieving a peak efficiency of -1 dB. Conversion efficiency improves also by more than 7 dB compared to previously reported experiments deploying 1.5 µm SOI waveguides with p-i-n structure. To the best of our knowledge, the observed peak conversion efficiency of -1dB is the highest CW efficiency in SOI reported so far.

  6. An innovative a-Si:H p-i-n based X-ray medical image detector for low dosage and long exposure applications

    NASA Astrophysics Data System (ADS)

    Fann, Sen-Shyong; Jiang, Yeu-Long; Hwang, Huey-Liang

    2003-05-01

    An innovative hydrogenated amorphous silicon (a-Si:H) p-i-n photodiode based X-ray detector for medical imaging applications was developed in this work, and the improvements of the device were also discussed. The detector consists of an a-Si:H p-i-n photodiode and a stacked dielectric layer, such as silicon nitride (SiN x), deposited on p-layer of this p-i-n diode (n-i-p-SiN x), as the major charge storage element. The detector operates as a capacitor, formed by this dielectric layer, in parallel with a reverse-biased p-i-n diode during the detection cycle. Consequently, the capacitance, for accumulating the photon-converted charges, of the p-i-n diode was enlarged by this stacked dielectric layer without decreasing the active area of the detector. As a result, the dynamic range, linearity and data retention capability of this novel detector are significantly improved. In particular, the photo sensitivity and charge storage capability of this novel detector can be separately optimized, and the drastically improved data retention, due to the high density and long release time of the trapped electrons in p-layer of the p-i-n diode, could facilitate this novel detector to be employed in the low dosage flux and long exposure applications.

  7. Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics.

    PubMed

    Rao, Sandro; Pangallo, Giovanni; Della Corte, Francesco Giuseppe

    2016-01-06

    Hydrogenated amorphous silicon (a-Si:H) shows interesting optoelectronic and technological properties that make it suitable for the fabrication of passive and active micro-photonic devices, compatible moreover with standard microelectronic devices on a microchip. A temperature sensor based on a hydrogenated amorphous silicon p-i-n diode integrated in an optical waveguide for silicon photonics applications is presented here. The linear dependence of the voltage drop across the forward-biased diode on temperature, in a range from 30 °C up to 170 °C, has been used for thermal sensing. A high sensitivity of 11.9 mV/°C in the bias current range of 34-40 nA has been measured. The proposed device is particularly suitable for the continuous temperature monitoring of CMOS-compatible photonic integrated circuits, where the behavior of the on-chip active and passive devices are strongly dependent on their operating temperature.

  8. Improved designs for p-i-n OLEDs towards the minimal power loss of devices

    NASA Astrophysics Data System (ADS)

    Qin, Dashan

    2014-05-01

    Currently, the low yield, high power loss, and poor stability of organic light emitting diodes (OLEDs) panels are remaining as the obstacles to the fast growth of the OLED industry, especially for the lighting application. The p-i-n OLEDs have been widely recognized as the promising method to circumvent these bottleneck factors, due to the unique merit of the electrical doping to enable low power loss. In p-i-n OLEDs, the frequently used n-doped electron transport layers (n-ETL1) such as n-BCP, n-Alq3 possess markedly lower conductivities but better capabilities of injecting electrons into ETL such as BCP, Alq3, as compared to another class of n-doped ETLs (n-ETL2), e.g., n-NTCDA, n-PTCDA, n-C60. Thus, in order to minimize the electron loss, we provide the structure of uniting two n-doped layers, cathode/ n-ETL2/ n-ETL1/ ETL. In p-i-n OLEDs, the hole current injected from the single p-doped hole transport layer (p-HTL) into the neat HTL must be limited, because the higher conductivity p-HTL has the higher lying highest occupied molecular orbital (HOMO) level, leading to a larger hole transport energy barrier (φB) at the interface with the neat HTL. Therefore, in order to minimize the hole loss, we suggest the structure of uniting two p-HTLs, anode/ p-HTL2/ p-HTL1/ HTL. The p-HTL2 possesses high-lying HOMO level and thereby high conductivity, decreasing the ohmic loss in the hole conduction; the p-HTL1 features a low-lying HOMO level, reducing the φB.

  9. Selective p-i-n photodetector with resonant tunneling

    SciTech Connect

    Mil'shtein, S.; Wilson, S.; Pillai, A.

    2014-05-15

    There are different fundamental approaches to designing selective photodetectors, where the selectivity of optical spectra is produced by a filtering aperture. However, manufacturing of multilayered filters is cumbersome for epitaxial technology. In the current study, we offer a novel approach in design of selective photodetectors. A p-i-n photodetector with superlattices in top n-layer becomes transparent for photons where hν<>E{sub ng}+E{sub n1}, the light will be absorbed, simultaneously producing high energy (hot) electrons. The designed thickness of the structure does prevent thermal relaxation of high energy electrons by thus enhancing the selectivity of the photodetector. However the most important selectivity element is the resonant tunneling which does happen only for electrons occupying E{sub n1} energy levels as they transfer to levels E{sub i1}aligned under reverse biasing.

  10. N-i-p-SiNx and p-i-n-SiNx x-ray image detectors for medical applications

    NASA Astrophysics Data System (ADS)

    Fann, Sen-Shyong; Jiang, Yeu-Long; Hwang, Huey-Liang

    2003-06-01

    An innovative hydrogenated amorphous silicon (a-Si:H) p-i-n photodiode based x-ray detector for medical imaging applications has been developed in this work. Basically, the detector is a p-i-n photodiode, with a very simple modification by depositing a stacked silicon nitride (SiNx) layer on the p-layer (n-i-p-SiNx) or n-layer (p-i-n-SiNx) of this diode. The dielectric layer functioned as the major charge storage element of the pixel, and p-i-n as the photon-charge converter, separately. The charge storage capacity is larger as the nitride layer is thinner. Consequently, dynamic range, linearity, and data retention of the image array were significantly improved. The novel detector also offers a scheme to independently optimize the photo sensitivity and charge storage capacity of a p-i-n photodiode based pixel. Instead of the conventional p-i-n photodiodes, the novel detectors are proposed to employ in the active matrix, flat-panel imager, with the favor that the signal readout electronics and the TFT driving circuitry are unchanged. The changes include only the bias voltage, whch as a bi-level waveform, as well as the timing for turning on/off the switching thin film transistors (TFTs). The fundamentals of the n-i-p-SiNx and p-i-n-SiNx detectors are addressed, and the performances of these two novel detectors and the conventional p-i-n photodiode are compared. Additionally, the different performances, such as the speed, between n-i-p-SiNx and p-i-n-SiNx will be particularly discussed.

  11. In0.53Ga0.47As p-i-n photodiodes with transparent cadmium tin oxide contacts

    NASA Astrophysics Data System (ADS)

    Berger, Paul R.; Dutta, Niloy K.; Zydzik, George; O'Bryan, H. M.; Keller, Ursula; Smith, Peter R.; Lopata, John; Sivco, D.; Cho, A. Y.

    1992-10-01

    A new type of p-i-n In0.53Ga0.47As photodiode having an optically transparent composite top electrode consisting of a thin semitransparent metal layer and a transparent cadmium tin oxide (CTO) layer was investigated. The composite functions as the n or p contact, an optical window, and an antireflection coating. The transparent contact also prevents shadowing of the active layer by the top electrode, thus allowing greater collection of incident light. Since the CTO contact is nonalloyed, interdiffusion into the i-region is not relevant avoiding an increased dark current. The photodiodes exhibited leakage currents of ≤8 nA and some as low as 23 pA, with reverse breakdown voltages of ≥15-17 V. Responsivity was measured using a 1.55 μm InGaAsP diode laser focused onto an unpassivated 60 μm diam p-i-n photodiode and was ≥0.41 A/W. Photoresponse of the diodes to 3 ps pulses from a Nd:YLF laser (λ=1.047 μm) was 169 and 86 ps for the 60 and 9 μm diodes, respectively. The maximum frequency response of the 9 μm diode is packaging limited, and is expected to have an intrinsic response time of 20-30 ps.

  12. 20 kV, 2 cm2, 4H-SIC Gate Turn-Off Thyristors for Advanced Pulsed Power Applications

    DTIC Science & Technology

    2013-06-01

    diode, the SiC GTO and SiC PiN diode based converter can improve the efficiency by 1% at room-temperature and more than 6% at 200C for an HVDC interface...Models for HVDC Converter”, IEEE Industry Applications Society Annual Meeting (IAS 2004), Oct 3-7, 2004, Seattle, Washington. [5] S. Ryu, C. Capell, C

  13. An in situ gamma ray spectrometer with CsI/p-i-n detector

    NASA Astrophysics Data System (ADS)

    Xu, Clarke X.; Williams, Ron R.

    1995-03-01

    The development of a portable gamma ray spectrometer based on a CsI(Tl) scintillator (1.8 cm×1.8 cm×4 cm) with integral p-i-n diode (1.8 cm×4 cm) is described. A single board computer containing the MC68HC11 microcontroller, a single-chip self-contained computer system, is used for system control. The total size of the instrument is only 12 in×7 in. including the spectrometer and power supply. The system provides a low cost, low power gamma ray spectrometer as compared to the more common PMT-based devices. Spectra can be collected in daily intervals for up to 1 week. Special software which monitors the proper working of the spectrometer insures long term stability. This spectrometer can be used for routine monitoring and detection of gamma ray emitting radio nuclides. Performance of the spectrometer as well as gamma ray spectra are presented. The qualitative and quantitative reliability have shown its potential as a stand alone field monitoring instrument due to its low power consumption and intelligence.

  14. Development of a P-I-N HgCdTe photomixer for laser heterodyne spectrometry

    NASA Technical Reports Server (NTRS)

    Bratt, Peter R.

    1987-01-01

    An improved HgCdTe photomixer technology was demonstrated employing a p-i-n photodiode structure. The i-region was near intrinsic n-type HgCdTe; the n-region was formed by B+ ion implantation; and the p-region was formed either by a shallow Au diffusion or by a Pt Schottky barrier. Experimental devices in a back-side illuminated mesa diode configuration were fabricated, tested, and delivered. The best photomixer was packaged in a 24-hour LN2 dewar along with a cooled GaAs FET preamplifier. Testing was performed by mixing black-body radiation with a CO2 laser beam and measuring the IF signal, noise, and signal-to-noise ratio in the GHz frequency range. Signal bandwidth for this photomixer was 1.3 GHz. The heterodyne NEP was 4.4 x 10 to the -20 W/Hz out to 1 GHz increasing to 8.6 x 10 to the -10 W/Hz at 2 GHz. Other photomixers delivered on this program had heterodyne NEPs at 1 GHz ranging from 8 x 10 to the -20 to 4.4 x 10 to the -19 W/Hz and NEP bandwidths from 2 to 4 GHz.

  15. A final report for: Gallium arsenide P-I-N detectors for high-sensitivity imaging of thermal neutrons

    SciTech Connect

    Vernon, Stanley M.

    1999-04-01

    This SBIR Phase I developed neutron detectors made from gallium arsenide (GaAs) p-type/ intrinsic/n-type (P-I-N) diodes grown by metalorganic chemical vapor deposition (MOCVD) onto semi-insulating (S1) bulk GaAs wafers. A layer of isotonically enriched boron-10 evaporated onto the front surface serves to convert incoming neutrons into lithium ions and a 1.47 MeV alpha particle which creates electron-hole pairs that are detected by the GaAs diode. Various thicknesses of ''intrinsic'' (I) undoped GaAs were tested, as was use of a back-surface field (BSF) formed from a layer of Al{sub x}Ga{sub 1-x}As. Schottky-barrier diodes formed from the same structures without the p+ GaAs top layer were tested as a comparison. After mesa etching and application of contacts, devices were tested in visible light before application of the boron coating. Internal quantum efficiency (IQE) of the best diode near the GaAs bandedge is over 90%. The lowest dark current measured is 1 x 10{sup -12} amps at -1 V on a 3mm x 3mm diode, or a density of 1.1 x 10{sup -11} amps cm{sup -2}, with many of the diode structures tested having nearly similar results. The PIN diodes were significantly better than the Schottky barrier device, which had six orders of magnitude higher dark current. Diodes were characterized in terms of their current-mode response to 5.5 MeV alpha particles from 241-Americium. These radiation-induced currents were as high as 9.78 x 10{sup -7} A cm{sup -1} on a PIN device with an Al{sub x}Ga{sub 1-x}As BSF. Simple PIN diodes had currents as high as 2.44 x 10{sup -7} A cm{sup -2}, with thicker undoped layers showing better sensitivity. Boron coatings were applied, and response to neutrons tested at University of Michigan by Dr. Doug McGregor. Devices with PIN and Schottky barrier designs showed neutron detection efficiencies as high as 2% on 5 {micro}m thick devices, with no need for external bias voltages. PIN diodes showed higher breakdown voltages and lower noise

  16. Coplanar waveguide discontinuities for P-I-N diode switches and filter applications

    NASA Technical Reports Server (NTRS)

    Dib, N. I.; Katehi, P. B.; Ponchak, George E.; Simons, Rainee N.

    1990-01-01

    A full wave space domain integral equation (SDIE) analysis of coplanar waveguide (CPW) two port discontinuities is presented. An experimental setup to measure the S-parameters of such discontinuities is described. Experimental and theoretical results for CPW realizations of pass-band and stop-band filters are presented. The S-parameters of such structures are plotted in the frequency range 5 to 25 GHz.

  17. A fast SOI-based variable optical attenuator with a p-i-n structure with low polarization dependent loss

    NASA Astrophysics Data System (ADS)

    Yuan, Pei; Wu, Yuan-da; Wang, Yue; An, Jun-ming; Hu, Xiong-wei

    2016-01-01

    According to the plasma dispersion effect of silicon (Si), a silicon-on-insulator (SOI) based variable optical attenuator (VOA) with p-i-n lateral diode structure is demonstrated in this paper. A wire rib waveguide with sub-micrometer cross section is adopted. The device is only about 2 mm long. The power consumption of the VOA is 76.3 mW (0.67 V, 113.9 mA), and due to the carrier absorption, the polarization dependent loss ( PDL) is 0.1 dB at 20 dB attenuation. The raise time of the VOA is 34.5 ns, the fall time is 37 ns, and the response time is 71.5 ns.

  18. Carrier trapping and escape times in p-i-n GaInNAs MQW structures.

    PubMed

    Khalil, Hagir M; Balkan, Naci

    2014-01-13

    We used a semi-classical model to describe carrier capture into and thermionic escape from GaInNAs/GaAs multiple quantum wells (MQWs) situated within the intrinsic region of a GaAs p-i-n junction. The results are used to explain photocurrent oscillations with applied bias observed in these structures, in terms of charge accumulation and resonance tunnelling.

  19. Carrier trapping and escape times in p-i-n GaInNAs MQW structures

    PubMed Central

    2014-01-01

    We used a semi-classical model to describe carrier capture into and thermionic escape from GaInNAs/GaAs multiple quantum wells (MQWs) situated within the intrinsic region of a GaAs p-i-n junction. The results are used to explain photocurrent oscillations with applied bias observed in these structures, in terms of charge accumulation and resonance tunnelling. PMID:24417767

  20. Room-temperature electroluminescence from radial p-i-n InP/InAsP/InP nanowire heterostructures in the 1.5-µm-wavelength region

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kenichi; Sudo, Hisao; Matsuda, Manabu; Ekawa, Mitsuru; Yamamoto, Tsuyoshi; Arakawa, Yasuhiko

    2015-04-01

    Crystal growth of radial p-i-n InP nanowires (NWs) with InAsP quantum well (QW) layers by metalorganic vapor-phase epitaxy was studied, and vertical NW light-emitting devices were fabricated. Radial p-i-n NWs were formed using position-controlled n-type InP NW cores. By optimizing the flow rates of the Zn source, Zn-doped p-type InP shells were grown on the sidewall of the radial QW structures while maintaining the photoluminescence intensity of the QWs. The fabricated devices showed current rectification originating from the p-i-n diode structures. Electroluminescence from the radial QWs was clearly observed in the 1.5-µm-wavelength region at room temperature for the first time.

  1. Influence of bilayer resist processing on p-i-n OLEDs: towards multicolor photolithographic structuring of organic displays

    NASA Astrophysics Data System (ADS)

    Krotkus, Simonas; Nehm, Frederik; Janneck, Robby; Kalkura, Shrujan; Zakhidov, Alex A.; Schober, Matthias; Hild, Olaf R.; Kasemann, Daniel; Hofmann, Simone; Leo, Karl; Reineke, Sebastian

    2015-03-01

    Recently, bilayer resist processing combined with development in hydrofluoroether (HFE) solvents has been shown to enable single color structuring of vacuum-deposited state-of-the-art organic light-emitting diodes (OLED). In this work, we focus on further steps required to achieve multicolor structuring of p-i-n OLEDs using a bilayer resist approach. We show that the green phosphorescent OLED stack is undamaged after lift-off in HFEs, which is a necessary step in order to achieve RGB pixel array structured by means of photolithography. Furthermore, we investigate the influence of both, double resist processing on red OLEDs and exposure of the devices to ambient conditions, on the basis of the electrical, optical and lifetime parameters of the devices. Additionally, water vapor transmission rates of single and bilayer system are evaluated with thin Ca film conductance test. We conclude that diffusion of propylene glycol methyl ether acetate (PGMEA) through the fluoropolymer film is the main mechanism behind OLED degradation observed after bilayer processing.

  2. Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors

    NASA Astrophysics Data System (ADS)

    Morea, Matthew; Brendel, Corinna E.; Zang, Kai; Suh, Junkyo; Fenrich, Colleen S.; Huang, Yi-Chiau; Chung, Hua; Huo, Yijie; Kamins, Theodore I.; Saraswat, Krishna C.; Harris, James S.

    2017-02-01

    We study the effect of surface passivation on pseudomorphic multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors. A combination of ozone oxidation to form GeOx and GeSnOx on the surface of the diodes followed by atomic layer deposition of Al2O3 for protection of these native oxides provides reduced dark current. With a temperature-dependent investigation of dark current, we calculate the activation energy to be 0.26 eV at a bias of -0.1 V and 0.05 eV at -1 V for the sample passivated by this ozone method. Based on these activation energy results, we find that the current is less dominated by bulk tunneling at lower reverse bias values; hence, the effect of surface passivation is more noticeable with nearly an order-of-magnitude improvement in dark current for the ozone-passivated sample compared to control devices without the ozone treatment at a voltage of -0.1 V. Passivation also results in a significant enhancement of the responsivity, particularly for shorter wavelengths, with 26% higher responsivity at 1100 nm and 16% higher performance at 1300 nm.

  3. High-performance p-i-n/HBT monolithic photoreceivers for lightwave communications

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, Chandra S.; Lunardi, Leda M.

    1995-12-01

    Long wavelength optoelectronic integrated circuits (OEICs) have made impressive progress in the last decade and their performance has become attractive enough to be considered as part of lightwave communication systems. This paper reviews these aspects of OEICs, with emphasis on monolithic photoreceivers which incorporate heterojunction bipolar transistors for the electronic functions. We review single channel p-i-n/HBT photoreceivers with speeds up to 12 Gb/s and multi-channel array-type receivers suitable for WDM applications with an aggregate throughput of 20 Gb/s.

  4. Density of states measurements in a p-i-n solar cell

    SciTech Connect

    Crandall, R.S.; Wang, Q.

    1996-05-01

    The authors describe results of density of states (DOS) profiling in p-i-n solar-cell devices using drive-level capacitance (DLC) techniques. Near the p-i interface the defect density is high, decreasing rapidly into the interior, reaching low values in the central region of the cell, and rising rapidly again at the n-i interface. They show that the states in the central region are neutral dangling-bond defects, whereas those near the interfaces with the doped layers are charged dangling bonds.

  5. Electrophysical Properties of GaAs P-I-N Structures for Concentrator Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Kósa, Arpád; Mikolášek, Miroslav; Stuchlíková, Ľubica; Harmatha, Ladislav; Dawidowski, Wojciech; Ściana, Beata; Tłaczała, Marek

    2016-09-01

    This paper is dedicated to electro-physical characterisation of a GaAs p-i-n structure grown for solar cell applications, which was carried out by light and dark current-voltage (I-V) and Deep Level Transient Fourier Spectroscopy (DLTFS) methods. The conversion efficiency and open-circuit voltage were determined from I-V measurement at 1 and 20× sun light concentrations. Three electron like defects TAn1, TAn2, TDn and one hole like defect TBp obtained by DLTFS measurements were confirmed. The origin of these defect states was stated as native GaAs impurities.

  6. Organic light emitting field effect transistors based on an ambipolar p-i-n layered structure

    NASA Astrophysics Data System (ADS)

    Maiorano, V.; Bramanti, A.; Carallo, S.; Cingolani, R.; Gigli, G.

    2010-03-01

    A bottom contact/top gate ambipolar "p-i-n" layered light emitting field effect transistor with the active medium inserted between two doped transport layers, is reported. The doping profile results crucial to the capability of emitting light, as well as to the electrical characteristics of the device. In this sense, high output current at relative low applied gate/drain voltage and light emission along the whole large area transistor channel are observed, putting the basis to full integration of organic light emitting field effect transistors in planar complex devices.

  7. A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity

    NASA Astrophysics Data System (ADS)

    Niu, Nan; Liu, Tsung-Li; Aharonovich, Igor; Russell, Kasey J.; Woolf, Alexander; Sadler, Thomas C.; El-Ella, Haitham A. R.; Kappers, Menno J.; Oliver, Rachel A.; Hu, Evelyn L.

    2012-10-01

    Effective, permanent tuning of the whispering gallery modes (WGMs) of p-i-n doped GaN microdisk cavity with embedded InGaN quantum dots over one free spectral range is demonstrated by irradiating the microdisks with a ultraviolet laser (380 nm) in DI water. For incident laser powers between 150 and 960 nW, the tuning rate varies linearly. Etching of the top surface of the cavity is proposed as the driving force for the observed shift in WGMs and is supported by experiments. The tuning for GaN/InGaN microdisk cavities is an important step for deterministically realizing nanophotonic devices for studying cavity quantum electrodynamics.

  8. GeSn p-i-n photodetector for all telecommunication bands detection.

    PubMed

    Su, Shaojian; Cheng, Buwen; Xue, Chunlai; Wang, Wei; Cao, Quan; Xue, Haiyun; Hu, Weixuan; Zhang, Guangze; Zuo, Yuhua; Wang, Qiming

    2011-03-28

    Using a 820 nm-thick high-quality Ge0.97Sn0.03 alloy film grown on Si(001) by molecular beam epitaxy, GeSn p-i-n photodectectors have been fabricated. The detectors have relatively high responsivities, such as 0.52 A/W, 0.23 A/W, and 0.12 A/W at 1310 nm, 1540 nm, and 1640 nm, respectively, under a 1 V reverse bias. With a broad detection spectrum (800-1800 nm) covering the whole telecommunication windows and compatibility with conventional complementary metal-oxide-semiconductors (CMOS) technology, the GeSn devices are attractive for applications in both optical communications and optical interconnects.

  9. Optical characterization of GaInP p-i-n solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yun-Guang; Lin, Der-Yuh; Ko, Tsung-Shine; Wu, Jenq-Shinn; Wu, Chih-Hung; Tsai, Yu-Li; Kao, Ming-Cheng; Chen, Hong-Zen

    2015-04-01

    Four p-i-n GaInP solar cells were grown by metal organic chemical vapor deposition (MOCVD) with different intrinsic layer thicknesses from 0.25 to 1 µm. A series of optical measurements, including electroreflectance (ER), photoluminescence (PL), electric luminescence (EL), and photocurrent (PC) measurements, have been performed to study the built-in electric field effect and to determine the suitable thickness of an intrinsic layer. The PL and EL spectra reflected the crystal quality of the GaInP layers. Furthermore, from the obtained ER spectrum, the built-in electric field in the intrinsic layer can be revealed. From the PC spectra under various bias voltages, the effect of built-in electric fields on the collection of photogenerated carriers has been studied.

  10. Influence of thin metal as a top electrode on the characteristics of P-I-N a- Si:H solar cells

    SciTech Connect

    Han, M.; Anderson, W.A.; Lahri, R.; Coleman, J.

    1981-04-01

    Hydrogenated amorphous silicon (a-Si:H) p-n junction solar cells have been fabricated which utilize various metals (Cr, Cu, Al, Pd, Ag) as a top electrode. Experimental and theoretical analysis of photovolatic performance in a-Si:H solar cells as a function of resistivity, optical transmittance, and work function of thin metal films are presented. Metal work function changes the effective built-in potential of p-n junction diodes. Furthermore, a lower work function metal forms a good Ohmic contact for substrate --P/sup +/-I-N/sup +/-- electrode cells, and high work function metals improve V/sub oc/ of substrate -N-I-P cells. Typical V/sub o/c values are 760 mV with Cr--, Cu--, and Al--N-I-P--stainless steel (SS), 700 mV with Pd--N-I-P-SS, 600 mV with Pd--P-I-N-SS, and 540 mV with Cr--P-I-N-SS. J/sub sc/ is strongly dependent on transmittance and resistivity of the metal films. Fill factor is independent of the choice of a top electrode. An efficient of 2% has been obtained on a 2 cm/sup 2/ solar cell.

  11. GaAs nanowire array solar cells with axial p-i-n junctions.

    PubMed

    Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2014-06-11

    Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics.

  12. Secondary electron emission contrast of quantum wells in GaAs p-i-n junctions.

    PubMed

    Grunbaum, Enrique; Barkay, Zahava; Shapira, Yoram; Barnham, Keith W J; Bushnell, David B; Ekins-Daukes, Nicholas J; Mazzer, Massimo; Wilshaw, Peter

    2009-04-01

    The secondary electron (SE) signal over a cleaved surface of GaAs p-i-n solar cells containing stacks of quantum wells (QWs) is analyzed by high-resolution scanning electron microscopy. The InGaAs QWs appear darker than the GaAsP barriers, which is attributed to the differences in electron affinity. This method is shown to be a powerful tool for profiling the conduction band minimum across junctions and interfaces with nanometer resolution. The intrinsic region is shown to be pinned to the Fermi level. Additional SE contrast mechanisms are discussed in relation to the dopant regions themselves as well as the AlGaAs window at the p-region. A novel method of in situ observation of the SE profile changes resulting from reverse biasing these structures shows that the built-in potential may be deduced. The obtained value of 0.7 eV is lower than the conventional bulk value due to surface effects.

  13. Si Radial p-i-n Junction Photovoltaic Arrays with Built-In Light Concentrators.

    PubMed

    Yoo, Jinkyoung; Nguyen, Binh-Minh; Campbell, Ian H; Dayeh, Shadi A; Schuele, Paul; Evans, David; Picraux, S Tom

    2015-05-26

    High-performance photovoltaic (PV) devices require strong light absorption, low reflection and efficient photogenerated carrier collection for high quantum efficiency. Previous optical studies of vertical wires arrays have revealed that extremely efficient light absorption in the visible wavelengths is achievable. Photovoltaic studies have further advanced the wire approach by employing radial p-n junction architectures to achieve more efficient carrier collection. While radial p-n junction formation and optimized light absorption have independently been considered, PV efficiencies have further opportunities for enhancement by exploiting the radial p-n junction fabrication procedures to form arrays that simultaneously enhance both light absorption and carrier collection efficiency. Here we report a concept of morphology control to improve PV performance, light absorption and quantum efficiency of silicon radial p-i-n junction arrays. Surface energy minimization during vapor phase epitaxy is exploited to form match-head structures at the tips of the wires. The match-head structure acts as a built-in light concentrator and enhances optical absorptance and external quantum efficiencies by 30 to 40%, and PV efficiency under AM 1.5G illumination by 20% compared to cylindrical structures without match-heads. The design rules for these improvements with match-head arrays are systematically studied. This approach of process-enhanced control of three-dimensional Si morphologies provides a fab-compatible way to enhance the PV performance of Si radial p-n junction wire arrays.

  14. Dense nanoimprinted silicon nanowire arrays with passivated axial p-i-n junctions for photovoltaic applications

    SciTech Connect

    Zhang, Peng; Liu, Pei; Siontas, Stylianos; Zaslavsky, A.; Pacifici, D.; Ha, Jong-Yoon; Krylyuk, S.; Davydov, A. V.

    2015-03-28

    We report on the fabrication and photovoltaic characteristics of vertical arrays of silicon axial p-i-n junction nanowire (NW) solar cells grown by vapor-liquid-solid (VLS) epitaxy. NW surface passivation with silicon dioxide shell is shown to enhance carrier recombination time, open-circuit voltage (V{sub OC}), short-circuit current density (J{sub SC}), and fill factor (FF). The photovoltaic performance of passivated individual NW and NW arrays was compared under 532 nm laser illumination with power density of ∼10 W/cm{sup 2}. Higher values of V{sub OC} and FF in the NW arrays are explained by enhanced light trapping. In order to verify the effect of NW density on light absorption and hence on the photovoltaic performance of NW arrays, dense Si NW arrays were fabricated using nanoimprint lithography to periodically arrange the gold seed particles prior to epitaxial growth. Compared to sparse NW arrays fabricated using VLS growth from randomly distributed gold seeds, the nanoimprinted NW array solar cells show a greatly increased peak external quantum efficiency of ∼8% and internal quantum efficiency of ∼90% in the visible spectral range. Three-dimensional finite-difference time-domain simulations of Si NW periodic arrays with varying pitch (P) confirm the importance of high NW density. Specifically, due to diffractive scattering and light trapping, absorption efficiency close to 100% in the 400–650 nm spectral range is calculated for a Si NW array with P = 250 nm, significantly outperforming a blanket Si film of the same thickness.

  15. Design and Characterization of p-i-n Devices for Betavoltaic Microbatteries on Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Raziuddin A.

    Betavoltaic microbatteries convert nuclear energy released as beta particles directly into electrical energy. These batteries are well suited for electrical applications such as micro-electro-mechanical systems (MEMS), implantable medical devices and sensors. Such devices are often located in hard to access places where long life, micro-size and lightweight are required. The working principle of a betavoltaic device is similar to a photovoltaic device; they differ only in that the electron hole pairs (EHPs) are generated in the device by electrons instead of photons. In this study, the performance of a betavoltaic device fabricated from gallium nitride (GaN) is investigated for beta particle energies equivalent to Tritium (3H) and Nickel-63 (N63) beta sources. GaN is an attractive choice for fabricating betavoltaic devices due to its wide band gap and radiation resistance. Another advantage GaN has is that it can be alloyed with aluminum (Al) to further increase the bandgap, resulting in a higher output power and increased efficiency. Betavoltaic devices were fabricated on p-i-n GaN structures grown by metalorganic chemical vapor deposition (MOCVD). The devices were characterized using current - voltage (IV) measurements without illumination (light or beta), using a laser driven light source, and under an electron beam. Dark IV measurements showed a turn on-voltage of ~ 3.4 V, specific-on-resistance of 15.1 m O-cm2, and a leakage current of 0.5 mA at -- 10 V. A clear photo-response was observed when IV curves were measured for these devices under a light source at a wavelength of 310 nm (4.0 eV). These devices were tested under an electron beam in order to evaluate their behavior as betavoltaic microbatteries without using radioactive materials. Output power of 70 nW and 640 nW with overall efficiencies of 1.2% and 4.0% were determined at the average energy emission of 3H (5.6 keV) and 63N (17 keV) respectively.

  16. High-Speed Widely-Tunable 90% Quantum-Efficiency Resonant Cavity Enhanced p-i-n Photodiodes

    DTIC Science & Technology

    1998-12-01

    REPORT unclassified b . ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 8:45am - 9...00am WB2 High-Speed Widely-Tunable >90% Quantum-Efficiency Resonant Cavity Enhanced p-i-n Photodiodes Necmi Biyiklia. Ibrahim Kimukinb. Orhan ...Bilkent, Ankara 06533, Turkey. b Department of Physics, Bilkent University, Bilkent, Ankara 06533, Turkey. c Department of Electrical and Computer

  17. Large lateral photovoltaic effect in µc-SiOx:H/a-Si:H/c-Si p-i-n structure

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Chen, Jianhui; Liu, Jihong; Zhang, Xinhui; Wang, Shufang; Fu, Guangsheng

    2016-03-01

    In this paper, we report on a large lateral photovoltaic effect (LPE) in a hydrogenated microcrystal silicon-oxygen (µc-SiOx:H)-based p-i-n structure. Compared with LPE in a hydrogenated amorphous silicon (a-Si:H)-based p-i-n structure, this structure showed an abnormal current-voltage (I-V) curve with a lower photoelectric conversion efficiency, but exhibited a much higher LPE with the highest position sensitivity of 64.3 mV/mm. We ascribe this to the enhancement of the lateral gradient of excess transmitted carriers induced by increasing both Schottky barrier and p-type layer body conductivity. Our results suggest that this µc-SiOx:H-based p-i-n structure may be a promising candidate for position-sensitive detectors (PSDs). Moreover, our results may also imply that solar cell devices with abnormal I-V curves (or low efficiency) could find their new applications in other aspects.

  18. Specific features of light current-voltage characteristics of p-i-n structures based on amorphous silicon in the case of the tunnel-drift mechanism of dark current transport

    SciTech Connect

    Andreev, A. A.

    2008-11-15

    Current-voltage (I-V) characteristics of p-i-n structures based on amorphous silicon ({alpha}-Si:H) with small hole diffusion lengths (shorter than the thickness of the i-layer of a p-i-n structure) have been experimentally studied with and without illumination. It is shown that forward I-V characteristics of structures of this kind can be described by a dependence inherent in diodes, with a diode ideality factor two-three times the maximum value of 2, theoretically predicted for generation-recombination currents in p-n junctions. The dark current is always substantially lower than the photocurrent in a cell biased with a voltage approximately equal to the opencircuit voltage of the photocell. Dark currents cannot contribute to the I-V characteristic under illumination. The photocurrent decreases with increasing photovoltage at a bias lower than the open-circuit voltage because of a decrease in the collection coefficient and the increasingly important role of back diffusion of electrons into the p-contact, rather than as a result of the dark injection. In the case of biases exceeding the open-circuit voltage, back diffusion becomes the predominant component of the current.

  19. Temperature spectra of conductance of Ge/Si p-i-n structures with Ge quantum dots

    NASA Astrophysics Data System (ADS)

    Izhnin, Ihor I.; Fitsych, Olena I.; Pishchagin, Anton A.; Kokhanenko, Andrei P.; Voitsekhovskii, Alexander V.; Dzyadukh, Stanislav M.; Nikiforov, Alexander I.

    2017-02-01

    This work presents results of investigation of Ge/Si p-i-n structures with Ge quantum dots in the i-region by the method of admittance spectroscopy. The structures contain multiple layers with Ge quantum dots separated by thin 5 nm layers of Si in the intrinsic region. Two peaks are observed on the temperature dependences of conductance of the investigated heterostructures. It is revealed that the second peak is broadened and corresponds to a system of closely lying energy levels.

  20. Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity.

    PubMed

    Tanabe, Takasumi; Nishiguchi, Katsuhiko; Kuramochi, Eiichi; Notomi, Masaya

    2009-12-07

    We have fabricated high-Q photonic crystal nanocavities with a lateral p-i-n structure to demonstrate low-power and high-speed electro-optic modulation in a silicon chip. GHz operation is demonstrated at a very low (microW level) operating power, which is about 4.6 times lower than that reported for other cavities in silicon. This low-power operation is due to the small size and high-Q of the photonic crystal nanocavity.

  1. Te incorporation in GaAs1-xSbx nanowires and p-i-n axial structure

    NASA Astrophysics Data System (ADS)

    Ahmad, Estiak; Kasanaboina, P. K.; Karim, M. R.; Sharma, M.; Reynolds, C. L.; Liu, Y.; Iyer, S.

    2016-12-01

    We report on in situ Te-doping in GaAs1-xSbx nanowires (NWs) grown via self-assisted molecular beam epitaxy. Enhanced Te incorporation in the NW at higher Te cell temperature was attested by the broadening of the x-ray diffraction peak and the presence of a strong coupled-LO phonon mode in the Raman spectra. Te-doping was estimated from the shift in the coupled-LO phonon mode to be ˜2.0 × 1018/cm3. The surfactant nature of the Te modulated the growth kinetics, which was manifested in an enhanced radial growth rate with improved photoluminescence (PL) characteristics at both room temperature (RT) and 4 K. No noticeable planar defects were observed as ascertained from the high-resolution transmission electron microscopy images and selected-area electron diffraction patterns. Finally, we demonstrate the experimental realization of a GaAs1-xSbx axial p-type/intrinsic/n-type (p-i-n) structure on a Si substrate with Te as the n-type dopant. The GaAs1-xSbx p-i-n NW structures exhibited rectifying current-voltage (I-V) behavior. The dopant concentration and the transport parameters estimated from the PL spectra and I-V curve were found to be in good agreement.

  2. Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers

    PubMed Central

    2014-01-01

    Si quantum dots (Si QDs)/SiC multilayers were fabricated by annealing hydrogenated amorphous Si/SiC multilayers prepared in a plasma-enhanced chemical vapor deposition system. The thickness of amorphous Si layer was designed to be 4 nm, and the thickness of amorphous SiC layer was kept at 2 nm. Transmission electron microscopy observation revealed the formation of Si QDs after 900°C annealing. The optical properties of the Si QDs/SiC multilayers were studied, and the optical band gap deduced from the optical absorption coefficient result is 1.48 eV. Moreover, the p-i-n structure with n-a-Si/i-(Si QDs/SiC multilayers)/p-Si was fabricated, and the carrier transportation mechanism was investigated. The p-i-n structure was used in a solar cell device. The cell had the open circuit voltage of 532 mV and the power conversion efficiency (PCE) of 6.28%. PACS 81.07.Ta; 78.67.Pt; 88.40.jj PMID:25489285

  3. Hump-shaped internal collection efficiency of degraded a-Si:H {ital p-i-n} solar cells

    SciTech Connect

    Smole, F.; Topic, M.; Furlan, J.; Kusian, W.

    1997-07-01

    Measured internal collection efficiency (ICE) characteristics of annealed and degraded a-Si:H p-i-n solar cells were used for an analysis of their internal behavior. Using the numerical simulator ASPIN, simulations were performed in order to fit and explain pronounced hump-shaped voltage-dependent ICE characteristics of degraded structures under weak short-wavelength illumination. Agreement with measured ICE characteristics for a degraded cell was obtained only if in addition to the introduction of light-induced dangling bond defect states, their capture cross sections were also increased, in particular the capture cross section for the charged defect states were increased. This caused a change in the occupancy of defect states at the p-i interface and front part of the i layer under forward biases. Consequently, the electric field in the front part of the cell was sustained under higher forward biases, resulting in recovery of the ICE. {copyright} {ital 1997 American Institute of Physics.}

  4. Photoconductivity and photoluminescence under bias in GaInNAs/GaAs MQW p-i-n structures

    NASA Astrophysics Data System (ADS)

    Khalil, Hagir M.; Royall, Ben; Mazzucato, Simone; Balkan, Naci

    2012-09-01

    The low temperature photoluminescence under bias (PLb) and the photoconductivity (PC) of a p-i-n GaInNAs/GaAs multiple quantum well sample have been investigated. Under optical excitation with photons of energy greater than the GaAs bandgap, PC and PLb results show a number of step-like increases when the sample is reverse biased. The nature of these steps, which depends upon the temperature, exciting wavelength and intensity and the number of quantum wells (QWs) in the device, is explained in terms of thermionic emission and negative charge accumulation due to the low confinement of holes in GaInNAs QWs. At high temperature, thermal escape from the wells becomes much more dominant and the steps smear out.

  5. Photoconductivity and photoluminescence under bias in GaInNAs/GaAs MQW p-i-n structures.

    PubMed

    Khalil, Hagir M; Royall, Ben; Mazzucato, Simone; Balkan, Naci

    2012-09-28

    The low temperature photoluminescence under bias (PLb) and the photoconductivity (PC) of a p-i-n GaInNAs/GaAs multiple quantum well sample have been investigated. Under optical excitation with photons of energy greater than the GaAs bandgap, PC and PLb results show a number of step-like increases when the sample is reverse biased. The nature of these steps, which depends upon the temperature, exciting wavelength and intensity and the number of quantum wells (QWs) in the device, is explained in terms of thermionic emission and negative charge accumulation due to the low confinement of holes in GaInNAs QWs. At high temperature, thermal escape from the wells becomes much more dominant and the steps smear out.

  6. GeSn-based p-i-n photodiodes with strained active layer on a Si wafer

    SciTech Connect

    Tseng, H. H.; Li, H.; Mashanov, V.; Yang, Y. J.; Cheng, H. H.; Chang, G. E.; Soref, R. A.; Sun, G.

    2013-12-02

    We report an investigation of GeSn-based p-i-n photodiodes with an active GeSn layer that is almost fully strained. The results show that (a) the response of the Ge/GeSn/Ge heterojunction photodiodes is stronger than that of the reference Ge-based photodiodes at photon energies above the 0.8 eV direct bandgap of bulk Ge (<1.55 μm), and (b) the optical response extends to lower energy regions (1.55–1.80 μm wavelengths) as characterized by the strained GeSn bandgap. A cusp-like spectral characteristic is observed for samples with high Sn contents, which is attributed to the significant strain-induced energy splitting of heavy and light hole bands. This work represents a step forward in developing GeSn-based infrared photodetectors.

  7. GaAs/AlGaAs single quantum well p-i-n structures: A surface photovoltage study

    NASA Astrophysics Data System (ADS)

    Ashkenasy, N.; Leibovitch, M.; Rosenwaks, Y.; Shapira, Yoram; Barnham, K. W. J.; Nelson, J.; Barnes, J.

    1999-12-01

    The photovoltage (PV) response of single quantum well p-i-n structures under open circuit conditions has been studied experimentally and numerically. The numerical calculations show a monotonic increase in the PV response with decreasing well width, implying that the ensuing increase in carrier generation rate and band gap governs the PV response. The well layer has been shown to dominate the recombination of excess carriers generated throughout the structure, and their lifetime at the well has been found to be a critical structure parameter. Using a simple semi-empirical model, the effective carrier lifetimes at the well layer/interfaces for the different samples were estimated. The results demonstrate the benefits of using surface photovoltage spectroscopy for characterization and quality control of quantum well structures.

  8. p-i-n heterojunctions with BiFeO3 perovskite nanoparticles and p- and n-type oxides: photovoltaic properties.

    PubMed

    Chatterjee, Soumyo; Bera, Abhijit; Pal, Amlan J

    2014-11-26

    We formed p-i-n heterojunctions based on a thin film of BiFeO3 nanoparticles. The perovskite acting as an intrinsic semiconductor was sandwiched between a p-type and an n-type oxide semiconductor as hole- and electron-collecting layer, respectively, making the heterojunction act as an all-inorganic oxide p-i-n device. We have characterized the perovskite and carrier collecting materials, such as NiO and MoO3 nanoparticles as p-type materials and ZnO nanoparticles as the n-type material, with scanning tunneling spectroscopy; from the spectrum of the density of states, we could locate the band edges to infer the nature of the active semiconductor materials. The energy level diagram of p-i-n heterojunctions showed that type-II band alignment formed at the p-i and i-n interfaces, favoring carrier separation at both of them. We have compared the photovoltaic properties of the perovskite in p-i-n heterojunctions and also in p-i and i-n junctions. From current-voltage characteristics and impedance spectroscopy, we have observed that two depletion regions were formed at the p-i and i-n interfaces of a p-i-n heterojunction. The two depletion regions operative at p-i-n heterojunctions have yielded better photovoltaic properties as compared to devices having one depletion region in the p-i or the i-n junction. The results evidenced photovoltaic devices based on all-inorganic oxide, nontoxic, and perovskite materials.

  9. Effect of strain relaxation on forward bias dark currents in GaAs/InGaAs multiquantum well p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Griffin, P. R.; Barnes, J.; Barnham, K. W. J.; Haarpaintner, G.; Mazzer, M.; Zanotti-Fregonara, C.; Grünbaum, E.; Olson, C.; Rohr, C.; David, J. P. R.; Roberts, J. S.; Grey, R.; Pate, M. A.

    1996-11-01

    The effect of the dislocation line density produced by the relaxation of strain in GaAs/InxGa1-xAs multiquantum wells where x=0.155-0.23 has been studied. There is a strong correlation between the dark line density, observed by cathodoluminescence, before processing of the wafers into photodiode devices, and the subsequent low forward bias (<1.5 V) dark current densities of the devices. A comparison is made of the correlation between the reverse bias current density and dark line density and it is found that, in this range of strain, the forward bias current density varies more. Two growth methods, molecular beam epitaxy and metal organic vapor phase epitaxy, have been used to produce the wafers and no difference between the growth methods has been found in dark line or current density variations with strain.

  10. Near-infrared electroluminescence and photo detection in InGaAs p-i-n microdisks grown by selective area growth on silicon

    SciTech Connect

    Kjellman, Jon Øyvind; Sugiyama, Masakazu; Nakano, Yoshiaki

    2014-06-16

    Microselective-area growth of p-i-n InGaAs disks on (111) silicon by metalorganic chemical vapor deposition is a promising technology for III/V-on-Si integration. As a proof-of-concept, room-temperature electroluminescence is reported from ensembles of p-i-n InGaAs-on-Si micro-disks. The observed spectrum shows peak luminescence at 1.78 μm with a local maxima at 1.65 μm. The disks are also shown to generate a measurable photo current when illuminated by infrared light with less energy than the silicon bandgap energy. This makes these InGaAs-on-Si disks a promising technology for monolithic integration of light sources and detectors with silicon photonics and complementary metal-oxide-semiconductor electronics for optical communication, sensing, and imaging.

  11. Simulation based comparative analysis of photoresponse in front- and back-illuminated GaN P-I-N ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Guo, Jin; Xie, Feng; Wang, Guosheng; Wu, Haoran; Song, Man; Yi, Yuanyuan

    2016-10-01

    This paper presents the comparative analysis of influence of doping level and doping profile of the active region on zero bias photoresponse characteristics of GaN-based p-i-n ultraviolet (UV) photodetectors operating at front- and back-illuminated. A two dimensional physically-based computer simulation of GaN-based p-i-n UV photodetectors is presented. We implemented GaN material properties and physical models taken from the literature. It is shown that absorption layer doping profile has notable impacts on the photoresponse of the device. Especially, the effect of doping concentration and distribution of the absorption layer on photoresponse is discussed in detail. In the case of front illumination, comparative to uniform n-type doping, the device with n-type Gaussian doping profiles at absorption layer has higher responsivity. Comparative to front illumination, back illuminated detector with p-type doping profiles at absorption layer has higher maximum photoresponse, while the Gaussian doping profiles have a weaker ability to enhance the device responsivity. It is demonstrated that electric field distribution, mobility degradation, and recombinations are jointly responsible for the variance of photoresponse. Our work enriches the understanding and utilization of GaN based p-i-n UV photodetectors.

  12. Channelized coplanar waveguide pin-diode switches

    NASA Technical Reports Server (NTRS)

    Ponchak, G. E.; Simons, R. N.

    1989-01-01

    Three different types of p-i-n diode, reflective CPW switches are presented. The first two switches are the series and the shunt mounted diode switches. Each has achieved greater than 15 dB of isolation over a broad bandwidth. The third switch is a narrow band, high isolation switched filter which has achieved 19 dB of isolation. Equivalent circuits and measured performance for each switch is presented.

  13. Experimental demonstration of efficient pulsed terahertz emission from a stacked GaAs/AlGaAs p-i-n-i heterostructure

    NASA Astrophysics Data System (ADS)

    Lisauskas, A.; Reklaitis, A.; Venckevičius, R.; Kašalynas, I.; Valušis, G.; Grigaliunaitė-Vonsevičienė, G.; Maestre, H.; Schmidt, J.; Blank, V.; Thomson, M. D.; Roskos, H. G.; Köhler, K.

    2011-02-01

    The pulsed optoelectronic terahertz emitter based on a δ-doped p-i-n-i GaAs/AlxGa1-xAs heterostructure, which was suggested by Reklaitis [Phys. Rev. B 77, 153309 (2008)], is investigated experimentally. It is shown that the heterostructure can serve as efficient antenna- and bias-free surface emitter. Its power exceeds the emission from InGaAs and InAs surfaces for optical excitation fluences below 0.7 μJ/cm2 at 82 MHz pulse repetition rate, respectively, 7 μJ/cm2 at 1 kHz, with potential for further improvement by carrier recombination management.

  14. Effect of doping on room temperature carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Sellers, D. G.; Chen, E. Y.; Polly, S. J.; Hubbard, S. M.; Doty, M. F.

    2016-05-01

    We investigate the effect of doping on the mechanisms of carrier escape from intermediate states in delta-doped InAs/GaAs intermediate band solar cells. The intermediate states arise from InAs quantum dots embedded in a GaAs p-i-n junction cell. We find that doping the sample increases the number of excited-state carriers participating in a cycle of trapping and carrier escape via thermal, optical, and tunneling mechanisms. However, we find that the efficiency of the optically-driven carrier escape mechanism is independent of doping and remains small.

  15. Efficient gate control of spin-valve signals and Hanle signals in GaAs channel with p-i-n junction-type back-gate structure

    NASA Astrophysics Data System (ADS)

    Miyakawa, Takumi; Akiho, Takafumi; Ebina, Yuya; Yamamoto, Masafumi; Uemura, Tetsuya

    2016-02-01

    Efficient gate control of spin-valve signals and Hanle signals was achieved in a GaAs channel with a p-i-n back-gate structure. Experiments showed that the amplitude of the spin-valve signal (ΔVNL) under constant-injection-current conditions increased for a cross nonlocal geometry when the channel was depleted by the gate voltage (VG). In contrast, the VG dependence of ΔVNL for a nonlocal geometry was complicated. The gate modulation efficiency of spin signals was approximately 50 times that with a graphene or Si channel.

  16. Developing Seedless Growth of ZnO Micro/Nanowire Arrays towards ZnO/FeS2/CuI P-I-N Photodiode Application

    PubMed Central

    Yang, Zhi; Wang, Minqiang; Shukla, Sudhanshu; Zhu, Yue; Deng, Jianping; Ge, Hu; Wang, Xingzhi; Xiong, Qihua

    2015-01-01

    A seedless hydrothermal method is developed to grow high density and vertically aligned ZnO micro/nanowire arrays with low defect density on metal films under the saturated nutrition solution. In particular, the mechanism of seedless method is discussed here. A buffer layer can be confirmed by transmission electron microscopy (TEM), which may release the elastic strain between ZnO and substrate to achieve this highly mismatched heteroepitaxial structures. Based on ZnO micro/nanowire arrays with excellent wettability surface, we prepared ZnO-FeS2-CuI p-i-n photodiode by all-solution processed method with the high rectifying ratio of 197 at ±1 V. Under AM 1.5 condition, the Jsc of 0.5 mA/cm2, on-off current ratio of 371 and fast photoresponse at zero bias voltage were obtained. This good performance comes from excellent collection ability of photogenerated electrons and holes due to the increased depletion layer width for p-i-n structure. Finally, the high responsivity around 900 nm shows the potential as near infrared photodetectors applications. PMID:26077658

  17. Characterisation of Al0.52In0.48P mesa p-i-n photodiodes for X-ray photon counting spectroscopy

    NASA Astrophysics Data System (ADS)

    Butera, S.; Lioliou, G.; Krysa, A. B.; Barnett, A. M.

    2016-07-01

    Results characterising the performance of thin (2 μm i-layer) Al0.52In0.48P p+-i-n+ mesa photodiodes for X-ray photon counting spectroscopy are reported at room temperature. Two 200 μm diameter and two 400 μm diameter Al0.52In0.48P p+-i-n+ mesa photodiodes were studied. Dark current results as a function of applied reverse bias are shown; dark current densities <3 nA/cm2 were observed at 30 V (150 kV/cm) for all the devices analysed. Capacitance measurements as a function of applied reverse bias are also reported. X-ray spectra were collected using 10 μs shaping time, with the device illuminated by an 55Fe radioisotope X-ray source. Experimental results showed that the best energy resolution (FWHM) achieved at 5.9 keV was 930 eV for the 200 μm Al0.52In0.48P diameter devices, when reverse biased at 15 V. System noise analysis was also carried out, and the different noise contributions were computed.

  18. Metamorphic In(0.20)Ga(0.80)As p-i-n photodetectors grown on GaAs substrates for near infrared applications.

    PubMed

    Swaminathan, K; Yang, L-M; Grassman, T J; Tabares, G; Guzman, A; Hierro, A; Mills, M J; Ringel, S A

    2011-04-11

    The growth and performance of top-illuminated metamorphic In(0.20)Ga(0.80)As p-i-n photodetectors grown on GaAs substrates using a step-graded In(x)Ga(1-x)As buffer is reported. The p-i-n photodetectors display a low room-temperature reverse bias dark current density of ~1.4×10(-7) A/cm(2) at -2 V. Responsivity and specific detectivity values of 0.72 A/W, 2.3×10(12) cm·Hz(1/2)/W and 0.69 A/W, 2.2×10(12) cm·Hz(1/2)/W are achieved for Yb:YAG (1030 nm) and Nd:YAG (1064 nm) laser wavelengths at -2 V, respectively. A high theoretical bandwidth-responsivity product of 0.21 GHz·A/W was estimated at 1064 nm. Device performance metrics for these GaAs substrate-based detectors compare favorably with those based on InP technology due to the close tuning of the detector bandgap to the target wavelengths, despite the presence of a residual threading dislocation density. This work demonstrates the great potential for high performance metamorphic near-infrared InGaAs detectors with optimally tuned bandgaps, which can be grown on GaAs substrates, for a wide variety of applications.

  19. Large Perovskite Grain Growth in Low-Temperature Solution-Processed Planar p-i-n Solar Cells by Sodium Addition.

    PubMed

    Bag, Santanu; Durstock, Michael F

    2016-03-02

    Thin-film p-i-n type planar heterojunction perovskite solar cells have the advantage of full low temperature solution processability and can, therefore, be adopted in roll-to-roll production and flexible devices. One of the main challenges with these devices, however, is the ability to finely control the film morphology during the deposition and crystallization of the perovskite layer. Processes suitable for optimization of the perovskite layer film morphology with large grains are highly desirable for reduced recombination of charge carriers. Here, we show how uniform thin films with micron size perovskite grains can be made through the use of a controlled amount of sodium ions in the precursor solution. Large micrometer-size CH3NH3PbI3 perovskite grains are formed during low-temperature thin-film growth by adding sodium ions to the PbI2 precursor solution in a two-step interdiffusion process. By adjusting additive concentration, film morphologies were optimized and the fabricated p-i-n planar perovskite-PCBM solar cells showed improved power conversion efficiences (an average of 3-4% absolute efficiency enhancement) compared to the nonsodium based devices. Overall, the additive enhanced grain growth process helped to reach a high 14.2% solar cell device efficiency with low hysteresis. This method of grain growth is quite general and provides a facile way to fabricate large-grained CH3NH3PbI3 on any arbitrary surface by an all solution-processed route.

  20. Dependence on the incident light power of the internal electric fields in a GaAs p-i-n solar cell according to bright photoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Jo, Hyun-Jun; Mun, Young Hee; Kim, Jong Su; Lee, Sang Jun

    2016-07-01

    Bright photoreflectance (BPR) spectroscopy at room temperature is used to examine the internal electric fields in a GaAs p-i-n solar cell for their dependence on the incident light power. Electric fields are observed at 30 µW and 100 µW of incident light. With increasing power, the strengths of the two electric fields are reduced due to the photovoltage effect. The electric field observed at 30 µW is assigned to the p-i interface, which is close to the surface. The other electric field is due to the i-n interface because the incident light penetrates deeper as the light power is increased. The electric field strength of 35.6 kV/cm at the p-i interface is lower than that of 42.9 kV/cm at the i-n interface at 500 µW of light power because the photovoltage effect is proportional to the number of photo-generated carriers, which is reduced as the distance from the surface increases. When the incident light power is similar to the excitation beam power, the electric fields at the p-i interface are saturated.

  1. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers

    SciTech Connect

    Liu, Xiaodong; Zhou, Yi E-mail: songbo@suda.edu.cn Song, Bo E-mail: songbo@suda.edu.cn; Lei, Ming; Li, Yongfang E-mail: songbo@suda.edu.cn

    2015-08-10

    Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH{sub 3}NH{sub 3}PbI{sub 3−X}Cl{sub X}. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than that of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (J{sub sc}). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.

  2. Highly Efficient p-i-n Perovskite Solar Cells Utilizing Novel Low-Temperature Solution-Processed Hole Transport Materials with Linear π-Conjugated Structure.

    PubMed

    Li, Yang; Xu, Zheng; Zhao, Suling; Qiao, Bo; Huang, Di; Zhao, Ling; Zhao, Jiao; Wang, Peng; Zhu, Youqin; Li, Xianggao; Liu, Xicheng; Xu, Xurong

    2016-09-01

    Alternative low-temperature solution-processed hole-transporting materials (HTMs) without dopant are critical for highly efficient perovskite solar cells (PSCs). Here, two novel small molecule HTMs with linear π-conjugated structure, 4,4'-bis(4-(di-p-toyl)aminostyryl)biphenyl (TPASBP) and 1,4'-bis(4-(di-p-toyl)aminostyryl)benzene (TPASB), are applied as hole-transporting layer (HTL) by low-temperature (sub-100 °C) solution-processed method in p-i-n PSCs. Compared with standard poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT:PSS) HTL, both TPASBP and TPASB HTLs can promote the growth of perovskite (CH3 NH3 PbI3 ) film consisting of large grains and less grain boundaries. Furthermore, the hole extraction at HTL/CH3 NH3 PbI3 interface and the hole transport in HTL are also more efficient under the conditions of using TPASBP or TPASB as HTL. Hence, the photovoltaic performance of the PSCs is dramatically enhanced, leading to the high efficiencies of 17.4% and 17.6% for the PSCs using TPASBP and TPASB as HTL, respectively, which are ≈40% higher than that of the standard PSC using PEDOT:PSS HTL.

  3. Solar-blind Al x Ga1- x N ( x > 0.45) p- i- n photodiodes with a polarization- p-doped emitter

    NASA Astrophysics Data System (ADS)

    Kuznetsova, N. V.; Nechaev, D. V.; Shmidt, N. M.; Karpov, S. Yu.; Rzheutskii, N. V.; Zemlyakov, V. E.; Kaibyshev, V. Kh.; Kazantsev, D. Yu.; Troshkov, S. I.; Egorkin, V. I.; Ber, B. Ya.; Lutsenko, E. V.; Ivanov, S. V.; Jmerik, V. N.

    2016-06-01

    Polarization-induced p-type doping of AlGaN layers with high aluminum content during plasmaassisted MBE growth has been studied. It is shown that a gradient of the AlN molar fraction in AlGaN (composition gradient) on a level of 0.005 nm-1 must be set in order to obtain a hole concentration of ~1018 cm-3 (measured by the C- V method) in Al x Ga1- x N:Mg ( x = 0.52-0.32) layers with dopant concentration [Mg] = 1.3 × 1018 cm-3. p- i- n photodiodes based on AlGaN heterostructures with such layers as p-emitters showed maximum photoresponsitivity in the solar-blind wavelength range (λ = 281 nm) about 35 and 48 mA/W at reverse bias voltage U = 0 and-5 V, respectively, and exhibited a dark current density of 3.9 × 10-8 A/cm2 at U =-5 V.

  4. Measured and Simulated Dark J-V Characteristics of a-Si:H Single Junction p-i-n Solar Cells Irradiated with 40 keV Electrons

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth; Woodyard, James R.

    2002-01-01

    The effect of 40 keV electron irradiation on a-Si:H p-i-n single-junction solar cells was investigated using measured and simulated dark J-V characteristics. EPRI-AMPS and PC-1D simulators were explored for use in the studies. The EPRI-AMPS simulator was employed and simulator parameters selected to produce agreement with measured J-V characteristics. Three current mechanisms were evident in the measured dark J-V characteristics after electron irradiation, namely, injection, shunting and a term of the form CV(sup m). Using a single discrete defect state level at the center of the band gap, good agreement was achieved between measured and simulated J-V characteristics in the forward-bias voltage region where the dark current density was dominated by injection. The current mechanism of the form CV(sup m) was removed by annealing for two hours at 140 C. Subsequent irradiation restored the CV(sup m) current mechanism and it was removed by a second anneal. Some evidence of the CV(sup m) term is present in device simulations with a higher level of discrete density of states located at the center of the bandgap.

  5. Deep-level transient spectroscopy of interfacial states in ``buffer-free'' p-i-n GaSb/GaAs devices

    NASA Astrophysics Data System (ADS)

    Aziz, Mohsin; Ferrandis, Philippe; Mesli, Abdelmadjid; Hussain Mari, Riaz; Francisco Felix, Jorlandio; Sellai, Azzouz; Jameel, Dler; Al Saqri, Noor; Khatab, Almontaser; Taylor, David; Henini, Mohamed

    2013-10-01

    A systematic study was carried out on defect states in Interfacial Misfit (IMF) unpassivated and Te-passivated IMF in p-i-n GaSb/GaAs devices using Deep Level Transient Spectroscopy (DLTS) and Laplace DLTS. Additionally, Current-Voltage (I-V) measurements were performed, which showed that the turn-on voltage (Von) of passivated samples is lower than that for unpassivated samples; an effect which can be explained by the introduction of new defects states near to the interface of GaSb/GaAs, where Te was incorporated to passivate the IMF. The Capacitance-Voltage (C-V) analysis demonstrates that these new states are the consequence of adding Te at the misfit of GaSb/GaAs. Furthermore, DLTS measurements reveal a distribution of states including a main midgap energy level, namely the well documented EL2 trap, with some peculiar behaviour. Most of these levels are related to interface states that are generated by the mismatch between GaAs and GaSb. Originally, the addition of Te atoms was thought to passivate these interface states. On the contrary, this paper, which attempts at correlating the current-voltage and capacitance-voltage characteristics to the DLTS results, shows clearly that Te atoms increase the density of interface states.

  6. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Lei, Ming; Zhou, Yi; Song, Bo; Li, Yongfang

    2015-08-01

    Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH3NH3PbI3-XClX. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than that of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (Jsc). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.

  7. Simulation and analysis of the absorption enhancement in p-i-n InGaN/GaN solar cell using photonic crystal light trapping structures

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil Deep; Janyani, Vijay

    2016-10-01

    The structure of p-i-n InGaN/GaN based solar cell having a photonic crystal (PhC)-based light trapping structure (LTS) at the top assisted by the planar metallic (aluminum) back reflector (BR) is proposed. We propose two different designs for efficiency enhancement: in one we keep the PhC structure etching depth extending from the top antireflective coating (ARC) of indium tin oxide (ITO) up to the p-GaN layer (which is beneath the ITO and above the active layer), whereas in the other design, the PhC LTS etching depth has been extended up to the InxGa1-xN absorbing layer, starting from the top ITO layer. The theoretical optical simulation studies and optimization of the required parameters of the structure, which help to investigate and demonstrate the effectiveness of the LTS in the efficiency enhancement of the structure, are presented. The work also demonstrates the Lambertian light trapping limits for the practical indium concentrations in a InxGa1-xN active layer cell. The paper also presents the comparison between the proposed designs and compares their results with that of a planar reference cell. The studies are carried out for various indium concentrations. The results indicate considerable enhancement in the efficiency due to the PhC LTS, mainly because of better coupling, low reflectance, and diffraction capability of the proposed LTS, although it is still under the Lambertian limits. The performance evaluation of the proposed structure with respect to the angle of incident light has also been done, indicating improved performance. The parameters have been optimized and calculated by means of rigorous coupled wave analysis (RCWA) method.

  8. Multistability, ionic doping, and charge dynamics in electrosynthesized polypyrrole, polymer-nanoparticle blend nonvolatile memory, and fixed p-i-n junction polymer light-emitting electrochemical cells

    NASA Astrophysics Data System (ADS)

    Simon, Daniel Theodore

    -assembled monolayer (SAM) at the cathode-polymer interface. The addition of the SAM causes a twofold increase in quantum efficiency. Photovoltaic analysis indicates that the SAM increases both open-circuit voltage and short-circuit current. Current versus voltage data are presented which indicate that the SAM does not simply introduce an interfacial dipole layer, but rather provides a fixed doping region, and thus a more stable p-i-n structure.

  9. Pulsed Power Switching of 4H-SIC Vertical D-Mosfet and Device Characterization

    DTIC Science & Technology

    2013-06-01

    Lawson and Stephen B. Bayne Texas Tech University, Electrical and Computer Engineering Department, Lubbock, TX 79409, USA Lin Cheng and Anant K...due to a 17% decrease in the on resistance (RdsON) with a gate bias of 20V. V. REFERENCES [1] Lawson, K.; Bayne , S.B., "Transient analysis of...2010 [2] Bayne , S.B.; Ibitayo, D., "Evaluation of SiC GTOs for pulse power switching," Pulsed Power Conference, 2003. Digest of Technical Papers

  10. Improved organic p-i-n type solar cells with n-doped fluorinated hexaazatrinaphthylene derivatives HATNA-F{sub 6} and HATNA-F{sub 12} as transparent electron transport material

    SciTech Connect

    Selzer, Franz Falkenberg, Christiane Leo, Karl Riede, Moritz; Hamburger, Manuel Baumgarten, Martin Müllen, Klaus

    2014-02-07

    We study new electron transport materials (ETM) to replace the reference material C{sub 60} in p-i-n type organic solar cells. A comprehensive material characterization is performed on two fluorinated hexaazatrinaphthylene derivatives, HATNA-F{sub 6} and HATNA-F{sub 12}, to identify the most promising material for the application in devices. We find that both HATNA derivatives are equally able to substitute C{sub 60} as ETM as they exhibit large optical energy gaps, low surface roughness, and sufficiently high electron mobilities. Furthermore, large electron conductivities of 3.5×10{sup −5} S/cm and 2.0×10{sup −4} S/cm are achieved by n-doping with 4 wt. % W{sub 2}(hpp){sub 4}. HOMO levels of (7.72 ± 0.05) eV and (7.73 ± 0.05) eV are measured by ultraviolet photoelectron spectroscopy and subsequently used for estimating LUMO values of (4.2 ± 0.8) eV and (4.3 ± 0.8) eV. Both fluorinated HATNA derivatives are successfully applied in p-i-n type solar cells. Compared to identical reference devices comprising the standard material C{sub 60}, the power conversion efficiency (PCE) can be increased from 2.1 % to 2.4 % by using the new fluorinated HATNA derivatives.

  11. Development and fabrication of a fast recovery, high voltage power diode

    NASA Technical Reports Server (NTRS)

    Berman, A. H.; Balodis, V.; Duffin, J. J.; Gaugh, C.; Kkaratnicki, H. M.; Troutman, G.

    1981-01-01

    The use of positive bevels for P-I-N mesa structures to achieve high voltages is described. The technique of glass passivation for mesa structures is described. The utilization of high energy radiation to control the lifetime of carriers in silicon is reported as a means to achieve fast recovery times. Characterization data is reported and is in agreement with design concepts developed for power diodes.

  12. High-accuracy picosecond characterization of gain-switched laser diodes

    SciTech Connect

    Cova, S.; Lacaita, A.; Ghioni, M.; Ripamonti, G. )

    1989-12-15

    A unique combination of the time-correlated photon-counting technique and single-photon avalanche diode detectors gives an accurate characterization of gain-switched semiconductor lasers with picosecond resolution. The high sensitivity and the clean shape of the time response reveal even small features (reflections and relaxation oscillations), making a true optimization of the laser-diode operation possible. The technique outperforms the standard characterization with ultrafast p-i-n photodiodes and a sampling oscilloscope. In addition, compared with other methods, it has favorable features that greatly simplify the measurement.

  13. Data Diode

    SciTech Connect

    2014-11-07

    The Data Diode is a data security technology that can be deployed within an organization's defense-in-depth computer network strategy for information assurance. For internal security, the software creates an environment within the network where an organization's approved users can work freely inside an enclave of protected data, but file transfers out of the enclave is restricted. For external security, once a network intruder has penetrated the network, the intruder is able to "see" the protected data, but is unable to download the actual data. During the time it takes for the intruder to search for a way around the obstacle created by the Data Diode, the network's intrusion detection technologies can locate and thwart the malicious intent of the intruder. Development of the Data Diode technology was made possible by funding from the Intelligence Advanced Research Projects Activity (IARPA).

  14. p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides.

    PubMed

    Mali, Sawanta S; Hong, Chang Kook

    2016-05-19

    There has been fast recent progress in perovskite solar cells (PSCs) towards low cost photovoltaic technology. Organometal mixed halide (MAPbX or FAPbX) perovskites are the most promising light absorbing material sandwiched between the electron transport layer (ETL) and hole transport layer (HTL). These two layers play a critical role in boosting the power conversion efficiency (PCE) and maintaining air stability. However, the device stability is a serious issue in regular as well as p-i-n inverted type perovskite solar cells. This mini-review briefly outlines the state-of-art of p-i-n/n-i-p type planar hybrid perovskite solar cells using MAPbX/FAPbX perovskite absorbing layers. Later, we will focus on recent trends, progress and further opportunities in exploring the air stable hybrid planar structure PSCs.

  15. p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides

    NASA Astrophysics Data System (ADS)

    Mali, Sawanta S.; Hong, Chang Kook

    2016-05-01

    There has been fast recent progress in perovskite solar cells (PSCs) towards low cost photovoltaic technology. Organometal mixed halide (MAPbX or FAPbX) perovskites are the most promising light absorbing material sandwiched between the electron transport layer (ETL) and hole transport layer (HTL). These two layers play a critical role in boosting the power conversion efficiency (PCE) and maintaining air stability. However, the device stability is a serious issue in regular as well as p-i-n inverted type perovskite solar cells. This mini-review briefly outlines the state-of-art of p-i-n/n-i-p type planar hybrid perovskite solar cells using MAPbX/FAPbX perovskite absorbing layers. Later, we will focus on recent trends, progress and further opportunities in exploring the air stable hybrid planar structure PSCs.

  16. Diode and Diode Circuits, a Programmed Text.

    ERIC Educational Resources Information Center

    Balabanian, Norman; Kirwin, Gerald J.

    This programed text on diode and diode circuits was developed under contract with the United States Office of Education as Number 4 in a series of materials for use in an electrical engineering sequence. It is intended as a supplement to a regular text and other instructional material. (DH)

  17. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  18. Lighting with laser diodes

    NASA Astrophysics Data System (ADS)

    Basu, Chandrajit; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2013-08-01

    Contemporary white light-emitting diodes (LEDs) are much more efficient than compact fluorescent lamps and hence are rapidly capturing the market for general illumination. LEDs are also replacing halogen lamps or even newer xenon based lamps in automotive headlamps. Because laser diodes are inherently much brighter and often more efficient than corresponding LEDs, there is great research interest in developing laser diode based illumination systems. Operating at higher current densities and with smaller form factors, laser diodes may outperform LEDs in the future. This article reviews the possibilities and challenges in the integration of visible laser diodes in future illumination systems.

  19. Bypass diode integration

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    Protective bypass diodes and mounting configurations which are applicable for use with photovoltaic modules having power dissipation requirements in the 5 to 50 watt range were investigated. Using PN silicon and Schottky diode characterization data on packaged diodes and diode chips, typical diodes were selected as representative for each range of current carrying capacity, an appropriate heat dissipating mounting concept along with its environmental enclosure was defined, and a thermal analysis relating junction temperature as a function of power dissipation was performed. In addition, the heat dissipating mounting device dimensions were varied to determine the effect on junction temperature. The results of the analysis are presented as a set of curves indicating junction temperature as a function of power dissipation for each diode package.

  20. Etalon laser diode

    SciTech Connect

    Allen, L.B.; Koenig, H.G.; Rice, R.R.

    1981-08-18

    A laser diode is disclosed that is suitable for integrated and fiber optic applications requiring single transverse and single longitudinal mode operation. The single transverse mode is provided by making a gallium arsenide double heterostructural laser diode with a narrow stripe width and a relatively long length. The single longitudinal mode operation is provided by cracking the diode transverse to the stripe at one or more locations to form internal etalons in the laser cavity.

  1. Coaxial foilless diode

    SciTech Connect

    Kong, Long; Liu, QingXiang; Li, XiangQiang; Wang, ShaoMeng

    2014-05-15

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode parameters is obtained. These results should be of interest to the area of generation and propagation of radial beam for application of generating high power microwaves.

  2. HEAT DIODE CONVERTER

    DTIC Science & Technology

    DIODES, * ELECTRIC POWER PRODUCTION, *REFRACTORY MATERIALS, *THERMIONIC EMISSION, CESIUM, COPPER, DISCHARGE TUBES, ELECTRONS, EVAPORATION, MOLYBDENUM...PLASMAS(PHYSICS), POWER SUPPLIES, REFLECTION, THERMAL CONDUCTIVITY, THERMIONIC CONVERTERS , VAPORS.

  3. FISSION HEAT DIODE CONVERTER

    DTIC Science & Technology

    CESIUM, *DIODES, * ELECTRIC POWER PRODUCTION, ADSORPTION, AUXILIARY POWER PLANTS, ELECTRONS, OSCILLATION, PLASMAS(PHYSICS), POWER SUPPLIES...SCATTERING, SOURCES, SPACECRAFT, THERMAL CONDUCTIVITY, THERMIONIC CONVERTERS , THERMIONIC EMISSION, TUNGSTEN, VAPORS

  4. Velocimetry with diode lasers

    NASA Astrophysics Data System (ADS)

    de Mul, F. F. M.; Jentink, H. W.; Koelink, M.; Greve, J.; Aarnoudse, J. G.

    The history of the application of diode lasers in velocimetry is reviewed. Some problems arising when using those lasers, e.g., mode hopping and wavelength shifts caused by temperature effects, are discussed, together with coherence effects encountered with diode lasers. The application in dual-beam velocimetry, in direct-contact velocimetry and in velocimetry using self-mixing will be discussed.

  5. Vortex diode jet

    DOEpatents

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  6. Diodes stabilize LED output

    NASA Technical Reports Server (NTRS)

    Deters, R. A.

    1977-01-01

    Small-signal diodes are placed in series with light-emitting diodes (LED's) to stabilize LED output against temperature fluctuations. Simple inexpensive method compensates for thermal fluctuations over a broad temperature range. Requiring few components, technique is particularly useful where circuit-board space is limited.

  7. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    SciTech Connect

    Mazzeo, M.; Genco, A.; Gambino, S.; Ballarini, D.; Mangione, F.; Sanvitto, D.; Di Stefano, O.; Patanè, S.; Savasta, S.; Gigli, G.

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  8. Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode

    NASA Astrophysics Data System (ADS)

    di Paola, D. M.; Kesaria, M.; Makarovsky, O.; Velichko, A.; Eaves, L.; Mori, N.; Krier, A.; Patanè, A.

    2016-08-01

    Interband tunnelling of carriers through a forbidden energy gap, known as Zener tunnelling, is a phenomenon of fundamental and technological interest. Its experimental observation in the Esaki p-n semiconductor diode has led to the first demonstration and exploitation of quantum tunnelling in a condensed matter system. Here we demonstrate a new type of Zener tunnelling that involves the resonant transmission of electrons through zero-dimensional (0D) states. In our devices, a narrow quantum well of the mid-infrared (MIR) alloy In(AsN) is placed in the intrinsic (i) layer of a p-i-n diode. The incorporation of nitrogen in the quantum well creates 0D states that are localized on nanometer lengthscales. These levels provide intermediate states that act as “stepping stones” for electrons tunnelling across the diode and give rise to a negative differential resistance (NDR) that is weakly dependent on temperature. These electron transport properties have potential for the development of nanometre-scale non-linear components for electronics and MIR photonics.

  9. Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode

    PubMed Central

    Di Paola, D. M.; Kesaria, M.; Makarovsky, O.; Velichko, A.; Eaves, L.; Mori, N.; Krier, A.; Patanè, A.

    2016-01-01

    Interband tunnelling of carriers through a forbidden energy gap, known as Zener tunnelling, is a phenomenon of fundamental and technological interest. Its experimental observation in the Esaki p-n semiconductor diode has led to the first demonstration and exploitation of quantum tunnelling in a condensed matter system. Here we demonstrate a new type of Zener tunnelling that involves the resonant transmission of electrons through zero-dimensional (0D) states. In our devices, a narrow quantum well of the mid-infrared (MIR) alloy In(AsN) is placed in the intrinsic (i) layer of a p-i-n diode. The incorporation of nitrogen in the quantum well creates 0D states that are localized on nanometer lengthscales. These levels provide intermediate states that act as “stepping stones” for electrons tunnelling across the diode and give rise to a negative differential resistance (NDR) that is weakly dependent on temperature. These electron transport properties have potential for the development of nanometre-scale non-linear components for electronics and MIR photonics. PMID:27535896

  10. A photon thermal diode.

    PubMed

    Chen, Zhen; Wong, Carlaton; Lubner, Sean; Yee, Shannon; Miller, John; Jang, Wanyoung; Hardin, Corey; Fong, Anthony; Garay, Javier E; Dames, Chris

    2014-11-17

    A thermal diode is a two-terminal nonlinear device that rectifies energy carriers (for example, photons, phonons and electrons) in the thermal domain, the heat transfer analogue to the familiar electrical diode. Effective thermal rectifiers could have an impact on diverse applications ranging from heat engines to refrigeration, thermal regulation of buildings and thermal logic. However, experimental demonstrations have lagged far behind theoretical proposals. Here we present the first experimental results for a photon thermal diode. The device is based on asymmetric scattering of ballistic energy carriers by pyramidal reflectors. Recent theoretical work has predicted that this ballistic mechanism also requires a nonlinearity in order to yield asymmetric thermal transport, a requirement of all thermal diodes arising from the second Law of Thermodynamics, and realized here using an 'inelastic thermal collimator' element. Experiments confirm both effects: with pyramids and collimator the thermal rectification is 10.9 ± 0.8%, while without the collimator no rectification is detectable (<0.3%).

  11. Light-emitting Diodes

    PubMed Central

    Opel, Daniel R.; Hagstrom, Erika; Pace, Aaron K.; Sisto, Krisanne; Hirano-Ali, Stefanie A.; Desai, Shraddha

    2015-01-01

    Background: In the early 1990s, the biological significance of light-emitting diodes was realized. Since this discovery, various light sources have been investigated for their cutaneous effects. Study design: A Medline search was performed on light-emitting diode lights and their therapeutic effects between 1996 and 2010. Additionally, an open-label, investigator-blinded study was performed using a yellow light-emitting diode device to treat acne, rosacea, photoaging, alopecia areata, and androgenetic alopecia. Results: The authors identified several case-based reports, small case series, and a few randomized controlled trials evaluating the use of four different wavelengths of light-emitting diodes. These devices were classified as red, blue, yellow, or infrared, and covered a wide range of clinical applications. The 21 patients the authors treated had mixed results regarding patient satisfaction and pre- and post-treatment evaluation of improvement in clinical appearance. Conclusion: Review of the literature revealed that differing wavelengths of light-emitting diode devices have many beneficial effects, including wound healing, acne treatment, sunburn prevention, phototherapy for facial rhytides, and skin rejuvenation. The authors’ clinical experience with a specific yellow light-emitting diode device was mixed, depending on the condition being treated, and was likely influenced by the device parameters. PMID:26155326

  12. NIR transmittance puse oximetry system with laser diodes

    NASA Astrophysics Data System (ADS)

    Lopez Silva, Sonnia M.; Silveira, Juan P.; Sendra, Jose R.; Giannetti, Romano; Dotor, Maria L.; Golmayo, Dolores

    2001-05-01

    A transmittance pulse oximetry system based on near-infrared laser diodes (LD) for monitoring arterial blood hemoglobin oxygen saturation (So2) has been previously reported. In this work we present the results obtained after improvements in the sensor configuration, signal processing algorithm and calibration procedure. The pulse oximetry system also comprises the sensor electronics, and a data acquisition board installed on a handheld personal computer. The two LD chips are mounted on a single metal heat-sink and as photo- detectors are used silicon p-i-n photodiodes with the first amplifier stage situated in their back side. The real time calculation of the parameters related to So2 is carried out through a numeric separation of the pulsatile and non- pulsatile components of the photoplethysmographic signals for both wavelengths and a non-linear filtering. Patients with respiratory failure conditions were monitored as a part of the calibration procedure in order to cover a wide range of So2-values. A calibration curve have been derived through the determination of in vitro arterial So2 with a significant quantity of experimental points ranging from 60 to almost 100%. The obtained results demonstrate that it is possible to apply the proposed system to monitoring a wide range of oxygen saturation levels.

  13. Photovoltaic module bypass diode encapsulation

    NASA Technical Reports Server (NTRS)

    Shepard, N. J., Jr.

    1983-01-01

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented. The Semicon PN junction diode cells were selected. Diode junction to heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1 deg C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150 deg C. Three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed. Thermal testing of these modules enabled the formulation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally mounted packaged diodes. It is concluded that, when proper designed and installed, these bypass diode devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  14. Diode Laser Arrays

    NASA Astrophysics Data System (ADS)

    Botez, Dan; Scifres, Don R.

    2005-11-01

    Contributors; 1. Monolithic phase-locked semiconductor laser arrays D. Botez; 2. High power coherent, semiconductor laser master oscillator power amplifiers and amplifier arrays D. F. Welch and D. G. Mehuys; 3. Microoptical components applied to incoherent and coherent laser arrays J. R. Leger; 4. Modeling of diode laser arrays G. R. Hadley; 5. Dynamics of coherent semiconductor laser arrays H. G. Winfuland and R. K. Defreez; 6. High average power semiconductor laser arrays and laser array packaging with an emphasis for pumping solid state lasers R. Solarz; 7. High power diode laser arrays and their reliability D. R. Scifres and H. H. Kung; 8. Strained layer quantum well heterostructure laser arrays J. J. Coleman; 9. Vertical cavity surface emitting laser arrays C. J. Chang-Hasnain; 10. Individually addressed arrays of diode lasers D. Carlin.

  15. Dual function conducting polymer diodes

    DOEpatents

    Heeger, Alan J.; Yu, Gang

    1996-01-01

    Dual function diodes based on conjugated organic polymer active layers are disclosed. When positively biased the diodes function as light emitters. When negatively biased they are highly efficient photodiodes. Methods of preparation and use of these diodes in displays and input/output devices are also disclosed.

  16. Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Schneidenbach, D.; Winkler, T.; Hamwi, S.; Weimann, T.; Hinze, P.; Ammermann, S.; Johannes, H.-H.; Riedl, T.; Kowalsky, W.

    2009-06-01

    We report on highly efficient gas diffusion barriers for organic light emitting diodes (OLEDs). Nanolaminate (NL) structures composed of alternating Al2O3 and ZrO2 sublayers grown by atomic layer deposition at 80 °C are used to realize long-term stable OLED devices. While the brightness of phosphorescent p-i-n OLEDs sealed by a single Al2O3 layer drops to 85% of the initial luminance of 1000 cd/m2 after 1000 h of continuous operation, OLEDs encapsulated with the NL retain more than 95% of their brightness. An extrapolated device lifetime substantially in excess of 10 000 h can be achieved, clearly proving the suitability of the NLs as highly dense and reliable thin film encapsulation of sensitive organic electronic devices.

  17. Silicon Carbide Schottky Barrier Diode

    NASA Technical Reports Server (NTRS)

    Zhao, Jian H.; Sheng, Kuang; Lebron-Velilla, Ramon C.

    2004-01-01

    This chapter reviews the status of SiC Schottky barrier diode development. The fundamental of Schottky barrier diodes is first provided, followed by the review of high-voltage SiC Schottky barrier diodes, junction-barrier Schottky diodes, and merged-pin-Schottky diodes. The development history is reviewed ad the key performance parameters are discussed. Applications of SiC SBDs in power electronic circuits as well as other areas such as gas sensors, microwave and UV detections are also presented, followed by discussion of remaining challenges.

  18. Infrared diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Civiš, S.; Cihelka, J.; Matulková, I.

    2010-12-01

    Three types of lasers (double-heterostructure 66 K InAsSb/InAsSbP laser diode, room temperature, multi quantum wells with distributed feedback (MQW with DFB) (GaInAsSb/AlGaAsSb based) diode laser and vertical cavity surface emitting lasers (VCSELs) (GaSb based) have been characterized using Fourier transform emission spectroscopy and compared. The photoacoustic technique was employed to determine the detection limit of formaldehyde (less than 1 ppmV) for the strongest absorption line of the v3 + v5 band in the emission region of the GaInAsSb/AlGaAsSb diode laser. The detection limit (less than 10 ppbV) of formaldehyde was achieved in the 2820 cm-1 spectral range in case of InAsSb/InAsSbP laser (fundamental bands of v1, v5). Laser sensitive detection (laser absorption together with high resolution Fourier transform infrared technique including direct laser linewidth measurement, infrared photoacoustic detection of neutral molecules (methane, form-aldehyde) is discussed. Additionally, very sensitive laser absorption techniques of such velocity modulation are discussed for case of laser application in laboratory research of molecular ions. Such sensitive techniques (originally developed for lasers) contributed very much in identifying laboratory microwave spectra of a series of anions (C6H-, C4H-, C2H-, CN-) and their discovery in the interstellar space (C6H-, C4H-).

  19. Perforated diode neutron sensors

    NASA Astrophysics Data System (ADS)

    McNeil, Walter J.

    A novel design of neutron sensor was investigated and developed. The perforated, or micro-structured, diode neutron sensor is a concept that has the potential to enhance neutron sensitivity of a common solid-state sensor configuration. The common thin-film coated diode neutron sensor is the only semiconductor-based neutron sensor that has proven feasible for commercial use. However, the thin-film coating restricts neutron counting efficiency and severely limits the usefulness of the sensor. This research has shown that the perforated design, when properly implemented, can increase the neutron counting efficiency by greater than a factor of 4. Methods developed in this work enable detectors to be fabricated to meet needs such as miniaturization, portability, ruggedness, and adaptability. The new detectors may be used for unique applications such as neutron imaging or the search for special nuclear materials. The research and developments described in the work include the successful fabrication of variant perforated diode neutron detector designs, general explanations of fundamental radiation detector design (with added focus on neutron detection and compactness), as well as descriptive theory and sensor design modeling useful in predicting performance of these unique solid-state radiation sensors. Several aspects in design, fabrication, and operational performance have been considered and tested including neutron counting efficiency, gamma-ray response, perforation shapes and depths, and silicon processing variations. Finally, the successfully proven technology was applied to a 1-dimensional neutron sensor array system.

  20. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  1. Cylindrical electron beam diode

    DOEpatents

    Bolduc, Paul E.

    1976-01-01

    A diode discharge device may include a tubular anode concentrically encircled by and spaced from a tubular cathode electrode with ends intermediate the ends of said anode electrode, and a metal conductive housing having a tubular wall disposed around the cathode electrode with end walls connected to the anode electrode. High energy electron current coupling is through an opening in the housing tubular wall to a portion of the cathode electrode intermediate its ends. Suitable utilization means may be within the anode electrode at positions to be irradiated by electrons emitted from the cathode electrode and transmitted through the anode walls.

  2. JANTX1N3893 diode

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Diodes manufactured by Siemens and Motorola were tested. Testing of Motorola diodes was stopped in all 3 groups because 50% failure-rate limit was reached. Siemens lot endured more testing in groups 1 and 2 and completed testing on group 3. Failure analysis was performed for group 2 testing.

  3. Infrared hot carrier diode mixer.

    PubMed

    Aukerman, L W; Erler, J W

    1977-11-01

    Detection of a 54.3-GHz beatnote at 10.6 microm has been observed with a hot carrier diode mixer. The diode consists of a "cat whisker" antenna, which forms an ohmic point contact to n-InAs. The mechanism of this room-temperature detector is described as the "thermoelectric effect" of hot carriers.

  4. Gallium phosphide high temperature diodes

    NASA Technical Reports Server (NTRS)

    Chaffin, R. J.; Dawson, L. R.

    1981-01-01

    High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  5. Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  6. Nanofluidic osmotic diodes

    NASA Astrophysics Data System (ADS)

    Bocquet, Lyderic; Picallo, Clara; Gravelle, Simon; Joly, Laurent; Charlaix, Elisabeth

    2013-11-01

    Osmosis describes the flow of water across semipermeable membranes powered by the chemical free energy extracted from salinity gradients. While osmosis can be expressed in simple terms via the van't Hoff ideal gas formula for the osmotic pressure, it is a complex phenomenon taking its roots in the subtle interactions occurring at the scale of the membrane nanopores. Here we use new opportunities offered by nanofluidic systems to create an osmotic diode exhibiting asymmetric water flow under reversal of osmotic driving. We show that a surface charge asymmetry built on a nanochannel surface leads to non-linear couplings between water flow and the ion dynamics, which are capable of water flow rectification. This phenomenon opens new opportunities for water purification and complex flow control in nanochannels.

  7. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  8. White light emitting diodes

    NASA Astrophysics Data System (ADS)

    Baur, J.; Schlotter, P.; Schneider, J.

    Using blue-emitting GaN LEDs on SiC substrate chips as primary light sources, we have fabricated green, yellow, red and white light emitting diodes (LUCOLEDs). The generation of mixed colors, as turquoise and magenta, is also demonstrated. The underlying physical principle is that of luminescence downconversion (Stokes shift), as typical for organic dye molecules and many inorganic phosphors. For white light generation via the LUCOLED principle, the phosphor Y3Al5O12:Ce3+(4f1) is ideally suited. The optical characteristics of Ce3+(4f1) in Y3Al5O12(YAG) are discussed in detail. Possibilities to "tune" the white color by various substitutions in the garnet lattice are shortly outlined.

  9. Laterally injected light-emitting diode and laser diode

    DOEpatents

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  10. Enhanced vbasis laser diode package

    DOEpatents

    Deri, Robert J.; Chen, Diana; Bayramian, Andy; Freitas, Barry; Kotovsky, Jack

    2014-08-19

    A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.

  11. Thermometric Property of a Diode.

    ERIC Educational Resources Information Center

    Inman, Fred W.; Woodruff, Dan

    1995-01-01

    Presents a simple way to implement the thermometric property of a semiconductor diode to produce a thermometer with a nearly linear dependence upon temperature over a wide range of temperatures. (JRH)

  12. Light Emitting Diodes (LEDs)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  13. Carbon-Nanotube Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Wong, Eric; Schlecht, Erich; Hunt, Brian; Siegel, Peter

    2006-01-01

    Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter-wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter-wave sensors for more than 50 years. For state-of-the-art Schottky diodes used as detectors at frequencies above a few hundred gigahertz, the inherent parasitic capacitances associated with their semiconductor junction areas and the resistances associated with low electron mobilities limit achievable sensitivity. The performance of such a detector falls off approximately exponentially with frequency above 500 GHz. Moreover, when used as frequency multipliers for generating signals, state-of-the-art solid-state Schottky diodes exhibit extremely low efficiencies, generally putting out only micro-watts of power at frequencies up to 1.5 THz. The shortcomings of the state-of-the-art solid-state Schottky diodes can be overcome by exploiting the unique electronic properties of semiconducting carbon nanotubes. A single-walled carbon nanotube can be metallic or semiconducting, depending on its chirality, and exhibits high electron mobility (recently reported to be approx.= 2x10(exp 5)sq cm/V-s) and low parasitic capacitance. Because of the narrowness of nanotubes, Schottky diodes based on carbon nanotubes have ultra-small junction areas (of the order of a few square nanometers) and consequent junction capacitances of the order of 10(exp -18) F, which translates to cutoff frequency >5 THz. Because the turn-on power levels of these devices are very low (of the order of nano-watts), the input power levels needed for pumping local oscillators containing these devices should be lower than those needed for local oscillators containing state-of-the-art solid

  14. Gas Sensing Diode Comprising SiC

    NASA Technical Reports Server (NTRS)

    Hunter, Gary William (Inventor)

    2001-01-01

    A diode for sensing hydrogen and hydrocarbons and the process for manufacturing the diode are disclosed. The diode is a Schottky diode which has a palladium chrome contact on the C-face of an n-type 6H Silicon carbide epilayer. The epilayer is grown on the C-face of a 6H silicon carbide substrate. The diode is capable of measuring low concentrations of hydrogen and hydrocarbons at high temperatures, for example, 800 degrees C. The diode is both sensitive and stable at elevated temperatures.

  15. Trace Detection with Diode Lasers

    NASA Astrophysics Data System (ADS)

    Fox, Richard W.

    1995-01-01

    Diode lasers were used to detect trace quantities of calcium, lead, chromium, cesium and rubidium. Extended -cavities were often employed for wavelength tuning and linewidth narrowing, and design considerations for the cavities are discussed. Calcium was detected under low pressure, Doppler-free conditions, and consequently the frequency stability of the laser's power spectrum was studied. The laser's frequency noise spectral density was measured and converted by calculation to the power spectrum. Examples of laser frequency noise densities with corresponding calculated power spectrums for free-running and frequency-locked conditions are given. An electronic feedback system to narrow a 657 nm wavelength diode laser's linewidth was constructed, and the resulting linewidth with respect to the locking cavity was measured to be approximately 500 Hz. Calcium atom concentrations of 0.35 x 10E-09 in water samples were measured by flame laser-enhanced ionization using a 423 nm wavelength frequency-doubled diode laser system. Analysis of the ionization signal and the noise was performed. Additional measurements of water samples with diode lasers demonstrated chromium detection at 25 x 10E-09, cesium at 0.25 x 10E -09, and rubidium at 0.25 x 10E-09. Lead was detected using a frequency-doubled diode system at a wavelength of 405 nm. The detection was by absorption from a metastable energy level; lead atoms in an argon vapor were excited into the metastable level by a radio-frequency discharge.

  16. Neutron Radiation Induced Degradation of Diode Characteristics,

    DTIC Science & Technology

    1992-12-01

    3). La plupart des r6sultats anterieurs sur les diodes A jonction p-n correspondent aux r~sultats des diodes du type 1. Les diodes du type 2 sont...d’autres types de diodes non reportds plus t6t. Ces rt~sultats sont expliqu~s qualitativement-en termes des th6ories pour une jonction p-n et pour les

  17. Method of making diode structures

    DOEpatents

    Compaan, Alvin D.; Gupta, Akhlesh

    2006-11-28

    A method of making a diode structure includes the step of depositing a transparent electrode layer of any one or more of the group ZnO, ZnS and CdO onto a substrate layer, and depositing an active semiconductor junction having an n-type layer and a p-type layer onto the transparent electrode layer under process conditions that avoid substantial degradation of the electrode layer. A back electrode coating layer is applied to form a diode structure.

  18. Calibrated feedback for laser diodes

    SciTech Connect

    Howard, P.G.

    1986-04-22

    A method is described of calibrating the feedback output from the feedback light detector of the laser diode of an optical disk drive of a laser light pen which consists of mounting a first and a second resistor in a laser light pen; connecting the first resistor between the feedback light detector and ground; connecting the second resistor between the feedback light detector and a feedback output; operating the laser diode to produce a predetermined light power output; adjusting the resistance of the first resistor to produce a predetermined voltage at the feedback output; and adjusting the resistance of the second resistor to produce a predetermined impedance at the feedback output.

  19. Low Temperature Thermometry Using Inexpensive Silicon Diodes.

    ERIC Educational Resources Information Center

    Waltham, N. R.; And Others

    1981-01-01

    Describes the use of silicon diodes for low temperature thermometry in the teaching laboratory. A simple and inexpensive circuit for display of the diode forward voltage under constant current conditions is described, and its application in the evaluation of low cost silicon diodes as low temperature thermometers is presented. (SK)

  20. IC Fabrication Methods Improve Laser Diodes

    NASA Technical Reports Server (NTRS)

    Miller, M.; Pickhardt, V.

    1984-01-01

    Family of high-performance, tunable diode lasers developed for use as local oscillators in passive laser heterodyne spectrometer. Diodes fabricated using standard IC processes include photolithography, selective etching and vacuum deposition of metals and insulators. Packaging refinements improved thermal-cycling characteristics of diodes and increased room-temperature shelf life.

  1. Neutron Radiation Induced Degradation of Diode Characteristics

    DTIC Science & Technology

    1992-12-01

    de fluance utilis6 dans ce travail (diode du type 3). La plupart des r~sultats anterieurs sur les, diodes A jonction p-n correspondent aux rdsultats...termes des thories pour une jonction p-n et pour les effects de radiations sur semiconducteurs. II est prddit qu’une diode du type 3 pourrait &tre

  2. Semiconductor Laser Diodes and the Design of a D.C. Powered Laser Diode Drive Unit

    DTIC Science & Technology

    1988-06-01

    the design of a laser diode modulation circuit is the determination of the input imped- ence and equivalent circuit of the laser diode and packag- ing...current source with a high internal impedance as compared to the input imped- ance of the laser. [Ref. l:p. 33] Summarizing the above, laser diodes...switches. The modula- tion circuitry is connected in parallel with the laser diode and provides a modulated input to the laser diode superim- posed onto

  3. Thermal-Diode Sandwich Panel

    NASA Technical Reports Server (NTRS)

    Basiulis, A.

    1986-01-01

    Thermal diode sandwich panel transfers heat in one direction, but when heat load reversed, switches off and acts as thermal insulator. Proposed to control temperature in spacecraft and in supersonic missiles to protect internal electronics. In combination with conventional heat pipes, used in solar panels and other heat-sensitive systems.

  4. Improved method of preparing p-i-n junctions in amorphous silicon semiconductors

    DOEpatents

    Madan, A.

    1984-12-10

    A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

  5. Hybrid method of making an amorphous silicon P-I-N semiconductor device

    DOEpatents

    Moustakas, Theodore D.; Morel, Don L.; Abeles, Benjamin

    1983-10-04

    The invention is directed to a hydrogenated amorphous silicon PIN semiconductor device of hybrid glow discharge/reactive sputtering fabrication. The hybrid fabrication method is of advantage in providing an ability to control the optical band gap of the P and N layers, resulting in increased photogeneration of charge carriers and device output.

  6. Properties of InGaN P-I-N ultraviolet detector

    NASA Astrophysics Data System (ADS)

    Lu, Yidan; Zhang, Yan; Li, Xiang-yang

    2014-09-01

    The fabrication and characterization of InGaN ultraviolet photodetector were reported in this work. The effects of thermal annealing were investigated on the properties of ohmic contact. Experiments showed that the zero bias resistance was lowest when the sample was annealed at 550 degrees Celsius for 5 minutes. The current-voltage (I-V) curve showed that current at zero bias was 3.70×10-13A and the resistance was 4.53×1010 Ω. A flat band spectral response was achieved in the 360nm~390nm. The detector displayed an unbiased response of 0.22A/W at 378 nm, corresponding to an internal quantum efficiency of 88%. R0A values up to 1.3×108Ω·cm2 was obtained corresponding to D*=1.97×1013cm•Hz1/2•W-1.

  7. Strong room temperature electroluminescence from lateral p-SiGe/i-Ge/n-SiGe heterojunction diodes on silicon-on-insulator substrate

    NASA Astrophysics Data System (ADS)

    Lin, Guangyang; Yi, Xiaohui; Li, Cheng; Chen, Ningli; Zhang, Lu; Chen, Songyan; Huang, Wei; Wang, Jianyuan; Xiong, Xihuan; Sun, Jiaming

    2016-10-01

    A lateral p-Si0.05Ge0.95/i-Ge/n-Si0.05Ge0.95 heterojunction light emitting diode on a silicon-on-insulator (SOI) substrate was proposed, which is profitable to achieve higher luminous extraction compared to vertical junctions. Due to the high carrier injection ratio of heterostructures and optical reflection at the SiO2/Si interface of the SOI, strong room temperature electroluminescence (EL) at around 1600 nm from the direct bandgap of i-Ge with 0.30% tensile strain was observed. The EL peak intensity of the lateral heterojunction is enhanced by ˜4 folds with a larger peak energy than that of the vertical Ge p-i-n homojunction, suggesting that the light emitting efficiency of the lateral heterojunction is effectively improved. The EL peak intensity of the lateral heterojunction, which increases quadratically with injection current density, becomes stronger for diodes with a wider i-Ge region. The CMOS compatible fabrication process of the lateral heterojunctions paves the way for the integration of the light source with the Ge metal-oxide-semiconductor field-effect-transistor.

  8. Megahertz organic/polymer diodes

    DOEpatents

    Katz, Howard Edan; Sun, Jia; Pal, Nath Bhola

    2012-12-11

    Featured is an organic/polymer diode having a first layer composed essentially of one of an organic semiconductor material or a polymeric semiconductor material and a second layer formed on the first layer and being electrically coupled to the first layer such that current flows through the layers in one direction when a voltage is applied in one direction. The second layer is essentially composed of a material whose characteristics and properties are such that when formed on the first layer, the diode is capable of high frequency rectifications on the order of megahertz rectifications such as for example rectifications at one of above 100KHz, 500KhZ, IMHz, or 10 MHz. In further embodiments, the layers are arranged so as to be exposed to atmosphere.

  9. Quantum Noise in Laser Diodes

    NASA Technical Reports Server (NTRS)

    Giacobino, E.; Marin, F.; Bramati, A.; Jost, V.; Poizat, J. Ph.; Roch, J.-F.; Grangier, P.; Zhang, T.-C.

    1996-01-01

    We have investigated the intensity noise of single mode laser diodes, either free-running or using different types of line narrowing techniques at room temperature. We have measured an intensity squeezing of 1.2 dB with grating-extended cavity lasers and 1.4 dB with injection locked lasers (respectively 1.6 dB and 2.3 dB inferred at the laser output). We have observed that the intensity noise of a free-running nominally single mode laser diode results from a cancellation effect between large anti-correlated fluctuations of the main mode and of weak longitudinal side modes. Reducing the side modes by line narrowing techniques results in intensity squeezing.

  10. Plasma Studies in Ion Diodes.

    DTIC Science & Technology

    1984-09-01

    high power pulse, with a typical rise time of 10 ns, to a pulsed high current vacuum diode (also variously referred to as an explosive emission , field...instantaneous event. One motivation for such studies was the developement of high voltage devices, such as x - ray tubes. for which vacuum breakdown was...Sources of high current , high voltage particle beams rely on the intermedi- ate phase of vacuum breakdown, between initial plasma formation and gap clo

  11. Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes

    DOE PAGES

    King, M. P.; Kaplar, R. J.; Dickerson, J. R.; ...

    2016-10-31

    Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~104 –106 cm–2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at Ec-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be Nt = 3 × 1012, 2 × 1015, and 5 × 1014 cm–3, respectively. The Ec-2.92 eV level is observed to be the primarymore » compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large VBD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less

  12. A single-molecule diode

    PubMed Central

    Elbing, Mark; Ochs, Rolf; Koentopp, Max; Fischer, Matthias; von Hänisch, Carsten; Weigend, Florian; Evers, Ferdinand; Weber, Heiko B.; Mayor, Marcel

    2005-01-01

    We have designed and synthesized a molecular rod that consists of two weakly coupled electronic π -systems with mutually shifted energy levels. The asymmetry thus implied manifests itself in a current–voltage characteristic with pronounced dependence on the sign of the bias voltage, which makes the molecule a prototype for a molecular diode. The individual molecules were immobilized by sulfur–gold bonds between both electrodes of a mechanically controlled break junction, and their electronic transport properties have been investigated. The results indeed show diode-like current–voltage characteristics. In contrast to that, control experiments with symmetric molecular rods consisting of two identical π -systems did not show significant asymmetries in the transport properties. To investigate the underlying transport mechanism, phenomenological arguments are combined with calculations based on density functional theory. The theoretical analysis suggests that the bias dependence of the polarizability of the molecule feeds back into the current leading to an asymmetric shape of the current–voltage characteristics, similar to the phenomena in a semiconductor diode. PMID:15956208

  13. A single-molecule diode.

    PubMed

    Elbing, Mark; Ochs, Rolf; Koentopp, Max; Fischer, Matthias; von Hänisch, Carsten; Weigend, Florian; Evers, Ferdinand; Weber, Heiko B; Mayor, Marcel

    2005-06-21

    We have designed and synthesized a molecular rod that consists of two weakly coupled electronic pi -systems with mutually shifted energy levels. The asymmetry thus implied manifests itself in a current-voltage characteristic with pronounced dependence on the sign of the bias voltage, which makes the molecule a prototype for a molecular diode. The individual molecules were immobilized by sulfur-gold bonds between both electrodes of a mechanically controlled break junction, and their electronic transport properties have been investigated. The results indeed show diode-like current-voltage characteristics. In contrast to that, control experiments with symmetric molecular rods consisting of two identical pi-systems did not show significant asymmetries in the transport properties. To investigate the underlying transport mechanism, phenomenological arguments are combined with calculations based on density functional theory. The theoretical analysis suggests that the bias dependence of the polarizability of the molecule feeds back into the current leading to an asymmetric shape of the current-voltage characteristics, similar to the phenomena in a semiconductor diode.

  14. Molecular diodes in optical rectennas

    NASA Astrophysics Data System (ADS)

    Duché, David; Palanchoke, Ujwol; Terracciano, Luigi; Dang, Florian-Xuan; Patrone, Lionel; Le Rouzo, Judikael; Balaban, Téodore Silviu; Alfonso, Claude; Charai, Ahmed; Margeat, Olivier; Ackermann, Jorg; Gourgon, Cécile; Simon, Jean-Jacques; Escoubas, Ludovic

    2016-09-01

    The photo conversion efficiencies of the 1st and 2nd generat ion photovoltaic solar cells are limited by the physical phenomena involved during the photo-conversion processes. An upper limit around 30% has been predicted for a monojunction silicon solar cell. In this work, we study 3rd generation solar cells named rectenna which could direct ly convert visible and infrared light into DC current. The rectenna technology is at odds with the actual photovoltaic technologies, since it is not based on the use of semi-conducting materials. We study a rectenna architecture consist ing of plasmonic nano-antennas associated with rectifying self assembled molecular diodes. We first opt imized the geometry of plasmonic nano-antennas using an FDTD method. The optimal antennas are then realized using a nano-imprint process and associated with self assembled molecular diodes in 11- ferrocenyl-undecanethiol. Finally, The I(V) characterist ics in darkness of the rectennas has been carried out using an STM. The molecular diodes exhibit averaged rect ification ratios of 5.

  15. High power coherent polarization locked laser diode.

    PubMed

    Purnawirman; Phua, P B

    2011-03-14

    We have coherently combined a broad area laser diode array to obtain high power single-lobed output by using coherent polarization locking. The single-lobed coherent beam is achieved by spatially combining four diode emitters using walk-off crystals and waveplates while their phases are passively locked via polarization discrimination. While our previous work focused on coherent polarization locking of diode in Gaussian beams, we demonstrate in this paper, the feasibility of the same polarization discrimination for locking multimode beams from broad area diode lasers. The resonator is designed to mitigate the loss from smile effect by using retro-reflection feedback in the cavity. In a 980 nm diode array, we produced 7.2 W coherent output with M2 of 1.5x11.5. The brightness of the diode is improved by more than an order of magnitude.

  16. Schlieren with a laser diode source

    NASA Astrophysics Data System (ADS)

    Burner, A. W.; Franke, J. M.

    1981-10-01

    The use of a laser diode as a light source for a schlieren system designed to study phase objects such as a wind-tunnel flow is explored. A laser diode schlieren photograph and a white light schlieren photograph (zirconium arc source) are presented for comparison. The laser diode has increased sensitivity, compared with light schlieren, without appreciable image degradiation, and is an acceptable source for schlieren flow visualization.

  17. Thermal (Silicon Diode) Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Wright, Ernest; Kegley, Jeff

    2008-01-01

    Marshall Space Flight Center s X-ray Cryogenic Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented.

  18. Thermal (Silicon Diode) Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    Marshall Space Flight Center's X-ray Calibration Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented.

  19. Thermic diode performance characteristics and design manual

    NASA Technical Reports Server (NTRS)

    Bernard, D. E.; Buckley, S.

    1979-01-01

    Thermic diode solar panels are a passive method of space and hot water heating using the thermosyphon principle. Simplified methods of sizing and performing economic analyses of solar heating systems had until now been limited to passive systems. A mathematical model of the thermic diode including its high level of stratification has been constructed allowing its performance characteristics to be studied. Further analysis resulted in a thermic diode design manual based on the f-chart method.

  20. Effects of radiation on laser diodes.

    SciTech Connect

    Phifer, Carol Celeste

    2004-09-01

    The effects of ionizing and neutron radiation on the characteristics and performance of laser diodes are reviewed, and the formation mechanisms for nonradiative recombination centers, the primary type of radiation damage in laser diodes, are discussed. Additional topics include the detrimental effects of aluminum in the active (lasing) volume, the transient effects of high-dose-rate pulses of ionizing radiation, and a summary of ways to improve the radiation hardness of laser diodes. Radiation effects on laser diodes emitting in the wavelength region around 808 nm are emphasized.

  1. Advances in high power semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  2. Excess noise in tunable diode lasers

    NASA Technical Reports Server (NTRS)

    Rowland, C. W.

    1981-01-01

    The method and the apparatus for identifying excess-noise regions in tunable diode lasers are described. These diode lasers exhibit regions of excess noise as their wavelength is tuned. If a tunable diode laser is to be used as a local oscillator in a superheterodyne optical receiver, these excess-noise regions severely degrade the performance of the receiver. Measurement results for several tunable diode lasers are given. These results indicate that excess noise is not necessarily associated with a particular wavelength, and that it is possible to select temperature and injection current such that the most ideal performance is achieved.

  3. Nanofluidic diode and bipolar transistor.

    PubMed

    Daiguji, Hirofumi; Oka, Yukiko; Shirono, Katsuhiro

    2005-11-01

    Theoretical modeling of ionic distribution and transport in a nanochannel containing a surface charge on its wall, 30 nm high and 5 microm long, suggests that ionic current can be controlled by locally modifying the surface charge density through a gate electrode, even if the electrical double layers are not overlapped. When the surface charge densities at the right and left halves of a channel are the same absolute value but of different signs, this could form the basis of a nanofluidic diode. When the surface charge density at the middle part of a channel is modified, this could form the basis of a nanofluidic bipolar transistor.

  4. High power, high reliability laser diodes

    NASA Astrophysics Data System (ADS)

    Scifres, D. R.; Welch, D. F.; Craig, R. R.; Zucker, E.; Major, J. S.; Harnagel, G. L.; Sakamoto, M.; Haden, J. M.; Endriz, J. G.; Kung, H.

    1992-06-01

    Results are presented on catastrophic damage limits and life-test measurements for four types of high-power laser diodes operating at wavelengths between 980 nm and 690 nm. The laser diodes under consideration are CW multimode lasers, CW laser bars, quasi-CW bars/2D stacked arrays, and single transverse mode lasers.

  5. Semiconductor diode with external field modulation

    DOEpatents

    Nasby, Robert D.

    2000-01-01

    A non-destructive-readout nonvolatile semiconductor diode switching device that may be used as a memory element is disclosed. The diode switching device is formed with a ferroelectric material disposed above a rectifying junction to control the conduction characteristics therein by means of a remanent polarization. The invention may be used for the formation of integrated circuit memories for the storage of information.

  6. Self-Injection Locking Of Diode Lasers

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1991-01-01

    Simple optical coupling scheme locks array of gain-guided diode lasers into oscillation in single mode and with single-lobed output beam. Selective feedback from thin etalon self-injection-locks array into desired mode. One application of new scheme for pumping of neodymium: yttrium aluminum garnet lasers with diode-laser arrays.

  7. Demonstrating the Light-Emitting Diode.

    ERIC Educational Resources Information Center

    Johnson, David A.

    1995-01-01

    Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)

  8. High power diode and solid state lasers

    NASA Astrophysics Data System (ADS)

    Eichler, H. J.; Fritsche, H.; Lux, O.; Strohmaier, S. G.

    2017-01-01

    Diode lasers are now basic pump sources of crystal, glass fiber and other solid state lasers. Progress in the performance of all these lasers is related. Examples of recently developed diode pumped lasers and Raman frequency converters are described for applications in materials processing, Lidar and medical surgery.

  9. Laser diode package with enhanced cooling

    DOEpatents

    Deri, Robert J.; Kotovsky, Jack; Spadaccini, Christopher M.

    2011-09-13

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  10. Laser diode package with enhanced cooling

    SciTech Connect

    Deri, Robert J; Kotovsky, Jack; Spadaccini, Christopher M

    2012-06-12

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  11. Laser diode package with enhanced cooling

    SciTech Connect

    Deri, Robert J; Kotovsky, Jack; Spadaccini, Christopher M

    2012-06-26

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  12. Broadband light-emitting diode

    DOEpatents

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  13. Broadband light-emitting diode

    DOEpatents

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  14. Hermetic diode laser transmitter module

    NASA Astrophysics Data System (ADS)

    Ollila, Jyrki; Kautio, Kari; Vahakangas, Jouko; Hannula, Tapio; Kopola, Harri K.; Oikarinen, Jorma; Sivonen, Matti

    1999-04-01

    In very demanding optoelectronic sensor applications it is necessary to encapsulate semiconductor components hermetically in metal housings to ensure reliable operation of the sensor. In this paper we report on the development work to package a laser diode transmitter module for a time- off-light distance sensor application. The module consists of a lens, laser diode, electronic circuit and optomechanics. Specifications include high acceleration, -40....+75 degree(s)C temperature range, very low gas leakage and mass-production capability. We have applied solder glasses for sealing optical lenses and electrical leads hermetically into a metal case. The lens-metal case sealing has been made by using a special soldering glass preform preserving the optical quality of the lens. The metal housings are finally sealed in an inert atmosphere by welding. The assembly concept to retain excellent optical power and tight optical axis alignment specifications is described. The reliability of the laser modules manufactured has been extensively tested using different aging and environmental test procedures. Sealed packages achieve MIL- 883 standard requirements for gas leakage.

  15. Composite photopolymerization with diode laser.

    PubMed

    Knezevic, Alena; Ristic, Mira; Demoli, Nazif; Tarle, Zrinka; Music, Svetozar; Negovetic Mandic, Visnja

    2007-01-01

    Under clinical conditions, the time needed for the proper light curing of luting composites or the multi-incremental buildup of a large restoration with halogen curing units is quite extensive. Due to the development of high power curing devices, such as argon lasers and plasma arc lights and, in order to decrease curing time, halogen and LED devices have developed a high intensity polymerization mode. This study compared the degree of conversion using Fourier Transform Infrared Spectroscopy (FT-IR) of two composite materials: Tetric Ceram and Tetric EvoCeram polymerized with three polymerization modes (high, low and soft mode) of a Bluephase 16i LED curing unit and blue diode laser intensity of 50 mW on the output of the laser beam and 35 mW/cm2 on the resin composite sample. Descriptive statistic, t-test, ANOVA, Pearson Correlation and Tukey Post hoc tests were used for statistical analyses. The results show a higher degree of conversion for the polymerization of composite samples with all photopolymerization modes of the LED curing unit. However, there is no significant difference in the degree of conversion between the LED unit and 50-second polymerization with the blue diode laser. Tetric EvoCeram shows a lower degree of conversion regardless of the polymerization mode (or light source) used.

  16. Sixty GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Ma, Y. E.; Chen, J.; Benko, E.; Barger, M. J.; Nghiem, H.; Trinh, T. Q.; Kung, J.

    1985-01-01

    The objective of this program is to develop 60 GHz GaAs IMPATT Diodes suitable for communications applications. The performance goal of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10 year life time. During the course of the program, double drift (DD) GaAs IMPATT Diodes have been developed resulting in the state of the art performance at V band frequencies. A CW output power of 1.12 W was demonstrated at 51.9 GHz with 9.7 percent efficiency. The best conversion efficiency achieved was 15.3 percent. V band DD GaAs IMPATTs were developed using both small signal and large signal analyses. GaAs wafers of DD flat, DD hybrid, and DD Read profiles using molecular beam epitaxy (MBE) were developed with excellent doping profile control. Wafer evaluation was routinely made by the capacitance versus voltage (C-V) measurement. Ion mass spectrometry (SIMS) analysis was also used for more detailed profile evaluation.

  17. A single-molecule diode

    NASA Astrophysics Data System (ADS)

    Elbing, Mark; Ochs, Rolf; Koentopp, Max; Fischer, Matthias; von Hänisch, Carsten; Weigend, Florian; Evers, Ferdinand; Weber, Heiko B.; Mayor, Marcel

    2005-06-01

    We have designed and synthesized a molecular rod that consists of two weakly coupled electronic π -systems with mutually shifted energy levels. The asymmetry thus implied manifests itself in a current-voltage characteristic with pronounced dependence on the sign of the bias voltage, which makes the molecule a prototype for a molecular diode. The individual molecules were immobilized by sulfur-gold bonds between both electrodes of a mechanically controlled break junction, and their electronic transport properties have been investigated. The results indeed show diode-like current-voltage characteristics. In contrast to that, control experiments with symmetric molecular rods consisting of two identical π -systems did not show significant asymmetries in the transport properties. To investigate the underlying transport mechanism, phenomenological arguments are combined with calculations based on density functional theory. The theoretical analysis suggests that the bias dependence of the polarizability of the molecule feeds back into the current leading to an asymmetric shape of the current-voltage characteristics, similar to the phenomena in a semiconductor diode. Author contributions: F.E., H.B.W., and M.M. designed research; M.E., R.O., M.K., M.F., F.E., H.B.W., and M.M. performed research; M.E., R.O., M.K., M.F., C.v.H., F.W., F.E., H.B.W., and M.M. contributed new reagents/analytic tools; M.E., R.O., M.K., C.v.H., F.E., H.B.W., and M.M. analyzed data; and F.E., H.B.W., and M.M. wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: A, acceptor; D, donor; MCB, mechanically controlled break junction.Data deposition: The atomic coordinates have been deposited in the Cambridge Structural Database, Cambridge Crystallographic Data Centre, Cambridge CB2 1EZ, United Kingdom (CSD reference no. 241632).

  18. Diode lasers: From laboratory to industry

    NASA Astrophysics Data System (ADS)

    Nasim, Hira; Jamil, Yasir

    2014-03-01

    The invention of first laser in 1960 triggered the discovery of several new families of lasers. A rich interplay of different lasing materials resulted in a far better understanding of the phenomena particularly linked with atomic and molecular spectroscopy. Diode lasers have gone through tremendous developments on the forefront of applied physics that have shown novel ways to the researchers. Some interesting attributes of the diode lasers like cost effectiveness, miniature size, high reliability and relative simplicity of use make them good candidates for utilization in various practical applications. Diode lasers are being used by a variety of professionals and in several spectroscopic techniques covering many areas of pure and applied sciences. Diode lasers have revolutionized many fields like optical communication industry, medical science, trace gas monitoring, studies related to biology, analytical chemistry including elemental analysis, war fare studies etc. In this paper the diode laser based technologies and measurement techniques ranging from laboratory research to automated field and industry have been reviewed. The application specific developments of diode lasers and various methods of their utilization particularly during the last decade are discussed comprehensively. A detailed snapshot of the current state of the art diode laser applications is given along with a detailed discussion on the upcoming challenges.

  19. A compact high brilliance diode laser

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Holzinger, B.

    2006-02-01

    We explain some technical details regarding time-multiplexing of laser diodes, a method to improve the beam quality of diode lasers, which is still insufficient for many applications. Several pulsed laser diode beams are guided onto a common optical path to superpose the power of the laser diodes while maintaining the beam parameter product of a single laser diode. Pulsed operation of continuous wave laser diodes with average power equal to the specified cw-power of 4 W was tested for 150 hours without failure. We use a fast digital optical multiplexer built up by a cascade of binary optical switches. For the latter we use a Pockel's cell followed by a polarization filter, which allows addressing of two optical paths. Instead of direct on/off-switching we drive the crystals with a harmonic voltage course to avoid ringing caused by piezo-electricity. Up to now an optical power of 10.5 W was generated, 13 W are expected with some improvements. Furthermore we discuss the use of new 8 W laser diodes and the involved implications on driver technology.

  20. Checker Takes the Guesswork out of Diode Identification

    ERIC Educational Resources Information Center

    Harman, Charles

    2011-01-01

    At technical colleges and secondary-level tech schools, students enrolled in basic electronics labs who have learned about diodes that do rectification are used to seeing power diodes like the 1N4001. When the students are introduced to low-power zener diodes and signal diodes, component identification gets more complex. If the small zeners are…

  1. Versatile subnanosecond laser diode driver

    NASA Astrophysics Data System (ADS)

    Żbik, Mateusz; Wieczorek, Piotr Z.

    2016-09-01

    This article presents a laser diode driver that provides a fast modulation of a laser beam. A pulsed current source was designed and built to test Infra-Red (I-R) receivers in the Time Domain (TD). The proposed solution allows to estimate pulse responses of various photodetectors, whereas the testing was performed with a PiN photodetector. The pulse response brings the information on the behavior of the device under test in a wide frequency range. In addition, an experimental application of the proposed method is presented too. System discussed in this paper has been fully designed and manufactured in Warsaw University of Technology (WUT) in Institute of Electronic Systems (ISE).

  2. Diode pumped tunable dye laser

    NASA Astrophysics Data System (ADS)

    Burdukova, O.; Gorbunkov, M.; Petukhov, V.; Semenov, M.

    2017-03-01

    A wavelength-tunable dye laser pumped by blue laser diodes (λ =445 nm) in a 200 ns pulsed mode has been developed. We used a 3-mirror cavity with transverse excitation and total internal reflection of laser beam in the active element. Tuning curves for 8 dyes in benzyl alcohol were measured in the range of 506-700 nm. Four dyes have their tuning range more than 60 nm, which is comparable to the tuning ranges of other dye lasers pumped by more expensive sources. The output energy obtained at the generation maximum of both DCM and coumarin 540A dyes was approximately 130 nJ while the pump energy was 2400 nJ.

  3. Bright diode laser light source.

    PubMed

    Lassila, Erkki; Hernberg, Rolf

    2006-05-20

    A simplified multiwavelength prototype of an axially symmetric diode laser device based on stacks made of single emitters has been made, and the performance of the device has been demonstrated experimentally. The results verify that kilowatt-level light power can be focused into a circular spot with a 1/e2 diameter of 360 microm, a focal length of 100 mm, and a numerical aperture of 0.24, thus producing an average power density in excess of 10 kW/mm2 and a brightness of 6x10(10) W m-2 sr-1. The experiments also predict that it will be possible to increase these values to more than 60 kW/mm2 and 3x10(11) W m-2 sr-1.

  4. A Portable Diode Array Spectrophotometer.

    PubMed

    Stephenson, David

    2016-05-01

    A cheap portable visible light spectrometer is presented. The spectrometer uses readily sourced items and could be constructed by anyone with a knowledge of electronics. The spectrometer covers the wavelength range 450-725 nm with a resolution better than 5 nm. The spectrometer uses a diffraction grating to separate wavelengths, which are detected using a 128-element diode array, the output of which is analyzed using a microprocessor. The spectrum is displayed on a small liquid crystal display screen and can be saved to a micro SD card for later analysis. Battery life (2 × AAA) is estimated to be 200 hours. The overall dimensions of the unit are 120 × 65 × 60 mm, and it weighs about 200 g.

  5. High power diode lasers reliability experiment

    NASA Astrophysics Data System (ADS)

    Lu, Guoguang; Xie, Shaofeng; Hao, Mingming; Huang, Yun; En, Yunfei

    2013-12-01

    In order to evaluate and obtain the actual lifetime data of high power laser diodes, an automated high power laser diodes reliability experiment was developed and reported in this paper. This computer controlled setup operates the laser diodes 24 hours a day, the parameters such as output power, wavelength were test once in one hour. The experiment has 60 work stations, the temperature control range is from 25°C to 70°C, and the output power of the aging device is beyond 20W.

  6. Corrosion of SA1388-1 diodes

    SciTech Connect

    Krska, C.; Stimetz, C.; Braithwaite, J.; Sorensen, R.; Hlava, P.

    1996-06-01

    After 5 y storage at Allied Signal, a subassembly with SA1388-1 diodes failed testing and the cause was an unacceptable current leak rate in one of the diodes. This was traced to a CuS deposit in a single production lot of diodes; however only about 0.3% failed the specification. A study was performed to determine the cause and potential long-term significance of this problem. Probable cause was determined to be the P-bearing braze material not being compatible with the Ag immersion plating solution (cyanide-based) and to the storage environment containing sulfur.

  7. Bilayer avalanche spin-diode logic

    SciTech Connect

    Friedman, Joseph S. Querlioz, Damien; Fadel, Eric R.; Wessels, Bruce W.; Sahakian, Alan V.

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  8. Improved Thermoelectrically Cooled Laser-Diode Assemblies

    NASA Technical Reports Server (NTRS)

    Glesne, Thomas R.; Schwemmer, Geary K.; Famiglietti, Joe

    1994-01-01

    Cooling decreases wavelength and increases efficiency and lifetime. Two improved thermoelectrically cooled laser-diode assemblies incorporate commercial laser diodes providing combination of both high wavelength stability and broad wavelength tuning which are broadly tunable, highly stable devices for injection seeding of pulsed, high-power tunable alexandrite lasers used in lidar remote sensing of water vapor at wavelengths in vicinity of 727 nanometers. Provide temperature control needed to take advantage of tunability of commercial AlGaAs laser diodes in present injection-seeding application.

  9. Arbitrary waveform generator to improve laser diode driver performance

    SciTech Connect

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  10. Pt/ZnO nanowire Schottky diodes

    SciTech Connect

    Heo, Y.W.; Tien, L.C.; Norton, D.P.; Pearton, S.J.; Kang, B.S.; Ren, F.; LaRoche, J.R.

    2004-10-11

    Pt Schottky diodes were formed on single ZnO nanowires grown by site-selective molecular-beam epitaxy and then transferred to SiO{sub 2}-coated Si substrates. The diodes exhibit excellent ideality factors of 1.1 at 25 deg. C and very low (1.5x10{sup -10} A, equivalent to 2.35 A cm{sup -2}, at -10 V) reverse currents. The nanowire diodes show a strong photoresponse, with the current-voltage characteristics becoming ohmic under ultraviolet illumination (366 nm light). The on-off current ratio of the diodes at 0.15/-5 V was {approx}6. These results show the ability to manipulate the electron transport in nanoscale ZnO devices.

  11. Diode Laser Ear Piercing: A Novel Technique.

    PubMed

    Suseela, Bibilash Babu; Babu, Preethitha; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad

    2016-01-01

    Earlobe piercing is a common office room procedure done by a plastic surgeon. Various methods of ear piercing have been described. In this article, we describe a novel method of laser ear piercing using the diode laser. An 18-year-old female patient underwent an ear piercing using a diode laser with a power of 2.0 W in continuous mode after topical local anaesthetic and pre-cooling. The diode laser was fast, safe, easy to use and highly effective way of ear piercing. The advantages we noticed while using the diode laser over conventional methods were more precision, minimal trauma with less chances of hypertrophy and keloids, no bleeding with coagulation effect of laser, less time taken compared to conventional method and less chance of infection due to thermal heat effect of laser.

  12. Diode Lasers and Practical Trace Analysis.

    ERIC Educational Resources Information Center

    Imasaka, Totaro; Nobuhiko, Ishibashi

    1990-01-01

    Applications of lasers to molecular absorption spectrometry, molecular fluorescence spectrometry, visible semiconductor fluorometry, atomic absorption spectrometry, and atomic fluorescence spectrometry are discussed. Details of the use of the frequency-doubled diode laser are provided. (CW)

  13. Schottky barrier diode and method thereof

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid (Inventor); Franz, David (Inventor)

    2008-01-01

    Pt/n.sup.-GaN Schottky barrier diodes are disclosed that are particularly suited to serve as ultra-violet sensors operating at wavelengths below 200 nm. The Pt/n.sup.-GaN Schottky barrier diodes have very large active areas, up to 1 cm.sup.2, which exhibit extremely low leakage current at low reverse biases. Very large area Pt/n.sup.-GaN Schottky diodes of sizes 0.25 cm.sup.2 and 1 cm.sup.2 have been fabricated from n.sup.-/n.sup.+ GaN epitaxial layers grown by vapor phase epitaxy on single crystal c-plane sapphire, which showed leakage currents of 14 pA and 2.7 nA, respectively for the 0.25 cm.sup.2 and 1 cm.sup.2 diodes both configured at a 0.5V reverse bias.

  14. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  15. JANTX/N98B Zener diode

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Tested diodes were manufactured aby Motorola and Siemens. Both sample lots performed well in groups 1 and 3 testing. Group 2 testing was most detrimental of three groups. Extreme heat was big factor in failure mode.

  16. JANTX/N937B Zener diode

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Zener diodes manufactured by Motorola and Siemens were tested. Apparent failure mode in all three groups was B (sub) V (Zener-breakdown-voltage) minimum failure. Both manufacturers had apporximately same amount of failure in each testing.

  17. Diode Laser Ear Piercing: A Novel Technique

    PubMed Central

    Suseela, Bibilash Babu; Babu, Preethitha; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad

    2016-01-01

    Earlobe piercing is a common office room procedure done by a plastic surgeon. Various methods of ear piercing have been described. In this article, we describe a novel method of laser ear piercing using the diode laser. An 18-year-old female patient underwent an ear piercing using a diode laser with a power of 2.0 W in continuous mode after topical local anaesthetic and pre-cooling. The diode laser was fast, safe, easy to use and highly effective way of ear piercing. The advantages we noticed while using the diode laser over conventional methods were more precision, minimal trauma with less chances of hypertrophy and keloids, no bleeding with coagulation effect of laser, less time taken compared to conventional method and less chance of infection due to thermal heat effect of laser. PMID:28163460

  18. Frequency-narrowed diode array bar.

    PubMed

    Babcock, Earl; Chann, Bien; Nelson, Ian A; Walker, Thad G

    2005-05-20

    We describe a method to frequency narrow multielement high-power diode bars. Using a commercial 60-W, 49-element, 1-cm-long diode array bar at 795 nm running at 45 W, we narrow the linewidth from 1000 to 64 GHz with only a loss of 33% in output power. The resulting laser light is well suited for spin-exchange optical pumping of noble gas nuclei.

  19. Bypass diode for a solar cell

    DOEpatents

    Rim, Seung Bum [Palo Alto, CA; Kim, Taeseok [San Jose, CA; Smith, David D [Campbell, CA; Cousins, Peter J [Menlo Park, CA

    2012-03-13

    Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

  20. Stacked switchable element and diode combination

    DOEpatents

    Branz, Howard M.; Wang, Qi

    2006-06-27

    A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship so that the semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a forming voltage to the switchable element (14).

  1. Phase Noise Reduction of Laser Diode

    NASA Technical Reports Server (NTRS)

    Zhang, T. C.; Poizat, J.-Ph.; Grelu, P.; Roch, J.-F.; Grangier, P.; Marin, F.; Bramati, A.; Jost, V.; Levenson, M. D.; Giacobino, E.

    1996-01-01

    Phase noise of single mode laser diodes, either free-running or using line narrowing technique at room temperature, namely injection-locking, has been investigated. It is shown that free-running diodes exhibit very large excess phase noise, typically more than 80 dB above shot-noise at 10 MHz, which can be significantly reduced by the above-mentioned technique.

  2. Stacked Switchable Element and Diode Combination

    DOEpatents

    Branz, H. M.; Wang, Q.

    2006-06-27

    A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship so that the semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a forming voltage to the switchable element (14).

  3. Varactor diodes for millimeter and submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Rizzi, Brian J.; Hesler, Jeffrey L.; Dossal, Hasan; Crowe, Thomas W.

    1992-01-01

    Whisker-contacted GaAs Schottky barrier varactor diodes are the most common high-frequency multiplier element in use today. They are inherently simple devices that have very high frequency response and have been used to supply local oscillator power for Schottky heterodyne receivers to frequencies approaching 700 GHz. This paper discusses the development of improved varactor diode technology for space based applications at millimeter and submillimeter wavelengths.

  4. Warm-white light-emitting diode with high color rendering index fabricated by combining trichromatic InGaN emitter with single red phosphor.

    PubMed

    Sheu, Jinn-Kong; Chen, Fu-Bang; Wang, Yen-Chin; Chang, Chih-Chiang; Huang, Shih-Hsien; Liu, Chun-Nan; Lee, Ming-Lun

    2015-04-06

    We present a trichromatic GaN-based light-emitting diode (LED) that emits near-ultraviolet (n-UV) blue and green peaks combined with red phosphor to generate white light with a low correlated color temperature (CCT) and high color rendering index (CRI). The LED structure, blue and green unipolar InGaN/GaN multiple quantum wells (MQWs) stacked with a top p-i-n structure containing an InGaN/GaN MQW emitting n-UV light, was grown epitaxially on a single substrate. The trichromatic LED chips feature a vertical conduction structure on a silicon substrate fabricated through wafer bonding and laser lift-off techniques. The blue and green InGaN/GaN MQWs were pumped with n-UV light to re-emit low-energy photons when the LEDs were electrically driven with a forward current. The emission spectrum included three peaks at approximately 405, 468, and 537 nm. Furthermore, the trichromatic LED chips were combined with red phosphor to generate white light with a CCT and CRI of approximately 2900 and 92, respectively.

  5. An AlGaN Core-Shell Tunnel Junction Nanowire Light-Emitting Diode Operating in the Ultraviolet-C Band.

    PubMed

    Sadaf, S M; Zhao, S; Wu, Y; Ra, Y-H; Liu, X; Vanka, S; Mi, Z

    2017-02-08

    To date, semiconductor light emitting diodes (LEDs) operating in the deep ultraviolet (UV) spectral range exhibit very low efficiency due to the presence of large densities of defects and extremely inefficient p-type conduction of conventional AlGaN quantum well heterostructures. We have demonstrated that such critical issues can be potentially addressed by using nearly defect-free AlGaN tunnel junction core-shell nanowire heterostructures. The core-shell nanowire arrays exhibit high photoluminescence efficiency (∼80%) in the UV-C band at room temperature. With the incorporation of an epitaxial Al tunnel junction, the p-(Al)GaN contact-free nanowire deep UV LEDs showed nearly one order of magnitude reduction in the device resistance, compared to the conventional nanowire p-i-n device. The unpackaged Al tunnel junction deep UV LEDs exhibit an output power >8 mW and a peak external quantum efficiency ∼0.4%, which are nearly one to two orders of magnitude higher than previously reported AlGaN nanowire devices. Detailed studies further suggest that the maximum achievable efficiency is limited by electron overflow and poor light extraction efficiency due to the TM polarized emission.

  6. Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes

    SciTech Connect

    King, M. P.; Kaplar, R. J.; Dickerson, J. R.; Lee, S. R.; Allerman, A. A.; Crawford, M. H.; Fischer, A. J.; Marinella, M. J.; Flicker, J. D.; Fleming, R. M.; Kizilyalli, I. C.; Aktas, O.; Armstrong, A. M.

    2016-10-31

    Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~104 –106 cm–2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at Ec-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be Nt = 3 × 1012, 2 × 1015, and 5 × 1014 cm–3, respectively. The Ec-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large VBD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.

  7. Diode-pumped laser altimeter

    NASA Technical Reports Server (NTRS)

    Welford, D.; Isyanova, Y.

    1993-01-01

    TEM(sub 00)-mode output energies up to 22.5 mJ with 23 percent slope efficiencies were generated at 1.064 microns in a diode-laser pumped Nd:YAG laser using a transverse-pumping geometry. 1.32-micron performance was equally impressive at 10.2 mJ output energy with 15 percent slope efficiency. The same pumping geometry was successfully carried forward to several complex Q-switched laser resonator designs with no noticeable degradation of beam quality. Output beam profiles were consistently shown to have greater than 90 percent correlation with the ideal TEM(sub 00)-order Gaussian profile. A comparison study on pulse-reflection-mode (PRM), pulse-transmission-mode (PTM), and passive Q-switching techniques was undertaken. The PRM Q-switched laser generated 8.3 mJ pulses with durations as short as 10 ns. The PTM Q-switch laser generated 5 mJ pulses with durations as short as 5 ns. The passively Q-switched laser generated 5 mJ pulses with durations as short as 2.4 ns. Frequency doubling of both 1.064 microns and 1.32 microns with conversion efficiencies of 56 percent in lithium triborate and 10 percent in rubidium titanyl arsenate, respectively, was shown. Sum-frequency generation of the 1.064 microns and 1.32 microns radiations was demonstrated in KTP to generate 1.1 mJ of 0.589 micron output with 11.5 percent conversion efficiency.

  8. Percutaneous diode laser disc nucleoplasty

    NASA Astrophysics Data System (ADS)

    Menchetti, P. P.; Longo, Leonardo

    2004-09-01

    The treatment of herniated disc disease (HNP) over the years involved different miniinvasive surgical options. The classical microsurgical approach has been substituted over the years both by endoscopic approach in which is possible to practice via endoscopy a laser thermo-discoplasty, both by percutaneous laser disc nucleoplasty. In the last ten years, the percutaneous laser disc nucleoplasty have been done worldwide in more than 40000 cases of HNP. Because water is the major component of the intervertebral disc, and in HNP pain is caused by the disc protrusion pressing against the nerve root, a 980 nm Diode laser introduced via a 22G needle under X-ray guidance and local anesthesia, vaporizes a small amount of nucleous polposus with a disc shrinkage and a relief of pressure on nerve root. Most patients get off the table pain free and are back to work in 5 to 7 days. Material and method: to date, 130 patients (155 cases) suffering for relevant symptoms therapy-resistant 6 months on average before consulting our department, have been treated. Eightyfour (72%) males and 46 (28%) females had a percutaneous laser disc nucleoplasty. The average age of patients operated was 48 years (22 - 69). The level of disc removal was L3/L4 in 12 cases, L4/L5 in 87 cases and L5/S1 in 56 cases. Two different levels were treated at the same time in 25 patients. Results: the success rate at a minimum follow-up of 6 months was 88% with a complication rate of 0.5%.

  9. Efficient millimeter wave 1140 GHz/ diode for harmonic power generation

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Epitaxial gallium arsenide diode junction formed in a crossed waveguide structure operates as a variable reactance harmonic generator. This varactor diode can generate power efficiently in the low-millimeter wavelength.

  10. Destructive Single-Event Failures in Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Casey, Megan C.; Lauenstein, Jean-Marie; Gigliuto, Robert A.; Wilcox, Edward P.; Phan, Anthony M.; Kim, Hak; Chen, Dakai; LaBel, Kenneth A.

    2014-01-01

    This presentation contains test results for destructive failures in DC-DC converters. We have shown that Schottky diodes are susceptible to destructive single-event effects. Future work will be completed to identify parameter that determines diode susceptibility.

  11. Picosecond pulsed diode ring laser gyroscope

    SciTech Connect

    Rosker, M.J.; Christian, W.R.; McMichael, I.C.

    1994-12-31

    An external ring cavity containing as its active medium a pair of InGaAsP diodes is modelocked to produce picosecond pulses. In such a laser, a small frequency difference proportional to the nonreciprocal phase shift (resulting from, e.g., the Sagnac effect) can be observed by beating together the counter propagating laser arms; the device therefore acts as a rotating sensor. In contrast to a conventional (cw) ring laser gyroscope, the pulsed gyroscope can avoid gain competition, thereby enabling the use of homogeneously broadened gain media like semiconductor diodes. Temporal separation of the pulses within the cavity also discriminates against frequency locking of the lasers. The picosecond pulsed diode ring laser gyroscope is reviewed. Both active and passive modelocking are discussed.

  12. Diode laser and endoscopic laser surgery.

    PubMed

    Sullins, Kenneth E

    2002-05-01

    Two functionally important differences exist between the diode laser and the carbon dioxide (CO2) laser (used more commonly in small animal surgery). Diode laser energy is delivered through a quartz fiber instead of being reflected through an articulated arm or waveguide. Quartz fibers are generally more flexible and resilient than waveguides and can be inserted through an endoscope for minimally invasive procedures. Laser-tissue interaction is the other significant difference. The CO2 laser is completely absorbed by water, which limits the effect to visible tissue. The diode wavelength is minimally absorbed by water and may affect tissue as deep as 10 mm below the surface in the free-beam mode. With proper respect for the tissue effect, these differences can be used to the advantage of the patient.

  13. Diode-quad bridge circuit means

    NASA Technical Reports Server (NTRS)

    Harrison, D. R.; Dimeff, J. (Inventor)

    1975-01-01

    Diode-quad bridge circuit means is described for use as a transducer circuit or as a discriminator circuit. It includes: (1) a diode bridge having first, second, third, and fourth bridge terminals consecutively coupled together by four diodes polarized in circulating relationship; (2) a first impedance connected between the second bridge terminal and a circuit ground; (3) a second impedance connected between the fourth bridge terminal and the circuit ground; (4) a signal source having a first source terminal capacitively coupled to the first and third bridge terminals, and a second source terminal connected to the circuit ground; and (5) an output terminal coupled to the first bridge terminal and at which an output signal may be taken.

  14. Optical communications. V - Light emitting diodes /LED/

    NASA Astrophysics Data System (ADS)

    Best, S. W.

    1980-10-01

    The process of assembling diode chips is discussed, along with their application in optical communications. Metal plating is performed with an evaporation technique using primarily AuGe on the back side and Al or AuZn on the front side. The assembling of LED-chips with metal casings is illustrated. The chip is mounted on a flat bottom plate and electrical contact is established by means of an alloying or adhesion procedure. A glass fiber can be attached to the diode and then fitted with a casing, or the diode can be assembled with a metal cap and a lense, or with an open cap that is sealed with a clear synthetic resin plastic. The typical emission spectra of an LED and a semiconductor laser are compared. Limitations in the operation of an LED in a photoconductor are examined, taking into account spectral line width and radiated power criteria.

  15. Channelized-Coplanar-Waveguide PIN-Diode Switches

    NASA Technical Reports Server (NTRS)

    Ponchak, G. E.; Simons, R. N.

    1992-01-01

    Three positive/intrinsic/negative (PIN-diode) reflective CPW (coplanar waveguide) switches demonstrated. First includes series-mounted diode to bridge gap in center strip conductor of CPW. Second includes pair of diodes to short center strip conductor to ground planes. Third includes diode to switch between band-pass filter and notch filter. Isolation exceeds 20 dB, while insertion loss is less than 1 dB.

  16. Semiconductor diode characterization for total skin electron irradiation.

    PubMed

    Madrid González, O A; Rivera Montalvo, T

    2014-01-01

    In this paper, a semiconductor diode characterization was performed. The diode characterization was completed using an electron beam with 4 MeV of energy. The semiconductor diode calibration used irradiation with an electron beam in an ion chamber. "In vivo" dosimetry was also conducted. The dosimetry results revealed that the semiconductor diode was a good candidate for use in the total skin electron therapy (TSET) treatment control.

  17. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  18. Diode amplifier of modulated optical beam power

    SciTech Connect

    D'yachkov, N V; Bogatov, A P; Gushchik, T I; Drakin, A E

    2014-11-30

    Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (∼10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)

  19. Calculations of Second Breakdown in Silicon Diodes

    DTIC Science & Technology

    1982-08-01

    Diodes Area I ’ x 10-4 cm 2 *****~*... ... *.*. 35 "Mai" 1. INTRODUCTION The phenomenon of second breakdown was first reported in diodes by Tauc ...written for study of electrical breakdown in gases, 8 modified for study of 1 J. Tauc and A . Abraham, Thermal Breakdown in Silicon P-N Junctions...this plot was chosen to be the first time that VB, (80 V) was attained. Both figures 13 and 14 110 , 0 loI --- - - 1 0 100 10 1 ,0 Figure 13. Dynamic

  20. Computer processing of tunable diode laser spectra

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1989-01-01

    A computer-controlled tunable diode laser spectrometer and spectral analysis software are described. The three-channel system records simultaneously the transmission of a subject gas, a temperature-stabilized etalon, and a calibration gas. The software routines are applied to diode laser spectra of HNO3 and NO2 to illustrate the procedures adopted for conversion of raw spectral data to useful transmission and harmonic spectra. Extraction of line positions, absorption intensities, collisional broadening coefficients, and gas concentrations from recorded spectra is also described.

  1. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  2. Phase-change radiative thermal diode

    SciTech Connect

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2013-11-04

    A thermal diode transports heat mainly in one preferential direction rather than in the opposite direction. This behavior is generally due to the non-linear dependence of certain physical properties with respect to the temperature. Here we introduce a radiative thermal diode which rectifies heat transport thanks to the phase transitions of materials. Rectification coefficients greater than 70% and up to 90% are shown, even for small temperature differences. This result could have important applications in the development of future contactless thermal circuits or in the conception of radiative coatings for thermal management.

  3. An all-silicon passive optical diode.

    PubMed

    Fan, Li; Wang, Jian; Varghese, Leo T; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M; Qi, Minghao

    2012-01-27

    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input. The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing.

  4. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  5. Microcollimated laser diode with low wavefront aberration

    SciTech Connect

    Ogata, S.; Sekii, H.; Maeda, T.; Goto, H.; Yamashita, T.; Imanaka, K. )

    1989-11-01

    The authors developed microcollimated laser diode( MCLD) utilizing a 1 mm short focal length, phi, lc 0.5 mm small diameter micro Fresnel lens (MFL) for the first time as the collimating lens. The MCLD is assembled with a 780 nm quantum-well laser diode dice and an MFL in the smallest commercial available laser package. The radiated laser beam form the MCLD has higher than 2mW power at 50 mA driving current, narrow enough as a phi 2 mm beam diameter with nearly Gaussian intensity profile, and low wavefront aberration less than {lambda}14 (rms value) measured at 1 m distance.

  6. Laser diode initiated detonators for space applications

    NASA Technical Reports Server (NTRS)

    Ewick, David W.; Graham, J. A.; Hawley, J. D.

    1993-01-01

    Ensign Bickford Aerospace Company (EBAC) has over ten years of experience in the design and development of laser ordnance systems. Recent efforts have focused on the development of laser diode ordnance systems for space applications. Because the laser initiated detonators contain only insensitive secondary explosives, a high degree of system safety is achieved. Typical performance characteristics of a laser diode initiated detonator are described in this paper, including all-fire level, function time, and output. A finite difference model used at EBAC to predict detonator performance, is described and calculated results are compared to experimental data. Finally, the use of statistically designed experiments to evaluate performance of laser initiated detonators is discussed.

  7. Investigation of ACC/CCI Tunnel Diodes

    DTIC Science & Technology

    1993-11-01

    with several other components on a small circuit board and sealed in a cylindrical tube. The sealed tube is 0.515 in. long and 0.187 in. in diameter...were on hand during most of this worL Hi-Rel deprocessed the failed device [lot date code (LDC) 8910, S/N 30] and carried out both optical and electron... deprocessed the module and removed the diode assembly. During a trip to ACCICCI, two other MM2 diodes, still installed in detector modules, were

  8. A 640 GHz Planar-Diode Fundamental Mixer/Receiver

    NASA Technical Reports Server (NTRS)

    Siegel, P.; Mehdi, I.; Dengler, R.; Lee, T.; Humphrey, D.; Pease, A.

    1998-01-01

    The design and performance of a 640 GHz solid-state receiver using a fundamental planar-Schottky-diode mixer, InP Gunn diode oscillator, whisker-contacted Schottky-varactor-diode sextupler and folded-Fabry-Perot diplexer are reported.

  9. JAN transistor and diode characterization test program, JANTX diode 1N5619

    NASA Technical Reports Server (NTRS)

    Takeda, H.

    1977-01-01

    A statistical summary of electrical characterization was performed on JANTX 1N5619 silicon diodes. Parameters are presented with test conditions, mean, standard deviation, lowest reading, 10% point, 90% point, and highest reading.

  10. Entangled Light Emission From a Diode

    SciTech Connect

    Stevenson, R. M.; Shields, A. J.; Salter, C. L.; Farrer, I.; Nicoll, C. A.; Ritchie, D. A.

    2011-12-23

    Electrically-driven entangled photon generation is demonstrated for the first time using a single semiconductor quantum dot embedded in a light emitting diode structure. The entanglement fidelity is shown to be of sufficient quality for applications such as quantum key distribution.

  11. A CW Gunn diode bistable switching element.

    NASA Technical Reports Server (NTRS)

    Hurtado, M.; Rosenbaum, F. J.

    1972-01-01

    Experiments with a current-controlled bistable switching element using a CW Gunn diode are reported. Switching rates of the order of 10 MHz have been obtained. Switching is initiated by current pulses of short duration (5-10 ns). Rise times of the order of several nanoseconds could be obtained.

  12. The Fuge Tube Diode Array Spectrophotometer

    ERIC Educational Resources Information Center

    Arneson, B. T.; Long, S. R.; Stewart, K. K.; Lagowski, J. J.

    2008-01-01

    We present the details for adapting a diode array UV-vis spectrophotometer to incorporate the use of polypropylene microcentrifuge tubes--fuge tubes--as cuvettes. Optical data are presented validating that the polyethylene fuge tubes are equivalent to the standard square cross section polystyrene or glass cuvettes generally used in…

  13. A CW Gunn Diode Switching Element.

    ERIC Educational Resources Information Center

    Hurtado, Marco; Rosenbaum, Fred J.

    As part of a study of the application of communication satellites to educational development, certain technical aspects of such a system were examined. A current controlled bistable switching element using a CW Gunn diode is reported on here. With modest circuits switching rates of the order of 10 MHz have been obtained. Switching is initiated by…

  14. Capacitance Property of a Resonant Tunneling Diode

    NASA Astrophysics Data System (ADS)

    Sheng, Hanyu; Chua, Soo-Jin; Sinkkonen, Juha

    A simple capacitance formula based on a semiclassical electron transport theory is given. The results show that the charges stored in the quantum well of a resonant tunneling diode have a considerable effect on the capacitance in the resonant region. The calculated capacitance is consistent with the experimental results.

  15. Diode pumped Nd:YAG laser development

    NASA Technical Reports Server (NTRS)

    Reno, C. W.; Herzog, D. G.

    1976-01-01

    A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.

  16. Uniform insulation applied-B ion diode

    DOEpatents

    Seidel, David B.; Slutz, Stephen A.

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  17. Long Persistent Light Emitting Diode Indicators

    ERIC Educational Resources Information Center

    Jia, Dongdong; Ma, Yiwei; Hunter, D. N.

    2007-01-01

    An undergraduate laboratory was designed for undergraduate students to make long persistent light emitting diode (LED) indicators using phosphors. Blue LEDs, which emit at 465 nm, were characterized and used as an excitation source. Long persistent phosphors, SrAl[subscript 2]O[subscript 4]:Eu[superscript 2+],Dy[superscript 3+] (green) and…

  18. Light-Emitting Diodes: Solving Complex Problems

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper provided…

  19. Light-Emitting Diodes: Learning New Physics

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  20. Light-Emitting Diodes: A Hidden Treasure

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2014-01-01

    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general…

  1. Measuring Multi-Megavolt Diode Voltages

    NASA Astrophysics Data System (ADS)

    Pereira, N. R.; Swanekamp, S. B.; Weber, B. V.; Commisso, R. J.; Hinshelwood, D. D.; Stephanakis, S. J.

    2002-12-01

    The voltage in high-power diodes can be determined by measuring the Compton electrons generated by the diode's bremsstrahlung radiation. This technique is implemented with a Compton-Hall (C-H) voltmeter that collimates the bremsstrahlung onto a Compton target and bends the emitted Compton electron orbits off to the side with an applied magnetic field off to Si pin diode detectors. Voltage is determined from the ratio of the Compton electron dose to the forward x-ray dose. The instrument's calibration and response are determined from coupled electron/photon transport calculations. The applicable voltage range is tuned by adjusting the position of the electron detector relative to the Compton target or by varying the magnetic field strength. The instrument was used to obtain time-dependent voltage measurements for a pinched-beam diode whose voltage is enhanced by an upstream opening switch. In this case, plasmas and vacuum electron flow from the opening switch make it difficult to determine the voltage accurately from electrical measurements. The C-H voltmeter gives voltages that are significantly higher than those obtained from electrical measurements but are consistent with measurements of peak voltage based on nuclear activation of boron-nitride targets.

  2. Advances in laser diodes for pyrotechnic applications

    NASA Technical Reports Server (NTRS)

    Craig, Richard R.

    1993-01-01

    Background information concerning the use of laser diodes in pyrotechnic applications is provided in viewgraph form. The following topics are discussed: damage limits, temperature stability, fiber coupling issues, and small (100 micron) and large (400 micron) fiber results. The discussions concerning fiber results concentrate on the areas of package geometry and electro-optical properties.

  3. Ferroelectric Diodes with Charge Injection and Trapping

    NASA Astrophysics Data System (ADS)

    Fan, Zhen; Fan, Hua; Lu, Zengxing; Li, Peilian; Huang, Zhifeng; Tian, Guo; Yang, Lin; Yao, Junxiang; Chen, Chao; Chen, Deyang; Yan, Zhibo; Lu, Xubing; Gao, Xingsen; Liu, Jun-Ming

    2017-01-01

    Ferroelectric diodes with polarization-modulated Schottky barriers are promising for applications in resistive switching (RS) memories. However, they have not achieved satisfactory performance reliability as originally hoped. The physical origins underlying this issue have not been well studied, although they deserve much attention. Here, by means of scanning Kelvin probe microscopy we show that the electrical poling of ferroelectric diodes can cause significant charge injection and trapping besides polarization switching. We further show that the reproducibility and stability of switchable diode-type RS behavior are significantly affected by the interfacial traps. A theoretical model is then proposed to quantitatively describe the modifications of Schottky barriers by charge injection and trapping. This model is able to reproduce various types of hysteretic current-voltage characteristics as experimentally observed. It is further revealed that the charge injection and trapping can significantly modify the electroresistance ratio, RS polarity, and high- or low-resistance states initially defined by the polarization direction. Several approaches are suggested to suppress the effect of charge injection and trapping so as to realize high-performance polarization-reversal-induced RS. This study, therefore, reveals the microscopic mechanisms for the RS behavior comodulated by polarization reversal and charge trapping in ferroelectric diodes, and also provides useful suggestions for developing reliable ferroelectric RS memories.

  4. Antimonide-based Diodes for Terahertz Mixers

    DTIC Science & Technology

    2008-06-01

    different analysis by Sheinman and Ritter.6 The layer structure presented in Fig. 2 is for a diode that has been successfully grown on both semi-insultating...6B. Sheinman and D. Ritter, IEEE Trans. Electron Devices 50, 1075 2003. 7R. Magno, E. R. Glaser, B. P. Tinkham, J. G. Champlain, J. B. Boos, M. G

  5. Development of gallium aluminum phosphide electroluminescent diodes

    NASA Technical Reports Server (NTRS)

    Chicotka, R. J.; Lorenz, M. R.; Nethercot, A. H.; Pettit, G. D.

    1972-01-01

    Work done on the development of gallium aluminum phosphide alloys for electroluminescent light sources is described. The preparation of this wide band gap semiconductor alloy, its physical properties (particularly the band structure, the electrical characteristics, and the light emitting properties) and work done on the fabrication of diode structures from these alloys are broadly covered.

  6. Noninvasive blood glucose monitoring with laser diode

    NASA Astrophysics Data System (ADS)

    Zhang, Xiqin; Chen, Jianhong; Ooi, Ean Tat; Yeo, Joon Hock

    2006-02-01

    The non-invasive measurement of blood sugar level was studied by use of near infrared laser diodes. The in vitro and in vivo experiments were carried out using six laser diodes having wavelengths range from 1550 nm to 1750nm. Several volunteers were tested for OGTT (Oral Glucose Tolerance Test) experiment. We took blood from a fingertip and measured its concentration with a glucose meter while taking signal voltage from laser diodes system. The data of signal voltage were processed to do calibration and prediction; in this paper PLS (Partial Least Square) method was used to do modeling. For in vitro experiment, good linear relationship between predicted glucose concentration and real glucose concentration was obtained. For in vivo experiments, we got the blood sugar level distributions in Clarke error grid that is a reference for doctors to do diagnosis and treatment. In the Clarke error grid, 75% of all data was in area A and 25 % was in area B. From the in vitro and in vivo results we know that multiple laser diodes are suitable for non-invasive blood glucose monitoring.

  7. Spin-current diode with a ferromagnetic semiconductor

    SciTech Connect

    Sun, Qing-Feng Xie, X. C.

    2015-05-04

    Diode is a key device in electronics: the charge current can flow through the device under a forward bias, while almost no current flows under a reverse bias. Here, we propose a corresponding device in spintronics: the spin-current diode, in which the forward spin current is large but the reversed one is negligible. We show that the lead/ferromagnetic quantum dot/lead system and the lead/ferromagnetic semiconductor/lead junction can work as spin-current diodes. The spin-current diode, a low dissipation device, may have important applications in spintronics, as the conventional charge-current diode does in electronics.

  8. 15-cm hybrid ion diode on PBFA-I

    SciTech Connect

    Mendel C.W. Jr.; Quintenz, J.P.; Mix, L.P.; Zagar, D.M.; Noack, R.L.; Grasser, T.; Webb, J.A.

    1987-11-01

    Diode experiments on the PBFA-I pulser using a magnetically insulated ion diode are described. The insulating magnetic field is supplied by self-field due to the ion current plus the field generated by a series field coil. In the experiments described here, the diode operated at the 10-TW, 2.5-MV level with over 300 kJ going to the diode on many shots. The operation of the diode, the dielectric anode, and the proton beam focusing are described.

  9. The Pierce-diode approximation to the single-emitter plasma diode

    SciTech Connect

    Ender, A. Ya.; Kuhn, S.; Kuznetsov, V. I.

    2006-11-15

    The possibility of modeling fast processes in the collisionless single-emitter plasma diode (Knudsen diode with surface ionization, KDSI) by means of the Pierce-diode is studied. The KDSI is of practical importance in that it is an almost exact model of thermionic energy converters (TICs) in the collisionless regime and can also be used to model low-density Q-machines. At high temperatures, the Knudsen TIC comes close to the efficiency of the Carnot cycle and hence is the most promising converter of thermal to electric energy. TICs can be applied as component parts in high-temperature electronics. It is shown that normalizations must be chosen appropriately in order to compare the plasma characteristics of the two models: the KDSI and the Pierce-diode. A linear eigenmode theory of the KDSI is developed. For both nonlinear time-independent states and linear eigenmodes without electron reflection, excellent agreement is found between the analytical potential distributions for the Pierce-diode and the corresponding numerical ones for the KDSI. For the states with electron reflection, the agreement is satisfactory in a qualitative sense. A full classification of states of both diodes for the regimes with and without electron reflection is presented. The effect of the thermal spread in electron velocities on the potential distributions and the ({epsilon},{eta}) diagrams is analyzed. Generally speaking, the methodology developed is usefully applicable to a variety of systems in which the electrons have beam-like distributions.

  10. The Pierce-diode approximation to the single-emitter plasma diode

    NASA Astrophysics Data System (ADS)

    Ender, A. Ya.; Kuhn, S.; Kuznetsov, V. I.

    2006-11-01

    The possibility of modeling fast processes in the collisionless single-emitter plasma diode (Knudsen diode with surface ionization, KDSI) by means of the Pierce-diode is studied. The KDSI is of practical importance in that it is an almost exact model of thermionic energy converters (TICs) in the collisionless regime and can also be used to model low-density Q-machines. At high temperatures, the Knudsen TIC comes close to the efficiency of the Carnot cycle and hence is the most promising converter of thermal to electric energy. TICs can be applied as component parts in high-temperature electronics. It is shown that normalizations must be chosen appropriately in order to compare the plasma characteristics of the two models: the KDSI and the Pierce-diode. A linear eigenmode theory of the KDSI is developed. For both nonlinear time-independent states and linear eigenmodes without electron reflection, excellent agreement is found between the analytical potential distributions for the Pierce-diode and the corresponding numerical ones for the KDSI. For the states with electron reflection, the agreement is satisfactory in a qualitative sense. A full classification of states of both diodes for the regimes with and without electron reflection is presented. The effect of the thermal spread in electron velocities on the potential distributions and the (ɛ,η) diagrams is analyzed. Generally speaking, the methodology developed is usefully applicable to a variety of systems in which the electrons have beam-like distributions.

  11. 100 Years of the Physics of Diodes

    NASA Astrophysics Data System (ADS)

    Luginsland, John

    2013-10-01

    The Child-Langmuir Law (CL), discovered 100 years ago, gives the maximum current that can be transported across a planar diode in the steady state. As a quintessential example of the impact of space-charge shielding near a charged surface, it is central to the studies of high current diodes, such as high power microwave sources, vacuum microelectronics, electron and ion sources, and high current drivers used in high-energy density physics experiments. CL remains a touchstone of fundamental sheath physics, including contemporary studies of nano-scale quantum diodes and plasmonic devices. Its solid state analog is the Mott-Gurney law, governing the maximum charge injection in solids, such as organic materials and other dielectrics, which is important to energy devices, such as solar cells and light-emitting diodes. This paper reviews the important advances in the physics of diodes since the discovery of CL, including virtual cathode formation and extension of CL to multiple dimensions, to the quantum regime, and to ultrafast processes. We will review the influence of magnetic fields, multiple species in bipolar flow, electromagnetic and time dependent effects in both short pulse and high frequency THz limits, and single electron regimes. Transitions from various emission mechanisms (thermionic, field, and photo-emission) to the space charge limited state (CL) will be addressed, especially highlighting important simulation and experimental developments in selected contemporary areas of study. This talk will stress the fundamental physical links between the physics of beams to limiting currents in other areas, such as low temperature plasmas, laser plasmas, and space propulsion. Also emphasized is the role of non-equilibrium phenomena associated with materials and plasmas in close contact. Work supported by the Air Force Office of Scientific Research.

  12. 100 years of the physics of diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Valfells, Ágúst; Ang, L. K.; Luginsland, J. W.; Lau, Y. Y.

    2017-03-01

    The Child-Langmuir Law (CL), discovered a century ago, gives the maximum current that can be transported across a planar diode in the steady state. As a quintessential example of the impact of space charge shielding near a charged surface, it is central to the studies of high current diodes, such as high power microwave sources, vacuum microelectronics, electron and ion sources, and high current drivers used in high energy density physics experiments. CL remains a touchstone of fundamental sheath physics, including contemporary studies of nanoscale quantum diodes and nano gap based plasmonic devices. Its solid state analog is the Mott-Gurney law, governing the maximum charge injection in solids, such as organic materials and other dielectrics, which is important to energy devices, such as solar cells and light emitting diodes. This paper reviews the important advances in the physics of diodes since the discovery of CL, including virtual cathode formation and extension of CL to multiple dimensions, to the quantum regime, and to ultrafast processes. We review the influence of magnetic fields, multiple species in bipolar flow, electromagnetic and time dependent effects in both short pulse and high frequency THz limits, and single electron regimes. Transitions from various emission mechanisms (thermionic-, field-, and photoemission) to the space charge limited state (CL) will be addressed, especially highlighting the important simulation and experimental developments in selected contemporary areas of study. We stress the fundamental physical links between the physics of beams to limiting currents in other areas, such as low temperature plasmas, laser plasmas, and space propulsion.

  13. Qualification and Selection of Flight Diode Lasers for Space Applications

    NASA Technical Reports Server (NTRS)

    Liebe, Carl C.; Dillon, Robert P.; Gontijo, Ivair; Forouhar, Siamak; Shapiro, Andrew A.; Cooper, Mark S.; Meras, Patrick L.

    2010-01-01

    The reliability and lifetime of laser diodes is critical to space missions. The Nuclear Spectroscopic Telescope Array (NuSTAR) mission includes a metrology system that is based upon laser diodes. An operational test facility has been developed to qualify and select, by mission standards, laser diodes that will survive the intended space environment and mission lifetime. The facility is situated in an electrostatic discharge (ESD) certified clean-room and consist of an enclosed temperature-controlled stage that can accommodate up to 20 laser diodes. The facility is designed to characterize a single laser diode, in addition to conducting laser lifetime testing on up to 20 laser diodes simultaneously. A standard laser current driver is used to drive a single laser diode. Laser diode current, voltage, power, and wavelength are measured for each laser diode, and a method of selecting the most adequate laser diodes for space deployment is implemented. The method consists of creating histograms of laser threshold currents, powers at a designated current, and wavelengths at designated power. From these histograms, the laser diodes that illustrate a performance that is outside the normal are rejected and the remaining lasers are considered spaceborne candidates. To perform laser lifetime testing, the facility is equipped with 20 custom laser drivers that were designed and built by California Institute of Technology specifically to drive NuSTAR metrology lasers. The laser drivers can be operated in constant-current mode or alternating-current mode. Situated inside the enclosure, in front of the laser diodes, are 20 power-meter heads to record laser power throughout the duration of lifetime testing. Prior to connecting a laser diode to the current source for characterization and lifetime testing, a background program is initiated to collect current, voltage, and resistance. This backstage data collection enables the operational test facility to have full laser diode

  14. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    DOE PAGES

    Sukrittanon, Supanee; Liu, Ren; Breeden, Michael C.; ...

    2016-08-07

    Here, we report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We also show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface andmore » in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. Finally, we present performance benefits of dilute nitride microwire solar cells and show that it can be achieved by further tuning of the epitaxial quality of the underlying materials.« less

  15. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    SciTech Connect

    Sukrittanon, Supanee; Liu, Ren; Breeden, Michael C.; Pan, Janet L.; Jungjohann, K. L.; Tu, Charles W.; Dayeh, Shadi A.

    2016-08-07

    Here, we report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We also show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. Finally, we present performance benefits of dilute nitride microwire solar cells and show that it can be achieved by further tuning of the epitaxial quality of the underlying materials.

  16. UV micro-imprint patterning for tunable light trapping in p-i-n thin-film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Yanfeng; Zhang, Xiaodan; Han, Bing; Bai, Lisha; Zhao, Huixu; Yang, Fu; Liang, Junhui; Huang, Qian; Chen, Xinliang; Zhao, Ying

    2015-11-01

    In this paper, we used UV micro-imprint lithography periodic patterning combined with self-textured BZO films with a wide range of texture distributions for light trapping in thin-film silicon solar cells. It was found that the feature size of the periodic textures has a significant influence on the light trapping capacity of the glass substrate and the external quantum efficiency (EQE) of microcrystalline silicon (μc-Si:H) solar cells. Microcrystalline silicon solar cells, deposited on periodic textures of 5 μm, showed an improved photocurrent density without any loss in the open-circuit voltage and fill factor; hence, resulting in an overall efficiency increase of 6.28%.

  17. Planar Homojunction Gallium Nitride (GaN) P-i-N Device Evaluated for Betavoltaic Energy Conversion: Measurement and Analysis

    DTIC Science & Technology

    2016-09-01

    power sources are measured in decades, not years. The energy density of isotopes (J/kg) is 106 greater than that of chemical batteries. The energy...Device fabrication, structure design, and packaging with strict quality requirements are needed to improve the ability of the betavoltaic to produce...material, reducing their efficiency. It is not until recently that wafer quality of SiC has been improved due to wider use in power components

  18. Portable γ- and X-ray analyzers based on CdTe p-i-n detectors

    NASA Astrophysics Data System (ADS)

    Khusainov, A. K.; Antonova, T. A.; Bahlanov, S. V.; Derbin, A. V.; Ivanov, V. V.; Lysenko, V. V.; Morozov, F.; Mouratov, V. G.; Muratova, V. N.; Petukhov, Y. A.; Pirogov, A. M.; Polytsia, O. P.; Saveliev, V. D.; Solovei, V. A.; Yegorov, K. A.; Zhucov, M. P.

    1999-06-01

    Several portable instruments are designed using previously reported CdTe detector technology. These can be divided into three groups according to their energy ranges: (1) 3-30 keV XRF analyzers, (2) 5-120 keV wide range XRF analyzers and (3) γ-ray spectrometers for operation up to 1500 keV. These instruments are used to inspect several hundreds of samples in situ during a working day in applications such as a metal alloy verification at customs control. Heavy metals are identified through a 3-100 mm thick package with these instruments. Surface contamination by heavy metals (for example toxins such as Hg, Th and Pb in housing environmental control), the determination of Pb concentration in gasoline, geophysical control in mining, or nuclear material control are other applications. The weight of these XRF probes is about 1 kg and two electronic designs are used: one with embedded computer and another based on a standard portable PC. The instruments have good precision and high productivity for measurements in situ. The detection limit of Ce is about 0.03% when measured in the presence of 10% barium for 15 s. The detection limit when measuring K-shell X-ray of heavy metals contamination is about 0.1 mg/cm 2 for 15 s. Two types of probes for γ-spectrometry with small and large (>30 mm 3) detector volumes provide both high- and low-activity of nuclear fuel analysis. The maximum distance between the probes and electronics unit is 20 m. The γ-spectrometers are equipped with electronics to correct signal distortion due to slow carrier effects. This allows the instrument to achieve an energy resolution of about 2.5 keV at 662 keV. Several modes to process spectra are possible including semiquantitative and total real-shape fitting.

  19. Study of the Staebler-Wronski degradation effect in a-Si:H based p-i-n solar cell

    NASA Technical Reports Server (NTRS)

    Naseem, H. A.; Brown, W. D.; Ang, S. S.

    1993-01-01

    Conversion of solar energy into electricity using environmentally safe and clean photovoltaic methods to supplement the ever increasing energy needs has been a cherished goal of many scientists and engineers around the world. Photovoltaic solar cells on the other hand, have been the power source for satellites ever since their introduction in the early sixties. For widespread terrestrial applications, however, the cost of photovoltaic systems must be reduced considerably. Much progress has been made in the recent past towards developing economically viable terrestrial systems, and the future looks highly promising. Thin film solar cells offer cost reductions mainly from their low processing cost, low material cost, and choice of low cost substrates. These are also very attractive for space applications because of their high power densities (power produced per kilogram of solar cell pay load) and high radiation resistance. Amorphous silicon based solar cells are amongst the top candidates for economically viable terrestrial and space based power generation. Despite very low federal funding during the eighties, amorphous silicon solar cell efficiencies have continually been improved - from a low 3 percent to over 13 percent now. Further improvements have been made by the use of multi-junction tandem solar cells. Efficiencies close to 15 percent have been achieved in several labs. In order to be competitive with fossil fuel generated electricity, it is believed that module efficiency of 15 percent or cell efficiency of 20 percent is required. Thus, further improvements in cell performance is imperative. One major problem that was discovered almost 15 years ago in amorphous silicon devices is the well known Staebler-Wronski Effect. Efficiency of amorphous silicon solar cells was found to degrade upon exposure to sunlight. Until now their is no consensus among the scientists on the mechanism for this degradation. Efficiency may degrade anywhere from 10 percent to almost 50 percent within the first few months of operation. In order to improve solar cell efficiencies, it is clear that the cause or causes of such degradation must be found and the processing conditions altered to minimize the loss in efficiency. This project was initiated in 1987 to investigate a possible link between metallic impurities, in particular, Ag, and this degradation. Such a link was established by one of the NASA scientists for the light induced degradation of n+/p crystalline silicon solar cells.

  20. Study of Staebler-Wronsky degradation effect in a Si:H based P-I-N solar cells

    NASA Technical Reports Server (NTRS)

    Naseem, Hameed; Herman, A. M.

    1988-01-01

    The objective of this study is to improve the stability and efficiency of thin solar cells with emphasis on a-Si:H devices. The research project was broken down into three main phases. The first involves designing and building a UHV glow discharge system; the second involves making good quality films and eventually efficient cells; the final phase will be analytical.

  1. Study of Charge Transport in Vertically Aligned Nitride Nanowire Based Core Shell P-I-N Junctions

    DTIC Science & Technology

    2016-07-01

    approach combines the precision and scalability of top-down processing with the enhanced material quality obtained through selective epitaxy to...overgrowths with an aim to improve material quality , and 3) fabrication of device structures and their extensive characterization. The emphasis of all...unlimited. July 2016 Grant HDTRA1-14-1-0003 Sergiy Krylyuk Prepared by: University of Maryland 3112 Lee Building College Park, MD 20742

  2. Underwater Chaotic Lidar using Blue Laser Diodes

    NASA Astrophysics Data System (ADS)

    Rumbaugh, Luke K.

    The thesis proposes and explores an underwater lidar system architecture based on chaotic modulation of recently introduced, commercially available, low cost blue laser diodes. This approach is experimentally shown to allow accurate underwater impulse response measurements while eliminating the need for several major components typically found in high-performance underwater lidar systems. The proposed approach is to: 1. Generate wideband, noise-like intensity modulation signals using optical chaotic modulation of blue-green laser diodes, and then 2. Use this signal source to develop an underwater chaotic lidar system that uses no electrical signal generator, no electro-optic modulator, no optical frequency doubler, and no large-aperture photodetector. The outcome of this thesis is the demonstration of a new underwater lidar system architecture that could allow high resolution ranging, imaging, and water profiling measurements in turbid water, at a reduced size, weight, power and cost relative to state-of-the-art high-performance underwater lidar sensors. This work also makes contributions to the state of the art in optics, nonlinear dynamics, and underwater sensing by demonstrating for the first time: 1. Wideband noise-like intensity modulation of a blue laser diode using no electrical signal generator or electro-optic modulator. Optical chaotic modulation of a 462 nm blue InGaN laser diode by self-feedback is explored for the first time. The usefulness of the signal to chaotic lidar is evaluated in terms of bandwidth, modulation depth, and autocorrelation peak-to-sidelobe-ratio (PSLR) using both computer and laboratory experiments. In laboratory experiments, the optical feedback technique is shown to be effective in generating wideband, noise-like chaotic signals with strong modulation depth when the diode is operated in an external-cavity dominated state. The modulation signal strength is shown to be limited by the onset of lasing within the diode's internal

  3. DIODE STEERED MANGETIC-CORE MEMORY

    DOEpatents

    Melmed, A.S.; Shevlin, R.T.; Laupheimer, R.

    1962-09-18

    A word-arranged magnetic-core memory is designed for use in a digital computer utilizing the reverse or back current property of the semi-conductor diodes to restore the information in the memory after read-out. In order to ob tain a read-out signal from a magnetic core storage unit, it is necessary to change the states of some of the magnetic cores. In order to retain the information in the memory after read-out it is then necessary to provide a means to return the switched cores to their states before read-out. A rewrite driver passes a pulse back through each row of cores in which some switching has taken place. This pulse combines with the reverse current pulses of diodes for each column in which a core is switched during read-out to cause the particular cores to be switched back into their states prior to read-out. (AEC)

  4. Interferometric investigation of a diode laser source

    SciTech Connect

    Creath, K.

    1985-05-01

    Diode lasers provide a coherent light source in the near IR. They have many desirable characteristics such as small size, high efficiency, a single-longitudinal mode output as large as 15 mW, and can be modulated at high pulse rates. An AlGaAs diode laser operating at 840 nm with an output of 5 mW was evaluated with a Smartt point diffraction interferometer. The wave front observed had astigmatism of approx.2 lambda present over the output beam divergence angle. In a modified Twyman-Green interferometer, the coherence length measured was >15 m with high visibility fringes. This source was found to be stable and highly linearly polarized. When used as an interferometric source, many possibilities for small scale interferometers and test equipment are now viable.

  5. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  6. Infrared photoemitting diode having reduced work function

    DOEpatents

    Hirschfeld, Tomas B.

    1984-01-01

    In electro-optical detectors which include as elements a photoemitting photocathode and anode, a photoemitting diode is fabricated which lowers the diode's work function, thus reducing the cooling requirement typically needed for this type of device. The work function is reduced by sandwiching between the photocathode and anode a liquid medium of the formula NR.sub.3 and having an electron affinity for the electrons of the photocathode, which liquid medium permits free electrons leaving the photocathode to remain as stable solvated species in the liquid medium. Thus, highly light-absorbent, and therefore thin, metallic layers can be used for detection, thereby reducing dark current at a given temperature, with a consequent reduction in cooling requirements at constant detector performance.

  7. Infrared photoemitting diode having reduced work function

    DOEpatents

    Hirschfeld, T.B.

    1982-05-06

    In electro-optical detectors which include as elements a photoemitting photocathode and anode, a photoemitting diode is fabricated which lowers the diode's work function, thus reducing the cooling requirement typically needed for this type of device. The work function is reduced by sandwiching between the photocathode and anode a liquid meidum of the formula NR/sub 3/ and having an electron affinity for the electrons of the photocathode, which liquid medium permits free electrons leaving the photocathode to remain as stable solvated species in the liquid medium. Thus, highly light-absorbent, and therefore thin, metallic layers can be used for detection, thereby reducing dark current at a given temperature, with a consequent reduction in cooling requirements at constant detector performance.

  8. Diode-pumped optical parametric oscillator

    SciTech Connect

    Geiger, A.R.; Hemmati, H.; Farr, W.H.

    1996-02-01

    Diode-pumped optical parametric oscillation has been demonstrated for the first time to our knowledge in a single Nd:MgO:LiNbO{sub 3} nonlinear crystal. The crystal is pumped by a semiconductor diode laser array at 812 nm. The Nd{sup 3+} ions absorb the 812-nm radiation to generate 1084-nm laser oscillation. On internal {ital Q} switching the 1084-nm radiation pumps the LiNbO{sub 3} host crystal that is angle cut at 46.5{degree} and generates optical parametric oscillation. The oscillation threshold that is due to the 1084-nm laser pump with a pulse length of 80 ns in a 1-mm-diameter beam was measured to be {approx_equal}1 mJ and produced 0.5-mJ output at 3400-nm signal wavelength. {copyright} {ital 1996 Optical Society of America.}

  9. Diode-quad bridge circuit means

    NASA Technical Reports Server (NTRS)

    Harrison, D. R.; Dimeff, J. (Inventor)

    1975-01-01

    A transducer and frequency discriminator circuit is described including a four-terminal circulating diode bridge, a first pair of capacitors connected in series across two terminals of the bridge, and a second pair of capacitors, or other impedance elements, connected in series across the other two terminals of the bridge. A source of balanced alternating electrical energy for energizing the circuit is coupled between the commonly connected plates of the first pair of capacitors and the commonly connected plates of the second pair of capacitors. Due to the operation of the diode bridge, the sum of the resultant charges developed on the first pair of capacitors is proportional to the relationship between the respective capacitors of the second pair, and consequently, an output voltage taken across the first pair of capacitors will be proportional to that relationship.

  10. InGaN-BASED Laser Diodes

    NASA Astrophysics Data System (ADS)

    Nakamura, Shuji

    1998-08-01

    Continuous-wave operation of InGaN multi-quantum-well (MQW) structure laser diodes (LDs) has been demonstrated at room temperature with output power up to 50 mW, operating temperature up to 100oC, emission wavelength of 400-420 nm, and a lifetime up to 300 h. InGaN MQW LDs with a lifetime of more than 1000 h are expected soon. Commercialization will begin in 1998 if research on the bluish-purple InGaN-based laser diodes continues to progress. The stimulated emission of the InGaN-based LDs originates from localized energy states of 100-250 meV depth, which are equivalent to quantum dot energy states, probably arising from from InGaN composition fluctuation in the InGaN well layers.

  11. Neutron Detection Using Gadolinium-Based Diodes

    DTIC Science & Technology

    2011-03-01

    prevent thermal neutron escape and limit neutron 51 intrusion [26]. The neutron source for the AFIT Pile is a five Curie plutonium -beryllium...University of Nebraska, Lincoln, the diodes were exposed to thermal neutron fluxes of approximately 103 n/cm2·s in the AFIT Standard Graphite Pile...and 109 n/cm2·s in the thermal column of the Ohio State University Research Reactor. Pulse height spectra collected during irradiations at various

  12. Wavelength Beam-Combined Laser Diode Arrays

    DTIC Science & Technology

    2012-01-01

    focal length f f f Diffraction grating Output...lead Water in/out Figure 3. Lincoln Laboratory-designed WBC “laser in a box.” To reduce the overall size of the WBC device, multiple folding mirrors were implemented between the diode array and the concave mirror . ...spatially merges multiple wave- length sources into a single high-inten- sity beam with an order-of-magnitude improvement in brightness compared

  13. Diode having trenches in a semiconductor region

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2016-03-22

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  14. Rugged, Tunable Extended-Cavity Diode Laser

    NASA Technical Reports Server (NTRS)

    Moore, Donald; Brinza, David; Seidel, David; Klipstein, William; Choi, Dong Ho; Le, Lam; Zhang, Guangzhi; Iniguez, Roberto; Tang, Wade

    2007-01-01

    A rugged, tunable extended-cavity diode laser (ECDL) has been developed to satisfy stringent requirements for frequency stability, notably including low sensitivity to vibration. This laser is designed specifically for use in an atomic-clock experiment to be performed aboard the International Space Station (ISS). Lasers of similar design would be suitable for use in terrestrial laboratories engaged in atomic-clock and atomic-physics research.

  15. A Treatment of Amblyopia Using Laser Diodes

    NASA Astrophysics Data System (ADS)

    Wang, Di; Wang, Yi-Ding; Liu, Bing-Chun

    2000-04-01

    We propose the treatment of amblyopia using yellow-green laser diodes. There are amblyopia children in excess of fifty million in the world. Because the causative agent of amblyopia hasn't been well understood,only roughly considered to be concerned with visual sense cell, optic nerve network and function of nerve center, no appropriate treatment is found up to date. The vision of person is determined by the center hollow region of retina, where there are three kinds of cone cell. The corresponding peak wavelength in absorption spectrum locates 447nm (blue light), 532nm (green light) and 565nm (yellow light), respectively. When stimulated by white light, excited degree of three kinds of cone cell are identical,or yellow-green light, to which person eye is most sensitive, will significantly takes effects. Therefore the yellow-green laser diode is suitable for treating amblyopia. The weak laser, namely laser power less than mW order of magnitude, shows curative by stimulating bion tissue. When stimulating light power density is less than 0.001W/cm, the compounding speed of nucleic acid DNA is significantly increased. The growth rate of cell, activity of enzyme, content of hemoglobin and the growth of blood vessel, are all increased. However, it's key to control the dose of light. When the dose transcend some value, a inhibition will occur. The little dose of weak laser treatment can be accumulated with a parabolic characteristics, that is the weak laser generate bion response stengthening gradually versus time. Then it will weaken gradually after the peak. When the treatment duration is longer than a certain time, a inhibition also takes place. A suggested theraphy is characterized by little dose and short treatment course. In a conclusion, the yellow-green laser diode should be used for the treatment of amblyopia. The little dose and short treatment couse are to be adopted. Key words:treatment amblyopia laser diode

  16. Diode Laser Sensor for Scramjet Inlet

    DTIC Science & Technology

    2010-05-11

    Conference’. 1.2 O’Byrne, S., Huynh, L., Wittig, S. M. and Smith, N. S. A. (2009), Non- intrusive water vapour absorp- tion measurements in a simulated...O’Byrne, L. Huynh, S. M. Wittig and N. S. A. Smith, “Non- intrusive Water Vapour Absorp- tion Measurements in a Simulated Helicopter Exhaust”, Proceedings...rather than at a surface. The measurement techniques used at these hypersonic flow conditions should also be non- intrusive . Tuneable diode laser

  17. Stability theory of Knudsen plasma diodes

    SciTech Connect

    Kuznetsov, V. I. Ender, A. Ya.

    2015-11-15

    A stability theory is developed for a plasma diode in which an electron beam supplied from the emitter propagates without collisions in the self-consistent electric field against the immobile ion background. An integral equation for the amplitude of the perturbed field is deduced using the Q,G method for the regime without electron reflection from a potential barrier. Analytic solutions to this equation are obtained for a number of important particular cases, and the plasma dispersion properties are examined.

  18. Modeling the brain with laser diodes

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2007-09-01

    The Wilson-Cowan mathematical model is popular for representing a neuron in the brain and may be viewed as two cross-coupled dynamical nonlinear neural networks, one excitatory and one inhibitory. This gives rise to two coupled first order equations. Varying an input parameter, the sum of input intensities from all other incoming neurons, causes the Wilson-Cowan neural oscillator to move through a supercritical Hopf bifurcation so as to switch its output from a stable-off when the input is below a firing threshold to a stable-oscillation (limit cycle) for signals above the threshold; the frequency of which depends on the level of input stimulation. The use of frequency to represent pulse rate makes the brain robust against electromagnetic interference and drift. We show that the laser diode rate equations for a single optically injected laser diode can also be modeled by two coupled first order equations that give rise to supercritical Hopf bifurcations. But the laser rate equations have a complex variable where that for the Wilson-Cowan model equations is real. By using the real part of the complex variable (a projection onto the real plane), the optically injected laser diode can exactly simulate the movement through supercritical Hopf bifurcation of the Wilson-Cowan equations by varying the amplitude and frequency of the optical injection.

  19. Power semiconductor laser diode arrays characterization

    NASA Astrophysics Data System (ADS)

    Zeni, Luigi; Campopiano, Stefania; Cutolo, Antonello; D'Angelo, Giuseppe

    2003-09-01

    Nowadays, power semiconductor laser diode arrays are becoming a widespread source for a large variety of industrial applications. In particular, the availability of low-cost high-power laser diode arrays makes their use possible in the industrial context for material cutting, welding, diagnostics and processing. In the above applications, the exact control of the beam quality plays a very important role because it directly affects the reliability of the final result. In this paper, we present two different approaches useful for the characterization of the beam quality in laser diode arrays. The first one, starting from total intensity measurements on planes orthogonal to the beam propagation path, is able to deduce the working conditions of each laser setting up the array. The second one is aimed at the measurement of a global quality factor of the array itself; to this end, the empirical extension of the M2 concept to composite beams is presented along with some experimental results. As the first technique is especially intended for the non-destructive detection of design problems in the array itself and in the bias circuitry, the second one represents a powerful tool for the rapid on-line diagnostics of the laser beam during its use.

  20. Diode Laser Excision of Oral Benign Lesions

    PubMed Central

    Mathur, Ena; Sareen, Mohit; Dhaka, Payal; Baghla, Pallavi

    2015-01-01

    Introduction: Lasers have made tremendous progress in the field of dentistry and have turned out to be crucial in oral surgery as collateral approach for soft tissue surgery. This rapid progress can be attributed to the fact that lasers allow efficient execution of soft tissue procedures with excellent hemostasis and field visibility. When matched to scalpel, electrocautery or high frequency devices, lasers offer maximum postoperative patient comfort. Methods: Four patients agreed to undergo surgical removal of benign lesions of the oral cavity. 810 nm diode lasers were used in continuous wave mode for excisional biopsy. The specimens were sent for histopathological examination and patients were assessed on intraoperative and postoperative complications. Results: Diode laser surgery was rapid, bloodless and well accepted by patients and led to complete resolution of the lesions. The excised specimen proved adequate for histopathological examination. Hemostasis was achieved immediately after the procedure with minimal postoperative problems, discomfort and scarring. Conclusion: We conclude that diode lasers are rapidly becoming the standard of care in contemporary dental practice and can be employed in procedures requiring excisional biopsy of oral soft tissue lesions with minimal problems in histopathological diagnosis. PMID:26464781

  1. Integrated software package for laser diodes characterization

    NASA Astrophysics Data System (ADS)

    Sporea, Dan G.; Sporea, Radu A.

    2003-10-01

    The characteristics of laser diodes (wavelength of the emitted radiation, output optical power, embedded photodiode photocurrent, threshold current, serial resistance, external quantum efficiency) are strongly influenced by their driving circumstances (forward current, case temperature). In order to handle such a complex investigation in an efficient and objective manner, the operation of several instruments (a laser diode driver, a temperature controller, a wavelength meter, a power meter, and a laser beam analyzer) is synchronously controlled by a PC, through serial and GPIB communication. For each equipment, instruments drivers were designed using the industry standards graphical programming environment - LabVIEW from National Instruments. All the developed virtual instruments operate under the supervision of a managing virtual instrument, which sets the driving parameters for each unit under test. The manager virtual instrument scans as appropriate the driving current and case temperature values for the selected laser diode. The software enables data saving in Excel compatible files. In this way, sets of curves can be produced according to the testing cycle needs.

  2. Electrostatic Discharge (ESD) Protection for a Laser Diode Ignited Actuator

    SciTech Connect

    SALAS, FREDERICK J.; SANCHEZ, DANIEL H.; WEINLEIN, JOHN HARVEY

    2003-06-01

    The use of laser diodes in devices to ignite pyrotechnics provides unique new capabilities including the elimination of electrostatic discharge (ESD) pulses entering the device. The Faraday cage formed by the construction of these devices removes the concern of inadvertent ignition of the energetic material. However, the laser diode itself can be damaged by ESD pulses, therefore, to enhance reliability, some protection of the laser diode is necessary. The development of the MC4612 Optical Actuator has included a circuit to protect the laser diode from ESD pulses including the ''Fisher'' severe human body ESD model. The MC4612 uses a laser diode and is designed to replace existing hot-wire actuators. Optical energy from a laser diode, instead of electrical energy, is used to ignite the pyrotechnic. The protection circuit is described along with a discussion of how the circuit design addresses and circumvents the historic 1Amp/1Watt requirement that has been applicable to hot-wire devices.

  3. Wide frequency tuning in resonant-tunneling-diode terahertz oscillator using forward-biased varactor diode

    NASA Astrophysics Data System (ADS)

    Kitagawa, Seiichirou; Ogino, Kota; Suzuki, Safumi; Asada, Masahiro

    2017-04-01

    We report wide frequency tuning in a resonant-tunneling-diode (RTD) terahertz oscillator with a small change in the forward bias of a varactor diode integrated with the RTD. The obtained frequency change is 600–730 GHz with the voltage change of 0.4–0.8 V. The rate of this frequency change with bias voltage is much higher than that in the previously reported reverse-bias operation (680–600 GHz with ‑4 to +0.4 V in the present device). The result is well explained by theoretical analysis using equivalent circuits of the varactor diode and air bridge. The possibility of wider frequency tuning is also discussed.

  4. Diode Laser Measurements of Concentration and Temperature in Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.; Kane, Daniel J.

    1999-01-01

    Diode laser absorption spectroscopy provides a direct method of determinating species concentration and local gas temperature in combustion flames. Under microgravity conditions, diode lasers are particularly suitable, given their compact size, low mass and low power requirements. The development of diode laser-based sensors for gas detection in microgravity is presented, detailing measurements of molecular oxygen. Current progress of this work and future application possibilities for these methods on the International Space Station are discussed.

  5. A Modular Control Platform for a Diode Pumped Alkali Laser

    DTIC Science & Technology

    2008-09-01

    A Modular Control Platform for a Diode Pumped Alkali Laser Joshua Shapiro, Scott W. Teare New Mexico Institute of Mining and Technology, 801 Leroy...gain media, such as is done in diode pumped alkali lasers (DPALs), has been proposed and early experiments have shown promising results. However...REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE A Modular Control Platform for a Diode Pumped Alkali Laser 5a

  6. Design Considerations for the Diode-pumped Laser Ignition Project

    DTIC Science & Technology

    2013-01-01

    ABSTRACT This technical note explores the design of the monolithic neodymium (Nd): yttrium aluminum garnet (YAG) laser used in the diode-pumped laser...manufacturer on fabrication cost, the optimum design can be determined. 15. SUBJECT TERMS Solid state laser, neodymium , diode pumping 16... neodymium (Nd): yttrium aluminum garnet (YAG) laser used in the diode-pumped laser ignition system (DPLIS). Emphasis is placed on the divergence of

  7. Multimode-diode-pumped gas (alkali-vapor) laser

    SciTech Connect

    Page, R H; Beach, R J; Kanz, V K

    2005-08-22

    We report the first demonstration of a multimode-diode-pumped gas laser--Rb vapor operating on the 795 nm resonance transition. Peak output of {approx}1 Watt was obtained using a volume-Bragg-grating stabilized pump diode array. The laser's output radiance exceeded the pump radiance by a factor greater than 2000. Power scaling (by pumping with larger diode arrays) is therefore possible.

  8. Plasma opening switch studies of an applied Bz ion diode

    NASA Astrophysics Data System (ADS)

    Struckman, C. K.; Kusse, B. R.; Meyerhofer, D. D.; Rondeau, G.

    1989-05-01

    The light ion accelerator (1.5 MV, 4 ohms) at Cornell University is being used to study the characteristics of an applied Bz, or 'barrel', diode. The results of a series of experiments utilizing a plasma opening switch are reported. With a magnetically insulated ion diode load, the peak diode voltage increase from 1.5 to 1.8 MV and the ion power increased from 50 to 80 GW when a plasma opening switch was used.

  9. Alternating-current Light Emitting Diodes with a Diode Bridge Circuitry

    NASA Astrophysics Data System (ADS)

    Cho, Jaehee; Jung, Jaewook; Chae, Jung Hye; Kim, Hyungkun; Kim, Hyunsoo; Lee, Jeong Wook; Yoon, Sukho; Sone, Cheolsoo; Jang, Taehoon; Park, Yongjo; Yoon, Euijoon

    2007-12-01

    Most solid-state light emitting devices operate under direct current (DC) condition now. We report the alternating current (AC) light emitting devices fabricated with a diode bridge circuitry which is also made of light emitting diodes (LEDs). The LED bridge circuitry which is flipped on a silicon submount is composed of 4 branches with 7 LED chips and participates as a light emitting component as well. The AC LED can be operated with radiant flux of 0.83 W at an electric power of 8.5 W. This concept could be applied to fabricate compact and economical AC LEDs for a solid-state illumination.

  10. Plasma-filled diode based on the coaxial gun

    SciTech Connect

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-15

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of {>=}1 MeV at the current of Almost-Equal-To 100 kA was obtained in the experiments with a plasma-filled diode. The energy of Almost-Equal-To 5 kJ with the peak power of {>=}100 GW dissipated in the diode.

  11. Plasma-filled diode based on the coaxial gun

    NASA Astrophysics Data System (ADS)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  12. Quasi-CW Laser Diode Bar Life Tests

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Krainak, Michael A.; Dallas, Joseph L.

    1997-01-01

    NASA's Goddard Space Flight Center is developing technology for satellite-based, high peak power, LIDAR transmitters requiring 3-5 years of reliable operation. Semi-conductor laser diodes provide high efficiency pumping of solid state lasers with the promise of long-lived, reliable operation. 100-watt quasi- CW laser diode bars have been baselined for the next generation laser altimeters. Multi-billion shot lifetimes are required. The authors have monitored the performance of several diodes for billions of shots and investigated operational modes for improving diode lifetime.

  13. The reliability of bypass diodes in PV modules

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.; Shiradkar, Narendra; Schneller, Eric; Gade, Vivek

    2013-09-01

    The operating conditions of bypass diodes in PV modules deployed in the field are considerably harsher than the conditions at which the diode manufacturers test the diodes. This has a potential to significantly reduce the operating life of bypass diodes and has raised concerns about the safety and reliability of PV modules as a whole. The study of modes and mechanisms of the failures encountered in bypass diodes used in PV modules can provide important information which would be useful to predict the module lifetime. This paper presents the review of the failure modes and mechanisms observed in bypass diodes and current work related to reliability testing of bypass diodes. The International PV Module Quality Assurance Task Force has recommended following four potential areas of research to understand the reliability issues of bypass diodes: Electrostatic Discharge, reverse bias thermal runaway testing, forward bias overheating and transition testing of forward bias to reverse bias. As a joint collaborative effort between Florida Solar Energy Center and Solar and Environmental Test Laboratory at Jabil Inc., laboratory testing of bypass diodes on the guidelines provided by the International PV Module Quality Assurance Task Force has been initiated. Preliminary results from this work are presented in this paper.

  14. Millimeter-wave diode-grid phase shifters

    NASA Technical Reports Server (NTRS)

    Lam, Wayne W.; Stolt, Kjell S.; Jou, Christina F.; Luhmann, Neville C., Jr.; Chen, Howard Z.

    1988-01-01

    Monolithic diode grids have been fabricated on 2-cm square gallium-arsenide wafers with 1600 Schottky-barrier varactor diodes. Shorted diodes are detected with a liquid-crystal technique, and the bad diodes are removed with an ultrasonic probe. A small-aperture reflectometer that uses wavefront division interference was developed to measure the reflection coefficient of the grids. A phase shift of 70 deg with a 7-dB loss was obtained at 93 GHz when the bias on the diode grid was changed from -3 V to 1 V. A simple transmission-line grid model, together with the measured low-frequency parameters for the diodes, was shown to predict the measured performance over the entire capacitive bias range of the diodes, as well as over the complete reactive tuning range provided by a reflector behind the grid, and over a wide range of frequencies from 33 GHz to 141 GHz. This shows that the transmission-line model and the measured low-frequency diode parameters can be used to design an electronic beam-steering array and to predict its performance. An electronic beam-steering array made of a pair of grids using state-of-the-art diodes with 5-ohm series resistances would have a loss of 1.4 dB at 90 GHz.

  15. Dosimetric characteristics of a PIN diode for radiotherapy application.

    PubMed

    Kumar, R; Sharma, S D; Philomina, A; Topkar, A

    2014-08-01

    The PIN diode developed by Bhabha Atomic Research Centre (BARC) was modified for its use as a dosimeter in radiation therapy. For this purpose the diode was mounted on a printed circuit board (PCB) and provided with necessary connections so that its response against irradiation can be recorded by a standard radiotherapy electrometer. The dosimetric characteristics of the diode were studied in Co-60 gamma rays as well as high energy X-rays. The measured sensitivity of this PIN diode is 4 nC/cGy which is about ten times higher than some commercial diode dosimeters. The leakage current from the diode is 0.04 nA. The response of the PIN diode is linear in the range of 20-1000 cGy which covers the full range of radiation dose encountered in radiotherapy treatments. The non-linearity of the diode response is 3.5% at 20 cGy and it is less than 1.5% at higher dose values. Its repeatability is within 0.5%. The angular response variation is about 5.6% within 6608 with respect to normal beam incidence. The response of the PIN diode at 6 and 18 MV X-rays varies within 2% with respect to its response at Co-60 gamma rays. The source to surface distance (SSD) dependence of the PIN diode was studied for Co-60 beam. It was found that the response of the diode decreases almost linearly relative to given dose for beams with constant collimator setting but increasing SSD (decreasing dose-rate). Within this study the diode response varied by about 2.5% between the maximum and minimum SSD. The dose-rate dependence of the PIN diode for 6 and 15 MV-rays was studied. The variation in response of diode for both energies in the studied dose range is less than 1%. The field size dependence of the PIN diode response is within 1% with respect to the response of ionisation chamber. These studies indicate that the characteristics of the PIN diode are suitable for use in radiotherapy dosimetry.

  16. Apparatus for mounting a diode in a microwave circuit

    DOEpatents

    Liu, Shing-gong

    1976-07-27

    Apparatus for mounting a diode in a microwave circuit for making electrical contact between the circuit and ground and for dissipation of heat between the diode and a heat sink. The diode, supported on a thermally and electrically conductive member, is resiliently pressed in electrical contact with the microwave circuit. A tapered collar on the member is elastically deformably wedged into a tapered aperture formed in a heat sink. The wedged collar tightens firmly around the member establishing good thermal and electrical conduction from the diode to the heat sink and ground. Disassembly is facilitated because of the elastically deformed collar.

  17. Planar GaAs diodes for THz frequency mixing applications

    NASA Technical Reports Server (NTRS)

    Bishop, William L.; Crowe, Thomas W.; Mattauch, Robert J.; Dossal, Hasan

    1992-01-01

    Schottky barrier diodes for terahertz applications are typically fabricated as a micron to sub-micron circular anode metallization on GaAs which is contacted with a sharp wire (whisker). This structure has the benefits of the simplicity of the fabrication of the diode chip, the minimal shunt capacitance of the whisker contact and the ability of the whisker wire to couple energy to the diode. However, whisker-contacted diodes are costly to assembly and difficult to qualify for space applications. Also, complex receiver systems which require many diodes are difficult to assemble. The objective of this paper is to discuss the advantages of planar Schottky diodes for high frequency receiver applications and to summarize the problems of advancing the planar technology to the terahertz frequency range. Section 2 will discuss the structure, fabrication and performance of state-of-the-art planar Schottky diodes. In Section 3 the problems of designing and fabricating planar diodes for terahertz frequency operation are discussed along with a number of viable solutions. Section 4 summarizes the need for further research and cooperation between diode designers and RF engineers.

  18. Plasma-filled diode based on the coaxial gun.

    PubMed

    Zherlitsyn, A A; Kovalchuk, B M; Pedin, N N

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  19. Development of design criteria and a qualification test for bypass diodes

    NASA Astrophysics Data System (ADS)

    Otth, D. H.

    1985-06-01

    The development of a qualification test for modules bypass diodes is reviewed. Diode junction temperature is measured, indirectly, under laboratory ambient conditions, and extrapolated to field conditions. Criteria are given for diode reliability.

  20. Thermal compensator for closed-cycle helium refrigerator. [assuring constant temperature for an infrared laser diode

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Hillman, J. J. (Inventor)

    1979-01-01

    The wave length of an infrared, semiconductor laser diode having an output frequency that is dependent on the diode temperature is maintained substantially constant by maintaining the diode temperature constant. The diode is carried by a cold tip of a closed cycle helium refrigerator. The refrigerator has a tendency to cause the temperature of the cold tip to oscillate. A heater diode and a sensor diode are placed on a thermal heat sink that is the only highly conductive thermal path between the laser diode and the cold tip. The heat sink has a small volume and low thermal capacitance so that the sensing diode is at substantially the same temperature as the heater diode and substantially no thermal lag exists between them. The sensor diode is connected in a negative feedback circuit with the heater diode so that the tendency of the laser diode to thermally oscillate is virtually eliminated.

  1. A physical model for the reverse leakage current in (In,Ga)N/GaN light-emitting diodes based on nanowires

    SciTech Connect

    Musolino, M.; Treeck, D. van Tahraoui, A.; Geelhaar, L.; Riechert, H.; Scarparo, L.; De Santi, C.; Meneghini, M.; Zanoni, E.

    2016-01-28

    We investigated the origin of the high reverse leakage current in light emitting diodes (LEDs) based on (In,Ga)N/GaN nanowire (NW) ensembles grown by molecular beam epitaxy on Si substrates. To this end, capacitance deep level transient spectroscopy (DLTS) and temperature-dependent current-voltage (I-V) measurements were performed on a fully processed NW-LED. The DLTS measurements reveal the presence of two distinct electron traps with high concentrations in the depletion region of the p-i-n junction. These band gap states are located at energies of 570 ± 20 and 840 ± 30 meV below the conduction band minimum. The physical origin of these deep level states is discussed. The temperature-dependent I-V characteristics, acquired between 83 and 403 K, show that different conduction mechanisms cause the observed leakage current. On the basis of all these results, we developed a quantitative physical model for charge transport in the reverse bias regime. By taking into account the mutual interaction of variable range hopping and electron emission from Coulombic trap states, with the latter being described by phonon-assisted tunnelling and the Poole-Frenkel effect, we can model the experimental I-V curves in the entire range of temperatures with a consistent set of parameters. Our model should be applicable to planar GaN-based LEDs as well. Furthermore, possible approaches to decrease the leakage current in NW-LEDs are proposed.

  2. Green (In,Ga,Al)P-GaP light-emitting diodes grown on high-index GaAs surfaces

    SciTech Connect

    Ledentsov, N. N. Shchukin, V. A.; Lyytikäinen, J.; Okhotnikov, O.; Shernyakov, Yu. M.; Payusov, A. S.; Gordeev, N. Yu.; Maximov, M. V.; Schlichting, S.; Nippert, F.; Hoffmann, A.

    2014-11-03

    We report on green (550–560 nm) electroluminescence (EL) from (Al{sub 0.5}Ga{sub 0.5}){sub 0.5}In{sub 0.5}P-(Al{sub 0.8}Ga{sub 0.2}){sub 0.5}In{sub 0.5}P double p-i-n heterostructures with monolayer-scale GaP insertions in the cladding layers and light-emitting diodes based thereupon. The structures are grown side-by-side on high-index and (100) GaAs substrates by molecular beam epitaxy. At moderate current densities (∼500 A/cm{sup 2}), the EL intensity of the structures is comparable for all substrate orientations. Opposite to the (100)-grown strictures, the EL spectra of (211) and (311)-grown devices are shifted towards shorter wavelengths (∼550 nm at room temperature). At high current densities (>1 kA/cm{sup 2}), a much higher EL intensity is achieved for the devices grown on high-index substrates. The integrated intensity of (311)-grown structures gradually saturates at current densities above 4 kA/cm{sup 2}, whereas no saturation is revealed for (211)-grown structures up to the current densities above 14 kA/cm{sup 2}. We attribute the effect to the surface orientation-dependent engineering of the GaP band structure, which prevents the escape of the nonequilibrium electrons into the indirect conduction band minima of the p-doped (Al{sub 0.8}Ga{sub 0.2}){sub 0.5}In{sub 0.5}P cladding layers.

  3. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  4. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  5. Atomically thin quantum light-emitting diodes

    PubMed Central

    Palacios-Berraquero, Carmen; Barbone, Matteo; Kara, Dhiren M.; Chen, Xiaolong; Goykhman, Ilya; Yoon, Duhee; Ott, Anna K.; Beitner, Jan; Watanabe, Kenji; Taniguchi, Takashi; Ferrari, Andrea C.; Atatüre, Mete

    2016-01-01

    Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices. PMID:27667022

  6. Optical communication with semiconductor laser diode

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic; Sun, X.

    1989-01-01

    This interim report describes the progress in the construction of a 220 Mbps Q=4 PPM optical communication system that uses a semiconductor laser as the optical transmitter and an avalanche photodiode (APD) as the photodetector. The transmitter electronics have been completed and contain both GaAs and ECL III IC's. The circuit was able to operate at a source binary data rate from 75 Mbps to 290 Mbps with pulse rise and fall times of 400 ps. The pulse shapes of the laser diode and the response from the APD/preamplifier module were also measured.

  7. Wheat Under LED's (Light Emitting Diodes)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants, and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  8. Recent advances in antiguided diode laser arrays

    NASA Astrophysics Data System (ADS)

    Mawst, L. J.; Botez, D.; Jansen, M.; Roth, T. J.; Zmudzinski, C.; Tu, C.; Yun, J.

    1992-06-01

    The paper discusses features of advanced antiguided diode laser arrays optimized for single-spatial-mode operation to high output power. Twenty-element antiguided arrays have been fabricated to operate reproducibly to CW power levels of 0.5 W with 48-50 percent efficiency. These devices were also shown to exhibit thousands of hours of reliable operation. The paper gives special attention to modeling and optimization of multiclad antiguided arrays and presents experimental results on multiclad antiguided arrays fabricated by either of the two techniques, the conventional self-aligned stripe and the complementary self-aligned stripe.

  9. Submillimeter wave detection with superconducting tunnel diodes

    NASA Technical Reports Server (NTRS)

    Wengler, Michael J.

    1992-01-01

    Superconductor-Insulator-Superconductor (SIS) diodes are the detector elements in the most sensitive heterodyne receivers available from 100 to 500 GHz. SIS mixers are the front end of radio astronomical systems around the world. SIS mixer technology is being extended to 1 THz and higher frequencies for eventual use on spaceborne astronomical experiments. Here is a short review of submillimeter SIS mixers. The role of impedance matching in the proper design of an SIS mixer is described. A variety of methods for achieving good impedance match at submillimeter frequencies are presented. The experimental state of the submillimeter SIS mixer art is described and summarized.

  10. Atomically thin quantum light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Palacios-Berraquero, Carmen; Barbone, Matteo; Kara, Dhiren M.; Chen, Xiaolong; Goykhman, Ilya; Yoon, Duhee; Ott, Anna K.; Beitner, Jan; Watanabe, Kenji; Taniguchi, Takashi; Ferrari, Andrea C.; Atatüre, Mete

    2016-09-01

    Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices.

  11. Tunable Diode Laser Heterodyne Spectrophotometry of Ozone

    NASA Technical Reports Server (NTRS)

    Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.

    1988-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.

  12. Broadband External-Cavity Diode Laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.

    2005-01-01

    A broadband external-cavity diode laser (ECDL) has been invented for use in spectroscopic surveys preparatory to optical detection of gases. Heretofore, commercially available ECDLs have been designed, in conjunction with sophisticated tuning assemblies, for narrow- band (and, typically, single-frequency) operation, as needed for high sensitivity and high spectral resolution in some gas-detection applications. However, for preparatory spectroscopic surveys, high sensitivity and narrow-band operation are not needed; in such cases, the present broadband ECDL offers a simpler, less-expensive, more-compact alternative to a commercial narrowband ECDL.

  13. Rubidium dimer destruction by a diode laser

    SciTech Connect

    Ban, T.; Aumiler, D.; Pichler, G.

    2005-02-01

    We observed rubidium dimer destruction by excitation of rubidium vapor with diode laser light tuned across the Rb D{sub 2} resonance line in a 2400 GHz tuning interval. The destruction was measured for rubidium atom concentrations in the (1-9)x10{sup 16} cm{sup -3} range, pump beam power up to 43 mW, and with a 5 Torr of the helium buffer gas. We discuss the physical mechanisms involved and specify the molecular pathways which may effectively lead to the observed dimer destruction.

  14. Intensity Scaling for Diode Pumped Alkali Lasers

    DTIC Science & Technology

    2012-01-01

    unphased diode lasers is absorbed in the near IR by atomic potassium, rubidium , or cesium. The gain cell for a DPAL system using a heat pipe design is...demonstrated linear scaling of a rubidium laser to 32 times threshold.3 In our present work, we explore scaling to pump in- tensities of >100kW/cm2. The...of output power. Each alkali atom in the laser medium may be required to cycle as many as 1010 pump photons per second. We demonstrated a rubidium

  15. Laser Diode Pumped Solid State Lasers

    DTIC Science & Technology

    1987-01-01

    CRYSTAL ._____ ____ &m? * Deuterated • Potassium Dihydrogen . Phosphate - ’ KD PO (KD*P) ~ .~ ,_ .i-; Deuterated Ceslum 43ssI6 1 .. r., Dihydrogen ...as a buffer layer to absorb the thermal strain differential between the diode and a copper heatsink has also been suggested in the past and a recent...Potassium Titanium d33829-3 0.16 *; . ~ Penta- Phosphate - ’(20 na) ;A.: KTiOPOi (KTP) - Barium Sodium d33 8 43 .0j 4 eNilhatsh RA.NaNhO

  16. Composite resonator vertical cavity laser diode

    SciTech Connect

    Choquette, K.D.; Hou, H.Q.; Chow, W.W.; Geib, K.M.; Hammons, B.E.

    1998-05-01

    The use of two coupled laser cavities has been employed in edge emitting semiconductor lasers for mode suppression and frequency stabilization. The incorporation of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. Composite resonators can be utilized to control spectral and temporal properties within the laser; previous studies of coupled cavity vertical cavity lasers have employed photopumped structures. The authors report the first composite resonator vertical cavity laser diode consisting of two optical cavities and three monolithic distributed Bragg reflectors. Cavity coupling effects and two techniques for external modulation of the laser are described.

  17. Flexible inorganic nanowire light-emitting diode.

    PubMed

    Nadarajah, Athavan; Word, Robert C; Meiss, Jan; Könenkamp, Rolf

    2008-02-01

    We report a highly flexible light-emitting device in which inorganic nanowires are the optically active components. The single-crystalline ZnO nanowires are grown at 80 degrees C on flexible polymer-based indium-tin-oxide-coated substrates and subsequently encapsulated in a minimal-thickness, void-filling polystyrene film. A reflective top contact serving as the anode in the diode structure is provided by a strongly doped p-type polymer and an evaporated Au film. The emission through the polymer side of this arrangement covers most of the visual region. Electrical and optical properties as well as performance limitations of the device structure are discussed.

  18. Quantum dots for light emitting diodes.

    PubMed

    Qasim, Khan; Lei, Wei; Li, Qing

    2013-05-01

    In this article we discuss the development and key advantages of quantum dot based light emitting diode (QD-LED) and other applications based on their color purity, stability, and solution processibility. Analysis of quantum dot based LEDs and the main challenges faced in this field, such as the QD luminescence quenching, QD charging in thin films, and external quantum efficiency are discussed in detail. The description about how different optical down-conversion and structures enabled researchers to overcome these challenges and to commercialize the products. The recent developments about how to overcome these difficulties have also been discussed in this article.

  19. Bypass diode for a solar cell

    DOEpatents

    Rim, Seung Bum; Kim, Taeseok; Smith, David D; Cousins, Peter J

    2013-11-12

    Methods of fabricating bypass diodes for solar cells are described. In once embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed on the first conductive region. In another embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed within, and surrounded by, an uppermost portion of the first conductive region but is not formed in a lowermost portion of the first conductive region.

  20. Glareless light-emitting diode lighting tube

    NASA Astrophysics Data System (ADS)

    Chang, Rong-Seng; Li, Tung-Yen; Jwo, Ko-Wen; Wang, Sha-Wei; Tsai, Jang-Zern

    2012-03-01

    We develop a novel light bar waveguide design to produce a glareless light-emitting diode (LED) lighting tube. We design optimal parameters, such as the gap y between the tube and the reflective surface, the relative distance x between the lens and the LED, and so on. Using these parameters, we fabricate an illumination system consisting of LED light bulb installed at both ends of lighting tube. The lighting tube is shaped the same as a traditional fluorescent lighting tube in order to replace traditional lighting tubes without the modification of the lighting stand. The LED lighting tube is glareless to the observer from the side view.

  1. Diode Laser Sensor for Scramjet Inlets

    DTIC Science & Technology

    2011-06-03

    Capacitor SM 0805 (2012) 1 C48, C49, C50 , C52 10p Capacitor SM 0805 (2012) 4 C62, C64, C66 10uF Capacitor TANT B (3528) 3 D1, D2 BAT54 Schottky Diode...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for...with a collection of information if it does not display a currently valid OMB control number. 1 . REPORT DATE 07 JUN 2011 2. REPORT TYPE Final 3

  2. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  3. Simple tunnel diode circuit for accurate zero crossing timing

    NASA Technical Reports Server (NTRS)

    Metz, A. J.

    1969-01-01

    Tunnel diode circuit, capable of timing the zero crossing point of bipolar pulses, provides effective design for a fast crossing detector. It combines a nonlinear load line with the diode to detect the zero crossing of a wide range of input waveshapes.

  4. Spike Leakage and Burnout of Silicon PIN Diode Microwave Limiters

    DTIC Science & Technology

    1991-06-01

    13 3.4 Video Pulse Measurements...p m-width diodes ........................................................................ 15 11. Measured recovery time versus forward-current pulse ...38 43. Comparison of measured short pulse and cw output power as a function of input power at 1.5 GHz for 10-jim diode

  5. Diode Laser for Laryngeal Surgery: a Systematic Review

    PubMed Central

    Arroyo, Helena Hotz; Neri, Larissa; Fussuma, Carina Yuri; Imamura, Rui

    2016-01-01

    Introduction The diode laser has been frequently used in the management of laryngeal disorders. The portability and functional diversity of this tool make it a reasonable alternative to conventional lasers. However, whether diode laser has been applied in transoral laser microsurgery, the ideal parameters, outcomes, and adverse effects remain unclear. Objective The main objective of this systematic review is to provide a reliable evaluation of the use of diode laser in laryngeal diseases, trying to clarify its ideal parameters in the larynx, as well as its outcomes and complications. Data Synthesis We included eleven studies in the final analysis. From the included articles, we collected data on patient and lesion characteristics, treatment (diode laser's parameters used in surgery), and outcomes related to the laser surgery performed. Only two studies were prospective and there were no randomized controlled trials. Most of the evidence suggests that the diode laser can be a useful tool for treatment of different pathologies in the larynx. In this sense, the parameters must be set depending on the goal (vaporization, section, or coagulation) and the clinical problem. Conclusion: The literature lacks studies on the ideal parameters of the diode laser in laryngeal surgery. The available data indicate that diode laser is a useful tool that should be considered in laryngeal surgeries. Thus, large, well-designed studies correlated with diode compared with other lasers are needed to better estimate its effects. PMID:27096024

  6. Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules (Poster)

    SciTech Connect

    Zhang, Z.; Wohlgemuth, J.; Kurtz, S.

    2013-05-01

    This paper presents the result of high-temperature durability and thermal cycling testing and analysis for the selected diodes to study the detail of the thermal design and relative long-term reliability of the bypass diodes used to limit the detrimental effects of module hot-spot susceptibility.

  7. Transistor biased amplifier minimizes diode discriminator threshold attenuation

    NASA Technical Reports Server (NTRS)

    Larsen, R. N.

    1967-01-01

    Transistor biased amplifier has a biased diode discriminator driven by a high impedance /several megohms/ current source, rather than a voltage source with several hundred ohms output impedance. This high impedance input arrangement makes the incremental impedance of the threshold diode negligible relative to the input impedance.

  8. Laser diode array pumped continuous wave Rubidium vapor laser.

    PubMed

    Zhdanov, B V; Stooke, A; Boyadjian, G; Voci, A; Knize, R J

    2008-01-21

    We have demonstrated continuous wave operation of a laser diode array pumped Rb laser with an output power of 8 Watts. A slope efficiency of 60% and a total optical efficiency of 45% were obtained with a pump power of 18 Watts. This laser can be scaled to higher powers by using multiple laser diode arrays or stacks of arrays.

  9. Integral bypass diodes in an amorphous silicon alloy photovoltaic module

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Flaisher, H.

    1991-01-01

    Thin-film, tandem-junction, amorphous silicon (a-Si) photovoltaic modules were constructed in which a part of the a-Si alloy cell material is used to form bypass protection diodes. This integral design circumvents the need for incorporating external, conventional diodes, thus simplifying the manufacturing process and reducing module weight.

  10. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    ERIC Educational Resources Information Center

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…

  11. Organic reprogrammable circuits based on electrochemically formed diodes.

    PubMed

    Liu, Jiang; Engquist, Isak; Berggren, Magnus

    2014-08-13

    We report a method to construct reprogrammable circuits based on organic electrochemical (EC) p-n junction diodes. The diodes are built up from the combination of the organic conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and a polymer electrolyte. The p-n diodes are defined by EC doping performed at 70 °C, and then stabilized at -30 °C. The reversible EC reaction allows for in situ reprogramming of the polarity of the organic p-n junction, thus enabling us to reconfigure diode circuits. By combining diodes of specific polarities dedicated circuits have been created, such as various logic gates, a voltage limiter and an AC/DC converter. Reversing the EC reaction allows in situ reprogramming of the p-n junction polarity, thus enabling reconfiguration of diode circuits, for example, from an AND gate to an OR gate. The reprogrammable circuits are based on p-n diodes defined from only two layers, the electrodes and then the active semiconductor:electrolyte composite material. Such simple device structures are promising for large-area and fully printed reconfigurable circuits manufactured using common printing tools. The structure of the reported p-n diodes mimics the architecture of and is based on identical materials used to construct light-emitting electrochemical cells (LEC). Our findings thus provide a robust signal routing technology that is easily integrated with traditional LECs.

  12. Digital control of diode laser for atmospheric spectroscopy

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Rutledge, C. W. (Inventor)

    1985-01-01

    A system is described for remote absorption spectroscopy of trace species using a diode laser tunable over a useful spectral region of 50 to 200 cm(-1) by control of diode laser temperature over range from 15 K to 100 K, and tunable over a smaller region of typically 0.1 to 10 cm(-1) by control of the diode laser current over a range from 0 to 2 amps. Diode laser temperature and current set points are transmitted to the instrument in digital form and stored in memory for retrieval under control of a microprocessor during measurements. The laser diode current is determined by a digital to analog converter through a field effect transistor for a high degree of ambient temperature stability, while the laser diode temperature is determined by set points entered into a digital to analog converter under control of the microprocessor. Temperature of the laser diode is sensed by a sensor diode to provide negative feedback to the temperature control circuit that responds to the temperature control digital to analog converter.

  13. Diode pumped solid-state laser oscillators for spectroscopic applications

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  14. Highly efficient multimode diode-pumped Yb:KYW laser

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. A.; Pivtsov, V. S.; Semenko, A. V.; Bagayev, S. N.

    2017-01-01

    Record high differential efficiency (53.2%) and full optical efficiency (48%) for a multimode diode-pumped Yb:KYW laser have been achieved. The characteristics of the laser and methods for improving its efficiency using a distributed Bragg reflector tapered diode laser (DBR TDL) are discussed.

  15. CO.sub.2 optically pumped distributed feedback diode laser

    DOEpatents

    Rockwood, Stephen D.

    1980-01-01

    A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.

  16. Monitoring The Atmosphere By Diode-Laser Spectroscopy

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Podolske, James

    1988-01-01

    Report describes state of art of tunable-diode-laser second-harmonic spectroscopy applied to measurements of concentrations of trace constituents of atmosphere. Combination of temperature, composition, and drive-current tuning, wavelengths of tunable diode lasers varied over infrared range of 3 to 30 micrometer, containing spectral lines of many molecules of interest in atmospheric research.

  17. Equivalent circuit model of semiconductor nanowire diode by SPICE.

    PubMed

    Lee, SeHan; Yu, YunSeop; Hwang, SungWoo; Ahn, Doyeol

    2007-11-01

    An equivalent circuit model of nanowire diodes is introduced. Because nanowire diodes inevitably involve a metal-semiconductor-metal structure, they consist of two metal-semiconductor contacts and one resistor in between these contacts. Our equivalent circuit consists of two Schottky diodes and one resistor. The current through the reverse-biased Schottky diode is calculated from the thermionic field emission (TFE) theory and that of the forward-biased Schottky diode is obtained from the classical thermionic emission (TE) equation. Our model is integrated into the conventional circuit simulator SPICE by a sub-circuit with TFE and TE routines. The results simulated with our model by SPICE are in good agreement with various, previously reported experimental results.

  18. Stacked, Filtered Multi-Channel X-Ray Diode Array

    SciTech Connect

    MacNeil, Lawrence P.; Dutra, Eric C.; Raphaelian, Mark; Compton, Steven; Jacoby, Barry

    2015-08-01

    This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilities to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.

  19. New diode wavelengths for pumping solid-state lasers

    SciTech Connect

    Skidmore, J.A.; Emanuel, M.A.; Beach, R.J.

    1995-01-01

    High-power laser-diode arrays have been demonstrated to be viable pump sources for solid-state lasers. The diode bars (fill factor of 0.7) were bonded to silicon microchannel heatsinks for high-average-power operation. Over 12 W of CW output power was achieved from a one cm AlGaInP tensile-strained single-quantum-well laser diode bar. At 690 nm, a compressively-strained single-quantum-well laser-diode array produced 360 W/cm{sup 2} per emitting aperture under CW operation, and 2.85 kW of pulsed power from a 3.8 cm{sup 2} emitting-aperture array. InGaAs strained single-quantum-well laser diodes emitting at 900 nm produced 2.8 kW pulsed power from a 4.4 cm{sup 2} emitting-aperture array.

  20. Diode Laser Application in Soft Tissue Oral Surgery

    PubMed Central

    Azma, Ehsan; Safavi, Nassimeh

    2013-01-01

    Introduction: Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Discussion: Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. Conclusion: The diode laser can be used as a modality for oral soft tissue surgery PMID:25606331

  1. Low level diode laser accelerates wound healing.

    PubMed

    Dawood, Munqith S; Salman, Saif Dawood

    2013-05-01

    The effect of wound illumination time by pulsed diode laser on the wound healing process was studied in this paper. For this purpose, the original electronic drive circuit of a 650-nm wavelength CW diode laser was reconstructed to give pulsed output laser of 50 % duty cycle and 1 MHz pulse repetition frequency. Twenty male mice, 3 months old were used to follow up the laser photobiostimulation effect on the wound healing progress. They were subdivided into two groups and then the wounds were made on the bilateral back sides of each mouse. Two sessions of pulsed laser therapy were carried along 15 days. Each mice group wounds were illuminated by this pulsed laser for 12 or 18 min per session during these 12 days. The results of this study were compared with the results of our previous wound healing therapy study by using the same type of laser. The mice wounds in that study received only 5 min of illumination time therapy in the first and second days of healing process. In this study, we found that the wounds, which were illuminated for 12 min/session healed in about 3 days earlier than those which were illuminated for 18 min/session. Both of them were healed earlier in about 10-11 days than the control group did.

  2. The 60 GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Dat, Rovindra; Ayyagari, Murthy; Hoag, David; Sloat, David; Anand, Yogi; Whitely, Stan

    1986-01-01

    The objective is to develop 60 GHz IMPATT diodes suitable for communications applications. The performance goals of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10-year lifetime. The final design of the 60 GHz IMPATT structure evolved from computer simulations performed at the University of Michigan. The initial doping profile, involving a hybrid double-drift (HDD) design, was derived from a drift-diffusion model that used the static velocity-field characteristics for GaAs. Unfortunately, the model did not consider the effects of velocity undershoot and delay of the avalanche process due to energy relaxation. Consequently, the initial devices were oscillating at a much lower frequency than anticipated. With a revised simulation program that included the two effects given above, a second HDD profile was generated and was used as a basis for fabrication efforts. In the area of device fabrication, significant progress was made in epitaxial growth and characterization, wafer processing, and die assembly. The organo-metallic chemical vapor deposition (OMCVD) was used. Starting with a baseline X-Band IMPATT technology, appropriate processing steps were modified to satisfy the device requirements at V-Band. In terms of efficiency and reliability, the device requirements dictate a reduction in its series resistance and thermal resistance values. Qualitatively, researchers were able to reduce the diodes' series resistance by reducing the thickness of the N+ GaAs substrate used in its fabrication.

  3. Angle sensitive single photon avalanche diode

    NASA Astrophysics Data System (ADS)

    Lee, Changhyuk; Johnson, Ben; Molnar, Alyosha

    2015-06-01

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  4. Scaling brilliance of high power laser diodes

    NASA Astrophysics Data System (ADS)

    König, Harald; Grönninger, Guenther; Lauer, Christian; Reill, Wolfgang; Arzberger, Markus; Strauß, Uwe; Kissel, Heiko; Biesenbach, Jens; Kösters, Arnd; Malchus, Joerg; Krause, Volker K.

    2010-02-01

    New direct diode laser systems and fiber lasers require brilliant fiber coupled laser diodes for efficient operation. In the German funded project HEMILAS different laser bar designs are investigated with tailored beam parameter products adapted for efficient fiber coupling. In this paper we demonstrate results on 9xx and 1020nm bars suitable for coupling into 200μm fibers. With special facet technology and optimised epitaxial structure COD-free laser bars were fabricated with maximum efficiency above 66%. For short bars consisting of five 100μm wide emitters 75W CW maximum output power was reached. In QCW-mode up to 140W are demonstrated. The 10% fill factor bars with 4mm cavity are mounted with hard solder. Lifetime tests in long pulse mode with 35W output power exceed 5000 hours of testing without degradation or spontaneous failures. Slow axis divergence stays below 7° up to power levels of 40W and is suitable for simple fiber coupling into 200μm NA 0.22 fibers with SAC and FAC lenses. For fiber coupling based on beam rearrangement with step mirrors, bars with higher fill factor of 50% were fabricated and tested. The 4mm cavity short bars reach efficiencies above 60%. Lifetime tests at accelerated powers were performed. Finally fiber coupling results with output powers of up to 2.4 kW and beam quality of 30 mm mrad are demonstrated.

  5. Subband current in resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Sheng, H.; Sinkkonen, J.

    An accumulation layer is formed on the emitter side of a biased resonant tunneling diode (RTD) leading to a similar subband structure as in the ordinary MOS-system. Electrons occupying the subbands can tunnel through the RTD-structure and give rise to a significant contribution to the diode current. We calculate the subband current from our semiclassical transport model developed earlier for the ordinary tunneling current. The model includes quantum interference and bulk scattering by utilizing an optical approximation for the coherent part of the wave function. The subband current turns out to be of the same order of magnitude as the ordinary tunneling current component. It is shifted to higher voltages and therefore it increases the valley current. In order to reduce the subband current and improve the peak-to-valley current ratio (PVCR), we propose a novel RTD-structure with a grading in front of the emitter barrier. The purpose of the grading is to suppress the formation of the accumulation layer and thereby decrease the valley current. Calculations show that PVCR increases by a factor of two using a proper design of the grading.

  6. Angle sensitive single photon avalanche diode

    SciTech Connect

    Lee, Changhyuk Johnson, Ben Molnar, Alyosha

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  7. A new diode laser acupuncture therapy apparatus

    NASA Astrophysics Data System (ADS)

    Li, Chengwei; Huang, Zhen; Li, Dongyu; Zhang, Xiaoyuan

    2006-06-01

    Since the first laser-needles acupuncture apparatus was introduced in therapy, this kind of apparatus has been well used in laser biomedicine as its non-invasive, pain- free, non-bacterium, and safetool. The laser acupuncture apparatus in this paper is based on single-chip microcomputer and associated by semiconductor laser technology. The function like traditional moxibustion including reinforcing and reducing is implemented by applying chaos method to control the duty cycle of moxibustion signal, and the traditional lifting and thrusting of acupuncture is implemented by changing power output of the diode laser. The radiator element of diode laser is made and the drive circuit is designed. And chaos mathematic model is used to produce deterministic class stochastic signal to avoid the body adaptability. This function covers the shortages of continuous irradiation or that of simple disciplinary stimulate signal, which is controlled by some simple electronic circuit and become easily adjusted by human body. The realization of reinforcing and reducing of moxibustion is technological innovation in traditional acupuncture coming true in engineering.

  8. Space Qualification of Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Troupaki, Elisavet; Kashem, Nasir B.; Allan, Graham R.; Vasilyev, Aleksey; Stephen, Mark

    2005-01-01

    Laser instruments have great potential in enabling a new generation of remote-sensing scientific instruments. NASA s desire to employ laser instruments aboard satellites, imposes stringent reliability requirements under severe conditions. As a result of these requirements, NASA has a research program to understand, quantify and reduce the risk of failure to these instruments when deployed on satellites. Most of NASA s proposed laser missions have base-lined diode-pumped Nd:YAG lasers that generally use quasi-constant wave (QCW), 808 nm Laser Diode Arrays (LDAs). Our group has an on-going test program to measure the performance of these LDAs when operated in conditions replicating launch and orbit. In this paper, we report on the results of tests designed to measure the effect of vibration loads simulating launch into space and the radiation environment encountered on orbit. Our primary objective is to quantify the performance of the LDAs in conditions replicating those of a satellite instrument, determine their limitations and strengths which will enable better and more robust designs. To this end we have developed a systematic testing strategy to quantify the effect of environmental stresses on the optical and electrical properties of the LDA.

  9. Sensitivity of resonant tunneling diode photodetectors

    NASA Astrophysics Data System (ADS)

    Pfenning, Andreas; Hartmann, Fabian; Langer, Fabian; Kamp, Martin; Höfling, Sven; Worschech, Lukas

    2016-09-01

    We have studied the sensitivity of AlGaAs/GaAs double barrier resonant tunneling diode photodetectors with an integrated GaInNAs absorption layer for light sensing at the telecommunication wavelength of λ = 1.3 μm for illumination powers from pico- to microwatts. The sensitivity decreases nonlinearly with power. An illumination power increase of seven orders of magnitude leads to a reduction of the photocurrent sensitivity from S I = 5.82 × 103 A W-1 to 3.2 A W-1. We attribute the nonlinear sensitivity-power dependence to an altered local electrostatic potential due to hole-accumulation that on the one hand tunes the tunneling current, but on the other hand affects the lifetime of photogenerated holes. In particular, the lifetime decreases exponentially with increasing hole population. The lifetime reduction results from an enhanced electrical field, a rise of the quasi-Fermi level, and an increased energy splitting within the triangular potential well. The non-constant sensitivity is a direct result of the non-constant lifetime. Based on these findings, we provide an expression that allows us to calculate the sensitivity as a function of illumination power and bias voltage, show a way to model the time-resolved photocurrent, and determine the critical power up to which the resonant tunneling diode photodetector sensitivity can be assumed constant.

  10. IBIC analysis of gallium arsenide Schottky diodes

    NASA Astrophysics Data System (ADS)

    Vittone, E.; Fizzotti, F.; Mirri, K.; Gargioni, E.; Polesello, P.; LoGiudice, A.; Manfredotti, C.; Galassini, S.; Rossi, P.; Vanni, P.; Nava, F.

    1999-10-01

    Semi-insulating (SI) gallium arsenide (GaAs) devices operating as a reverse biased Schottky diode offer an attractive choice as radiation detector at room temperature both in high energy physics experiments and as X-ray image sensors. However, SI GaAs devices contain a high concentration of traps, which decreases the charge collection efficiency (cce), and affects the energy resolution of such detectors working as nuclear spectrometers. In this paper we present a detailed investigation of the spatial uniformity of the cce carried out by analysing ion beam induced charge (IBIC) space maps obtained by scanning a focused 2 MeV proton microbeam on a SI n-GaAs Schottky diode. The microbeam irradiated both the front (Schottky) and back (ohmic) contacts in order to evaluate the transport properties of both electrons and holes generated by ionisation. The IBIC space maps show a clear non-uniformity of the cce. The poor energy resolution previously observed in such detectors working as alpha particle spectrometers is ascribed to the presence of two different "phases" in the material, which produce two distinct collection efficiency spectra. Such "phases" show different behaviour as a function of the applied bias voltage which is most likely due to the different electric field dependence of the relevant capture cross sections of the trapping centres for both charge carriers.

  11. "Diode Pumped Solid State Lasers At 2 And 3 µm"

    NASA Astrophysics Data System (ADS)

    Esterowitz, Leon

    1988-06-01

    The most attractive alternative to flashlamp pumping of solid state lasers is the diode laser. In the past two decades numerous laboratory devices have been assembled which incorporated single diode lasers, small laser diode arrays or LED's for pumping of Nd:YAG, Nd:glass and a host of other Nd lasers. The low power output, low packaging density, and extremely high cost of diode lasers prevented any serious applications for laser pumping in the past. The reason for the continued interest in this area stems from the potential dramatic increase in system efficiency and component lifetime, and reduction of thermal load of the solid-state laser material. The latter not only will reduce thereto-optic effects and therefore lead to better beam quality but also will enable an increase in pulse repetition frequency. The attractive operating parameters combined with low voltage operation and the compactness of an all solid-state laser system have a potential high payoff. The high pumping efficiency compared to flashlamps stems from the good spectral match between the laser diode emission and the rare earth activator absorption bands. A significant advantage of laser diode pumping compared to arc lamps is system lifetime and reliability. Laser diode arrays have exhibited lifetimes on the order of 10,000 hours in cw operation and 109 shots in the pulsed mode. Flashlamp life is on the order of 107 shots, and about 200 hours for cw operation. In addition, the high pump flux combined with a substantial UV content in lamp pumped systems causes material degradation in the pump cavity and in the coolant. Such problems are virtually eliminated with laser diode pump sources. The absence of high voltage pulses, high temperatures and UV radiation encountered with arc lamps leads to much more benign operating features for solid state laser systems employing laser diode pumps. Laser diode technology dates back to 1962 when laser action in GaAs diodes was first demonstrated. However, it

  12. Additional electric field in real trench MOS barrier Schottky diode

    NASA Astrophysics Data System (ADS)

    Mamedov, R. K.; Aslanova, A. R.

    2016-04-01

    In real trench MOS barrier Schottky diode (TMBS diode) additional electric field (AEF) the whole is formed in the near contact region of the semiconductor and its propagation space is limited with the barrier metal and the metallic electrodes of MOS structures. Effective potential barrier height TMBS diode is formed via resulting electric field of superposition AEF and electric field of space charge region (SCR) semiconductor. The dependence of the resulting electric field intensity of the distance towards the inside the semiconductor is nonlinear and characterized by a peak at a certain distance from the interface. The thickness of the SCR in TMBS diode becomes equal to the trench depth. Force and energy parameters of the AEF, and thus resulting electric field in the SCR region, become dependent on the geometric design parameters TMBS diode. The forward I-V characteristic TMBS diode is described by the thermionic emission theory as in conventional flat Scottky diode, and in the reverse bias, current is virtually absent at initial voltage, appears abruptly at a certain critical voltage.

  13. Active plasma source formation in the MAP diode

    SciTech Connect

    Lamppa, K.P.; Stinnett, R.W.; Renk, T.J.

    1995-07-01

    The Ion Beam Surface Treatment (IBEST) program is exploring using ion beams to treat the surface of a wide variety of materials. These experiments have shown that improved corrosion resistance, surface hardening, grain size modification, polishing and surface cleaning can all be achieved using a pulsed 0.4-0.8 MeV ion beam delivering 1-10 J/cm{sup 2}. The Magnetically-confined Anode Plasma (MAP) diode, developed at Cornell University, produces an active plasma which can be used to treat the surfaces of materials. The diode consists of a fast puff valve as the source of gas to produce the desired ions and two capacitively driven B-fields. A slow magnetic field is used for electron insulation and a fast field is used to both ionize the puffed gas and to position the plasma in the proper spatial location in the anode prior to the accelerator pulse. The relative timing between subsystems is an important factor in the effective production of the active plasma source for the MAP diode system. The MAP diode has been characterized using a Langmuir probe to measure plasma arrival times at the anode annulus for hydrogen gas. This data was then used to determine the optimum operating point for the MAP diode on RHEPP-1 accelerator shots. Operation of the MAP diode system to produce an ion beam of 500 kV, 12 kA with 40% efficiency (measured at the diode) has been demonstrated.

  14. Role of electron blocking layer in III-nitride laser diodes and light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kuo, Yen-Kuang; Chang, Jih-Yuan; Chen, Mei-Ling

    2010-02-01

    A high energy bandgap electron blocking layer (EBL) just behind the active region is conventionally used in the nitride-based laser diodes (LDs) and light-emitting diodes (LEDs) to improve the confinement capability of electrons within the quantum wells. Nevertheless, the EBL may also act as a potential barrier for the holes and cause non-uniform distribution of holes among quantum wells. A most recent study by Han et al. (Appl. Phys. Lett. 94, 231123, 2009) reported that, because of the blocking effect for holes, the InGaN LED device without an EBL has slighter efficiency droop and higher light output at high level of current injection when compared with the LED device with an EBL. This result seems to contradict with the original intention of using the EBL. Furthermore, findings from our previous studies (IEEE J. Lightwave Technol. 26, 329, 2008; J. Appl. Phys. 103, 103115, 2008; Appl. Phys. Lett. 91, 201118, 2007) indicated that the utilization of EBL is essential for the InGaN laser diodes. Thus, in this work, the optical properties of the InGaN LDs and LEDs are explored numerically with the LASTIP simulation program and APSYS simulation program, respectively. The analyses focus particularly on the light output power, energy band diagrams, recombination rates, distribution of electrons and holes in the active region, and electron overflow. This study will then conclude with a discussion of the effect of EBL on the optical properties of the InGaN LDs and LEDs.

  15. Current transport mechanisms in mercury cadmium telluride diode

    NASA Astrophysics Data System (ADS)

    Gopal, Vishnu; Li, Qing; He, Jiale; He, Kai; Lin, Chun; Hu, Weida

    2016-08-01

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I-V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I-V characteristics have been modelled over a range of gate voltages from -9 V to -2 V. This range of gate voltages includes accumulation, flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I-V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from -3 V to -5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.

  16. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  17. Contact Whiskers for Millimeter Wave Diodes

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.; Grange, J. A.; Lichtenberger, J. A.

    1978-01-01

    Several techniques are investigated for making short conical tips on wires (whiskers) used for contacting millimeter-wave Schottky diodes. One procedure, using a phosphoric and chromic acid etching solution (PCE), is found to give good results on 12 microns phosphor-bronze wires. Full cone angles of 60 degrees-80 degrees are consistently obtained, compared with the 15 degrees-20 degrees angles obtained with the widely used sodium hydroxide etch. Methods are also described for cleaning, increasing the tip diameter (i.e. blunting), gold plating, and testing the contact resistance of the whiskers. The effects of the whisker tip shape on the electrical resistance, inductance, and capacitance of the whiskers are studied, and examples given for typical sets of parameters.

  18. Light-emitting diodes for analytical chemistry.

    PubMed

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K

    2014-01-01

    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  19. High frequency properties of resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Sheng, H. Y.; Sinkkonen, J.

    The small signal analysis for the resonant tunneling diode (RTD) is carried out by using a semiclassical transport theory. Multiple scattering effects are accounted for in an optical approximation by using a complex mean free path. An analytical expression for the conduction current is given. The results show that the negative differential conductance prevails up to the frequency f0 limited by the quantum well transit time. The imaginary part of the admittance can be presented by a series inductance as has been recently found experimentally. In addition, the equivalent circuit has a capacitor in parallel with the conductance-inductance branch. Above f0 the admittance shows an oscillatory behaviour. The oscillations are associated with the quantum well transit time resonances.

  20. Low-cost laser diode array

    DOEpatents

    Freitas, B.L.; Skidmore, J.A.

    1999-06-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

  1. Destructive Single-Event Failures in Diodes

    NASA Technical Reports Server (NTRS)

    Casey, Megan C.; Gigliuto, Robert A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Kim, Hak; Chen, Dakai; Phan, Anthony M.; LaBel, Kenneth A.

    2013-01-01

    In this summary, we have shown that diodes are susceptible to destructive single-event effects, and that these failures occur along the guard ring. By determining the last passing voltages, a safe operating area can be derived. By derating off of those values, rather than by the rated voltage, like what is currently done with power MOSFETs, we can work to ensure the safety of future missions. However, there are still open questions about these failures. Are they limited to a single manufacturer, a small number, or all of them? Is there a threshold rated voltage that must be exceeded to see these failures? With future work, we hope to answer these questions. In the full paper, laser results will also be presented to verify that failures only occur along the guard ring.

  2. Low-cost laser diode array

    DOEpatents

    Freitas, Barry L.; Skidmore, Jay A.

    1999-01-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

  3. Microlens frames for laser diode arrays

    DOEpatents

    Skidmore, Jay A.; Freitas, Barry L.

    1999-01-01

    Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter.

  4. Microlens frames for laser diode arrays

    DOEpatents

    Skidmore, J.A.; Freitas, B.L.

    1999-07-13

    Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter. 12 figs.

  5. Diode laser welding of aluminum to steel

    SciTech Connect

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica

    2011-05-04

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  6. Smart medical diode lasers: fantasy becoming reality

    NASA Astrophysics Data System (ADS)

    Soltz, Barbara A.

    1995-05-01

    Design principles and rules are currently being formulated for building intelligent machines for `factories of the future'. The intelligent machine is one which has control functions that resemble the `brain', `eyes' and other anthropomorphic substitutes for the skilled expert. These skills are related to the expert's knowledge and abilities to plan complex actions and to detect errors with a continual upgrade of machine understanding. A craft related language enables a high level of communication between the system and the operator. These same capabilities can be embodied in a medical laser system. This paper will define the key characteristics of a smart medical laser and will describe the advantages of an intelligent system based on diode laser technology. System control functions and software architecture will be explained and the main subsystems highlighted.

  7. Terahertz optoelectronics with surface plasmon polariton diode.

    PubMed

    Vinnakota, Raj K; Genov, Dentcho A

    2014-05-09

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.

  8. Diode-laser-based therapy device

    NASA Astrophysics Data System (ADS)

    Udrea, Mircea V.; Nica, Adriana S.; Florian, Mariana; Poenaru, Daniela; Udrea, Gabriela; Lungeanu, Mihaela; Sporea, Dan G.; Vasiliu, Virgil V.; Vieru, Roxana

    2004-10-01

    A new therapy laser device is presented. The device consists of a central unit and different types of laser probes. The laser probe model SL7-650 delivers seven red (650 nm), 5 mW diode lasers convergent beams. The beams converge at about 30 cm in front of the laser probe and the irradiated area might be varied by simple displacement of the laser probe with respect to the target. The laser probe SL1-808 emits single infrared laser beam up to 500 mW. The efficiency of the use of this device in physiotherapy, and rheumatology, has been put into evidence after years of testing. Dermatology and microsurgery are users of infrared powerful laser probes. The device has successfully passed technical and clinical tests in order to be certified. The laser device design and some medical results are given.

  9. Mechanical diode: Comparing numerical and experimental characterizations

    SciTech Connect

    Sagartz, M.J.; Segalman, D.; Simmermacher, T.

    1998-02-01

    In this introductory work, joint compliance is studied in both a numerical and experimental setting. A simple bolted interface is used as the test article and compliance is measured for the joint in both compression and in tension. This simple interface is shown to exhibit a strong non-linearity near the transition from compression to tension (or vice-versa). Modeling issues pertaining to numerically solving for the compliance are addressed. It is shown that the model predictions, in spite of convergence being very sensitive to numerical artifacts of the interface model, are in good agreement with experimentally measured strains and joint compliances. The joint behavior is a mechanical analogy to a diode, i.e., in compression, the joint is very stiff, acting almost as a rigid link, while in tension the joint is relatively soft, acting as a spring.

  10. Piezotronic PIN diode for microwave and piezophototronic devices

    NASA Astrophysics Data System (ADS)

    Luo, Lu; Zhang, Yan; Li, Lijie

    2017-04-01

    Piezotronics and piezophototronics, the two emerging fields that combine piezoelectric and semiconductor properties of materials have drawn much attention recently. Piezopotential caused by piezocharges can change the energy band and carrier transport of piezoelectric semiconductor materials. The PIN diodes have been widely used in high-frequency microwave circuits. In this paper, we present the theoretical calculations of the piezotronic PIN diode, including the built-in-potential, current–voltage characteristic, and junction capacitance for microwave and radio frequency application. Furthermore, the photovoltaic and luminescence properties of the PIN piezophototronic photodetector and light-emitting diode have been provided under applied strain.

  11. Industrial applications of high power diode lasers in materials processing

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich

    2003-03-01

    Diode lasers are widely used in communication, computer and consumer electronics technology. These applications are based on systems, which provide power in the milliwatt range. However, in the mean time high power diode lasers have reached the kilowatt power range. This became possible by special cooling and mounting as well as beam combination and beam forming technologies. Such units are nowadays used as a direct source for materials processing. High power diode lasers have entered the industrial manufacturing area [Proceedings of the Advanced Laser Technologies Conference 2001, Proc. SPIE, Constanta, Romania, 11-14 September 2001].

  12. A transient model of a cesium-barium diode

    SciTech Connect

    Luke, J.R.; El-Genk, M.S.

    1995-01-01

    In this work a transient model of a Cs-Ba diode is developed, and a series of experiments is performed using a diode equipped with Langmuir probes. The Langmuir probe data show that the electron energy distribution is non-Maxwellian at low discharge currents, indicating the presence of an electron beam from the emitter. Experimental results also showed that the plasma properties are non-homogeneous across the 1 mm diode gap; the electron temperature and plasma potential were higher near the emitter and the plasma density was higher near the collector. Experimental evidence is presented to show that the discharge contracts to a filament below the maximum thermal emission current.

  13. Sensitivity of the current-voltage characteristic to diode parameters

    SciTech Connect

    Stoenescu, M. I.; Nichols, R. A.; Brooks, A. W.; Smith, T. M.

    1981-01-01

    The physical description of the electrodes and of the plasma is transferred to one point of the diode volt-ampere characteristic represented by one value of the current density J at given output voltage V. The present description is part of a study aimed to analyze the origin of losses of the diode electric current at higher voltages and the impact on the diode performance of modifications on electrode surface, geometry and physics of the outerelectrode region. The choice of the mathematical representation and technique is dictated by the present treatment being a subensemble of a two-dimensional mathematical model.

  14. Photoluminescence excitation measurements using pressure-tuned laser diodes

    SciTech Connect

    Bercha, Artem; Ivonyak, Yurii; Mędryk, Radosław; Trzeciakowski, Witold A. Dybała, Filip; Piechal, Bernard

    2015-06-15

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available.

  15. Anode plasma density measurements in a magnetically insulated diode

    SciTech Connect

    Pal, R.; Hammer, D.

    1983-03-07

    The surface-flashover anode plasma in a magnetically insulated ion diode was investigated spectroscopically. From the Stark broadening of the neutral hydrogen H/sub ..beta../ line an average electron density of about 2 x 10/sup 15//cm/sup 3/ was observed in the < or approx. =1-mm anode plasma, 30 nsec into the 400--475-kV diode voltage pulse. Thereafter, the plasma front advanced into the diode gap at an average rate of 2 cm/..mu..sec. This may be explained by the ionization of neutral atoms injected into the gap during flashover.

  16. Design, fabrication and testing of a thermal diode

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Kosson, R.

    1972-01-01

    Heat pipe diode types are discussed. The design, fabrication and test of a flight qualified diode for the Advanced Thermal Control Flight Experiment (ATFE) are described. The review covers the use of non-condensable gas, freezing, liquid trap, and liquid blockage techniques. Test data and parametric performance are presented for the liquid trap and liquid blockage techniques. The liquid blockage technique was selected for the ATFE diode on the basis of small reservoir size, low reverse mode heat transfer, and apparent rapid shut-off.

  17. Diode-pumped Alexandrite ring laser for lidar applications

    NASA Astrophysics Data System (ADS)

    Munk, A.; Jungbluth, B.; Strotkamp, M.; Hoffmann, H.-D.; Poprawe, R.; Höffner, J.

    2016-03-01

    We present design and performance data of a diode-pumped Q-switched Alexandrite ring laser in the millijoule regime, which is longitudinally pumped by laser diode bar modules in the red spectral range. As a first step, a linear resonator was designed and characterized in qcw operation as well as in Q-switched operation. Based on these investigations, two separate linear cavities were set up, each with one Alexandrite crystal longitudinally pumped by one diode module. The two cavities are fused together and form a ring cavity which yields up to 6 mJ pulse burst energy in the qcw regime at 770 nm.

  18. Pulse power applications of silicon diodes in EML capacitive pulsers

    NASA Astrophysics Data System (ADS)

    Dethlefsen, Rolf; McNab, Ian; Dobbie, Clyde; Bernhardt, Tom; Puterbaugh, Robert; Levine, Frank; Coradeschi, Tom; Rinaldi, Vito

    1993-01-01

    Crowbar diodes are used for increasing the energy transfer from capacitive pulse forming networks. They also prevent voltage reversal on the energy storage capacitors. 52 mm diameter diodes with a 5 kV reverse blocking voltage, rated 40 kA were successfully used for the 32 MJ SSG rail gun. An uprated diode with increased current capability and a 15 kV reverse blocking voltage has been developed. Transient thermal analysis has predicted the current ratings for different pulse length. Analysis verification is obtained from destructive testing.

  19. Long-Lifetime Laser Materials For Effective Diode Pumping

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1991-01-01

    Long quantum lifetimes reduce number of diodes required to pump. Pumping by laser diodes demonstrated with such common Nd laser materials as neodymium:yttrium aluminum garnet (Nd:YAG) and Nd:YLiF4, but such materials as Nd:LaF3, Nd:NaF.9YF3, and possibly Nd:YF3 more useful because of long lifetimes of their upper laser energy levels. Cost effectiveness primary advantage of solid-state laser materials having longer upper-laser-level lifetimes. Because cost of diodes outweighs cost of laser material by perhaps two orders of magnitude, cost reduced significantly.

  20. Schottky diode silicon liquid-crystal light valve

    NASA Astrophysics Data System (ADS)

    Sayyah, Keyvan; Efron, Uzi; Forber, Richard A.; Goodwin, Norman W.; Reif, Philip G.

    1991-06-01

    The authors report the operation of the Hughes Schottky diode-based silicon liquid crystal light valve (SLV) using readout light in the visible region. Limiting resolutions of 28 lp/mm limited by the Schottky diode periodicity, contrast ratios of >100:1, visible input light sensitivities of better than 50 (mu) W/cm2, and response times as fast as 5 ms have been measured. Both standard twisted nematic and homeotropically-aligned liquid crystal configurations have been utilized. The main parameter of this device is the leakage current of the Schottky diodes.

  1. Diode laser welding of high yield steel

    NASA Astrophysics Data System (ADS)

    Lisiecki, Aleksander

    2013-01-01

    The following article describes results of investigations on influence of laser welding parameters on the weld shape, quality and mechanical properties of 2.5 mm thick butt joints of thermo-mechanically rolled, high yield strength steel for cold forming S420MC (according to EN 10149 - 3 and 060XLK according to ASTM) welded with high power diode laser HPDL ROFIN SINAR DL 020 with rectangular laser beam spot and 2.2 kW output power, and 808 nm wavelength. The investigations at the initial stage were focused on detailed analysis of influence of the basic laser welding parameters such as laser power and welding speed on the shape and quality of single bead produced during bead-on-plate welding. Then the optimal parameters were chosen for laser welding of 2.5 mm thick butt joints of the thermo-mechanically rolled, high yield strength steel sheets for cold forming S420MC. The test joints were prepared as single square groove and one-side laser welded without an additional material, at a flat position. Edges of steel sheets were melted in argon atmosphere by the laser beam focused on the top joint surface. The test welded joints were investigated by visual inspection, metallographic examinations, mechanical tests such as tensile tests and bending tests. It was found that the high power diode laser may be applied successfully for one-side welding of the S420MC steel butt joints. Additionally it was found that in the optimal range of laser welding parameters the high quality joint were produced.

  2. High Intensity Organic Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  3. Realization of high performance random laser diodes

    NASA Astrophysics Data System (ADS)

    Yu, S. F.

    2011-03-01

    For the past four decades, extensive studies have been concentrated on the understanding of the physics of random lasing phenomena in scattering media with optical gain. Although lasing modes can be excited from the mirrorless scattering media, the characteristics of high scattering loss, multiple-direction emission, as well as multiple-mode oscillation prohibited them to be used as practical laser cavities. Furthermore, due to the difficulty of achieving high optical gain under electrical excitation, electrical excitation of random lasing action was seldom reported. Hence, mirrorless random cavities have never been used to realize lasers for practical applications -- CD, DVD, pico-projector, etc. Nowadays, studies of random lasing are still limited to the scientific research. Recently, the difficulty of achieving `battery driven' random laser diodes has been overcome by using nano-structured ZnO as the random medium and the careful design of heterojunctions. This lead to the first demonstration of room-temperature electrically pumped random lasing action under continuity wave and pulsed operation. In this presentation, we proposed to realize an array of quasi-one dimensional ZnO random laser diodes. We can show that if the laser array can be manipulated in a way such that every individual random laser can be coupled laterally to and locked with a particular phase relationship to its adjacent neighbor, the laser array can obtain coherent addition of random modes. Hence, output power can be multiplied and one lasing mode will only be supported due to the repulsion characteristics of random modes. This work was supported by HK PolyU grant no. 1-ZV6X.

  4. Means for phase locking the outputs of a surface emitting laser diode array

    NASA Technical Reports Server (NTRS)

    Lesh, James R. (Inventor)

    1987-01-01

    An array of diode lasers, either a two-dimensional array of surface emitting lasers, or a linear array of stripe lasers, is phase locked by a diode laser through a hologram which focuses the output of the diode laser into a set of distinct, spatially separated beams, each one focused onto the back facet of a separate diode laser of the array. The outputs of the diode lasers thus form an emitted coherent beam out of the front of the array.

  5. Organic light-emitting diodes: High-throughput virtual screening

    NASA Astrophysics Data System (ADS)

    Hirata, Shuzo; Shizu, Katsuyuki

    2016-10-01

    Computer networks, trained with data from delayed-fluorescence materials that have been successfully used in organic light-emitting diodes, facilitate the high-speed prediction of good emitters for display and lighting applications.

  6. A Direct Reading Thermometer Based on a Silicon Diode.

    ERIC Educational Resources Information Center

    Kirkup, L.; Tonthat, C.

    1998-01-01

    Describes a simple circuit based on an inexpensive quad operational amplifier that permits a direct-reading temperature instrument to be constructed using silicon diodes. Encourages the use of this equipment in introductory thermal experiments. (DDR)

  7. Diode-quad bridge for reactive transducers and FM discriminators

    NASA Technical Reports Server (NTRS)

    Harrison, D. R.; Dimeff, J.

    1972-01-01

    Diode-quad bridge circuit was developed for use with pressure-sensitive capacitive transducers, liquid-level measuring devices, proximity deflection sensors, and inductive displacement sensors. It may also be used as FM discriminator and as universal impedance bridge.

  8. Fault protection of broad-area laser diodes

    NASA Astrophysics Data System (ADS)

    Jacob, J. H.; Petr, R.; Jaspan, M. A.; Swartz, S. D.; Knapczyk, M. T.; Flusberg, A. M.; Chin, A. K.; Smilanski, I.

    2009-02-01

    Detailed reliability studies of high-power, CW, broad-area, GaAs-based laser- diodes were performed. Optical and electrical transients occurring prior to device failure by catastrophic optical-damage (COD) were observed. These transients were correlated with COD formation as observed in laser diodes with an optical window in the n-side electrode. In addition, custom electronics were designed to fault-protect the laser diodes during aging tests, i.e. each time a transient (fault) was detected, the operating current was temporarily cut off within 4μs of fault detection. The lifetime of fault-protected 808-nm laser-diode bars operated at a constant current of 120A (~130W) and 35°C exceeded similar unprotected devices by factors of 2.

  9. Femtosecond soliton diode on heterojunction Bragg-grating structure

    NASA Astrophysics Data System (ADS)

    Deng, Zhigui; Lin, Haolin; Li, Hongji; Fu, Shenhe; Liu, Yikun; Xiang, Ying; Li, Yongyao

    2016-09-01

    We numerically propose a scheme for realizing an all-optical femtosecond soliton diode based on a tailored heterojunction Bragg grating, which is designed by two spatially asymmetric chirped cholesteric liquid crystals. Our simulations demonstrate that with the consideration of optical nonlinearity, not only the femtosecond diode effect with nonreciprocal transmission ratio up to 120 can be achieved but also the optical pulse evolving into soliton which maintains its shape during propagation through the sample is observed. Further, the influence of pulse width and the carrier wavelength to the femtosecond diode effect is also discussed in detail. Our demonstrations might suggest a direction for experimentally realizing the femtosecond soliton diode based on the cholesteric liquid crystals.

  10. Tunnel diode circuit used as nanosecond-range time marker

    NASA Technical Reports Server (NTRS)

    Larsen, R. N.; Shear, E. B.

    1968-01-01

    Simple tunnel diode time marker circuit determines the time at which an event occurs in a scintillation crystal. It is capable of triggering at voltages as low as the noise level of a 10-stage PM tube.

  11. Extended-cavity diode lasers with tracked resonances

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Long, Quan; Vo, Christoph; Müller, Holger; Chu, Steven

    2007-11-01

    We present a painless, almost-free upgrade to present extended-cavity diode lasers (ECDLs) that improves the long-term mode-hop-free performance by stabilizing the resonance of the internal cavity to the external cavity. This stabilization is based on the observation that the frequency or amplitude noise of the ECDL is lowest at the optimum laser diode temperature or injection current. Thus, keeping the diode current at the level where the noise is lowest ensures mode-hop-free operation within one of the stable regions of the mode chart, even if these should drift due to external influences. This method can be applied directly to existing laser systems without modifying the optical setup. We demonstrate the method in two ECDLs stabilized to vapor cells at 852 and 895 nm wavelengths. We achieve long-term mode-hop-free operation and low noise at low power consumption, even with an inexpensive non-antireflection-coated diode.

  12. Development of reliability prediction technique for semiconductor diodes

    NASA Technical Reports Server (NTRS)

    Ryerson, C. M.

    1967-01-01

    New fundamental technique of reliability prediction for semiconductor diodes based on realistic mathematical models can be applied to component failure rate prediction including mechanical degradation, electrical degradation, environmental stress factors, and electrical load stress factors.

  13. Determining Planck's Constant Using a Light-emitting Diode.

    ERIC Educational Resources Information Center

    Sievers, Dennis; Wilson, Alan

    1989-01-01

    Describes a method for making a simple, inexpensive apparatus which can be used to determine Planck's constant. Provides illustrations of a circuit diagram using one or more light-emitting diodes and a BASIC computer program for simplifying calculations. (RT)

  14. Active stabilization of a diode laser injection lock.

    PubMed

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  15. Active graphene-silicon hybrid diode for terahertz waves.

    PubMed

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  16. Active stabilization of a diode laser injection lock

    NASA Astrophysics Data System (ADS)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  17. Analysis and Optimization of "Full-Length" Diodes

    SciTech Connect

    Schock, Alfred

    2012-01-19

    A method of analyzing the axial variation of the heat generation rate, temperature, voltage, current density and emitter heat flux in a thermionic converter is described. The method is particularly useful for the case of "long" diodes, each extending over the full length of the reactor core. For a given diode geometry and fuel distribution, the analysis combines a nuclear solution of the axial fission density profile with the iterative solution of four differential equations representing the thermal, electrical, and thermionic interactions within the diode. The digital computer program developed to solve these equations can also perform a design optimization with respect to lead resistance, load voltage, and emitter thickness, for a specified maximum emitter temperature. Typical results are presented, and the use of this analysis for predicting the diode operating characteristics is illustrated.

  18. High efficiency >26 W diode end-pumped Alexandrite laser.

    PubMed

    Teppitaksak, Achaya; Minassian, Ara; Thomas, Gabrielle M; Damzen, Michael J

    2014-06-30

    We show for the first time that multi-ten Watt operation of an Alexandrite laser can be achieved with direct red diode-pumping and with high efficiency. An investigation of diode end-pumped Alexandrite rod lasers demonstrates continuous-wave output power in excess of 26W, more than an order of magnitude higher than previous diode end-pumping systems, and slope efficiency 49%, the highest reported for a diode-pumped Alexandrite laser. Wavelength tuning from 730 to 792nm is demonstrated using self-seeding feedback from an external grating. Q-switched laser operation based on polarization-switching to a lower gain axis of Alexandrite has produced ~mJ-pulse energy at 1kHz pulse rate in fundamental TEM(00) mode.

  19. Narrowband alexandrite laser injection seeded with frequency dithered diode laser

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary; Lee, H. S.; Prasad, Coorg

    1991-01-01

    Narrowband radiation is produced from a pulsed alexandrite laser when injection seeded with the output of a low power, tunable, continuous wave single mode diode laser. Injection seeded power oscillators are easier to frequency stabilize than etalon narrowed lasers, are more efficient and less prone to optical damage. AlGaAs diode lasers are available with wavelengths from 760 to 770 nm in the oxygen A band that can be used for differential absorption lidar remote sensing of atmospheric pressure and temperature. Diodes with room temperature output at 740 nm may be cooled sufficiently to emit in the water vapor absorption band at 720-730 nm for humidity remote sensing. The diode laser linewidth of 200 MHz is sufficient to seed 2 or 3 longitudinal modes of the multi-transverse mode alexandrite laser, giving the pulsed laser a bandwidth of 0.007 to 0.014/cm.

  20. Theoretical studies on ionospheric irregularities and ion diode performance

    NASA Astrophysics Data System (ADS)

    Sudan, R. N.

    1993-08-01

    Work accomplished is divided into three parts: ionospheric physics; ion diodes, magnetic insulation, and plasma opening switches; and subgrid modeling in numerical computations and other research. Abstracts of published and conference papers are presented.

  1. Nanofluidic ionic diodes. Comparison of analytical and numerical solutions.

    PubMed

    Vlassiouk, Ivan; Smirnov, Sergei; Siwy, Zuzanna

    2008-08-01

    Recently reported experimental and theoretical studies of nanofluidic nonlinear devices, such as bipolar and unipolar ionic diodes, have yet to answer the question about the possibility of their further miniaturization. In this Article, we theoretically investigate the effects of size reduction, applied bias, and solution ionic strength in such devices. We compare the numerical solutions of the Poisson, Nernst-Planck (PNP), and Navier-Stokes (NS) equations with their one-dimensional, analytical approximations. We demonstrate that the contribution of electroosmosis is insignificant and find analytical approximations to PNP for bipolar and unipolar diodes that are in good agreement with numerical 3D solutions. We identify the minimal dimensions for such diodes that demonstrate ion current rectification behavior and demonstrate the importance of the edge effect in very short diodes.

  2. Laser diodes for sensing applications: adaptive cruise control and more

    NASA Astrophysics Data System (ADS)

    Heerlein, Joerg; Morgott, Stefan; Ferstl, Christian

    2005-02-01

    Adaptive Cruise Controls (ACC) and pre-crash sensors require an intelligent eye which can recognize traffic situations and deliver a 3-dimensional view. Both microwave RADAR and "Light RADAR" (LIDAR) systems are well suited as sensors. In order to utilize the advantages of LIDARs -- such as lower cost, simpler assembly and high reliability -- the key component, the laser diode, is of primary importance. Here, we present laser diodes which meet the requirements of the automotive industry.

  3. Diode-pumped continuous-wave Nd:glass laser

    NASA Technical Reports Server (NTRS)

    Kozlovsky, W. J.; Fan, T. Y.; Byer, R. L.

    1986-01-01

    The paper reports on diode-laser pumping of monolithic Nd:glass laser oscillators. End pumping with a single-stripe diode laser, a threshold of 2.2 mW, and a slope efficiency of 42 percent were observed on a 2-mm-long oscillator with a mode radius of 35 microns. The oscillator generated 2.5 mW of single-ended output power in many axial modes.

  4. Stacked, filtered multi-channel X-ray diode array

    NASA Astrophysics Data System (ADS)

    MacNeil, L. P.; Dutra, E. C.; Compton, S. M.; Jacoby, B. A.; Raphaelian, M. L.

    2015-08-01

    There are many types of X-ray diodes that are used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need arose for a low cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. We fielded individual and stacked systems at several national facilities as ancillary `ride-along' diagnostics to test and improve the design usability. We present the MiniXRD system performance which supports consideration as a viable low-cost alternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  5. Electrical Characteristics of Self-Biased Channel Diode

    NASA Astrophysics Data System (ADS)

    Sugawara, Fumihiko; Yoshida, Tatsuya; Hoshi, Hideaki; Yamaguchi, Hideo; Ohnuma, Koichi

    A new low-loss diode, a self-biased channel diode, is described. In order to achieve a two-terminal operation by using a self-bias, the shunt electrode of the source and gate of the conventional DMOSFET with a floating body is adopted in this diode. By utilizing a DMOSFET, this proposed diode attains a high breakdown voltage compared with a lateral MOSFET. In this device, forward conduction is caused by the self-gate bias created by applying a positive voltage to the shunt electrode of the source and gate with respect to the drain. The direction of forward conduction is opposite to that of forward conduction in a conventional DMOSFET. In the reverse-bias state, the reverse current is very small without any bias owing to the shunt of the source and the gate electrode. In this report, the operational mechanism and electrical characteristics of the device fabricated for the proposed diode are discussed. From the experimental results, it is clear that at room temperature, the on-state voltage of the proposed diode is between that of the Ti-SBD and Cr-SBD. The simulated I-V characteristics are consistent with the measured values. From the simulation results, the proposed diode, in which a thin gate oxide layer and a high integration density of the DMOSFET cell are used, shows lower power loss in the temperature range 25-75°C than does the Cr-SBD. At high temperatures the power loss in the proposed diode is lower than that observed in the Ti-SBD and Cr-SBD which easily fall into thermal runaway.

  6. Avalanche-diode oscillator circuit with tuning at multiple frequencies

    NASA Technical Reports Server (NTRS)

    Parker, D.; Ablow, C. M.; Lee, R. E.; Karp, A.; Chambers, D. R.

    1971-01-01

    Detailed theoretical analysis of three different modes or types of high efficiency oscillation in a PIN diode are presented. For the TRAPATT mode in a PIN diode, it is shown that a traveling avalanche zone is not necessary to generate a dense trapped plasma. An economical computer program for TRAPATT oscillations in a PIN diode is described. Typical results of diode power, dc-to-RF conversion efficiency, and required circuit impedances are presented for several different current waveforms. A semianalytical solution for a second type of high efficiency mode in a PIN diode is derived assuming a rectangular current waveform. A quasi-static approximation is employed to derive a semianalytical solution for the voltage across a PIN diode in a third mode, where avalanching occurs during a major portion of a half cycle. Calculations for this mode indicate that the power increases proportionally to the magnitude of the drive current with a small decrease in efficiency relative to the ordinary TRAPATT mode. An analytical solution is also given for a PIN diode, where it is assumed that the ionization coefficient is a step function. It is shown that the step-ionization approximation permits one to draw possible patterns of avalanche region in the depletion layer as a function of time. A rule governing admissible patterns is derived and an example solution given for one admissible pattern. Preliminary experimental results on the high-efficiency oscillations are presented and discussed. Two different experimental circuits, which used channel-dropping filters to provide independent harmonic tuning, are described. Simpler circuits used to produce high-efficiency oscillations are discussed. Results of experiments using inexpensive Fairchild FD300 diodes are given.

  7. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  8. Antimonide-based pN Terahertz Mixer Diodes

    DTIC Science & Technology

    2011-06-01

    are under development including the InAs channel high electron mobility transistors , the heterojunction bipolar transistors , the resonant tunneling...used to make high frequency mixer diodes. This article describes several features of the InGaSb/InAlAsSb pN diode that act to minimize the diffusion...for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

  9. Athermal diode-pumped laser designator modules for targeting application

    NASA Astrophysics Data System (ADS)

    Crepy, B.; Closse, G.; Da Cruz, J.; Sabourdy, D.; Montagne, J.; Nguyen, L.

    2012-10-01

    We report on the development and characteristics of athermal diode-pumped designator modules as Original Equipment Manufacturer (OEM) for targeting application. These modules are designed with the latest diode-pumped technology minimizing volume and power consumption. The core technology allows to address multi-platforms requirements such as land or airborne. Products are composed of a Laser Transmitter Unit (LTU) and Laser Electronic Unit (LEU) for modular approach.

  10. Stacked, filtered multi-channel X-ray diode array

    SciTech Connect

    MacNeil, Lawrence; Dutra, Eric; Raphaelian, Mark; Compton, Steve; Jacoby, Barry

    2015-08-01

    There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  11. Repetitive Operation of an Inductively Driven Electron-Beam Diode.

    DTIC Science & Technology

    1982-01-11

    magnetic field has been used to suppress partly plasma effects, e.g., as done in foiless diodes. 10󈧏 Such plasma formation during and after beam... cross section, the vaporization velocity, the material from which it is made and the medium surrounding the wire. 13- 16 To obtain the maximum peak...discharge current. The diode current flow duration is controlled by the cross section of this fuse (Table I). Table : Dependance of current flow

  12. Diffraction Limited 3.15 Microns Cascade Diode Lasers

    DTIC Science & Technology

    2014-06-01

    carriers recycling by the cascade pumping . The narrow ridge 6- m-wide waveguides were defined by inductively coupled plasma (ICP) reactive ion etching...diffraction limited, diode lasers, cascade pumping REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S...of GaSb-based type-I QW diode lasers by utilizing cascade pumping scheme4. The carriers were recycled with 100% efficiency between two gain stages

  13. Fundamental Studies of Jumping-Drop Thermal Diodes

    DTIC Science & Technology

    2016-02-29

    14. ABSTRACT In this exploratory project, the performance of the planar jumping-drop thermal diode was studied after freeze-thaw cycles . The thermal...superhydrophilic surface were verified to survive a freeze-thaw cycle . However, the flat gasket for vacuum seal introduced leakage of noncondensable gases after...a freeze-thaw cycle . With a modified gasket design, the jumping-drop thermal diode should be suitable for freeze-thaw conditions. 15. SUBJECT

  14. Modular package for cooling a laser diode array

    DOEpatents

    Mundinger, David C.; Benett, William J.; Beach, Raymond J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar packages and active cooling. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar package having the laser diode bar located proximate to one edge. In an array, a number of such thin planar packages are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink that is attached proximate to the laser bar so that it absorbs heat generated by laser operation. To provide the coolant to the microchannels, each thin planar package comprises a thin inlet manifold and a thin outlet manifold connected to an inlet corridor and an outlet corridor. The inlet corridor comprises a hole extending through each of the packages in the array, and the outlet corridor comprises a hole extending through each of the packages in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has application as an optical pump for high power solid state lasers. Further, it can be incorporated in equipment such as communications devices and active sensors, and in military and space applications, and it can be useful in applications having space constraints and energy limitations.

  15. Transition metal dichalcogenide heterojunction PN diode toward ultimate photovoltaic benefits

    NASA Astrophysics Data System (ADS)

    Ahn, Jongtae; Jeon, Pyo Jin; Raza, Syed Raza Ali; Pezeshki, Atiye; Min, Sung-Wook; Hwang, Do Kyung; Im, Seongil

    2016-12-01

    Recently, two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors as van der Waals (vdW) materials have attracted much attention from researchers. Among many 2D TMDC materials, a few layer-thin molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) have been most intensively studied respectively as 2D n- and p-type semiconductors. Here, we have fabricated vertical vdW heterojunction n-MoS2/p-WSe2 diode with a few tens nm-thick layers by using vertically-sandwiched ohmic terminals, so that no quasi neutral region may exist between two terminals. As a result, we obtained high photo responsivity at zero volt without any electric power, and it appears comparable to those of commercially-optimized Si PN diode. Photo-voltage output of 0.3 V was easily obtained from our vdW PN diode as open circuit voltage, and can be doubled up to 0.6 V by using two PN diodes. These beneficial photovoltaic results from vdW PN diode were directly applied to PV switching dynamics and transistor photo gating, for the first time. We regard that our vdW n-MoS2/p-WSe2 heterojunction diode could maximize its photovoltaic energy benefits with optimized TMDC thicknesses.

  16. Coherent and noncoherent low-power diodes in clinical practice

    NASA Astrophysics Data System (ADS)

    Antipa, Ciprian; Pascu, Mihail-Lucian; Stanciulescu, Viorica; Vlaiculescu, Mihaela; Ionescu, Elena; Bordea, Daniel

    1997-05-01

    Clinical efficacy of the low power laser (LPL) in medical treatments is still not well established. In a double blind, placebo controlled study, we tried to find out first which type of LPL is more efficient, and second if coherence is an important character for clinical efficacy. We treated 1228 patients having different rheumatic diseases, with low power diode, used as follows: A group: IR coherent diode, continuous emission, 3 mW power; B group: IR coherent diode, pulsed emission, output power about 3 mW; C group: IR noncoherent diode continuous emission 9 mW power; D group: both IR diode lasers (continuous or pulsed) and HeNe laser, continuous emission, 2 mW power; E group: placebo laser as control group. The energy dose used for every group was the same, as well as the clinical protocols. The positive results were: 66.16% for A group; 64.06% for B group; 48.87% for C group; 76.66% for D group, and 39.07% for E group. Finally, we showed that LPL is really efficient in the treatment of some rheumatic diseases, especially when red and IR diode laser were used in combination. The type of emission (continuous or pulsed) is not important, but coherence is obviously necessary for clinical efficacy.

  17. Clinical comparison between the bleaching efficacy of light-emitting diode and diode laser with sodium perborate.

    PubMed

    Koçak, Sibel; Koçak, Mustafa Murat; Sağlam, Baran Can

    2014-04-01

    The aim of this clinical study was to test the efficacy of a light-emitting diode (LED) light and a diode laser, when bleaching with sodium perborate. Thirty volunteers were selected to participate in the study. The patients were randomly divided into two groups. The initial colour of each tooth to be bleached was quantified with a spectrophotometer. In group A, sodium perborate and distilled water were mixed and placed into the pulp chamber, and the LED light was source applied. In group B, the same mixture was used, and the 810 nm diode laser was applied. The final colour of each tooth was quantified with the same spectrophotometer. Initial and final spectrophotometer values were recorded. Mann-Whitney U-test and Wicoxon tests were used to test differences between both groups. Both devices successfully whitened the teeth. No statistical difference was found between the efficacy of the LED light and the diode laser.

  18. Adaptation of ASTERIX to Positive Polarity for 2 to 4-MV Rod-Pinch Diode Experiments and Diode Electrical Analysis

    DTIC Science & Technology

    2001-06-01

    switch was a 210-mm long, 130-mm diameter cylinder of high-density polyethylene that operated by surface flashover . It was inserted into the 150...necessary to eliminate pre-pulse with a vacuum pre-pulse switch to achieve the desired diode behavior. To evaluate the diode physics, the current...pre-pulse switch , a stacked-ring insulator separating oil from vacuum , and a 114-Ω vacuum coaxial output section, which normally terminates at a

  19. Implementation of an in vivo diode dosimetry program and changes in diode characteristics over a 4-year clinical history.

    PubMed

    Jursinic, P A

    2001-08-01

    An in vivo dosimetry system that used n-type semiconductor diodes with integral build-up caps was introduced into the clinic. Measurements were made on the entrance surface of the patient and were compared to calculated diode readings expected from monitor units delivered by each beam. A method is given for calibration and correction for changes in diode sensitivity, dose-per-pulse effects, collimated field-size (head-scatter factor), wedges, compensators, and scatter from blocks and block trays. Clinically relevant temperature corrections are determined based on temperature measurements made with the diode used as a thermistor. Changes in diode characteristics over 4 years of clinical use are presented. With proper correction for clinical variables it is shown that difference between calculated and measured diode readings are within +/- 1% for phantom measurements and within +/- 3% for clinical measurements at a 95% confidence level. The correlation of dose measurements on the patient surface to dose inside a target volume is discussed.

  20. Diode-pumped microlasers for display applications

    NASA Astrophysics Data System (ADS)

    Hargis, David E.; Bergstedt, Robert; Earman, Allen M.; Gullicksen, Paul; Hurtado, Randy; Minich, Arthur P.; Nelte, Sven E.; Ornelas, David P.; Pessot, Maurice A.; Takeuchi, Eric B.; Vivian, Bill D.; Zarrabi, Joseph H.

    1998-05-01

    Laser displays have been investigated by engineers and scientists since shortly after the invention of the laser. The majority of these systems have been based on gas lasers or lamp-pumped solid-state lasers which are expensive, large in size, and require significant cooling systems. Due to these negative attributes, laser displays have been limited to applications which are not sensitive to size or cost. Recent advances in compact, air-cooled, diode-pumped, solid-state, visible microlasers have enabled the development of portable laser displays. Lasers are under development for both 'backlit' displays, where the lasers replace arc-lamps in an LCD/DMD projector, and 'direct-write' displays, where the image is formed by directly modulating and scanning the laser beam. Compact, multi-watt RGB laser modules have been demonstrated for use as 'light engines' in projection displays generating greater than 500 ANSI lumens. Advantages of microlaser-based displays include large color gamut, color accuracy, image uniformity, high resolution, large depth of focus, and low maintenance due to the long lifetime (greater than 10,000 hours) of the lasers. These advantages make them attractive for near term applications such as simulators, command and control centers, high end CAD workstation monitors, and longer term applications such as electronic cinema.

  1. Experimental Demonstration of a Thermoacoustic Diode

    NASA Astrophysics Data System (ADS)

    Biwa, Tetsushi; Nakamura, Hiroki; Hyodo, Hiroaki

    2016-06-01

    When an acoustic wave passes through short narrow channels in a regenerator having an axial temperature difference, the acoustic power is amplified for the waves going from cold to hot, whereas it is damped for the waves going in the opposite direction. This study applies such asymmetric wave propagation to demonstrate a thermoacoustic diode, which plays the role of the acoustic counterpart to an optical isolator. Four regenerators having the same longitudinal temperature difference are aligned in series to make four-stage amplification and damping of the acoustic power possible. This alignment leads to the enlarged difference between the acoustic power gains in the forward and backward propagation directions, even with a moderate temperature difference. Furthermore, by introducing the acoustical impedance-matching unit, the power-reflection coefficient is kept as low as 0.017 in forward propagation. The results show that the power-transmission coefficients in the forward and backward directions, respectively, reach 0.98 and 0.023, which means that the power-transmission ratio is 16 dB.

  2. Aggregation in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Meyer, Abigail

    Organic light emitting diode (OLED) technology has great potential for becoming a solid state lighting source. However, there are inefficiencies in OLED devices that need to be understood. Since these inefficiencies occur on a nanometer scale there is a need for structural data on this length scale in three dimensions which has been unattainable until now. Local Electron Atom Probe (LEAP), a specific implementation of Atom Probe Tomography (APT), is used in this work to acquire morphology data in three dimensions on a nanometer scale with much better chemical resolution than is previously seen. Before analyzing LEAP data, simulations were used to investigate how detector efficiency, sample size and cluster size affect data analysis which is done using radial distribution functions (RDFs). Data is reconstructed using the LEAP software which provides mass and position data. Two samples were then analyzed, 3% DCM2 in C60 and 2% DCM2 in Alq3. Analysis of both samples indicated little to no clustering was present in this system.

  3. MMIC Replacement for Gunn Diode Oscillators

    NASA Technical Reports Server (NTRS)

    Crowe, Thomas W.; Porterfield, David

    2011-01-01

    An all-solid-state replacement for high-frequency Gunn diode oscillators (GDOs) has been proposed for use in NASA s millimeter- and submillimeter-wave sensing instruments. Highly developed microwave oscillators are used to achieve a low-noise and highly stable reference signal in the 10-40-GHz band. Compact amplifiers and high-power frequency multipliers extend the signal to the 100-500-GHz band with minimal added phase noise and output power sufficient for NASA missions. This technology can achieve improved output power and frequency agility, while maintaining phase noise and stability comparable to other GDOs. Additional developments of the technology include: a frequency quadrupler to 145 GHz with 18 percent efficiency and 15 percent fixed tuned bandwidth; frequency doublers featuring 124, 240, and 480 GHz; an integrated 874-GHz subharmonic mixer with a mixer noise temperature of 3,000 K DSB (double sideband) and mixer conversion loss of 11.8 dB DSB; a high-efficiency frequency tripler design with peak output power of 23 mW and 14 mW, and efficiency of 16 and 13 percent, respectively; millimeter-wave integrated circuit (MMIC) power amplifiers to the 30-40 GHz band with high DC power efficiency; and an 874-GHz radiometer suitable for airborne observation with state-of-the-art sensitivity at room temperature and less than 5 W of total power consumption.

  4. Biologically Inspired Organic Light-Emitting Diodes.

    PubMed

    Kim, Jae-Jun; Lee, Jaeho; Yang, Sung-Pyo; Kim, Ha Gon; Kweon, Hee-Seok; Yoo, Seunghyup; Jeong, Ki-Hun

    2016-05-11

    Many animal species employ highly conspicuous traits as courtship signals for successful mating. Fireflies utilize their bioluminescent light as visual courtship signals. In addition to efficient bioluminescent light emission, the structural components of the firefly lantern also contribute to the enhancement of conspicuous optical signaling. Recently, these firefly lantern ultrastructures have attracted much interest and inspired highly efficient light management approaches. Here we report on the unique optical function of the hierarchical ultrastructures found in a firefly (Pyrocoelia rufa) and their biological inspiration of highly efficient organic light-emitting diode (OLED) applications. The hierarchical structures are comprised of longitudinal nanostructures and asymmetric microstructures, which were successfully replicated using geometry-guided resist reflow, replica molding, and polydimethylsiloxane (PDMS) oxidation. The external quantum efficiency (EQE) of the bioinspired OLEDs was enhanced by up to 61%. The bioinspired OLEDs clearly showed side-enhanced super-Lambertian emission with a wide-viewing angle. The highly efficient light extraction and wide-angle illumination suggest how the hierarchical structures likely improve the recognition of firefly optical courtship signals over a wide-angle range. At the same time, the biologically inspired designs provide a new paradigm for designing functional optical surfaces for lighting or display applications.

  5. Dead Time of Single Photon Avalanche Diodes

    NASA Astrophysics Data System (ADS)

    Neri, L.; Tudisco, S.; Musumeci, F.; Scordino, A.; Fallica, G.; Mazzillo, M.; Zimbone, M.

    2011-06-01

    Single Photon Avalanche Diode (SPAD) is the new generation of Geiger-Muller counter device developed in semiconductor technology [S. Privitera et al. Sensors Journal, vol 8 Iss. 8 (2008) 4636; S. Tudisco et al. IEEE Sensors Journal vol 8 ISS 7-8 (2008) 1324; S. Cova et al. Applied Optics 35 (1996) 1956]. Physical dead time model and noise production process has been analyzed and their corrections have been performed [S.H. Lee, R.P. Gardner, M. Jae, Nucl. Instr. and Meth. in Phys. Res. B 263 (2007) 46]. We have been able to extract the real amount of incident photon rate up to 10 7cps using a device with 0.97μs total deadtime. We also developed the equation of the noise count rate vs incoming photon rate, supported by Montecarlo simulation and experimental data. We marked the difference between dark rate and noise count rate, and introduced the noise rate inside the hybrid deadtime equation used for SPAD device.

  6. Charge carrier thermalization in organic diodes

    PubMed Central

    van der Kaap, N. J.; Koster, L. J. A.

    2016-01-01

    Charge carrier mobilities of organic semiconductors are often characterized using steady-state measurements of space charge limited diodes. These measurements assume that charge carriers are in a steady-state equilibrium. In reality, however, energetically hot carriers are introduces by photo-excitation and injection into highly energetic sites from the electrodes. These carriers perturb the equilibrium density of occupied states, and therefore change the overall charge transport properties. In this paper, we look into the effect of energetically hot carriers on the charge transport in organic semiconductors using steady state kinetic Monte Carlo simulations. For injected hot carriers in a typical organic semiconductor, rapid energetic relaxation occurs in the order of tens of nanoseconds, which is much faster than the typical transit time of a charge carrier throught the device. Furthermore, we investigate the impact of photo-generated carriers on the steady-state mobility. For a typical organic voltaic material, an increase in mobility of a factor of 1.1 is found. Therefore, we conclude that the impact of energetically hot carriers on normal device operation is limited. PMID:26791095

  7. Optical communication with semiconductor laser diodes

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1988-01-01

    Slot timing recovery in a direct detection optical PPM communication system can be achieved by processing the photodetector waveform with a nonlinear device whose output forms the input to a phase lock group. The choice of a simple transition detector as the nonlinearity is shown to give satisfactory synchronization performance. The rms phase error of the recovered slot clock and the effect of slot timing jitter on the bit error probability were directly measured. The experimental system consisted of an AlGaAs laser diode (lambda = 834 nm) and a silicon avalanche photodiode (APD) photodetector and used Q=4 PPM signaling operated at a source data rate of 25 megabits/second. The mathematical model developed to characterize system performance is shown to be in good agreement with actual performance measurements. The use of the recovered slot clock in the receiver resulted in no degradation in receiver sensitivity compared to a system with perfect slot timing. The system achieved a bit error probability of 10 to the minus 6 power at received signal energies corresponding to an average of less than 60 detected photons per information bit.

  8. Optical communication with semiconductor laser diodes

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1987-01-01

    A 25 megabit/sec direct detection optical communication system that used Q=4 PPM signalling was constructed and its performance measured under laboratory conditions. The system used a single-mode AlGaAs laser diode transmitter and low noise silicon avalanche photodiode (APD) photodetector. Comparison of measured performance with the theoretical revealed that modeling the APD output as a Gaussian process under conditions of negligible background radiation and low (less than 10 to the -12 power A) APD bulk leakage currents leads to substantial underestimates of optimal APD gain to use and overestimates of system bit error probability. A procedure is given to numerically compute system performance which uses the more accurate Webb's Approximation of the exact Conradi distribution for the APD ouput signal that does not require excessive amounts of computer time (a few minutes of VAX 8600 CPU time per system operating point). Examples are given which illustrate the breakdown of the Gaussian approximation in assessing system performance. This system achieved a bit error probability of 10 to the -6 power at a received signal energy corresponding to an average of 60 absorbed photons/bit and optimal APD gain of 700.

  9. Design of drive circuit of laser diode

    NASA Astrophysics Data System (ADS)

    Ran, Yingying; Huang, Xuegong; Xu, Xiaobin

    2016-10-01

    Aiming at the difficult problem of high precision frequency stabilization of semiconductor laser diode, the laser frequency control is realized through the design of the semiconductor drive system. Above all, the relationship between the emission frequency and the temperature of LD is derived theoretically. Then the temperature corresponding to the stable frequency is obtained. According to the desired temperature stability of LD, temperature control system is designed, which is composed of a temperature setting circuit, temperature gathering circuit, the temperature display circuit, analog PID control circuit and a semiconductor refrigerator control circuit module. By sampling technology, voltage of platinum resistance is acquired, and the converted temperature is display on liquid crystal display. PID analog control circuit controls speed stability and precision of temperature control. The constant current source circuit is designed to provide the reference voltage by a voltage stabilizing chip, which is buffered by an operational amplifier. It is connected with the MOSFET to drive the semiconductor laser to provide stable current for the semiconductor laser. PCB circuit board was finished and the experimental was justified. The experimental results show that: the design of the temperature control system could achieve the goal of temperature monitoring. Meanwhile, temperature can be stabilized at 40°C +/- 0.1°C. The output voltage of the constant current source is 2 V. The current is 35 mA.

  10. Flight demonstration of laser diode initiated ordnance

    NASA Technical Reports Server (NTRS)

    Boucher, Craig J.; Schulze, Norman R.

    1995-01-01

    A program has been initiated by NASA Headquarters to validate laser initiated ordnance in flight applications. The primary program goal is to bring together a team of government and industry members to develop a laser initiated ordnance system having the test and analysis pedigree to be flown on launch vehicles. The culmination of this effort was a flight of the Pegasus launch vehicle which had two fin rockets initiated by this laser system. In addition, a laser initiated ordnance squib was fired into a pressure bomb during thrusting flight. The complete ordnance system comprising a laser diode firing unit, fiber optic cable assembly, laser initiated detonator, and laser initiated squib was designed and built by The Ensign Bickford Company. The hardware was tested to the requirements of the Pegasus launch vehicle and integrated into the vehicle by The Ensign Bickford Company and the Orbital Sciences Corporation. Discussions include initial program concept, contract implementation, team member responsibilities, analysis results, vehicle integration, safing architecture, ordnance interfaces, mission timeline and telemetry data. A complete system description, summary of the analyses, the qualification test results, and the results of flight are included.

  11. Stable diode lasers for hydrogen precision spectroscopy

    NASA Astrophysics Data System (ADS)

    Alnis, J.; Matveev, A.; Kolachevsky, N.; Wilken, T.; Holzwarth, R.; Hänsch, T. W.

    2008-10-01

    We report on an external cavity diode laser at 972 nmstabilized to a mid-plane mounted Fabry-Perot (FP) resonator with afinesse of 400000. The 0.5 Hz optical beat note line width betweentwo similar lasers (Allan deviation 2 × 10-15) is limitedby thermal noise properties of two independent FP resonators. Thelong term drift of the FP resonator and mirror substrates made fromUltra-Low-Expansion glass (ULE) is small and can be well predictedon time intervals up to many hours if the resonator is stabilized atthe zero thermal expansion temperature Tc. Using a Peltierelement in a vacuum chamber for temperature stabilization allowsstabilization of the FP cavity to Tc which is usually below theroom temperature. Beat note measurements with a femtosecond opticalfrequency comb referenced to a H-maser during 15 hours have shown awell defined linear drift of the FP resonance frequency of about 60 mHz/s with residual frequency excursions of less than ±20 Hz.

  12. Thermally enhanced blue light-emitting diode

    NASA Astrophysics Data System (ADS)

    Xue, Jin; Zhao, Yuji; Oh, Sang-Ho; Herrington, William F.; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji; Ram, Rajeev J.

    2015-09-01

    We investigate thermoelectric pumping in wide-bandgap GaN based light-emitting diodes (LEDs) to take advantage of high junction temperature rather than avoiding the problem of temperature-induced efficiency droop through external cooling. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with nearly no reduction in the wall-plug efficiency (i.e., electrical-optical energy conversion efficiency) at bias V <ℏω/q . The LED is shown to work in a mode similar to a thermodynamic heat engine operating with charged carriers pumped into the active region by a combination of electrical work and Peltier heat (phonons) drawn from the lattice. In this optimal operating regime at 615 K, the LED injection current (3.26 A/cm2) is of similar magnitude to the operating point of common high power GaN based LEDs (5-35 A/cm2). This result suggests the possibility of removing bulky heat sinks in current high power LED products thus realizing a significant cost reduction for solid-state lighting.

  13. Respiratory complications after diode-laser-assisted tonsillotomy.

    PubMed

    Fischer, Miloš; Horn, Iris-Susanne; Quante, Mirja; Merkenschlager, Andreas; Schnoor, Jörg; Kaisers, Udo X; Dietz, Andreas; Kluba, Karsten

    2014-08-01

    Children with certain risk factors, such as comorbidities or severe obstructive sleep apnea syndrome (OSAS) are known to require extended postoperative monitoring after adenotonsillectomy. However, there are no recommendations available for diode-laser-assisted tonsillotomy. A retrospective chart review of 96 children who underwent diode-laser-assisted tonsillotomy (07/2011-06/2013) was performed. Data for general and sleep apnea history, power of the applied diode-laser (λ = 940 nm), anesthesia parameters, the presence of postoperative respiratory complications and postoperative healing were evaluated. After initially uncomplicated diode-laser-assisted tonsillotomy, an adjustment of post-anesthesia care was necessary in 16 of 96 patients due to respiratory failure. Respiratory complications were more frequent in younger children (3.1 vs. 4.0 years, p = 0.049, 95 % CI -1.7952 to -0.0048) and in children who suffered from nocturnal apneas (OR = 5.00, p < 0.01, 95 % CI 1.4780-16.9152) or who suffered from relevant comorbidities (OR = 4.84, p < 0.01, 95 % CI 1.5202-15.4091). Moreover, a diode-laser power higher than 13 W could be identified as a risk factor for the occurrence of a postoperative oropharyngeal edema (OR = 3.45, p < 0.01, 95 % CI 1.3924-8.5602). Postoperative respiratory complications should not be underestimated in children with sleep-disordered breathing (SDB). Therefore, children with SDB, children with comorbidities or children younger than 3 years should be considered "at risk" and children with confirmed moderate to severe OSAS should be referred to a PICU following diode-laser-assisted tonsillotomy. We recommend a reduced diode-laser power (<13 W) to reduce oropharyngeal edema.

  14. Applications of microlens-conditioned laser diode arrays

    SciTech Connect

    Beach, R.J.; Emanuel, M.A.; Freitas, B.L.

    1995-01-01

    The ability to condition the radiance of laser diodes using shaped-fiber cylindrical-microlens technology has dramatically increased the number of applications that can be practically engaged by diode laser arrays. Lawrence Livermore National Laboratory (LLNL) has actively pursued optical efficiency and engineering improvements in this technology in an effort to supply large radiance-conditioned laser diode array sources for its own internal programs. This effort has centered on the development of a modular integrated laser diode packaging technology with the goal of enabling the simple and flexible construction of high average power, high density, two-dimensional arrays with integrated cylindrical microlenses. Within LLNL, the principal applications of microlens-conditioned laser diode arrays are as high intensity pump sources for diode pumped solid state lasers (DPSSLs). A simple end-pumping architecture has been developed and demonstrated that allows the radiation from microlens-conditioned, two-dimensional diode array apertures to be efficiently delivered to the end of rod lasers. To date, pump powers as high as 2.5 kW have been delivered to 3 mm diameter laser rods. Such high power levels are critical for pumping solid state lasers in which the terminal laser level is a Stark level lying in the ground state manifold. Previously, such systems have often required operation of the solid state gain medium at low temperature to freeze out the terminal laser Stark level population. The authors recently developed high intensity pump sources overcome this difficulty by effectively pumping to much higher inversion levels, allowing efficient operation at or near room temperature. Because the end-pumping technology is scalable in absolute power, the number of rare-earth ions and transitions that can be effectively accessed for use in practical DPSSL systems has grown tremendously.

  15. Construction of an Extended Cavity Tunable Diode Laser

    NASA Astrophysics Data System (ADS)

    Deveney, Edward; Metcalf, Harold; Noe, John

    2001-03-01

    A diverse and vast amount of experiments at the forefront of experimental physics typically use diode lasers as an integral part of their arrangement. However, researchers who use unmodified commercially available diode lasers run into several complications. The laser diode that is purchased is often not of the same wavelength as is advertised; thus the researcher’s desired wavelength is not met. Because the semiconductor has such a short external cavity, it is very sensitive to the injection current, changes in room temperature, and has a large linewidth making it harder to tune. To obtain a finely tuned diode laser, temperature and current controlling of the diode laser are used in conjunction with an extended semiconductor cavity. This is achieved by mounting the hermetically sealed assembly atop a thermoelectric cooler, which uses the Peltier effect. Furthermore, the variation of the injection current may be used as an additional control for the wavelength output of the diode. The power range of 70 mW as controlled by the injection current adjusts the wavelength by a span of only 4 nanometers. The extended cavity consists of a diffraction grating adhered to a mirror mount and is used for grating feedback. That in turn is used to reduce the linewidth sufficiently enough in order to provide much better tunability. In the next three weeks, the tunable diode laser will be specifically applied to research in the areas of Second Harmonic Generation in a PPLN Crystal and Saturated Rubidium Spectroscopy. This study was supported in part by NSF grant PHY99-12312.

  16. In vivo dosimetry with silicon diodes in total body irradiation

    NASA Astrophysics Data System (ADS)

    Oliveira, F. F.; Amaral, L. L.; Costa, A. M.; Netto, T. G.

    2014-02-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments.

  17. Application of AXUV diode detectors at ASDEX Upgrade

    SciTech Connect

    Bernert, M. Eich, T.; Burckhart, A.; Fuchs, J. C.; Giannone, L.; Kallenbach, A.; McDermott, R. M.; Sieglin, B.

    2014-03-15

    In the ASDEX Upgrade tokamak, a radiation measurement for a wide spectral range, based on semiconductor detectors, with 256 lines of sight and a time resolution of 5μs was recently installed. In combination with the foil based bolometry, it is now possible to estimate the absolutely calibrated radiated power of the plasma on fast timescales. This work introduces this diagnostic based on AXUV (Absolute eXtended UltraViolet) n-on-p diodes made by International Radiation Detectors, Inc. The measurement and the degradation of the diodes in a tokamak environment is shown. Even though the AXUV diodes are developed to have a constant sensitivity for all photon energies (1 eV-8 keV), degradation leads to a photon energy dependence of the sensitivity. The foil bolometry, which is restricted to a time resolution of less than 1 kHz, offers a basis for a time dependent calibration of the diodes. The measurements of the quasi-calibrated diodes are compared with the foil bolometry and found to be accurate on the kHz time scale. Therefore, it is assumed, that the corrected values are also valid for the highest time resolution (200 kHz). With this improved diagnostic setup, the radiation induced by edge localized modes is analyzed on fast timescales.

  18. Overview on new diode lasers for defense applications

    NASA Astrophysics Data System (ADS)

    Neukum, Joerg

    2012-11-01

    Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali Lasers • High Power Diode Lasers in the range < 1.0 μm • Scalable Mini-Bar concept for high brightness fiber coupled modules • The Light Weight Fiber Coupled module based on the Mini-Bar concept Overall, High Power Diode Lasers offer many ways to be used in new applications in the defense market.

  19. Reliability of high power laser diodes with external optical feedback

    NASA Astrophysics Data System (ADS)

    Bonsendorf, Dennis; Schneider, Stephan; Meinschien, Jens; Tomm, Jens W.

    2016-03-01

    Direct diode laser systems gain importance in the fields of material processing and solid-state laser pumping. With increased output power, also the influence of strong optical feedback has to be considered. Uncontrolled optical feedback is known for its spectral and power fluctuation effects, as well as potential emitter damage. We found that even intended feedback by use of volume Bragg gratings (VBG) for spectral stabilization may result in emitter lifetime reduction. To provide stable and reliable laser systems design, guidelines and maximum feedback ratings have to be found. We present a model to estimate the optical feedback power coupled back into the laser diode waveguide. It includes several origins of optical feedback and wide range of optical elements. The failure thresholds of InGaAs and AlGaAs bars have been determined not only at standard operation mode but at various working points. The influence of several feedback levels to laser diode lifetime is investigated up to 4000h. The analysis of the semiconductor itself leads to a better understanding of the degradation process by defect spread. Facet microscopy, LBIC- and electroluminescence measurements deliver detailed information about semiconductor defects before and after aging tests. Laser diode protection systems can monitor optical feedback. With this improved understanding, the emergency shutdown threshold can be set low enough to ensure laser diode reliability but also high enough to provide better machine usability avoiding false alarms.

  20. Diode laser power module for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Choi, S. H.; Williams, M. D.; Lee, J. H.; Conway, E. J.

    1991-01-01

    Recent progress with powerful, efficient, and coherent monolithic diode master-oscillator/power-amplifier (M-MOPA) systems is promising for the development of a space-based diode laser power station. A conceptual design of a 50-kW diode laser power module was made for space-based power stations capable of beaming coherent power to the moon, Martian rovers, or other satellites. The laser diode power module consists of a solar photovoltaic array or nuclear power source, diode laser arrays (LDAs), a phase controller, beam-steering optics, a thermal management unit, and a radiator. Thermal load management and other relevant aspects of the system (such as power requirements and system mass) are considered. The 50-kW power module described includes the highest available efficiency of LD M-MOPA system to date. However, the overall efficiency of three amplifier stages, including the coupling efficiency, turns out to be 55.5 percent. Though a chain of PA stages generates a high-power coherent beam, there is a penalty due to the coupling loss between stages. The specific power of the 50-kW module using solar power is 6.58 W/kg.

  1. Tribotronic Tuning Diode for Active Analog Signal Modulation.

    PubMed

    Zhou, Tao; Yang, Zhi Wei; Pang, Yaokun; Xu, Liang; Zhang, Chi; Wang, Zhong Lin

    2017-01-24

    Realizing active interaction with external environment/stimuli is a great challenge for current electronics. In this paper, a tribotronic tuning diode (TTD) is proposed by coupling a variable capacitance diode and a triboelectric nanogenerator in free-standing sliding mode. When the friction layer is sliding on the device surface for electrification, a reverse bias voltage is created and applied to the diode for tuning the junction capacitance. When the sliding distance increases from 0 to 25 mm, the capacitance of the TTD decreases from about 39 to 8 pF. The proposed TTD has been integrated into analog circuits and exhibited excellent performances in frequency modulation, phase shift, and filtering by sliding a finger. This work has demonstrated tunable diode and active analog signal modulation by tribotronics, which has great potential to replace ordinary variable capacitance diodes in various practical applications such as signal processing, electronic tuning circuits, precise tuning circuits, active sensor networks, electronic communications, remote controls, flexible electronics, etc.

  2. Wavelength-Agile External-Cavity Diode Laser for DWDM

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  3. Millimeter-wave diode-grid frequency doubler

    NASA Technical Reports Server (NTRS)

    Jou, Christina F.; Luhmann, Neville C., Jr.; Lam, Wayne W.; Stolt, Kjell S.; Chen, Howard Z.

    1988-01-01

    Monolithic diode grids were fabricated on 2-cm square gallium-arsenide wafers in a proof-of-principle test of a quasi-optical varactor millimeter-wave frequency multiplier array concept. An equivalent circuit model based on a transmission-line analysis of plane wave illumination was applied to predict the array performance. The doubler experiments were performed under far-field illumination conditions. A second-harmonic conversion efficiency of 9.5 percent and output powers of 0.5 W were achieved at 66 GHz when the diode grid was pumped with a pulsed source at 33 GHz. This grid had 760 Schottky-barrier varactor diodes. The average series resistance was 27 ohms, the minimum capacitance was 18 fF at a reverse breakdown voltage of -3 V. The measurements indicate that the diode grid is a feasible device for generating watt-level powers at millimeter frequencies and that substantial improvement is possible by improving the diode breakdown voltage.

  4. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  5. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  6. 250W diode laser for low pressure Rb vapor pumping

    NASA Astrophysics Data System (ADS)

    Podvyaznyy, A.; Venus, G.; Smirnov, V.; Mokhun, O.; Koulechov, V.; Hostutler, D.; Glebov, L.

    2010-02-01

    The diode pumped alkali vapor lasers operating at subatmospheric pressure require developing of a new generation of high-power laser diode sources with about 10 GHz wide emission spectrum. The latest achievements in the technology of volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass opened new opportunities for the design and fabrication of compact external cavity laser diodes, diode bars and stacks with reflecting VBGs as output couplers. We present a diode laser system providing up to 250 W output power and emission spectral width of 20 pm (FWHM) at the wavelength of 780 nm. The stability and position of an emission wavelength is determined by the resonant wavelength of a VBG which is controlled by temperature. Stability of an emitting wavelength is within 5 pm. Thermal tuning of the wavelength provides maximum overlapping of emitting line with absorption spectrum of a Rb (rubidium)- cell. The designed system consists of 7 modules tuned to the same wavelength corresponding to D2 spectral line of Rb87 or Rb85 and coupled to a single output fiber. Analogous systems could be used for other Rb isotopes spectral lines as well as for lasers based on other alkali metal vapors (Cs and K) or any agents with narrow absorption lines.

  7. Giant Thermal Rectification from Polyethylene Nanofiber Thermal Diodes.

    PubMed

    Zhang, Teng; Luo, Tengfei

    2015-09-01

    The realization of phononic computing is held hostage by the lack of high-performance thermal devices. Here, it is shown through theoretical analysis and molecular dynamics simulations that unprecedented thermal rectification factors (as large as 1.20) can be achieved utilizing the phase-dependent thermal conductivity of polyethylene nanofibers. More importantly, such high thermal rectifications only need very small temperature differences (<20 °C) across the device, which is a significant advantage over other thermal diodes which need temperature biases on the order of the operating temperature. Taking this into consideration, it is shown that the dimensionless temperature-scaled rectification factors of the polymer nanofiber diodes range from 12 to 25-much larger than those of other thermal diodes (<8). The polymer nanofiber thermal diode consists of a crystalline portion whose thermal conductivity is highly phase-sensitive and a cross-linked portion which has a stable phase. Nanoscale size effect can be utilized to tune the phase transition temperature of the crystalline portion, enabling thermal diodes capable of operating at different temperatures. This work will be instrumental to the design of high performance, inexpensive, and easily processible thermal devices, based on which thermal circuits can be built to ultimately enable phononic computing.

  8. Hot electron injector Gunn diode for advanced driver assistance systems

    NASA Astrophysics Data System (ADS)

    Förster, A.; Lepsa, M. I.; Freundt, D.; Stock, J.; Montanari, S.

    2007-06-01

    This paper reviews the main aspects of the design, fabrication and characterization of GaAs Gunn diodes intended to be used in advanced driver assistance systems. The corresponding Gunn diode based oscillators operate at the microwave frequency of 77 GHz and deliver an output power up to 19.2 dBm (83.2 mW). To fulfill the high demands of the automotive industry, temperature stability and a high grade of frequency purity, the Gunn diode structure includes a hot electron injector. This is based on the heteroepitaxy of a graded gap AlxGa1-xAs layer and an adjacent thin highly doped GaAs layer. The hot electron injector properties are investigated using dc and rf electrical measurements, including the temperature influence as well. Specific production related data of the cavity oscillators using our Gunn diodes are presented. New alternatives, such as the resonant tunneling emitter as a hot electron injector and the Gunn diode based MMIC as oscillator, are introduced.

  9. Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.

  10. Plasma-filled applied B ion diode experiments using a plasma opening switch

    SciTech Connect

    Renk, T.J. )

    1994-12-15

    In order for a plasma opening switch (POS) to open quickly and transfer power efficiently from an inductively charged vacuum transmission line to an applied B ion diode, the load impedance of the ion diode may be required to have an initial low impedance phase. A plasma-filled diode has such an impedance history. To test the effect of a plasma-filled diode on POS-diode coupling, a drifting plasma was introduced from the cathode side of an applied B ion diode operated on the LION accelerator (1.5 MV, 4 [Omega], 40 ns) at Cornell University. This plasma readily crossed the 2.1 T magnetic insulation field of the diode, and resulted in both increased diode electrical power, and an increased ability of the ion beam to remove material from a target. The plasma did not appear to have a noticeable effect on local beam steering angle.

  11. Plasma-filled applied B ion diode experiments using a plasma opening switch

    NASA Astrophysics Data System (ADS)

    Renk, T. J.

    1994-12-01

    In order for a plasma opening switch (POS) to open quickly and transfer power efficiently from an inductively charged vacuum transmission line to an applied B ion diode, the load impedance of the ion diode may be required to have an initial low impedance phase. A plasma-filled diode has such an impedance history. To test the effect of a plasma-filled diode on POS-diode coupling, a drifting plasma was introduced from the cathode side of an applied B ion diode operated on the LION accelerator (1.5 MV, 4 Ohm, 40 ns) at Cornell University. This plasma readily crossed the 2.1 T magnetic insulation field of the diode, and resulted in both increased diode electrical power, and an increased ability of the ion beam to remove material from a target. The plasma did not appear to have a noticeable effect on local beam steering angle.

  12. Direct laser diode welding system with anti-reflection unit

    NASA Astrophysics Data System (ADS)

    Nagayasu, Doukei; Wang, Jing-bo

    2003-11-01

    A high power laser diode system for welding is widely known. However, the reliability and the reasonability are required by an industrial market. Reliability, especially lifetime, mainly depends on the temperature of laser diode (LD) and it might be rise if LD would receive reflection from welding point. This paper conducted the measurement of the reflection during welding by applying 1/4 wavelength plate and PBS. Results indicated the reflection during welding was inevitable. We developed a prototype high power laser diode system, which equipped an anti-reflection unit, to improve the reliability. The system traveled 3m/min and its bead width was 1.2 mm for 1.5 mm Al (A5052) under the spot size 2.7 x 0.6 mm FWHM. Additionally, we started to develop fast and slow collimation lenses for LD to realize a reasonale price for system The brief evaluation of fast collimation lenses was also reported.

  13. Development and fabrication of improved Schottky power diodes

    NASA Technical Reports Server (NTRS)

    Cordes, L. F.; Garfinkel, M.; Taft, E. A.

    1975-01-01

    Reproducible methods for the fabrication of silicon Schottky diodes have been developed for tungsten, aluminum, conventional platinum silicide, and low temperature platinum silicide. Barrier heights and barrier lowering under reverse bias have been measured, permitting the accurate prediction of forward and reverse diode characteristics. Processing procedures have been developed that permit the fabrication of large area (about 1 sq cm) mesageometry power Schottky diodes with forward and reverse characteristics that approach theoretical values. A theoretical analysis of the operation of bridge rectifier circuits has been performed, which indicates the ranges of frequency and voltage for which Schottky rectifiers are preferred to p-n junctions. Power Schottky rectifiers have been fabricated and tested for voltage ratings up to 140 volts.

  14. Maximum time-dependent space-charge limited diode currents

    SciTech Connect

    Griswold, M. E.; Fisch, N. J.

    2016-01-15

    Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximum applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.

  15. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode.

    PubMed

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-05-06

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increases quickly with sweeping Vg towards the negative value, while decreases slowly towards the positive Vg. Our results are helpful to understand the fundamental mechanism of the electric transport in graphene-semiconductor Schottky diode.

  16. Practical applications of the diode in dental practice

    NASA Astrophysics Data System (ADS)

    Moldoveanu, Lucia E.; Odor, Alin A.

    2016-03-01

    Introduction: The use of lasers has become a practice in modern periodontology and it is a fact that the use of diodes in the dental office can bring a real benefit in periodontal surgery. Material and method: These case reports describe few of various soft tissue procedures that were performed with diode laser 940 nm (Epic 10, Biolase Inc., USA). Discussions: There are a few immediate benefits of the intervention: the "periodontal bandage" belongs to the patient, the procedure is painless, performed under a superficial anesthesia and the psychological impact on the patient, as well as the acceptance, are superior to conventional methods of dentistry. Conclusions: Diode lasers at the level of periodontium have become a significant part of the dentistry, reducing the patient's stress and giving satisfaction to practitioners as well.

  17. Maximum time-dependent space-charge limited diode currents

    NASA Astrophysics Data System (ADS)

    Griswold, M. E.; Fisch, N. J.

    2016-01-01

    Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximum applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.

  18. A Direct Diode Laser System Using a Planar Lightwave Circuit

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kazuo; Matsubara, Hiroyuki; Ichikawa, Tadashi; Maeda, Mitsutoshi; Ito, Hiroshi

    2008-08-01

    In this paper we propose a direct diode laser (DDL) system consisting of laser diode (LD) bars, a planar lightwave circuit (PLC), and an optical fiber. We have developed a PLC as an optical power combiner and an LD mounting technology that is suitable for coupling to the PLC. A DDL system is presented that consists of six LD-PLC optical modules for the laser-welding of highly heat-resistant plastics. The total output power is in the 200 W class, with a spot diameter of 5.52 mm for the major axis and 5.00 mm for the minor axis at a focal length of 50 mm. The total output efficiency is 60.9% from the laser diode to the welding torch.

  19. Microchannel heatsinks for high average power laser diode arrays

    SciTech Connect

    Beach, R.; Benett, B.; Freitas, B.; Ciarlo, D.; Sperry, V.; Comaskey, B.; Emanuel, M.; Solarz, R.; Mundinger, D.

    1992-01-01

    Detailed performance results and fabrication techniques for an efficient and low thermal impedance laser diode array heatsink are presented. High duty factor or even CW operation of fully filled laser diode arrays is enabled at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using a photolithographic pattern definition procedure followed by anisotropic chemical etching. A modular rack-and-stack architecture is adopted for the heatsink design allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel cooled heatsinks is ideally suited to pump array requirements for high average power crystalline lasers because of the stringent temperature demands that result from coupling the diode light to several nanometers wide absorption features characteristic of leasing ions in crystals.

  20. Microchannel cooled heatsinks for high average power laser diode arrays

    SciTech Connect

    Bennett, W.J.; Freitas, B.L.; Ciarlo, D.; Beach, R.; Sutton, S.; Emanuel, M.; Solarz, R.

    1993-01-15

    Detailed performance results for an efficient and low impedance laser diode array heatsink are presented. High duty factor and even cw operation of fully filled laser diode arrays at high stacking densities are enabled at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using an anisotropic chemical etching process. A modular rack-and-stack architecture is adopted for heatsink design, allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel heatsinks is ideally suited to pump army requirements for high average power crystalline laser because of the stringent temperature demands are required to efficiently couple diode light to several-nanometer-wide absorption features characteristic of lasing ions in crystals.

  1. Proportion effect in diblock co-oligomer molecular diodes

    NASA Astrophysics Data System (ADS)

    Hu, G. C.; Zhang, G. P.; Li, Y.; Ren, J. F.; Wang, C. K.

    2014-10-01

    Based on ab-initio theory and nonequilibrium Green's function method, the effect of proportion on the rectification in pyrimidinyl-phenyl diblock co-oligomer diodes is investigated in two regimes. For a short co-oligomer diode, it is found that the 1:1 proportion of the two moieties favors the largest rectification ratio. For a long co-oligomer diode, an interesting proportion-dependent variation of the rectifying direction is observed. Furthermore, the optimal proportion for the largest rectification ratio is not 1:1 any longer. A deep understanding can be achieved by analyzing the bias-dependent transmission spectra combined with the evolution of the molecular orbitals.

  2. External cavity diode laser setup with two interference filters

    NASA Astrophysics Data System (ADS)

    Martin, Alexander; Baus, Patrick; Birkl, Gerhard

    2016-12-01

    We present an external cavity diode laser setup using two identical, commercially available interference filters operated in the blue wavelength range around 450 nm. The combination of the two filters decreases the transmission width, while increasing the edge steepness without a significant reduction in peak transmittance. Due to the broad spectral transmission of these interference filters compared to the internal mode spacing of blue laser diodes, an additional locking scheme, based on Hänsch-Couillaud locking to a cavity, has been added to improve the stability. The laser is stabilized to a line in the tellurium spectrum via saturation spectroscopy, and single-frequency operation for a duration of two days is demonstrated by monitoring the error signal of the lock and the piezo drive compensating the length change of the external resonator due to air pressure variations. Additionally, transmission curves of the filters and the spectra of a sample of diodes are given.

  3. Micrometer- and Nanometer-Sized Polymeric Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Granstrom, Magnus; Berggren, Magnus; Inganas, Olle

    1995-03-01

    A method for the fabrication of micrometer- and submicrometer-sized polymeric light-emitting diodes is presented. Such diodes have a variety of applications. Light sources of dimensions around 100 nanometers are required for subwavelength, near-field optical microscopy. Another possible application is patterning on the micrometer and nanometer scale. The diodes have been made in the form of a sandwich structure, with the conductive polymer poly(3,4-ethylene-dioxythiophene) polymerized in the pores of commercially available microfiltration membranes defining the hole-injecting contacts, poly[3-(4-octylphenyl)-2,2'-bithiophene] as the light-emitting layer, and a thin film of calcium-aluminum as the electron injector.

  4. Photoporation and cell transfection using a violet diode laser

    NASA Astrophysics Data System (ADS)

    Paterson, L.; Agate, B.; Comrie, M.; Ferguson, R.; Lake, T. K.; Morris, J. E.; Carruthers, A. E.; Brown, C. T. A.; Sibbett, W.; Bryant, P. E.; Gunn-Moore, F.; Riches, A. C.; Dholakia, Kishan

    2005-01-01

    The introduction and subsequent expression of foreign DNA inside living mammalian cells (transfection) is achieved by photoporation with a violet diode laser. We direct a compact 405 nm laser diode source into an inverted optical microscope configuration and expose cells to 0.3 mW for 40 ms. The localized optical power density of ~1200 MW/m2 is six orders of magnitude lower than that used in femtosecond photoporation (~104 TW/m2). The beam perforates the cell plasma membrane to allow uptake of plasmid DNA containing an antibiotic resistant gene as well as the green fluorescent protein (GFP) gene. Successfully transfected cells then expand into clonal groups which are used to create stable cell lines. The use of the violet diode laser offers a new and simple poration technique compatible with standard microscopes and is the simplest method of laser-assisted cell poration reported to date.

  5. Shunt Diode Designs in Li/cf Shuttle Batteries

    NASA Technical Reports Server (NTRS)

    Miller, D.; Higgins, R.

    1984-01-01

    Although Li/CF cells and batteries have an excellent safety record, they are included with other battery systems that require additional safety precautions. One precaution suggested is the inclusion of shunt diodes into these batteries. The benefits of this addition are examined. All cells tested at elevated temperatures vent regardless of length of time between being fully discharged and reversed or inclusion of the diode in the system. Cells discharged at ambient temperatures all show a relatively quick reversal, but stabilize at voltages that are high enough that the diodes are not functioning. Cells tested at depressed temperatures reverse the deepest of all cells tested, with the deepest reversal occurring very early in the test and voltages recovering to above -0.60 volts near the end of the tests. Anode limited cells will eliminate the venting during hot reversal.

  6. NASA seeking high-power 60-GHz IMPATT diodes

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Recent progress in the development of high-power 60 GHz GaAs IMPATT diodes for communication links with high-data-rate satellites is discussed. One of the advantages of GaAs over Si as the material for the diodes are that GaAs is likely to have a higher output and efficiency than Si despite recent advances in Si technology. It is therefore in GaAs technology that research is currently concentrating. Some of the design strategies of the various companies working on the technology are described, including a pill process, MOCVD growth, and the use of diethy zinc as a dopant. Reliability testing of the diodes will be performed by NASA. Some of the alternatives to solid state amplifiers are discussed, including optical and traveling wave tube technology (TWT).

  7. Anomalous capacitance of quantum well double-barrier diodes

    NASA Technical Reports Server (NTRS)

    Boric, Olga; Tolmunen, Timo J.; Kollberg, Erik; Frerking, Margaret A.

    1992-01-01

    The S-parameters of several different quantum well double barrier diodes have been measured. A technique has been developed for measuring whisker contacted diodes with an HP 8510B automatic network analyzer. Special coaxial mounts using K-connectors were designed to enable measurements up to 20 GHz. The voltage-dependent conductance and capacitance were derived from the measured reflection coefficient of each device. The C/V characteristics were observed to exhibit an anomalous increase at voltages corresponding to the negative differential resistance region (NDR). These are the first reported S-parameter measurements in the negative differential resistance region of quantum well double barrier diodes. A theory is presented that explains, in part, the observed results.

  8. Data Diodes in Support of Trustworthy Cyber Infrastructure

    SciTech Connect

    Sheldon, Frederick T; Okhravi, Hamed

    2010-01-01

    Interconnections between process control networks and en- terprise networks has resulted in the proliferation of stan- dard communication protocols in industrial control systems which exposes instrumentation, control systems, and the critical infrastructure components they operate to a variety of cyber attacks. Various standards and technologies have been proposed to protect industrial control systems against cyber attacks and to provide them with confidentiality, in- tegrity, and availability. Among these technologies, data diodes provide protection of critical systems by the means of physically enforcing traffic direction on the network. In order to deploy data diodes effectively, it is imperative to un- derstand the protection they provide, the protection they do not provide, their limitations, and their place in the larger security infrastructure. In this work, we briefly review the security challenges in an industrial control system, study data diodes, their functionalities and limitations, and pro- pose a scheme for their effective deployment in trusted pro- cess control networks (TPCNs.)

  9. Thermally widely tunable laser diodes with distributed feedback

    SciTech Connect

    Todt, R.; Jacke, T.; Meyer, R.; Amann, M.-C.

    2005-07-11

    A thermally widely tunable buried heterostructure laser diode with distributed feedback (DFB) is demonstrated. This device requires only two tuning currents for wide quasicontinuous wavelength tuning, thereby facilitating easy and fast device calibration and control. Furthermore, being based on regular DFB laser fabrication technology, it is readily manufacturable. By using window structures instead of cleaved facets plus antireflection coatings, a regular tuning behavior has been achieved for a DFB-like widely tunable laser diode with only two tuning currents. The laser diode covers the wavelength range between 1552 and 1602 nm. Requiring side-mode suppression ratio and output power above 30 dB and 10 mW, respectively, a wavelength range of 43 nm is accessible.

  10. Leakage currents in 4H-SiC JBS diodes

    SciTech Connect

    Ivanov, P. A. Grekhov, I. V.; Potapov, A. S.; Kon'kov, O. I.; Il'inskaya, N. D.; Samsonova, T. P.; Korol'kov, O.; Sleptsuk, N.

    2012-03-15

    Leakage currents in high-voltage 4H-SiC diodes, which have an integrated (p-n) Schottky structure (Junction Barrier Schottky, JBS), have been studied using commercial diodes and specially fabricated (based on a commercial epitaxial material) test Schottky diodes with and without the JBS structure. It is shown that (i) the main role in reverse charge transport is played by SiC crystal structure defects, most probably, by threading dislocations (density {approx}10{sup 4} cm{sup -2}), and (ii) the JBS structure, formed by the implantation of boron, partially suppresses the leakage currents (by up to a factor of 10 at optimal separation, 8 {mu}m between local p-type regions).

  11. Thermally widely tunable laser diodes with distributed feedback

    NASA Astrophysics Data System (ADS)

    Todt, R.; Jacke, T.; Meyer, R.; Amann, M.-C.

    2005-07-01

    A thermally widely tunable buried heterostructure laser diode with distributed feedback (DFB) is demonstrated. This device requires only two tuning currents for wide quasicontinuous wavelength tuning, thereby facilitating easy and fast device calibration and control. Furthermore, being based on regular DFB laser fabrication technology, it is readily manufacturable. By using window structures instead of cleaved facets plus antireflection coatings, a regular tuning behavior has been achieved for a DFB-like widely tunable laser diode with only two tuning currents. The laser diode covers the wavelength range between 1552 and 1602 nm. Requiring side-mode suppression ratio and output power above 30 dB and 10 mW, respectively, a wavelength range of 43 nm is accessible.

  12. Electron beam characterization of a combined diode rf electron gun

    NASA Astrophysics Data System (ADS)

    Ganter, R.; Beutner, B.; Binder, S.; Braun, H. H.; Garvey, T.; Gough, C.; Hauri, C.; Ischebeck, R.; Ivkovic, S.; Le Pimpec, F.; Li, K.; Paraliev, M. L.; Pedrozzi, M.; Schietinger, T.; Steffen, B.; Trisorio, A.; Wrulich, A.

    2010-09-01

    Experimental and simulation results of an electron gun test facility, based on pulsed diode acceleration followed by a two-cell rf cavity at 1.5 GHz, are presented here. The main features of this diode-rf combination are: a high peak gradient in the diode (up to 100MV/m) obtained without breakdown conditioning, a cathode shape providing an electrostatic focusing, and an in-vacuum pulsed solenoid to focus the electron beam between the diode and the rf cavity. Although the test stand was initially developed for testing field emitter arrays cathodes, it became also interesting to explore the limits of this electron gun with metallic photocathodes illuminated by laser pulses. The ultimate goal of this test facility is to fulfill the requirements of the SwissFEL project of Paul Scherrer Institute [B. D. Patterson , New J. Phys. 12, 035012 (2010)NJOPFM1367-263010.1088/1367-2630/12/3/035012]; a projected normalized emittance below 0.4μm for a charge of 200 pC and a bunch length of less than 10 ps (rms). A normalized projected emittance of 0.23μm with 13 pC has been measured at 5 MeV using a Gaussian laser longitudinal intensity distribution on the photocathode. Good agreements with simulations have been obtained for different electron bunch charge and diode geometries. Emittance measurements at a bunch charge below 1 pC were performed for different laser spot sizes in agreement with intrinsic emittance theory [e.g. 0.54μm/mm of laser spot size (rms) for Cu at 274 nm]. Finally, a projected emittance of 1.25+/-0.2μm was measured with 200 pC and 100MV/m diode gradient.

  13. Monolithic watt-level millimeter-wave diode-grid frequency tripler array

    NASA Technical Reports Server (NTRS)

    Hwu, R. J.; Luhmann, N. C., Jr.; Rutledge, D. B.; Hancock, B.; Lieneweg, U.

    1988-01-01

    In order to provide watt-level CW output power throughout the millimeter and submillimeter wave region, thousands of solid-state diodes have been monolithically integrated using a metal grid to produce a highly efficient frequency multiplier. Devices considered include GaAs Schottky diodes, thin MOS diodes, and GaAs Barrier-Intrinsic-N(+)diodes. The performance of the present compact low-cost device has been theoretically and experimentally validated.

  14. Characteristic of laser diode beam propagation through a collimating lens.

    PubMed

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  15. System and method for high power diode based additive manufacturing

    DOEpatents

    El-Dasher, Bassem S.; Bayramian, Andrew; Demuth, James A.; Farmer, Joseph C.; Torres, Sharon G.

    2016-04-12

    A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.

  16. Poly (p-phenyleneneacetylene) light-emitting diodes

    DOEpatents

    Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei; Barton, Thomas J.; Vardeny, Zeev V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  17. Poly (p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  18. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.

    1994-08-02

    Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  19. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei

    1994-08-02

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  20. Temperature Gradients In Diode-pumped Alkali Lasers

    DTIC Science & Technology

    2012-01-18

    radiation from bars or stacks of diode lasers is absorbed by atomic potassium, rubidium , or cesium. Collision-induced energy transfer populates the upper...laser level, and lasing is achieved in the near-IR on the D1 (pump) line. A rubidium laser pumped by a 1.28kW diode stack with a 0.35nm spectral band...negligible, offering the potential for low waste heat loads. However, cycling of atoms by the pump beam can be >109photons/ atom -s. The energy of the spin

  1. Commercial applications of high-powered laser diodes

    NASA Astrophysics Data System (ADS)

    Cunningham, David L.; Jacobs, Richard D.

    1995-04-01

    The development of high power laser diodes using surface emitting distributed feedback (SEDFB) techniques has matured to the point where serious marketing analyses have been conducted. While development of the base technology continues, the initiation of systems applications and manufacturing engineering has begun. This effort, in direct response to growing market demand, is the critical bridge between research and the development of viable products for commercial applications. This paper addresses the history of laser technology development, the current status of high powered laser diode development, the forces defining current and future markets and the role of `conventional wisdom' in laser technology and market development.

  2. Laser diode feedback interferometer for stabilization and displacement measurements.

    PubMed

    Yoshino, T; Nara, M; Mnatzakanian, S; Lee, B S; Strand, T C

    1987-03-01

    Active laser diode interferometers in which the interference signal is fed back to the diode current are investigated for Twyman-Green and self-coupling interferometers. The Twyman-Green interferometer is stabilized with a stabilization factor of more than 100. By using the feedback signal of either type of interferometer, displacement is measured in a linear scale over a dynamic range of 8-9,microm with a precision of 10-60 nm. The feedback signal vs displacement shows hysteresis and multistable behavior, in accordance with theoretical results.

  3. Gummy Smile Correction with Diode Laser: Two Case Reports

    PubMed Central

    Narayanan, Mahesh; Laju, S; Erali, Susil M; Erali, Sunil M; Fathima, Al Zainab; Gopinath, P V

    2015-01-01

    Beautification of smiles is becoming an everyday requirement in dental practice. Apart from teeth, gingiva also plays an important role in smile esthetics. Excessive visualization of gingiva is a common complaint among patients seeking esthetic treatment. A wide variety of procedures are available for correction of excessive gum display based on the cause of the condition. Soft tissue diode laser contouring of gingiva is a common procedure that can be undertaken in a routine dental setting with excellent patient satisfaction and minimal post-operative sequale. Two cases of esthetic crown lengthening with diode laser 810 nm are presented here. PMID:26668491

  4. Stability of some epoxy-encapsulated diode thermometers

    NASA Technical Reports Server (NTRS)

    Mangum, B. W.; Evans, G. A., Jr.

    1986-01-01

    The stability upon thermal cycling and handling of ten small, epoxy-encapsulated silicon diode thermometers at six temperatures in the range from liquid nitrogen temperatures to about 60 C. The nominal temperatures of measurement were -196, -78, 0, 20, 40, and 60 C, as measured on the International Practical Temperature Scale of 1968. Diodes were to be thermally cycled 15 to 20 times. Since NASA anticipates that the uncertainty in their temperature measurements will be + or - 50 mK, uncertainties as large as + or - 10 mK in the measurements of the evaluaton can be accommodated without deleteriously affecting the value of the results of the investigation.

  5. Degradation of light emitting diodes: a proposed methodology

    NASA Astrophysics Data System (ADS)

    Koh, Sau; Van Driel, Willem; Zhang, G. Q.

    2011-01-01

    Due to their long lifetime and high efficacy, light emitting diodes have the potential to revolutionize the illumination industry. However, self heat and high environmental temperature which will lead to increased junction temperature and degradation due to electrical overstress can shorten the life of the light emitting diode. In this research, a methodology to investigate the degradation of the LED emitter has been proposed. The epoxy lens of the emitter can be modelled using simplified Eyring methods whereas an equation has been proposed for describing the degradation of the LED emitters.

  6. Radiation hardness of n-GaN schottky diodes

    SciTech Connect

    Lebedev, A. A. Belov, S. V.; Mynbaeva, M. G.; Strel’chuk, A. M.; Bogdanova, E. V.; Makarov, Yu. N.; Usikov, A. S.; Kurin, S. Yu.; Barash, I. S.; Roenkov, A. D.; Kozlovski, V. V.

    2015-10-15

    Schottky-barrier diodes with a diameter of ∼10 µm are fabricated on n-GaN epitaxial films grown by hydride vapor-phase epitaxy (HVPE) on sapphire substrates. The changes in the parameters of the diodes under irradiation with 15 MeV protons are studied. The carrier removal rate was found to be 130–145 cm{sup –1}. The linear nature of the dependence N = f(D) (N is the carrier concentration, and D, the irradiation dose) shows that compensation of the material is associated with transitions of electrons from shallow donors to deep acceptor levels which are related to primary radiation defects.

  7. Monolithic millimeter-wave diode grid frequency multiplier arrays

    NASA Technical Reports Server (NTRS)

    Liu, Hong-Xia L.; Qin, X.-H.; Sjogren, L. B.; Wu, W.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.

    1992-01-01

    Monolithic diode frequency multiplier arrays, including barrier-N-N(+) (BNN) doubler, multi-quantum-barrier-varactor (MQBV) tripler, Schottky-quantum-barrier-varactor (SQBV) tripler, and resonant-tunneling-diode (RTD) tripler arrays, have been successfully fabricated with yields between 85 and 99 percent. Frequency doubling and/or tripling have been observed for all the arrays. Output powers of 2.4-2.6 W (eta = 10-18 percent) at 66 GHz with the BNN doubler and 3.8-10 W (eta = 1.7-4 percent) at 99 GHz with the SQBV tripler have been achieved.

  8. Diode-pumped solid state laser for inertial fusion energy

    SciTech Connect

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW {center_dot} hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness.

  9. Millimeter Wave Metal-Insulator-Metal Detector/Mixer Diode.

    DTIC Science & Technology

    1983-12-01

    AO-A138 391 MILLIMETER WAVE METAL-INSULATOR- METAL DETECTOR /MIXER 1/1 DIODE(VI NORTH CAROLIN A AGRICULTURAL A NO TECHNI CA L STATE UNIV GREENSRO. C TV...163-A I V AFWAL-TR-83-1179 MILLIMETER WAVE METAL-INSULATOR- METAL DETECTOR /MIXER DIODE CHUNG YU NORTH CAROLINA A&T STATE UNIVERSITY GREENSBORO, NORTH...TITLE (ad subsorle.I S. TYPE CrjflT&PEO OER MILLIMETER WAVE May, 1981--July, 1983 METAL-INSULATOR- METAL DETECTOR /MIXER G. PERFORMING ORG. REPORT

  10. Computer Processing Of Tunable-Diode-Laser Spectra

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1991-01-01

    Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.

  11. Resonant tunneling diodes as sources for millimeter and submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Vanbesien, O.; Bouregba, R.; Mounaix, P.; Lippens, D.; Palmateer, L.; Pernot, J. C.; Beaudin, G.; Encrenaz, P.; Bockenhoff, E.; Nagle, J.

    1992-01-01

    High-quality Resonant Tunneling Diodes have been fabricated and tested as sources for millimeter and submillimeter wavelengths. The devices have shown excellent I-V characteristics with peak-to-valley current ratios as high as 6:1 and current densities in the range of 50-150 kA/cm(exp 2) at 300 K. Used as local oscillators, the diodes are capable of state of the art output power delivered by AlGaAs-based tunneling devices. As harmonic multipliers, a frequency of 320 GHz has been achieved by quintupling the fundamental oscillation of a klystron source.

  12. Frequency narrowing of a 25 W broad area diode laser

    NASA Astrophysics Data System (ADS)

    Sell, J. F.; Miller, W.; Wright, D.; Zhdanov, B. V.; Knize, R. J.

    2009-02-01

    We report on the spectral narrowing of a high powered (25 W) broad area diode laser using an external cavity with a holographic diffraction grating. In a Littman-Metcalf configuration, the external cavity is able to reduce the linewidth of the diode laser to primarily a single longitudinal mode (1.8 MHz) for output powers of ≤10 W at 852 nm. Many physics applications could benefit from such high powered, narrow linewidth lasers; however both the frequency stability and the spatial profile of the output beam show room for improvement.

  13. Arrangement for damping the resonance in a laser diode

    NASA Technical Reports Server (NTRS)

    Katz, J.; Yariv, A.; Margalit, S. (Inventor)

    1985-01-01

    An arrangement for damping the resonance in a laser diode is described. This arrangement includes an additional layer which together with the conventional laser diode form a structure (35) of a bipolar transistor. Therein, the additional layer serves as the collector, the cladding layer next to it as the base, and the active region and the other cladding layer as the emitter. A capacitor is connected across the base and the collector. It is chosen so that at any frequency above a certain selected frequency which is far below the resonance frequency the capacitor impedance is very low, effectively shorting the base to the collector.

  14. Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1985-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  15. Battery-driven miniature LDA system with semiconductor laser diode

    NASA Astrophysics Data System (ADS)

    Damp, S.

    1988-06-01

    A one-component miniature system with dimensions of 11 by 4 by 4 cubic centimeters for laser-Doppler anemometry (LDA) is described. As power supply a 12V battery or any other source with the capability to drive a current up to 200mA can be used. The system contains the whole electronics to drive the used laser diode is a safe way. The electronics to amplify and buffer the LDA-signal which is received by a PIN-diode is included. The output of the system can directly fit a filterbank for example. Possible applications in rough environments are mentioned. Measurements show the reliability of the system.

  16. Axis-1 diode simulations I: standard 2-inch cathode

    SciTech Connect

    Ekdahl, Carl

    2011-01-11

    The standard configuration of the DARHT Axis-I diode features a 5.08-cm diameter velvet emitter mounted in the flat surface of the cathode shroud. The surface of the velvet is slightly recessed {approx}2.5 mm. This configuration produces a 1.75 kA beam when a 3.8-MV pulse is applied to the anode-cathode (AK) gap. This note addresses some of the physics of this diode through the use of finite-element simulations.

  17. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    NASA Technical Reports Server (NTRS)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  18. Novel diode laser-based sensors for gas sensing applications

    NASA Technical Reports Server (NTRS)

    Tittel, F. K.; Lancaster, D. G.; Richter, D.

    2000-01-01

    The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.

  19. Plant Growth Under Light Emitting Diode Irradiation.

    NASA Astrophysics Data System (ADS)

    Tennessen, Daniel John

    Plant growth under light emitting diodes (LEDs) was investigated to determine if LEDs would be useful to provide radiant energy for two plant processes, photosynthesis and photomorphogenesis. Photosynthesis of tomato (Lycopersicon esculentum L.) and Kudzu (Pueraria lobata (Willd) Ohwi.) was measured using photons from LEDs to answer the following: (1) Are leaves able to use red LED light for photosynthesis? and (2) Is the efficiency of photosynthesis in pulsed light equal to that of continuous light? In 175 Pa CO _2, or in response to changes in CO _2,<=af photosynthesis and ATP status were the same in LED as in white xenon arc light. In 35 Pa CO_2, photosynthesis was 10% lower in LED than in xenon arc light due to lowered stomatal conductance. The quantum efficiency of photosynthesis in pulsed light was equal to continuous light, even when pulses were twice as bright as sunlight. Xanthophyll pigments were not affected by these bright pulses. Photomorphogenesis of tobacco (Nicotiana tabacum L.), tomato (Lycopersicon esculentum Mill.) and transformed tobacco and tomato (expressing oat phytochrome-A) was assessed by growing plants under red LED lamps in an attempt to answer the following: (1) What is the developmental response of non-transformed and transformed tobacco to red LED light? and (2) Can tomato plants that grow tall and spindly in red LED light be made to grow short by increasing the amount of phytochrome-A? The short phenotype of transformed tobacco was not evident when plants were grown in LED light. Addition of photons of far-red or blue light to red light resulted in short transformed tobacco. Tomato plants grew three times as tall and lacked leaf development in LED versus white light, but transformed tomato remained short and produced fruit under LED light. I have determined that the LED photons are useful for photosynthesis and that the photon efficiency of photosynthesis is the same in pulsed as in continuous light. From responses of tobacco, I

  20. Harmonic balance optimization of terahertz Schottky diode multipliers using an advanced device model

    NASA Technical Reports Server (NTRS)

    Schlecht, E. T.; Chattopadhyay, G.; Maestrini, A.; Pukala, D.; Gill, J.; Mehdi, I.

    2002-01-01

    Substantial proress has been made recently in the advancement of solid state terahertz sources using chains of Schottky diode frequency multipliers. We have developed a harmonic balance simulator and corresponding diode model that incorporates many other factors participating in the diode behavior.