Science.gov

Sample records for 4h-sic schottky diodes

  1. Silicon Carbide Schottky Barrier Diode

    NASA Technical Reports Server (NTRS)

    Zhao, Jian H.; Sheng, Kuang; Lebron-Velilla, Ramon C.

    2004-01-01

    This chapter reviews the status of SiC Schottky barrier diode development. The fundamental of Schottky barrier diodes is first provided, followed by the review of high-voltage SiC Schottky barrier diodes, junction-barrier Schottky diodes, and merged-pin-Schottky diodes. The development history is reviewed ad the key performance parameters are discussed. Applications of SiC SBDs in power electronic circuits as well as other areas such as gas sensors, microwave and UV detections are also presented, followed by discussion of remaining challenges.

  2. Carbon-Nanotube Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Wong, Eric; Schlecht, Erich; Hunt, Brian; Siegel, Peter

    2006-01-01

    Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter-wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter-wave sensors for more than 50 years. For state-of-the-art Schottky diodes used as detectors at frequencies above a few hundred gigahertz, the inherent parasitic capacitances associated with their semiconductor junction areas and the resistances associated with low electron mobilities limit achievable sensitivity. The performance of such a detector falls off approximately exponentially with frequency above 500 GHz. Moreover, when used as frequency multipliers for generating signals, state-of-the-art solid-state Schottky diodes exhibit extremely low efficiencies, generally putting out only micro-watts of power at frequencies up to 1.5 THz. The shortcomings of the state-of-the-art solid-state Schottky diodes can be overcome by exploiting the unique electronic properties of semiconducting carbon nanotubes. A single-walled carbon nanotube can be metallic or semiconducting, depending on its chirality, and exhibits high electron mobility (recently reported to be approx.= 2x10(exp 5)sq cm/V-s) and low parasitic capacitance. Because of the narrowness of nanotubes, Schottky diodes based on carbon nanotubes have ultra-small junction areas (of the order of a few square nanometers) and consequent junction capacitances of the order of 10(exp -18) F, which translates to cutoff frequency >5 THz. Because the turn-on power levels of these devices are very low (of the order of nano-watts), the input power levels needed for pumping local oscillators containing these devices should be lower than those needed for local oscillators containing state-of-the-art solid

  3. Schottky barrier diode and method thereof

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid (Inventor); Franz, David (Inventor)

    2008-01-01

    Pt/n.sup.-GaN Schottky barrier diodes are disclosed that are particularly suited to serve as ultra-violet sensors operating at wavelengths below 200 nm. The Pt/n.sup.-GaN Schottky barrier diodes have very large active areas, up to 1 cm.sup.2, which exhibit extremely low leakage current at low reverse biases. Very large area Pt/n.sup.-GaN Schottky diodes of sizes 0.25 cm.sup.2 and 1 cm.sup.2 have been fabricated from n.sup.-/n.sup.+ GaN epitaxial layers grown by vapor phase epitaxy on single crystal c-plane sapphire, which showed leakage currents of 14 pA and 2.7 nA, respectively for the 0.25 cm.sup.2 and 1 cm.sup.2 diodes both configured at a 0.5V reverse bias.

  4. An alternative methodology in Schottky diode physics

    NASA Astrophysics Data System (ADS)

    Mitra, J.; Feng, L.; Peñate-Quesada, L.; Dawson, P.

    2015-06-01

    The fabrication and electrical characterization of Schottky junction diodes have been extensively researched for three-quarters of a century since the original work of Schottky in 1938. This study breaks from the highly standardized regime of such research and provides an alternative methodology that prompts novel, more efficient applications of the adroit Schottky junction in areas such as chemical and thermal sensing. The core departure from standard Schottky diode configuration is that the metal electrode is of comparable or higher resistance than the underlying semiconductor. Further, complete electrical characterization is accomplished through recording four-probe resistance-temperature (RD-T) characteristics of the device, where electrical sourcing and sensing is done only via the metal electrode and not directly through the semiconductor. Importantly, this results in probing a nominally unbiased junction while eliminating the need for an Ohmic contact to the semiconductor. The characteristic RD-T plot shows two distinct regions of high (metal) and low (semiconductor) resistances at low and high temperatures, respectively, connected by a cross-over region of width, ΔT, within which there is a large negative temperature coefficient of resistance. The RD-T characteristic is highly sensitive to the Schottky barrier height; consequently, at a fixed temperature, RD responds appreciably to small changes in barrier height such as that induced by absorption of a chemical species (e.g., H2) at the interface. A theoretical model is developed to simulate the RD-T data and applied to Pd/p-Si and Pt/p-Si Schottky diodes with a range of metal electrode resistance. The analysis gives near-perfect fits to the experimental RD-T characteristics, yielding the junction properties as fit parameters. The modelling not only helps elucidate the underlying physics but also helps to comprehend the parameter space essential for the discussed applications. Although the primary regime

  5. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  6. Schottky diodes from 2D germanane

    SciTech Connect

    Sahoo, Nanda Gopal; Punetha, Vinay Deep; Esteves, Richard J; Arachchige, Indika U.; Pestov, Dmitry; McLeskey, James T.

    2016-07-11

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe{sub 2} framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  7. Pt/ZnO nanowire Schottky diodes

    SciTech Connect

    Heo, Y.W.; Tien, L.C.; Norton, D.P.; Pearton, S.J.; Kang, B.S.; Ren, F.; LaRoche, J.R.

    2004-10-11

    Pt Schottky diodes were formed on single ZnO nanowires grown by site-selective molecular-beam epitaxy and then transferred to SiO{sub 2}-coated Si substrates. The diodes exhibit excellent ideality factors of 1.1 at 25 deg. C and very low (1.5x10{sup -10} A, equivalent to 2.35 A cm{sup -2}, at -10 V) reverse currents. The nanowire diodes show a strong photoresponse, with the current-voltage characteristics becoming ohmic under ultraviolet illumination (366 nm light). The on-off current ratio of the diodes at 0.15/-5 V was {approx}6. These results show the ability to manipulate the electron transport in nanoscale ZnO devices.

  8. IBIC analysis of gallium arsenide Schottky diodes

    NASA Astrophysics Data System (ADS)

    Vittone, E.; Fizzotti, F.; Mirri, K.; Gargioni, E.; Polesello, P.; LoGiudice, A.; Manfredotti, C.; Galassini, S.; Rossi, P.; Vanni, P.; Nava, F.

    1999-10-01

    Semi-insulating (SI) gallium arsenide (GaAs) devices operating as a reverse biased Schottky diode offer an attractive choice as radiation detector at room temperature both in high energy physics experiments and as X-ray image sensors. However, SI GaAs devices contain a high concentration of traps, which decreases the charge collection efficiency (cce), and affects the energy resolution of such detectors working as nuclear spectrometers. In this paper we present a detailed investigation of the spatial uniformity of the cce carried out by analysing ion beam induced charge (IBIC) space maps obtained by scanning a focused 2 MeV proton microbeam on a SI n-GaAs Schottky diode. The microbeam irradiated both the front (Schottky) and back (ohmic) contacts in order to evaluate the transport properties of both electrons and holes generated by ionisation. The IBIC space maps show a clear non-uniformity of the cce. The poor energy resolution previously observed in such detectors working as alpha particle spectrometers is ascribed to the presence of two different "phases" in the material, which produce two distinct collection efficiency spectra. Such "phases" show different behaviour as a function of the applied bias voltage which is most likely due to the different electric field dependence of the relevant capture cross sections of the trapping centres for both charge carriers.

  9. Destructive Single-Event Failures in Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Casey, Megan C.; Lauenstein, Jean-Marie; Gigliuto, Robert A.; Wilcox, Edward P.; Phan, Anthony M.; Kim, Hak; Chen, Dakai; LaBel, Kenneth A.

    2014-01-01

    This presentation contains test results for destructive failures in DC-DC converters. We have shown that Schottky diodes are susceptible to destructive single-event effects. Future work will be completed to identify parameter that determines diode susceptibility.

  10. SiC-Based Schottky Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai

    1997-01-01

    Silicon carbide based Schottky diode gas sensors are being developed for high temperature applications such as emission measurements. Two different types of gas sensitive diodes will be discussed in this paper. By varying the structure of the diode, one can affect the diode stability as well as the diode sensitivity to various gases. It is concluded that the ability of SiC to operate as a high temperature semiconductor significantly enhances the versatility of the Schottky diode gas sensing structure and will potentially allow the fabrication of a SiC-based gas sensor arrays for versatile high temperature gas sensing applications.

  11. Schottky diode silicon liquid-crystal light valve

    NASA Astrophysics Data System (ADS)

    Sayyah, Keyvan; Efron, Uzi; Forber, Richard A.; Goodwin, Norman W.; Reif, Philip G.

    1991-06-01

    The authors report the operation of the Hughes Schottky diode-based silicon liquid crystal light valve (SLV) using readout light in the visible region. Limiting resolutions of 28 lp/mm limited by the Schottky diode periodicity, contrast ratios of >100:1, visible input light sensitivities of better than 50 (mu) W/cm2, and response times as fast as 5 ms have been measured. Both standard twisted nematic and homeotropically-aligned liquid crystal configurations have been utilized. The main parameter of this device is the leakage current of the Schottky diodes.

  12. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode.

    PubMed

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-05-06

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increases quickly with sweeping Vg towards the negative value, while decreases slowly towards the positive Vg. Our results are helpful to understand the fundamental mechanism of the electric transport in graphene-semiconductor Schottky diode.

  13. Laterally stacked Schottky diodes for infrared sensor applications

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon (Inventor)

    1991-01-01

    Laterally stacked Schottky diodes for infrared sensor applications are fabricated utilizing porous silicon having pores. A Schottky metal contract is formed in the pores, such as by electroplating. The sensors may be integrated with silicon circuits on the same chip with a high quantum efficiency, which is ideal for IR focal plane array applications due to uniformity and reproducibility.

  14. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  15. Development and fabrication of improved Schottky power diodes

    NASA Technical Reports Server (NTRS)

    Cordes, L. F.; Garfinkel, M.; Taft, E. A.

    1975-01-01

    Reproducible methods for the fabrication of silicon Schottky diodes have been developed for tungsten, aluminum, conventional platinum silicide, and low temperature platinum silicide. Barrier heights and barrier lowering under reverse bias have been measured, permitting the accurate prediction of forward and reverse diode characteristics. Processing procedures have been developed that permit the fabrication of large area (about 1 sq cm) mesageometry power Schottky diodes with forward and reverse characteristics that approach theoretical values. A theoretical analysis of the operation of bridge rectifier circuits has been performed, which indicates the ranges of frequency and voltage for which Schottky rectifiers are preferred to p-n junctions. Power Schottky rectifiers have been fabricated and tested for voltage ratings up to 140 volts.

  16. Study of Reduced Graphene Oxide for Trench Schottky Diode

    NASA Astrophysics Data System (ADS)

    Samihah Khairir, Nur; Rofei Mat Hussin, Mohd; Nasir, Iskhandar Md; Mukhter Uz-Zaman, A. S. M.; Fazlida Hanim Abdullah, Wan; Sabirin Zoolfakar, Ahmad

    2015-11-01

    This paper presents the study of reduced Graphene Oxide (RGO) for trench Schottky diode by replacing conventional metal layer that forms schottky contact with a nanostructured carbon thin film via Reduced Graphene Oxide (RGO) technique. The RGO was synthesis by chemical exfoliation in which modified Hummer's method was approached. It was then deposited on the trench schottky pattern substrate by pressurized spray coating. The sample was then characterized by FESEM, Raman Spectroscopy and I-V test. The results of FESEM and Raman showed good characteristics and well deposited nanostructures of RGO flakes. The two-point I-V test showed that the samples have a low turn-on voltage and a higher break-down voltage, which is better than the conventional schottky diode used in the market.

  17. I-V characteristics simulation of silicon carbide Ti/4H-SiC Schottky diode

    NASA Astrophysics Data System (ADS)

    Panchenko, P.; Rybalka, S.; Malakhanov, A.; Krayushkina, E.; Radkov, A.

    2016-12-01

    The simulation of current-voltage characteristics for 4H-SiC Schottky diode with Ti Schottky contact has been carried out with used of TCAD program. Obtained current-voltage characteristics has been analyzed and compared with theoretical and experimental results. It is established that the Schottky diode parameters (forward current, ideality coefficient, Schottky barrier height, breakdown voltage) obtained in proposed model are good agreement with data for such type diodes.

  18. The millimeter wave super-Schottky diode detector

    NASA Technical Reports Server (NTRS)

    Silver, A. H.; Pedersen, R. J.; Mccoll, M.; Dickman, R. L.; Wilson, W. J.

    1981-01-01

    The 31 and 92 GHz measurements of the superconductor-Schottky diode extended to millimeter wavelengths by a redesign of the semiconductor interface are reported. Diodes were fabricated by pulse electroplating Pb on 2 x 10 to the 19th/cu cm p-Ga-As etched with HCl; a thin Au overplate is deposited to protect the Pb film from degradation and to improve its lifetime. The noise performance was almost ideal at 31 and 92 GHz; it was concluded that this diode is a quantum-limited-detector at 31 GHz, with excessive parasitic losses at 92 GHz.

  19. Current transport mechanism in a metal-GaN nanowire Schottky diode.

    PubMed

    Lee, Seung-Yong; Lee, Sang-Kwon

    2007-12-12

    We investigated nano-Schottky diodes of gallium nitride nanowires with three Schottky metals (Cr, Ti, and Au) using current-voltage characteristics. All of the GaN nano-Schottky diodes showed a rectifying behavior. The abnormal electrical characteristics of a single GaN nanowire Schottky diode can be explained by a thermionic-field emission and an enhancement of the tunneling effects owing to both the relatively high concentration of the GaN nanowire itself and the nanoscale junction size of the GaN nanowire Schottky diodes.

  20. Monte Carlo modelling of Schottky diode for rectenna simulation

    NASA Astrophysics Data System (ADS)

    Bernuchon, E.; Aniel, F.; Zerounian, N.; Grimault-Jacquin, A. S.

    2017-09-01

    Before designing a detector circuit, the electrical parameters extraction of the Schottky diode is a critical step. This article is based on a Monte-Carlo (MC) solver of the Boltzmann Transport Equation (BTE) including different transport mechanisms at the metal-semiconductor contact such as image force effect or tunneling. The weight of tunneling and thermionic current is quantified according to different degrees of tunneling modelling. The I-V characteristic highlights the dependence of the ideality factor and the current saturation with bias. Harmonic Balance (HB) simulation on a rectifier circuit within Advanced Design System (ADS) software shows that considering non-linear ideality factor and saturation current for the electrical model of the Schottky diode does not seem essential. Indeed, bias independent values extracted in forward regime on I-V curve are sufficient. However, the non-linear series resistance extracted from a small signal analysis (SSA) strongly influences the conversion efficiency at low input powers.

  1. Radiation hardness of n-GaN schottky diodes

    SciTech Connect

    Lebedev, A. A. Belov, S. V.; Mynbaeva, M. G.; Strel’chuk, A. M.; Bogdanova, E. V.; Makarov, Yu. N.; Usikov, A. S.; Kurin, S. Yu.; Barash, I. S.; Roenkov, A. D.; Kozlovski, V. V.

    2015-10-15

    Schottky-barrier diodes with a diameter of ∼10 µm are fabricated on n-GaN epitaxial films grown by hydride vapor-phase epitaxy (HVPE) on sapphire substrates. The changes in the parameters of the diodes under irradiation with 15 MeV protons are studied. The carrier removal rate was found to be 130–145 cm{sup –1}. The linear nature of the dependence N = f(D) (N is the carrier concentration, and D, the irradiation dose) shows that compensation of the material is associated with transitions of electrons from shallow donors to deep acceptor levels which are related to primary radiation defects.

  2. Process for preparing schottky diode contacts with predetermined barrier heights

    DOEpatents

    Chang, Y. Austin; Jan, Chia-Hong; Chen, Chia-Ping

    1996-01-01

    A process is provided for producing a Schottky diode having a preselected barrier height .phi..sub.Bn. The substrate is preferably n-GaAs, the metallic contact is derived from a starting alloy of the Formula [.SIGMA.M.sub..delta. ](Al.sub.x Ga.sub.1-x) wherein: .SIGMA.M is a moiety which consists of at least one M, and when more than one M is present, each M is different, M is a Group VIII metal selected from the group consisting of nickel, cobalt, ruthenium, rhodium, indium and platinum, .delta. is a stoichiometric coefficient whose total value in any given .SIGMA.M moiety is 1, and x is a positive number between 0 and 1 (that is, x ranges from greater than 0 to less than 1). Also, the starting alloy is capable of forming with the substrate a two phase equilibrium reciprocal system of the binary alloy mixture [.SIGMA.M.sub..delta. ]Ga-[.SIGMA.M.sub..delta. ]Al-AlAs-GaAs. When members of an alloy subclass within this Formula are each preliminarily correlated with the barrier height .phi..sub.Bn of a contact producable therewith, then Schottky diodes of predetermined barrier heights are producable by sputtering and annealing. Further provided are the product Schottky diodes that are produced according to this process.

  3. Carbon nanotube Schottky diodes using Ti-Schottky and Pt-ohmic contacts for high frequency applications

    NASA Technical Reports Server (NTRS)

    Manohara, Harish M.; Wong, Eric W.; Schlecht, Erich; Hunt, Brian D.; Siegel, Peter H.

    2005-01-01

    We have demonstrated Schottky diodes using semiconducting single-walled nanotubes (s-SWNTs) with titanium Schottky and platinum Ohmic contacts for high-frequency applications. The diodes are fabricated using angled evaporation of dissimilar metal contacts over an s-SWNT. The devices demonstrate rectifying behavior with large reverse bias breakdown voltages of greater than 15 V. To decrease the series resistance, multiple SWNTs are grown in parallel in a single device, and the metallic tubes are burnt-out selectively. At low biases these diodes showed ideality factors in the range of 1.5 to 1.9. Modeling of these diodes as direct detectors at room temperature at 2.5 terahertz (THz) frequency indicates noise equivalent powers (NEP) potentially comparable to that of the state-of-the-art gallium arsenide solid-state Schottky diodes, in the range of 10-13 W(square root)xHz.

  4. Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications.

    PubMed

    Manohara, Harish M; Wong, Eric W; Schlecht, Erich; Hunt, Brian D; Siegel, Peter H

    2005-07-01

    We have demonstrated Schottky diodes using semiconducting single-walled nanotubes (s-SWNTs) with titanium Schottky and platinum Ohmic contacts for high-frequency applications. The diodes are fabricated using angled evaporation of dissimilar metal contacts over an s-SWNT. The devices demonstrate rectifying behavior with large reverse bias breakdown voltages of greater than -15 V. To decrease the series resistance, multiple SWNTs are grown in parallel in a single device, and the metallic tubes are burnt-out selectively. At low biases these diodes showed ideality factors in the range of 1.5 to 1.9. Modeling of these diodes as direct detectors at room temperature at 2.5 terahertz (THz) frequency indicates noise equivalent powers (NEP) potentially comparable to that of the state-of-the-art gallium arsenide solid-state Schottky diodes, in the range of 10(-13) W/ radical Hz.

  5. Carbon nanotube Schottky diodes using Ti-Schottky and Pt-ohmic contacts for high frequency applications

    NASA Technical Reports Server (NTRS)

    Manohara, Harish M.; Wong, Eric W.; Schlecht, Erich; Hunt, Brian D.; Siegel, Peter H.

    2005-01-01

    We have demonstrated Schottky diodes using semiconducting single-walled nanotubes (s-SWNTs) with titanium Schottky and platinum Ohmic contacts for high-frequency applications. The diodes are fabricated using angled evaporation of dissimilar metal contacts over an s-SWNT. The devices demonstrate rectifying behavior with large reverse bias breakdown voltages of greater than 15 V. To decrease the series resistance, multiple SWNTs are grown in parallel in a single device, and the metallic tubes are burnt-out selectively. At low biases these diodes showed ideality factors in the range of 1.5 to 1.9. Modeling of these diodes as direct detectors at room temperature at 2.5 terahertz (THz) frequency indicates noise equivalent powers (NEP) potentially comparable to that of the state-of-the-art gallium arsenide solid-state Schottky diodes, in the range of 10-13 W(square root)xHz.

  6. Diamond Schottky diodes with ideality factors close to 1

    SciTech Connect

    Fiori, A. Teraji, T. Koide, Y.

    2014-09-29

    The stabilization by vacuum annealing of tungsten carbide/p-diamond Schottky barrier diodes (SBDs) has been investigated. The Schottky barrier height (ϕ{sub B}) and ideality factor (n), at high temperature, were consistently estimated by employing a vertical SBD structure. An exponential drop of ϕ{sub B} in time at 600 K and its stabilization at 1.46 eV after 90 min were reported. The lowest n among SBDs examined was close to 1.0 at 600 K. A linear relation between ϕ{sub B} and n in a statistical electrical characterization suggests a ϕ{sub B} inhomogeneity.

  7. Electric field breakdown of lateral-type Schottky diodes formed on lightly doped homoepitaxial diamond

    NASA Astrophysics Data System (ADS)

    Teraji, Tokuyuki; Koizumi, Satoshi; Koide, Yasuo; Ito, Toshimichi

    2008-07-01

    The reverse current of lateral-type Schottky diodes fabricated on p-type homoepitaxial diamond was analyzed by changing the distance between Schottky and Ohmic electrodes and the metal materials in the Schottky electrodes. The maximum electric field at breakdown was 0.56 MV cm -1 for the Au Schottky contact and less than 0.26 MV cm -1 for the Al Schottky contact. The breakdown voltage depended on the electrode distance when the diamond surface was revealed in vacuum, whereas the Schottky diodes sustained the applied voltage of 500 V, corresponding to 0.69 MV cm -1, after covering of the diamond surface with an insulating liquid. Diamond surface protection is an indispensable technique for fabrication of high-voltage Schottky diodes based on diamond.

  8. Metal silicide/poly-Si Schottky diodes for uncooled microbolometers

    PubMed Central

    2013-01-01

    Nickel silicide Schottky diodes formed on polycrystalline Si 〈P〉 films are proposed as temperature sensors of monolithic uncooled microbolometer infrared focal plane arrays. The structure and composition of nickel silicide/polycrystalline silicon films synthesized in a low-temperature process are examined by means of transmission electron microscopy. The Ni silicide is identified as a multi-phase compound composed of 20% to 40% of Ni3Si, 30% to 60% of Ni2Si, and 10% to 30% of NiSi with probable minor content of NiSi2 at the silicide/poly-Si interface. Rectification ratios of the Schottky diodes vary from about 100 to about 20 for the temperature increasing from 22℃ to 70℃; they exceed 1,000 at 80 K. A barrier of around 0.95 eV is found to control the photovoltage spectra at room temperature. A set of barriers is observed in photo-electromotive force spectra at 80 K and attributed to the Ni silicide/poly-Si interface. Absolute values of temperature coefficients of voltage and current are found to vary from 0.3%℃ to 0.6%/℃ for forward bias and around 2.5%/℃ for reverse bias of the diodes. PMID:23594606

  9. Schottky barrier parameters and low frequency noise characteristics of graphene-germanium Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Khurelbaatar, Zagarzusem; Kil, Yeon-Ho; Shim, Kyu-Hwan; Cho, Hyunjin; Kim, Myung-Jong; Lee, Sung-Nam; Jeong, Jae-chan; Hong, Hyobong; Choi, Chel-Jong

    2016-03-01

    We investigated the electrical properties of chemical vapor deposition-grown monolayer graphene/n-type germanium (Ge) Schottky barrier diodes (SBD) using current-voltage (I-V) characteristics and low frequency noise measurements. The Schottky barrier parameters of graphene/n-type Ge SBDs, such as Schottky barrier height (VB), ideality factor (n), and series resistance (Rs), were extracted using the forward I-V and Cheung's methods. The VB and n extracted from the forward ln(I)-V plot were found to be 0.63 eV and 1.78, respectively. In contrast, from Cheung method, the VB and n were calculated to be 0.53 eV and 1.76, respectively. Such a discrepancy between the values of VB calculated from the forward I-V and Cheung's methods indicated a deviation from the ideal thermionic emission of graphene/n-type Ge SBD associated with the voltage drop across graphene. The low frequency noise measurements performed at the frequencies in the range of 10 Hz-1 kHz showed that the graphene/n-type Ge SBD had 1/f γ frequency dependence, with γ ranging from 1.09 to 1.12, regardless of applied forward biases. Similar to forward-biased SBDs operating in the thermionic emission mode, the current noise power spectral density of graphene/n-type Ge SBD was linearly proportional to the forward current.

  10. Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations

    NASA Astrophysics Data System (ADS)

    Sciuto, A.; Torrisi, L.; Cannavò, A.; Mazzillo, M.; Calcagno, L.

    2017-07-01

    Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (˜1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.

  11. Neutron irradiation effects on gallium nitride-based Schottky diodes

    SciTech Connect

    Lin, Chung-Han; Katz, Evan J.; Zhang, Zhichun; Qiu, Jie; Cao, Lei; Mishra, Umesh K.; Brillson, Leonard J.

    2013-10-14

    Depth-resolved cathodoluminescence spectroscopy (DRCLS), time-resolved surface photovoltage spectroscopy, X-ray photoemission spectroscopy (XPS), and current-voltage measurements together show that fast versus thermal neutrons differ strongly in their electronic and morphological effects on metal-GaN Schottky diodes. Fast and thermal neutrons introduce GaN displacement damage and native point defects, while thermal neutrons also drive metallurgical reactions at metal/GaN interfaces. Defect densities exhibit a threshold neutron fluence below which thermal neutrons preferentially heal versus create new native point defects. Scanning XPS and DRCLS reveal strong fluence- and metal-dependent electronic and chemical changes near the free surface and metal interfaces that impact diode properties.

  12. Zr/oxidized diamond interface for high power Schottky diodes

    SciTech Connect

    Traoré, A. Muret, P.; Fiori, A.; Eon, D.; Gheeraert, E.; Pernot, J.

    2014-02-03

    High forward current density of 10{sup 3} A/cm{sup 2} (at 6 V) and a breakdown field larger than 7.7 MV/cm for diamond diodes with a pseudo-vertical architecture, are demonstrated. The power figure of merit is above 244 MW/cm{sup 2} and the relative standard deviation of the reverse current density over 83 diodes is 10% with a mean value of 10{sup −9} A/cm{sup 2}. These results are obtained with zirconium as Schottky contacts on the oxygenated (100) oriented surface of a stack comprising an optimized lightly boron doped diamond layer on a heavily boron doped one, epitaxially grown on a Ib substrate. The origin of such performances are discussed.

  13. Development and fabrication of improved Schottky power diodes, phases I and II

    NASA Technical Reports Server (NTRS)

    Cordes, L. F.; Garfinkle, M.; Taft, E. A.

    1974-01-01

    Reproducible methods for the fabrication of silicon Schottky diodes were developed for the metals tungsten, aluminum, conventional platinum silicide and low temperature platinum silicide. Barrier heights and barrier lowering were measured permitting the accurate prediction of ideal forward and reverse diode performance. Processing procedures were developed which permit the fabrication of large area (approximately 1 sqcm) mesa-geometry power Schottky diodes with forward and reverse characteristics that approach theoretical values.

  14. A Schottky/2-DEG varactor diode for millimeter and submillimeter wave multiplier applications

    NASA Technical Reports Server (NTRS)

    Peatman, W. C. B.; Crowe, Thomas W.; Shur, M.; Gelmont, B.

    1992-01-01

    A new Schottky diode is investigated for use as a multiplier element in the millimeter and submillimeter wavelength regions. The new diode is based on the Schottky contact at the edge of a 2-dimensional electron gas (2-DEG). As a negative voltage is applied to the Schottky contact, the depletion layer between the Schottky contact and the 2-DEG expands and the junction capacitance decreases, resulting in a nonlinear capacitance-voltage characteristic. In this paper, we outline the theory, design, fabrication, and evaluation of the new device. Recent results include devices having cutoff frequencies of 1 THz and above. Preliminary multiplier results are also presented.

  15. Tension assisted metal transfer of graphene for Schottky diodes onto wafer scale substrates

    NASA Astrophysics Data System (ADS)

    Lee, Jooho; Lee, Su Chan; Kim, Yongsung; Heo, Jinseong; Lee, Kiyoung; Lee, Dongwook; Kim, Jaekwan; Lee, Sunghee; Lee, Chang Seung; Nam, Min Sik; Jun, Seong Chan

    2016-02-01

    We developed an effective graphene transfer method for graphene/silicon Schottky diodes on a wafer as large as 6 inches. Graphene grown on a large scale substrate was passivated and sealed with a gold layer, protecting graphene from any possible contaminant and keeping good electrical contact. The Au/graphene was transferred by the tension-assisted transfer process without polymer residues. The gold film itself was used directly as the electrodes of a Schottky diode. We demonstrated wafer-scale integration of graphene/silicon Schottky diode using the proposed transfer process. The transmission electron microscopy analysis and relatively low ideality factor of the diodes indicated fewer defects on the interface than those obtained using the conventional poly(methyl methacrylate)-assisted transfer method. We further demonstrated gas sensors as an application of graphene Schottky diodes.

  16. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    SciTech Connect

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M.; Koeck, Franz A. M.; Nemanich, Robert J.

    2016-06-14

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco{sup ®} Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.

  17. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    NASA Astrophysics Data System (ADS)

    Hathwar, Raghuraj; Dutta, Maitreya; Koeck, Franz A. M.; Nemanich, Robert J.; Chowdhury, Srabanti; Goodnick, Stephen M.

    2016-06-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  18. Electrical characterization of MEH-PPV based Schottky diodes

    SciTech Connect

    Nimith, K. M. Satyanarayan, M. N. Umesh, G.

    2016-05-06

    MEH-PPV Schottky diodes with and without Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) have been fabricated and characterized. The highlight of this work is that all the fabrication and characterization steps had been carried out in the ambient conditions and the device fabrication was done without any UV-Ozone surface treatment of ITO anodes. Current Density-Voltage characteristics shows that the addition of hole injection layer (HIL) enhances the charge injection into the polymer layer by reducing the energy barrier across the Indium Tin Oxide (ITO)-Organic interface. The rectification ratio increases to 2.21 from 0.76 at 5V for multilayer devices compared to single layer devices. Further we investigated the effect of an alkali metal fluoride (LiF) by inserting a thin layer in between the organic layer and Aluminum (Al) cathode. The results of these investigations will be discussed in detail.

  19. Graphene-Based Reversible Nano-Switch/Sensor Schottky Diode

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Meador, Michael A.; Theofylaktos, Onoufrios; Pinto, Nicholas J.; Mueller, Carl H.; Santos-Perez, Javier

    2010-01-01

    This proof-of-concept device consists of a thin film of graphene deposited on an electrodized doped silicon wafer. The graphene film acts as a conductive path between a gold electrode deposited on top of a silicon dioxide layer and the reversible side of the silicon wafer, so as to form a Schottky diode. By virtue of the two-dimensional nature of graphene, this device has extreme sensitivity to different gaseous species, thereby serving as a building block for a volatile species sensor, with the attribute of having reversibility properties. That is, the sensor cycles between active and passive sensing states in response to the presence or absence of the gaseous species.

  20. Electrical characterization of MEH-PPV based Schottky diodes

    NASA Astrophysics Data System (ADS)

    Nimith, K. M.; Satyanarayan, M. N.; Umesh, G.

    2016-05-01

    MEH-PPV Schottky diodes with and without Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) have been fabricated and characterized. The highlight of this work is that all the fabrication and characterization steps had been carried out in the ambient conditions and the device fabrication was done without any UV-Ozone surface treatment of ITO anodes. Current Density-Voltage characteristics shows that the addition of hole injection layer (HIL) enhances the charge injection into the polymer layer by reducing the energy barrier across the Indium Tin Oxide (ITO)-Organic interface. The rectification ratio increases to 2.21 from 0.76 at 5V for multilayer devices compared to single layer devices. Further we investigated the effect of an alkali metal fluoride (LiF) by inserting a thin layer in between the organic layer and Aluminum (Al) cathode. The results of these investigations will be discussed in detail.

  1. Harmonic balance optimization of terahertz Schottky diode multipliers using an advanced device model

    NASA Technical Reports Server (NTRS)

    Schlecht, E. T.; Chattopadhyay, G.; Maestrini, A.; Pukala, D.; Gill, J.; Mehdi, I.

    2002-01-01

    Substantial proress has been made recently in the advancement of solid state terahertz sources using chains of Schottky diode frequency multipliers. We have developed a harmonic balance simulator and corresponding diode model that incorporates many other factors participating in the diode behavior.

  2. Simulation of a perfect CVD diamond Schottky diode steep forward current-voltage characteristic

    NASA Astrophysics Data System (ADS)

    Kukushkin, V. A.

    2016-10-01

    The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current-voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.

  3. Terahertz Sub-harmonic Mixer Using Discrete Schottky Diode for Planetary Science and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Yang, F.; Meng, H. F.; Duo, W. B.; Sun, Z. L.

    2017-01-01

    Sub-harmonic mixers are the core element of terahertz room temperature, high spectral resolution heterodyne receivers for planetary science, and remote sensing. Here, terahertz sub-harmonic mixer up to 400 GHz using discrete Schottky diode is presented. Measured performance is in agreement with results from the linear and nonlinear co-simulations, and this methodology shows its practicability for the discrete planar GaAs Schottky diode-based terahertz core circuit design.

  4. Metal-oxide-semiconductor capacitors and Schottky diodes studied with scanning microwave microscopy at 18 GHz

    NASA Astrophysics Data System (ADS)

    Kasper, M.; Gramse, G.; Hoffmann, J.; Gaquiere, C.; Feger, R.; Stelzer, A.; Smoliner, J.; Kienberger, F.

    2014-11-01

    We measured the DC and RF impedance characteristics of micrometric metal-oxide-semiconductor (MOS) capacitors and Schottky diodes using scanning microwave microscopy (SMM). The SMM consisting of an atomic force microscopy (AFM) interfaced with a vector network analyser (VNA) was used to measure the reflection S11 coefficient of the metallic MOS and Schottky contact pads at 18 GHz as a function of the tip bias voltage. By controlling the SMM biasing conditions, the AFM tip was used to bias the Schottky contacts between reverse and forward mode. In reverse bias direction, the Schottky contacts showed mostly a change in the imaginary part of the admittance while in forward bias direction the change was mostly in the real part of the admittance. Reference MOS capacitors which are next to the Schottky diodes on the same sample were used to calibrate the SMM S11 data and convert it into capacitance values. Calibrated capacitance between 1-10 fF and 1/C2 spectroscopy curves were acquired on the different Schottky diodes as a function of the DC bias voltage following a linear behavior. Additionally, measurements were done directly with the AFM-tip in contact with the silicon substrate forming a nanoscale Schottky contact. Similar capacitance-voltage curves were obtained but with smaller values (30-300 aF) due to the corresponding smaller AFM-tip diameter. Calibrated capacitance images of both the MOS and Schottky contacts were acquired with nanoscale resolution at different tip-bias voltages.

  5. Planar Schottky barrier mixer diodes for space applications at submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Bishop, W. L.; Crowe, T. W.; Mattauch, R. J.; Ostdiek, P. H.

    1991-01-01

    Available planar diodes for space-based applications at submillimeter wavelengths have not achieved either the required low junction capacitance or the low series resistance-junction capacitance product. Here, the development of a novel planar diode structure that overcomes both of these difficulties is outlined. The characteristics of these Schottky barrier mixer diodes are presented and electron micrographs are shown. The diode structure will allow planar technology to be extended throughout the submillimeter wavelength range.

  6. High performance Schottky diodes based on indium-gallium-zinc-oxide

    SciTech Connect

    Zhang, Jiawei; Song, Aimin; Xin, Qian

    2016-07-15

    Indium-gallium-zinc-oxide (IGZO) Schottky diodes exhibit excellent performance in comparison with conventional devices used in future flexible high frequency electronics. In this work, a high performance Pt IGZO Schottky diode was presented by using a new fabrication process. An argon/oxygen mixture gas was introduced during the deposition of the Pt layer to reduce the oxygen deficiency at the Schottky interface. The diode showed a high barrier height of 0.92 eV and a low ideality factor of 1.36 from the current–voltage characteristics. Even the radius of the active area was 0.1 mm, and the diode showed a cut-off frequency of 6 MHz in the rectifier circuit. Using the diode as a demodulator, a potential application was also demonstrated in this work.

  7. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    PubMed Central

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  8. InGaAs/InP heteroepitaxial Schottky barrier diodes for terahertz applications

    NASA Technical Reports Server (NTRS)

    Bhapkar, Udayan V.; Li, Yongjun; Mattauch, Robert J.

    1992-01-01

    This paper explores the feasibility of planar, sub-harmonically pumped, anti-parallel InGaAs/InP heteroepitaxial Schottky diodes for terahertz applications. We present calculations of the (I-V) characteristics of such diodes using a numerical model that considers tunneling. We also present noise and conversion loss predictions of diode mixers operated at 500 GHz, and obtained from a multi-port mixer analysis, using the I-V characteristics predicted by our model. Our calculations indicate that InGaAs/InP heteroepitaxial Schottky barrier diodes are expected to have an I-V characteristic with an ideality factor comparable to that of GaAs Schottky diodes. However, the reverse saturation current of InGaAs/InP diodes is expected to be much greater than that of GaAs diodes. These predictions are confirmed by experiment. The mixer analyses predict that sub-harmonically pumped anti-parallel InGaAs/InP diode mixers are expected to offer a 2 dB greater conversion loss and a somewhat higher single sideband noise temperature than their GaAs counterparts. More importantly, the InGaAs/InP devices are predicted to require only one-tenth of the local oscillator power required by similar GaAs diodes.

  9. Barrier height enhancement of Ni/GaN Schottky diode using Ru based passivation scheme

    SciTech Connect

    Kumar, Ashish Kumar, Mukesh; Singh, R.; Kaur, Riajeet; Joshi, Amish G.; Vinayak, Seema

    2014-03-31

    Wet chemical passivation of n-GaN surface using Ru based solution has been reported. X-ray photoelectron spectroscopy characterization of the GaN surface revealed removal of surface oxides by the introduction of Ru complex species. Ni/n-GaN Schottky barrier diodes were fabricated on passivated GaN and a remarkable improvement in Schottky barrier height from 0.76 eV to 0.92 eV was observed.

  10. On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)

    2015-01-01

    A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.

  11. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    NASA Astrophysics Data System (ADS)

    Garg, Manjari; Kumar, Ashutosh; Nagarajan, S.; Sopanen, M.; Singh, R.

    2016-01-01

    Current-voltage (I-V) measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu) Schottky diodes fabricated on Gallium Nitride (GaN) epitaxial films. An ideality factor of 1.7 was found at room temperature (RT), which indicated deviation from thermionic emission (TE) mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE) mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS) was used to investigate the plausible reason for observing Schottky barrier height (SBH) that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu2O) layer at the interface between Cu and GaN. With Cu2O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu2O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  12. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    SciTech Connect

    Garg, Manjari Kumar, Ashutosh; Singh, R.; Nagarajan, S.; Sopanen, M.

    2016-01-15

    Current-voltage (I-V) measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu) Schottky diodes fabricated on Gallium Nitride (GaN) epitaxial films. An ideality factor of 1.7 was found at room temperature (RT), which indicated deviation from thermionic emission (TE) mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE) mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS) was used to investigate the plausible reason for observing Schottky barrier height (SBH) that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu{sub 2}O) layer at the interface between Cu and GaN. With Cu{sub 2}O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu{sub 2}O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  13. New approach to the design of Schottky barrier diodes for THz mixers

    NASA Technical Reports Server (NTRS)

    Jelenski, A.; Grueb, A.; Krozer, V.; Hartnagel, H. L.

    1992-01-01

    Near-ideal GaAs Schottky barrier diodes especially designed for mixing applications in the THz frequency range are presented. A diode fabrication process for submicron diodes with near-ideal electrical and noise characteristics is described. This process is based on the electrolytic pulse etching of GaAs in combination with an in-situ platinum plating for the formation of the Schottky contacts. Schottky barrier diodes with a diameter of 1 micron fabricated by the process have already shown excellent results in a 650 GHz waveguide mixer at room temperature. A conversion loss of 7.5 dB and a mixer noise temperature of less than 2000 K have been obtained at an intermediate frequency of 4 GHz. The optimization of the diode structure and the technology was possible due to the development of a generalized Schottky barrier diode model which is valid also at high current densities. The common diode design and optimization is discussed on the basis of the classical theory. However, the conventional fomulas are valid only in a limited forward bias range corresponding to currents much smaller than the operating currents under submillimeter mixing conditions. The generalized new model takes into account not only the phenomena occurring at the junction such as current dependent recombination and drift/diffusion velocities, but also mobility and electron temperature variations in the undepleted epi-layer. Calculated diode I/V and noise characteristics are in excellent agreement with the measured values. Thus, the model offers the possibility of optimizing the diode structure and predicting the diode performance under mixing conditions at THz frequencies.

  14. Optimized design of 4H-SiC floating junction power Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Hongbin, Pu; Lin, Cao; Zhiming, Chen; Jie, Ren

    2009-04-01

    SiC floating junction Schottky barrier diodes were simulated with software MEDICI 4.0 and their device structures were optimized based on forward and reverse electrical characteristics. Compared with the conventional power Schottky barrier diode, the device structure is featured by a highly doped drift region and embedded floating junction region, which can ensure high breakdown voltage while keeping lower specific on-state resistance, solved the contradiction between forward voltage drop and breakdown voltage. The simulation results show that with optimized structure parameter, the breakdown voltage can reach 4 kV and the specific on-resistance is 8.3 mΩ·cm2.

  15. Simplified gas sensor model based on AlGaN/GaN heterostructure Schottky diode

    NASA Astrophysics Data System (ADS)

    Das, Subhashis; Majumdar, S.; Kumar, R.; Chakraborty, A.; Bag, A.; Biswas, D.

    2015-08-01

    Physics based modeling of AlGaN/GaN heterostructure Schottky diode gas sensor has been investigated for high sensitivity and linearity of the device. Here the surface and heterointerface properties are greatly exploited. The dependence of two dimensional electron gas (2DEG) upon the surface charges is mainly utilized. The simulation of Schottky diode has been done in Technology Computer Aided Design (TCAD) tool and I-V curves are generated, from the I-V curves 76% response has been recorded in presence of 500 ppm gas at a biasing voltage of 0.95 Volt.

  16. Simplified gas sensor model based on AlGaN/GaN heterostructure Schottky diode

    SciTech Connect

    Das, Subhashis Majumdar, S.; Kumar, R.; Bag, A.; Chakraborty, A.; Biswas, D.

    2015-08-28

    Physics based modeling of AlGaN/GaN heterostructure Schottky diode gas sensor has been investigated for high sensitivity and linearity of the device. Here the surface and heterointerface properties are greatly exploited. The dependence of two dimensional electron gas (2DEG) upon the surface charges is mainly utilized. The simulation of Schottky diode has been done in Technology Computer Aided Design (TCAD) tool and I-V curves are generated, from the I-V curves 76% response has been recorded in presence of 500 ppm gas at a biasing voltage of 0.95 Volt.

  17. Pile up of implanted phosphorus during palladium silicide formation and the characteristics of Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Kikuchi, Akira

    1983-07-01

    Schottky barrier diodes are fabricated on silicon surfaces whose impurity concentrations are controlled by ion implantation of phosphorus. The barriers are produced from Pd2Si or Al-Si. The forward voltages of Schottky barrier diodes made from Pd2Si show a much greater lowering than those made from Al-Si for implanted doses of 5×1013 cm-2 and higher. Spreading resistance measurements show that the implanted phosphorus atoms are piled up at the Pd2Si-Si interface during Pd2Si formation. This causes reduction in the effective barrier height.

  18. Bulk gallium nitride based electronic devices: Schottky diodes, Schottky-type ultraviolet photodetectors and metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Yi

    Gallium Nitride (GaN) is one of most promising semiconductor materials for high power, high temperature and high frequency applications. Due to the lack of native substrates for homoepitaxial growth, GaN electronic devices have been conventionally fabricated on epitaxial GaN layers grown on foreign substrates, mostly sapphire. This scheme complicates the fabrication process and compromises the device performance due to the large amount of native defects within the heteroepitaxial layer. In order to fabricate devices with improved performance and simplified fabrication processes, it is desirable to utilize high quality bulk GaN substrates. Recent developments in Hydride Vapor Phase Epitaxy (HVPE) technology have enabled the successful growth of free-standing GaN wafers with very low dislocation densities. This dissertation reports some developments in the device fabrication, performance and simulation based on bulk GaN substrates. We have fabricated vertical geometry Schottky diodes with a full backside ohmic contact using a bulk GaN substrate. The absence of the sapphire substrate, improved ohmic contact scheme and the vertical transport mode greatly enhance the forward current conduction of the bulk GaN Schottky diode. The device also displays a high reverse breakdown voltage and ultrafast reverse recovery characteristics. The low dislocation density of the substrate allows the fabrication of Schottky-type ultraviolet photodetectors with ultralow dark currents. The large band gap of GaN provides the intrinsic "visible blindness" of the UV photodetector. The device displays a reasonably high responsivity and a good linearity of photocurrent with UV irradiance. We have also fabricated MOS capacitors using a thermally oxidized bulk GaN substrate. The thermal gallium oxide is characterized and its oxidation mechanism and etching process are explored. The thermal grown Ga2O 3/GaN interface displays a relatively lower interface density of state as compared to the

  19. Study of breakdown voltage of indium-gallium-zinc-oxide-based Schottky diode

    SciTech Connect

    Xin, Qian; Yan, Linlong; Luo, Yi; Song, Aimin

    2015-03-16

    In contrast to the intensive studies on thin-film transistors based on indium gallium zinc oxide (IGZO), the research on IGZO-based diodes is still very limited, particularly on their behavior and stability under high bias voltages. Our experiments reveal a sensitive dependence of the breakdown voltage of IGZO Schottky diodes on the anode metal and the IGZO film thickness. Devices with an Au anode are found to breakdown easily at a reverse bias as low as −2.5 V, while the devices with a Pd anode and a 200-nm, fully depleted IGZO layer have survived up to −15 V. All diodes are fabricated by radio-frequency magnetron sputtering at room temperature without any thermal treatment, yet showing an ideality factor as low as 1.14, showing the possibility of achieving high-performance Schottky diodes on flexible plastic substrate.

  20. 1/f noise in forward biased high voltage 4H-SiC Schottky diodes

    NASA Astrophysics Data System (ADS)

    Shabunina, Eugenia I.; Levinshtein, Michael E.; Shmidt, Natalia M.; Ivanov, Pavel A.; Palmour, John W.

    2014-06-01

    The 1/f noise has been investigated for the first time at 300 and 77 K in high-quality 4H-SiC Schottky diodes. It is shown that, at 77 K, the dependence of the spectral noise density on current, SI(I), differs fundamentally between the cases of the current flowing through the main part of the diode with a comparatively high barrier and the current flowing through the nano-sized patches with a comparatively low barrier.

  1. A low-cost fabrication method for sub-millimeter wave GaAs Schottky diode

    NASA Astrophysics Data System (ADS)

    Jenabi, Sarvenaz; Deslandes, Dominic; Boone, Francois; Charlebois, Serge A.

    2017-10-01

    In this paper, a submillimeter-wave Schottky diode is designed and simulated. Effect of Schottky layer thickness on cut-off frequency is studied. A novel microfabrication process is proposed and implemented. The presented microfabrication process avoids electron-beam (e-beam) lithography which reduces the cost. Also, this process provides more flexibility in selection of design parameters and allows significant reduction in the device parasitic capacitance. A key feature of the process is that the Schottky contact, the air-bridges, and the transmission lines, are fabricated in a single lift-off step. This process relies on a planarization method that is suitable for trenches of 1–10 μm deep and is tolerant to end-point variations. The fabricated diode is measured and results are compared with simulations. A very good agreement between simulation and measurement results are observed.

  2. Simulation of electrical characteristics of GaN vertical Schottky diodes

    NASA Astrophysics Data System (ADS)

    Łukasiak, Lidia; Jasiński, Jakub; Jakubowski, Andrzej

    2016-12-01

    Reverse current of GaN vertical Schottky diodes is simulated using Silvaco ATLAS to optimize the geometry for the best performance. Several physical quantities and phenomena, such as carrier mobility and tunneling mechanism are studied to select the most realistic models. Breakdown voltage is qualitatively estimated based on the maximum electric field in the structure.

  3. New GaN Schottky barrier diode employing a trench on AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Ha, Min-Woo; Lee, Seung-Chul; Choi, Young-Hwan; Kim, Soo-Seong; Yun, Chong-Man; Han, Min-Koo

    2006-10-01

    A new GaN Schottky barrier diode employing a trench structure, which is proposed and fabricated, successfully decreases a forward voltage drop without sacrificing any other electric characteristics. The trench is located in the middle of Schottky contact during a mesa etch. The Schottky metal of Pt/Mo/Ti/Au is e-gun evaporated on the 300 nm-deep trench as well as the surface of the proposed GaN Schottky barrier diode. The trench forms the vertical Au Schottky contact and lateral Pt Schottky contact due to the evaporation sequence of Schottky metal. The forward voltage drops of the proposed diode and conventional one are 0.73 V and 1.25 V respectively because the metal work function (5.15 eV) of the vertical Au Schottky contact is considerably less than that of the lateral Pt Schottky contact (5.65 eV). The proposed diode exhibits the low on-resistance of 1.58 mΩ cm 2 while the conventional one exhibits 8.20 mΩ cm 2 due to the decrease of a forward voltage drop.

  4. Silicon Schottky photovoltaic diodes for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.

    1975-01-01

    Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.

  5. The Design and Analysis of Antiparallel Schottky Diode Mixers

    DTIC Science & Technology

    2000-09-29

    part is provided here to allow users access to individually authored sections f proceedings, annals, symposia, etc. However, the component should be...S.M. Marazita , W.L. Bishop, J.L. Hesler, K. Hui, W.E. Bowen, tune the LO impedance while not affecting the RF and T.W. Crowe, "Integrated GaAs Schottky

  6. On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Mehdi, Imran; Schlecht, Erich T.; Lee, Choonsup; Siles, Jose V.; Maestrini, Alain E.; Thomas, Bertrand; Jung, Cecile D.

    2013-01-01

    A 1.6-THz power-combined Schottky frequency tripler was designed to handle approximately 30 mW input power. The design of Schottky-based triplers at this frequency range is mainly constrained by the shrinkage of the waveguide dimensions with frequency and the minimum diode mesa sizes, which limits the maximum number of diodes that can be placed on the chip to no more than two. Hence, multiple-chip power-combined schemes become necessary to increase the power-handling capabilities of high-frequency multipliers. The design presented here overcomes difficulties by performing the power-combining directly on-chip. Four E-probes are located at a single input waveguide in order to equally pump four multiplying structures (featuring two diodes each). The produced output power is then recombined at the output using the same concept.

  7. Hydrogen sensing characteristics of semipolar (112{sup ¯}2) GaN Schottky diodes

    SciTech Connect

    Hyeon Baik, Kwang; Kim, Hyonwoong; Jang, Soohwan; Lee, Sung-Nam; Lim, Eunju; Pearton, S. J.; Ren, F.

    2014-02-17

    The hydrogen detection characteristics of semipolar (112{sup ¯}2) plane GaN Schottky diodes were investigated and compared to c-plane Ga- and N-polar and nonpolar a-plane (112{sup ¯}0) GaN diodes. The semipolar GaN diodes showed large current response to 4% hydrogen in nitrogen gas with an accompanying Schottky barrier reduction of 0.53 eV at 25 °C, and the devices exhibited full recovery to the initial current level upon switching to a nitrogen ambient. The current-voltage characteristics of the semipolar devices remained rectifying after hydrogen exposure, in sharp contrast to the case of c-plane N-polar GaN. These results show that the surface atom configuration and polarity play a strong role in hydrogen sensing with GaN.

  8. Enhanced random lasing from distributed Bragg reflector assisted Au-ZnO nanowire Schottky diode

    NASA Astrophysics Data System (ADS)

    Bashar, Sunayna B.; Suja, Mohammad; Shi, Wenhao; Liu, Jianlin

    2016-11-01

    An electrically pumped ultraviolet random laser based on an Au-ZnO nanowire Schottky junction on top of a SiO2/SiNx distributed Bragg reflector (DBR) has been fabricated. Electrical characterization shows typical Schottky diode current-voltage characteristics. Evident random lasing behavior is observed from electroluminescence measurement at room temperature. In comparison with a reference device having similar nanowire morphology but no DBR, this laser demonstrates almost 1.8 times reduction in threshold current and 4 times enhancement in output power. The performance enhancement originates from the incorporation of the DBR structure, which provides high reflectivity in the designed wavelength range.

  9. Electronic and Interfacial Properties of PD/6H-SiC Schottky Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Bansal, Gaurav; Petit, Jeremy B.; Knight, Dak; Liu, Chung-Chiun; Wu, Qinghai

    1996-01-01

    Pd/SiC Schottky diodes detect hydrogen and hydrocarbons with high sensitivity. Variation of the diode temperature from 100 C to 200 C shows that the diode sensitivity to propylene is temperature dependent. Long-term heat treating at 425 C up to 140 hours is carried out to determine the effect of extended heat treating on the diode properties and gas sensitivity. The heat treating significantly affects the diode's capacitive characteristics, but the diode's current carrying characteristics are much more stable with a large response to hydrogen. Scanning Electron Microscopy and X-ray Spectrometry studies of the Pd surface after the heating show cluster formation and background regions with grain structure observed in both regions. The Pd and Si concentrations vary between grains. Auger Electron Spectroscopy depth profiles revealed that the heat treating promoted interdiffusion and reaction between the Pd and SiC dw broadened the interface region. This work shows that Pd/SiC Schottky diodes have significant potential as high temperature gas sensors, but stabilization of the structure is necessary to insure their repeatability in long-term, high temperature applications.

  10. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.

    PubMed

    Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra

    2016-03-01

    Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes.

  11. Schottky diode based on WS2 crossed with PEDOT/PSSA

    NASA Astrophysics Data System (ADS)

    Ortiz, Deliris; Pinto, Nicholas; Naylor, Carl; Johnson, A. T. Charlie

    An easy technique to fabricate a Schottky diode with WS2 and PEDOT-PSSA under ambient conditions is presented. WS2 is an air stable transition metal dichalcogenide semiconductor. When connected as a field effect transistor, WS2 exhibited n-type behavior with a charge mobility of ~7cm2/V-s on SiO2. PEDOT/PSSA is a conducting polymer that can be electro-spun to form fibers with a conductivity of ~1 S/cm. In this work we fabricated a Schottky diode by crossing a CVD grown monolayer WS2 crystal with a single electro-spun PEDOT/PSSA fiber. The resulting diode characteristics were analyzed assuming the standard thermionic emission model of a Schottky junction. Analysis of the results includes the ideality parameter of 4.75, diode rectification ratio ~10, and a turn on voltage of 1.4V. Efforts to investigate if these parameters are tunable with a back gate will also be presented. This work was supported by NSF-DMR-1523463 and NSF DMR RUI-1360772. ATJ acknowledges support from EFRI 2DARE EFMA-1542879.

  12. Structural analysis of SiC Schottky diodes failure mechanism under current overload

    NASA Astrophysics Data System (ADS)

    León, J.; Berthou, M.; Perpiñà, X.; Banu, V.; Montserrat, J.; Vellvehi, M.; Godignon, P.; Jordà, X.

    2014-02-01

    1.2 kV-10 A tungsten Schottky diodes (W-SBD) have been aged and tested at limit under current overload (surge current pulses) to determine their structural weakest spots. All devices showed no ageing at 40 A amplitudes and a surge current capability higher than 60 A. Infrared lock-in measurements have located the weakest spots on the surface of failed chips and allowed us to non-invasively infer their origin: Schottky barrier modification by metal contact change. After, a focused ion beam coupled with scanning electron microscope has been used to analyse the physical signature at these locations. These inspections have revealed that the destruction mechanism responsible for their failure was the electromigration and thermomigration of tungsten into aluminum, locally modifying the electrical behaviour of the Schottky barrier (loss of blocking capability).

  13. Piezoelectric Response to Coherent Longitudinal and Transverse Acoustic Phonons in a Semiconductor Schottky Diode

    NASA Astrophysics Data System (ADS)

    Srikanthreddy, D.; Glavin, B. A.; Poyser, C. L.; Henini, M.; Lehmann, D.; Jasiukiewicz, Cz.; Akimov, A. V.; Kent, A. J.

    2017-02-01

    We study the generation of microwave electronic signals by pumping a (311) GaAs Schottky diode with compressive and shear acoustic phonons, generated by the femtosecond optical excitation of an Al film transducer and mode conversion at the Al-GaAs interface. They propagate through the substrate and arrive at the Schottky device on the opposite surface, where they induce a microwave electronic signal. The arrival time, the amplitude, and the polarity of the signals depend on the phonon mode. A theoretical analysis is made of the polarity of the experimental signals. This analysis includes the piezoelectric and deformation potential mechanisms of electron-phonon interaction in a Schottky contact and shows that the piezoelectric mechanism is dominant for both transverse and longitudinal modes with frequencies below 250 and 70 GHz, respectively.

  14. Investigation of Thickness Dependence of Metal Layer in Al/Mo/4H-SiC Schottky Barrier Diodes.

    PubMed

    Lee, Seula; Lee, Jinseon; Kang, Tai-Young; Kyoung, Sinsu; Jung, Eun Sik; Kim, Kyung Hwan

    2015-11-01

    In this paper, we present the preparation and characterization of Schottky barrier diodes based on silicon carbide with various Schottky metal layer thickness values. In this structure, molybdenum and aluminum were employed as the Schottky barrier metal and top electrode, respectively. Schottky metal layers were deposited with thicknesses ranging from 1000 to 3000 Å, and top electrodes were deposited with thickness as much as 3000 Å. The deposition of both metal layers was performed using the facing target sputtering (FTS) method, and the fabricated samples were annealed with the tubular furnace at 300 degrees C under argon ambient for 10 min. The Schottky barrier height, series resistance, and ideality factor was calculated from the forward I-V characteristic curve using the methods proposed by Cheung and Cheung, and by Norde. For as-deposited Schottky diodes, we observed an increase of the threshold voltage (V(T)) as the thickness of the Schottky metal layer increased. After the annealing, the Schottky barrier heights (SBHs) of the diodes, including Schottky metal layers of over 2000 Å, increased. In the case of the Schottky metal layer deposited to 1000 Å, the barrier heights decreased due to the annealing process. This may have been caused by the interfacial penetration phenomenon through the Schottky metal layer. For variations of V(T), the SBH changed with a similar tendency. The ideality factor and series resistance showed no significant changes before or after annealing. This indicates that this annealing condition is appropriate for Mo SiC structures. Our results confirm that it is possible to control V(T) by adjusting the thickness of the Schottky metal layer.

  15. Junction investigation of graphene/silicon Schottky diodes

    PubMed Central

    2012-01-01

    Here we present a facile technique for the large-scale production of few-layer graphene flakes. The as-sonicated, supernatant, and sediment of the graphene product were respectively sprayed onto different types of silicon wafers. It was found that all devices exhibited current rectification properties, and the supernatant graphene devices have the best performance. Schottky junctions formed between graphene flakes and silicon n-type substrates exhibit good photovoltaic conversion efficiency while graphene/p-Si devices have poor light harvesting capability. PMID:22687246

  16. Research on the electrical characteristics of the Pt/CdS Schottky diode

    NASA Astrophysics Data System (ADS)

    Ding, Jia-xin; Zhang, Xiang-feng; Yao, Guansheng

    2013-08-01

    With the development of technology, the demand for semiconductor ultraviolet detector is increasing day by day. Compared with the traditional infrared detector in missile guidance, ultraviolet/infrared dual-color detection can significantly improve the anti-interference ability of the missile. According to the need of missile guidance and other areas of the application of ultraviolet detector, the paper introduces a manufacture of the CdS Schottky barrier ultraviolet detector. By using the radio frequency magnetron sputtering technology, a Pt thin film layer is sputtered on CdS basement to form a Schottky contact firstly. Then the indium ohmic contact electrode is fabricated by thermal evaporation method, and eventually a Pt/CdS/In Schottky diode is formed. The I-V characteristic of the device was tested at room temperature, its zero bias current and open circuit voltage is -0.578nA and 130mV, respectively. Test results show that the the Schottky contact has been formed between Pt and CdS. The device has good rectifying characteristics. According to the thermionic emission theory, the I-V curve fitting analysis of the device was studied under the condition of small voltage. The ideality factor and Schottky barrier height is 1.89 and 0.61eV, respectively. The normalized spectral responsivity at zero bias has been tested. The device has peak responsivity at 500nm, and it cutoff at 510nm.

  17. Non-classical logic inverter coupling a ZnO nanowire-based Schottky barrier transistor and adjacent Schottky diode.

    PubMed

    Hosseini Shokouh, Seyed Hossein; Raza, Syed Raza Ali; Lee, Hee Sung; Im, Seongil

    2014-08-21

    On a single ZnO nanowire (NW), we fabricated an inverter-type device comprising a Schottky diode (SD) and field-effect transistor (FET), aiming at 1-dimensional (1D) electronic circuits with low power consumption. The SD and adjacent FET worked respectively as the load and driver, so that voltage signals could be easily extracted as the output. In addition, NW FET with a transparent conducting oxide as top gate turned out to be very photosensitive, although ZnO NW SD was blind to visible light. Based on this, we could achieve an array of photo-inverter cells on one NW. Our non-classical inverter is regarded as quite practical for both logic and photo-sensing due to its performance as well as simple device configuration.

  18. Charge transport mechanisms in Schottky diodes based on low-resistance CdTe:Mn

    SciTech Connect

    Kosyachenko, L. A. Yurtsenyuk, N. S.; Rarenko, I. M.; Sklyarchuk, V. M.; Sklyarchuk, O. F.; Zakharuk, Z. I.; Grushko, E. V.

    2013-07-15

    CdTe:Mn crystals with a resistivity of {approx}1 {Omega} cm at 300 K and Schottky diodes based on them are investigated. The electrical conductivity of the material and its temperature variations are explained in terms of the statistics of electrons and holes in semiconductors with allowance for the compensation processes. The ionization energy and the degree of compensation of the donors responsible for the conductivity are determined. It is shown that, in the case of forward connection and low reverse biases, the currents in Au/CdTe:Mn Schottky diode are determined by generation-recombination processes in the space-charge region. At higher reverse biases (above 1.5-2 V) the excess current is caused by electron tunneling from the metal to the semiconductor, and at even higher voltages (>6-7 V) an additional increase in the reverse current due to avalanche processes is observed.

  19. Impedance spectroscopic analysis of nanoparticle functionalized graphene/p-Si Schottky diode sensors

    NASA Astrophysics Data System (ADS)

    Uddin, Md Ahsan; Singh, Amol; Daniels, Kevin; Vogt, Thomas; Chandrashekhar, M. V. S.; Koley, Goutam

    2016-11-01

    Metallic nanoparticle (NP) functionalized graphene/p-Si Schottky diode (chemidiode) sensors have been investigated through dc amperometric and ac impedance spectroscopic (IS) measurements. Four fold sensitivity enhancement for NH3 is demonstrated after Pt nanoparticle functionalization of graphene/p-Si Schottky diode sensor, and the response is also orders of magnitude higher compared to functionalized graphene chemiresistor. Experimentally obtained impedance spectra were modeled utilizing an equivalent circuit for both sensor types, and the junction resistance and capacitance were extracted for various gaseous analytes exposure. Variations in junction resistance, capacitance and 3-dB cut-off frequency plotted in three-dimensional (3D) enables extraction of unique signatures for various analyte gases.

  20. Low-leakage p-type diamond Schottky diodes prepared using vacuum ultraviolet light/ozone treatment

    SciTech Connect

    Teraji, T.; Garino, Y.; Koide, Y.; Ito, T.

    2009-06-15

    Room-temperature fabrication of Schottky diodes was demonstrated for p-type boron-doped diamond. This fabrication method's key technique is selective modification of surface termination from monohydride into oxygen groups using vacuum ultraviolet light irradiation in oxygen. The Au contacts, formed on the hydrogen-terminated surface, maintained Ohmic properties after this selective surface oxidation. The Au contacts then deposited on the oxidized surface, imparting Schottky properties. The lateral-type diodes comprising Au Schottky contacts and Au Ohmic contacts showed blocking voltage higher than 1 kV without electrode guarding. The leakage current at 1 kV was as low as 30 pA.

  1. An integrated membrane sub-harmonic Schottky diode mixers at 340GHz

    NASA Astrophysics Data System (ADS)

    Wang, Junlong; Yang, Dabao; Xing, Dong; Liang, Shixiong; Zhang, Lisen; Zhao, Xiangyang; Feng, Zhihong

    2015-11-01

    This paper presents a sub-harmonic mixer operating over the spectral band 332-348 GHz. The mixers employ integrated GaAs membrane Schottky diode technology. The simulated results show that the conversion loss of the mixer is below dB in the band from 333 GHz to 347 GHz with a local oscillator power requirement of 5mW.The minimum is 8.2dB at 344GHz.

  2. Observation of negative differential capacitance (NDC) in Ti Schottky diodes on SiGe islands

    SciTech Connect

    Rangel-Kuoppa, Victor-Tapio; Jantsch, Wolfgang; Tonkikh, Alexander; Zakharov, Nikolay; Werner, Peter

    2013-12-04

    The Negative Differential Capacitance (NDC) effect on Ti Schottky diodes formed on n-type Silicon samples with embedded Germanium Quantum Dots (QDs) is observed and reported. The NDC-effect is detected using capacitance-voltage (CV) method at temperatures below 200 K. It is explained by the capture of electrons in Germanium QDs. Our measurements reveal that each Ge QD captures in average eight electrons.

  3. Fabrication and optimization of a whiskerless Schottky barrier diode for submillimeter wave applications

    NASA Technical Reports Server (NTRS)

    Bishop, W.; Mattauch, R. J.

    1990-01-01

    The following accomplishments were made towards the goal of an optimized whiskerless diode chip for submillimeter wavelength applications. (1) Surface channel whiskerless diode structure was developed which offers excellent DC and RF characteristics, reduced shunt capacitance and simplified fabrication compared to mesa and proton isolated structures. (2) Reliable fabrication technology was developed for the surface channel structure. The new anode plating technology is a major improvement. (3) DC and RF characterization of the surface channel diode was compared with whisker contacted diodes. This data indicates electrical performance as good as the best reported for similar whisker contacted devices. (4) Additional batches of surface channel diodes were fabricated with excellent I-V and reduced shunt capacitance. (5) Large scale capacitance modelinng was done for the planar diode structure. This work revealed the importance of removing the substrate gallium arsenide for absolute minimum pad capacitance. (6) A surface channel diode was developed on quartz substrate and this substrate was completely removed after diode mounting for minimum parasitic capacitance. This work continues with the goal of producing excellent quality submillimeter wavelength planar diodes which satisfy the requirements of easy handling and robustness. These devices will allow the routine implementation of Schottky receivers into space-based applications at frequencies as high as 1 THz, and, in the future, beyond.

  4. Fabrication and Characterization of Vertical Gallium Nitride Power Schottky Diodes on Bulk GaN Substrates FY2016

    DTIC Science & Technology

    2017-01-09

    no forward conduction was observed for all devices tested. Additionally, results show variation in the diode breakdown voltage with diode size, but...no clear trend between breakdown voltage and diode size was observed . 15. SUBJECT TERMS gallium nitride, Schottky diode, ammonothermal, I-V curve...8 Fig. 8 Reverse I-V curve with highest (VB) observed for each device size. 50 µm (VB = 30.5 V), 100 µm (VB = 28.5

  5. A 55 kW Three-Phase Inverter With Si IGBT s and SiC Schottky Diodes

    SciTech Connect

    Ozpineci, Burak; Chinthavali, Madhu Sudhan; Tolbert, Leon M; Kashyap, Avinash S; Mantooth, Homer A

    2006-01-01

    Silicon carbide (SiC) power devices are expected to have an impact on power converter efficiency, weight, volume, and reliability. Currently, only SiC Schottky diodes are commercially available at relatively low current ratings. Oak Ridge National Laboratory has collaborated with Cree and Semikron to build a Si insulated-gate bipolar transistor-SiC Schottky diode hybrid 55-kW inverter by replacing the Si p-n diodes in Semikron's automotive inverter with Cree's made-to-order higher current SiC Schottky diodes. This paper presents the developed models of these diodes for circuit simulators, shows inverter test results, and compares the results with those of a similar all-Si inverter.

  6. A 55-kW Three-Phase Inverter with Si IGBTs and SiC Schottky Diodes

    SciTech Connect

    Tolbert, Leon M; Ozpineci, Burak; Chinthavali, Madhu Sudhan; Mantooth, Homer A; Kashyap, Avinash S

    2009-01-01

    Silicon carbide (SiC) power devices are expected to have an impact on power converter efficiency, weight, volume, and reliability. Currently, only SiC Schottky diodes are commercially available at relatively low current ratings. Oak Ridge National Laboratory has collaborated with Cree and Semikron to build a Si insulated-gate bipolar transistor-SiC Schottky diode hybrid 55-kW inverter by replacing the Si p-n diodes in Semikron's automotive inverter with Cree's made-to-order higher current SiC Schottky diodes. This paper presents the developed models of these diodes for circuit simulators, shows inverter test results, and compares the results with those of a similar all-Si inverter.

  7. Design Considerations for Heavily-Doped Cryogenic Schottky Diode Varactor Multipliers

    NASA Technical Reports Server (NTRS)

    Schlecht, E.; Maiwald, F.; Chattopadhyay, G.; Martin, S.; Mehdi, I.

    2001-01-01

    Diode modeling for Schottky varactor frequency multipliers above 500 GHz is presented with special emphasis placed on simple models and fitted equations for rapid circuit design. Temperature- and doping-dependent mobility, resistivity, and avalanche current multiplication and breakdown are presented. Next is a discussion of static junction current, including the effects of tunneling as well as thermionic emission. These results have been compared to detailed measurements made down to 80 K on diodes fabricated at JPL, followed by a discussion of the effect on multiplier efficiency. Finally, a simple model of current saturation in the undepleted active layer suitable for inclusion in harmonic balance simulators is derived.

  8. X-ray detectors based on GaN Schottky diodes

    SciTech Connect

    Duboz, Jean-Yves; Frayssinet, Eric; Chenot, Sebastien; Reverchon, Jean-Luc; Idir, Mourad

    2010-10-18

    GaN Schottky diodes have been fabricated and tested as x-ray detectors in the range from 6 to 21 keV. The spectral response has been measured and is compared to its theoretical value. The study of the response and its temporal dynamics as a function of the bias allows to identify a photovoltaic behavior at low bias and a photoconductive one at larger reverse biases. The GaN diode turned out to be linear as a function of the incident power. The noise and detectivity are given and discussed.

  9. 670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)

    2014-01-01

    A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.

  10. 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta; hide

    2012-01-01

    GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.

  11. X-ray detection with zinc-blende (cubic) GaN Schottky diodes

    PubMed Central

    Gohil, T.; Whale, J.; Lioliou, G.; Novikov, S. V.; Foxon, C. T.; Kent, A. J.; Barnett, A. M.

    2016-01-01

    The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied depletion width and dark current measurements as functions of applied bias at room temperature are presented. At −5 V reverse bias, the capacitances of the diodes were measured to be (84.05 ± 0.01) pF and (121.67 ± 0.02) pF, respectively. At −5 V reverse bias, the dark current densities of the diodes were measured to be (347.2 ± 0.4) mA cm−2 and (189.0 ± 0.2) mA cm−2, respectively. The Schottky barrier heights of the devices (0.52 ± 0.07) eV and (0.63 ± 0.09) eV, respectively, were extracted from the forward dark current characteristics. PMID:27403806

  12. Development And Evaluation Of A SiC Schottky Diode For Harsh Environment Space Applications

    NASA Astrophysics Data System (ADS)

    Massetti, S.; Godignon, P.; Ciancetta, E.; Lopez, D.; Meurer, R.; Baur, C.; Jorda, X.

    2011-10-01

    This paper reports on the development and evaluation of a 300V-5A SiC Schottky diode with a wide temperature operation range capability (-170oC to 270oC), to be used as blocking diode for solar array cells strings. This work has been conducted in the frame of Bepicolombo technology development activities. In particular, the solar array design was considered the baseline for deriving the applicable electrical, reliability and environmental requirements. To extend the diodes' state of the art to this extended temperature range, different technological approaches have been considered, with mainly modifications in metallization layers and package processes. The diodes have been then submitted to ad-hoc evaluation program that was derived from ESCC 2265000 demonstrating high stability for a continuous operation at 270oC. This technological development was conducted by CNM under Thales Alenia Space - Turin contract.

  13. Influence of metal choice on (010) β-Ga2O3 Schottky diode properties

    NASA Astrophysics Data System (ADS)

    Farzana, Esmat; Zhang, Zeng; Paul, Pran K.; Arehart, Aaron R.; Ringel, Steven A.

    2017-05-01

    A systematic study of Schottky barriers fabricated on (010) β-Ga2O3 substrates is reported. Schottky barrier heights (SBHs) and current transport modes were analyzed using a combination of current-voltage (I-V), capacitance-voltage (C-V) and internal photoemission (IPE) measurements for Pd, Ni, Pt and Au Schottky diodes. Diodes fabricated for each metal choice displayed nearly ideal I-V characteristics with room temperature ideality factors ranging from 1.03 to 1.09, reverse leakage currents below detection limits and thermionic emission as the dominant current transport mode for Ni, Pt and Pd. The SBH values varied depending on the metal choice, ranging from 1.27 V for Pd and 1.54 V for Ni to 1.58 V for Pt and 1.71 V for Au, as determined using IPE measurements. Close agreement was observed between these IPE-determined SBH values and the barrier height values from I-V and C-V measurements for the Ni, Pd and Pt Schottky barriers. In contrast, for Au, a lack of general agreement was seen between the SBH measurement methods, the trends of which appear to be consistent with the presence of an inhomogeneous barrier that implies a more complex interface for the Au Schottky barrier. The dependence of the SBH on metal work function suggests that metal-(010) β-Ga2O3 interfaces are not fully pinned, and this assertion was supported by scanning Kelvin probe microscopy measurements made on this sample set.

  14. The effects of nuclear radiation on Schottky power diodes and power MOSFETs

    NASA Astrophysics Data System (ADS)

    Kulisek, Jonathan Andrew

    NASA is exploring the potential use of nuclear reactors as power sources for future space missions. These missions will require electrical components, consisting of power circuits and semiconductor devices, to be placed in close vicinity to the reactor, in the midst of a high neutron and gamma-ray radiation field. Therefore, the primary goal of this research is to examine the effects of a mixed neutron and gamma-ray radiation field on the static and dynamic electrical performance of power Schottky diodes and power MOSFETs in order to support future design efforts of radiation-hard power semiconductors and circuits. In order to accomplish this, non-radiation hardened commercial power Si and SiC Schottky power diodes, manufactured by International Rectifier and Cree, respectively, were irradiated in the Ohio State University Research Reactor (OSURR), and their degradation in electrical performance was observed using I-V characterization. Key electrical performance parameters were extracted using least squares curve-fits of the corresponding semiconductor physics model equations to the experimental data, and these electrical performance parameters were used to model the diodes in PSpice. A half-wave rectifier circuit containing Cree SiC Schottky diodes, rated for 5 A DC forward current and 1200 V DC blocking voltage, was also tested and modeled in order to determine and analyze changes in overall circuit performance and diode power dissipation as a function of radiation dose. Also, electrical components will be exposed to charged particle radiation from space, such as high energy protons in the Van Allen Radiation Belts surrounding earth. Therefore, the results from this study, with respect to the Si and SiC Schottky power diodes, were compared to results published by NASA, which had tested the same diode models at the Indiana University Cyclotron Facility (IUCF) with a 203 MeV proton beam. The comparison was made on the basis of displacement damage dose, calculated

  15. Theoretical Investigation of Large-Signal Noise in Nanometric Schottky-Barrier Diodes Operating in External Resonant Circuits

    NASA Astrophysics Data System (ADS)

    Shiktorov, P.; Starikov, E.; Gružinskis, V.; Varani, L.; Vaissière, J. C.; Reggiani, L.; Pérez, S.; González, T.

    2005-02-01

    We report Monte Carlo simulations of electronic noise in heavily doped nanometric GaAs Schottky-barrier diodes operating in series with a parallel resonant circuit when a high-frequency large-signal voltage is applied to the whole system. Significant modifications of the noise spectrum with respect to the unloaded diode are found to occur in the THz-region.

  16. High-performance a-In-Ga-Zn-O Schottky diode with oxygen-treated metal contacts

    NASA Astrophysics Data System (ADS)

    Chasin, Adrian; Steudel, Soeren; Myny, Kris; Nag, Manoj; Ke, Tung-Huei; Schols, Sarah; Genoe, Jan; Gielen, Georges; Heremans, Paul

    2012-09-01

    High-performance Schottky diodes based on palladium blocking contacts were fabricated upon depositing indium-gallium-zinc oxide (IGZO) with high oxygen content. We find that an oxygen treatment of the palladium contact is needed to achieve low off currents in the Schottky diode, and rationalize this by relating an increased oxygen content at the Pd/IGZO interface to a lower interfacial trap density. Optimized IGZO films were obtained with a record high ratio of free charge carrier density to subgap traps. The rectification ratios of diodes with such films are higher than 107 with current densities exceeding 103 A/cm2 at low forward bias of 2 V.

  17. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-01-01

    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0–20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung’s and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung’s methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles. PMID:26007733

  18. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.

    PubMed

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-05-21

    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  19. Temperature dependent electrical characterization of organic Schottky diode based on thick MgPc films

    NASA Astrophysics Data System (ADS)

    Singh, J.; Sharma, R. K.; Sule, U. S.; Goutam, U. K.; Gupta, Jagannath; Gadkari, S. C.

    2017-07-01

    Magnesium phthalocyanine (MgPc) based Schottky diode on indium tin oxide (ITO) substrate was fabricated by thermal evaporation method. The dark current voltage characteristics of the prepared ITO-MgPc-Al heterojunction Schottky diode were measured at different temperatures. The diode showed the non-ideal rectification behavior under forward and reverse bias conditions with a rectification ratio (RR) of 56 at  ±1 V at room temperature. Under forward bias, thermionic emission and space charge limited conduction (SCLC) were found to be the dominant conduction mechanisms at low (below 0.6 V) and high voltages (above 0.6 V) respectively. Under reverse bias conditions, Poole-Frenkel (field assisted thermal detrapping of carriers) was the dominant conduction mechanism. Three different approaches namely, I-V plots, Norde and Cheung methods were used to determine the diode parameters including ideality factor (n), barrier height (Φb), series resistance (R s) and were compared. SCLC mechanism showed that the trap concentration is 5.52  ×  1022 m-3 and it lies at 0.46 eV above the valence band edge.

  20. Infrared Vidicons Employing Metal-Silicon Schottky Diode Arrays

    DTIC Science & Technology

    1975-10-01

    platinum on the side of the wafer opposite to the diode array. (The iorward voltage drop calculated for the Pt-Si contact at 1 ixA is 70 mev...desired to calculate the potential at which the SiO surface will float in the geometry used in these retinae. It can be shown that the oxide...sin AW + cos Ax cos AW vc cos AW . A = l’\\ ’"• AW = R. (28) If one combines equations (28) and (24) to calculate the current flowing across the

  1. Depth and Thermal Stability of Dry Etch Damage in GaN Schottky Diodes

    SciTech Connect

    Baca, A.G.; Cao, X.A.; Cho, H.; Dang, G.T.; Hickman, R.; Pearton, S.J.; Ren, F.; Shul, R.J.; Van Hove, J.M.; Zhang, A.P.; Zhang, L.

    1999-07-06

    GaN Schottky diodes were exposed to N2 or H2 Inductively Coupled Plasmas prior to deposition of the rectifying contact. Subsequent annealing, wet photochemical etching or (NH4)2S surface passivation treatments were examined for their effect on diode current- voltage characteristics. We found that either annealing at 750 °C under N2, or removal of ~500-600 Å of the surface essentially restored the initial I-V characteristics. There was no measurable improvement in the plasma-exposed diode behavior with (NH4)2S treatments.

  2. Evaluation of Schottky barrier height on 4H-SiC m-face \\{ 1\\bar{1}00\\} for Schottky barrier diode wall integrated trench MOSFET

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yusuke; Ishimori, Hiroshi; Kinoshita, Akimasa; Kojima, Takahito; Takei, Manabu; Kimura, Hiroshi; Harada, Shinsuke

    2017-04-01

    We proposed an Schottky barrier diode wall integrated trench MOSFET (SWITCH-MOS) for the purposes of shrinking the cell pitch and suppressing the forward degradation of the body diode. A trench Schottky barrier diode (SBD) was integrated into a trench gate MOSFET with a wide shielding p+ region that protected the trench bottoms of both the SBD and the MOS gate from high electrical fields in the off state. The SBD was placed on the trench sidewall of the \\{ 1\\bar{1}00\\} plane (m-face). Static and transient simulations revealed that SWITCH-MOS sufficiently suppressed the bipolar current that induced forward degradation, and we determined that the optimum Schottky barrier height (SBH) was from 0.8 to 2.0 eV. The SBH depends on the crystal planes in 4H-SiC, but the SBH of the m-face was unclear. We fabricated a planar m-face SBD for the first time, and we obtained SBHs from 1.4 to 1.8 eV experimentally with titanium or nickel as a Schottky metal.

  3. Low-frequency noise properties in Pt-indium gallium zinc oxide Schottky diodes

    SciTech Connect

    Zhang, Jiawei; Zhang, Linqing; Ma, Xiaochen; Wilson, Joshua; Jin, Jidong; Du, Lulu; Xin, Qian; Song, Aimin

    2015-08-31

    The low-frequency noise properties of Pt-indium gallium zinc oxide (IGZO) Schottky diodes at different forward biases are investigated. The IGZO layer and Pt contact were deposited by RF sputtering at room temperature. The diode showed an ideality factor of 1.2 and a barrier height of 0.94 eV. The current noise spectral density exhibited 1/f behavior at low frequencies. The analysis of the current dependency of the noise spectral density revealed that for the as-deposited diode, the noise followed Luo's mobility and diffusivity fluctuation model in the thermionic-emission-limited region and Hooge's empirical theory in the series-resistance-limited region. A low Hooge's constant of 1.4 × 10{sup −9} was found in the space-charge region. In the series-resistance-limited region, the Hooge's constant was 2.2 × 10{sup −5}. After annealing, the diode showed degradation in the electrical performance. The interface-trap-induced noise dominated the noise spectrum. By using the random walk model, the interface-trap density was obtained to be 3.6 × 10{sup 15 }eV{sup −1 }cm{sup −2}. This work provides a quantitative approach to analyze the properties of Pt-IGZO interfacial layers. These low noise properties are a prerequisite to the use of IGZO Schottky diodes in switch elements in memory devices, photosensors, and mixer diodes.

  4. Effect of neutron irradiation on charge collection efficiency in 4H-SiC Schottky diode

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Jiang, Yong; Lei, Jiarong; Fan, Xiaoqiang; Chen, Yu; Li, Meng; Zou, Dehui; Liu, Bo

    2014-01-01

    The charge collection efficiency (CCE) in 4H-SiC Schottky diode is studied as a function of neutron fluence. The 4H-SiC diode was irradiated with fast neutrons of a critical assembly in Nuclear Physics and Chemistry Institute and CCE for 3.5 MeV alpha particles was then measured as a function of the applied reverse bias. It was found from our experiment that an increase of neutron fluence led to a decrease of CCE. In particular, CCE of the diode was less than 1.3% at zero bias after an irradiation at 8.26×1014 n/cm2. A generalized Hecht's equation was employed to analyze CCE in neutron irradiated 4H-SiC diode. The calculations nicely fit the CCE of 4H-SiC diode irradiated at different neutron fluences. According to the calculated results, the extracted electron μτ product (μτ)e and hole μτ product (μτ)h of the irradiated 4H-SiC diode are found to decrease by increasing the neutron fluence.

  5. Interface states of Ag/(110)GaAs Schottky diodes without and with interfacial layers

    SciTech Connect

    Platen, W.; Schmutzler, H.; Kohl, D.; Brauchle, K.; Wolter, K.

    1988-07-01

    GaAs(110) faces with different preparations: ultrahigh vacuum (UHV) cleaved, polished and etched, polished and sputtered: are prepared as Schottky diodes by the deposition of Ag. Diodes based on UHV-cleaved faces do show homogeneously distributed EL2 and EL5 states in deep level transient spectroscopy (DLTS). On polished and etched samples an additional interface state (IS) distribution with a density of 9 x 10/sup 11/ eV/sup -1/ cm/sup -2/ at the DLTS maximum appears. These states can be caused by defects at the oxidic interfacial layer. Polishing and sputtering also evokes the IS distribution. The absence of a DLTS signal from metal-induced gap states (MIGS) which pin the Fermi level at 0.49 eV above the valence-band maximum is related to the absence of an interfacial layer in the UHV prepared Schottky diodes. The sputter process increases the electron density in a thin layer below the interface by an As excess. The corresponding smaller extent of the barrier causes an additional electron emission via tunneling processes from the IS distribution. Furthermore, a near-interface state, EL6 (V/sub Ga/-V/sub As/), shows up. Its concentration at the interface attains N/sub EL6/ = 2.5 x 10/sup 16/ cm/sup -3/ comparable to the shallow donor concentration.

  6. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  7. Temperature-dependent electrical transport properties of (Au/Ni)/n-GaN Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Dogan, Hulya; Elagoz, Sezai

    2014-09-01

    The temperature-dependent electrical properties of (Au/Ni)/n-GaN Schottky barrier diodes (SBDs)have been investigated in the wide temperature range of 40-400 K. The analysis of the main electrical characteristics such as zero-bias barrier height (ΦB0), ideality factor (n) and series resistance (Rs) were found strongly temperature dependent. Such behavior is attributed to barrier inhomogeneities by assuming a Gaussian distribution (GD) of barrier heights (BHs) at the interface. It is evident that the diode parameters such as zero-bias barrier height increases and the ideality factor decreases with increasing temperature. The values of series resistance that are obtained from Cheung's method are decreasing with increasing temperature. The temperature dependence of Schottky barrier height (SBD) and ideality factor (n) are explained by invoking three sets of Gaussian distribution of (SBH) in the temperature ranges of 280-400 K, 120-260 K and 40-100 K, respectively. (Au/Ni)/n-GaN Schottky barrier diode have been shown a Gaussian distribution giving mean BHs (ΦbarB0) of 1.167, 0.652 and 0.356 eV and standard deviation σs of 0.178, 0.087 and 0.133 V for the three temperature regions. A modified ln(I0/T2)-q2σ2/2k2T2 vs. 1/kT plot have given ΦbarB0 and A* as 1.173 eV and 34.750 A/cm2 K2, 0.671 eV and 26.293 A/cm2 K2, 0.354 eV and 10.199 A/cm2 K2, respectively.

  8. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    NASA Astrophysics Data System (ADS)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Manaf Hashim, Abdul; Fadzli Abd Rahman, Shaharin; Rahman, Abdul Rahim Abdul; Nizam Osman, Mohd

    2011-02-01

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  9. THz frequency multiplier chains base on planar Schottky diodes

    NASA Technical Reports Server (NTRS)

    Maiwald, F.; Schlecht, E.; Maestrini, A.; Chattopadhyay, G.; Pearson, J.; Pukala, D.; Mehdi, I.

    2002-01-01

    The Herschel Space Observatory (HSO), an ESA cornerstone mission with NASA contribution, will enable a comprehensive study of the galactic as well as the extra galactic universe. At the heart of this exploration are ultra sensitive coherent detectors that can allow for high-resolution spectroscopy. Successful operation of these receivers is predicated on providing a sufficiently powerful local oscillator (LO) source. Historically, a versatile space qualified LO source for frequencies beyond 500 GHz has been difficult if not impossible. This paper will focus on the effort under way to develop, build, characterize and qualify a LO chain to 1200 GHz (Band 5 on HSO) that is based on planar GaAs diodes mounted in waveguide circuits. State-of-the-art performance has been obtained from a three-stage ( x2 x 2 x 3 ) multiplier chain that can provide a peak output power of 120 uW (1178 GHz) at room temperature and a peak output power of 190 uW at 1183 GHz when cooled to 113 K. Implementation of this LO source for the Heterodyne Instrument for Far Infrared (HIFI) on HSO will be discussed in detail.

  10. Analysis of Heavy Ion Irradiation Induced Thermal Damage in SiC Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Abbate, C.; Busatto, G.; Cova, P.; Delmonte, N.; Giuliani, F.; Iannuzzo, F.; Sanseverino, A.; Velardi, F.

    2015-02-01

    A study is presented aimed at describing phenomena involved in Single Event Burnout induced by heavy ion irradiation in SiC Schottky diodes. On the basis of experimental data obtained for 79Br irradiation at different energies, electro-thermal FEM is used to demonstrate that the failure is caused by a strong local increase of the semiconductor temperature. With respect to previous studies the temperature dependent thermal material properties were added. The critical ion energy calculated by this model is in agreement with literature experimental results. The substrate doping dependence of the SEE robustness was analyzed, proving the effectiveness of the developed model for device technological improvements.

  11. High performance trench MOS barrier Schottky diode with high-k gate oxide

    NASA Astrophysics Data System (ADS)

    Zhai, Dong-Yuan; Zhu, Jun; Zhao, Yi; Cai, Yin-Fei; Shi, Yi; Zheng, You-Liao

    2015-07-01

    A novel trench MOS barrier Schottky diode (TMBS) device with a high-k material introduced into the gate insulator is reported, which is named high-k TMBS. By simulation with Medici, it is found that the high-k TMBS can have 19.8% lower leakage current while maintaining the same breakdown voltage and forward turn-on voltage compared with the conventional regular trench TMBS. Project supported by the National Basic Research Program of China (Grant No. 2011CBA00607), the National Natural Science Foundation of China (Grant Nos. 61106089 and 61376097), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR14F040001).

  12. Catalytic-Metal/PdO(sub x)/SiC Schottky-Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Lukco, Dorothy

    2006-01-01

    Miniaturized hydrogen- and hydrocarbon-gas sensors, heretofore often consisting of Schottky diodes based on catalytic metal in contact with SiC, can be improved by incorporating palladium oxide (PdOx, where 0 less than or equal to x less than or equal to 1) between the catalytic metal and the SiC. In prior such sensors in which the catalytic metal was the alloy PdCr, diffusion and the consequent formation of oxides and silicides of Pd and Cr during operation at high temperature were observed to cause loss of sensitivity. However, it was also observed that any PdOx layers that formed and remained at PdCr/SiC interfaces acted as barriers to diffusion, preventing further deterioration by preventing the subsequent formation of metal silicides. In the present improvement, the lesson learned from these observations is applied by placing PdOx at the catalytic metal/SiC interfaces in a controlled and uniform manner to form stable diffusion barriers that prevent formation of metal silicides. A major advantage of PdOx over other candidate diffusion-barrier materials is that PdOx is a highly stable oxide that can be incorporated into gas sensor structures by use of deposition techniques that are standard in the semiconductor industry. The PdOx layer can be used in a gas sensor structure for improved sensor stability, while maintaining sensitivity. For example, in proof-of-concept experiments, Pt/PdOx/SiC Schottky-diode gas sensors were fabricated and tested. The fabrication process included controlled sputter deposition of PdOx to a thickness of 50 Angstroms on a 400-m-thick SiC substrate, followed by deposition of Pt to a thickness of 450 Angstroms on the PdOx. The SiC substrate (400 microns in thickness) was patterned with photoresist and a Schottky-diode photomask. A lift-off process completed the definition of the Schottky-diode pattern. The sensors were tested by measuring changes in forward currents at a bias potential of 1 V during exposure to H2 in N2 at temperatures

  13. Optical response at 10.6 microns in tungsten silicide Schottky barrier diodes

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Boyd, Joseph T.; Jackson, Howard E.

    1987-01-01

    Optical response to radiation at a wavelength of 10.6 microns in tungsten silicide-silicon Schottky barrier diodes has been observed. Incident photons excite electrons by means of junction plasmon assisted inelastic electron tunneling. At 78 K, a peak in the second derivative of current versus junction bias voltage was observed at a voltage corresponding to the energy of photons having a wavelength of 10.6 microns. This peak increased with increasing incident laser power, saturating at the highest laser powers investigated.

  14. Model of High-Energy-Density Battery Based on SiC Schottky Diodes

    DTIC Science & Technology

    2006-10-01

    ARL -D J M MILLER ATTN AMSRD- ARL -CI-OK-T TECHL PUB (2 COPIES ) ATTN AMSRD- ARL -CI-OK-TL TECHL LIB (2 COPIES) ATTN AMSRD- ARL -SE-DE M LITZ ...Model of High-Energy-Density Battery Based on SiC Schottky Diodes by Yves Ngu, Marc Litz , and Bruce Geil ARL -TR-3981 Ocotber 2006...Spectrum September 2004, 36-41. 6. Litz , M .; et al. On-Demand High Energy Density Materials. Amer. Inst. of Aero. and Astro. 7. Litz , M

  15. Temperature dependence of the inhomogeneous parameters of the Mo/4H-SiC Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Latreche, A.; Ouennoughi, Z.; Weiss, R.

    2016-08-01

    The inhomogeneous parameters of Mo/4H-SiC Schottky barrier diodes were determined from current-voltage (I-V) characteristics in the temperature range of 303-498 K by using a general approach for the real Schottky diode. In this approach the total series resistances is divided into two resistances; the first one (R P) is the sum of the series resistances (r) of the particular diodes connected in parallel and the second is the common resistance (R C) to all particular diodes. The mean barrier height (\\bar{φ }) and the standard deviation (σ) decrease linearly with decreasing temperature and they are between the values for the diodes with the two limiting cases; no current spreading and full current spreading. The series resistance R C increases, while the series resistance R P slightly decreases with decreasing temperature.

  16. Electrical characteristics of AlxGa1-xN Schottky diodes prepared by a two-step surface treatment

    NASA Astrophysics Data System (ADS)

    Motayed, Abhishek; Sharma, Ashok; Jones, Kenneth A.; Derenge, Michael A.; Iliadis, Agis A.; Mohammad, S. Noor

    2004-09-01

    Near-ideal Schottky barrier contacts to n-type Al0.22Ga0.78N have been developed by a two-step surface treatment technique. Plasma etching of the AlxGa1-xN surface prior to Schottky metal deposition, combined with sequential chemical treatment of the etched surface, holds promise for developing high quality low-leakage Schottky contacts for low noise applications and for recessed gate high electron mobility transistors. In this work, the effect of postetch chemical treatment of the n-type Al0.22Ga0.78N surface on the performance of the Ni /Au based Schottky contact has been investigated. Three different types of chemical treatment: viz, reactive ion etching, reactive ion etching plus dipping in hot aqua regia, and reactive ion etching plus dipping in hot KOH, are studied. Detailed current-voltage studies of three different surface treated diodes and a comparison with as-deposited diodes reveal significant improvement in the diode characteristics. The latter surface treatment yields Ni /Au Schottky diodes with very low reverse leakage currents, breakdown voltages greater than 44V, and an ideality factor as low as 1.14.

  17. Fabrication of IrSi(3)/p-Si Schottky diodes by a molecular beam epitaxy technique

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Iannelli, J. M.

    1990-01-01

    IrSi(3)/p-Si Schottky diodes have been fabricated by a molecular beam epitaxy technique at 630 C. Good surface morphology was observed for IrSi(3) layers grown at temperatures below 680 C, and an increasing tendency to form islands is observed in samples grown at higher temperatures. Good diode current-voltage characteristics were observed and Schottky barrier heights of 0.14-0.18 eV were determined by activation energy analysis and spectral response measurement.

  18. Small signal thermal analysis of local multibarrier behaviour in SiC Schottky diodes

    NASA Astrophysics Data System (ADS)

    León, J.; Perpiñà, X.; Vellvehi, M.; Jordà, X.; Berthou, M.; Godignon, P.

    2014-09-01

    A nickel-based silicon carbide Schottky barrier diode presenting multibarrier behaviour was inspected by Small sIgnal Modulation for Thermal Analysis (SIMTA) to detect the weak spots responsible for this behaviour. SIMTA thermally modulates in frequency such weak spots with a small signal voltage while the device is electrically biased in an operating point of its static I/V curve (20 A-1 kV capability). This allows for quantitative studying of them in a thermal steady state as heat sources by lock-in thermography depending on the device operating regime. Using SIMTA, the barrier height and the area of each weak spot were determined by thermal means, yielding to an electrical model that fits the observed multibarrier behaviour. Results suggest that these spots were caused by surface areas of high density of states (due to 3C-SiC stacking faults) created during the wire bonding process, which locally shifted the Schottky barrier due to Fermi level pinning. Their origin was confirmed by scanning electron microscope inspections after milling these locations with a focused on beam, detecting Schottky metal contact degradation at weak spot locations due to an excessive bonding pressure.

  19. Metal-oxide-semiconductor capacitors and Schottky diodes studied with scanning microwave microscopy at 18 GHz

    SciTech Connect

    Kasper, M.; Gramse, G.; Hoffmann, J.; Gaquiere, C.; Feger, R.; Stelzer, A.; Smoliner, J.; Kienberger, F.

    2014-11-14

    We measured the DC and RF impedance characteristics of micrometric metal-oxide-semiconductor (MOS) capacitors and Schottky diodes using scanning microwave microscopy (SMM). The SMM consisting of an atomic force microscopy (AFM) interfaced with a vector network analyser (VNA) was used to measure the reflection S11 coefficient of the metallic MOS and Schottky contact pads at 18 GHz as a function of the tip bias voltage. By controlling the SMM biasing conditions, the AFM tip was used to bias the Schottky contacts between reverse and forward mode. In reverse bias direction, the Schottky contacts showed mostly a change in the imaginary part of the admittance while in forward bias direction the change was mostly in the real part of the admittance. Reference MOS capacitors which are next to the Schottky diodes on the same sample were used to calibrate the SMM S11 data and convert it into capacitance values. Calibrated capacitance between 1–10 fF and 1/C{sup 2} spectroscopy curves were acquired on the different Schottky diodes as a function of the DC bias voltage following a linear behavior. Additionally, measurements were done directly with the AFM-tip in contact with the silicon substrate forming a nanoscale Schottky contact. Similar capacitance-voltage curves were obtained but with smaller values (30–300 aF) due to the corresponding smaller AFM-tip diameter. Calibrated capacitance images of both the MOS and Schottky contacts were acquired with nanoscale resolution at different tip-bias voltages.

  20. Projected noise in submillimeter-wave mixers with InSb Schottky diodes

    NASA Technical Reports Server (NTRS)

    Lieneweg, U.

    1980-01-01

    The reduction of the equivalent noise temperature in liquid-nitrogen-cooled submillimeter-wave mixers by the use of Schottky barriers on InSb instead of GaAs is evaluated by an analytical model that assumes limited local oscillator power and matched impedances. The calculations, executed at 1.0 and 1.8 THz, take plasma resonance and skin effect into account. For single and multiple contacts on homogeneous semiconductor materials of optimum doping, the noise of InSb diodes is smaller than that of GaAs diodes by a factor of 3 to 14. A simplified model is used to predict the performance of epitaxial structures as well as alternative materials.

  1. Theoretical investigation of Schottky-barrier diode noise performance in external resonant circuits

    NASA Astrophysics Data System (ADS)

    Shiktorov, P.; Starikov, E.; Gruzinskis, V.; Pérez, S.; González, T.; Reggiani, L.; Varani, L.; Vaissière, J. C.

    2006-04-01

    We report Monte Carlo simulations of electronic noise in heavily doped nanometric GaAs Schottky-barrier diodes (SBDs) recently proposed as promising devices for THz applications. We consider a SBD operating in series with a parallel output resonant circuit when a high-frequency large-signal voltage is applied to the whole system. Significant modifications of the noise spectrum with respect to the diode subjected to a constant applied voltage are found to occur in the THz-region. To interpret such behaviour, we have developed a simple analytical approach based on the static I-V and C-V relations as well as on the series resistance of the SBD.

  2. Measuring size dependent electrical properties from nanoneedle structures: Pt/ZnO Schottky diodes

    SciTech Connect

    Mao, Shimin; Anderson, Daniel D.; Shang, Tao; Park, Byoungnam; Dillon, Shen J.

    2014-04-14

    This work reports the fabrication and testing of nanoneedle devices with well-defined interfaces that are amenable to a variety of structural and electrical characterization, including transmission electron microscopy. Single Pt/ZnO nanoneedle Schottky diodes were fabricated by a top down method using a combination of electro-polishing, sputtering, and focused ion beam milling. The resulting structures contained nanoscale planar heterojunctions with low ideality factors, the dimensions of which were tuned to study size-dependent electrical properties. The diameter dependence of the Pt/ZnO diode barrier height is explained by a joule heating effect and/or electronic inhomogeneity in the Pt/ZnO contact area.

  3. TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode.

    PubMed

    Das, Achintya; Duttagupta, Siddhartha P

    2015-12-01

    There is a growing requirement of alpha spectroscopy in the fields context of environmental radioactive contamination, nuclear waste management, site decommissioning and decontamination. Although silicon-based alpha-particle detection technology is mature, high leakage current, low displacement threshold and radiation hardness limits the operation of the detector in harsh environments. Silicon carbide (SiC) is considered to be excellent material for radiation detection application due to its high band gap, high displacement threshold and high thermal conductivity. In this report, an alpha-particle-induced electron-hole pair generation model for a reverse-biased n-type SiC Schottky diode has been proposed and verified using technology computer aided design (TCAD) simulations. First, the forward-biased I-V characteristics were studied to determine the diode ideality factor and compared with published experimental data. The ideality factor was found to be in the range of 1.4-1.7 for a corresponding temperature range of 300-500 K. Next, the energy-dependent, alpha-particle-induced EHP generation model parameters were optimised using transport of ions in matter (TRIM) simulation. Finally, the transient pulses generated due to alpha-particle bombardment were analysed for (1) different diode temperatures (300-500 K), (2) different incident alpha-particle energies (1-5 MeV), (3) different reverse bias voltages of the 4H-SiC-based Schottky diode (-50 to -250 V) and (4) different angles of incidence of the alpha particle (0°-70°).The above model can be extended to other (wide band-gap semiconductor) device technologies useful for radiation-sensing application.

  4. Vertically grown Ge nanowire Schottky diodes on Si and Ge substrates

    NASA Astrophysics Data System (ADS)

    Chandra, Nishant; Tracy, Clarence J.; Cho, Jeong-Hyun; Picraux, S. T.; Hathwar, Raghuraj; Goodnick, Stephen M.

    2015-07-01

    The processing and performance of Schottky diodes formed from arrays of vertical Ge nanowires (NWs) grown on Ge and Si substrates are reported. The goal of this work is to investigate CMOS compatible processes for integrating NWs as components of vertically scaled integrated circuits, and elucidate transport in vertical Schottky NWs. Vertical phosphorus (P) doped Ge NWs were grown using vapor-liquid-solid epitaxy, and nickel (Ni)-Ge Schottky contacts were made to the tops of the NWs. Current-voltage (I-V) characteristics were measured for variable ranges of NW diameters and numbers of nanowires in the arrays, and the I-V characteristics were fit using modified thermionic emission theory to extract the barrier height and ideality factor. As grown NWs did not show rectifying behavior due to the presence of heavy P side-wall doping during growth, resulting in a tunnel contact. After sidewall etching using a dilute peroxide solution, rectifying behavior was obtained. Schottky barrier heights of 0.3-0.4 V and ideality factors close to 2 were extracted using thermionic emission theory, although the model does not give an accurate fit across the whole bias range. Attempts to account for enhanced side-wall conduction due to non-uniform P doping profile during growth through a simple shunt resistance improve the fit, but are still insufficient to provide a good fit. Full three-dimensional numerical modeling using Silvaco Atlas indicates that at least part of this effect is due to the presence of fixed charge and acceptor like traps on the NW surface, which leads to effectively high ideality factors.

  5. Modeling of 4H—SiC multi-floating-junction Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Pu, Hong-Bin; Cao, Lin; Chen, Zhi-Ming; Ren, Jie; Nan, Ya-Gong

    2010-10-01

    This paper develops a new and easy to implement analytical model for the specific on-resistance and electric field distribution along the critical path for 4H—SiC multi-floating junction Schottky barrier diode. Considering the charge compensation effects by the multilayer of buried opposite doped regions, it improves the breakdown voltage a lot in comparison with conventional one with the same on-resistance. The forward resistance of the floating junction Schottky barrier diode consists of several components and the electric field can be understood with superposition concept, both are consistent with MEDICI simulation results. Moreover, device parameters are optimized and the analyses show that in comparison with one layer floating junction, multilayer of floating junction layer is an effective way to increase the device performance when specific resistance and the breakdown voltage are traded off. The results show that the specific resistance increases 3.2 mΩ·cm2 and breakdown voltage increases 422 V with an additional floating junction for the given structure.

  6. DC- and IF-noise performance optimization of GaAs Schottky diodes for THz applications

    NASA Astrophysics Data System (ADS)

    Cojocari, O.; Biber, S.; Mottet, B.; Rodriguez-Girones, M.; Hartnagel, H. L.; Schmidt, L.-P.

    2005-01-01

    This paper presents results which originated from a long-term systematic optimization of surface processing prior to anode formation of THz Schottky-based components. Particularly, four most promising surface-processing approaches are carefully investigated separately and in combination in order to understand the chemical and physical processes occurring on a GaAs surface. A reliable technological approach for anode formation is identified, which exhibits optimal diode characteristics and production repeatability. A model is proposed for the influence of each process on the subsequent one in the fabrication process sequence. DC- and IF-noise measurements are performed using an automated measurement system providing statistically significant data. Very good dc-parameters such as a series resistance of Rs = 15 Ω, an ideality factor N = 1.168, a reverse current Is = 0.024 fA and an IF-noise temperature of 257 K at 1 mA current bias with a good uniformity are achieved for non-cooled Schottky diodes with an anode diameter of 1 µm. The best noise figure is measured to be as low as 220 K at 3.8 GHz and 1 mA current bias.

  7. Electrical characterization of Mo/n-GaAs/In Schottky diodes fabricated by rf sputtering

    SciTech Connect

    Singh, A.; Velasquez, L.

    1996-07-01

    Mo Schottky contacts to n-GaAs were fabricated by deposition of Mo on the front side of (100) n-GaAs by rf sputtering, using an rf power of 200 watts with argon pressure of 6.5{times}10{sup {minus}3} Torr. Back ohmic contacts to n-GaAs were prepared by Sputter deposition of In using an rf power of 50 watts, followed by a 3.5 hour anneal in Ar atmosphere at 390{degree}C. The forward I{endash}V characteristics for the Mo/n-GaAs/In Schottky diode were non ideal over the temperature range 160{endash}350 K. The analysis of the forward I{endash}V/T data indicated that the forward current transport was controlled largely by generation-recombination (GR) in the depletion region and to a lesser extent by thermionic emission (TE) over the temperature range 260{endash}350 K. From the temperature variation of the TE reverse saturation current, the values of (1.04{plus_minus}0.02) V and (2.1{plus_minus}0.5){times}10{sup 6} Acm{sup {minus}2}K{sup {minus}2} for the zero bias zero temperature barrier height ({phi}{sub 0}) and the effective Richardson constant ({ital A}{sub eff}), respectively, were obtained. A value of ({minus}1.1{plus_minus}0.1) mV/K for the temperature coefficient ({beta}) of the barrier height was required to justify such a high value for {ital A}{sub eff}. A similar value of {beta} is supported by our C-V data in the same Mo/n-GaAs/In Schottky diode. {copyright} {ital 1996 American Institute of Physics.}

  8. Temperature dependent electrical properties of Al/Cd0.8Zn0.2S/ITO Schottky diode

    NASA Astrophysics Data System (ADS)

    M, Parameshwari P.; V, Shrisha B.; Naik, K. Gopalakrishna

    2015-06-01

    In this work effect of temperature on the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of Al/Cd0.8Zn0.2S/ITO diode were studied. The series resistance, Schottky barrier height and ideality factor of the diode were obtained from the forward I-V characteristics at temperatures ranging193 K - 303 K. Activation energy of the diode was calculated from the reverse bias I-V characteristics. Room temperature C - V measurement was used to find the carrier concentration (NA) and built in voltage (Vb) of the diode. Schottky barrier height (ΦB) was also measured from C-V characteristics at room temperature.

  9. Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawei; Li, Yunpeng; Zhang, Binglei; Wang, Hanbin; Xin, Qian; Song, Aimin

    2015-07-01

    Mechanically flexible mobile phones have been long anticipated due to the rapid development of thin-film electronics in the last couple of decades. However, to date, no such phone has been developed, largely due to a lack of flexible electronic components that are fast enough for the required wireless communications, in particular the speed-demanding front-end rectifiers. Here Schottky diodes based on amorphous indium-gallium-zinc-oxide (IGZO) are fabricated on flexible plastic substrates. Using suitable radio-frequency mesa structures, a range of IGZO thicknesses and diode sizes have been studied. The results have revealed an unexpected dependence of the diode speed on the IGZO thickness. The findings enable the best optimized flexible diodes to reach 6.3 GHz at zero bias, which is beyond the critical benchmark speed of 2.45 GHz to satisfy the principal frequency bands of smart phones such as those for cellular communication, Bluetooth, Wi-Fi and global satellite positioning.

  10. Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz.

    PubMed

    Zhang, Jiawei; Li, Yunpeng; Zhang, Binglei; Wang, Hanbin; Xin, Qian; Song, Aimin

    2015-07-03

    Mechanically flexible mobile phones have been long anticipated due to the rapid development of thin-film electronics in the last couple of decades. However, to date, no such phone has been developed, largely due to a lack of flexible electronic components that are fast enough for the required wireless communications, in particular the speed-demanding front-end rectifiers. Here Schottky diodes based on amorphous indium-gallium-zinc-oxide (IGZO) are fabricated on flexible plastic substrates. Using suitable radio-frequency mesa structures, a range of IGZO thicknesses and diode sizes have been studied. The results have revealed an unexpected dependence of the diode speed on the IGZO thickness. The findings enable the best optimized flexible diodes to reach 6.3 GHz at zero bias, which is beyond the critical benchmark speed of 2.45 GHz to satisfy the principal frequency bands of smart phones such as those for cellular communication, Bluetooth, Wi-Fi and global satellite positioning.

  11. Layer dependence and gas molecule absorption property in MoS2 Schottky diode with asymmetric metal contacts.

    PubMed

    Yoon, Hyong Seo; Joe, Hang-Eun; Jun Kim, Sun; Lee, Hee Sung; Im, Seongil; Min, Byung-Kwon; Jun, Seong Chan

    2015-05-20

    Surface potential measurement on atomically thin MoS2 flakes revealed the thickness dependence in Schottky barriers formed between high work function metal electrodes and MoS2 thin flakes. Schottky diode devices using mono- and multi-layer MoS2 channels were demonstrated by employing Ti and Pt contacts to form ohmic and Schottky junctions respectively. Characterization results indicated n-type behavior of the MoS2 thin flakes and the devices showed clear rectifying performance. We also observed the layer dependence in device characteristics and asymmetrically enhanced responses to NH3 and NO2 gases based on the metal work function and the Schottky barrier height change.

  12. Application of well characterized e - beam evaporated WSe2 thin films in Schottky Barrier diodes

    NASA Astrophysics Data System (ADS)

    Patel, Mayurkumar M.

    The studies of semiconductor thin films and their junctions such as metal semiconductor junctions (Schottky Barriers) have received much attention due to their applications in various electronic and optoelectronic devices including high frequency switching device, Schottky barrier devices, solar cells etc. But, realization of any electronic device using a combination of bulk and thin film or all bulk or all thin film components essentially requires metallization of metal contacts for electrical signals to flow into and out of the device. Thus junction between two metals and metal-semiconductor is an integral part of the device without which communication to the external circuit components would not be possible. In this reference stable metalsemiconductor contacts of ohmic as well as rectifying nature are very much important from technological point of view. In both cases preparation of reliable and efficient metal contacts with high yield and stability is challenging task for devices operating at high frequencies when packing density is increased by many fold. Thus, the behavior of metal-semiconductor contacts at microscopic scale may be explored for the development of future technology. The subject matter of such contacts is well documented in many books with review of developments in the recent past. Earlier devices were prepared on the bulk elemental semiconductors as an active region which was then followed by crystalline/amorphous compound semiconductors in bulk as well as thin film forms like Solar cells, p-n junction diodes, Schottky barrier devices etc. in recent past. Normally bulk crystalline'or amorphous substrate is used to support device structure made from crystalline/amorphous bulk and thin film. However, to the best of author's knowledge no attempts have been made to study the devices prepared by depositing semiconductor thin film with thin metal film supported by a by a non-conducting glass substrate. For this purpose, studies were carried out on

  13. Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes

    DOE PAGES

    Armstrong, Andrew M.; Crawford, Mary H.; Jayawardena, Asanka; ...

    2016-03-10

    Solar-blind photodetection and photoconductive gain > 50 corresponding to a responsivity > 8 A/W was observed for β-Ga2O3 Schottky photodiodes. We investigated the origin of photoconductive gain. Current-voltage characteristics of the diodes did not indicate avalanche breakdown, which excludes carrier multiplication by impact ionization as the source for gain. However, photocapacitance measurements indicated a mechanism for hole localization for above-band gap illumination, suggesting self-trapped hole formation. Comparison of photoconductivity and photocapacitance spectra indicated that self-trapped hole formation coincides with the strong photoconductive gain. We conclude that self-trapped hole formation near the Schottky diode lowers the effective Schottky barrier in reversemore » bias, producing photoconductive gain. Ascribing photoconductive gain to an inherent property like self-trapping of holes can explain the operation of a variety of β-Ga2O3 photodetectors.« less

  14. Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes

    SciTech Connect

    Armstrong, Andrew M.; Crawford, Mary H.; Jayawardena, Asanka; Ahyi, Ayayi; Dhar, Sarit

    2016-03-10

    Solar-blind photodetection and photoconductive gain > 50 corresponding to a responsivity > 8 A/W was observed for β-Ga2O3 Schottky photodiodes. We investigated the origin of photoconductive gain. Current-voltage characteristics of the diodes did not indicate avalanche breakdown, which excludes carrier multiplication by impact ionization as the source for gain. However, photocapacitance measurements indicated a mechanism for hole localization for above-band gap illumination, suggesting self-trapped hole formation. Comparison of photoconductivity and photocapacitance spectra indicated that self-trapped hole formation coincides with the strong photoconductive gain. We conclude that self-trapped hole formation near the Schottky diode lowers the effective Schottky barrier in reverse bias, producing photoconductive gain. Ascribing photoconductive gain to an inherent property like self-trapping of holes can explain the operation of a variety of β-Ga2O3 photodetectors.

  15. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    NASA Astrophysics Data System (ADS)

    Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.

    2016-05-01

    Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.

  16. Heavy-Ion-Induced Degradation in SiC Schottky Diodes: Incident Angle and Energy Deposition Dependence

    NASA Astrophysics Data System (ADS)

    Javanainen, Arto; Turowski, Marek; Galloway, Kenneth F.; Nicklaw, Christopher; Ferlet-Cavrois, Véronique; Bosser, Alexandre; Lauenstein, Jean-Marie; Muschitiello, Michele; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.; Virtanen, A.

    2017-08-01

    Heavy-ion-induced degradation in the reverse leakage current of SiC Schottky power diodes exhibits a strong dependence on the ion angle of incidence. This effect is studied experimentally for several different bias voltages applied during heavy-ion exposure. In addition, TCAD simulations are used to give insight on the physical mechanisms involved.

  17. Effect of nanopatches on electrical behavior of Ni/n-type Si Schottky diode

    NASA Astrophysics Data System (ADS)

    Rahmatallahpur, Sh.; Yegane, M.

    2011-04-01

    Topological surface measurement of thin metal film using a conducting probe atomic force microscope (C-AFM) shows that thin metal film deposited on Ni/n-Si Schottky diode (SD) consists of patches. These patches are sets of parallel connected and electrically cooperating nano-contacts of size between 50 and 100nm. Every individual patch acts as an individual diode with different I- V curve, barrier height (BH) and ideality factor ( n). Between these diodes or patches, there are spot field distributions; the patches with different local work functions are in direct electric contact with surrounding patches. As a result, a potential difference between surfaces of patches, the so-called electrostatic spot field Ef, is formed. It is shown that in real metal-semiconductor (MS) contacts, patches with quite different configurations, various geometrical sizes and local work functions are randomly distributed on the surface of metal; hence direction and intensity of spot field are non-uniformly distributed along the surface of metal. There is a linear dependence between barrier height and ideality factor, which is the consequence of reduction of distance of the maximum of BH from the interface. This dependency is the sign of reduction of contribution of a peripheral current.

  18. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    SciTech Connect

    Yuryev, V. A. Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P.; Senkov, V. M.; Nalivaiko, O. Y.; Novikau, A. G.; Gaiduk, P. I.

    2015-05-28

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.

  19. 4H-SiC Schottky diode arrays for X-ray detection

    NASA Astrophysics Data System (ADS)

    Lioliou, G.; Chan, H. K.; Gohil, T.; Vassilevski, K. V.; Wright, N. G.; Horsfall, A. B.; Barnett, A. M.

    2016-12-01

    Five SiC Schottky photodiodes for X-ray detection have been electrically characterized at room temperature. One representative diode was also electrically characterized over the temperature range 20°C to 140 °C. The performance at 30 °C of all five X-ray detectors, in both current mode and for photon counting X-ray spectroscopy was investigated. The diodes were fabricated in an array form such that they could be operated as either a 2×2 or 1×3 pixel array. Although the devices showed double barrier heights, high ideality factors and higher than expected leakage current at room temperature (12 nA/cm2 at an internal electric field of 105 kV/cm), they operated as spectroscopic photon counting soft X-ray detectors uncooled at 30 °C. The measured energy resolution (FWHM at 17.4 keV, Mo Kα) varied from 1.36 to 1.68 keV among different diodes.

  20. Schottky Diodes Prepared with Ag, Au, or Pd Contacts on a MgZnO/ZnO Heterostructure

    NASA Astrophysics Data System (ADS)

    Lee, Jong Hoon; Kim, Chang Hoi; Kim, Ah Ra; Kim, Hong Seung; Jang, Nak Won; Yun, Young; Kim, Jin-Gyu; Pin, Min Wook; Lee, Won Jae

    2012-09-01

    We successfully fabricated lateral Schottky diodes with a thin MgZnO layer inserted between the ZnO and Schottky contact metal layers. The MgZnO/ZnO heterostructure was deposited onto a c-sapphire substrate by pulsed laser deposition using Mg0.3Zn0.7O and ZnO targets. Ti/Au was used to achieve ohmic contact with the Mg0.3Zn0.7O thin film layer, whereas Schottky contacts were prepared using silver (Ag), gold (Au), and palladium (Pd). The Ag Schottky diode devices exhibited rectification ratios as high as ˜103 at a bias voltage of ±1 V, with an ideality factor of 2.37 and a work function of 0.73 eV. The possibility of preparing Schottky contacts with a high carrier concentration on the ZnO layer is discussed as a function of the presence or absence of a MgZnO thin layer and in terms of the measured current-voltage properties.

  1. Schottky diode characteristics and 1/f noise of high sensitivity reduced graphene oxide/Si heterojunction photodetector

    NASA Astrophysics Data System (ADS)

    Zhu, Miao; Li, Xinming; Li, Xiao; Zang, Xiaobei; Zhen, Zhen; Xie, Dan; Fang, Ying; Zhu, Hongwei

    2016-03-01

    Reduced graphene oxide (RGO)/Si Schottky diode has been reported nowadays to show excellent performances in photodetection and other photoelectrical devices. Different from pure graphene, there are large amounts of function groups and structural defects left on the base plane of RGO, which may influence the interfacial properties of RGO/Si Schottky diode. Herein, the barrier inhomogeneity and junction characteristics were systematically investigated to help to describe the interface of RGO/Si diode. From the perspective of its applications, the influences of gas molecule and noise properties are considered to be important. Thus, the photovoltaic performance of RGO/Si devices in air and vacuum is investigated to analyze their effects. Meanwhile, 1/f noise of RGO/Si diodes is investigated under air/vacuum conditions and varied temperatures. It is found that the devices in vacuum and under higher power incident light show much lower 1/f noise. These results are meaningful to the noise control and performance improvement in the development of Schottky diode based devices.

  2. Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor.

    PubMed

    Singh, Amol; Uddin, Ahsan; Sudarshan, Tangali; Koley, Goutam

    2014-04-24

    A new chemical sensor based on reverse-biased graphene/Si heterojunction diode has been developed that exhibits extremely high bias-dependent molecular detection sensitivity and low operating power. The device takes advantage of graphene's atomically thin nature, which enables molecular adsorption on its surface to directly alter graphene/Si interface barrier height, thus affecting the junction current exponentially when operated in reverse bias and resulting in ultrahigh sensitivity. By operating the device in reverse bias, the work function of graphene, and hence the barrier height at the graphene/Si heterointerface, can be controlled by the bias magnitude, leading to a wide tunability of the molecular detection sensitivity. Such sensitivity control is also possible by carefully selecting the graphene/Si heterojunction Schottky barrier height. Compared to a conventional graphene amperometric sensor fabricated on the same chip, the proposed sensor demonstrated 13 times higher sensitivity for NO₂ and 3 times higher for NH₃ in ambient conditions, while consuming ∼500 times less power for same magnitude of applied voltage bias. The sensing mechanism based on heterojunction Schottky barrier height change has been confirmed using capacitance-voltage measurements.

  3. High Efficiency and Wideband 300 GHz Frequency Doubler Based on Six Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Ding, Jiangqiao; Maestrini, Alain; Gatilova, Lina; Cavanna, Antonella; Shi, Shengcai; Wu, Wen

    2017-07-01

    A high efficiency and wideband 300 GHz frequency doubler based on six Schottky diodes is presented in this paper. This balanced doubler features a compact and robust circuit on a 5-μm-thick, 0.36-mm-wide, and 1-mm-long GaAs membrane, fabricated by LERMA-C2N Schottky process. The conversion efficiency is mainly better than 16% across the wide bandwidth of 266-336 GHz (3 dB fractional bandwidth of 24%) when pumping with 20-60 mW input power (P in) at the room temperature. A peak output power of 14.75 mW at 332 GHz with a 61.18 mW P in, an excellent peak efficiency of 30.5% at 314 GHz with 43.86 mW P in and several frequency points with outstanding efficiency of higher than 25% are delivered. This doubler served as the second stage of the 600 GHz frequency multiplier chain is designed, fabricated, and measured. The performance of this 300 GHz doubler is highlighted comparing to the state-of-art terahertz frequency doublers.

  4. Fabrication of a 600-V/20-A 4H-SiC schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Kang, In-Ho; Kim, Sang-Cheol; Moon, Jung-Hyeon; Bahng, Wook; Kim, Nam-Kyun

    2014-06-01

    In this study, 600-V/20-A 4H-SiC Schottky barrier diodes (SBDs) were fabricated to investigate the effect of key processing steps, especially before and after the formation of a Schottky contact, on the electrical performances of SBDs and on their long-term reliabilities. The results show that 4H-SiC SBDs that had been subjected to a hydrogen-ambient annealing at 470 °C for 10 min and sacrificial treatment right after ion activation exhibited a lower forward voltage drop (V F ) at a rated current of 20 A, a higher blocking voltage of 800 V, and a very short reverse recovery time of 17.5 ns. Despite the harsh reverse bias condition and temperature, a long-term reliability test showed that changes in the forward voltage drop and the reverse leakage current (I R ) were 0.7% and 8.9% and that the blocking voltage was enhanced. This is attributed to the presence of a stabilized interface between the passivation layer and the SiC due to aging.

  5. Electrical Characterization of High Energy Electron Irradiated Ni/4 H-SiC Schottky Barrier Diodes

    NASA Astrophysics Data System (ADS)

    Paradzah, A. T.; Omotoso, E.; Legodi, M. J.; Auret, F. D.; Meyer, W. E.; Diale, M.

    2016-08-01

    The effect of high energy electron irradiation on Ni/4 H-SiC Schottky barrier diodes was evaluated by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements at room temperature. Electron irradiation was achieved by using a radioactive strontium source with peak emission energy of 2.3 MeV. Irradiation was performed in fluence steps of 4.9 × 1013 cm-2 until a total fluence of 5.4 × 1014 cm-2 was reached. The Schottky barrier height determined from I- V measurements was not significantly changed by irradiation while that obtained from C- V measurements increased with irradiation. The ideality factor was obtained before irradiation as 1.05 and this value did not significantly change as a result of irradiation. The series resistance increased from 47 Ω before irradiation to 74 Ω after a total electron fluence of 5.4 × 1014 cm-2. The net donor concentration decreased with increasing irradiation fluence from 4.6 × 1014 cm-3 to 3.0 × 1014 cm-3 from which the carrier removal rate was calculated to be 0.37 cm-1.

  6. Nanoscale potential barrier distributions and their effect on current transport in Ni/n type Si Schottky diode

    NASA Astrophysics Data System (ADS)

    Yeganeh, M.; Balkanian, N.; Rahmatallahpur, Sh.

    2015-12-01

    We have experimentally studied the Ni/n-Si nano Schottky barrier height (SBH) and potential difference between patches in the nano Schottky diodes (SD) using contact atomic force microscopy (C-AFM) in tapping mode and scanning tunneling microscopy (STM). Topology measurement of the surface with C-AFM showed that, a single Ni/n-Si SD consists of many patches with different sizes. These patches are sets of parallel diodes and electrically interacting contacts of 5 to 50 nm sizes and between these individual diodes, there exists an additional electric field. In real metal semiconductor contacts (MSC), patches with quite different configurations, various geometrical sizes and local work functions were randomly distributed on the surface of the metal. The direction and intensity of the additional electric field are distributed in homogenously along the contact metal surface. SBH controls the electronic transport across the MS interface and therefore, is of vital importance to the successful operation of semiconductor devices.

  7. Vertical GaN merged PiN Schottky diode with a breakdown voltage of 2 kV

    NASA Astrophysics Data System (ADS)

    Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Yamamuka, Mikio

    2017-06-01

    In this study, we successfully fabricated vertical GaN merged PiN Schottky (MPS) diodes and comparatively investigated the cyclic p-GaN width (W p) dependence of their electrical characteristics, including turn-on voltage and reverse leakage current. The MPS diodes with W p of more than 6 µm can turn on at around 3 V. Increasing W p can suppress the reverse leakage current. Moreover, the vertical GaN MPS diode with the breakdown voltage of 2 kV was realized for the first time.

  8. Hard X-ray detection with a gallium phosphide Schottky diode

    NASA Astrophysics Data System (ADS)

    Owens, Alan; Andersson, S.; den Hartog, R.; Quarati, F.; Webb, A.; Welter, E.

    2007-11-01

    We report on the detection of hard X-rays using a GaP Schottky diode at the HASYLAB synchrotron radiation research facility. Exposure to alpha particles from an 214Am source showed that the device was spectroscopic at room temperature with a FWHM energy resolution of 3.5% at 5.5 MeV. It was also found to be responsive to X-rays in the range 11-100 keV. Although individual energies are not spectrally resolved there is a proportionality of response to increasing X-ray energy. A two-dimensional scan of the sensitive area using a 30×30 μm 2 30 keV pencil beam showed the spatial response of the detector to be uniform at the few percent level, consistent with statistics.

  9. Ellipsometric study and application of rubrene thin film in organic Schottky diode

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Deng, Jinxiang; Gao, Hongli; Yang, Qianqian; Kong, Le; Cui, Min; Zhang, Zijia

    2016-12-01

    Rubrene thin film was deposited by thermal evaporation technique under high vacuum (∼10-4 Pa). The film surface morphology was characterized by atomic force microscopy (AFM). Ellipsometric studies on rubrene thin film were presented for understanding its growth and optical characteristics by the Classical-Oscillator model. The analysis of the absorption coefficient (α) revealed the direct allowed transition with corresponding energy 2.21 eV of the rubrene film. In order to exploring the rubrene applications, Al/rubrene/ITO Schottky diode was fabricated. The basic device parameters, barrier height and ideality factor were determined by the I-V measurement. The log(I)-log(V) characteristic indicated three distinct regions. These regions followed ohmic conduction, TCL conduction and SCLC conduction mechanisms.

  10. Activation kinetics of implanted Si+ in GaN and application to fabricating lateral Schottky diodes

    NASA Astrophysics Data System (ADS)

    Irokawa, Y.; Kim, Jihyun; Ren, F.; Baik, K. H.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.; Pan, C.-C.; Chen, G.-T.; Chyi, J.-I.

    2003-12-01

    The electrical activation characteristics of implanted Si+ in GaN were investigated as a function of annealing temperature (1000 °C-1200 °C). The maximum activation percentage for an ion dose of 2.5×1014cm-2 was ˜30% with an apparent activation energy for electrical activation of 1.65±0.15 eV obtained from the temperature dependence of the saturated carrier density. Lateral Schottky diodes fabricated on this material showed forward ideality factors of ˜2 and a temperature coefficient of -0.15 V K-1 for their reverse breakdown voltage. These results show the feasibility of creating n+ tubs in p-GaN such as are needed as sources of minority carriers to achieve inversion in GaN metal-oxide-semiconductor field-effect transistors.

  11. High performance visible-near-infrared PbS-quantum-dots/indium Schottky diodes for photodetectors

    NASA Astrophysics Data System (ADS)

    Mi, Longfei; Wang, Hui; Zhang, Yan; Yao, Xudong; Chang, Yajing; Li, Guopeng; Li, Guohua; Jiang, Yang

    2017-02-01

    Here we fabricate self-powered photodetectors based on PbS-quantum-dots/indium Schottky barrier diodes successfully. These devices exhibit excellent repeatability and stability at a high frequency (up to1 MHz), and show a typical fast rise time/fall time of ˜0.8 μs/3.2 μs. They also show excellent rectification ratios up to 104 with bias from -0.5 V to +0.5 V in the dark and a pronounced photovoltaic performance under light illumination. Moreover, the devices demonstrate high sensitivity in weak light illumination detection (detectivity) approaching 1012 Jones and low noise currents <1 pAHz-1/2. These findings suggest great application potential of PbS-quantum-dots for advanced fast response, low noise current, high detectivity and high stability photodetectors.

  12. Evaluation of Schottky barrier diodes fabricated directly on processed 4H-SiC(0001) surfaces.

    PubMed

    Sano, Yasuhisa; Shirasawa, Yuki; Okamoto, Takeshi; Yamauchi, Kazuto

    2011-04-01

    Silicon carbide (SiC) is a suitable substrate for low-power-consumption power devices and high-temperature applications. However, this material is difficult to machine because of its hardness and chemical inertness, and many machining methods have been studied intensively in recent years. In this paper, we present a simple method to evaluate the electrical properties of the processed surface using the ideal factor n of a Schottky barrier diode (SBD) fabricated directly on the processed surface. Upon comparing the values of n for SBDs fabricated on a damaged SiC surface and a non-damaged SiC surface, we found that there is a significant difference in the dispersion and magnitude of n. Furthermore, by combining this technique with slope etching, we were able to estimate the thickness of the damaged sub-surface layer.

  13. Review and test of methods for determination of the Schottky diode parameters

    NASA Astrophysics Data System (ADS)

    Olikh, O. Ya.

    2015-07-01

    This paper deals with the extraction of the Schottky diode parameters from a current-voltage characteristic. 10 analytical methods, 2 numerical methods, and 4 evolutionary algorithms of the series resistance, barrier height, and ideality factor determination are reviewed. The accuracy of the methods is quantified using a wide range of both ideal and noisy synthetic data. In addition, the influencing factors of the parameters extraction accuracy are estimated. The adaptive procedure, which improves the precision of analytical Gromov's method, is suggested. The use of Lambert W function has been shown to reduce the error of parameter extraction by numerical method. Finally, all methods are applied to experimental data. The most reliable and preferred methods are chosen.

  14. Defect-induced performance degradation of 4H-SiC Schottky barrier diode particle detectors

    NASA Astrophysics Data System (ADS)

    Iwamoto, N.; Johnson, B. C.; Hoshino, N.; Ito, M.; Tsuchida, H.; Kojima, K.; Ohshima, T.

    2013-04-01

    The formation and evolution of defects in 4H-SiC Schottky barrier diode high-energy particle detectors have been investigated and correlated with the detectors' properties. Low temperature annealing at 300 °C is found to significantly recover the charge collection efficiency as degraded by 1 MeV electron irradiation. At higher temperatures, an anneal-induced degradation in the detector's performance is observed. Current-voltage, capacitance-voltage, and deep level transient spectroscopy (DLTS) measurements are used to ascertain the effect of defects on the detector performance. The latter reveals that the DLTS defect levels, EH1 and EH3, are related to the initial recovery of the charge collection efficiency.

  15. Analysis on partial thermal resistances of packaged SiC schottky barrier diodes at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Kim, Taehwa; Funaki, Tsuyoshi

    2016-04-01

    This paper investigates the temperature dependence of partial thermal resistances of a packaged SiC schottky barrier diode (SBD) for high temperature applications. Transient thermal resistances of the packaged SiC SBD were measured and characterized in temperature range from 27 to 275 °C. The partial thermal resistances were extracted and analyzed using the cumulative and differential thermal structure functions. The extracted partial thermal resistances were compared to the results from the finite difference thermal model, and both results were in good agreement. The temperature dependence of the partial thermal resistance of the SiC device and the Si3N4 substrate contributes to the overall thermal characteristics variation of the packaged SiC SBD.

  16. Characterization of breakdown behavior of diamond Schottky barrier diodes using impact ionization coefficients

    NASA Astrophysics Data System (ADS)

    Driche, Khaled; Umezawa, Hitoshi; Rouger, Nicolas; Chicot, Gauthier; Gheeraert, Etienne

    2017-04-01

    Diamond has the advantage of having an exceptionally high critical electric field owing to its large band gap, which implies its high ability to withstand high voltages. At this maximum electric field, the operation of Schottky barrier diodes (SBDs), as well as FETs, may be limited by impact ionization, leading to avalanche multiplication, and hence the devices may breakdown. In this study, three of the reported impact ionization coefficients for electrons, αn, and holes, αp, in diamond at room temperature (300 K) are analyzed. Experimental data on reverse operation characteristics obtained from two different diamond SBDs are compared with those obtained from their corresponding simulated structures. Owing to the crucial role played by the impact ionization rate in determining the carrier transport, the three reported avalanche parameters implemented affect the behavior not only of the breakdown voltage but also of the leakage current for the same structure.

  17. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Konishi, Keita; Goto, Ken; Murakami, Hisashi; Kumagai, Yoshinao; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2017-03-01

    Ga2O3 field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n--Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+-Ga2O3 (001) substrate. The specific on-resistance of the Ga2O3 FP-SBD was estimated to be 5.1 mΩ.cm2. Successful field-plate engineering resulted in a high breakdown voltage of 1076 V. A larger-than-expected effective barrier height of 1.46 eV, which was extracted from the temperature-dependent current-voltage characteristics, could be caused by the effect of fluorine atoms delivered in a hydrofluoric acid solution process.

  18. Experimental study and modeling of the influence of screw dislocations on the performance of Au/n-GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Chen, X. D.; Fung, S.; Beling, C. D.; Ling, C. C.

    2003-11-01

    Current-voltage (I-V) characteristics of macroscopic Schottky diodes fabricated on different GaN templates grown by metalogranic chemical vapor deposition on sapphire substrates were investigated. The number of dislocations under the Au Schottky contact was determined by atomic force microscopy combined with hot H3PO4 etching and the screw dislocations in the GaN films were found to have a strong influence on the reverse leakage current of the Au/n-GaN Schottky diodes. The leakage current is increased when high-density screw dislocations exist under the Au Schottky contact. A model based upon the presence of dislocations at the Au/GaN interface has been used to explain this behavior. It has been proposed that these dislocations result in the lowering of the barrier height in the localized regions, and thus significantly affect the reverse I-V characteristics of the Schottky diodes.

  19. Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode

    NASA Astrophysics Data System (ADS)

    Bouzid, Fayçal; Pezzimenti, Fortunato; Dehimi, Lakhdar; Megherbi, Mohamed L.; Della Corte, Francesco G.

    2017-09-01

    In this paper, using a numerical simulator, we investigated the current-voltage characteristics of a Pt/n-GaN thin Schottky diode on the basis of the thermionic emission (TE) theory in the 300 to 500 K temperature range. During the simulations, the effect of different defect states within the n-GaN bulk with different densities and spatial locations is considered. The results show that the diode ideality factor and the threshold voltage decrease with increasing temperature, while at the same time, the zero-bias Schottky barrier height (Φb0) extracted from the forward current density-voltage (J-V) characteristics increases. The observed behaviors of the ideality factor and zero-bias barrier height are analyzed on the basis of spatial barrier height inhomogeneities at the Pt/GaN interface by assuming a Gaussian distribution (GD). The plot of apparent barrier height (Φb,App) as a function of q/2kT gives a straight line, where the mean zero-bias barrier height (\\overline{Φ \\text{b0}}) and the standard deviation (σ0) are 1.48 eV and 0.047 V, respectively. The plot of the modified activation energy against q/kT gives an almost the same value of \\overline{Φ \\text{b0}} and an effective Richardson constant A* of 28.22 A cm-2 K-2, which is very close to the theoretical value for n-type GaN/Pt contacts. As expected, the presence of defect states with different trap energy levels has a noticeable impact on the device electrical characteristics.

  20. High sensitivity Schottky junction diode based on monolithically grown aligned polypyrrole nanofibers: Broad range detection of m-dihydroxybenzene.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Seo, Hyung-Kee; Shin, Hyung Shik

    2015-07-30

    Aligned p-type polypyrrole (PPy) nanofibers (NFs) thin film was grown on n-type silicon (100) substrate by an electrochemical technique to fabricate Schottky junction diode for the efficient detection of m-dihydroxybenzene chemical. The highly dense and well aligned PPy NFs with the average diameter (∼150-200 nm) were grown on n-type Si substrate. The formation of aligned PPy NFs was confirmed by elucidating the structural, compositional and the optical properties. The electrochemical behavior of the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode was evaluated by cyclovoltametry (CV) and current (I)-voltage (V) measurements with the variation of m-dihydroxybenzene concentration in the phosphate buffer solution (PBS). The fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode exhibited the rectifying behavior of I-V curve with the addition of m-dihydroxybenzene chemical, while a weak rectifying I-V behavior was observed without m-dihydroxybenzene chemical. This non-linear I-V behavior suggested the formation of Schottky barrier at the interface of Pt layer and p-aligned PPy NFs/n-silicon thin film layer. By analyzing the I-V characteristics, the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode displayed reasonably high sensitivity ∼23.67 μAmM(-1)cm(-2), good detection limit of ∼1.51 mM with correlation coefficient (R) of ∼0.9966 and short response time (10 s). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Barrier height of Pt-InxGa1-xN (0<=x<=0.5) nanowire Schottky diodes

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Banerjee, Animesh; Zhang, Meng; Bhattacharya, Pallab

    2011-05-01

    The barrier height of Schottky diodes made on InxGa1-xN nanowires have been determined from capacitance-voltage measurements. The nanowires were grown undoped on n-type (001) silicon substrates by plasma-assisted molecular beam epitaxy. The length, diameter and density of the nanowires are ˜1 μm, 20 nm, and 1×1011 cm-2. The Schottky contact was made on the top surface of the nanowires with Pt after planarizing with parylene. The measured barrier height ΦB varies from 1.4 eV (GaN) to 0.44 eV (In0.5Ga0.5N) and agrees well with the ideal barrier heights in the Schottky limit.

  2. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

    NASA Astrophysics Data System (ADS)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-12-01

    We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

  3. Electrical transport characterization of PEDOT:PSS/n-Si Schottky diodes and their applications in solar cells.

    PubMed

    Khurelbaatar, Zagarzusem; Hyung, Jung-Hwan; Kim, Gil-Sung; Park, No-Won; Shim, Kyu-Hwan; Lee, Sang-Kwon

    2014-06-01

    We demonstrate locally contacted PEDOT:PSS Schottky diodes with excellent rectifying behavior, fabricated on n-type Si substrates using a spin-coating process and a reactive-ion etching process. Electrical transport characterizations of these Schottky diodes were investigated by both current-voltage (I-V) and capacitance-voltage (C-V) measurements. We found that these devices exhibit excellent modulation in the current with an on/off ratio of - 10(6). Schottky junction solar cells composed of PEDOT:PSS and n-Si structures were also examined. From the current density-voltage (J-V) measurement of a solar cell under illumination, the short circuit current (I(sc)), open circuit voltage (V(oc)), and conversion efficiency (eta) were - 19.7 mA/cm2, - 578.5 mV, and - 6.5%, respectively. The simple and low-cost fabrication process of the PEDOT:PSS/n-Si Schottky junctions makes them a promising candidate for further high performance solar cell applications.

  4. InGaAs Schottky barrier diode array detectors integrated with broadband antenna (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Dong Woo; Lee, Eui Su; Park, Jeong-Woo; Kim, Hyun-Soo; Lee, Il-Min; Park, Kyung Hyun

    2017-02-01

    Terahertz (THz) waves have been actively studied for the applications of astronomy, communications, analytical science and bio-technologies due to their low energy and high frequency. For example, THz systems can carry more information with faster rates than GHz systems. Besides, THz waves can be applied to imaging, sensing, and spectroscopy. Furthermore, THz waves can be used for non-destructive and non-harmful tomography of living objects. In this reasons, Schottky barrier diodes (SBD) have been widely used as a THz detector for their ultrafast carrier transport, high responsivity, high sensitivity, and excellent noise equivalent power. Furthermore, SBD detectors envisage developing THz applications at low cost, excellent capability, and high yield. Since the major concerns in the THz detectors for THz imaging systems are the realizations of the real-time image acquisitions via a reduced acquisition time, rather than the conventional raster scans that obtains an image by pixel-by-pixel acquisitions, a line-scan based systems utilizes an array detector with an 1 × n SBD array is preferable. In this study, we fabricated the InGaAs based SBD array detectors with broadband antennas of log-spiral and square-spiral patterns. To optimize leakage current and ideality factor, the dependence to the doping levels of ohmic and Schottky layers have been investigated. In addition, the dependence to the capacitance and resistance to anode size are also examined as well. As a consequence, the real-time THz imaging with our InGaAs SBD array detector have been successfully obtained.

  5. Single-Event Effect Testing of the Cree C4D40120D Commercial 1200V Silicon Carbide Schottky Diode

    NASA Technical Reports Server (NTRS)

    Lauenstein, J.-M.; Casey, M. C.; Wilcox, E. P.; Kim, Hak; Topper, A. D.

    2014-01-01

    This study was undertaken to determine the single event effect (SEE) susceptibility of the commercial silicon carbide 1200V Schottky diode manufactured by Cree, Inc. Heavy-ion testing was conducted at the Texas A&M University Cyclotron Single Event Effects Test Facility (TAMU). Its purpose was to evaluate this device as a candidate for use in the Solar-Electric Propulsion flight project.

  6. Impact of high energy electron irradiation on high voltage Ni/4H-SiC Schottky diodes

    NASA Astrophysics Data System (ADS)

    Kozlovski, V. V.; Lebedev, A. A.; Levinshtein, M. E.; Rumyantsev, S. L.; Palmour, J. W.

    2017-02-01

    We report the results of the high energy (0.9 MeV) electron irradiation impact on the electrical properties of high voltage Ni/4H-SiC Schottky diodes. Within the range of the irradiation dose from 0.2 × 1016 cm-2 to 7 × 1016 cm-2, electron irradiation led to 6 orders of magnitude increase in the base resistance, appearance of slow relaxation processes at pico-ampere current range, and increase in the ideality factor.

  7. The Study of 0.34 THz Monolithically Integrated Fourth Subharmonic Mixer Using Planar Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Tong, Xiaodong; Li, Qian; An, Ning; Wang, Wenjie; Deng, Xiaodong; Zhang, Liang; Liu, Haitao; Zeng, Jianping; Li, Zhiqiang; Tang, Hailing; Xiong, Yong-Zhong

    2015-11-01

    A planar Schottky barrier diode with the designed Schottky contact area of approximately 3 μm2 is developed on gallium arsenide (GaAs) material. The measurements of the developed planar Schottky barrier diode indicate that the zero-biased junction capacitance Cj0 is 11.0 fF, the parasitic series resistance RS is 3.0 Ω, and the cut off frequency fT is 4.8 THz. A monolithically integrated fourth subharmonic mixer with this diode operating at the radio frequency (RF) signal frequency of 0.34 THz with the chip area of 0.6 mm2 is implemented. The intermediate frequency (IF) bandwidth is from DC to 40 GHz. The local oscillator (LO) bandwidth is 37 GHz from 60 to 97 GHz. The RF bandwidth is determined by the bandwidth of the on chip antenna, which is 28 GHz from 322 to 350 GHz. The measurements of the mixer demonstrated a conversion loss of approximately 51 dB.

  8. Improved performance in vertical GaN Schottky diode assisted by AlGaN tunneling barrier

    SciTech Connect

    Cao, Y.; Chu, R.; Li, R.; Chen, M.; Williams, A. J.

    2016-03-14

    In a vertical GaN Schottky barrier diode, the free electron concentration n in the 6-μm-thick drift layer was found to greatly impact the diode reverse leakage current, which increased from 2.1 × 10{sup −7} A to 3.9 × 10{sup −4} A as n increased from 7.5 × 10{sup 14 }cm{sup −3} to 6.3 × 10{sup 15 }cm{sup −3} at a reverse bias of 100 V. By capping the drift layer with an ultrathin 5-nm graded AlGaN layer, reverse leakage was reduced by more than three orders of magnitude with the same n in the drift layer. We attribute this to the increased Schottky barrier height with the AlGaN at the surface. Meanwhile, the polarization field within the graded AlGaN effectively shortened the depletion depth, which led to the formation of tunneling current at a relatively small forward bias. The turn-on voltage in the vertical Schottky diodes was reduced from 0.77 V to 0.67 V—an advantage in reducing conduction loss in power switching applications.

  9. CdSe Nanowire-Based Flexible Devices: Schottky Diodes, Metal-Semiconductor Field-Effect Transistors, and Inverters.

    PubMed

    Jin, Weifeng; Zhang, Kun; Gao, Zhiwei; Li, Yanping; Yao, Li; Wang, Yilun; Dai, Lun

    2015-06-24

    Novel CdSe nanowire (NW)-based flexible devices, including Schottky diodes, metal-semiconductor field-effect transistors (MESFETs), and inverters, have been fabricated and investigated. The turn-on voltage of a typical Schottky diode is about 0.7 V, and the rectification ratio is larger than 1 × 10(7). The threshold voltage, on/off current ratio, subthreshold swing, and peak transconductance of a typical MESFET are about -0.3 V, 4 × 10(5), 78 mV/dec, and 2.7 μS, respectively. The inverter, constructed with two MESFETs, exhibits clear inverting behavior with the gain to be about 28, 34, and 38, at the supply voltages (V(DD)) of 3, 5, and 7 V, respectively. The inverter also shows good dynamic behavior. The rising and falling times of the output signals are about 0.18 and 0.09 ms, respectively, under 1000 Hz square wave signals input. The performances of the flexible devices are stable and reliable under different bending conditions. Our work demonstrates these flexible NW-based Schottky diodes, MESFETs, and inverters are promising candidate components for future portable transparent nanoelectronic devices.

  10. Effect of oxygen plasma treatment on the electrical characteristics of Pt/n-type Si Schottky diodes

    NASA Astrophysics Data System (ADS)

    Janardhanam, V.; Jyothi, I.; Yuk, Shim-Hoon; Choi, Chel-Jong; Lee, Sung-Nam; Reddy, V. Rajagopal

    2016-10-01

    The electrical properties of Pt/n-type Si Schottky diodes fabricated from n-type Si wafers subjected to an oxygen (O2) plasma treatment were investigated as a function of the power of the O2 plasma. The Pt/n-type Si Schottky diode with an O2 plasma treatment at a power of 100 W showed better rectifying characteristics with increasing barrier height and decreasing ideality factor compared to the conventional Pt/n-type Si Schottky diodes. This could be attributed to an improvement in the interface homogeneity associated with damage-free surface smoothing driven by the O2 plasma treatment at a power of 100 W. On the other hand, with increasing power of the O2 plasma for powers above 150 W, the barrier height decreased and the leakage current increased, indicating degradation of the device performance. The degradation in the rectifying properties after the O2 plasma treatment at a higher plasma power in excess of 150 W could be associated with increases in the series resistance and the interface state density caused by plasma-induced damage to the Si surface.

  11. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Erdoğan, Erman; Kundakçı, Mutlu

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  12. Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode

    SciTech Connect

    Hu, J. Groeseneken, G.; Stoffels, S.; Lenci, S.; Venegas, R.; Decoutere, S.; Bakeroot, B.

    2015-02-23

    This paper presents a combined technique of high voltage off-state stress and current transient measurements to investigate the trapping/de-trapping characteristics of Au-free AlGaN/GaN Schottky barrier diodes. The device features a symmetric three-terminal structure with a central anode contact surrounded by two separate cathodes. Under the diode off-state stress conditions, the two separate cathodes were electrically shorted. The de-trapping dynamics was studied by monitoring the recovery of the two-dimensional electron gas (2DEG) current at different temperatures by applying 0.5 V at cathode 2 while grounding cathode 1. During the recovery, the anode contact acts as a sensor of changes in diode leakage current. This leakage variation was found to be mainly due to the barrier height variation. With this method, the energy level and capture cross section of different traps in the AlGaN/GaN Schottky barrier diode can be extracted. Furthermore, the physical location of different trapping phenomena is indicated by studying the variation of the diode leakage current during the recovery. We have identified two distinct trapping mechanisms: (i) electron trapping at the AlGaN surface in the vicinity of the Schottky contact which results in the leakage reduction (barrier height ϕ{sub B} increase) together with R{sub ON} degradation; (ii) the electron trapping in the GaN channel layer which partially depletes the 2DEG. The physical origin of the two different traps is discussed in the text.

  13. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry

    SciTech Connect

    Di Venanzio, C.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Falco, M. D.; Bagala, P.; Santoni, R.; Pimpinella, M.

    2013-02-15

    Purpose: To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. Methods: A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. Results: During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1{sigma}) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below {+-}0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy/min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. Conclusions: The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  14. A Study of the Parasitic Properties of the Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Ren, Tianhao; Zhang, Yong; Liu, Shuang; Guo, Fangzhou; Jin, Zhi; Zhou, Jingtao; Yang, Chengyue

    2017-02-01

    In this paper, we present a newly designed parameter extraction method of the Schottky barrier diode (SBD) with the purpose of measuring and studying its parasitic properties. This method includes three kinds of auxiliary configurations and is named as three-configuration parameter extraction method (TPEM). TPEM has such features as simplicity of operation, self-consistence, and accuracy. With TPEM, the accurate parasitic parameters of the diode can be easily obtained. Taking a GaAs SBD as an example, the pad-to-pad capacitance is 7 fF, the air-bridge finger self-inductance 11 pH, the air-bridge finger self-resistance 0.6 Ω, and the finger-to-pad capacitance 2.1 fF. A more accurate approach to finding the value of the series resistant of the SBD is also proposed, and then a complete SBD model is built. The evaluation of the modeling technology, as well as TPEM, is implemented by comparing the simulated and measured I-V curves and the S-parameters. And good agreements are observed. By using TPEM, the influence of the variation of the geometric parameters is studied, and several ways to reduce the parasitic effect are presented. The results show that the width of the air-bridge finger and the length of the channel are the two largest influencing parameters, with the normalized impact factors 0.56 and 0.29, respectively. By using TPEM and the modeling technology presented in this paper, a design process of the SBD is proposed. As an example, a type of SBD suitable for 500-600 GHz zero-biased detection is designed, and the agreement between the simulated and measured results has been improved. SBDs for other applications could be designed in a similar way.

  15. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry.

    PubMed

    Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M

    2013-02-01

    To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  16. Investigation of the Electrical Characteristics of Al/p-Si/Al Schottky Diode

    NASA Astrophysics Data System (ADS)

    Şenarslan, Elvan; Güzeldir, Betül; Sağlam, Mustafa

    2016-04-01

    In this study, p-type Si semiconductor wafer with (100) orientation, 400 μm thickness and 1-10 Ω cm resistivity was used. The Si wafer before making contacts were chemically cleaned with the Si cleaning procedure which for remove organic contaminations were ultrasonically cleaned at acetone and methanol for 10 min respectively and then rinsed in deionized water of 18 MΩ and dried with high purity N2. Then respectively RCA1(i.e., boiling in NH3+H2O2+6H2O for 10 min at 60°C ), RCA2 (i.e., boiling in HCl+H2O2+6H2O for 10 min at 60°C ) cleaning procedures were applied and rinsed in deionized water followed by drying with a stream of N2. After the cleaning process, the wafer is immediately inserted in to the coating unit. Ohmic contact was made by evaporating of Al on the non-polished side of the p-Si wafer pieces under ~ 4,2 10-6 Torr pressure. After process evaporation, p-Si with omic contac thermally annealed 580°C for 3 min in a quartz tube furnace in N2. Then, the rectifier contact is made by evaporation Al metal diameter of about 1.0 mm on the polished surface of p-Si in turbo molecular pump at about ~ 1 10-6 Torr. Consequently, Al/p-Si/Al Schottky diode was obtained. The I-V measurements of this diode performed by the use of a KEITLEY 487 Picoammeter/Voltage Source and the C-V measurements were performed with HP 4192A (50-13 MHz) LF Impedance Analyzer at room temperature and in dark.

  17. Design, fabrication, and performance of a whiskerless Schottky diode for millimeter and submillimeter wave applications

    NASA Astrophysics Data System (ADS)

    McKinney, K.; Mattaugh, R. J.; Bishop, W. L.

    1985-05-01

    Design considerations, fabrication techniques, and performance predictions are presented for a planar whiskerless Schottky diode to be used (in radio astronomy applications) at 100-300 GHz. The anode and ohmic contacts are on the same side of the device, and proton bombardment is used to establish the divided surface (by making some regions of the GaAs wafer semiinsulating) prior to definition of a B-doped SiO2 finger, ohmic contacting, anode formation, and anode contact metallization (all using photolithographic techniques). The contributions of parasitic elements are calculated for a device with a 3.5-micron-deep n(+) layer doped at 2 x 10 to the 18th/cu cm, a 250-nm-thick epitaxial layer doped at 5 x 10 to the 16th/cu cm, and a 1-micron-radius anode (providing zero-bias junction capacitance 7 fE). It is predicted that such a device would have total series resistance 12.58 ohm and total shunt capacitance 1.37 fF, compared with 14.27 ohm and 0.93 fF for the corresponding whiskered device.

  18. Optimization of chemical structure of Schottky-type selection diode for crossbar resistive memory.

    PubMed

    Kim, Gun Hwan; Lee, Jong Ho; Jeon, Woojin; Song, Seul Ji; Seok, Jun Yeong; Yoon, Jung Ho; Yoon, Kyung Jean; Park, Tae Joo; Hwang, Cheol Seong

    2012-10-24

    The electrical performances of Pt/TiO(2)/Ti/Pt stacked Schottky-type diode (SD) was systematically examined, and this performance is dependent on the chemical structures of the each layer and their interfaces. The Ti layers containing a tolerable amount of oxygen showed metallic electrical conduction characteristics, which was confirmed by sheet resistance measurement with elevating the temperature, transmission line measurement (TLM), and Auger electron spectroscopy (AES) analysis. However, the chemical structure of SD stack and resulting electrical properties were crucially affected by the dissolved oxygen concentration in the Ti layers. The lower oxidation potential of the Ti layer with initially higher oxygen concentration suppressed the oxygen deficiency of the overlying TiO(2) layer induced by consumption of the oxygen from TiO(2) layer. This structure results in the lower reverse current of SDs without significant degradation of forward-state current. Conductive atomic force microscopy (CAFM) analysis showed the current conduction through the local conduction paths in the presented SDs, which guarantees a sufficient forward-current density as a selection device for highly integrated crossbar array resistive memory.

  19. Spin-dependent electrical conduction in a pentacene Schottky diode explored by electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Fukuda, Kunito; Asakawa, Naoki

    2017-02-01

    Reported is the observation of dark spin-dependent electrical conduction in a Schottky barrier diode with pentacene (PSBD) using electrically detected magnetic resonance at room temperature. It is suggested that spin-dependent conduction exists in pentacene thin films, which is explored by examining the anisotropic linewidth of the EDMR signal and current density-voltage (J-V) measurements. The EDMR spectrum can be decomposed to Gaussian and Lorentzian components. The dependency of the two signals on the applied voltage was consistent with the current density-voltage (J-V) of the PSBD rather than that of the electron-only device of Al/pentacene/Al, indicating that the spin-dependent conduction is due to bipolaron formation associated with hole polaronic hopping processes. The applied-voltage dependence of the ratio of intensity of the Gaussian line to the Lorentzian may infer that increasing current density should make conducting paths more dispersive, thereby resulting in an increased fraction of the Gaussian line due to the higher dispersive g-factor.

  20. Design, fabrication, and performance of a whiskerless Schottky diode for millimeter and submillimeter wave applications

    NASA Technical Reports Server (NTRS)

    Mckinney, K.; Mattaugh, R. J.; Bishop, W. L.

    1985-01-01

    Design considerations, fabrication techniques, and performance predictions are presented for a planar whiskerless Schottky diode to be used (in radio astronomy applications) at 100-300 GHz. The anode and ohmic contacts are on the same side of the device, and proton bombardment is used to establish the divided surface (by making some regions of the GaAs wafer semiinsulating) prior to definition of a B-doped SiO2 finger, ohmic contacting, anode formation, and anode contact metallization (all using photolithographic techniques). The contributions of parasitic elements are calculated for a device with a 3.5-micron-deep n(+) layer doped at 2 x 10 to the 18th/cu cm, a 250-nm-thick epitaxial layer doped at 5 x 10 to the 16th/cu cm, and a 1-micron-radius anode (providing zero-bias junction capacitance 7 fE). It is predicted that such a device would have total series resistance 12.58 ohm and total shunt capacitance 1.37 fF, compared with 14.27 ohm and 0.93 fF for the corresponding whiskered device.

  1. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    NASA Astrophysics Data System (ADS)

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta’Ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-07-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.

  2. Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application.

    PubMed

    Zhang, Fute; Song, Tao; Sun, Baoquan

    2012-05-17

    The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled by changing the immersing time in a saturated PCl(5) solution. The hybrid devices are made from the SiNWs with different wire lengths and various distances between adjacent wires by spin-casting PEDOT:PSS on the silicon substrates. It is found that the length and density play leading roles in the electric output characteristics. The device made from SiNWs with optimum morphology can achieve a power conversion efficiency of 7.3%, which is much improved in comparison with that of the planar one. The measurement of the transient photovoltage decay and the analysis of the current versus voltage curve indicate that the charge recombination process is a dominant factor on the device performance.

  3. Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application

    NASA Astrophysics Data System (ADS)

    Zhang, Fute; Song, Tao; Sun, Baoquan

    2012-05-01

    The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled by changing the immersing time in a saturated PCl5 solution. The hybrid devices are made from the SiNWs with different wire lengths and various distances between adjacent wires by spin-casting PEDOT:PSS on the silicon substrates. It is found that the length and density play leading roles in the electric output characteristics. The device made from SiNWs with optimum morphology can achieve a power conversion efficiency of 7.3%, which is much improved in comparison with that of the planar one. The measurement of the transient photovoltage decay and the analysis of the current versus voltage curve indicate that the charge recombination process is a dominant factor on the device performance.

  4. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA.

    PubMed

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta'ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-07-20

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.

  5. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    PubMed Central

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta’ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-01-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology. PMID:27435636

  6. Graphene/Silicon heterojunction Schottky diode for vapors sensing using impedance spectroscopy.

    PubMed

    Fattah, Ali; Khatami, Saeid; Mayorga-Martinez, Carmen C; Medina-Sánchez, Mariana; Baptista-Pires, Luis; Merkoçi, Arben

    2014-10-29

    A graphene(G)/Silicon(Si) heterojunction Schottky diode and a simple method that evaluates its electrical response to different chemical vapors using electrochemical impedance spectroscopy (EIS) are implemented. To study the impedance response of the device of a given vapor, relative impedance change (RIC) as a function of the frequency is evaluated. The minimum value of RIC for different vapors corresponds to different frequency values (18.7, 12.9 and 10.7 KHz for chloroform, phenol, and methanol vapors respectively). The impedance responses to phenol, beside other gases used as model analytes for different vapor concentrations are studied. The equivalent circuit of the device is obtained and simplified, using data fitting from the extracted values of resistances and capacitances. The resistance corresponding to interphase G/Si is used as a parameter to compare the performance of this device upon different phenol concentrations and a high reproducibility with a 4.4% relative standard deviation is obtained. The efficiency of the device fabrication, its selectivity, reproducibility and easy measurement mode using EIS makes the developed system an interesting alternative for gases detection for environmental monitoring and other industrial applications.

  7. Features of the potential barrier and current flow in the narrow Schottky diodes

    NASA Astrophysics Data System (ADS)

    Mamedov, R. K.

    2013-08-01

    This paper presents some specific characteristics of the potential barrier and the current flow in the narrow Au-nGaAs Schottky diodes (SDs), in which an additional electric field (AEF) directly measured by atomic-force microscopy. Show that there existing a potential barrier in the narrow SD is formed by the superposition of the space charge field and the AEF in the near-contact area of the semiconductor. Dependence of the potential barrier height of the voltage narrow SD has about the same character in both forward and reverse directions. Forward I-V characteristics narrow Au-nGaAs SD width of 1, 2 and 3 μm represented by straight lines in the semi-logarithmic scale in a wide current range of about nine order and ideality factor is close to unity. The reverse current of the same narrow SD in the initial reverse voltage is virtually absent and with increasing voltage increases linearly in the order of 3-5 in the semi-logarithmic scale. The correlation between the numerical values of electrophysical parameters of the forward and reverse current-voltage characteristics of narrow SD was founded. Energy diagram of the narrow SD was created and its corresponding energy parameters were evaluated. It has been shown that the conductivity in the narrow Au-nGaAs SD qualitatively and quantitatively well described by energy model real metal-semiconductor contacts with AEF.

  8. Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles

    NASA Astrophysics Data System (ADS)

    Al-Ta’Ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2016-05-01

    Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors.

  9. Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2016-01-01

    Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors. PMID:27160654

  10. High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions

    NASA Astrophysics Data System (ADS)

    Zheng, Liu; Zhang, Feng; Liu, Sheng-Bei; Dong, Lin; Liu, Xing-Fang; Fan, Zhong-Chao; Liu, Bin; Yan, Guo-Guo; Wang, Lei; Zhao, Wan-Shun; Sun, Guo-Sheng; He, Zhi; Yang, Fu-Hua

    2013-09-01

    4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm2 with a total active area of 2.46 × 10-3 cm2. Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250°C in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9 × 10-5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure.

  11. On the electrical and interface properties of nanostructured CdTe Schottky diodes electrodeposited from an ionic liquid medium

    NASA Astrophysics Data System (ADS)

    Chauhan, Khushbu R.; Mukhopadhyay, Indrajit

    2014-06-01

    A simple and cost effective method to fabricate nearly ideal Schottky diode out of p-CdTe semiconductor is discussed. The efficient re-use of ionic liquid for the deposition of nano-microstructures of CdTe is also disclosed. The I-V characteristic of the diode configured as Cu:FTO:p-CdTe:Cu showed the rectifying nature with a small forward voltage (0.8 V) and a rectification ratio of 6 × 103 at 4.8 V. Theoretical model suggests the diffusion controlled carrier transport process with an ideality factor of 1.1 up to a small forward voltage range whereas the thermionic transport with generation recombination dominates at higher voltages. The interface properties of p-CdTe and FTO were studied by impedance spectroscopy under varied bias conditions to electrically represent the diode.

  12. Evidence of minority carrier traps contribution in deep level transient spectroscopy measurement in n-GaN Schottky diode

    NASA Astrophysics Data System (ADS)

    Amor, S.; Ahaitouf, A.; Ahaitouf, Az; Salvestrini, J. P.; Ougazzaden, A.

    2017-01-01

    It is shown that deep level transient spectroscopy can be carried out on Schottky diodes to investigate, in addition to majority carrier traps, minority carrier traps. This is possible thanks to the application of a large reverse bias to the device which allows minority carrier injection by lowering their corresponding effective Schottky barrier height. Indeed, when increasing the reverse bias voltage, the deep level transient spectroscopy signal, initially negative and thus showing only majority carrier traps signature, becomes positive, revealing minority carrier traps involvement. A careful analysis of the recorded spectra leads to the identification of four minority carrier traps which have been so far only evidenced using dedicated technique such as minority carrier transient spectroscopy.

  13. Temperature dependence of electrical characteristics of Pt/GaN Schottky diode fabricated by UHV e-beam evaporation

    PubMed Central

    2013-01-01

    Temperature-dependent electrical characterization of Pt/n-GaN Schottky barrier diodes prepared by ultra high vacuum evaporation has been done. Analysis has been made to determine the origin of the anomalous temperature dependence of the Schottky barrier height, the ideality factor, and the Richardson constant calculated from the I-V-T characteristics. Variable-temperature Hall effect measurements have been carried out to understand charge transport at low temperature. The modified activation energy plot from the barrier inhomogeneity model has given the value of 32.2 A/(cm2 K2) for the Richardson constant A** in the temperature range 200 to 380 K which is close to the known value of 26.4A/(cm2 K2) for n-type GaN. PMID:24229424

  14. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    SciTech Connect

    Wu, Y.; Li, X.; Xu, P.; Wang, Y.; Shen, X.; Liu, X.; Yang, Q.; Hasan, T.

    2015-02-02

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5 nm. The dominant emission, detectable at ultralow (<1 μA) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25 μA current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter < 250 nm), this trend breaks down due to heat accumulation in the NWs. Our simple device architecture offers a potentially cost-effective scheme to fabricate high efficiency Schottky junction-based UV-LEDs.

  15. Using Atom-Probe Tomography to Understand Zn O ∶Al /SiO 2/Si Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Jaramillo, R.; Youssef, Amanda; Akey, Austin; Schoofs, Frank; Ramanathan, Shriram; Buonassisi, Tonio

    2016-09-01

    We use electronic transport and atom-probe tomography to study Zn O ∶Al /SiO 2/Si Schottky diodes on lightly doped n - and p -type Si. We vary the carrier concentration in the ZnO ∶Al films by 2 orders of magnitude, but the Schottky barrier height remains nearly constant. Atom-probe tomography shows that Al segregates to the interface, so that the ZnO ∶Al at the junction is likely to be metallic even when the bulk of the ZnO ∶Al film is semiconducting. We hypothesize that the observed Fermi-level pinning is connected to the insulator-metal transition in doped ZnO. This implies that tuning the band alignment at oxide/Si interfaces may be achieved by controlling the transition between localized and extended states in the oxide, thereby changing the orbital hybridization across the interface.

  16. Carrier transport in graphite/Si{sub 3}N{sub 4}-nanobelt/PtIr Schottky barrier diodes

    SciTech Connect

    Bi, Jinghui; Wei, Guodong; Shang, Minghui; Gao, Fengmei; Yang, Weiyou E-mail: weiyouyang@tsinghua.org.cn; Tang, Bin E-mail: weiyouyang@tsinghua.org.cn

    2014-11-10

    Understanding the roles of contacts and interfaces between metals and semiconductors is critically important for exploring nanostructure-based nanodevices. The present study shed some light on the dominated mechanism of size-dependent carrier transfer in the Schottky barrier diodes configured by the Pt-Ir/Si{sub 3}N{sub 4}-nanobelt/graphite (metal-semiconductor-metal (MSM)) sandwiched structure via a conductive atomic force microscopy using nanobelts with various thicknesses. The observed I-V behaviors suggested that the charge transports under the low and high biases were dominated by the reverse-biased Schottky barrier and space-charge-limited current (SCLC), respectively. The intermediate region between the low and high biases presented the transition between the Ohmic and SCLC behaviors, in which the ≡Si and =N dangling bonds acted as the defects within the Si{sub 3}N{sub 4} nanobelt surface are predominant in the charge transfer.

  17. 60Co gamma irradiation effects on the the capacitance and conductance characteristics of Au/PMI/n-Si Schottky diodes

    NASA Astrophysics Data System (ADS)

    Tuğluoğlu, N.; Karadeniz, S.; Yüksel, Ö. F.; Şafak, H.; Kuş, M.

    2015-08-01

    In this work, the perylene-monoimide/n-Si (100) Schottky structures have been fabricated by spin coating process. We have studied the capacitance-voltage ( C- V) and conductance-voltage ( G- V) characteristics of the Au/perylene-monoimide/n-Si diodes at 500 kHz before and after 60Co γ-ray irradiation. The effects of 60Co γ -ray irradiation on the electrical characteristics of a perylene-monoimide/n-Si Schottky diode have been investigated. A decrease both in the capacitance and conductance has been observed after 60Co γ -ray irradiation. This has been attributed to a decrease in the net ionized dopant concentration that occurred as a result of 60Co γ-ray irradiation. Some contact parameters such as barrier height (Φ B ) interface state density ( N ss ) and series resistance ( R s ) have been calculated from the C- V and G- V characteristics of the diode before and after irradiation. It has been observed that the Φ B and N ss values are decreased after the applied radiation, while the R s value is increased.

  18. Schottky-barrier diode array fabrication with self-aligned Ni silicidation for low power phase-change memory application

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Song, Zhitang; Liu, Bo; Chen, Houpeng; Wu, Guangping; Zhang, Chao; Wang, Lianhong; Wang, Lei; Feng, Songlin

    A high density design of Schottky-barrier diode array with self-aligned nickel-silicidation under 40nm technology node fabricated on epitaxial layer for low power phase-change memory application is proposed. According to N-type doping profile from simulation, large ON/OFF current ratio, the lower barrier height of ФB and series resistance RS are all determined by the dosage of buried N+ layer, epitaxial layer thickness. In addition, the temperature effect of the Schottky diode array is demonstrated by I-V electrical characteristics. From the optimal silicon-based results, a 9F2 16 × 16 diode array with the ideality factor of 1.21~1.40 shows a drive current density of ~14.9 mA/μm2, a Jon/Joff ratio of ~5.17×103, and crosstalk immunity. Furthermore, this calibrated physical model makes it possible to predict and improve the performance of accessing device array next generation for non-volatile memory application.

  19. Schottky barrier height of Ni/TiO2/4H-SiC metal-insulator-semiconductor diodes

    NASA Astrophysics Data System (ADS)

    Kaufmann, Ivan R.; Pereira, Marcelo B.; Boudinov, Henri I.

    2015-12-01

    Ni/TiO2/4H-SiC diodes were analysed through measurements of current-voltage curves varying the temperature. The Schottky Barrier Height (SBH) which increased with temperature was studied by simulation of the Thermionic Emission Model, considering Ni/SiC Schottky structures with an insulator layer between the metal and semiconductor. This model shows that a new method of calculation should be applied to diodes that have a metal-insulator-semiconductor structure. Misleading results for SBH are obtained if the thin insulator layer is not considered. When applying the suggested method to the Ni/TiO2/4H-SiC diodes it was necessary to consider not only the deposited TiO2 layer, but also a second dielectric layer of native SiCxOy at the surface of SiC. By measuring I-V-T curves for two samples with different thicknesses of TiO2, the suggested method allows one to estimate the thicknesses of both dielectric layers: TiO2 and SiOxCy.

  20. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    PubMed Central

    Harken, Andrew; Randers-Pehrson, Gerhard; Attinger, Daniel; Brenner, David J.

    2013-01-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University’s Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm – 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H+), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles (4He++). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms. PMID:24058378

  1. Inductively coupled plasma etch damage in (-201) Ga2O3 Schottky diodes

    NASA Astrophysics Data System (ADS)

    Yang, Jiancheng; Ahn, Shihyun; Ren, F.; Khanna, Rohit; Bevlin, Kristen; Geerpuram, Dwarakanath; Pearton, S. J.; Kuramata, A.

    2017-04-01

    Bulk, single-crystal Ga2O3 was etched in BCl3/Ar inductively coupled plasmas as a function of ion impact energy. For pure Ar, the etch rate (R) was found to increase with ion energy (E) as predicted from a model of ion enhanced sputtering by a collision-cascade process, R ∝(E0.5 - ETH0.5), where the threshold energy for Ga2O3, ETH, was experimentally determined to be ˜75 eV. When BCl3 was added, the complexity of the ion energy distribution precluded, obtaining an equivalent threshold. Electrically active damage introduced during etching was quantified using Schottky barrier height and diode ideality factor measurements obtained by evaporating Ni/Au rectifying contacts through stencil masks onto the etched surfaces. For low etch rate conditions (˜120 Å min-1) at low powers (150 W of the 2 MHz ICP source power and 15 W rf of 13.56 MHz chuck power), there was only a small decrease in reverse breakdown voltage (˜6%), while the barrier height decreased from 1.2 eV to 1.01 eV and the ideality factor increased from 1.00 to 1.06. Under higher etch rate (˜700 Å min-1) and power (400 W ICP and 200 W rf) conditions, the damage was more significant, with the reverse breakdown voltage decreasing by ˜35%, the barrier height was reduced to 0.86 eV, and the ideality factor increased to 1.2. This shows that there is a trade-off between the etch rate and near-surface damage.

  2. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams.

    PubMed

    Grad, Michael; Harken, Andrew; Randers-Pehrson, Gerhard; Attinger, Daniel; Brenner, David J

    2012-12-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University's Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm - 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H(+)), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles ((4)He(++)). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms.

  3. Barrier height enhancement of InP-based n-Ga(0.47)In(0.53)As Schottky-barrier diodes grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Kim, J. H.; Li, S. S.; Figueroa, L.

    1988-01-01

    Barrier height enhancement of an InP-based p(+)n-Ga(0.47)In(0.53)As Schottky diode grown by MBE has been demonstrated for infra-red photodetector applications. A barrier height of 0.35 eV for n-Ga(0.47)In(0.53)As Schottky barrier diodes, was increased to the effective barrier height of 0.55 eV, with a p(+)-Ga(0.47)In(0.53)As surface layer of 30 nm thick. The results show a reverse leakage current density of 0.0015 A/sq cm and a junction capacitance of 0.3 pF, which are comparable to those of p-Ga(0.47)In(0.53)As Schottky-barrier diodes at a reverse bias voltage of 5 V.

  4. Improved reverse recovery characteristics of inAlN/GaN schottky barrier diode using a SOI substrate

    NASA Astrophysics Data System (ADS)

    Chiu, Hsien-Chin; Peng, Li-Yi; Wang, Hsiang-Chun; Kao, Hsuan-Ling; Wang, Hou-Yu; Chyi, Jen-Inn

    2017-10-01

    The low-frequency noise (LFN) and reverse recovery charge characteristics of a six-inch InAlN/AlN/GaN Schottky barrier diode (SBD) on the Si-on-insulator (SOI) substrate were demonstrated and investigated for the first time. Raman spectroscopy indicated that using SOI wafers lowered epitaxial stress. According to the DC and LFN measurements at temperatures ranging from 300 to 450 K, the InAlN/GaN SBD on the SOI substrate showed improved forward and reverse currents and achieved a lower reverse recovery charge, compared with a conventional device.

  5. Correlation of EBIC and SWBXT Imaged Defects and Epilayer Growth Pits in 6H-SiC Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Schnable, C. M.; Tabib-Azar, M.; Neudeck, P. G.; Bailey, S. G.; Su, H. B.; Dudley, M.; Raffaelle, R. P.

    2000-01-01

    We show the first direct experimental correlation between the presence of closed core screw dislocations in 6H-SiC epilayers with recombination centers, as well as with some of the small growth pits on the epilayer surface in lightly-doped 6H-SiC Schottky diodes. At every Synchrotron White-Beam X-ray Topography (SWBXT)-identified closed core screw dislocation, an Electron Beam Induced Current (EBIC) image showed a dark spot indicating a recombination center, and Nomarski optical microscope and Atomic Force Microscope (AFM) images showed a corresponding small growth pit with a sharp apex on the surface of the epilayer.

  6. Dual-Functional On-Chip AlGaAs/GaAs Schottky Diode for RF Power Detection and Low-Power Rectenna Applications

    PubMed Central

    Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul

    2011-01-01

    A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I–V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems. PMID:22164066

  7. Studying of barrier height and ideality factor relation in the nano sized Au-n type Si Schottky diodes

    NASA Astrophysics Data System (ADS)

    Yeganeh, M. A.; Mamedov, R. K.; Rahmatallahpur, Sh.

    2011-07-01

    The results of formation of the operating potential barrier height ( Φв) of inhomogeneous Schottky diodes (SD) in view of an additional electric field in the near contact region of the semiconductor and features of its dependence on the external applied voltage are presented. A correlation, between SD heterogeneity and dependence between potential barrier height ( Φв) and ideality factor ( n), is presented. Using conducting probe atomic force microscope (CP-AFM) techniques, it is shown that Au/n-Si diodes consist of sets of parallel-connected and cooperating nano diodes with the contact surfaces sizes in the order of 100-200 nm. The effective Φв and ideality factors of the SD have been obtained from the current-voltage ( I- V) characteristics, which were measured using a CP-AFM along a contact surface. It was experimentally shown that the forward and reverse part of I- V characteristics and their effective Φв and ideality factors of the identically fabricated nano-SD differ from diode to diode. The Φв for the nano-SD has ranged from 0.565 to 0.723 eV and ideality factor from 1.11 to 1.98. No correlation can be found between the Φв and ideality factor. The Φв distribution obtained from the I- V characteristics has been fitted by a Gaussian function but the ideality factor distribution could not be fitted by a Gaussian function.

  8. Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects

    NASA Astrophysics Data System (ADS)

    Oshima, Takayoshi; Hashiguchi, Akihiro; Moribayashi, Tomoya; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu; Oishi, Toshiyuki; Kasu, Makoto

    2017-08-01

    The electrical properties of Schottky barrier diodes (SBDs) on a (001) β-Ga2O3 substrate were characterized and correlated with wet etching-revealed crystal defects below the corresponding Schottky contacts. The etching process revealed etched grooves and etched pits, indicating the presence of line-shaped voids and small defects near the surface, respectively. The electrical properties (i.e., leakage currents, ideality factor, and barrier height) exhibited almost no correlation with the density of the line-shaped voids. This very weak correlation was reasonable considering the parallel positional relation between the line-shaped voids extending along the [010] direction and the (001) basal plane in which the voids are rarely exposed on the initial surface in contact with the Schottky metals. The distribution of small defects and SBDs with unusually large leakage currents showed similar patterns on the substrate, suggesting that these defects were responsible for the onset of fatal leak paths. These results will encourage studies on crystal defect management of (001) β-Ga2O3 substrates for the fabrication of devices with enhanced performance using these substrates.

  9. Structural, morphological, optical and electrical properties of Schottky diodes based on CBD deposited ZnO:Cu nanorods

    NASA Astrophysics Data System (ADS)

    Mwankemwa, Benard S.; Legodi, Matshisa J.; Mlambo, Mbuso; Nel, Jackie M.; Diale, Mmantsae

    2017-07-01

    Undoped and copper doped zinc oxide (ZnO) nanorods have been synthesized by a simple chemical bath deposition (CBD) method at a temperature of 90 °C. Structural, morphological, optical and electrical properties of the synthesized ZnO nanorods were found to be dependent on the Cu doping percentage. X-ray diffraction (XRD) patterns revealed strong diffraction peaks of hexagonal wurtzite of ZnO, and no impurity phases from metallic zinc or copper. Scanning electron microscopy (SEM) images showed changes in diameter and shape of nanorods, where by those doped with 2 at.% and 3 at.% aggregated and became compact. Selected area electron diffraction (SAED) patterns indicates high quality, single crystalline wurtzite structure ZnO and intensities of bright spots varied with copper doping concentration. UV-visible absorption peaks of ZnO red shifted with increasing copper doping concentration. Raman studies demonstrated among others, strong and sharp E2 (low) and E2 (high) optical phonon peaks confirming crystal structure of ZnO. Current-voltage measurements based on the gold/ZnO nanorods/ITO showed good rectifying behavior of the Schottky diode. The predicted Schottky barrier height of 0.60 eV was obtained which is not far from the theoretical Schottky-Mott value of 0.80 eV.

  10. The effects of illumination on electrical parameters of Au/P3HT/n-Si Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Yükseltürk, Esra; Bülbül, M. Mahir; Zeyrek, Sedat

    2016-03-01

    The electrical characteristics of Au/P3HT/n-Si Schottky Barrier Diode (SBD) have been investigated by using current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements at room temperature and 1MHz. The illumination effects on main structure parameters such as zero-bias-barrier height (ΦBo), ideality factor (n), series resistance (Rs) and interface states (Nss) of Au/P3HT/n-Si diode were determined in dark and under various illumination intensities. Under illumination, both of the values of forward and reverse currents have increased with increasing illumination intensity. The density of interface states (Nss) distribution profiles as a function of (Ec-Ess) was extracted from the forward I-V measurements dark and under various illumination intensities. The interface state densities were observed to be strongly illumination dependent and are decreased with increasing illumination intensities.

  11. Thermal-resistant TiB{sub x}-n-GaP Schottky diodes

    SciTech Connect

    Belyaev, A. E.; Boltovets, N. S. Ivanov, V. N.; Kamalov, A. B.; Kapitanchuk, L. M.; Konakova, R. V. Kudryk, Ya. Ya.; Lytvyn, O. S.; Milenin, V. V.; Nasyrov, M. U.

    2008-04-15

    The effect of rapid thermal annealing on the parameters of TiB{sub x}-n-GaP Schottky barriers and interphase interactions at the TiB{sub x}-GaP interface are studied. It is shown that the contact TiB{sub x}-n-GaP system features an increased thermal stability without varying the electrical parameters of the Schottky barrier at temperatures as high as 600 deg. C.

  12. Influence of temperature on Al/p-CuInAlSe2 thin-film Schottky diodes

    NASA Astrophysics Data System (ADS)

    Parihar, Usha; Ray, Jaymin; Panchal, C. J.; Padha, Naresh

    2016-06-01

    Al/p-CuInAlSe2 Schottky diodes were fabricated using the optimized thin layers of CuInAlSe2 semiconductor. These diodes were used to study their temperature-dependent current-voltage (I-V) and capacitance-voltage (C-V) analysis over a wide range of 233-353 K. Based on these measurements, diode parameters such as ideality factor ( η), barrier height (ϕbo) and series resistance ( R s) were determined from the downward curvature of I-V characteristics using Cheung and Cheung method. The extracted parameters were found to be strongly temperature dependent; ϕbo increases, while η and R s decrease with increasing temperature. This behavior of ϕbo and η with change in temperature has been explained on the basis of barrier inhomogeneities over the MS interface by assuming a Gaussian distribution (GD) of the ϕbo at the interface. GD of barrier height (BH) was confirmed from apparent BH (ϕap) versus q/2 kT plot, and the values of the mean BH and standard deviation (σs) obtained from this plot at zero bias were found to be 1.02 and 0.14 eV, respectively. Also, a modified ln ( {J_{{s}} /T2 } ) - q2 σ_{{s}}2 /2k2 T2 versus q/ kT plot for Al/p-CuInAlSe2 Schottky diodes according to the GD gives ϕbo and Richardson constant ( A ** ) as 1.01 eV and 26 Acm-2 K-2, respectively. The Richardson constant value of 26 Acm-2 K-2 is very close to the theoretical value of 30 Acm-2 K-2. The discrepancy between BHs obtained from I-V and C-V measurements has also been interpreted.

  13. Current-voltage-temperature characteristics of PEDOT:PSS/ZnO thin film-based Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Hernandez-Como, N.; Rodriguez-Lopez, A.; Hernandez-Cuevas, F. J.; Munguia, J.; Garcia, R.; Baca-Arroyo, R.; Aleman, M.

    2016-11-01

    In this work, we report the temperature dependence of the electrical parameters of PEDOT:PSS/ZnO Schottky barrier diodes (SBDs) grown on glass substrates. To understand the current conduction mechanism, the current-voltage-temperature characteristics of PEDOT:PSS/ZnO thin film SBDs were studied. The electrical parameters were extracted with both thermionic emission and Cheung models. The obtained Richardson constant and effective barrier height were 5 A cm-2 °K-2 and 0.74 eV, respectively. The diode ideality factor was 1.5 and the series resistance was 36 Ω. All these electrical parameters turned out to be temperature independent which was associated with the dominant transport mechanisms of thermionic emission. The Richardson constant slightly deviates from theoretical values due to the presence of interfacial defects created by the preparation and deposition of PEDOT:PSS and the ZnO film crystallinity. The conductive polymer PEDOT:PSS, as a Schottky contact to ZnO, arises as an alternative to the expensive noble metals: Pt, Pd, Ag and metal oxides: IrOx, PdOx, PtOx.

  14. Study of the characteristics current-voltage and capacitance-voltage in nitride GaAs Schottky diode

    NASA Astrophysics Data System (ADS)

    Rabehi, Abdelaziz; Amrani, Mohamed; Benamara, Zineb; Akkal, Boudali; Hatem-Kacha, Arslane; Robert-Goumet, Christine; Monier, Guillaume; Gruzza, Bernard

    2015-10-01

    This article reports the study of Au/GaN/GaAs Schottky diodes, where the thin GaN film is prepared by nitridation of GaAs substrates with thicknesses of 0.7 and 0.8 nm. The resulting GaN sample with thickness 0.8 nm is then treated with an annealing operation (heating to 620 °C) to improve the current transport. The current-voltage (I-V) and capacitance-voltage (C-V) of the Au/GaN/GaAs structures were investigated at room temperature. In fact, the I-V characteristics show that the annealed sample has low series resistance (Rs) and ideality factor (n) (63 Ω, 2.27 respectively) when compared to the values obtained in the untreated sample (1.83 kΩ, 3.31 respectively). The formation of the GaN layer on the gallium arsenide surface is investigated through calculation of the interface state density NSS with and without the presence of series resistance Rs. The value of the interface state density NSS(E) close to the mid-gap was estimated to be in the order of 4.7×1012 cm-2 eV-1 and 1.02× 1013 cm-2 eV-1 with and without the annealing operation, respectively. However, nitridation with the annealing operation at 620 °C improves the electrical properties of the resultant Schottky diode.

  15. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-07-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi2S3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi2S3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells.

  16. Schottky diodes between Bi{sub 2}S{sub 3} nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    SciTech Connect

    Saha, Sudip K.; Pal, Amlan J.

    2015-07-07

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi{sub 2}S{sub 3} nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi{sub 2}S{sub 3} nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells.

  17. Control of pn-junction turn-on voltage in 4H-SiC merged PiN Schottky diode

    NASA Astrophysics Data System (ADS)

    Park, Junbo; Park, Kun-Sik; Won, Jong-il; Kim, Ki-hwan; Koo, Sangmo; Kim, Sang-gi; Mun, Jae-Kyoung

    2017-04-01

    We present numerical simulation results and experimental measurements that explain the physical mechanism behind the high critical voltage, Vcrit, required to turn on a pn junction in a merged PiN Schottky (MPS) diode. The 2D simulation of potential distribution within a unit MPS cell demonstrated that the potential gradient set by the Schottky junction raises the potential barrier formed at the pn junction, thereby increasing Vcrit. Based on this knowledge, we propose that changing the ratio of the Schottky contact and the p+ region area, as well as shallow p-doping of the Schottky interface, can be used to control the magnitude of Vcrit. We present simulation and measurement results that demonstrate the feasibility of our approach.

  18. Thermal stability of a Schottky diode fabricated with transfer-free deposition of multilayer graphene on n-GaN by solid-phase reactions

    NASA Astrophysics Data System (ADS)

    Sahab Uddin, Md.; Ueno, Kazuyoshi

    2017-07-01

    Multilayer graphene (MLG)/n-GaN Schottky diodes were fabricated by transfer-free deposition of MLG on n-GaN by solid-phase reactions with cobalt as a catalyst. The thermal stability of the diodes was determined from the current-voltage (I-V) characteristics after annealing the diodes in vacuum at 200-500 °C, at intervals of 100 °C. The diode characteristics evaluated using a thermionic emission model and Cheung’s function using I-V data revealed that the Schottky barrier diode (SBD) fabricated with MLG as a Schottky contact on n-GaN showed better thermal stability than the conventional Ni/n-GaN SBD. The prevention of Au diffusion to n-GaN with MLG as a diffusion barrier layer and the unaffected interface reactions between n-GaN and MLG are possible reasons for the improved thermal stability, enabling potential application of this new diode in high-power and high-temperature operations.

  19. Study of barrier inhomogeneities using I-V-T characteristics of Mo/4H-SiC Schottky diode

    NASA Astrophysics Data System (ADS)

    Ouennoughi, Z.; Toumi, S.; Weiss, R.

    2015-01-01

    In the present work we investigate the forward current-voltage (I-V) characteristics, over a wide temperature range 298-498 K, of Mo/4H-SiC Schottky diode for which aluminum ion implantation was used to create the high resistivity layer forming the guard ring. The (I-V) analysis based on Thermionic Emission (TE) theory shows a decrease of the barrier height ϕB and an increase of the ideality factor n when the temperature decreases. These anomalies are mainly due to the barrier height inhomogeneities at the metal/semiconductor interface as we get a Gaussian distribution of the barrier heights when we plot the apparent barrier height ϕap versus q/2kT. The mean barrier height and the standard deviation obtained values are ϕbarB0=1.160 eV and σ0=88.049 mV, respectively. However, by means of the modified Richardson plot Ln (Is /T2) - (q2 σ 0 2 / 2k2T2) versus q/kT, the mean barrier height and the Richardson constant values obtained are ϕbarB0=1.139 eV and A*=129.425 A/cm2 K2, respectively. The latter value of ϕbarB0 matches very well with the mean barrier height obtained from the plot of ϕap versus q/2kT. The Richardson constant is much closer to the theoretical value of 146 A/cm2 K2. The series resistance Rs is also estimated from the forward current-voltage characteristics of Mo/4H-SiC Schottky contact. This parameter shows strong temperature dependence. The T0 effect is validated for the 298-498 K temperature range for the used Schottky diode and provides a clear evidence for the barrier inhomogeneity at the Mo/4H-SiC interface. Finally, we note the impact of the implantation process as well as the choice of the used ion on the characterized parameters of the Schottky contact.

  20. The interface structure of high performance ZnO Schottky diodes

    NASA Astrophysics Data System (ADS)

    Mayes, Edwin L. H.; Partridge, James G.; Field, Matthew R.; McCulloch, Dougal G.; Durbin, Steven M.; Kim, Hyung-Suk; Allen, Martin W.

    2012-08-01

    Oxidized iridium (IrOx) anodes fabricated on n-type ZnO single crystal wafers using reactive pulsed laser deposition are known to produce high quality Schottky barriers with ideality factors approaching the image-force-controlled limit for laterally homogeneous interfaces. These high performance IrOx/ZnO Schottky contacts were cross-sectioned and analyzed using transmission electron microscopy, revealing an amorphous interfacial layer of 2-3 nm thickness. Electron energy loss spectroscopy, used to study the composition of the interface region, showed evidence of significant zinc diffusion across the interface into the IrOx film, which leads to the creation of Zn vacancies (acceptors), in the ZnO sub-interface region. There is also evidence for oxygen passivation near the interface resulting from the use of an active oxygen ambient during the IrOx deposition. Both these factors may explain the outstanding electrical performance of these Schottky devices.

  1. Submillimeter wave GaAs Schottky diode application based study and optimization for 0.1-1.5 THz

    NASA Astrophysics Data System (ADS)

    Jenabi, Sarvenaz; Malekabadi, Ali; Deslandes, Dominic; Boone, Francois; Charlebois, Serge A.

    2017-08-01

    In this paper, a design and optimization method for submillimeter-wave Schottky diode is proposed. Parasitic capacitance is significantly reduced to under 20% of the total capacitance of the diode. The parasitic capacitance value is measured to be 0.6 fF for 1 μm anode radius which increased the cut-off frequency to 1.5 THz. A corresponding microfabrication process that provides higher degrees of freedom for the anode diameter, air-bridge dimensions and distance to the substrate is introduced and implemented. The DC and RF measurements are provided and compared with the simulations. In order to provide a better understanding of the diode behavior, the limiting factors of the cut-off frequency for different applications are studied and compared. For the mixer/multiplier mode, an improved and expanded formulation for calculation of the cut-off frequency is introduced. It is shown that the usable voltage bias range (with acceptable cut-off frequency) is limited by the exponential reduction of junction resistance, Rj , in mixer/multiplier mode.

  2. Surface and Interface Properties of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    The surface and interface properties of Pd(0.9,)Cr(0.1)/SiC Schottky diode gas sensors both before and after annealing are investigated using Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd,Si only in a very narrow interfacial region. After annealing for 250 h ,It 425 C, the surface of the Schottky contact area his much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Palladium silicides (Pd(x)Si) formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(0.9)Cr(0.1) film are likely responsible for significantly improved device sensitivity.

  3. Surface and Interface Properties of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    The surface and interface properties of Pd(0.9,)Cr(0.1)/SiC Schottky diode gas sensors both before and after annealing are investigated using Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd,Si only in a very narrow interfacial region. After annealing for 250 h ,It 425 C, the surface of the Schottky contact area his much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Palladium silicides (Pd(x)Si) formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(0.9)Cr(0.1) film are likely responsible for significantly improved device sensitivity.

  4. Surface and Interface Study of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    The surface and interface properties of Pd(sub 0.9)Cr(sub 0.1/SiC Schottky diode gas sensor both before and after annealing are investigated using Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd(sub x)Si only in a very narrow interfacial region. After annealing for 250 hours at 425 deg. C, the surface of the Schottky contact area has much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Pd(sub x)Si formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(sub 0.9)Cr(sub 0.1) film are likely responsible for significantly improved device sensitivity.

  5. Surface and Interface Properties of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    The surface and interface properties of Pd(0.9)Cr(0.1)/SiC Schottky diode gas sensors both before and after annealing are investigated using Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd(x)Si only in a very narrow interfacial region. After annealing for 250 hours at 425 C, the surface of the Schottky contact area has much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Palladium silicides (Pd(x)Si) formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(0.9)Cr(0.1) film are likely responsible for significantly improved device sensitivity.

  6. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Analytical model for reverse characteristics of 4H-SiC merged PN-Schottky (MPS) diodes

    NASA Astrophysics Data System (ADS)

    Song, Qing-Wen; Zhang, Yu-Ming; Zhang, Yi-Men; Lü, Hong-Liang; Chen, Feng-Ping; Zheng, Qing-Li

    2009-12-01

    A new analytical model for reverse characteristics of 4H-SiC merged PN-Schottky diodes (MPS or JBS) is developed. To accurately calculate the reverse characteristics of the 4H-SiC MPS diode, the relationship between the electric field at the Schottky contact and the reverse bias is analytically established by solving the cylindrical Poisson equation after the channel has pinched off. The reverse current density calculated from the Wentzel-Kramers-Brillouin (WKB) theory is verified by comparing it with the experimental result, showing that they are in good agreement with each other. Moreover, the effects of P-region spacing (S) and P-junction depth (Xj) on the characteristics of 4H-SiC MPS are analysed, and are particularly useful for optimizing the design of the high voltage MPS diodes.

  7. Growth of InSe:Mn semiconductor crystals by Bridgman-Stockbarger technique and analysis of electron irradiation effects on Sn/InSe:Mn Schottky diodes

    NASA Astrophysics Data System (ADS)

    Çınar Demir, K.; Tekle, T.; Gurbulak, B.; Aydoğan, Ş.; Coşkun, C.; Ekinci, D.

    2016-05-01

    Mn-doped p-InSe semiconductor crystals were grown by Bridgman -Stockbarger technique. The crystals were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fabricated Sn/InSe:Mn Schottky diodes. The current-voltage (I-V) and capacitance-voltage (C-V) measurements of diodes were investigated to determine the response of devices to electron irradiation with 9 MeV energy and 1.2 × 1010 e- cm-2 dose. After irradiation, the ideality factor and barrier height of the Sn/InSe:Mn Schottky diode were determined as 1.66 and 0.85 eV, respectively. Before irradiation, they were determined as 1.37 and 0.90 eV, respectively. It has been concluded that the radiation with high energy may contribute to form defects at the interface of the Sn/InSe:Mn device.

  8. ON-state characteristics of proton irradiated 4H-SiC Schottky diode: The calibration of model parameters for device simulation

    NASA Astrophysics Data System (ADS)

    Vobecký, J.; Hazdra, P.; Záhlava, V.; Mihaila, A.; Berthou, M.

    2014-04-01

    4H silicon carbide Schottky diodes were irradiated by 550 keV protons with the aim to place the ion range into the low-doped n-type epitaxial layer. The diodes were characterized using DLTS, C-V profiling and forward I-V curves. Calibration procedure of model parameters for device simulation has been carried out. It is based on modeling the doping compensation of the n-type epitaxial layer caused by the deep acceptor levels resulting from radiation damage. It is shown that the agreement of simulated and measured forward I-V curves of proton irradiated diodes can be achieved, if the profiles of deep levels are calibrated with respect to irradiation dose, the degradation of electron mobility due to charged deep levels is accounted of and the Schottky barrier height is properly adjusted. The proposed methodology introduces a starting point for exact calibration of ion irradiated SiC unipolar devices.

  9. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-01

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  10. 1.9 kV AlGaN/GaN Lateral Schottky Barrier Diodes on Silicon

    SciTech Connect

    Zhu, Mingda; Song, Bo; Qi, Meng; Hu, Zongyang; Nomoto, Kazuki; Yan, Xiaodong; Cao, Yu; Johnson, Wayne; Kohn, Erhard; Jena, Debdeep; Xing, Grace Huili

    2015-02-16

    In this letter, we present AlGaN/GaN lateral Schottky barrier diodes on silicon with recessed anodes and dual field plates. A low specific on-resistance RON,SP (5.12 mΩ · cm2), a low turn-on voltage (<0.7 V) and a high reverse breakdown voltage BV (>1.9 kV), were simultaneously achieved in devices with a 25 μm anode/cathode separation, resulting in a power figure-of-merit (FOM) BV2/RON,SP of 727 MW·cm2. The record high breakdown voltage of 1.9 kV is attributed to the dual field plate structure.

  11. 1.9 kV AlGaN/GaN Lateral Schottky Barrier Diodes on Silicon

    DOE PAGES

    Zhu, Mingda; Song, Bo; Qi, Meng; ...

    2015-02-16

    In this letter, we present AlGaN/GaN lateral Schottky barrier diodes on silicon with recessed anodes and dual field plates. A low specific on-resistance RON,SP (5.12 mΩ · cm2), a low turn-on voltage (<0.7 V) and a high reverse breakdown voltage BV (>1.9 kV), were simultaneously achieved in devices with a 25 μm anode/cathode separation, resulting in a power figure-of-merit (FOM) BV2/RON,SP of 727 MW·cm2. The record high breakdown voltage of 1.9 kV is attributed to the dual field plate structure.

  12. Effect of high energy electron irradiation on low frequency noise in 4H-SiC Schottky diodes

    NASA Astrophysics Data System (ADS)

    Kozlovski, V. V.; Lebedev, A. A.; Levinshtein, M. E.; Rumyantsev, S. L.; Palmour, J. W.

    2017-03-01

    The low-frequency noise in high voltage Ni/4H-SiC Schottky diodes irradiated with high energy (0.9 MeV) electrons was studied in the frequency range from 1 Hz to 50 kHz, temperature interval 295-410 K, and irradiation dose Φ from 0.2 × 1016 cm-2 to 7 × 1016 cm-2. The noise amplitude was found monotonically increasing with the irradiation dose. With the irradiation dose increase, the noise spectra on the linear part of the current voltage characteristic transform from the 1/f noise to the generation recombination noise of at least two trap levels. One of these levels can be classified as Z1/2 with the capture cross section determined from the noise measurements to be ˜10-15 cm2.

  13. Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Kasu, Makoto; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oshima, Takayoshi; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu

    2016-12-01

    We fabricated Schottky barrier diodes (SBDs) on the entire surface of a (0\\bar{1}0) β-Ga2O3 single crystal, and investigated the leakage current in both forward and reverse directions. Subsequently, we investigated the distribution of dislocation and void etch pits on the entire surface. The dislocation etch pit density on the surface ranged from <1 × 103 to 6 × 104, and its average was 1.1 × 104 cm-2. The void etch pit density on the surface ranged from <5 × 102 to 7 × 103, and its average was 6 × 103 cm-2. From a comparison between the SBD leakage current and the dislocation and void etch pit densities, we found that dislocations are closely related to the SBD reverse leakage current, and that not all voids produce the leakage current.

  14. Schottky Diode Based 1.2 THz Receivers Operating at Room-Temperature and Below for Planetary Atmospheric Sounding

    NASA Astrophysics Data System (ADS)

    Schlecht, Erich; Siles, Jose V.; Lee, Choonsup; Lin, Robert; Thomas, Bertrand; Chattopadhyay, Goutam; Mehdi, Imran

    2014-11-01

    In this paper, we report on the design, fabrication and test of two designs for all-solid-state planar Schottky diode based receivers working in the 1.2 THz range. At room temperature, a double side-band (DSB) mixer noise temperature of 2800 K and a conversion loss of 10.5 dB have been measured at 1134 GHz. When the mixers are cooled down to 120 K, they exhibit DSB noise temperatures as low as about 2000 K and conversion loss of 12 dB. The compact local oscillator source (LO) is based on a x2x3 chain and sufficiently pumps the sub-harmonic mixer with 1.5-2.5 mW of power. The receivers provide around 15% RF bandwidth and are well suited for planetary missions to investigate methane and other key lines.

  15. Correlation between phonon and impurity scatterings, potential fluctuations and leakage conduction of graphene/n-type Si Schottky diodes

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon

    2015-12-01

    A correlation between the temperature-dependent leakage conduction, phonon and impurity scatterings and potential fluctuations of graphene/n-type Si Schottky diodes is identified. For applying a sufficiently high reverse-bias voltage, the significantly increase in the leakage current density with voltage at low temperature is mainly the result of graphene's Fermi-energy shifts. However, the high-field saturating leakage current is observed at high temperature. This is because of the competition among the phonon and impurity scatterings. In the graphene film transferred onto the n-type Si substrate, the Femi energy level is lower and the phonon coupling is stronger, giving a stronger dependence in the carrier velocity with temperature and a weaker dependence in the leakage current density with reserve-bias voltage.

  16. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  17. 4H-SiC Schottky barrier diodes with semi-insulating polycrystalline silicon field plate termination

    NASA Astrophysics Data System (ADS)

    Yuan, Hao; Tang, Xiao-Yan; Zhang, Yi-Men; Zhang, Yu-Ming; Song, Qing-Wen; Yang, Fei; Wu, Hao

    2014-05-01

    Based on the theoretical analysis of the 4H-SiC Schottky-barrier diodes (SBDs) with field plate termination, 4H-SiC SBD with semi-insulating polycrystalline silicon (SIPOS) FP termination has been fabricated. The relative dielectric constant of the SIPOS dielectric first used in 4H-SiC devices is 10.4, which is much higher than that of the SiO2 dielectric, leading to benefitting the performance of devices. The breakdown voltage of the fabricated SBD could reach 1200 V at leakage current 20 μA, about 70% of the theoretical breakdown voltage. Meanwhile, both of the simulation and experimental results show that the length of the SIPOS FP termination is an important factor for structure design.

  18. Current transport mechanisms in lattice-matched Pt/Au-InAlN/GaN Schottky diodes

    SciTech Connect

    Ren, Jian; Yan, Dawei Yang, Guofeng; Wang, Fuxue; Xiao, Shaoqing; Gu, Xiaofeng

    2015-04-21

    Lattice-matched Pt/Au-In{sub 0.17}Al{sub 0.83}N/GaN hetreojunction Schottky diodes with circular planar structure have been fabricated and investigated by temperature dependent electrical measurements. The forward and reverse current transport mechanisms are analyzed by fitting the experimental current-voltage characteristics of the devices with various models. The results show that (1) the forward-low-bias current is mainly due to the multiple trap-assisted tunneling, while the forward-high-bias current is governed by the thermionic emission mechanism with a significant series resistance effect; (2) the reverse leakage current under low electric fields (<6 MV/cm) is mainly carried by the Frenkel-Poole emission electrons, while at higher fields the Fowler-Nordheim tunneling mechanism dominates due to the formation of a triangular barrier.

  19. Fabrication of a Schottky diode with transfer-free deposition of multilayer graphene on n-GaN by solid-phase reaction

    NASA Astrophysics Data System (ADS)

    Sahab Uddin, Md.; Ueno, Kazuyoshi

    2017-04-01

    Transfer-free deposition of multilayer graphene (MLG) on n-GaN by a solid-phase reaction was demonstrated for the first time for the fabrication of a Schottky diode. To improve the crystallinity and uniformity of MLG films, a new approach of heat sputtering for the deposition of amorphous carbon (C) and cobalt (Co) as catalyst layers has been investigated. The characteristics obtained by Raman spectroscopy and scanning electron microscopy (SEM) measurements revealed that the crystallinity and uniformity of MLG films were improved significantly by employing heat sputtering rather than conventional room-temperature sputtering. MLG–GaN Schottky diodes were fabricated with optimized deposition of MLG on n-GaN. The Schottky barrier height determined on the basis of the thermionic emission theory using current–voltage (I–V) data was 0.75 eV. The reverse leakage current was found to be of the order of 10‑7 A/mm2. The obtained results indicate the MLG fabrication on n-GaN by our proposed method might have potential applications in the fabrication of Schottky diodes.

  20. Large barrier, highly uniform and reproducible Ni-Si/4H-SiC forward Schottky diode characteristics: testing the limits of Tung's model

    NASA Astrophysics Data System (ADS)

    Omar, Sabih U.; Sudarshan, Tangali S.; Rana, Tawhid A.; Song, Haizheng; Chandrashekhar, M. V. S.

    2014-07-01

    We report highly ideal (n < 1.1), uniform nickel silicide (Ni-Si)/SiC Schottky barrier (1.60-1.67 eV with a standard deviation <2.8%) diodes, fabricated on 4H-SiC epitaxial layers grown by chemical vapour deposition. The barrier height was constant over a wide epilayer doping range of 1014-1016 cm-3, apart from a slight decrease consistent with image force lowering. This remarkable uniformity was achieved by careful optimization of the annealing of the Schottky interface to minimize non-idealities that could lead to inhomogeneity. Tung's barrier inhomogeneity model was used to quantify the level of inhomogeneity in the optimized annealed diodes. The estimated ‘bulk’ barrier height (1.75 eV) was consistent with the Shockley-Mott limit for the Ni-Si/4H-SiC interface, implying an unpinned Fermi level. But the model was not useful to explain the poor ideality in unoptimized, as-deposited Schottky contacts (n = 1.6 - 2.5). We show analytically and numerically that only idealities n < 1.21 can be explained using Tung's model, irrespective of material system, indicating that the barrier height inhomogeneity is not the only cause of poor ideality in Schottky diodes. For explaining this highly non-ideal behaviour, other factors (e.g. interface traps, morphological defects, extrinsic impurities, etc) need to be considered.

  1. Temperature dependent electrical characterisation of Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes

    SciTech Connect

    Shetty, Arjun Vinoy, K. J.; Roul, Basanta; Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B.

    2015-09-15

    This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO{sub 2} (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO{sub 2}/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO{sub 2}/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.

  2. Thermal stability and degradation mechanism of WSiN/InGaP Schottky diodes

    SciTech Connect

    Shiojima, K.; Nishimura, K.; Hyuga, F.

    1996-03-01

    This article shows that the thermal stability of an InGaP Schottky contact can be improved by the refractory metal WSiN. Both the electrical characteristics and interfacial reactions were estimated by the {ital I}{endash}{ital V} (current{endash}voltage method), scanning electron microscopy, atomic force microscopy, and Auger electron spectroscopy. The WSiN/InGaP shows excellent {ital I}{endash}{ital V} characteristics, and the Schottky barrier height is 0.85 eV after annealing at 400{degree}C. Over 500{degree}C, an interfacial reaction occurs and the {ital I}{endash}{ital V} characteristic becomes leaky. We present an interfacial reaction model that shows In atoms condense and an eutectic alloy with W is formed. {copyright} {ital 1996 American Vacuum Society}

  3. Electrical and Optical Response Properties of MEH-PPV Semiconductor Polymer Schottky Diodes

    DTIC Science & Technology

    2011-07-01

    A JONES ATTN RDRL SED E M LITZ ATTN RDRL SED P A LELIS ATTN RDRL SEE E K ALIBERTI ATTN RDRL SEE E N GUPTA ATTN RDRL SEE...Wijewarnasuriya ARL -TR-5591 July 2011 Approved for public release; distribution unlimited...Laboratory Adelphi, MD 20783-1197 ARL -TR-5591 July 2011 Electrical and Optical Response Properties of MEH-PPV Semiconductor Polymer Schottky

  4. Design and characterisations of double-channel GaAs pHEMT Schottky diodes based on vertically stacked MMICs for a receiver protection limiter

    NASA Astrophysics Data System (ADS)

    Haris, Norshakila; Kyabaggu, Peter B. K.; Rezazadeh, Ali A.

    2016-07-01

    A microwave receiver protection limiter circuit has been designed, fabricated and tested using vertically stacked GaAs MMIC technology. The limiter circuit with a dimension of 2.5 × 1.3 mm2 is formed by using double-channel AlGaAs/InGaAs pseudomorphic HEMT (pHEMT) Schottky diodes integrated with a low-loss V-shaped coplanar waveguide multilayer structure. The electrical parameter characteristics of the pHEMT Schottky diodes are presented including the C-V profile showing the presence of a double channel in the device layer structure. This unique feature can also be seen from the double-peak responses of the electron density as a function of the device layer width, which represent the high electron concentration at two different 2-DEG layers of the structure. An equivalent circuit model of pHEMT Schottky diodes is demonstrated showing good agreement with the measurement results. At zero-bias condition, the devices show high performance in diode detector applications with voltage sensitivities of more than 89 mV μW-1 at 10 GHz and at least 5.4 mV μW-1 at 35 GHz. The measurement results of the limiter circuit demonstrated the blocking of input power signals greater than 20 dBm input power at 3 GHz. To the best of our knowledge this is the first demonstration of the use of pHEMT Schottky diodes in microwave power limiter applications.

  5. Electrical parameters and series resistance analysis of Au/Y/p-InP/Pt Schottky barrier diode at room temperature

    NASA Astrophysics Data System (ADS)

    Rao, L. Dasaradha; Reddy, V. Rajagopal

    2016-05-01

    The current-voltage (I-V) characteristics of Au/Y/p-InP/Pt Schottky barrier diode (SBD) are analyzed at room temperature. The Au/Y/p-InP/Pt SBD shows a good rectification behavior. The ideality factor (n), barrier height (Φb), series resistance (Rs) and shunt resistance (Rsh) are determined from the I-V measurements. The n and Φb values of Au/Y/p-InP/Pt SBD are found to be 1.32 and 0.62 eV respectively. The value of barrier height (BH) obtained from Norde function is compared with those calculated from Cheung's functions. The series resistance (Rs) is calculated from Cheung's and modified Norde functions. Additionally, it is found that n, Φb, Rs, and Rsh have strong correlation with the applied bias. Furthermore, at low and high voltage regions, ohmic and space-charge-limited conduction mechanisms are found to govern the current flow in the diode.

  6. Radiation hardness of n-type SiC Schottky barrier diodes irradiated with MeV He ion microbeam

    NASA Astrophysics Data System (ADS)

    Pastuović, Željko; Capan, Ivana; Cohen, David D.; Forneris, Jacopo; Iwamoto, Naoya; Ohshima, Takeshi; Siegele, Rainer; Hoshino, Norihiro; Tsuchida, Hidekazu

    2015-04-01

    We studied the radiation hardness of 4H-SiC Schottky barrier diodes (SBD) for the light ion detection and spectroscopy in harsh radiation environments. n-Type SBD prepared on nitrogen-doped (∼4 × 1014 cm-3) epitaxial grown 4H-SiC thin wafers have been irradiated by a raster scanning alpha particle microbeam (2 and 4 MeV He2+ ions separately) in order to create patterned damage structures at different depths within a sensitive volume of tested diodes. Deep Level Transient Spectroscopy (DLTS) analysis revealed the formation of two deep electron traps in the irradiated and not thermally treated 4H-SiC within the ion implantation range (E1 and E2). The E2 state resembles the well-known Z1/2 center, while the E1 state could not be assigned to any particular defect reported in the literature. Ion Beam Induced Charge (IBIC) microscopy with multiple He ion probe microbeams (1-6 MeV) having different penetration depths in tested partly damaged 4H-SiC SBD has been used to determine the degradation of the charge collection efficiency (CCE) over a wide fluence range of damaging alpha particle. A non-linear behavior of the CCE decrease and a significant degradation of the spectroscopic performance with increasing He ion fluence were observed above the value of 1011 cm-2.

  7. Schottky Diode Applications of the Fast Green FCF Organic Material and the Analyze of Solar Cell Characteristics

    NASA Astrophysics Data System (ADS)

    Çaldiran, Z.; Aydoğan, Ş.; İncekara, Ü.

    2016-05-01

    In this study, a device applications of organic material Fast Green FCF (C37H34N2Na2O10S3Na2) has been investigated. After chemical cleaning process of boron doped H-Si crystals, Al metal was coated on the one surface of crystals by thermal evaporation and fast green organic materials were coated on other surface of crystals with spin coating method (coating parameters; 800 rpm for 60 s). Finally, Ni metal was coated on Fast Green by sputtering and we obtained the Ni/Fast Green FCF/n-Si/Al Schottky type diode. And then we calculated the basic diode parameters of device with current-voltage (I-V) and capacitance- voltage (C-V) measurements at the room temperature. We calculated the ideality factory (n), barrier height (Φb) of rectifing contact from I-V measurements using thermionic emission methods. Furthermore, we calculated ideality factory (n), barrier height (Φb) and series resistance (Rs) of device using Cheung and Norde functions too. The diffusion potential, barrier height, Fermi energy level and donor concentration have been determined from the linear 1/C2-V curves at reverse bias, at room temperature and various frequencies. Besides we measured the current-voltage (I-V) at under light and analyzed the characteristics of the solar cell device.

  8. Electrical properties of Ni/n-GaN Schottky diodes on freestanding m-plane GaN substrates

    NASA Astrophysics Data System (ADS)

    Yamada, Hisashi; Chonan, Hiroshi; Takahashi, Tokio; Shimizu, Mitsuaki

    2017-04-01

    The electrical properties of m-plane Ni/n-GaN Schottky diodes grown via metalorganic chemical vapor deposition were investigated. Under growth at 1,120 °C with a V/III ratio of 1,000 (growth rate of 100 nm/min), the residual Si, O, and C impurity concentrations in the m-plane GaN layer were below the secondary-ion mass spectroscopy detection limit. The surface of the Si-doped n-GaN epitaxial layer on the 5°-off m-plane GaN substrate consisted of steps and terraces. A linear correlation between the carrier concentration and the Si atomic concentration was clearly observed from 1 × 1017 to 5 × 1015 cm‑3. The reverse current–voltage curves were fitted using the thermionic field-emission model at the measured carrier concentration and qϕB. The leakage current of the diodes under a reverse bias was effectively suppressed at a low carrier concentration of 4.6 × 1015 cm‑3.

  9. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics

    NASA Astrophysics Data System (ADS)

    He, Qiming; Mu, Wenxiang; Dong, Hang; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tang, Minghua; Tao, Xutang; Liu, Ming

    2017-02-01

    The Pt/β-Ga2O3 Schottky barrier diode and its temperature-dependent current-voltage characteristics were investigated for power device application. The edge-defined film-fed growth (EFG) technique was utilized to grow the (100)-oriented β-Ga2O3 single crystal substrate that shows good crystal quality characterized by X-ray diffraction and high resolution transmission electron microscope. Ohmic and Schottky electrodes were fabricated by depositing Ti and Pt metals on the two surfaces, respectively. Through the current-voltage (I-V) measurement under different temperature and the thermionic emission modeling, the fabricated Pt/β-Ga2O3 Schottky diode was found to show good performances at room temperature, including rectification ratio of 1010, ideality factor (n) of 1.1, Schottky barrier height (ΦB) of 1.39 eV, threshold voltage (Vbi) of 1.07 V, ON-resistance (RON) of 12.5 mΩ.cm2, forward current density at 2 V (J@2V) of 56 A/cm2, and saturation current density (J0) of 2 × 10-16 A/cm2. The effective donor concentration Nd - Na was calculated to be about 2.3 × 1014 cm3. Good temperature dependent performance was also found in the device. The Schottky barrier height was estimated to be about 1.3 eV-1.39 eV at temperatures ranging from room temperature to 150 °C. With increasing temperature, parameters such as RON and J@2V become better, proving that the diode can work well at high temperature. The EFG grown β-Ga2O3 single crystal is a promising material to be used in the power devices.

  10. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals.

    PubMed

    Shtepliuk, Ivan; Eriksson, Jens; Khranovskyy, Volodymyr; Iakimov, Tihomir; Lloyd Spetz, Anita; Yakimova, Rositsa

    2016-01-01

    A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current-voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium-graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I-V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.

  11. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

    PubMed Central

    Eriksson, Jens; Khranovskyy, Volodymyr; Iakimov, Tihomir; Lloyd Spetz, Anita; Yakimova, Rositsa

    2016-01-01

    A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current–voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium–graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I–V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed. PMID:28144530

  12. Diameter-dependent electronic transport properties of Au-catalyst/Ge-nanowire Schottky diodes

    SciTech Connect

    Picraux, S Thomas; Leonard, Francois; Swartzentruber, Brian S; Talin, A Alee

    2008-01-01

    We present electronic transport measurements in individual Au-catalyst/Ge-nanowire interfaces demonstrating the presence of a Schottky barrier. Surprisingly, the small-bias conductance density increases with decreasing diameter. Theoretical calculations suggest that this effect arises because electron-hole recombination in the depletion region is the dominant charge transport mechanism, with a diameter dependence of both the depletion width and the electron-hole recombination time. The recombination time is dominated by surface contributions and depends linearly on the nanowire diameter.

  13. Displacement Damage Induced Catastrophic Second Breakdown in Silicon Carbide Schottky Power Diodes

    NASA Technical Reports Server (NTRS)

    Scheick, Leif; Selva, Luis; Selva, Luis

    2004-01-01

    A novel catastrophic breakdown mode in reversed biased Silicon carbide diodes has been seen for low LET particles. These particles are too low in LET to induce SEB, however SEB was seen from particles of higher LET. The low LET mechanism correlates with second breakdown in diodes due to increase leakage and assisted charge injection from incident particles. Percolation theory was used to predict some basic responses of the devices, but the inherent reliability issue with silicon carbide have proven challenging.

  14. Displacement Damage Induced Catastrophic Second Breakdown in Silicon Carbide Schottky Power Diodes

    NASA Technical Reports Server (NTRS)

    Scheick, Leif; Selva, Luis; Selva, Luis

    2004-01-01

    A novel catastrophic breakdown mode in reversed biased Silicon carbide diodes has been seen for low LET particles. These particles are too low in LET to induce SEB, however SEB was seen from particles of higher LET. The low LET mechanism correlates with second breakdown in diodes due to increase leakage and assisted charge injection from incident particles. Percolation theory was used to predict some basic responses of the devices, but the inherent reliability issue with silicon carbide have proven challenging.

  15. The effect of high temperatures on the electrical characteristics of Au/n-GaAs Schottky diodes

    NASA Astrophysics Data System (ADS)

    Tunhuma, S. M.; Auret, F. D.; Legodi, M. J.; Diale, M.

    2016-01-01

    In this study, the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of Au/n-GaAs Schottky diodes have been measured over a wide temperature range, 80-480 K. The diodes were rectifying throughout the range and showed good thermal stability. Room temperature values for the ideality factor, I-V barrier height and C-V barrier height were found to be n=1.10, ϕIV=0.85 eV and ϕCV=0.96 eV, respectively. ϕIV increases and n decreases with an increase in temperature. We investigated the effect of elevated temperatures on the barrier height and ideality factor by measuring the diodes at a high temperature (annealing mode) then immediately afterwards measuring at room temperature (post annealing mode). The measurements indicate I-V characteristics that degrade permanently above 300 K. Permanent changes to the C-V characteristics were observed only above 400 K. We also noted a discrepancy in the C-V barrier height and carrier concentration between 340 and 400 K, which we attribute to the influence of the EL2 defect (positioned 0.83 eV below the conduction band minima) on the free carrier density. Consequently, we were able to fit the ϕCV versus temperature curve into two regions with temperature coefficients -6.9×10-4 eV/K and -2.2×10-4 eV/K above and below 400 K.

  16. Investigation of constant voltage off-state stress on Au-free AlGaN/GaN Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Stoffels, Steve; Lenci, Silvia; Wu, Tian-Li; Ronchi, Nicolò; You, Shuzhen; Bakeroot, Benoit; Groeseneken, Guido; Decoutere, Stefaan

    2015-04-01

    In this work, we perform an in-depth analysis of electron-trapping in AlGaN/GaN Schottky barrier diodes under constant voltage (VAC = -100 V) off-state stress conditions. The current-voltage (I-V) characteristics of the diode after stressing show a leakage reduction and on-state degradation due to electron-trapping occurring in the vicinity of the Schottky contact. Capacitance-voltage (C-V) measurements confirm an increase of the barrier height and the on-resistance of the stressed device. Furthermore, the on-resistance increase has been studied with different temperatures and stressing times. By TCAD simulations, a lateral extension of the “trapped region” at the AlGaN/Si3N4 interface has been visualized and can qualitatively explain the phenomenon of higher on-resistance increase at higher temperatures.

  17. Rapid thermal annealing effects on the electrical and structural properties of Ru/V/n-InP Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Padma, R.; Shanthi Latha, K.; Rajagopal Reddy, V.; Choi, Chel-Jong

    2015-07-01

    A Ru/V/n-InP Schottky barrier diode (SBD) is fabricated and investigated its electrical and structural properties as a function of annealing temperature. Measurements showed that the barrier height (BH) of the as-deposited Ru/V/n-InP SBD is found to be 0.83 eV (I-V) and 1.03 eV (C-V). Experimental results indicate that the SBD with high BH and low ideality factors (0.87 eV (I-V), 1.20 eV (C-V), and 1.12) can be achieved after annealing at 400 °C for 1 min in N2 atmosphere. Further, it is observed that the BH slightly decreases to 0.85 eV (I-V) and 1.09 eV (C-V) upon annealing at 500 °C. The BH, ideality factor and series resistance are also determined by Cheung's functions and Norde method. Further, the energy distribution of interface state density of Ru/V/n-InP SBD is calculated from the forward bias I-V characteristics as a function of annealing temperature. It is found that the interface state density decreases upon annealing at 400 °C and then slightly increases after annealing at 500 °C. The AES and XRD results revealed that the formation of indium phases at the Ru/V/n-InP interface could be the reason for the increase of BH upon annealing at 400 °C. The formation of phosphide phases at the interface may be the cause for the decrease of BH after annealing at 500 °C. The overall surface morphology of Ru/V Schottky contacts is considerably smooth at elevated temperatures.

  18. Trap filled limit and high current voltage characteristics of organic diodes with non-zero Schottky barrier

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Jain, S. C.; Kumar, Vikram; Chand, Suresh; Tandon, R. P.

    2008-08-01

    The analytical expressions for trap filled limit voltage ( V'_TFL ) and current-voltage characteristics for non-zero organic Schottky barrier are derived theoretically. The theoretical results are validated experimentally. In this case, the injected free charge carrier density at the contact is not infinitely large but a finite number p(0). For an exponential distribution of traps the maximum possible number of traps that can be filled in a sample is H'_b=H_b((p(0)/N_v))^{1/l} , where l = Tc/T, Tc is the characteristic temperature of trap distribution. The use of Fermi-Dirac statistics causes a maximum error of only 6.9% in H'_{b} . The analytical expression for V'_TFL is shown to be V'_TFL =0.5qH'_bd^2/\\varepsilon \\varepsilon _0 , where d is the sample thickness. As the applied voltage increases and if p(0)>H'_{b} , V2 law is obtained over a considerable range of applied voltage. However, the curves change to Ohm's law as the voltage increases beyond this range. If p(0), V2 law is not obtained and the curves directly go to Ohm's law. Experimental results of ITO/PEDOT : PSS/poly(2-methoxy-5-(2-ethyhexyloxy)1,4-phenylenevinylene)(MEH-PPV)/Au and ITO/PEDOT : PSS/poly(3-hexyl thiophene)(P3HT)/Au Schottky diodes are reported. The experimental results show excellent agreement with the theory.

  19. Temperature dependence of current-and capacitance-voltage characteristics of an Au/4H-SiC Schottky diode

    NASA Astrophysics Data System (ADS)

    Gülnahar, Murat

    2014-12-01

    In this study, the current-voltage (I-V) and capacitance-voltage (C-V) measurements of an Au/4H-SiC Schottky diode are characterized as a function of the temperature in 50-300 K temperature range. The experimental parameters such as ideality factor and apparent barrier height presents to be strongly temperature dependent, that is, the ideality factor increases and the apparent barrier height decreases with decreasing temperature, whereas the barrier height values increase with the temperature for C-V data. Likewise, the Richardson plot deviates at low temperatures. These anomaly behaviors observed for Au/4H-SiC are attributed to Schottky barrier inhomogeneities. The barrier anomaly which relates to interface of Au/4H-SiC is also confirmed by the C-V measurements versus the frequency measured in 300 K and it is interpreted by both Tung's lateral inhomogeneity model and multi-Gaussian distribution approach. The values of the weighting coefficients, standard deviations and mean barrier height are calculated for each distribution region of Au/4H-SiC using the multi-Gaussian distribution approach. In addition, the total effective area of the patches NAe is obtained at separate temperatures and as a result, it is expressed that the low barrier regions influence meaningfully to the current transport at the junction. The homogeneous barrier height value is calculated from the correlation between the ideality factor and barrier height and it is noted that the values of standard deviation from ideality factor versus q/3kT curve are in close agreement with the values obtained from the barrier height versus q/2kT variation. As a result, it can be concluded that the temperature dependent electrical characteristics of Au/4H-SiC can be successfully commented on the basis of the thermionic emission theory with both models.

  20. Effect of Post Deposition Annealing Treatments on Properties of AZO Thin Films for Schottky Diode Applications.

    PubMed

    Singh, Shaivalini; Park, Si-Hyun

    2016-01-01

    High-quality aluminum (Al) doped ZnO (AZO) thin films were deposited on silicon substrates by RF sputtering at room temperature. The deposited films were annealed from the temperatures 350 °C to 650 °C in pure nitrogen (N₂) ambient. The effects of annealing on the microstructural, optical and electrical properties of the AZO films were investigated. A detailed analysis by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Four Probe and Hall measurements was performed to study the properties of these AZO thin films. It was observed that all of the as-deposited and annealed AZO films have homogenous surfaces and hexagonal wurtzite structures with good crystalline quality. The study also suggested that there was an intermediate post annealing temperature (450 °C) at which the deposited ZnO film exhibit best surface characteristics. Pd/AZO Schottky devices were fabricated with 450 °C annealed AZO thin films and the parameters of Schottky devices were extracted from I-V characteristics. These results indicated that the Pd/AZO films were very much suitable for various optoelectronics applications particularly for metal semiconductor metal based UV detector application.

  1. Fabrication, characterization and simulation of 4H-SiC Schottky diode alpha particle detectors for pyroprocessing actinide monitoring

    NASA Astrophysics Data System (ADS)

    Garcia, Timothy Richard

    Pyroprocessing is a method of using high-temperature molten salts and electric fields to separate and collect fuel isotopes of used nuclear fuel. It has been has been tested in the U.S. at Idaho National Laboratory as a key step in closing the nuclear fuel cycle. One technical problem with the pyroprocessing method is a lack of knowledge regarding the actinide concentrations in the salt bath during operation, since on-line techniques for measuring these concentrations are not presently available. 4H-SiC Schottky diode detectors can potentially fulfill this need. Such detectors would operate in contact with the molten salt, and measure concentrations via alpha-particle spectroscopy. This work seeks to fabricate and characterize 4H-SiC Schottky diode detectors at high temperature, model the alpha particle spectrum expected in a molten salt, and model the operation of the detectors to confirm the physics of operation is as expected. In this work, 4H-SiC Schottky diode detectors were fabricated at OSU Nanotech West. After fabrication, these detectors were characterized using both I-V curves and Am-241 alpha-particle energy spectra. All measurements were made as a function of temperature, from room temperature up to 500°C. The average energy required to create an electron-hole pair was observed to decrease with an increase of temperature, due to a decrease of both the 4H-SiC bandgap and non-linear energy loss terms. Furthermore, the FWHM of the spectra was observed to be dependent on the leakage current at a certain temperature, and not dependent on the temperature itself. Secondly, the alpha particle energy spectrum in the pyroprocessing environment was modeled using SRIM. The molten salt was modeled in 3 different geometries, with or without a protective cover material on top of the detector. Due to the loss of alpha-particle energy in the molten salt itself, a high-energy alpha emitter may completely cover the spectrum from a lower-energy alpha emitter. Each of the

  2. RF-to-DC Characteristics of Direct Irradiated On-Chip Gallium Arsenide Schottky Diode and Antenna for Application in Proximity Communication System

    PubMed Central

    Mustafa, Farahiyah; Hashim, Abdul Manaf

    2014-01-01

    We report the RF-to-DC characteristics of the integrated AlGaAs/GaAs Schottky diode and antenna under the direct injection and irradiation condition. The conversion efficiency up to 80% under direct injection of 1 GHz signal to the diode was achieved. It was found that the reduction of series resistance and parallel connection of diode and load tend to lead to the improvement of RF-to-DC conversion efficiency. Under direct irradiation from antenna-to-antenna method, the output voltage of 35 mV was still obtainable for the distance of 8 cm between both antennas in spite of large mismatch in the resonant frequency between the diode and the connected antenna. Higher output voltage in volt range is expected to be achievable for the well-matching condition. The proposed on-chip AlGaAs/GaAs HEMT Schottky diode and antenna seems to be a promising candidate to be used for application in proximity communication system as a wireless low power source as well as a highly sensitive RF detector. PMID:24561400

  3. RF-to-DC characteristics of direct irradiated on-chip gallium arsenide Schottky diode and antenna for application in proximity communication system.

    PubMed

    Mustafa, Farahiyah; Hashim, Abdul Manaf

    2014-02-20

    We report the RF-to-DC characteristics of the integrated AlGaAs/GaAs Schottky diode and antenna under the direct injection and irradiation condition. The conversion efficiency up to 80% under direct injection of 1 GHz signal to the diode was achieved. It was found that the reduction of series resistance and parallel connection of diode and load tend to lead to the improvement of RF-to-DC conversion efficiency. Under direct irradiation from antenna-to-antenna method, the output voltage of 35 mV was still obtainable for the distance of 8 cm between both antennas in spite of large mismatch in the resonant frequency between the diode and the connected antenna. Higher output voltage in volt range is expected to be achievable for the well-matching condition. The proposed on-chip AlGaAs/GaAs HEMT Schottky diode and antenna seems to be a promising candidate to be used for application in proximity communication system as a wireless low power source as well as a highly sensitive RF detector.

  4. A quasi-optical flight mixer. [Schottky diodes and wire grid lenses

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A mechanically stable single block mixer design is described utilizing a recessed whisker and beamwidth equalization lens. A stripline I.F. matching section which is an integral part of the mixer is presented. Engineering measurements of wire grids and dielectric transmission loss near one millimeter wavelength are given and an anomolous I-V curve behavior observed during diode whiskering is discussed.

  5. Electrical and Dielectric Properties of a n-Si Schottky Barrier Diode with Bismuth Titanate Interlayer: Effect of Temperature

    NASA Astrophysics Data System (ADS)

    Yıldırım, M.; Şahin, C.; Altındal, Ş.; Durmuş, P.

    2017-03-01

    An Au/Bi4Ti3O12/ n-Si Schottky barrier diode (SBD) was fabricated with a 51 nm Bi4Ti3O12 interfacial layer. Admittance measurements of the fabricated SBD were carried out in the bias voltage ( V) range of -4 V and 6 V. Capacitance ( C) and conductance ( G/ω) measurements were carried out in a wide temperature range of 120-380 K so that temperature effects on electrical and dielectric properties of the SBD were investigated. Main electrical parameters were extracted from reverse bias C -2- V plots. It was found that variance of electrical and dielectric parameters of the SBD with temperature is basically different for low and high temperature regions. A fair number (˜1012 eV-1 cm-2) was obtained for surface states ( N ss); however, N ss first decreased then increased with temperature. This result was associated with increased defects with temperature and higher activation energy in the high temperature region. Dielectric parameters of the SBD were also extracted and the dielectric constant of SBD was found as ˜10 at room temperature. Application of modulus formalism to the admittance data revealed temperature-activated dielectric relaxation at 340 K. Results showed that the temperature has considerable effects on electrical and dielectric properties of Au/Bi4Ti3O12/ n-Si SBD.

  6. High-k dielectrics based field plate edge termination engineering in 4H-SiC Schottky diode

    NASA Astrophysics Data System (ADS)

    Shankar, Bhawani; Gupta, Sanjeev K.; Taube, William R.; Akhtar, J.

    2016-12-01

    This paper develops a deep insight into the behaviour of high-k dielectric-based field plate on Ni/4H-SiC Schottky diode. It tries to explain the mechanism by which high-k materials outperform silicon dioxide, when used under the field plate. Phenomena like modulation of field enhancement factor, reshaping of equipotential contours and expansion of depletion region while maintaining fixed depletion ratio (length/width = 2.3) helps to understand the electrical behaviour of high-k dielectric-based field plate. High-k materials relaxed the equipotential contours under the field plate edge which resulted in electric field reduction up to 88% and significant drop from 6.6 to 2.2 in field enhancement factor at device edges. The study considers the field plate of different dielectrics (SiO2, Si3N4, Al203, HfO2) and in each case, analytically explores the optimisation of field plate parameters (overlap length and dielectric thickness, dielectric constant). All the investigations have been done using numerical simulations on calibrated setup.

  7. SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte

    SciTech Connect

    Windl, Wolfgang; Blue, Thomas

    2013-01-28

    In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling to understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.

  8. The electrical characterization of Ag/PTCDA/PEDOT:PSS/p-Si Schottky diode by current-voltage characteristics

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Sayyad, Muhammad Hassan; Wahab, Fazal; Khan, Dil Nawaz; Aziz, Fakhra

    2013-04-01

    The Ag/PTCDA/PEDOT:PSS/p-Si Schottky diode has been fabricated by adding a layer of organic compound 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on top of the p-Si for which the junction characteristics have been investigated. The electronic properties of the device have been studied by the conventional I-V and the Norde's methods. For conventional I-V measurements the rectifying behavior has been observed with a rectification ratio of 236. The barrier height and ideality factor values of 0.81 eV and 3.5, respectively, for the structure have been obtained from the forward bias I-V characteristics. Various electrical parameters such as reverse saturation current, series resistance and shunt resistance have been calculated from the analysis of experimental I-V results and discussed in detail. The barrier height and the series resistance determined by the Norde's function are found in good agreement with the values calculated from conventional I-V measurements. The charge conduction mechanism has also been discussed.

  9. Electrical and Dielectric Properties of a n-Si Schottky Barrier Diode with Bismuth Titanate Interlayer: Effect of Temperature

    NASA Astrophysics Data System (ADS)

    Yıldırım, M.; Şahin, C.; Altındal, Ş.; Durmuş, P.

    2017-01-01

    An Au/Bi4Ti3O12/n-Si Schottky barrier diode (SBD) was fabricated with a 51 nm Bi4Ti3O12 interfacial layer. Admittance measurements of the fabricated SBD were carried out in the bias voltage (V) range of -4 V and 6 V. Capacitance (C) and conductance (G/ω) measurements were carried out in a wide temperature range of 120-380 K so that temperature effects on electrical and dielectric properties of the SBD were investigated. Main electrical parameters were extracted from reverse bias C -2-V plots. It was found that variance of electrical and dielectric parameters of the SBD with temperature is basically different for low and high temperature regions. A fair number (˜1012 eV-1 cm-2) was obtained for surface states (N ss); however, N ss first decreased then increased with temperature. This result was associated with increased defects with temperature and higher activation energy in the high temperature region. Dielectric parameters of the SBD were also extracted and the dielectric constant of SBD was found as ˜10 at room temperature. Application of modulus formalism to the admittance data revealed temperature-activated dielectric relaxation at 340 K. Results showed that the temperature has considerable effects on electrical and dielectric properties of Au/Bi4Ti3O12/n-Si SBD.

  10. Temperature dependent barrier height and ideality factor of electrodeposited n-CdSe/Cu Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Mahato, S.; Shiwakoti, N.; Kar, A. K.

    2015-06-01

    This article reports the measurement of temperature-dependent barrier height and ideality factor of n-CdSe/Cu Schottky barrier diode. The Cadmium Selenide (CdSe) thin films have been deposited by simple electrodeposition technique. The XRD measurements ravels the deposited single phase CdSe films are highly oriented on (002) plane and the average particle size has been calculated to be ~18 nm. From SEM characterization, it is clear that the surface of CdSe thin films are continuous, homogeneous and the film is well adhered to the substrate and consists of fine grains which are irregular in shape and size. Current-Voltage characteristics have been measured at different temperatures in the range (298 K - 353 K). The barrier height and ideality factor are found to be strongly temperature dependent. The inhomogenious barrier height increases and ideality factor decreases with increase in temperature. The expectation value has been calculated and its value is 0.30 eV.

  11. Temperature dependent barrier height and ideality factor of electrodeposited n-CdSe/Cu Schottky barrier diode

    SciTech Connect

    Mahato, S. Shiwakoti, N.; Kar, A. K.

    2015-06-24

    This article reports the measurement of temperature-dependent barrier height and ideality factor of n-CdSe/Cu Schottky barrier diode. The Cadmium Selenide (CdSe) thin films have been deposited by simple electrodeposition technique. The XRD measurements ravels the deposited single phase CdSe films are highly oriented on (002) plane and the average particle size has been calculated to be ~18 nm. From SEM characterization, it is clear that the surface of CdSe thin films are continuous, homogeneous and the film is well adhered to the substrate and consists of fine grains which are irregular in shape and size. Current-Voltage characteristics have been measured at different temperatures in the range (298 K – 353 K). The barrier height and ideality factor are found to be strongly temperature dependent. The inhomogenious barrier height increases and ideality factor decreases with increase in temperature. The expectation value has been calculated and its value is 0.30 eV.

  12. Influences of ICP etching damages on the electronic properties of metal field plate 4H-SiC Schottky diodes

    NASA Astrophysics Data System (ADS)

    Hui, Wang; Yingxi, Niu; Fei, Yang; Yong, Cai; Zehong, Zhang; Zhongming, Zeng; Minrui, Wang; Chunhong, Zeng; Baoshun, Zhang

    2015-10-01

    Inductively coupled plasma (ICP) etching of 4H-SiC using SF6/O2 gas mixture was studied systematically and the effect of etching was examined by metal field plate SiC Schottky diodes (SBDs). It was found that the etch rate as well as SiC surface morphology were related with ICP power, RF power, pressure, the flow of SF6 and O2. Etching damages (the cone-in-pits and pits) generated at high chuck self-bias were observed, and they were thought to be caused by SiC defects. The degradation of both the reverse and forward I-V performances of SiC SBDs was ascribed to the cone-in-pits and pits. Moreover, the absolute value of forward current is even less than the reverse counterpart in the absolute value voltage range of 0-50 V for SiC SBDs with etching damages. Project supported by the Suzhou Research Fund (No. BY2011129) and the State Grid Corporation of China Research Fund (No. 525500140003).

  13. The Current-Voltage Characteristics of the Au/MBEn-GaAs Schottky Diodes in a Wide Temperature Range

    NASA Astrophysics Data System (ADS)

    EfeoǦLU, Hasan; Turut, Abdulmecit

    2013-07-01

    The Au/MBEn-GaAs Schottky diodes have been fabricated by us. The slope of the conventional ln(I0/T2) versus (kT)-1 plotted in the temperature range of 120-350 K has given a Richardson constant (RC) of 7.69 A (cmK)-2 which is in close agreement with the value of 8.16 A/cm2K2 known for n-type GaAs. The barrier height (BH) value in 40-160 K range has decreased obeying to Gaussian distribution (GD) model of the BH based on thermionic emission current theory. The modified RC plot according to the GD model has given a RC value of 2.45 A (cmK)-2 or a value of 2.38 A (cmK)-2 by taking into account the temperature dependence of the standard deviation. Therefore, we have modified the Richardson's plot using the temperature dependent values of the effective area of the patches introduced by lateral inhomogeneity of the BHs and we have obtained a RC value of 8.10 A (cmK)-2.

  14. Development of CdTe pixel detectors combined with an aluminum Schottky diode sensor and photon-counting ASICs

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Saji, C.; Kawase, M.; Wu, S.; Furukawa, Y.; Kajiwara, K.; Sato, M.; Hirono, T.; Shiro, A.; Shobu, T.; Suenaga, A.; Ikeda, H.

    2017-01-01

    We have been developing CdTe pixel detectors combined with a Schottky diode sensor and photon-counting ASICs. The hybrid pixel detector was designed with a pixel size of 200 μ m by 200 μm and an area of 19 mm by 20 mm or 38.2 mm by 40.2 mm. The photon-counting ASIC, SP8-04F10K, has a preamplifier, a shaper, 3-level window-type discriminators and a 24-bits counter in each pixel. The single-chip detector with 100 by 95 pixels successfully operated with a photon-counting mode selecting X-ray energy with the window comparator and stable operation was realized at 20 degrees C. We have performed a feasibility study for a white X-ray microbeam experiment. Laue diffraction patterns were measured during the scan of the irradiated position in a silicon steel sample. The grain boundaries were identified by using the differentials between adjacent images at each position.

  15. Dose Rate Linearity in 4H-SiC Schottky Diode-Based Detectors at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Mohamed, N. S.; Wright, N. G.; Horsfall, A. B.

    2017-07-01

    The outstanding material properties make silicon carbide radiation hard and this ability has enabled it to be demonstrated in a range of detector structures for deployment in extreme environments, including those where the ability to tolerate high radiation dose is imperative. This includes applications in space and nuclear environments, where the ability to detect highly energetic radiation is important. In contrast, detectors used in medical treatment, such as imaging and radiotherapy, use a range of radiation dose rates and energies for both particulate and photonic radiation. Here, we report the response and dose rate linearity of detectors fabricated from silicon carbide to dose rates in the range of 0.185 mGy · min-1, typical of those used for medical imaging. The data show that the radiation detected current originates within the depletion region of the detector and that the response is linearly dependent on the volume of the space charge region. The realization of a vertical detector structure, coupled with the high quality of epitaxial layers, has resulted in a high dose sensitivity of the detector that is highly linear. The temperature dependence of the characteristics indicates that silicon carbide Schottky diode-based detectors offer a performance suitable for medical applications at temperatures below 100 °C without the need for external cooling.

  16. The effect of annealing temperature on the electrical characterization of Co/n type GaP Schottky diode

    SciTech Connect

    Orak, İ.; Ejderha, K.; Sönmez, E.; Alanyalıoğlu, M.; Turut, A.

    2015-01-15

    The Co/n-GaP nano-Schottky diodes have been fabricated to investigate effect of annealing temperature on the characteristics of the device. DC Magnetron sputtering technique has been used for Co metallic contact. The samples have been annealed for three minutes at 400 °C and 600 °C. XRD analyzes of the devices subjected to thermal annealing process have been investigated. Surface images have been taken with atomic force microscopy (AFM) in order to examine the morphology of the surface of the metal layer before and after the annealing the sample. The current–voltage (I–V) measurements taken at room temperature have shown that the ideality factor and series resistance decrease with the increasing annealing temperature. The ideality factor was found to be 1.02 for sample annealed at 400 °C. Before and after annealing, depending on the temperature measurement, the capacitance–frequency (C–f), and conductance–frequency (G–f) have been measured, and graphs have been plotted.

  17. Design of a W-band Frequency Tripler for Broadband Operation Based on a Modified Equivalent Circuit Model of GaAs Schottky Varistor Diode

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Xu, Jinping

    2013-01-01

    This paper presents the design and experimental results of a W-band frequency tripler with commercially available planar Schottky varistor diodes DBES105a fabricated by UMS, Inc. The frequency tripler features the characteristics of tunerless, passive, low conversion loss, broadband and compact. Considering actual circuit structure, especially the effect of ambient channel around the diode at millimeter wavelength, a modified equivalent circuit model for the Schottky diode is developed. The accuracy of the magnitude and phase of S21 of the proposed equivalent circuit model is improved by this modification. Input and output embedding circuits are designed and optimized according to the corresponding embedding impedances of the modified circuit model of the diode. The circuit of the frequency tripler is fabricated on RT/Rogers 5880 substrate with thickness of 0.127 mm. Measured conversion loss of the frequency tripler is 14.5 dB with variation of ±1 dB across the 75 ~ 103 GHz band and 15.5 ~ 19 dB over the frequency range of 103 ~ 110 GHz when driven with an input power of 18 dBm. A recorded maximum output power of 6.8 dBm is achieved at 94 GHz at room temperature. The minimum harmonics suppression is greater than 12dBc over 75 ~ 110 GHz band.

  18. Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer

    NASA Astrophysics Data System (ADS)

    An, Yanbin; Behnam, Ashkan; Pop, Eric; Bosman, Gijs; Ural, Ant

    2015-09-01

    Metal-semiconductor Schottky junction devices composed of chemical vapor deposition grown monolayer graphene on p-type silicon substrates are fabricated and characterized. Important diode parameters, such as the Schottky barrier height, ideality factor, and series resistance, are extracted from forward bias current-voltage characteristics using a previously established method modified to take into account the interfacial native oxide layer present at the graphene/silicon junction. It is found that the ideality factor can be substantially increased by the presence of the interfacial oxide layer. Furthermore, low frequency noise of graphene/silicon Schottky junctions under both forward and reverse bias is characterized. The noise is found to be 1/f dominated and the shot noise contribution is found to be negligible. The dependence of the 1/f noise on the forward and reverse current is also investigated. Finally, the photoresponse of graphene/silicon Schottky junctions is studied. The devices exhibit a peak responsivity of around 0.13 A/W and an external quantum efficiency higher than 25%. From the photoresponse and noise measurements, the bandwidth is extracted to be ˜1 kHz and the normalized detectivity is calculated to be 1.2 ×109 cm Hz1/2 W-1. These results provide important insights for the future integration of graphene with silicon device technology.

  19. High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer.

    PubMed

    Minh Triet, Nguyen; Thai Duy, Le; Hwang, Byeong-Ung; Hanif, Adeela; Siddiqui, Saqib; Park, Kyung-Ho; Cho, Chu-Young; Lee, Nae-Eung

    2017-09-13

    A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and Al0.27GaN0.73(∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO2, SO2, and HCHO gases exhibit high sensitivity (0.88-1.88 ppm(-1)), fast response (∼2 min), and good reproducibility down to 120 ppb concentration levels at room temperature. The sensing mechanism of the Schottky diode can be explained by the effective modulation of the reverse saturation current due to the change in thermionic emission carrier transport caused by ultrasensitive changes in the Schottky barrier of a van der Waals heterostructure between RGO and AlGaN layers upon interaction with gas molecules. Advances in the design of a Schottky diode gas sensor based on the heterojunction of high-mobility two-dimensional electron gas channel and highly responsive 3D-engineered sensing nanomaterials have potential not only for the enhancement of sensitivity and selectivity but also for improving operation capability at room temperature.

  20. Temperature dependent forward current-voltage characteristics of Ni/Au Schottky contacts on AlGaN/GaN heterostructures described by a two diodes model

    NASA Astrophysics Data System (ADS)

    Greco, Giuseppe; Giannazzo, Filippo; Roccaforte, Fabrizio

    2017-01-01

    This paper reports on the temperature dependence of Ni/Au Schottky contacts on AlGaN/GaN heterostructures. The electrical properties of the Schottky barrier were monitored by means of forward current-voltage (I-V) measurements, while capacitance-voltage measurements were used to determine the properties of the two dimensional electron gas. The forward I-V characteristics of Schottky diodes revealed a strong deviation from the ideal behavior, which could not be explained by a standard thermionic emission model. Thus, the Ni/AlGaN/GaN system has been described by a "two diode model," considering the presence of a second barrier height at the AlGaN/GaN heterojunction. Following this approach, the anomalous I-V curves could be explained and the value of the flat-band barrier height (at zero-electric field) could be correctly determined, thus resulting in good agreement with literature data based on photoemission measurements.

  1. Analysis of Schottky Contact Formation in Coplanar Au/ZnO/Al Nanogap Radio Frequency Diodes Processed from Solution at Low Temperature.

    PubMed

    Semple, James; Rossbauer, Stephan; Anthopoulos, Thomas D

    2016-09-07

    Much work has been carried out in recent years in fabricating and studying the Schottky contact formed between various metals and the n-type wide bandgap semiconductor zinc oxide (ZnO). In spite of significant progress, reliable formation of such technologically interesting contacts remains a challenge. Here, we report on solution-processed ZnO Schottky diodes based on a coplanar Al/ZnO/Au nanogap architecture and study the nature of the rectifying contact formed at the ZnO/Au interface. Resultant diodes exhibit excellent operating characteristics, including low-operating voltages (±2.5 V) and exceptionally high current rectification ratios of >10(6) that can be independently tuned via scaling of the nanogap's width. The barrier height for electron injection responsible for the rectifying behavior is studied using current-voltage-temperature and capacitance-voltage measurements (C-V) yielding values in the range of 0.54-0.89 eV. C-V measurements also show that electron traps present at the Au/ZnO interface appear to become less significant at higher frequencies, hence making the diodes particularly attractive for high-frequency applications. Finally, an alternative method for calculating the Richardson constant is presented yielding a value of 38.9 A cm(-2) K(-2), which is close to the theoretically predicted value of 32 A cm(-2) K(-2). The implications of the obtained results for the use of these coplanar Schottky diodes in radio frequency applications is discussed.

  2. 20 kV, 2 cm2, 4H-SIC Gate Turn-Off Thyristors for Advanced Pulsed Power Applications

    DTIC Science & Technology

    2013-06-01

    diode, the SiC GTO and SiC PiN diode based converter can improve the efficiency by 1% at room-temperature and more than 6% at 200C for an HVDC interface...Models for HVDC Converter”, IEEE Industry Applications Society Annual Meeting (IAS 2004), Oct 3-7, 2004, Seattle, Washington. [5] S. Ryu, C. Capell, C

  3. Observation of silicon carbide Schottky barrier diode under applied reverse bias using atomic force microscopy/Kelvin probe force microscopy/scanning capacitance force microscopy

    NASA Astrophysics Data System (ADS)

    Uruma, Takeshi; Satoh, Nobuo; Yamamoto, Hidekazu

    2017-08-01

    We have observed a commercial silicon-carbide Schottky barrier diode (SiC-SBD) using our novel analysis system, in which atomic force microscopy (AFM) is combined with both Kelvin probe force microscopy (KFM; for surface-potential measurement) and scanning capacitance force microscopy (SCFM; for differential-capacitance measurement). The results obtained for the SiC-SBD under an applied reverse bias indicate both the scan area in the sample and a peak value of the SCFM signal in the region where the existence of trapped electrons is deduced from the KFM analysis. Thus, our measurement system can be used to examine commercial power devices; however, novel polishing procedures are required in order to investigate the Schottky contact region.

  4. Measurement of mobility and lifetime of electrons and holes in a Schottky CdTe diode

    NASA Astrophysics Data System (ADS)

    Ariño-Estrada, G.; Chmeissani, M.; de Lorenzo, G.; Kolstein, M.; Puigdengoles, C.; García, J.; Cabruja, E.

    2014-12-01

    We report on the measurement of drift properties of electrons and holes in a CdTe diode grown by the travelling heating method (THM). Mobility and lifetime of both charge carriers has been measured independently at room temperature and fixed bias voltage using charge integration readout electronics. Both electrode sides of the detector have been exposed to a 241Am source in order to obtain events with full contributions of either electrons or holes. The drift time has been measured to obtain the mobility for each charge carrier. The Hecht equation has been employed to evaluate the lifetime. The measured values for μτe/h (mobility-lifetime product) are in agreement with earlier published data.

  5. Measurement of mobility and lifetime of electrons and holes in a Schottky CdTe diode.

    PubMed

    Ariño-Estrada, G; Chmeissani, M; de Lorenzo, G; Kolstein, M; Puigdengoles, C; García, J; Cabruja, E

    2014-12-01

    We report on the measurement of drift properties of electrons and holes in a CdTe diode grown by the travelling heating method (THM). Mobility and lifetime of both charge carriers has been measured independently at room temperature and fixed bias voltage using charge integration readout electronics. Both electrode sides of the detector have been exposed to a (241)Am source in order to obtain events with full contributions of either electrons or holes. The drift time has been measured to obtain the mobility for each charge carrier. The Hecht equation has been employed to evaluate the lifetime. The measured values for μτe/h (mobility-lifetime product) are in agreement with earlier published data.

  6. Measurement of mobility and lifetime of electrons and holes in a Schottky CdTe diode

    PubMed Central

    Ariño-Estrada, G.; Chmeissani, M.; de Lorenzo, G.; Kolstein, M.; Puigdengoles, C.; García, J.; Cabruja, E.

    2014-01-01

    We report on the measurement of drift properties of electrons and holes in a CdTe diode grown by the travelling heating method (THM). Mobility and lifetime of both charge carriers has been measured independently at room temperature and fixed bias voltage using charge integration readout electronics. Both electrode sides of the detector have been exposed to a 241Am source in order to obtain events with full contributions of either electrons or holes. The drift time has been measured to obtain the mobility for each charge carrier. The Hecht equation has been employed to evaluate the lifetime. The measured values for μτe/h (mobility-lifetime product) are in agreement with earlier published data. PMID:25729405

  7. The Richardson constant and barrier inhomogeneity at Au/Si3N4/n-Si (MIS) Schottky diodes

    NASA Astrophysics Data System (ADS)

    Tataroğlu, A.; Pür, F. Z.

    2013-07-01

    Si3N4 films were deposited on n-type silicon substrate by the radio frequency magnetron sputtering technique. The current-voltage (I-V) characteristics of Au/Si3N4/n-Si (metal-insulator-semiconductor) Schottky diodes were investigated in the temperature range of 160-400 K. Experimental results show an abnormal increase in the zero-bias barrier height (BH) (ΦBo) and a decrease in the ideality factor (n) with increasing temperature. This behavior is attributed to barrier inhomogeneities by assuming a Gaussian distribution (GD) of BHs. The conventional Richardson plot (ln(Io/T2) versus 1000/T) exhibits a linearity above about 300 K. The values of activation energy (Ea) and Richardson constant (A*) were found to be 0.350 eV and 1.242 × 10-3 A cm-2 K-2 from the slope and the intercept at the ordinate of the linear region of this plot, respectively. Also, we attempted to draw a ΦBo versus q/2kT plot to determine evidence of the GD of BHs, and the values of \\bar \\Phi _{{\\rm{Bo}}} = 0.999\\,{\\rm{eV}} and σs = 0.137 eV for the mean BH and zero-bias standard deviation, respectively, were obtained from this plot; then, a modified ln(Io/T2) - q2σs2/2k2T2 versus q/kT plot gives \\bar \\Phi _{{\\rm{Bo}}} and A* as 0.992 eV and 108.228 A cm-2 K-2, respectively. This value of A* is very close to the theoretical value of 112 A cm-2 K-2 for n-type Si.

  8. Effects of 5.4 MeV alpha-particle irradiation on the electrical properties of nickel Schottky diodes on 4H-SiC

    NASA Astrophysics Data System (ADS)

    Omotoso, E.; Meyer, W. E.; Auret, F. D.; Paradzah, A. T.; Diale, M.; Coelho, S. M. M.; Janse van Rensburg, P. J.; Ngoepe, P. N. M.

    2015-12-01

    Current-voltage, capacitance-voltage and conventional deep level transient spectroscopy at temperature ranges from 40 to 300 K have been employed to study the influence of alpha-particle irradiation from an 241Am source on Ni/4H-SiC Schottky contacts. The nickel Schottky barrier diodes were resistively evaporated on n-type 4H-SiC samples of doping density of 7.1 × 1015 cm-3. It was observed that radiation damage caused an increase in ideality factors of the samples from 1.04 to 1.07, an increase in Schottky barrier height from 1.25 to 1.31 eV, an increase in series resistance from 48 to 270 Ω but a decrease in saturation current density from 55 to 9 × 10-12 A m-2 from I-V plots at 300 K. The free carrier concentration of the sample decreased slightly after irradiation. Conventional DLTS showed peaks due to four deep levels for as-grown and five deep levels after irradiation. The Richardson constant, as determined from a modified Richardson plot assuming a Gaussian distribution of barrier heights for the as-grown and irradiated samples were 133 and 151 A cm-2 K-2, respectively. These values are similar to literature values.

  9. Gaussian distribution of inhomogeneous barrier height in Al/SiO2/p-Si Schottky diodes

    NASA Astrophysics Data System (ADS)

    Yıldız, D. E.; Altındal, Ş.; Kanbur, H.

    2008-06-01

    The forward and reverse bias current-voltage (I-V) characteristics of Al/SiO2/p-Si (metal-insulator-semiconductor) type Schottky diodes (SDs) were measured in the temperature range of 200-400 K. Evaluation of the experimental I-V data reveals a decrease in ΦB0 and Rs but an increase in n, with a decrease in temperature. To explain this behavior of ΦB0 with temperature, we have reported a modification which included n and the tunneling parameter αχ1/2δ in the expression of reverse saturation current I0. Thus, a corrected effective barrier height ΦB eff(I -V) vs T has a negative temperature coefficient (α ≈-5×10-4 eV/K), and it is in good agreement with α=-4.73×10-4 eV/K of Si band gap. Such behavior of Rs estimated from Cheung's method could be expected for semiconductors in the temperature region, where there is no carrier freezing out, which is non-negligible at low temperatures. Also, there is a linear correlation between ΦB0(I -V) and n due to the inhomogeneities of the barrier heights (BHs). The conventional activation energy (Ea) plot exhibits nonlinearity below 320 K with the linear portion corresponding to Ea of 0.275 eV. An A∗ value of 1.45×10-5 A cm-2 K-2,which is much lower than the known value of 32 A cm-2 K-2 for p-type Si, is determined from the intercept at the ordinate of this experimental plot. Such behavior is attributed to Schottky barrier inhomogeneities by assuming a Gaussian distribution (GD) of BHs due to BH inhomogeneities that prevail at the interface. We attempted to draw a ΦB0 vs q /2kT plot to obtain evidence of a GD of the BHs, and the values of Φ¯B0=1.136 eV and σ0=0.159 V for the mean BH and standard deviation at zero bias have been obtained from this plot. Therefore, the modified ln (I0/T2)-q2σ02/2k2T2 vs q /kT plot gives Φ¯B0 and A∗ values of 1.138 eV and 37.23 A cm-2 K-2, respectively, without using the temperature coefficient of the BH. This A∗ value of 37.23 A cm-2 K-2 is very close to the theoretical

  10. Analysis of temperature-dependant current-voltage characteristics and extraction of series resistance in Pd/ZnO Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Mayimele, M. A.; van Rensburg, J. P. Janse; Auret, F. D.; Diale, M.

    2016-01-01

    We report on the analysis of current voltage (I-V) measurements performed on Pd/ZnO Schottky barrier diodes (SBDs) in the 80-320 K temperature range. Assuming thermionic emission (TE) theory, the forward bias I-V characteristics were analysed to extract Pd/ZnO Schottky diode parameters. Comparing Cheung's method in the extraction of the series resistance with Ohm's law, it was observed that at lower temperatures (T<180 K) the series resistance decreased with increasing temperature, the absolute minimum was reached near 180 K and increases linearly with temperature at high temperatures (T>200 K). The barrier height and the ideality factor decreased and increased, respectively, with decrease in temperature, attributed to the existence of barrier height inhomogeneity. Such inhomogeneity was explained based on TE with the assumption of Gaussian distribution of barrier heights with a mean barrier height of 0.99 eV and a standard deviation of 0.02 eV. A mean barrier height of 0.11 eV and Richardson constant value of 37 A cm-2 K-2 were determined from the modified Richardson plot that considers the Gaussian distribution of barrier heights.

  11. Process issues with Mo/a-Si:H Schottky diode and thin film transistors integration for direct x-ray detection

    NASA Astrophysics Data System (ADS)

    Lee, Czang-Ho; Vygranenko, Yuriy; Nathan, Arokia

    2004-09-01

    This article presents an alternate strategy to reduce mechanical stress issues pertinent to the process integration of molybdenum/hydrogenated amorphous silicon (Mo/a-Si:H) Schottky diodes and thin film transistors (TFTs), used as x-ray sensor pixels for medical imaging. The previous approach was to minimize the intrinsic stress in the Mo layer through appropriate process conditions and film thickness. However, that approach resulted in narrow process latitude and compromised x-ray sensitivity. Alternatively, the mechanical stress in the Mo can be reduced by reducing and/or avoiding the extrinsic stress exerted on the Mo by the underlying films through a different masking sequence in the fabrication. This modified process allows for a more flexible design of the Mo layer for enhanced x-ray sensitivity, while maintaining the mechanical integrity of the various layers. Also, the performance of the Schottky diode is improved in terms of its forward current. The x-ray sensitivity has been measured at different x-ray spectra in the range of 40-100 kVp. The pixel shows good linearity with x-ray dosage and high detection efficiency at low x-ray tube voltages.

  12. Spectroscopic properties and radiation damage investigation of a diamond based Schottky diode for ion-beam therapy microdosimetry

    SciTech Connect

    Verona, C.; Marinelli, Marco; Verona-Rinati, G.; Magrin, G.; Solevi, P.; Mayer, R.; Grilj, V.; Jakšić, M.

    2015-11-14

    In this work, a detailed analysis of the properties of a novel microdosimeter based on a synthetic single crystal diamond is reported. Focused ion microbeams were used to investigate the device spectropscopic properties as well as the induced radiation damage effects. A diamond based Schottky diode was fabricated by chemical vapor deposition with a very thin detecting region, about 400 nm thick (approximately 1.4 μm water equivalent thickness), corresponding to the typical size in microdosimetric measurements. A 200 × 200 μm{sup 2} square metallic contact was patterned on the diamond surface by standard photolithography to define the sensitive area. Experimental measurements were carried out at the Ruder Boškovic′ Institute microbeam facility using 4 MeV carbon and 5 MeV silicon ions. Ion beam induced charge maps were employed to characterize the microdosimeter response in terms of its charge collection properties. A stable response with no evidence of polarization or memory effects was observed up to the maximum investigated ion beam flux of about 1.7 × 10{sup 9} ions·cm{sup −2}·s{sup −1}. A homogeneity of the response about 6% was found over the sensitive region with a well-defined confinement of the response within the active area. Tests of the radiation damage effect were performed by selectively irradiating small areas of the device with different ion fluences, up to about 10{sup 12} ions/cm{sup 2}. An exponential decrease of the charge collection efficiency was observed with a characteristic decay constant of about 4.8 MGy and 1 MGy for C and Si ions, respectively. The experimental data were analyzed by means of GEANT4 Monte Carlo simulations. A direct correlation between the diamond damaging effect and the Non Ionizing Energy Loss (NIEL) fraction was found. In particular, an exponential decay of the charge collection efficiency with an exponential decay as a function of NIEL is observed, with a characteristic constant of about

  13. The explanation of barrier height inhomogeneities in Au/n-Si Schottky barrier diodes with organic thin interfacial layer

    NASA Astrophysics Data System (ADS)

    Taşçıoǧlu, Ilke; Aydemir, Umut; Altındal, Şemsettin

    2010-09-01

    The forward bias current-voltage (I-V) characteristics of Au/n-Si Schottky barrier diodes (SBDs) with Zn doped poly(vinyl alcohol) (PVA:Zn) interfacial layer have been investigated in the wide temperature range of 80-400 K. The conventional Richardson plot of the ln(Io/T2) versus q /kT has two linear regions: the first region (200-400 K) and the second region (80-170 K). The values of activation energy (Ea) and Richardson constant (A∗) were obtained from this plot and especially the values of A∗ are much lower than the known theoretical value for n-type Si. Also the value of Ea is almost equal to the half of the band gap energy of Si. Therefore, the Φap versus q /2kT plot was drawn to obtain the evidence of a Gaussian distribution (GD) of barrier heights (BHs) and it shows two linear region similar to ln(Io)/T2 versus q /kT plot. The analysis of I-V data based on thermionic emission of the Au/PVA:Zn/n-Si SBDs has revealed the existence of double GD with mean BH values (Φ¯B0) of 1.06 eV and 0.86 eV with standard deviation (σ ) of 0.110 eV and 0.087 V, respectively. Thus, we modified ln(Io/T2)-(qσ)2/2(kT)2 versus q /kT plot for two temperature regions (200-400 K and 80-170 K) and it gives renewed mean BHs Φ¯B0 values as 1.06 eV and 0.85 eV with Richardson constant (A∗) values 121 A/cm2 K2 and 80.4 A/cm2 K2, respectively. This obtained value of A∗=121 A/cm2 K2 is very close to the known theoretical value of 120 A/cm2 K2 for n-type Si.

  14. High-voltage (900 V) 4 H-SiC Schottky diodes with a boron-implanted guard p-n junction

    SciTech Connect

    Grekhov, I. V.; Ivanov, P. A. Il'inskaya, N. D.; Kon'kov, O. I.; Potapov, A. S.; Samsonova, T. P.

    2008-02-15

    High-voltage (900 V) 4H-SiC Schottky diodes terminated with a guard p-n junction were fabricated and studied. The guard p-n junction was formed by room-temperature boron implantation with subsequent high-temperature annealing. Due to transient enhanced boron diffusion during annealing, the depth of the guard p-n junction was equal to about 1.7 {mu}m, which is larger by approximately 1 {mu}m than the projected range of 11 B ions in 4H-SiC. The maximum reverse voltage of fabricated 4H-SiC Schottky diodes is found to be limited by avalanche breakdown of the planar p-n junction; the value of the breakdown voltage (910 V) is close to theoretical estimate in the case of the impurity concentration N = 2.5 x 10{sup 15} cm{sup -3} in the n-type layer, thickness of the n-type layer d = 12.5 {mu}m, and depth of the p-n junction r{sub j} = 1.7 {mu}m. The on-state diode resistance (3.7 m{omega} cm{sup 2}) is controlled by the resistance of the epitaxial n-type layer. The recovery charge of about 1.3 nC is equal to the charge of majority charge carriers that are swept out of an epitaxial n-type layer under the effect of a reverse voltage.

  15. High-voltage (900 V) 4 H-SiC Schottky diodes with a boron-implanted guard p-n junction

    SciTech Connect

    Grekhov, I. V.; Ivanov, P. A. Il'inskaya, N. D.; Kon'kov, O. I.; Potapov, A. S.; Samsonova, T. P.

    2008-02-15

    High-voltage (900 V) 4H-SiC Schottky diodes terminated with a guard p-n junction were fabricated and studied. The guard p-n junction was formed by room-temperature boron implantation with subsequent high-temperature annealing. Due to transient enhanced boron diffusion during annealing, the depth of the guard p-n junction was equal to about 1.7 {mu}m, which is larger by approximately 1 {mu}m than the projected range of 11 B ions in 4H-SiC. The maximum reverse voltage of fabricated 4H-SiC Schottky diodes is found to be limited by avalanche breakdown of the planar p-n junction; the value of the breakdown voltage (910 V) is close to theoretical estimate in the case of the impurity concentration N = 2.5 Multiplication-Sign 10{sup 15} cm{sup -3} in the n-type layer, thickness of the n-type layer d = 12.5 {mu}m, and depth of the p-n junction r{sub j} = 1.7 {mu}m. The on-state diode resistance (3.7 m{Omega} cm{sup 2}) is controlled by the resistance of the epitaxial n-type layer. The recovery charge of about 1.3 nC is equal to the charge of majority charge carriers that are swept out of an epitaxial n-type layer under the effect of a reverse voltage.

  16. Capacitance-conductance spectroscopic investigation of interfacial oxide layer in Ni/4H-SiC (0 0 0 1) Schottky diode

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev K.; Shankar, Bhawani; Taube, William R.; Singh, Jitendra; Akhtar, J.

    2014-02-01

    In this reported work the interface properties of a process-induced thin interfacial oxide layer present between Ni and 4H-SiC substrate was examined systematically for fabricated Ni/4H-SiC (0 0 0 1) Schottky barrier diodes. Moreover, their contribution in the form of interface traps level density was investigated employing capacitance-conductance (C-C) spectroscopy techniques. The distinctive parameters of interface at Ni and 4H-SiC substrate were determined from the C-C spectroscopy under forward bias condition. The increase in capacitance value towards lower frequencies results from the presence of interface traps at the Ni/4H-SiC interface however the observed maximums peaks in the normalized conductance curve of the diode indicates the presence of an interfacial layer in the fabricated Schottky barrier diode. It has been found that the density of interface traps level decreases (1.25×1013-1.16×1013 cm-2 eV-1) and time constant of interface traps (3.16×10-5-1.47×10-3 s) increases with bias voltage at anode in the range of Ec-0.06 to Ec-1.06 eV from the top of conduction band toward midgap of n-type 4H-SiC substrate. Furthermore, the capture cross section was found to vary from 9.31×10-10 cm2 in (Ec-0.06) eV to 4.43×10-11 cm2 in (Ec-1.06) eV.

  17. Method of choice for the fabrication of high-quality β-gallium oxide-based Schottky diodes

    NASA Astrophysics Data System (ADS)

    Müller, Stefan; von Wenckstern, Holger; Schmidt, Florian; Splith, Daniel; Frenzel, Heiko; Grundmann, Marius

    2017-06-01

    Electrical properties of differently fabricated Pt(O x ) Schottky contacts on heteroepitaxial grown β-gallium oxide thin films have been investigated at room temperature using current-voltage measurements. A partial oxidation of contact metal leads to a significant increase of the homogeneous barrier by 0.3-0.4 eV compared to their metallic counterparts. The properties of the Schottky contacts are highly dependent on the kinetic energy of the incident metal (oxide) particles during contact deposition. Large kinetic energies cause a significant decrease of the effective barrier height, which is probably connected to the additional generation of defects close to the metal/semiconductor interface. Using PtO x as contact material, the additional oxygen at the interface heals defects generated during the formation of the Schottky barrier. Long-throw sputtering combines a low kinetic energy of the metal particles and the possibility of fabricating partially oxidized PtO x as contact material. Therefore, this technique is most suitable for the fabrication of highly rectifying gallium oxide based Schottky contacts. On heteroepitaxial thin film samples on c-plane sapphire the rectification is larger than 106 at +/- 2 {{V}}, the ideality factor is below 1.5 and the effective barrier height above 1.3 {eV}.

  18. Analysis of temperature dependent current-voltage and capacitance-voltage characteristics of an Au/V2O5/n-Si Schottky diode

    NASA Astrophysics Data System (ADS)

    Mahato, Somnath; Biswas, Debaleen; Gerling, Luis G.; Voz, Cristobal; Puigdollers, Joaquim

    2017-08-01

    Electronic properties of Au/V2O5/n-Si Schottky device have been investigated by temperature dependent current-voltage (I-V) and capacitance-voltage (C-V) measurements ranging from 300 K to 150 K. Ideality factor (n) and barrier height (ϕ) for the Schottky device were obtained from I-V characteristics as 2.04 and 0.83 eV at 300 K and 6.95 and 0.39 eV at 150 K respectively. It was observed that in presence of inhomogeneity at metal-semiconductor interface, the ideality factor increases and barrier height decreases with the decrease of temperature. The Richardson constant value was estimated as 137 A-cm-2-K-2 from modified Richardson plot, which is closer to the known theoretical value of n-Si where mean value of barrier height (ϕb 0 ¯ ) , and its standard deviation (σ0) were estimated using double Gaussian distribution (DGD) analysis. Different device parameters, namely, built-in potential, carrier concentration, image force lowering and depletion width were also obtained from the C-V-T measurements. First time use of V2O5 thin-film as an interfacial layer (IL) on Au/V2O5/n-Si Schottky diode was successfully explained by the thermionic emission (TE) theory. The interesting result obtained in this present work is the V2O5 thin-film reduced its conducting capability with decreasing temperature, while it shows a totally insulating behaviour below 150 K.

  19. Interdigital Schottky barrier capacitor apparatus

    NASA Astrophysics Data System (ADS)

    Bierig

    1985-05-01

    The present invention relates broadly to Schottky barrier capacitors, and in particular to an interdigital Schottky barrier capacitor apparatus. In the prior art, the Schottky barrier diode is rather well known. In general, a Schottky barrier device comprises a semiconductor substrate layer that is formed by a first layer of heavily doped materials and a second layer of lightly doped materials upon which a layer of barrier metal is deposited thereon. The maximum reverse bias voltage which can be appplied to the Schottky barrier device is determined by the thickness of the lightly doped layer of semiconductive material which is deposited upon the substrate layer. This is only one of the factors that determined the reverse bias voltage, When a guardring is diffused into the lightly doped layer of semiconductive substrate material, the thickness of the layer is reduced, and therefore, the reverse bias voltage that can be applied to the Schottky device is reduced.

  20. Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation

    SciTech Connect

    Roy, S.; Midya, K.; Duttagupta, S. P.; Ramakrishnan, D.

    2014-09-28

    The fabrication of nano-scale NiSi/n-Si Schottky barrier diode by rapid thermal annealing process is reported. The characterization of the nano-scale NiSi film was performed using Micro-Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The thickness of the film (27 nm) has been measured by cross-sectional Secondary Electron Microscopy and XPS based depth profile method. Current–voltage (I–V) characteristics show an excellent rectification ratio (I{sub ON}/I{sub OFF} = 10⁵) at a bias voltage of ±1 V. The diode ideality factor is 1.28. The barrier height was also determined independently based on I–V (0.62 eV) and high frequency capacitance–voltage technique (0.76 eV), and the correlation between them has explained. The diode photo-response was measured in the range of 1.35–2.5 μm under different reverse bias conditions (0.0–1.0 V). The response is observed to increase with increasing reverse bias. From the photo-responsivity study, the zero bias barrier height was determined to be 0.54 eV.

  1. Temperature Dependence of Current-Voltage Characteristics of Au/Ga0.51In0.49P Schottky Barrier Diodes

    NASA Astrophysics Data System (ADS)

    Rangel-Kuoppa, Victor-Tapio; Knuutila, Lauri; Sopanen, Markku; Lipsanen, Harri; Ávila, Alejandro

    2011-12-01

    Current-Voltage (IV) measurements on Au/Ga0.51In0.49P Schottky barrier diodes in the temperature range 10-320 K were done. The Ga0.51In0.49P layer was grown by Metal Organic Vapor Phase Epitaxy (MOVPE). The Cheung's method is used to estimate the value of a possible series resistance RS and the ideality factor n. It is found that RS is around 42 Ω at 10 K and decreases with temperature to around 7 Ω at 320 K. The IV curves were corrected for RS. The ideality factor also decreases with increasing temperature, from 45.21 at 10 K to 1.99 at 320 K. It is well explained by the T0 effect. The saturation current and the apparent barrier height were calculated by using the thermionic emission (TE) theory, as function of temperature. The zero-bias barrier height at 320 K was 0.554 eV. It is well explained by the Schottky model. From reverse-bias IV graphs, it is found that the experimental carrier density (ρ) value increases with temperature.

  2. Properties of Schottky Barrier Diodes on (In(x)Ga(1-x))₂O₃ for 0.01 ≤ x ≤ 0.85 Determined by a Combinatorial Approach.

    PubMed

    von Wenckstern, H; Splith, D; Werner, A; Müller, S; Lorenz, M; Grundmann, M

    2015-12-14

    We investigated properties of an (In(x)Ga(1-x))2O3 thin film with laterally varying cation composition that was realized by a large-area offset pulsed laser deposition approach. Within a two inch diameter thin film, the composition varies between 0.01 ≤ x ≤ 0.85, and three crystallographic phases (cubic, hexagonal, and monoclinic) were identified. We observed a correlation between characteristic parameters of Schottky barrier diodes fabricated on the thin film and its chemical and structural material properties. The highest Schottky barriers and rectification of the diodes were found for low indium contents. The thermal stability of the diodes is also best for Ga-rich parts of the sample. Conversely, the series resistance is lowest for large In content. Overall, the (In(x)Ga(1-x))2O3 alloy is well-suited for potential applications such as solar-blind photodetectors with a tunable absorption edge.

  3. Built-In Potential in Conjugated Polymer Diodes with Changing Anode Work Function: Interfacial States and Deviation from the Schottky-Mott Limit.

    PubMed

    MacLeod, Bradley A; Horwitz, Noah E; Ratcliff, Erin L; Jenkins, Judith L; Armstrong, Neal R; Giordano, Anthony J; Hotchkiss, Peter J; Marder, Seth R; Campbell, Charles T; Ginger, David S

    2012-05-03

    We use electroabsorption spectroscopy to measure the change in built-in potential (VBI) across the polymer photoactive layer in diodes where indium tin oxide electrodes are systematically modified using dipolar phosphonic acid self-assembled monolayers (SAMs) with various dipole moments. We find that VBI scales linearly with the work function (Φ) of the SAM-modified electrode over a wide range when using a solution-coated poly(p-phenylenevinylene) derivative as the active layer. However, we measure an interfacial parameter of S = eΔVBI/ΔΦ < 1, suggesting that these ITO/SAM/polymer interfaces deviate from the Schottky-Mott limit, in contrast to what has previously been reported for a number of ambient-processed organic-on-electrode systems. Our results suggest that the energetics at these ITO/SAM/polymer interfaces behave more like metal/organic interfaces previously studied in UHV despite being processed from solution.

  4. 1.2 kV GaN Schottky barrier diodes on free-standing GaN wafer using a CMOS-compatible contact material

    NASA Astrophysics Data System (ADS)

    Liu, Xinke; Liu, Qiang; Li, Chao; Wang, Jianfeng; Yu, Wenjie; Xu, Ke; Ao, Jin-Ping

    2017-02-01

    In this paper, we report the formation of vertical GaN Schottky barrier diodes (SBDs) on a 2-in. free-standing (FS) GaN wafer, using CMOS-compatible contact material. By realizing an off-state breakdown voltage V BR of 1200 V and an on-state resistance R on of 7 mΩ·cm2, the FS-GaN SBDs fabricated in this work achieve a power device figure-of-merit V\\text{BR}2/R\\text{on} of 2.1 × 108 V2·Ω-1·cm-2 on a high quality GaN wafer. In addition, the fabricated FS-GaN SBDs show the highest I on/I off current ratio of ˜2.3 × 1010 among the GaN SBDs reported in the literature.

  5. Increased effective barrier heights in Schottky diodes by molecular-beam epitaxy of CoSi2 and Ga-doped Si on Si(111)

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Lin, T. L.; Grunthaner, P. J.; Andersson, P. O.; Iannelli, J. M.

    1988-01-01

    Increasing the effective Schottky-barrier height of epitaxial CoSi2/Si(111) diodes by the use of thin, highly doped Si layers in close proximity to the metal-semiconductor interface has been studied. Intrinsic Si, Si doped by coevaporation of Ga, and epitaxial CoSi2 layers have all been grown in the same molecular-beam epitaxy system. Current-voltage and photoresponse characterization yield barrier heights ranging from 0.61 eV for a sample with no p(+) layer to 0.89 eV for a sample with a 20-nm-thick p(+) layer. These results are compared to theoretical values based on a one-dimensional solution of Poisson's equation under the depletion approximation.

  6. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2011-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW

  7. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2010-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW.

  8. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2010-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW.

  9. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2011-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW

  10. Influence of three-dimensional p-buried layer pattern on the performance of 4H-SiC floating junction Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Yang, Shuai; Zhang, Yuming; Song, Qingwen; Tang, Xiaoyan; Zhang, Yimen; Huo, Tianjia; Liu, Sicheng; Yuan, Hao

    2015-10-01

    4H-SiC floating junction Schottky barrier diodes (FJ-SBDs) are excellent SiC devices with high Baliga’s figure of merit (BFOM). However, the p-type buried layers in epilayers partially obstruct the current paths, and increase the on-resistance, while the buried layers of dot patterns can reduce the obstruction. In this paper, a three-dimensional (3D) simulation of 4H-SiC FJ-SBDs with dot patterns is reported for the first time. By comparing the results obtained from stripe, square, octagon, and circle patterns, dot patterns are proved to be good choices for buried layers in 4H-SiC FJ-SBDs, and the FJ-SBD with the circle pattern has the highest BFOM of 12.09 GW/cm2, which is 22.62% greater than that of the FJ-SBD with the stripe pattern.

  11. CoPt ferromagnetic injector in light-emitting Schottky diodes based on InGaAs/GaAs nanostructures

    SciTech Connect

    Zdoroveyshchev, A. V. Dorokhin, M. V.; Demina, P. B.; Kudrin, A. V.; Vikhrova, O. V.; Ved’, M. V.; Danilov, Yu. A.; Erofeeva, I. V.; Krjukov, R. N.; Nikolichev, D. E.

    2015-12-15

    The possibility of fabricating a ferromagnetic injector based on a near-equiatomic CoPt alloy with pronounced perpendicular magnetization anisotropy in the InGaAs/GaAs spin light-emitting diode is shown. The physical properties of experimental spin light-emitting diode prototypes are comprehensively studied. Circularly polarized electroluminescence of fabricated diodes is obtained in zero magnetic field due to the remanent magnetization of CoPt layers.

  12. Pd/Ta2O5/SiC Schottky-diode hydrogen sensors formed by using rapid thermal oxidation of Ta thin films

    NASA Astrophysics Data System (ADS)

    Joo, Sung-Jae; Choi, Je Hoon; Kim, Seong Jeen; Kim, Sang-Cheol

    2013-11-01

    Pd/Ta2O5/SiC Schottky-diode hydrogen sensors were fabricated, and their hydrogen gas sensing performance was investigated at 573 K and 773 K. Interfacial Ta2O5 films of 120 nm in thickness were formed by using rapid thermal oxidation (RTO) of the sputtered Ta films on SiC. The crystallinity of the Ta and the Ta2O5 films were characterized by using X-ray diffraction (XRD). As-sputtered Ta films on 4H-SiC are composed of α-Ta (body-centered-cubic) and β-Ta (tetragonal), and α-Ta (110) is the dominant orientation. After RTO at 573 K, the Ta films are converted to β-Ta2O5 (orthorhombic). The diode sensors show high sensitivity to H2 even at the low H2 concentration of 500 ppm, and the voltage change of the sensor upon H2 exposure is proportional to the H2 concentration in the range of 500 ˜ 2000 ppm at 573 K. The response voltage ΔV is shown to arise mostly from the change in the series resistance component of the sensor upon H2 exposure; the main origin of that change is believed to be the Ta2O5 interfacial layer. The response time t90 of the sensor at 573 K was estimated to be approximately 8 s.

  13. Fundamental Studies of Supported Graphene Interfaces: Defect Density of States in Graphene Field Effect Transistors (FETs) and Ideal Graphene - Silicon Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Sinha, Dhiraj P.

    is provided to support the conclusions. The other portion of this dissertation is on investigating transport mechanism in an ideal graphene - semiconductor junctions. While metal-semiconductor contacts are elementary to any electronic devices and have been investigated extensively in bulk materials, the fundamental understanding of transport in graphene - semiconductor junctions is poorly understood. In this part, we discuss fabrication of an ideal graphene/silicon Schottky junction and provide a new transport model based on the Landauer transport formalism. Ideal diode behavior on similar devices from the literature is rare. Our work hinges on the ideal diode behavior, which ensures that transport is not mediated by defects. Interface characteristic in these contacts are critical in determining the ideality in current-voltage characteristic of the junction [6, 7]. Any disorder at the interface will manifest in a behavior characteristic of non-ideal junctions. Other studies have relied on classical thermionic emission theory to explain carrier transport in graphene - semiconductor junctions [8-10]. While the characteristics follow the famous Schottky diode behavior, we demonstrate in this work that a fundamentally new approach using Landauer transport formalism describes the origin of the ideal diode current-voltage characteristics. We show that carrier transport in graphene-semiconductor systems depends on the finite density of states in graphene, which can be accounted for using the Landauer model. We conclude that the injection of carriers is limited by the finite density of states from an atomically thin semimetal. The Landauer transport formalism approach should spur further theoretical and experimental work in other 2D material based Schottky contact systems.

  14. Integration of an Anti-parallel Pair of Planar Schottky Barrier Diodes for Millimeter and Submillimeter Wavelengths

    DTIC Science & Technology

    1991-08-01

    depending upon the processing step. They are listed in Appendix 3 and discussed by Aydinli [73]. A citric acid, hydrogen peroxide solution (citric acid 50... Aydinli , A., and R.J. Mattauch, "Au/NiISnNi/n-GaAs Interface: Ohmic Contact Formation," J. Electrochem. Soc.: Solid-State Science and Techn., vol. 128. no...General Chemical Corp., Buffalo, NY.. [73] Aydinli , A., "Metal/GaAs Interfaces: The Schottky Barrier," PhD. Dissertation. Univ. of Virginia

  15. Temperature dependent I-V characteristics of an Au/n-GaAs Schottky diode analyzed using Tung’s model

    NASA Astrophysics Data System (ADS)

    Korucu, Demet; Turut, Abdulmecit; Efeoglu, Hasan

    2013-04-01

    The current-voltage (I-V) characteristics of Au/n-GaAs contacts prepared with photolithography technique have been measured in the temperature range of 80-320 K. The ideality factor and barrier height (BH) values have remained almost unchanged between 1.04 and 1.10 and at a value of about 0.79 eV at temperatures above 200 K, respectively. Therefore, the ideality factor values near unity say that the experimental I-V data are almost independent of the sample temperature, that is, contacts have shown excellent Schottky diode behavior above 200 K. An abnormal decrease in the experimental BH Φb and an increase in the ideality factor with a decrease in temperature have been observed below 200 K. This behavior has been attributed to the barrier inhomogeneity by assuming a Gaussian distribution of nanometer-sized patches with low BH at the metal-semiconductor interface. The barrier inhomogeneity assumption is also confirmed by the linear relationship between the BH and the ideality factor. According to Tung’s barrier inhomogeneity model, it has been seen that the value of σT=7.41×10-5 cm2/3 V1/3from ideality factor versus (kT)-1 curve is in close agreement with σT=7.95×10-5 cm2/3 V1/3 value from the Φeff versus (2kT)-1 curve in the range of 80-200 K. The modified Richardson ln(J0/T2)-(qσT)2(Vb/η)2/3/[2(kT)2] versus (kT)-1 plot, from Tung’s Model, has given a Richardson constant value of 8.47 A cm-2 K-2which is in very close agreement with the known value of 8.16 A cm-2 K-2 for n-type GaAs; considering the effective patch area which is significantly lower than the entire geometric area of the Schottky contact, in temperature range of 80-200 K. Thus, it has been concluded that the use of Tung’s lateral inhomogeneity model is more appropriate to interpret the temperature-dependent I-V characteristics in the Schottky contacts.

  16. Au/n-InP Schottky diodes using an Al2O3 interfacial layer grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Kim, Hogyoung; Kim, Min Soo; Yoon, Seung Yu; Choi, Byung Joon

    2017-02-01

    We investigated the effect of an Al2O3 interfacial layer grown by atomic layer deposition on the electrical properties of Au Schottky contacts to n-type InP. Considering barrier inhomogeneity, modified Richardson plots yielded a Richardson constant of 8.4 and 7.5 Acm-2K-2, respectively, for the sample with and without the Al2O3 interlayer (theoretical value of 9.4 Acm-2K-2 for n-type InP). The dominant reverse current flow for the sample with an Al2O3 interlayer was found to be Poole-Frenkel emission. From capacitance-voltage measurements, it was observed that the capacitance for the sample without the Al2O3 interlayer was frequency dependent. Sputter-induced defects as well as structural defects were passivated effectively with an Al2O3 interlayer.

  17. The development of a promising photosensitive Schottky barrier diode using a novel Cd(ii) based coordination polymer.

    PubMed

    Ghorai, Pravat; Dey, Arka; Brandão, Paula; Ortega-Castro, Joaquín; Bauza, Antonio; Frontera, Antonio; Ray, Partha Pratim; Saha, Amrita

    2017-09-27

    A novel 1D Cd(ii) based coordination polymer (complex 1) has been synthesized involving an 8-aminoquinoline based Schiff base ligand and cyanate ion. It has been characterized by elemental analysis, different spectroscopy methods and X-ray single crystal diffraction technique. Most interestingly it exhibits unique properties like electrical conductivity and photosensitivity which shows its potential in optoelectronic device application. We prove both experimentally and theoretically that electrical conduction under irradiation of visible light increases many fold in comparison with that under dark condition. Our synthesized material based device shows some paramount behaviour under irradiance of light which is obvious in light sensing Schottky devices. The rectification ratio of our complex based device was found to be 12.44 and 27.74 under dark and photoirradiation conditions respectively. The discovery of such type of coordination polymer advances the area of optoelectronic devices.

  18. On the electrical behavior of V2O5/4H-SiC Schottky diodes

    NASA Astrophysics Data System (ADS)

    Bellone, S.; Di Benedetto, L.; Rubino, A.

    2013-06-01

    A complete analysis of the rectifying behavior of V2O5/4H-SiC (divanadium pentoxide/4H polytype of silicon carbide) junction is reported. The analysis of forward and reverse JD-VD curves of samples fabricated with 5 nm-thick V2O5 films shows that the carrier transport across junction is dominated by the field enhanced thermionic emission mechanism. All the physical and electrical parameters, such as Schottky barrier height, ideality factor, and series resistance, have been evaluated from temperature behavior of JD-VD curves in the range 100-425 K and from CD-VD measurements. It is shown that the barrier height extracted from measurements can be justified in terms of inhomogeneities localized at the interface.

  19. Comparative study of the temperature-dependent dielectric properties of Au/PPy/n-Si (MPS)-type Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Gümüş, Ahmet; Ersöz, Gülçin; Yücedağ, İbrahim; Bayrakdar, Sümeyye; Altindal, Şemsettin

    2015-09-01

    The dielectric properties of Au/PPy/n-Si metal-polymer-semiconductor (MPS)-type Schottky barrier diodes (SBDs) were investigated by using capacitance-voltage ( C-V) and conductancevoltage ( G/ω-V) measurements at various temperatures and voltages at frequencies of 100 kHz and 500 kHz. Both the real and the imaginary parts of the complex dielectric constant and dielectric loss ( ɛ', ɛ″) and of the electric modulus ( M', M″), as well as the conductivity (σ ac ), were found to depend strongly on the temperature and the voltage. Both the C and G/ω values increased with increasing applied voltage and had inversion, depletion, and accumulation regions as with a metal-insulator-semiconductor (MIS) type behavior. Both the dielectric constant ( ɛ') and the dielectric loss ( ɛ″) increased with increasing temperature and decreased with increasing frequency. The loss tangent (tan δ) vs. temperature curve had a peak at about 200 K for both frequencies. The M' and the M″ values decreased with increasing temperature and became independent of the frequency at high temperatures. The series resistance ( R s ) of the diode decreased with increasing temperature for the two frequencies while the σ ac increased. Such behaviors of the dielectric properties with temperature were attributed to the restructuring and reordering of charges at interface states/traps due to the varying temperature, the interfacial polarization, and the interfacial polymer layer. ln(σ ac ) vs. q/kT plots had two distinct linear regions with different slopes for the two frequencies. Such behaviors of these plots confirmed the existence of two different conduction mechanisms corresponding to low and high temperatures. The values of the activation energy ( E a ) were obtained from the slopes of these plots, and its value at low temperatures was considerably lower than that at high temperatures.

  20. Frequency and gate voltage effects on the dielectric properties and electrical conductivity of Al∕SiO(2)∕p-Si metal-insulator-semiconductor Schottky diodes.

    PubMed

    Yıldız, D E; Dökme, I

    2011-07-01

    The dielectric properties and electrical conductivity of Al∕SiO(2)∕p-Si (MIS) Schottky diodes (SDs) in the frequency range of 10 kHz to 10 MHz and the gate voltage range of -2 to 6 V have been investigated in detail using experimental C-V and G∕w-V measurements. Experimental results indicated that the voltage dependence of the real part of the dielectric constant (ɛ') and loss tangent (tan δ) characteristics have a peak at each frequency. The values of ɛ' increase with decreasing frequency and tend to be frequency independent in the negative voltage region. However, the values of the dielectric loss (ɛ″) increase with decreasing frequency at each voltage. In contrast, ɛ' and ɛ″ are almost found to decrease, and the ac electrical conductivity (σ(ac)) and the real part of the electric modulus (M') increase, with increasing frequency. In addition, the imaginary part of the electric modulus (M″) showed a peak that shifts to a higher frequency with increasing applied voltage. It can be concluded that interfacial polarization can more easily occur at low frequencies, and consequently the majority of interface states at the Si-SiO(2) interface contribute to the deviation of the dielectric properties of Al∕SiO(2)∕p-Si (MIS) SDs.

  1. Optical pumping of deep traps in AlGaN/GaN-on-Si HEMTs using an on-chip Schottky-on-heterojunction light-emitting diode

    SciTech Connect

    Li, Baikui; Tang, Xi; Chen, Kevin J.

    2015-03-02

    In this work, by using an on-chip integrated Schottky-on-heterojunction light-emitting diode (SoH-LED) which is seamlessly integrated with the AlGaN/GaN high electron mobility transistor (HEMT), we studied the effect of on-chip light illumination on the de-trapping processes of electrons from both surface and bulk traps. Surface trapping was generated by applying OFF-state drain bias stress, while bulk trapping was generated by applying positive substrate bias stress. The de-trapping processes of surface and/or bulk traps were monitored by measuring the recovery of dynamic on-resistance R{sub on} and/or threshold voltage V{sub th} of the HEMT. The results show that the recovery processes of both dynamic R{sub on} and threshold voltage V{sub th} of the HEMT can be accelerated by the on-chip SoH-LED light illumination, demonstrating the potentiality of on-chip hybrid opto-HEMTs to minimize the influences of traps during dynamic operation of AlGaN/GaN power HEMTs.

  2. Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Taşçıoğlu, İ.; Tüzün Özmen, Ö.; Şağban, H. M.; Yağlıoğlu, E.; Altındal, Ş.

    2017-04-01

    In this study, poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (P3HT:PCBM:F4-TCNQ) organic film was deposited on n-type silicon (n-Si) substrate by spin coating method. The electrical and dielectric analysis of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky barrier diode was conducted by means of capacitance-voltage ( C- V) and conductance-voltage ( G/ ω- V) measurements in the frequency range of 10 kHz-2 MHz. The C- V- f plots exhibit fairly large frequency dispersion due to excess capacitance caused by the presence of interface states ( N ss). The values of N ss located in semiconductor bandgap at the organic film/semiconductor interface were calculated by Hill-Coleman method. Experimental results show that dielectric constant ( ɛ') and dielectric loss ( ɛ″) decrease with increasing frequency, whereas loss tangent (tan δ) remains nearly the same. The decrease in ɛ' and ɛ″ was interpreted by the theory of dielectric relaxation due to interfacial polarization. It is also observed that ac electrical conductivity ( σ ac) and electric modulus ( M' and M″) increase with increasing frequency.

  3. Recrystallization effects of swift heavy 209Bi ions irradiation on electrical degradation in 4H-SiC Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Yang, Zhimei; Ma, Yao; Gong, Min; Li, Yun; Huang, Mingmin; Gao, Bo; Zhao, Xin

    2017-06-01

    In this paper, the phenomenon that the recrystallization effects of swift heavy 209Bi ions irradiation can partially recovery damage with more than 1 × 1010 ions/cm2 is investigated by the degradation of the electrical characteristics of 4H-SiC Schottky barrier diode (SBD) with swift heavy ion irradiation. Deep level transient spectroscopy (DLTS) and Current-Voltage (I-V) measurements clearly indicated that E0.62 defect induced by swift heavy ion irradiation, which was a recombination center, could result in the increase of reverse leakage current (IR) at fluence less than 1 × 109 ions/cm2 and the recovery of IR at fluence more than 1 × 1010 ions/cm2 in 4H-SiC SBD. The variation tendency of IR is consisted with the change of E0.62 defect. Furthermore, it is reasonable explanation that the damage or defect formed at low fluence in SiC may be recovered by further swift heavy ion irradiation with high fluence, which is due to the melting with the ion tracks of the amorphous zones through a thermal spike and subsequent epitaxial recrystallization initiated from the neighboring crystalline regions.

  4. Improved performance of Pd/WO3/SiC Schottky-diode hydrogen gas sensor by using fluorine plasma treatment

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Tang, W. M.; Lai, P. T.

    2015-08-01

    A high-performance Pd/WO3/SiC Schottky-diode hydrogen gas sensor was fabricated by using fluorine plasma treatment on the WO3 film. From the electrical measurements under various hydrogen concentrations and temperatures, the plasma-treated sensor exhibited a maximum barrier-height change of 279 meV and a static gas sensitivity of more than 30 000, which is 30 times higher than that of the untreated sensor. This significant improvement is attributed to the larger adsorption area caused by the plasma-roughened WO3 film and the lower baseline leakage current induced by fluorine passivation of oxide traps. Additionally, the kinetics analysis and hydrogen coverage of the devices were studied to demonstrate the temperature dependence of the gas sensing behaviors. The hydrogen adsorption enthalpy at the Pd-WO3 interface significantly decreased from -31.2 kJ/mol to -57.6 kJ/mol after the plasma treatment. Therefore, the adsorption process on the plasma-treated sample is much easier and the suppression of sensing properties is more obvious at elevated temperatures above 423 K.

  5. Low-Temperature Growth of Well-Aligned ZnO Nanorod Arrays by Chemical Bath Deposition for Schottky Diode Application

    NASA Astrophysics Data System (ADS)

    Yuan, Zhaolin

    2015-04-01

    A well-aligned ZnO nanorod array (ZNRA) was successfully grown on an indium tin oxide (ITO) substrate by chemical bath deposition at low temperature. The morphology, crystalline structure, transmittance spectrum and photoluminescence spectrum of as-grown ZNRA were investigated by field emission scanning electron microscopy, x-ray diffraction, ultraviolet-visible spectroscopy and spectrophotometer, respectively. The results of these measurements showed that the ZNRA contained densely packed, aligned nanorods with diameters from 30 nm to 40 nm and a wurtzite structure. The ZNRA exhibited good optical transparency within the visible spectral range, with >80% transmission. Gold (Au) was deposited on top of the ZNRA, and the current-voltage characteristics of the resulting ITO/ZNRA/Au device in the dark were evaluated in detail. The ITO/ZNRA/Au device acted as a Schottky barrier diode with rectifying behaviour, low turn-on voltage (0.6 V), small reverse-bias saturation current (3.73 × 10-6 A), a high ideality factor (3.75), and a reasonable barrier height (0.65 V) between the ZNRA and Au.

  6. Schottky barrier height switching in thin metal oxide films studied in diode and solar cell device configurations

    NASA Astrophysics Data System (ADS)

    Wing, Dahvyd; Rothschild, Avner; Tessler, Nir

    2015-08-01

    We investigate changes in the properties of 8 nm thin metal oxide (Nb-doped SrTiO3) films in response to relatively high voltage or light soaking under three Sun excitation. We measure the current-voltage behavior of metal|insulator|metal type diodes and use a device model to relate changes in device behavior to the metal oxide film properties. We find that the device's resistive switching is mainly associated with shifts (switching) of the metal oxide work function between high and low injection barrier states. The method presented here can be used for in situ monitoring of the contact work function and for quantifying the uniformity of this value across the device. We also discuss the effect of non-uniform work function on the apparent diode's ideality factor.

  7. Manufacturing Technology Program for High Burnout Silicon Schottky-Barrier Mixer Diodes for Navy Air-to-Air Avionics.

    DTIC Science & Technology

    1982-02-01

    SYSTEM FIGURE 6 MERCURY PROBE CALCULATIONS 19 . FIGURE 7 ACTUAL PLOT 20 FIGURE 8 PHILTEC BEVEL & STAIN METHOD 24 FIGURE 9 PLANAR MAGNETRON CATHODE 26...STANDARD CERAMIC PILL (ODS-119 PACKAGE 40 ASSEMBLY FIGURE 15 CERAMIC PILL PACKAGE ASSEMBLY WITH BRAZING 41fALLOY SEPARATE WASHERS (PRESENT METHOD ...DIODE CHIP FABRICATION 10 TABLE III COMPARISON OF RESULTS 25 TABLE IV COMPARISON OF DIFFERENT METALLIZATIONS 29 TABLE V COMPARISON OF METHODS OF RESIST

  8. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    NASA Astrophysics Data System (ADS)

    Omotoso, E.; Meyer, W. E.; Auret, F. D.; Diale, M.; Ngoepe, P. N. M.

    2016-01-01

    Irradiation experiments have been carried out on 1.9×1016 cm-3 nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×1010 to 9.2×1011 cm-2. Current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBHI-V) decreased from 1.47 to 1.34 eV. Free carrier concentration, Nd decreased with increasing fluence from 1.7×1016 to 1.1×1016 cm-2 at approximately 0.70 μm depth. The reduction in Nd shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm-1. Alpha-particle irradiation introduced two electron traps (E0.39 and E0.62), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E0.39 as attribute related to silicon or carbon vacancy, while the E0.62 has the attribute of Z1/Z2.

  9. Calculation of the Electronic Parameters of an Al/DNA/p-Si Schottky Barrier Diode Influenced by Alpha Radiation

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2015-01-01

    Many types of materials such as inorganic semiconductors have been employed as detectors for nuclear radiation, the importance of which has increased significantly due to recent nuclear catastrophes. Despite the many advantages of this type of materials, the ability to measure direct cellular or biological responses to radiation might improve detector sensitivity. In this context, semiconducting organic materials such as deoxyribonucleic acid or DNA have been studied in recent years. This was established by studying the varying electronic properties of DNA-metal or semiconductor junctions when exposed to radiation. In this work, we investigated the electronics of aluminium (Al)/DNA/silicon (Si) rectifying junctions using their current-voltage (I-V) characteristics when exposed to alpha radiation. Diode parameters such as ideality factor, barrier height and series resistance were determined for different irradiation times. The observed results show significant changes with exposure time or total dosage received. An increased deviation from ideal diode conditions (7.2 to 18.0) was observed when they were bombarded with alpha particles for up to 40 min. Using the conventional technique, barrier height values were observed to generally increase after 2, 6, 10, 20 and 30 min of radiation. The same trend was seen in the values of the series resistance (0.5889–1.423 Ω for 2–8 min). These changes in the electronic properties of the DNA/Si junctions could therefore be utilized in the construction of sensitive alpha particle detectors. PMID:25730484

  10. Ion-assisted gate recess process induced damage in GaN channel of AlGaN/GaN Schottky barrier diodes studied by deep level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferrandis, Philippe; Charles, Matthew; Baines, Yannick; Buckley, Julien; Garnier, Gennie; Gillot, Charlotte; Reimbold, Gilles

    2017-04-01

    Deep traps in AlGaN/GaN Schottky barrier diodes have been investigated using deep level transient spectroscopy. It has been found that ion-assisted gate recess process leads to the formation of electron traps. The defects related to these traps are mainly located in the two-dimensional electron gas channel below the Schottky contact, meaning that the partial etching of the AlGaN layer produces damage on the top of the underlying GaN layer. The activation energies of the electron traps, extracted from the data, range between 0.28 and 0.41 eV. We believe that these centers are complexes linked with nitrogen vacancies which may behave as extended defects.

  11. Planar Schottky technology for submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Crowe, Thomas W.; Bishop, William L.; Hesler, Jeffrey L.; Marazita, Steven M.; Koh, Philip J.; Porterfield, David W.

    1996-01-01

    Work carried out in relation to the development of planar integrated Schottky diodes with the aim of increasing the sensitivity, reliability and efficiency of spaceborne heterodyne receivers, is reported. The results of this work include a planar diode mixer at 585 GHz with a total receiver noise temperature of 2,380 K double side band, and planar diode multipliers. The prospects for further integration of circuit elements with the GaAs diodes are discussed.

  12. Electrical Characteristics of an Ag/n-InP Schottky Diode Based on Temperature-Dependent Current-Voltage and Capacitance-Voltage Measurements

    NASA Astrophysics Data System (ADS)

    Gülnahar, Murat

    2015-09-01

    The rectifying junction properties of an Ag/n-InP Schottky diode are investigated in a wide temperature range from 10 K to 300 K (-263 °C to 27 °C). The electronic structure of the junction is analyzed by the techniques of current-voltage I- V and capacitance-voltage C- V measurement as a function of temperature. The electrical parameters are characterized with the standard thermionic emission theory. The main electrical characteristics including the values of apparent barrier height and ideality factor n are found to be 0.414 eV and 1.008 at 300 K (27 °C), respectively, even though the value of barrier height at 300 K (27 °C) from C- V data is 0.417 eV. The , n, and Richardson plot demonstrate strong temperature dependency; that is, the decreases, n increases, and the Richardson plot deviates with decreasing temperature. Such behaviors are attributed to Schottky barrier anomalies, which are explained by assuming the existence of a Gaussian distribution of nanometer-sized patches with low barrier height at the interface. The accurate theoretical models such as Tung's lateral inhomogeneity and multi-Gaussian distribution to comment the barrier inhomogeneity on the electron transport across the interface are applied, and the comparisons between these approaches for the present experimental results are carried out. According to the multi-Gaussian distribution approach, the double-Gaussian nature of Ag/n-InP/In is commented by the values of the weighting coefficients, standard deviations, and mean barrier height calculated for each distribution. The total effective area of the patches is calculated for high and low temperatures, and as a result, it is found that the low barrier regions influence significantly the electron transport at the interface of the junction. The discrepancy between I- V and C- V barrier heights is discussed based on a Gaussian approach. From the linear relationship between and n, the homogeneous barrier height is noted to be 0.418 eV. The

  13. Capacitance behavior of InAlN Schottky diodes in presence of large concentrations of shallow and deep states related to oxygen

    SciTech Connect

    Py, M. A. Lugani, L.; Taniyasu, Y.; Carlin, J.-F.; Grandjean, N.

    2015-05-14

    The capacitance-voltage-temperature characteristics of nonintentionally doped In{sub 0.16}Al{sub 0.84 }N/n{sup +}-GaN Schottky diodes were measured at 1 MHz and in the 90–400 K range. They are discussed in the framework of existing theories, which properly treat the Poisson's equation, especially near the edge of the space-charge region, the so-called transition region. The concentration of a shallow donor and of a deep DX-like center, previously reported, is properly determined. The key parameter to discuss the temperature dependence of the capacitance is the ratio between the frequency of the small ac modulating signal and the temperature-dependent emission rate associated to each level. The capacitance-voltage C-V{sub a} curves were successfully fitted using a three parameters expression over the full range of temperatures. The concentration of both shallow and deep levels exceeds a few 10{sup 18} cm{sup −3}. Based on secondary ion mass spectrometry profiling, we assign both levels to the dominant oxygen impurity. This result supports our previous assignment of the shallow donor to a substitutional oxygen atom on a nitrogen site and the deep state to an O-related DX center, naturally explaining its high concentration. The sluggish kinetics at low temperatures, associated to the large concentration of deep levels located near the transition region, is illustrated by hysteresis loops in the C-V{sub a} curves below 270 K. Furthermore, the contribution of free carriers to the capacitance is revealed below 150 K, when both shallow and deep donors cannot respond anymore due to an emission rate lower than the 1 MHz modulating frequency. Finally, the presence of a highly doped thin surface barrier, as already reported in other III-nitrides, finds further support.

  14. Frequency and voltage dependence of electric and dielectric properties of Au/TiO2/n-4H-SiC (metal-insulator-semiconductor) type Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Tanrıkulu, E. E.; Yıldız, D. E.; Günen, A.; Altındal, Ş.

    2015-09-01

    The main electrical and dielectric properties of Au/TiO2/n-4H-SiC (MIS) type Schottky barrier diodes (SBDs) have been investigated as functions of frequency and applied bias voltage. We believe that the use of high dielectric interfacial layer between metal and semiconductor can improve the performance of Schottky diodes. From the experimental data, both electrical and dielectric parameters were found as strong function of frequency and applied bias voltage. The Fermi energy level (EF), the concentration of doping donor atoms (P), barrier height (ΦB) and series resistance (Rs) values were obtained from reverse and forward bias C-V characteristics. The changes in EF and ND with frequency are considerably low. Therefore, their values were taken at about constant. The real and imaginary parts of dielectric constant (\\varepsilon \\prime , \\varepsilon \\prime\\prime ), tangent loss (tanδ), ac electrical conductivity (σac), and real and imaginary parts of electric modulus (M‧ and M″) values were also obtained from reverse and forward bias C-V and G/ω-V characteristics. In addition, the voltage dependent profiles of all these electrical and dielectric parameters were drawn for each frequency. These results confirmed that both electrical and dielectric properties of Au/TiO2/n-4H-SiC (MIS) type SBD are quite sensitive to both the frequency and applied bias voltage due to surface polarization, density distribution of interface traps (Dit), and interfacial layer.

  15. Analysis of temperature dependent current-conduction mechanisms in Au/TiO2/n-4H-SiC (metal/insulator/semiconductor) type Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Alialy, S.; Altındal, Ş.; Tanrıkulu, E. E.; Yıldız, D. E.

    2014-08-01

    In order to determine the effective current-conduction mechanisms in Au/TiO2/n-4H-SiC (metal-insulator semiconductor) type Schottky barrier diodes (SBDs), their current-voltage (I-V) measurements were carried out in the temperature range of 200-380 K. Some electrical parameters, such as ideality factor (n), zero-bias barrier height (BH) (ΦBo), series and shunt resistances (Rs, Rsh), were obtained as 5.09, 0.81 eV, 37.43 Ω, and 435 kΩ at 200 K and 2.68, 0.95 eV, 5.99 Ω, and 73 kΩ at 380 K, respectively. The energy density distribution profile of surface states (Nss) was extracted from the forward-bias I-V data by taking into account voltage dependent of the ideality factor (nV), effective BH (Φe), and Rs for 200, 300, and 380 K. The Ln(I) vs V plots are completely parallel in the intermediate bias voltages, which may be well explained by field emission (FE) mechanism for each temperature. On the other hand, the high value of n cannot be explained with this mechanism. Therefore, to explain the change in BH and n with temperature, ΦBo vs q/2kT plot was drawn to obtain an evidence of a Gaussian distribution (GD) of the BHs and thus the mean value of BH (Φ¯Bo) and standard deviation (σso) values were found from this plot as 1.396 eV and 0.176 V, respectively. The Φ¯Bo and Richardson constant (A*) values were found as 1.393 eV and 145.5 A.cm-2 K-2 using modified Ln(Io/T2)-(q2σs2/2k2T2) vs q/kT plot, respectively. It is clear that all of the obtained main electrical parameters were found as a strong function of temperature. These results indicated that the current conduction mechanism in Au/TiO2/n-4 H-SiC (SBD) well obey the FE and GD mechanism rather than other mechanisms.

  16. High-voltage AlGaN/GaN Schottky barrier diodes on silicon using a post-process O2 treatment

    NASA Astrophysics Data System (ADS)

    Seok, Ogyun; Han, Min-Koo; Byun, Young-Chul; Kim, Jiyoung; Shin, Hyun-Chang; Ha, Min-Woo

    2015-01-01

    High-voltage AlGaN/GaN Schottky barrier diodes (SBDs) were fabricated using on a silicon (1 1 1) substrate, and a post-process O2 treatment was carried out to reduce the leakage current and increase the breakdown voltage. Time-of-flight secondary ion mass spectroscopy revealed that, following the post-process O2 treatment, oxygen diffused into an AlGaN barrier and AlO was generated. A significant suppression of the leakage current (of approximately 6 orders of magnitude) occurred in the buffer isolation structures following the O2 treatment. Our method also resulted in suppression of the surface leakage current through the mesa-etched surface. A virgin GaN SBD exhibited a leakage current of 1.76 × 10-2 A/cm2, whereas the equivalent O2-treated device had a leakage current of 1.75 × 10-4 A/cm2 (the anode-cathode distance was LAC = 10 μm, and the applied bias was -100 V). This reduction in the leakage current was caused by surface passivation at the anode and cathode. The post-process O2 treatment also increased the breakdown voltage from Vb = 808 V to Vb = 1590 V for a device with LAC = 10 μm. GaN SBDs with and without the post-process O2 treatment exhibited low specific on-resistance of Ron,sp = 2.51 mΩ cm2 and Ron,sp = 2.48 mΩ cm2, respectively, with LAC = 10 μm. Devices with the post-process O2 treatment exhibited a figure of merit of Vb2/Ron,sp = 1006 MW/cm2, whereas devices without the O2 treatment exhibited a figure of merit of Vb2/Ron,sp = 263 MW/cm2. These high-voltage GaN SBDs employing the post-process O2 treatment are suitable for applications including DC-DC converters, inverters, and power factor correction circuits, where high voltage operation is required with low leakage currents.

  17. Dependence of barrier height on energy gap in Au n-type GaAs/1-x/P/x/ Schottky diodes

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1981-01-01

    Data are presented which show that the Schottky barrier height for gold on the ternary compound GaAs(1-x)P(x) follows the commonly assumed two-thirds of the band gap relationship. An explanation is given for the reason that previously published data did not exhibit this behavior.

  18. On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2-PVA/n-Si Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Bilkan, Ç.; Badali, Y.; Fotouhi-Shablou, S.; Azizian-Kalandaragh, Y.; Altındal, Ş.

    2017-08-01

    In this paper, we report the preparation and characterization of SnO2-PVA nanocomposite film as interlayer for Schottky barrier diodes (SBDs). The possible current transport mechanisms (CTMs) of the prepared SBDs were investigated using the forward-bias current-voltage ( I- V) characteristics in the temperature range of 80-400 K. The structure of nanocomposite film was characterized by an X-ray diffractometer (XRD) and the surface morphology was investigated using a Scanning Electron Microscopy (SEM) at room temperature. The values of ideality factor ( n) and zero-bias barrier height (\\overline{\\varPhi }_{Bo}) showed variation with temperature, such that they changed from 19.10 to 3.77 and 0.190 to 0.844 eV, respectively. \\overline{\\varPhi }_{Bo}- n, \\overline{\\varPhi }_{Bo}- q/2 kT, and n -1- q/2 kT plots were drawn to get evidence to the Gaussian Distribution (GD) of the barrier height (BH). These plots revealed two distinct linear regions with different slopes for low temperatures (80-160 K) (LTs) and high temperatures (180-400 K) (HTs). This behavior is an evidence to the existence double GD of BHs which provides an average value for BH (\\overline{\\varPhi }_{Bo}) and a standard deviation (σs) for each region. The high value of n especially at low temperatures was attributed to the existence of interlayer: interface states ( N ss) and barrier inhomogeneity at Au/n-Si interface. The values of \\overline{\\varPhi }_{Bo} and σs were obtained from the intercept and slope of mentioned plots as 0.588 and 0.0768 V for LTs and 1.183 eV and 0.158 V for HTs, respectively. Moreover, the modified ln( I s/ T 2)- q 2σ s 2 /2 k 2 T 2 vs q/ kT plot also showed two linear regions. The values of \\overline{\\varPhi }_{Bo} and effective Richardson constant ( A *) were extracted from the slope and intercept of this plot as 0.610 eV and 93.13 A/cm2 K2 for LTs and 1.235 eV and 114.65 A/cm2 K2 for HTs, respectively. The value of A* for HTs is very close to the theoretical

  19. Deep traps and temperature effects on the capacitance of p-type Si-doped GaAs Schottky diodes on (2 1 1) and (3 1 1) oriented GaAs substrates

    NASA Astrophysics Data System (ADS)

    Boumaraf, R.; Sengouga, N.; Mari, R. H.; Meftah, Af.; Aziz, M.; Jameel, Dler; Al Saqri, Noor; Taylor, D.; Henini, M.

    2014-01-01

    The SILVACO-TCAD numerical simulator is used to explain the effect of different types of deep levels on the temperature dependence of the capacitance of p-type Si-doped GaAs Schottky diodes grown on high index GaAs substrates, namely (3 1 1)A and (2 1 1)A oriented GaAs substrates. For the (3 1 1)A diodes, the measured capacitance-temperature characteristics at different reverse biases show a large peak while the (2 1 1)A devices display a much smaller one. This peak is related to the presence of different types of deep levels in the two structures. These deep levels are characterized by the Deep Level Transient Spectroscopy (DLTS) technique. In the (3 1 1)A structure only majority deep levels (hole deep levels) were observed while both majority and minority deep levels were present in the (2 1 1)A diodes. The simulation software, which calculates the capacitance-voltage and the capacitance-temperature characteristics in the absence and presence of different types of deep levels, agrees well with the experimentally observed behavior of the capacitance-temperature properties. A further evidence to confirm that deep levels are responsible for the observed phenomenon is provided by a simulation of the capacitance-temperature characteristics as a function of the ac-signal frequency.

  20. Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (\\bar{2}01) β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Kasu, Makoto; Oshima, Takayoshi; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu

    2017-09-01

    A pixel array of vertical Schottky-barrier diodes (SBDs) was fabricated and measured on the surface of a (\\bar{2}01) β-Ga2O3 single crystal. Subsequently, etch pits and patterns were observed on the same surface. Three types of etch pits were discovered: (1) a line-shaped etch pattern originating from a void and extending toward the [010] direction, (2) an arrow-shaped etch pit whose arrow’s head faces toward the [102] direction and, (3) a gourd-shaped etch pit whose point head faces toward the [102] direction. Their average densities were estimated to be 5 × 102, 7 × 104, and 9 × 104 cm-2, respectively. We confirmed no clear relationship between the leakage current in SBDs and these crystalline defects. Such results are obtained because threading dislocations run mainly in the [010] growth direction and do not go through the (\\bar{2}01) sample plate.

  1. Effects of sputtering power Schottky metal layers on rectifying performance of Mo-SiC Schottky contacts

    NASA Astrophysics Data System (ADS)

    Lee, Seula; Lee, Jinseon; You, Sslimsearom; Kyoung, Sinsu; Kim, Kyung Hwan

    2016-01-01

    In this study, Schottky barrier diodes based on silicon carbide with various levels of Schottky metal layer input power were prepared and characterized. In this structure, molybdenum and aluminum were employed as the Schottky metal and top electrode, respectively. Schottky metal layers were deposited with input power ranging from 30 to 210 W. Schottky metal layers and top electrodes were deposited with a thickness of 3000 Å. The Schottky barrier heights, series resistances, and ideality factor were calculated from current-voltage (I-V) curves obtained using the Cheung-Cheung and Norde methods. All deposition processes were conducted using a facing targets sputtering system. Turn on voltage was minimized when the input power was 90 W, at which point electrical characteristics were observed to have properties superior to those at other levels of input power.

  2. Magnetic tunnel transistor with a perpendicular Co/Ni multilayer sputtered on a Si/Cu(1 0 0) Schottky diode

    NASA Astrophysics Data System (ADS)

    Vautrin, C.; Lu, Y.; Robert, S.; Sala, G.; Lenoble, O.; Petit-Watelot, S.; Devaux, X.; Montaigne, F.; Lacour, D.; Hehn, M.

    2016-09-01

    We have studied a magnetic tunnel transistor (MTT) structure based on a MgO tunnelling barrier emitter and a [Co/Ni]5/Cu multilayer base on a Si (0 0 1) substrate. Evident links between the Schottky barrier preparation techniques and the properties of perpendicular magnetic anisotropy (PMA) in the [Co/Ni] multilayer have been revealed by combined x-ray diffraction and magnetometry analyses. The Si surface treated by hydrofluoric acid (HF) is found to favour a Cu [1 0 0] texture growth which is detrimental to the [Co/Ni]5 PMA properties. However, a Ta layer insertion can restore the [1 1 1] texture required for the PMA appearance. By carefully engineering the base crystallographic texture structure, we obtain both a good quality of Schottky barrier and PMA property; a magneto-current ratio of 162% has been measured for MTTs with a spin-valve base composed of one magnetic layer having in-plane anisotropy and another one with out-of-plane anisotropy.

  3. A 640 GHz Planar-Diode Fundamental Mixer/Receiver

    NASA Technical Reports Server (NTRS)

    Siegel, P.; Mehdi, I.; Dengler, R.; Lee, T.; Humphrey, D.; Pease, A.

    1998-01-01

    The design and performance of a 640 GHz solid-state receiver using a fundamental planar-Schottky-diode mixer, InP Gunn diode oscillator, whisker-contacted Schottky-varactor-diode sextupler and folded-Fabry-Perot diplexer are reported.

  4. A comparative study on the electrical parameters of Au/n-Si Schottky diodes with and without interfacial (Ca1.9Pr0.1Co4Ox) layer

    NASA Astrophysics Data System (ADS)

    Kaya, A.; Çetinkaya, H. G.; Altındal, Ş.; Uslu, I.

    2016-05-01

    In order to compare the main electrical parameters such as ideality factor (n), barrier height (BH) (ΦI-V), series (Rs) and shunt (Rsh) resistances and energy density distribution profile of surface states (Nss), the Au/n-Si (MS) Schotthy diodes (SDs), with and without interfacial (Ca1.9Pr0.1Co4Ox) layer were obtained from the current-voltage (I-V ) measurements at room temperature. The other few electrical parameters such as Fermi energy level (EF), BH (ΦC-V), Rs and voltage dependence of Nss profile were also obtained from the capacitance-voltage (C-V ) measurements. The voltage dependence of Nss profile has two distinctive peaks in the depletion region for two diodes and they were attributed to a particular distribution of Nss located at metal-semiconductor (MS) interface. All of these results have been investigated at room temperature and results have been compared with each other. Experimental results confirmed that interfacial (Ca1.9Pr0.1Co4Ox) layer enhanced diode performance in terms of rectifier rate (RR = IF/IR at ± 3.4V), Nss (at 0.5eV) and Rsh (-3.4V) with values of 265, 5.38 × 1013eV-1 ṡcm-2 and 7.87 × 104Ω for MS type Schottky barrier diode and 2.56 × 106, 1.15 × 1013eV-1 ṡcm-2 and 7.50 × 108Ω for metal-insulator-semiconductor (MIS) type SBD, respectively. It is clear that the rectifying ratio of MIS type SBD is about 9660 times greater than MS type SBD. The value of barrier height (BH) obtained from C-V data is higher than the forward bias I-V data and it was attributed to the nature of measurements. These results confirmed that the interfacial (Ca1.9Pr0.1Co4Ox) layer has considerably improved the performance of SD.

  5. Wafer-level nondestructive inspection of substrate off-angle and net donor concentration of the n--drift layer in vertical GaN-on-GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Horikiri, Fumimasa; Narita, Yoshinobu; Yoshida, Takehiro; Kitamura, Toshio; Ohta, Hiroshi; Nakamura, Tohru; Mishima, Tomoyoshi

    2017-06-01

    In the mass production of GaN-on-GaN vertical power devices, a nondestructive simple inspection of the net donor concentration (N D - N A) of the n--drift layer in the range of 1015 cm-3 is required. In this study, we demonstrate the wafer-level nondestructive inspection of GaN Schottky barrier diode epi-structures grown by metal organic vapor phase epitaxy (MOVPE) on free-standing GaN substrates. We found that the normalized yellow (YL) photoluminescence peak intensity of the near band edge (NBE), I YL/I NBE, is strongly related to the acceptor concentration N A of the n--drift layer. This means that the N D - N A of the n--drift layer can be inspected by photoluminescence measurement at a high speed, when Si concentration is not varying across the GaN wafers. Noncontact capacitance-voltage and secondary ion mass spectrometry measurements were used to investigate the cause of N D - N A variation across the GaN wafers. The discrepancy between C and N A indicates that compensation could be due to another electron trap.

  6. Effect of Au8+ irradiation on Ni/n-GaP Schottky diode: Its influence on interface state density and relaxation time

    NASA Astrophysics Data System (ADS)

    Shiwakoti, N.; Bobby, A.; Asokan, K.; Antony, Bobby

    2017-01-01

    The in-situ capacitance-frequency and conductance-frequency measurements of 100 MeV Au8+ swift heavy ion irradiated Ni/n-GaP Schottky structure at a constant bias voltage have been carried out in the frequency range 1 kHz-1 MHz at room temperature. The interface states density and the relaxation time of the charge carriers have been calculated from Nicollian and Brews method. Various dielectric parameters such as dielectric constant, dielectric loss, loss tangent, series resistance, ac conductivity, real and imaginary parts of electric modulus have been extracted and analyzed under complex permittivity and complex electric modulus formalisms. The capacitance and conductance characteristics are found to exhibit complex behaviors at lower frequency region (1-20 kHz) for all the samples. The observed peaks and dips at low frequency region are attributed to the relaxation mechanisms of charge carriers and the interface or dipolar polarization at the interface. The dielectric properties are found to be effectively changed by the ion fluence which is attributed to the variation in interface states density and their relaxation time.

  7. Electrically pumped random lasing based on an Au-ZnO nanowire Schottky junction.

    PubMed

    Gao, Fan; Morshed, Muhammad M; Bashar, Sunayna B; Zheng, Youdou; Shi, Yi; Liu, Jianlin

    2015-06-07

    Electrically pumped random lasing based on an Au-ZnO nanowire Schottky junction diode is demonstrated. The device exhibits typical Schottky diode current-voltage characteristics with a turn-on voltage of 0.7 V. Electroluminescence characterization shows good random lasing behavior and the output power is about 67 nW at a drive current of 100 mA. Excitonic recombination is responsible for lasing generation. Zn plasma is only observed under high applied bias, which can be distinguished from the random lasing spectral features near 380 nm. The laser diode based on the Schottky junction provides an alternative approach towards semiconductor random lasers.

  8. Fabrication of Ni/Ti/Al Schottky contact to n-type 4H-SiC under various annealing conditions

    NASA Astrophysics Data System (ADS)

    Yousuf Zaman, M.; Ferrero, S.; Perrone, D.; Scaltrito, L.; Shahzad, N.; Pugliese, D.

    2013-06-01

    Forward I-V characteristics of a silicon carbide Schottky diode, with triple layer metallization Ni/Ti/Al as Schottky contact, are presented. Effects of different annealing conditions on the Schottky barrier height and ideality factor are discussed. The diodes were annealed in inert Ar atmosphere for 30 minutes at temperatures ranging from 600 °C to 800 °C. The ideality factors of the four diodes, chosen out of 20 diodes, range from 1.02 to 1.13 and the Schottky barrier heights range from 1.47 eV to 3.17 eV.

  9. Measuring Schottky barrier height at graphene/SiC junction

    NASA Astrophysics Data System (ADS)

    Tomer, D.; Hudy, L.; Rajput, S.; Li, L.

    2014-03-01

    When graphene is interfaced with a semiconductor, a Schottky junction forms with rectifying properties. In this work, we measured the Schottky barrier heights of graphene/SiC Schottky diodes using current-voltage (I-V) measurement. Chemical vapor deposited graphene was transferred onto semiconductor surfaces of opposite polarization: the hydrogen-terminated Si- and C-faces of α-SiC, which was confirmed by Raman spectroscopy and scanning tunneling microscopy. The Schottky barrier height is found to be sensitive to the polarization of the substrate and surface preparation. On the Si-face, a barrier of 0.47 eV is found. These results will be compared with earlier work as well as our in situ scanning tunneling spectroscopy results. Supported by DOE (DE-FG02-07ER46228).

  10. Fluorine plasma treatment induced deep level traps and their effect on current transportation in Al0.83In0.17N/AlN/GaN Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Xiang, Yong; Yu, Tongjun; Ji, Cheng; Cheng, Yutian; Yang, Xuelin; Kang, Xiangning; Shen, Bo; Zhang, Guoyi

    2016-08-01

    The deep level traps and the electrical properties of fluorine plasma treated (F-treated) and non-treated Al0.83In0.17N/AlN/GaN Schottky barrier diodes (SBDs) were investigated by the temperature-dependent current-voltage (I-V) and deep level transient spectroscopy (DLTS) measurements. Three deep level traps were detected in the SBD after F-treatment at ~E c  -  0.17 eV, ~E c  -  0.27 eV and ~E c  -  1.14 eV. One of the deep level traps at ~E c  -  1.14 eV is mainly located in the Al0.83In0.17N barrier layer with a captured cross section (σ) of ~6.50  ×  10-18 cm2. This F-related deep level trap has 3-4 orders of magnitude of the larger σ and ~0.46 eV greater active energy than that of the dislocation-related one at ~E c  -  0.68 eV with σ of ~1.92  ×  10-21 cm2. Meanwhile, the leakage current of F-treated SBD at  -5 V is reduced by ~2 orders of magnitude compared with that of the non-treated one. This leakage current reduction is mainly attributed to the increase of the Poole-Frenkel emission barrier height from ~0.09 eV in non-treated SBD to ~0.46 eV in the F-treated one. It is believed that the main reverse current transportation is the Poole-Frenkel emission from the F-related deep level trap states into the continuum states of the dislocations in F-treated Al0.83In0.17N/AlN/GaN SBD.

  11. Varactor diodes for millimeter and submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Rizzi, Brian J.; Hesler, Jeffrey L.; Dossal, Hasan; Crowe, Thomas W.

    1992-01-01

    Whisker-contacted GaAs Schottky barrier varactor diodes are the most common high-frequency multiplier element in use today. They are inherently simple devices that have very high frequency response and have been used to supply local oscillator power for Schottky heterodyne receivers to frequencies approaching 700 GHz. This paper discusses the development of improved varactor diode technology for space based applications at millimeter and submillimeter wavelengths.

  12. Bypass diode integration

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    Protective bypass diodes and mounting configurations which are applicable for use with photovoltaic modules having power dissipation requirements in the 5 to 50 watt range were investigated. Using PN silicon and Schottky diode characterization data on packaged diodes and diode chips, typical diodes were selected as representative for each range of current carrying capacity, an appropriate heat dissipating mounting concept along with its environmental enclosure was defined, and a thermal analysis relating junction temperature as a function of power dissipation was performed. In addition, the heat dissipating mounting device dimensions were varied to determine the effect on junction temperature. The results of the analysis are presented as a set of curves indicating junction temperature as a function of power dissipation for each diode package.

  13. Silicon Schottky Diode Safe Operating Area

    NASA Technical Reports Server (NTRS)

    Casey, Megan C.; Campola, Michael J.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Phan, Anthony M.; LaBel, Kenneth A.

    2016-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  14. Avalanche Characteristics of Silicide Schottky Barrier Diodes

    DTIC Science & Technology

    1988-01-01

    Professional Development Air Force Institute of Technology Wright-Patterson AFB OH 45433-653 19. KEY WORDS (Continue on reverse side It necessary and identify...time at the Center productive and enjoyable. I am grateful to Doctor Andy Yang and the Rome Air Development Center’s Electronic Device Technology...ref. 27) . 10 4. Signal-to-noise power increase as a function of multiplication ........... 13 5. Boundary conditions and electric field direction

  15. Schottky barrier heights of Hg, Cd, and Zn on n-type InP(100)

    NASA Astrophysics Data System (ADS)

    Sa, C. J.; Meiners, L. G.

    1986-06-01

    The electrical properties of Schottky barrier heights of Hg, Cd, and Zn on chemically cleaned n-type InP(100) are examined. The fabrication of Hg/InP, Cd/InP, and Zn/InP diodes is described; Hg/InP diodes were formed using a mercury probe, and Cd/InP and Zn/InP diodes were fabricated by electroplating techniques. Dark forward bias current-voltage and dark reverse bias capacitance voltage were measured to characterized the Schottky diodes. The effects of oxide interfacial layers and deposited metal diffusion into the InP on the Schottky barrier heights are analyzed. The barrier heights are calculated as 0.92 eV for the Hg/n-InP, 0.62 eV for the Cd/n-InP, and 0.43 eV for the Zn/n-Inp.

  16. Schottky barrier formation and band bending revealed by first- principles calculations.

    PubMed

    Jiao, Yang; Hellman, Anders; Fang, Yurui; Gao, Shiwu; Käll, Mikael

    2015-06-12

    The formation of a Schottky barrier at the metal-semiconductor interface is widely utilised in semiconductor devices. With the emerging of novel Schottky barrier based nanoelectronics, a further microscopic understanding of this interface is in high demand. Here we provide an atomistic insight into potential barrier formation and band bending by ab initio simulations and model analysis of a prototype Schottky diode, i.e., niobium doped rutile titania in contact with gold (Au/Nb:TiO2). The local Schottky barrier height is found to vary between 0 and 1.26 eV depending on the position of the dopant. The band bending is caused by a dopant induced dipole field between the interface and the dopant site, whereas the pristine Au/TiO2 interface does not show any band bending. These findings open the possibility for atomic scale optimisation of the Schottky barrier and light harvesting in metal-semiconductor nanostructures.

  17. Schottky barrier formation and band bending revealed by first- principles calculations

    PubMed Central

    Jiao, Yang; Hellman, Anders; Fang, Yurui; Gao, Shiwu; Käll, Mikael

    2015-01-01

    The formation of a Schottky barrier at the metal-semiconductor interface is widely utilised in semiconductor devices. With the emerging of novel Schottky barrier based nanoelectronics, a further microscopic understanding of this interface is in high demand. Here we provide an atomistic insight into potential barrier formation and band bending by ab initio simulations and model analysis of a prototype Schottky diode, i.e., niobium doped rutile titania in contact with gold (Au/Nb:TiO2). The local Schottky barrier height is found to vary between 0 and 1.26 eV depending on the position of the dopant. The band bending is caused by a dopant induced dipole field between the interface and the dopant site, whereas the pristine Au/TiO2 interface does not show any band bending. These findings open the possibility for atomic scale optimisation of the Schottky barrier and light harvesting in metal-semiconductor nanostructures. PMID:26065401

  18. Gas Sensing Diode Comprising SiC

    NASA Technical Reports Server (NTRS)

    Hunter, Gary William (Inventor)

    2001-01-01

    A diode for sensing hydrogen and hydrocarbons and the process for manufacturing the diode are disclosed. The diode is a Schottky diode which has a palladium chrome contact on the C-face of an n-type 6H Silicon carbide epilayer. The epilayer is grown on the C-face of a 6H silicon carbide substrate. The diode is capable of measuring low concentrations of hydrogen and hydrocarbons at high temperatures, for example, 800 degrees C. The diode is both sensitive and stable at elevated temperatures.

  19. Destructive Single-Event Effects in Diodes

    NASA Technical Reports Server (NTRS)

    Casey, Megan C.; Lauenstein, Jean-Marie; Campola, Michael J.; Wilcox, Edward P.; Phan, Anthony M.; Label, Kenneth A.

    2017-01-01

    In this work, we discuss the observed single-event effects in a variety of types of diodes. In addition, we conduct failure analysis on several Schottky diodes that were heavy-ion irradiated. High- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images are used to identify and describe the failure locations.

  20. Theoretical Efficiencies of Microwave Diode Triplers

    NASA Technical Reports Server (NTRS)

    Frerking, M. A.; Benson, K.

    1987-01-01

    Report discusses computer simulations of 300- to 900-GHz triplers using nonideal GaAs Schottky diodes operating in varistor mode. Nonlinear boundary-value problem posed by diode state equations not solved in closed form. Consequently, such computer simulations needed to optimize tripler configuration and operating conditions.

  1. Plasma effects in lateral Schottky junction tunneling transit-time terahertz oscillator

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Satou, A.; Khmyrova, I.; Ryzhii, M.; Otsuji, T.; Mitin, V.; Shur, M. S.

    2006-05-01

    We study the plasma oscillations in a two-dimensional electron channel with a reverse-biased Schottky junction. Using the developed model we show that the negative dynamic conductivity of the Schottky junction associated with the tunneling injection and electrontransit- time effect can result in the self-excitation of plasma oscillations (plasma instability) in the quasineutral portion of the channel serving as a resonant cavity. The spectrum of plasma oscillations and the conditions of their self-excitations are expressed via the structure parameters. The instability can be used in a novel diode device - lateral Schottky junction tunneling transit-time terahertz oscillator.

  2. Low frequency noise behavior in a-Si:H Schottky barrier devices

    SciTech Connect

    Aflatooni, K.; Nathan, A.; Hornsey, R.

    1996-12-31

    The authors present a systematic experimental study of low frequency noise behavior in Mo/a-Si:H Schottky diodes under reverse bias operation. The noise in the Schottky diode was found to increase with increasing reverse current and with an approximate 1/f behavior at low bias voltages, yielding a Hooge parameter in the range (2 to 3) {times} 10{sup {minus}4}. At high reverse voltages, due to electrical stressing and hence, bias-induced material instability, a significant deviation from the 1/f behavior was observed.

  3. Schottky barrier parameters and structural properties of rapidly annealed Zr Schottky electrode on p-type GaN

    NASA Astrophysics Data System (ADS)

    Rajagopal Reddy, V.; Asha, B.; Choi, Chel-Jong

    2017-06-01

    The Schottky barrier junction parameters and structural properties of Zr/p-GaN Schottky diode are explored at various annealing temperatures. Experimental analysis showed that the barrier height (BH) of the Zr/p-GaN Schottky diode increases with annealing at 400 °C (0.92 eV (I-V)/1.09 eV (C-V)) compared to the as-deposited one (0.83 eV (I-V)/0.93 eV (C-V)). However, the BH decreases after annealing at 500 °C. Also, at different annealing temperatures, the series resistance and BH are assessed by Cheung's functions and their values compared. Further, the interface state density (N SS) of the diode decreases after annealing at 400 °C and then somewhat rises upon annealing at 500 °C. Analysis reveals that the maximum BH is obtained at 400 °C, and thus the optimum annealing temperature is 400 °C for the diode. The XPS and XRD analysis revealed that the increase in BH may be attributed to the creation of Zr-N phases with increasing annealing up to 400 °C. The BH reduces for the diode annealed at 500 °C, which may be due to the formation of Ga-Zr phases at the junction. The AFM measurements reveal that the overall surface roughness of the Zr film is quite smooth during rapid annealing process. Project supported by the R&D Program for Industrial Core Technology (No. 10045216) and the Transfer Machine Specialized Lighting Core Technology Development Professional Manpower Training Project (No. N0001363) Funded by the Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea.

  4. A user oriented computer program for the analysis of microwave mixers, and a study of the effects of the series inductance and diode capacitance on the performance of some simple mixers

    NASA Technical Reports Server (NTRS)

    Siegel, P. H.; Kerr, A. R.

    1979-01-01

    A user oriented computer program for analyzing microwave and millimeter wave mixers with a single Schottky barrier diode of known I-V and C-V characteristics is described. The program first performs a nonlinear analysis to determine the diode conductance and capacitance waveforms produced by the local oscillator. A small signal linear analysis is then used to find the conversion loss, port impedances, and input noise temperature of the mixer. Thermal noise from the series resistance of the diode and shot noise from the periodically pumped current in the diode conductance are considered. The effects of the series inductance and diode capacitance on the performance of some simple mixer circuits using a conventional Schottky diode, a Schottky diode in which there is no capacitance variation, and a Mott diode are studied. It is shown that the parametric effects of the voltage dependent capacitance of a conventional Schottky diode may be either detrimental or beneficial depending on the diode and circuit parameters.

  5. Equivalent circuit model of semiconductor nanowire diode by SPICE.

    PubMed

    Lee, SeHan; Yu, YunSeop; Hwang, SungWoo; Ahn, Doyeol

    2007-11-01

    An equivalent circuit model of nanowire diodes is introduced. Because nanowire diodes inevitably involve a metal-semiconductor-metal structure, they consist of two metal-semiconductor contacts and one resistor in between these contacts. Our equivalent circuit consists of two Schottky diodes and one resistor. The current through the reverse-biased Schottky diode is calculated from the thermionic field emission (TFE) theory and that of the forward-biased Schottky diode is obtained from the classical thermionic emission (TE) equation. Our model is integrated into the conventional circuit simulator SPICE by a sub-circuit with TFE and TE routines. The results simulated with our model by SPICE are in good agreement with various, previously reported experimental results.

  6. A collection of Schottky-scan notes

    SciTech Connect

    Sabersky, A.P.

    1980-10-01

    This paper is a republication of ISR-RF notes and performance reports on work done in 1974-1975. The original notes have been edited, corrected and, in most cases, shortened. Discussed in this note are the following topics: noise, errors and the Schottky scan; speeding up the Schottky scan; Schottky markers and fast Schottky scans; and some engineering aspects of the fast Schottky scan.

  7. Schottky barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M. (Inventor)

    1981-01-01

    A method of fabricating a Schottky barrier solar cell is described. The cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalling germanium is deposited on the substrate after a passivation layer is deposited to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes to serve as a base layer on which a thin layer of gallium arsenide is vapor-epitaxilly grown followed by a thermally-grown oxide layer. A metal layer is deposited on the oxide layer and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer.

  8. Oxidation of hydrogen on palladium: Chemicurrents in the Schottky nanodiode

    NASA Astrophysics Data System (ADS)

    Grankin, D. V.; Styrov, V. V.; Simchenko, S. V.; Grankin, V. P.; Gural'nik, O. A.

    2017-02-01

    The oxidation of hydrogen on palladium was studied by the chemicurrents method using the nanosized catalytic Pd/ n-Si Schottky diode. The chemicurrent was found to be generated when the reactions H2+O2 and H + O + H2 + O2 occurred on the palladium surface, occasionally in the auto-oscillation mode. A model was created that describes the complex kinetic behavior of the reaction. Mathematical modeling was performed and showed the possibility of complex auto-oscillations of chemicurrent similar to those obtained in experiments. The catalytic Schottky nanodiode method was shown to be effective for reaction visualization and can be used as a new physical method for investigating the chemical processes on the catalyst surface.

  9. Mott-barrier diodes based on epitaxially grown n-GaAs films

    NASA Astrophysics Data System (ADS)

    Averin, S. V.; Azakian, E. A.; Guliaev, Iu. V.; Dmitriev, M. D.; Liubchenko, V. E.; Petrenko, I. V.; Sveshnikov, Iu. N.

    The fabrication and properties of epitaxially grown n-GaAs film Mott-barrier diodes are examined. The doping profile of a film grown via gas-phase epitaxy is presented, and the volt-farad characteristics of Schottky and Mott diodes are compared. An investigation of frequency conversion shows that the optimal heterodyne power for the Mott diode is significantly lower than that for the Schottky diode, which makes it possible to reduce the mixer noise temperature. It is noted that Mott-barrier diodes are particularly suitable for the submillimeter range.

  10. Schottky barrier and homojunction gallium arsenide solar cells

    NASA Astrophysics Data System (ADS)

    Edweeb, M. E.

    1983-02-01

    New techniques were developed to construct Schottky barrier and homojunction solar cells on GaAs substrates. Schottky barrier metal semiconductor solar cells were produced for the first time on p-type GaAs substrate using a sputter deposition method to form the barrier. The sputter deposition of gold or gold/palladium is the key to the method since normal thermal evaporation of gold onto p-type GaAs produces ohmic contacts. The results of this investigation are consistent with the idea that sputter damage produces donor type surface states on GaAs. Barrier heights were measured for both p-type sputtered and n-type thermally evaporated diodes using current voltage and capacitance voltage methods. Deep level transient spectroscopy was used to identify the trap center concentration and energy levels for both diodes in an effort to explain the relatively dark current in the p-type sputtered diodes. Homojunction GaAs solar cells were fabricated using several techniques.

  11. Spectrally dependent photovoltages in Schottky photodiode based on (100) B-doped diamond

    SciTech Connect

    Čermák, Jan Rezek, Bohuslav; Koide, Yasuo; Takeuchi, Daisuke

    2014-02-07

    Spectrally and spatially resolved photovoltages were measured by Kelvin probe force microscopy (KPFM) on a Schottky photo-diode made of a 4 nm thin tungsten-carbide (WC) layer on a 500 nm oxygen-terminated boron-doped diamond epitaxial layer (O-BDD) that was grown on a Ib (100) diamond substrate. The diode was grounded by the sideways ohmic contact (Ti/WC), and the semitransparent Schottky contact was let unconnected. The electrical potentials across the device were measured in dark (only 650 nm LED of KPFM being on), under broad-band white light (halogen lamp), UV (365 nm diode), and deep ultraviolet (deuterium lamp) illumination. Illumination induced shift of the electrical potential remains within 210 mV. We propose that the photovoltage actually corresponds to a shift of Fermi level inside the BDD channel and thereby explains orders of magnitude changes in photocurrent.

  12. Spectrally dependent photovoltages in Schottky photodiode based on (100) B-doped diamond

    NASA Astrophysics Data System (ADS)

    Čermák, Jan; Koide, Yasuo; Takeuchi, Daisuke; Rezek, Bohuslav

    2014-02-01

    Spectrally and spatially resolved photovoltages were measured by Kelvin probe force microscopy (KPFM) on a Schottky photo-diode made of a 4 nm thin tungsten-carbide (WC) layer on a 500 nm oxygen-terminated boron-doped diamond epitaxial layer (O-BDD) that was grown on a Ib (100) diamond substrate. The diode was grounded by the sideways ohmic contact (Ti/WC), and the semitransparent Schottky contact was let unconnected. The electrical potentials across the device were measured in dark (only 650 nm LED of KPFM being on), under broad-band white light (halogen lamp), UV (365 nm diode), and deep ultraviolet (deuterium lamp) illumination. Illumination induced shift of the electrical potential remains within 210 mV. We propose that the photovoltage actually corresponds to a shift of Fermi level inside the BDD channel and thereby explains orders of magnitude changes in photocurrent.

  13. A wide-band 760-GHz planar integrated Schottky receiver

    NASA Technical Reports Server (NTRS)

    Gearhart, Steven S.; Hesler, Jeffrey; Bishop, William L.; Crowe, Thomas W.; Rebeiz, Gabriel M.

    1993-01-01

    A wideband planar integrated heterodyne receiver has been developed for use at submillimeter-wave to FIR frequencies. The receiver consists of a log-periodic antenna integrated with a planar 0.8-micron GaAs Schottky diode. The monolithic receiver is placed on a silicon lens and has a measured room temperature double side-band conversion loss and noise temperature of 14.9 +/- 1.0 dB and 8900 +/- 500 K, respectively, at 761 GHz. These results represent the best performance to date for room temperature integrated receivers at this frequency.

  14. CORRIGENDUM: The formation and characterization of electrical contacts (Schottky and Ohmic) on gallium nitride nanowires

    NASA Astrophysics Data System (ADS)

    Hwang, Chanoh; Hyung, Jung-Hwan; Lee, Seung-Yong; Jang, Chan-Oh; Kim, Tae-Hong; Choi, Pyung; Lee, Sang-Kwon

    2008-08-01

    The authors acknowledge that the content of this paper is closely related to that of a previous publication, by two of the same authors, which was not cited in their later publication. They agree that their statement '... little work has been reported on nanoscale Ohmic and Schottky contacts to 1D semiconductor nanowires [12, 14]' should also have included the following citation to the work that they had themselves reported: Seung-Yong Lee and Sang-Kwon Lee Current transport mechanism in a metal-GaN nanowire Schottky diode 2008 Nanotechnology 18 495701

  15. Consideration of velocity saturation in the design of GaAs varactor diodes

    NASA Technical Reports Server (NTRS)

    Crowe, Thomas W.; Peatman, William C. B.; Zimmermann, Ruediger; Zimmermann, Ralph

    1993-01-01

    The design of GaAs Schottky barrier varactor diodes is reconsidered in light of the recent discovery of velocity saturation effects in these devices. Experimental data is presented which confirms that improved multiplier performance can be achieved.

  16. Millimeter and Submillimeter-Wave Integrated Horn Antenna Schottky Receivers.

    NASA Astrophysics Data System (ADS)

    Ali-Ahmad, Walid Youssef

    1993-01-01

    Fundamental Schottky-diode mixers are currently used in most millimeter-wave receivers above 100GHz. The mixers use either a whisker-contacted diode or a planar Schottky diode suspended in a machined waveguide with an appropriate RF matching network. However, waveguide mounts are very expensive to machine for frequencies above 200GHz. Also, the whisker-contacted structure is not compatible with integrated mixers which represent the leading technology used for millimeter- and submillimeter-wave applications such as plasma diagnostics imaging arrays, radiometers, and anti-collision radars. In this work, a novel quasi-integrated horn antenna has been used for the receiver antenna. This antenna has a high gain and a high Gaussian coupling efficiency (97%), similar to machined scalar feed horns, but with the advantage of being easily fabricated up to at least 1.5THz. The quasi-integrated horn antenna is based on the integrated horn antenna structure. The integrated horn antenna consists of a pyramidal cavity with a 70^circ flare angle etched anisotropically in silicon. The cavity focuses the incoming energy on dipole-probe suspended on a membrane inside the horn. The integrated horn antenna does not suffer from dielectric losses or substrate mode losses since the feeding dipole antenna is integrated on a very thin dielectric layer. The mixer circuit, along with the feed dipole, are both integrated on the membrane wafer. The mixer diode is the University of Virginia surface channel planar diode which has a low parasitic capacitance. The diode is epoxied directly at the dipole apex without the need for an RF matching network, and with no mixer tuning required. At 92GHz,the DSB antenna-mixer conversion loss and noise temperature are 5.5dB and 770K, respectively. This represents the best reported results to this date for a quasi-optical mixer with a planar diode, at room temperature. At 335GHz, the DSB antenna-mixer noise temperature is 1750K and it is within 1dB of the

  17. Energy harvesting efficiency in GaN nanowire-based nanogenerators: the critical influence of the Schottky nanocontact.

    PubMed

    Jamond, Nicolas; Chrétien, Pascal; Gatilova, Lina; Galopin, Elisabeth; Travers, Laurent; Harmand, Jean-Christophe; Glas, Frank; Houzé, Frédéric; Gogneau, Noëlle

    2017-03-30

    The performances of 1D-nanostructure based nanogenerators are governed by the ability of nanostructures to efficiently convert mechanical deformation into electrical energy, and by the efficiency with which this piezo-generated energy is harvested. In this paper, we highlight the crucial influence of the GaN nanowire-metal Schottky nanocontact on the energy harvesting efficiency. Three different metals, p-type doped diamond, PtSi and Pt/Ir, have been investigated. By using an atomic force microscope equipped with a Resiscope module, we demonstrate that the harvesting of piezo-generated energy is up to 2.4 times more efficient using a platinum-based Schottky nanocontact compared to a doped diamond-based nanocontact. In light of Schottky contact characteristics, we evidence that the conventional description of the Schottky diode cannot be applied. The contact is governed by its nanometer size. This specific behaviour induces notably a lowering of the Schottky barrier height, which gives rise to an enhanced conduction. We especially demonstrate that this effective thinning is directly correlated with the improvement of the energy harvesting efficiency, which is much pronounced for Pt-based Schottky diodes. These results constitute a building block to the overall improvement of NW-based nanogenerator devices.

  18. Planar GaAs diodes for THz frequency mixing applications

    NASA Technical Reports Server (NTRS)

    Bishop, William L.; Crowe, Thomas W.; Mattauch, Robert J.; Dossal, Hasan

    1992-01-01

    Schottky barrier diodes for terahertz applications are typically fabricated as a micron to sub-micron circular anode metallization on GaAs which is contacted with a sharp wire (whisker). This structure has the benefits of the simplicity of the fabrication of the diode chip, the minimal shunt capacitance of the whisker contact and the ability of the whisker wire to couple energy to the diode. However, whisker-contacted diodes are costly to assembly and difficult to qualify for space applications. Also, complex receiver systems which require many diodes are difficult to assemble. The objective of this paper is to discuss the advantages of planar Schottky diodes for high frequency receiver applications and to summarize the problems of advancing the planar technology to the terahertz frequency range. Section 2 will discuss the structure, fabrication and performance of state-of-the-art planar Schottky diodes. In Section 3 the problems of designing and fabricating planar diodes for terahertz frequency operation are discussed along with a number of viable solutions. Section 4 summarizes the need for further research and cooperation between diode designers and RF engineers.

  19. Plastic Schottky barrier solar cells

    DOEpatents

    Waldrop, James R.; Cohen, Marshall J.

    1984-01-24

    A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

  20. Effect of cooling on the efficiency of Schottky varactor frequency multipliers at millimeter waves

    NASA Technical Reports Server (NTRS)

    Louhi, Jyrki; Raiesanen, Antti; Erickson, Neal

    1992-01-01

    The efficiency of the Schottky diode multiplier can be increased by cooling the diode to 77 K. The main reason for better efficiency is the increased mobility of the free carriers. Because of that the series resistance decreases and a few dB higher efficiency can be expected at low input power levels. At high output frequencies and at high power levels, the current saturation decreases the efficiency of the multiplication. When the diode is cooled the maximum current of the diode increases and much more output power can be expected. There are also slight changes in the I-V characteristic and in the diode junction capacitance, but they have a negligible effect on the efficiency of the multiplier.

  1. Leakage currents in 4H-SiC JBS diodes

    SciTech Connect

    Ivanov, P. A. Grekhov, I. V.; Potapov, A. S.; Kon'kov, O. I.; Il'inskaya, N. D.; Samsonova, T. P.; Korol'kov, O.; Sleptsuk, N.

    2012-03-15

    Leakage currents in high-voltage 4H-SiC diodes, which have an integrated (p-n) Schottky structure (Junction Barrier Schottky, JBS), have been studied using commercial diodes and specially fabricated (based on a commercial epitaxial material) test Schottky diodes with and without the JBS structure. It is shown that (i) the main role in reverse charge transport is played by SiC crystal structure defects, most probably, by threading dislocations (density {approx}10{sup 4} cm{sup -2}), and (ii) the JBS structure, formed by the implantation of boron, partially suppresses the leakage currents (by up to a factor of 10 at optimal separation, 8 {mu}m between local p-type regions).

  2. Fabrication and characterization of graphene/AlGaN/GaN ultraviolet Schottky photodetector

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Jeong, H.; Polat, K.; Okyay, A. K.; Lee, D.

    2016-07-01

    We report on the fabrication and characterization of a Schottky ultraviolet graphene/AlGaN/GaN photodetector (PD). The fabricated device clearly exhibits rectification behaviour, indicating that the Schottky barrier is formed between the AlGaN and the mechanically transferred graphene. The Schottky parameters are evaluated using an equivalent circuit with two diodes connected back-to-back in series. The PD shows a low dark current of 4.77  ×  10-12 A at a bias voltage of  -2.5 V. The room temperature current-voltage (I-V) measurements of the graphene/AlGaN/GaN Schottky PD exhibit a large photo-to-dark contrast ratio of more than four orders of magnitude. Furthermore, the device shows peak responsivity at a wavelength of 350 nm, corresponding to GaN band edge and a small hump at 300 nm associated to the AlGaN band edge. In addition, we examine the behaviour of Schottky PDs with responsivities of 0.56 and 0.079 A W-1 at 300 and 350 nm, respectively, at room temperature.

  3. Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Vali, Indudhar Panduranga; Shetty, Pramoda Kumara; Mahesha, M. G.; Petwal, V. C.; Dwivedi, Jishnu; Choudhary, R. J.

    2017-06-01

    The effect of electron beam irradiation (EBI) on Al/n-Si Schottky diode has been studied by I-V characterization at room temperature. The behavior of the metal-semiconductor (MS) interface is analyzed by means of variations in the MS contact parameters such as, Schottky barrier height (ΦB), ideality factor (n) and series resistance (Rs). These parameters were found to depend on the EBI dose having a fixed incident beam of energy 7.5 MeV. At different doses (500, 1000, 1500 kGy) of EBI, the Schottky contacts were prepared and extracted their contact parameters by applying thermionic emission and Cheung models. Remarkably, the tuning of ΦB was observed as a function of EBI dose. The improved n with increased ΦB is seen for all the EBI doses. As a consequence of which the thermionic emission is more favored. However, the competing transport mechanisms such as space charge limited emission, tunneling and tunneling through the trap states were ascribed due to n > 1. The analysis of XPS spectra have shown the presence of native oxide and increased radiation induced defect states. The thickness variation in the MS interface contributing to Schottky contact behavior is discussed. This study explains a new technique to tune Schottky contact parameters by metal deposition on the electron beam irradiated n-Si wafers.

  4. A 2 Thz Schottky Solid-State Heterodyne Receiver for Atmospheric Studies

    NASA Technical Reports Server (NTRS)

    Treuttel, Jeanne; Schlecht, Erich; Siles, Jose; Lee, Choonsup; Lin, Robert; Thomas, Bertrand; Gonzalez-Olvero, David; Yee, Jeng-Hwa; Wu, Dong; Mehdi, Imran

    2016-01-01

    Obtaining temperature, pressure, and composition profiles along with wind velocities in the Earth's thermosphere/ionosphere system is a key NASA goal for understanding our planet. We report on the status of a technology development effort to build an all-solid-state heterodyne receiver at 2.06 terahertz that will allow the measurement of the 2.06 terahertz [OI] line for altitudes greater than 100 kilometers. The receiver front end features low-parasitic Schottky diode mixer chips that are driven by a local oscillator (LO) source using Schottky diode based multipliers. The multiplier chain consists of a 38 gigahertz oscillator followed by a set of three cascaded triplers at 114 gigahertz, 343 gigahertz and 1.03 terahertz.

  5. Silicon Carbide Diodes Characterization at High Temperature and Comparison With Silicon Devices

    NASA Technical Reports Server (NTRS)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry D., Jr.

    2004-01-01

    Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers rated at 200, 300, 600, and 1200 V, were electrically tested and characterized as a function of temperature up to 300 C. Electrical tests included both steady state and dynamic tests. Steady state tests produced forward and reverse I-V characteristic curves. Transient tests evaluated the switching performance of the diodes in either a hard-switched DC to DC buck converter or a half-bridge boost converter. For evaluation and comparison purposes, the same tests were performed with current state-of-the-art ultra fast silicon (Si) pn-junction diodes of similar ratings and also a Si Schottky diode. The comparisons made were forward voltage drop at rated current, reverse current at rated voltage, and turn-off peak reverse recovery current and reverse recovery time. In addition, efficiency measurements were taken for the buck DC to DC converter using both the SiC Schottky diodes and the Si pn-junction diodes at different temperatures and frequencies. The test results showed that at high temperature, the forward voltage drop for SiC Schottky diodes is higher than the forward drop of the ultra fast Si pn-junction diodes. As the temperature increased, the forward voltage drop of the SiC Schottky increased while for the ultra fast Si pn-junction diodes, the forward voltage drop decreased as temperature increased. For the elevated temperature steady state reverse voltage tests, the SiC Schottky diodes showed low leakage current at their rated voltage. Likewise, for the transient tests, the SiC Schottky diodes displayed low reverse recovery currents over the range of temperatures tested. Conversely, the Si pn-junction diodes showed increasing peak reverse current values and reverse recovery times with increasing temperature. Efficiency measurements in the DC to DC buck converter showed the advantage of the SiC Schottky diodes over the ultra fast Si pn-junction diodes, especially at the

  6. Phthalocyanine based Schottky solar cells

    NASA Astrophysics Data System (ADS)

    Kwong, Chung Yin; Djurisic, Aleksandra B.; Lam, Lillian S. M.; Chan, Wai Kin

    2003-02-01

    Phthalocyanine (Pc) materials are commonly used in organic solar cells. Four different phthalocyanines, nickel phthalocyanine (NiPc), copper phthalocyanine (CuPc), iron phthalocyanine (FePc), and cobalt phthalocyanine (CoPc) have been investigated for organic solar cell applications. The devices consisted of indium tin oxide (ITO) coated lass substrate, Pc layer, and aluminum (al) electrode. It has been found that ITO/CuPc/Al Schottky cell exhibits the best performance. To investigate the influence of the active layer thickness on the cell performance, cells with several different thicknesses were fabricated and optimal value was found. Schottky cell exhibits optimal performance with one ohmic and one barrier contact. However, it is suspected that ITO/CuPc contact is not ohmic. Therefore, we have investigated various ITO surface treatments for improving the performance of CuPc based Schottky solar cell. We have found that cell on ITO treated with HCl and UV-ozone exhibits the best performance. AM1 power conversion efficiency can be improved by 30% compared to cell made with untreated ITO substrate. To improve power conversion efficiency, double or multiplayer structure are required, and it is expected that suitable ITO treatments for those devices will further improve their performance by improving the contact between ITO and phthalocyanine layer.

  7. Pulsed Power Switching of 4H-SIC Vertical D-Mosfet and Device Characterization

    DTIC Science & Technology

    2013-06-01

    Lawson and Stephen B. Bayne Texas Tech University, Electrical and Computer Engineering Department, Lubbock, TX 79409, USA Lin Cheng and Anant K...due to a 17% decrease in the on resistance (RdsON) with a gate bias of 20V. V. REFERENCES [1] Lawson, K.; Bayne , S.B., "Transient analysis of...2010 [2] Bayne , S.B.; Ibitayo, D., "Evaluation of SiC GTOs for pulse power switching," Pulsed Power Conference, 2003. Digest of Technical Papers

  8. Toward understanding the electrical properties of metal/semiconductor Schottky contacts: The effects of barrier inhomogeneities and geometry in bulk and nanoscale structures

    NASA Astrophysics Data System (ADS)

    Sarpatwari, Karthik

    The work presented in this thesis comprises of two parts. Part I deals with Schottky contacts to the wide bandgap (WBG) semiconductors SiC, GaN and ZnO. These semiconductors offer great promise for a wide variety of electronic and optoelectronic applications. Schottky barriers to WBG semiconductors are attractive in particular for high temperature/high power diodes, photodetectors, and gas sensors. However, the Schottky barriers exhibit non-ideal behavior, due in part to inhomogeneities originating from immature crystal growth and device processing technologies. Apart from being a versatile electronic component, the Schottky diode is a valuable test structure. The Schottky contact is routinely used to probe substrate and epilayer quality by different electrical characterization techniques. It is well established that the current-voltage-temperature ( I-V-T) characteristics of Schottky contacts are routinely affected by the presence of barrier height inhomogeneities (BHI). Consequently, Schottky diode parameters such as the Schottky barrier height and the Richardson constant extracted using the I-V-T measurements can deviate from their actual values. The effects of BHI on the extracted Schottky barrier height have been studied in the literature. However, the effects of BHI on the Richardson constant have not been thoroughly explored and are the focus of the first part of this thesis. Based on the inhomogeneous Schottky barrier model provided by Tung, a new method for the extraction of the Richardson constant is developed. The new method is applied to the Richardson constant determination of n-type ZnO and GaN. Excellent agreement with the theoretical value is obtained in both cases. The advent of the nanoelectronics era has resulted in the Schottky contact evolving from the relatively simple, planar structure into a more complex structure. Compared to bulk Schottky contacts, the Schottky barrier properties are expected to be widely different at the nanoscale. For

  9. Modelling the inhomogeneous SiC Schottky interface

    NASA Astrophysics Data System (ADS)

    Gammon, P. M.; Pérez-Tomás, A.; Shah, V. A.; Vavasour, O.; Donchev, E.; Pang, J. S.; Myronov, M.; Fisher, C. A.; Jennings, M. R.; Leadley, D. R.; Mawby, P. A.

    2013-12-01

    For the first time, the I-V-T dataset of a Schottky diode has been accurately modelled, parameterised, and fully fit, incorporating the effects of interface inhomogeneity, patch pinch-off and resistance, and ideality factors that are both heavily temperature and voltage dependent. A Ni/SiC Schottky diode is characterised at 2 K intervals from 20 to 320 K, which, at room temperature, displays low ideality factors (n < 1.01) that suggest that these diodes may be homogeneous. However, at cryogenic temperatures, excessively high (n > 8), voltage dependent ideality factors and evidence of the so-called "thermionic field emission effect" within a T0-plot, suggest significant inhomogeneity. Two models are used, each derived from Tung's original interactive parallel conduction treatment of barrier height inhomogeneity that can reproduce these commonly seen effects in single temperature I-V traces. The first model incorporates patch pinch-off effects and produces accurate and reliable fits above around 150 K, and at current densities lower than 10-5 A cm-2. Outside this region, we show that resistive effects within a given patch are responsible for the excessive ideality factors, and a second simplified model incorporating these resistive effects as well as pinch-off accurately reproduces the entire temperature range. Analysis of these fitting parameters reduces confidence in those fits above 230 K, and questions are raised about the physical interpretation of the fitting parameters. Despite this, both methods used are shown to be useful tools for accurately reproducing I-V-T data over a large temperature range.

  10. Characterization of vertical Au/β-Ga2O3 single-crystal Schottky photodiodes with MBE-grown high-resistivity epitaxial layer

    NASA Astrophysics Data System (ADS)

    X, Z. Liu; C, Yue; C, T. Xia; W, L. Zhang

    2016-01-01

    High-resistivity β-Ga2O3 thin films were grown on Si-doped n-type conductive β-Ga2O3 single crystals by molecular beam epitaxy (MBE). Vertical-type Schottky diodes were fabricated, and the electrical properties of the Schottky diodes were studied in this letter. The ideality factor and the series resistance of the Schottky diodes were estimated to be about 1.4 and 4.6× 106 Ω. The ionized donor concentration and the spreading voltage in the Schottky diodes region are about 4 × 1018 cm-3 and 7.6 V, respectively. The ultra-violet (UV) photo-sensitivity of the Schottky diodes was demonstrated by a low-pressure mercury lamp illumination. A photoresponsivity of 1.8 A/W and an external quantum efficiency of 8.7 × 102% were observed at forward bias voltage of 3.8 V, the proper driving voltage of read-out integrated circuit for UV camera. The gain of the Schottky diode was attributed to the existence of a potential barrier in the i-n junction between the MBE-grown highly resistive β-Ga2O3 thin films and the n-type conductive β-Ga2O3 single-crystal substrate. Project supported by the National Nature Science Foundation of China (Grant No. 61223002) the Science and Technology Commission of Shanghai Municipality, China (Grant No. 13111103700), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2012018530003).

  11. Mo1-xWxSe2-Based Schottky Junction Photovoltaic Cells.

    PubMed

    Yi, Sum-Gyun; Kim, Sung Hyun; Park, Sungjin; Oh, Donggun; Choi, Hwan Young; Lee, Nara; Choi, Young Jai; Yoo, Kyung-Hwa

    2016-12-14

    We developed Schottky junction photovoltaic cells based on multilayer Mo1-xWxSe2 with x = 0, 0.5, and 1. To generate built-in potentials, Pd and Al were used as the source and drain electrodes in a lateral structure, and Pd and graphene were used as the bottom and top electrodes in a vertical structure. These devices exhibited gate-tunable diode-like current rectification and photovoltaic responses. Mo0.5W0.5Se2 Schottky diodes with Pd and Al electrodes exhibited higher photovoltaic efficiency than MoSe2 and WSe2 devices with Pd and Al electrodes, likely because of the greater adjusted band alignment in Mo0.5W0.5Se2 devices. Furthermore, we showed that Mo0.5W0.5Se2-based vertical Schottky diodes yield a power conversion efficiency of ∼16% under 532 nm light and ∼13% under a standard air mass 1.5 spectrum, demonstrating their remarkable potential for photovoltaic applications.

  12. X-Ray Photoelectron Spectroscopy Study of the Heating Effects on Pd/6H-SiC Schottky Structure

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    X-ray photoelectron spectroscopy is used to study the effects of heat treatment on the Pd/6H-SiC Schottky diode structure. After heating the structure at 425 C for 140 h, a very thin surface layer of PdO mixed with SiO(x) formed on the palladium surface of the Schottky structure. Heat treatment promoted interfacial diffusion and reaction which significantly broadened the interfacial region. In the interfacial region, the palladium concentration decreases with depth, and the interfacial products are Pd(x)Si (x = 1,2,3,4). In the high Pd concentration regions, Pd4Si is the major silicide component while gr and Pd2Si are major components in the low Pd concentration region. At the center of the interface, where the total palladium concentration equals that of silicon, the concentrations of palladium associated with various palladium silicides (Pd(x)Si, x= 1,2,3,4) are approximately equal. The surface passivation layer composed of PdO and SiO, may significantly affect the electronic and catalytic properties of the surface of the Schottky diode which plays a major role in gas detection. The electronic properties of the Schottky structure may be dominated by a (Pd+Pd(x)Si)/SiC interface. In order to stabilize the properties of the Schottky structure the surface and interface diffusion and reactions must be controlled.

  13. High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3

    NASA Astrophysics Data System (ADS)

    Yang, Jiancheng; Ahn, Shihyun; Ren, F.; Pearton, S. J.; Jang, Soohwan; Kim, Jihyun; Kuramata, A.

    2017-05-01

    Vertical geometry Ni/Au-β-Ga2O3 Schottky rectifiers were fabricated on Hydride Vapor Phase Epitaxy layers on conducting bulk substrates, and the rectifying forward and reverse current-voltage characteristics were measured at temperatures in the range of 25-100 °C. The reverse breakdown voltage (VBR) of these β-Ga2O3 rectifiers without edge termination was a function of the diode diameter, being in the range of 920-1016 V (average value from 25 diodes was 975 ± 40 V, with 10 of the diodes over 1 kV) for diameters of 105 μm and consistently 810 V (810 ± 3 V for 22 diodes) for a diameter of 210 μm. The Schottky barrier height decreased from 1.1 at 25 °C to 0.94 at 100 °C, while the ideality factor increased from 1.08 to 1.28 over the same range. The figure-of-merit (VBR2/Ron), where Ron is the on-state resistance (˜6.7 mΩ cm2), was approximately 154.07 MW.cm-2 for the 105 μm diameter diodes. The reverse recovery time was 26 ns for switching from +5 V to -5 V. These results represent another impressive advance in the quality of bulk and epitaxial β-Ga2O3.

  14. Silicon Carbide Diodes Performance Characterization and Comparison With Silicon Devices

    NASA Technical Reports Server (NTRS)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Trapp, Scott

    2003-01-01

    Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers were electrically tested and characterized at room temperature. Performed electrical tests include steady state forward and reverse I-V curves, as well as switching transient tests performed with the diodes operating in a hard switch dc-to-dc buck converter. The same tests were performed in current state of the art silicon (Si) and gallium arsenide (GaAs) Schottky and pn junction devices for evaluation and comparison purposes. The SiC devices tested have a voltage rating of 200, 300, and 600 V. The comparison parameters are forward voltage drop at rated current, reverse current at rated voltage and peak reverse recovery currents in the dc to dc converter. Test results show that steady state characteristics of the tested SiC devices are not superior to the best available Si Schottky and ultra fast pn junction devices. Transient tests reveal that the tested SiC Schottky devices exhibit superior transient behavior. This is more evident at the 300 and 600 V rating where SiC Schottky devices showed drastically lower reverse recovery currents than Si ultra fast pn diodes of similar rating.

  15. Temperature dependence of Schottky diode characteristics prepared with photolithography technique

    NASA Astrophysics Data System (ADS)

    Korucu, Demet; Turut, Abdulmecit

    2014-11-01

    A Richardson constant (RC) of 8.92 Acm-2K-2 from the conventional Richardson plot has been obtained because the current-voltage data of the device quite well obey the thermionic emission (TE) model in 190-320 K range. The experimental nT versus T plot of the device has given a value of T0 = 7.40 K in temperature range of 160-320 K. The deviations from the TE current mechanism at temperatures below 190 K have been ascribed to the patches introduced by lateral inhomogeneity of the barrier heights. Therefore, an experimental RC value of 7.49 A(cmK)-2 has been obtained by considering Tung's patch model in the temperature range of 80-190 K. This value is in very close agreement with the known value of 8.16 Acm-2K-2 for n-type GaAs.

  16. Planar Monolithic Schottky Varactor Diode Millimeter-Wave Frequency Multipliers

    DTIC Science & Technology

    1992-06-01

    power 175 of the 80/160 GHz doubler. 6.23 The output power versus frequency for three 176 80/160 GHz chips. 6.24 The multiplier efficiency for...versions of the 31/94 GHz tripler. (iteration one). 8.33 Multiplier efficiency versus available 249 input power for the four versions of the 31/94 GHz ...8.48 Output power versus available input power 267 for the four versions of the 31/94 GHz tripler. (interation two). 22 8.49 Multiplier

  17. Transport mechanisms in Schottky diodes realized on GaN

    NASA Astrophysics Data System (ADS)

    Amor, Sarrah; Ahaitouf, Ali; Ahaitouf, Abdelaziz; Salvestrini, Jean Paul; Ougazzaden, Abdellah

    2017-03-01

    This work is focused on the conducted transport mechanisms involved on devices based in gallium nitride GaN and its alloys. With considering all conduction mechanisms of current, its possible to understanded these transport phenomena. Thanks to this methodology the current-voltage characteristics of structures with unusual behaviour are further understood and explain. Actually, the barrier height (SBH) is a complex problem since it depends on several parameters like the quality of the metal-semiconductor interface. This study is particularly interesting as solar cells are made on this material and their qualification is closely linked to their transport properties.

  18. Adapting Schottky Diode Detector Technology to a Space Platform

    DTIC Science & Technology

    1988-02-10

    disk writing mechanism Section 4.5 4.5-1 Modified block diagram of camera electronics with diagnostic test test points added 4.5-2 Photograph of GMX ...Micro-20 single board computer 4.5-3 Block diagram of GMX Micro-20 single board computer Section 4.6 4.6-1 STS (shuttle) orbiter coordinate system 4.6-2...a system that would serve as a satisfactory base for the control computer is the GMX Micro-20 single board computer. A photograph of the system is

  19. Improved whisker pointing technique for micron-size diode contact

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Green, G.

    1982-01-01

    Pointed phosphor-bronze whiskers are commonly used to contact micron-size Schottky barrier diodes. A process is presented which allows pointing such wire and achieving the desired cone angle and tip diameter without the use of highly undesirable chemical reagents.

  20. Improved whisker pointing technique for micron-size diode contact

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Green, G.

    1982-01-01

    Pointed phosphor-bronze whiskers are commonly used to contact micron-size Schottky barrier diodes. A process is presented which allows pointing such wire and achieving the desired cone angle and tip diameter without the use of highly undesirable chemical reagents.

  1. Nonvolatile multibit Schottky memory based on single n-type Ga doped CdSe nanowires.

    PubMed

    Wu, Di; Jiang, Yang; Yu, Yongqiang; Zhang, Yugang; Li, Guohua; Zhu, Zhifeng; Wu, Chunyan; Wang, Li; Luo, Linbao; Jie, Jiansheng

    2012-12-07

    Nonvolatile resistive switching has been observed for the first time in CdSe nanowire (NW)/Au Schottky barrier diodes, where a Schottky contact electrode and an Ohmic contact electrode were formed at the Au/CdSe NW and CdSe NW/In interfaces, respectively. The CdSe NWs Schottky devices were found to possess multibit storage ability in an individual nanowire, and exhibited excellent memory characteristics, with a resistance on/off ratio exceeding four orders of magnitude, a long retention time of over 10(4) s and a lower operating voltage of 2 V. By replacing the SiO(2)/Si substrate with a poly ethylene terephthalate substrate, flexible and transparent memory devices with superior stability under strain were realized. The resistive switching of CdSe NW/Au Schottky devices is understood by electron trapping and detrapping in the interfacial oxide layer. Our findings provide a viable way to create new functional high-density nonvolatile multibit memory devices compatible with simple processing techniques for normal one-dimensional nanomaterials.

  2. Nonvolatile multibit Schottky memory based on single n-type Ga doped CdSe nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Di; Jiang, Yang; Yu, Yongqiang; Zhang, Yugang; Li, Guohua; Zhu, Zhifeng; Wu, Chunyan; Wang, Li; Luo, Linbao; Jie, Jiansheng

    2012-12-01

    Nonvolatile resistive switching has been observed for the first time in CdSe nanowire (NW)/Au Schottky barrier diodes, where a Schottky contact electrode and an Ohmic contact electrode were formed at the Au/CdSe NW and CdSe NW/In interfaces, respectively. The CdSe NWs Schottky devices were found to possess multibit storage ability in an individual nanowire, and exhibited excellent memory characteristics, with a resistance on/off ratio exceeding four orders of magnitude, a long retention time of over 104 s and a lower operating voltage of 2 V. By replacing the SiO2/Si substrate with a poly ethylene terephthalate substrate, flexible and transparent memory devices with superior stability under strain were realized. The resistive switching of CdSe NW/Au Schottky devices is understood by electron trapping and detrapping in the interfacial oxide layer. Our findings provide a viable way to create new functional high-density nonvolatile multibit memory devices compatible with simple processing techniques for normal one-dimensional nanomaterials.

  3. Schottky Noise and Beam Transfer Functions

    SciTech Connect

    Blaskiewicz, M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  4. Extreme ultraviolet detection using AlGaN-on-Si inverted Schottky photodiodes

    SciTech Connect

    Malinowski, Pawel E.; Mertens, Robert; Van Hoof, Chris; Duboz, Jean-Yves; Semond, Fabrice; Frayssinet, Eric; Verhoeve, Peter; Giordanengo, Boris; BenMoussa, Ali

    2011-04-04

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky diodes for extreme ultraviolet (EUV) detection. AlGaN layers were grown on silicon wafers by molecular beam epitaxy with the conventional and inverted Schottky structure, where the undoped, active layer was grown before or after the n-doped layer, respectively. Different current mechanisms were observed in the two structures. The inverted Schottky diode was designed for the optimized backside sensitivity in the hybrid imagers. A cut-off wavelength of 280 nm was observed with three orders of magnitude intrinsic rejection ratio of the visible radiation. Furthermore, the inverted structure was characterized using a EUV source based on helium discharge and an open electrode design was used to improve the sensitivity. The characteristic He I and He II emission lines were observed at the wavelengths of 58.4 nm and 30.4 nm, respectively, proving the feasibility of using the inverted layer stack for EUV detection.

  5. Extreme ultraviolet detection using AlGaN-on-Si inverted Schottky photodiodes

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel E.; Duboz, Jean-Yves; De Moor, Piet; Minoglou, Kyriaki; John, Joachim; Horcajo, Sara Martin; Semond, Fabrice; Frayssinet, Eric; Verhoeve, Peter; Esposito, Marco; Giordanengo, Boris; BenMoussa, Ali; Mertens, Robert; Van Hoof, Chris

    2011-04-01

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky diodes for extreme ultraviolet (EUV) detection. AlGaN layers were grown on silicon wafers by molecular beam epitaxy with the conventional and inverted Schottky structure, where the undoped, active layer was grown before or after the n-doped layer, respectively. Different current mechanisms were observed in the two structures. The inverted Schottky diode was designed for the optimized backside sensitivity in the hybrid imagers. A cut-off wavelength of 280 nm was observed with three orders of magnitude intrinsic rejection ratio of the visible radiation. Furthermore, the inverted structure was characterized using a EUV source based on helium discharge and an open electrode design was used to improve the sensitivity. The characteristic He I and He II emission lines were observed at the wavelengths of 58.4 nm and 30.4 nm, respectively, proving the feasibility of using the inverted layer stack for EUV detection.

  6. Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device

    NASA Astrophysics Data System (ADS)

    Di Bartolomeo, Antonio; Giubileo, Filippo; Luongo, Giuseppe; Iemmo, Laura; Martucciello, Nadia; Niu, Gang; Fraschke, Mirko; Skibitzki, Oliver; Schroeder, Thomas; Lupina, Grzegorz

    2017-03-01

    We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphene/Si heterojunctions alternate to graphene areas exposed to the electric field of the Si substrate, which acts both as diode cathode and transistor gate, results in a two-terminal barristor with single-bias control of the Schottky barrier. The nanotip patterning favors light absorption, and the enhancement of the electric field at the tip apex improves photo-charge separation and enables internal gain by impact ionization. These features render the device a photodetector with responsivity (3 {{A}} {{{W}}}-1 for white LED light at 3 {{mW}} {{{cm}}}-2 intensity) almost an order of magnitude higher than commercial photodiodes. We extensively characterize the voltage and the temperature dependence of the device parameters, and prove that the multi-junction approach does not add extra-inhomogeneity to the Schottky barrier height distribution. We also introduce a new phenomenological graphene/semiconductor diode equation, which well describes the experimental I-V characteristics both in forward and reverse bias.

  7. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors.

    PubMed

    Martin, Dominik; Heinzig, Andre; Grube, Matthias; Geelhaar, Lutz; Mikolajick, Thomas; Riechert, Henning; Weber, Walter M

    2011-11-18

    This work elucidates the role of the Schottky junction in the electronic transport of nanometer-scale transistors. In the example of Schottky barrier silicon nanowire field effect transistors, an electrical scanning probe technique is applied to examine the charge transport effects of a nanometer-scale local top gate during operation. The results prove experimentally that Schottky barriers control the charge carrier transport in these devices. In addition, a proof of concept for a reprogrammable nonvolatile memory device based on band bending at the Schottky barriers will be shown.

  8. Schottky and ohmic contacts to silicon carbide with device applications

    NASA Astrophysics Data System (ADS)

    Luckowski, Eric David

    Fabrication and electrical characterization of Schottky and ohmic contacts to silicon carbide (SiC) are examined in this work. Silicon carbide exhibits improved performance over silicon in high power, high frequency, high temperature, and radiation intensive applications. Unlike silicon, however, the quality of commercially available SiC has improved dramatically in the last decade. Therefore, initial analysis identifies a wide range of electrical behavior in Schottky diodes. The Schottky barrier height was measured using four distinct techniques: the standard thermionic emission I-V method the Norde plot method, the activation energy method, and from the temperature dependence of reverse characteristics. Thermionic emission theory predicts reverse leakage currents that are incommensurate with measured values at room temperature, but in closer agreement at higher temperatures. The technique of plotting the ideality factor as a function of forward voltage (ideality profiling) is used to identify possible current mechanisms responsible for the range of behavior in the electrical characteristics. Non-ideal behavior could be identified in the ideality proNe by the presence of peaks, which became dimini hed at increasing temperatures, indicating that non-thermionic conduction dominates reverse leakage currents at room temperature. These peaks were also observed ta diminish by Ar implantation of material surrounding the contacts. This method of implantation is also employed in a study of the thermal stability of the Ni-SiC contact. Reverse leakage current, Schottky barrier height and physical stability were examined for long-term anneals at 300sp° C. Electrical behavior of ideal contacts and physical analysis demonstrate good stability for 9000 hours of thermal stressing. Argon implantation appears to improve the reliability of this contact. Ohmic contacts on n-type SiC were produced using nickel silicide, with both Ni and nichrome as starting materials. Test structures

  9. Mechanisms of the degradation of Schottky-barrier photodiodes based on ZnS single crystals

    SciTech Connect

    Korsunska, N. E.; Shulga, E. P.; Stara, T. R. Litvin, P. M.; Bondarenko, V. A.

    2016-01-15

    The effect of ultraviolet (UV) illumination on the electrical and spectral characteristics of Schottky-barrier photodiodes based on ZnS single crystals is studied. It is found that irradiation deteriorates their photosensitivity and changes the current–voltage and capacitance–voltage characteristics and the surface profile of the blocking electrode. It is shown that the main reason for a decrease in the photosensitivity of the diodes is the photoinduced drift of mobile donors in the electric field of the barrier. This drift depends on the crystallographic orientation of the surface being irradiated. Another photoinduced process observed in the diodes is photolysis of the ZnS crystal. This process mainly determines the change in the electrical characteristics of the diodes and in the surface profile of the electrode at an insignificant change in the photosensitivity.

  10. Schottky barrier height tuning using P+ DSS for NMOS contact resistance reduction

    NASA Astrophysics Data System (ADS)

    Khaja, Fareen Adeni; Rao, K. V.; Ni, Chi-Nung; Muthukrishnan, Shankar; Lei, Jianxin; Darlark, Andrew; Peidous, Igor; Brand, Adam; Henry, Todd; Variam, Naushad

    2012-11-01

    Nickel silicide (NiSi) contacts are adopted in advanced CMOS technology nodes as they demonstrate several benefits such as low resistivity, low Si consumption and formation temperature. But a disadvantage of NiSi contacts is that they exhibit high electron Schottky barrier height (SBH), which results in high contact resistance (Rc) and reduces the NMOS drive current. To reduce SBH for NMOS, we used phosphorous (P) ion implantation into NiPt silicide with optimized anneal in order to form dopant segregated Schottky (DSS). Electrical characterization was performed using test structures such as Transmission Line Model, Cross-Bridge Kelvin Resistor, Van der Pauw and diodes to extract Rc and understand the effects of P+ DSS on ΦBn tuning. Material characterization was performed using SIMS, SEM and TEM analysis. We report ˜45% reduction in Rc over reference sample by optimizing ion implantation and anneal conditions (spike RTA, milli-second laser anneals (DSA)).

  11. Characterization of deep electron traps in 4H-SiC Junction Barrier Schottky rectifiers

    NASA Astrophysics Data System (ADS)

    Gelczuk, Ł.; Dąbrowska-Szata, M.; Sochacki, M.; Szmidt, J.

    2014-04-01

    Conventional deep level transient spectroscopy (DLTS) technique was used to study deep electron traps in 4H-SiC Junction Barrier Schottky (JBS) rectifiers. 4H-SiC epitaxial layers, doped with nitrogen and grown on standard n+-4H-SiC substrates were exposed to low-dose aluminum ion implantation process under the Schottky contact in order to form both JBS grid and junction termination extension (JTE), and assure good rectifying properties of the diodes. Several deep electron traps were revealed and attributed to impurities or intrinsic defects in 4H-SiC epitaxial layers, on the basis of comparison of their electrical parameters (i.e. activation energies, apparent capture cross sections and concentrations) with previously published results.

  12. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Villa, E.; Aja, B.; de la Fuente, L.; Artal, E.

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  13. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.

    PubMed

    Villa, E; Aja, B; de la Fuente, L; Artal, E

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  14. Giant spin-torque diode sensitivity in the absence of bias magnetic field

    PubMed Central

    Fang, Bin; Carpentieri, Mario; Hao, Xiaojie; Jiang, Hongwen; Katine, Jordan A.; Krivorotov, Ilya N.; Ocker, Berthold; Langer, Juergen; Wang, Kang L.; Zhang, Baoshun; Azzerboni, Bruno; Amiri, Pedram Khalili; Finocchio, Giovanni; Zeng, Zhongming

    2016-01-01

    Microwave detectors based on the spin-torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of their semiconductor (Schottky) counterparts. However, so far, practical implementations of spin-diode microwave detectors have been limited by the necessity to apply a magnetic field. Here, we demonstrate nanoscale magnetic tunnel junction microwave detectors, exhibiting high-detection sensitivity of 75,400 mV mW−1 at room temperature without any external bias fields, and for low-input power (micro-Watts or lower). This sensitivity is significantly larger than both state-of-the-art Schottky diode detectors and existing spintronic diodes. Micromagnetic simulations and measurements reveal the essential role of injection locking to achieve this sensitivity performance. This mechanism may provide a pathway to enable further performance improvement of spin-torque diode microwave detectors. PMID:27052973

  15. Ferroelectric Diodes with Charge Injection and Trapping

    NASA Astrophysics Data System (ADS)

    Fan, Zhen; Fan, Hua; Lu, Zengxing; Li, Peilian; Huang, Zhifeng; Tian, Guo; Yang, Lin; Yao, Junxiang; Chen, Chao; Chen, Deyang; Yan, Zhibo; Lu, Xubing; Gao, Xingsen; Liu, Jun-Ming

    2017-01-01

    Ferroelectric diodes with polarization-modulated Schottky barriers are promising for applications in resistive switching (RS) memories. However, they have not achieved satisfactory performance reliability as originally hoped. The physical origins underlying this issue have not been well studied, although they deserve much attention. Here, by means of scanning Kelvin probe microscopy we show that the electrical poling of ferroelectric diodes can cause significant charge injection and trapping besides polarization switching. We further show that the reproducibility and stability of switchable diode-type RS behavior are significantly affected by the interfacial traps. A theoretical model is then proposed to quantitatively describe the modifications of Schottky barriers by charge injection and trapping. This model is able to reproduce various types of hysteretic current-voltage characteristics as experimentally observed. It is further revealed that the charge injection and trapping can significantly modify the electroresistance ratio, RS polarity, and high- or low-resistance states initially defined by the polarization direction. Several approaches are suggested to suppress the effect of charge injection and trapping so as to realize high-performance polarization-reversal-induced RS. This study, therefore, reveals the microscopic mechanisms for the RS behavior comodulated by polarization reversal and charge trapping in ferroelectric diodes, and also provides useful suggestions for developing reliable ferroelectric RS memories.

  16. Schottky barrier height of Ni to β-(AlxGa1-x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.

    2017-03-01

    Coherent β-(AlxGa1-x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance-voltage measurements revealed a very low (<7 × 1015 cm-3) free charge density in the nominally undoped films. The barrier height and ideality factor were estimated by current-voltage (I-V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1-x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I-V measurements could be similar for β-(AlxGa1-x)2O3 films with different compositions.

  17. Schottky barrier MOSFET systems and fabrication thereof

    DOEpatents

    Welch, J.D.

    1997-09-02

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controlled switching and effecting a direction of rectification. 89 figs.

  18. Schottky barrier MOSFET systems and fabrication thereof

    DOEpatents

    Welch, James D.

    1997-01-01

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controled switching and effecting a direction of rectification.

  19. Functionalized graphene/silicon chemi-diode H₂ sensor with tunable sensitivity.

    PubMed

    Uddin, Md Ahsan; Singh, Amol Kumar; Sudarshan, Tangali S; Koley, Goutam

    2014-03-28

    A reverse bias tunable Pd- and Pt-functionalized graphene/Si heterostructure Schottky diode H2 sensor has been demonstrated. Compared to the graphene chemiresistor sensor, the chemi-diode sensor offers more than one order of magnitude higher sensitivity as the molecular adsorption induced Schottky barrier height change causes the heterojunction current to vary exponentially in reverse bias. The reverse bias operation also enables low power consumption, as well as modulation of the atomically thin graphene's Fermi level, leading to tunable sensitivity and detection of H₂ down to the sub-ppm range.

  20. The nature of electrical interaction of Schottky contacts

    SciTech Connect

    Torkhov, N. A.

    2011-08-15

    Electrical interaction between metal-semiconductor contacts combined in a diode matrix with a Schottky barrier manifests itself in an appreciable variation in their surface potentials and static current-volt-characteristics. The necessary condition for appearance of electrical interaction between such contacts consists in the presence of a peripheral electric field (a halo) around them; this field propagates to a fairly large distances (<30 {mu}m). The sufficient condition is the presence of regions where the above halos overlap. It has been shown that variation in the surface potential and the current-voltage characteristics of contacts occurs under the effect of the intrinsic electric field of the contact's periphery and also under the effect of an electric field at matrix periphery; the latter field is formed as a result of superposition of electric fields of halos which form its contacts. The degree of the corresponding effect is governed by the distance between contacts and by the total charge of the space charge regions for all contacts of the matrix: their number, sizes (diameter D{sub i,j}), concentration of doping impurities in the semiconductor N{sub D}, and physical nature of a metal-semiconductor system with a Schottky barrier (with the barrier height {phi}{sub b}). It is established that bringing the contacts closer leads to a relative decrease in the threshold value of the 'dead' zone in the forward current-voltage characteristics, an increase in the effective height of the barrier, and an insignificant increase in the nonideality factor. An increase in the total area of contacts (a total electric charge in the space charge region) in the matrix brings about an increase in the threshold value of the 'dead' zone, a relative decrease in the effective barrier height, and an insignificant increase in the ideality factor.

  1. Quantum efficiency of the photocurrent in Schottky barrier structures

    NASA Astrophysics Data System (ADS)

    Simeonov, S. S.; Kafedzhiiska, E. I.; Gerasimov, A. L.

    1987-03-01

    Expressions for the concentration of minority and majority carriers in the illuminated space charge layer of Schottky barrier structures are obtained. The dark current and the photocurrent are determined from the minority and majority carrier concentration at the metal-semiconductor boundary of Schottky barrier structures. A correction to the Gartner expression for the quantum efficiency of the Schottky barrier structures is given. A qualitative estimation of a short-wavelength decrease in the quantum efficiency of Schottky barrier structures is proposed.

  2. The 13.9 GHz short pulse radar noise figure measurements utilizing silicon and gallium-arsenide mixer diodes

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.

    1977-01-01

    An analysis was made on two commercially available silicon and gallium arsenide Schottky barrier diodes. These diodes were selected because of their particularly low noise figure in the frequency range of interest. The specified noise figure for the silicon and gallium arsenide diodes were 6.3 db and 5.3 db respectively when functioning as mixers in the 13.6 GHz region with optimum local oscillator drive.

  3. Inadequacy of the Mott-Schottky equation in strongly pinned double Schottky barriers with no deep donors

    NASA Astrophysics Data System (ADS)

    Schipani, F.; Aldao, C. M.; Ponce, M. A.

    2012-12-01

    The capacitive behaviour of an intergranular double Schottky barrier in a polycrystalline semiconductor was evaluated. We found that the widely applied version of the Mott-Schottky equation can lead to significant errors. Even though we considered strong Fermi level pinning at the interface and no deep levels, the Mott-Schottky equation can be inadequate leading to huge errors due to voltage splitting at double Schottky barriers. Experiments carried out on ZnO varistors corroborated the main trends of our analysis.

  4. Influence of annealing temperature on the electrical and structural properties of palladium Schottky contacts on n-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Ramesha, C. K.; Rajagopal Reddy, V.

    2014-12-01

    We have investigated the electrical and structural properties of Pd/4H-SiC Schottky diodes as a function of annealing temperature using I-V, C-V, AES and XRD measurements. The barrier height (BH) of the as-deposited Pd/4H-SiC Schottky diode is found to be 0.71 eV (I-V) and 1.18 eV (C-V), respectively. When the Pd/4H-SiC Schottky diode is annealed at 300 °C, a maximum BH is achieved and corresponding values are 0.89 eV (I-V) and 1.30 eV (C-V). Further, an increase in annealing temperature up to 400 °C, the BH decreases to 0.81 eV (I-V) and 1.20 eV (C-V). Using Cheung's functions, the barrier height (ϕb), ideality factor (n), and series resistance (Rs) are also calculated. Experimental results clearly indicate that the optimum annealing temperature for the Pd Schottky contact to 4H-SiC is 300 °C. According to the Auger electron spectroscopy (AES) and X-ray diffraction (XRD) results, the formation of interfacial phases at the Pd/4H-SiC interface could be the reason for the increase or decrease in BH upon annealing at elevated temperatures. The overall surface morphology of the Pd/4H-SiC Schottky diode is fairly smooth upon annealing temperatures.

  5. Photovoltaic-module bypass-diode encapsulation. Annual report

    SciTech Connect

    Not Available

    1983-06-20

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented in this annual report. A comprehensive survey of available pad-mounted PN junction and Schottky diodes led to the selection of Semicon PN junction diode cells for this application. Diode junction-to-heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1/sup 0/C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150/sup 0/C. Based on the results of a detailed thermal analysis, which covered the range of bypass currents from 2 to 20 amperes, three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed and fabricated. Thermal testing of these modules has enabled the formation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally-mounted packaged diodes. An assessment of bypass diode reliability, which relies heavily on rectifying diode failure rate data, leads to the general conclusion that, when proper designed and installed, these devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  6. Stochastic Cooling with Schottky Band Overlap

    NASA Astrophysics Data System (ADS)

    Lebedev, Valeri

    2006-03-01

    Optimal use of stochastic cooling is essential to maximize the antiproton stacking rate for Tevatron Run II. Good understanding and characterization of the cooling is important for the optimization. The paper is devoted to derivation of the Fokker-Plank equations justified in the case of near or full Schottky base overlap for both longitudinal and transverse coolings.

  7. Stochastic Cooling with Schottky Band Overlap

    SciTech Connect

    Lebedev, Valeri; /Fermilab

    2005-12-01

    Optimal use of stochastic cooling is essential to maximize the antiproton stacking rate for Tevatron Run II. Good understanding and characterization of the cooling is important for the optimization. The paper is devoted to derivation of the Fokker-Planck equations justified in the case of near or full Schottky base overlap for both longitudinal and transverse coolings.

  8. Stochastic Cooling with Schottky Band Overlap

    SciTech Connect

    Lebedev, Valeri

    2006-03-20

    Optimal use of stochastic cooling is essential to maximize the antiproton stacking rate for Tevatron Run II. Good understanding and characterization of the cooling is important for the optimization. The paper is devoted to derivation of the Fokker-Plank equations justified in the case of near or full Schottky base overlap for both longitudinal and transverse coolings.

  9. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect

    Li, Baikui; Tang, Xi; Chen, Kevin J.; Wang, Jiannong

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  10. The 20 GHz solid state transmitter design, impatt diode development and reliability assessment

    NASA Technical Reports Server (NTRS)

    Picone, S.; Cho, Y.; Asmus, J. R.

    1984-01-01

    A single drift gallium arsenide (GaAs) Schottky barrier IMPATT diode and related components were developed. The IMPATT diode reliability was assessed. A proof of concept solid state transmitter design and a technology assessment study were performed. The transmitter design utilizes technology which, upon implementation, will demonstrate readiness for development of a POC model within the 1982 time frame and will provide an information base for flight hardware capable of deployment in a 1985 to 1990 demonstrational 30/20 GHz satellite communication system. Life test data for Schottky barrier GaAs diodes and grown junction GaAs diodes are described. The results demonstrate the viability of GaAs IMPATTs as high performance, reliable RF power sources which, based on the recommendation made herein, will surpass device reliability requirements consistent with a ten year spaceborne solid state power amplifier mission.

  11. Control of GaAs Microwave Schottky Diode Electrical Characteristics by Contact Geometry: The Gap Diode.

    DTIC Science & Technology

    1982-05-01

    profile. After construction, the system was dismantled, the quartz and Pyrex parts cleaned thoroughly in aqua regia and rinsed in deionized water...field is reversed . In practice, the semiconductor can be made degenerate which results in an ohmic contact. 1.3.2.1 Alloying [10,11,12] A simple way to...relate the forward carrier flux Jf and reverse carrier flux Jr by if = Jr exp (a") (2.3) where ir =A* T2 exp ( ) (2.4) * Here, A is the Richardson

  12. Schottky contact formation on polar and non-polar AlN

    SciTech Connect

    Reddy, Pramod; Bryan, Isaac; Bryan, Zachary; Tweedie, James; Kirste, Ronny; Collazo, Ramon; Sitar, Zlatko

    2014-11-21

    The interfaces of m- and c-plane AlN with metals of different work functions and electro-negativities were characterized and the Schottky barrier heights were measured. The Schottky barrier height was determined by measuring the valence band maximum (VBM) with respect to the Fermi level at the surface (interface) before (after) metallization. VBM determination included accurate modeling and curve fitting of density of states at the valence band edge with the XPS data. The experimental behavior of the barrier heights could not be explained by the Schottky-Mott model and was modeled using InterFace-Induced Gap States (IFIGS). A slope parameter (S{sub X}) was used to incorporate the density of surface states and is a measure of Fermi level pinning. The experimental barriers followed theoretical predictions with a barrier height at the surface Fermi level (Charge neutrality level (CNL)) of ∼2.1 eV (∼2.7 eV) on m-plane (c-plane) and S{sub X} ∼ 0.36 eV/Miedema unit. Slope parameter much lower than 0.86 implied a surface/interface states dominated behavior with significant Fermi level pinning and the measured barrier heights were close to the CNL. Titanium and zirconium provided the lowest barriers (1.6 eV) with gold providing the highest (2.3 eV) among the metals analyzed on m-plane. It was consistently found that barrier heights decreased from metal polar to non-polar surfaces, in general, due to an increasing CNL. The data indicated that charged IFIGS compensate spontaneous polarization charge. These barrier height and slope parameter measurements provided essential information for designing Schottky diodes and other contact-based devices on AlN.

  13. Analysis of Carbon Nanotube Metal-Semiconductor Diode Device

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We study recently reported drain current Id-drain voltage Vd characteristics of a carbon nanotube metal semiconductor diode device with the gate voltage Vg applied to modulate the carrier density in the nanotube. The diode was kink-shaped at the metal-semiconductor interface. It was shown that (1) larger negative Vg blocked Id more effectively in the negative Vd region, resulting in the rectifying Id-Vd characteristics, and that (2) positive Vg allowed Id in the both Vd polarities, resulting in the non-rectifying characteristics. The negative Vd was the Schottky reverse direction, judging from the negligible Id behavior for a wide region of -4 V less than Vd less than 0 V, with Vg = -4 V. Such negative Vg would attract positive charges from the metallic electrodes (charge reservoir) to the nanotube and lower the nanotube Fermi energy (EF). With larger negative Vg, the experiment showed that the Schottky forward direction (Vd greater than 0) had a smaller turn-on voltage and the Schottky reverse direction (Vd less than 0) was more resistant to the tunneling breakdown. Therefore, the majority carriers in the transport would be electrons since they can see a lower tunneling barrier (shallower built-in potential) in the forward direction when EF is lowered, and a thicker tunneling barrier (Schottky barrier) in the reverse direction due to the reduction in the electron density when EF is lowered.

  14. Temperature-dependent Schottky barrier in high-performance organic solar cells

    PubMed Central

    Li, Hui; He, Dan; Zhou, Qing; Mao, Peng; Cao, Jiamin; Ding, Liming; Wang, Jizheng

    2017-01-01

    Organic solar cells (OSCs) have attracted great attention in the past 30 years, and the power conversion efficiency (PCE) now reaches around 10%, largely owning to the rapid material developments. Meanwhile with the progress in the device performance, more and more interests are turning to understanding the fundamental physics inside the OSCs. In the conventional bulk-heterojunction architecture, only recently it is realized that the blend/cathode Schottky junction serves as the fundamental diode for the photovoltaic function. However, few researches have focused on such junctions, and their physical properties are far from being well-understood. In this paper based on PThBDTP:PC71BM blend, we fabricated OSCs with PCE exceeding 10%, and investigated temperature-dependent behaviors of the junction diodes by various characterization including current-voltage, capacitance-voltage and impedance measurements between 70 to 290 K. We found the Schottky barrier height exhibits large inhomogeneity, which can be described by two sets of Gaussian distributions. PMID:28071700

  15. Temperature-dependent Schottky barrier in high-performance organic solar cells.

    PubMed

    Li, Hui; He, Dan; Zhou, Qing; Mao, Peng; Cao, Jiamin; Ding, Liming; Wang, Jizheng

    2017-01-10

    Organic solar cells (OSCs) have attracted great attention in the past 30 years, and the power conversion efficiency (PCE) now reaches around 10%, largely owning to the rapid material developments. Meanwhile with the progress in the device performance, more and more interests are turning to understanding the fundamental physics inside the OSCs. In the conventional bulk-heterojunction architecture, only recently it is realized that the blend/cathode Schottky junction serves as the fundamental diode for the photovoltaic function. However, few researches have focused on such junctions, and their physical properties are far from being well-understood. In this paper based on PThBDTP:PC71BM blend, we fabricated OSCs with PCE exceeding 10%, and investigated temperature-dependent behaviors of the junction diodes by various characterization including current-voltage, capacitance-voltage and impedance measurements between 70 to 290 K. We found the Schottky barrier height exhibits large inhomogeneity, which can be described by two sets of Gaussian distributions.

  16. Temperature-dependent Schottky barrier in high-performance organic solar cells

    NASA Astrophysics Data System (ADS)

    Li, Hui; He, Dan; Zhou, Qing; Mao, Peng; Cao, Jiamin; Ding, Liming; Wang, Jizheng

    2017-01-01

    Organic solar cells (OSCs) have attracted great attention in the past 30 years, and the power conversion efficiency (PCE) now reaches around 10%, largely owning to the rapid material developments. Meanwhile with the progress in the device performance, more and more interests are turning to understanding the fundamental physics inside the OSCs. In the conventional bulk-heterojunction architecture, only recently it is realized that the blend/cathode Schottky junction serves as the fundamental diode for the photovoltaic function. However, few researches have focused on such junctions, and their physical properties are far from being well-understood. In this paper based on PThBDTP:PC71BM blend, we fabricated OSCs with PCE exceeding 10%, and investigated temperature-dependent behaviors of the junction diodes by various characterization including current-voltage, capacitance-voltage and impedance measurements between 70 to 290 K. We found the Schottky barrier height exhibits large inhomogeneity, which can be described by two sets of Gaussian distributions.

  17. Alternative current source based Schottky contact with additional electric field

    NASA Astrophysics Data System (ADS)

    Mamedov, R. K.; Aslanova, A. R.

    2017-07-01

    Additional electric field (AEF) in the Schottky contacts (SC) that covered the peripheral contact region wide and the complete contact region narrow (as TMBS diode) SC. Under the influence of AEF is a redistribution of free electrons produced at certain temperatures of the semiconductor, and is formed the space charge region (SCR). As a result of the superposition of the electric fields SCR and AEF occurs the resulting electric field (REF). The REF is distributed along a straight line perpendicular to the contact surface, so that its intensity (and potential) has a minimum value on the metal surface and the maximum value at a great distance from the metal surface deep into the SCR. Under the influence of AEF as a sided force the metal becomes negative pole and semiconductor - positive pole, therefore, SC with AEF becomes an alternative current source (ACS). The Ni-nSi SC with different diameters (20-1000 μm) under the influence of the AEF as sided force have become ACS with electromotive force in the order of 0.1-1.0 mV, which are generated the electric current in the range of 10-9-10-7 A, flowing through the external resistance 1000 Ohm.

  18. Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Zdansky, Karel

    2011-08-01

    Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd) nanoparticles (NPs) in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures.

  19. Millimeter-wave diode-grid phase shifters

    NASA Technical Reports Server (NTRS)

    Lam, Wayne W.; Stolt, Kjell S.; Jou, Christina F.; Luhmann, Neville C., Jr.; Chen, Howard Z.

    1988-01-01

    Monolithic diode grids have been fabricated on 2-cm square gallium-arsenide wafers with 1600 Schottky-barrier varactor diodes. Shorted diodes are detected with a liquid-crystal technique, and the bad diodes are removed with an ultrasonic probe. A small-aperture reflectometer that uses wavefront division interference was developed to measure the reflection coefficient of the grids. A phase shift of 70 deg with a 7-dB loss was obtained at 93 GHz when the bias on the diode grid was changed from -3 V to 1 V. A simple transmission-line grid model, together with the measured low-frequency parameters for the diodes, was shown to predict the measured performance over the entire capacitive bias range of the diodes, as well as over the complete reactive tuning range provided by a reflector behind the grid, and over a wide range of frequencies from 33 GHz to 141 GHz. This shows that the transmission-line model and the measured low-frequency diode parameters can be used to design an electronic beam-steering array and to predict its performance. An electronic beam-steering array made of a pair of grids using state-of-the-art diodes with 5-ohm series resistances would have a loss of 1.4 dB at 90 GHz.

  20. High-Frequency, 6.2 Angstrom pN Heterojunction Diodes

    DTIC Science & Technology

    2012-01-01

    Furthermore, the first monolithic microwave integrated circuits ( MMICs ) fabricated using 6.1 Å based HEMTs have been demonstrated [3]. New mate- rials...are expected toexceed theper- formance of current state-of-the-art GaAs Schottky diodes. In this letter, MMIC -compatible Sb-based pN heterojunction

  1. Dislocation-assisted tunnelling of charge carriers across the Schottky barrier on the hydride vapour phase epitaxy grown GaN

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhishek; Khamari, Shailesh K.; Dixit, V. K.; Oak, S. M.; Sharma, T. K.

    2015-11-01

    Barrier height and Ideality factor of Ni/n-GaN Schottky diodes are measured by performing temperature dependent current-voltage measurements. The measured value of barrier height is found to be much smaller than the theoretically calculated Schottky-Mott barrier height for the Ni/n-GaN diodes. Furthermore, a high value of ideality factor (>2) is measured at low temperatures. In order to understand these results, we need to consider a double Gaussian distribution of barrier height where the two components are related to the thermionic emission and thermionic filed emission mediated by dislocation-assisted tunnelling of carriers across the Schottky barrier. Thermionic emission is seen to dominate at temperatures higher than 170 K while the dislocation-assisted tunnelling dominates at low temperatures. The value of characteristic tunnelling energy measured from the forward bias current-voltage curves also confirms the dominance of dislocation-assisted tunnelling at low temperatures which is strongly corroborated by the Hall measurements. However, the value of characteristic tunnelling energy for high temperature range cannot be supported by the Hall results. This discrepancy can be eliminated by invoking a two layer model to analyse the Hall data which confirms that the charged dislocations, which reach the sample surface from the layer-substrate interface, provide an alternate path for the transport of carriers. The dislocation-assisted tunnelling of carriers governs the values of Schottky diode parameters at low temperature and the same is responsible for the observed inhomogeneity in the values of barrier height. The present analysis is applicable wherever the charge transport characteristics are severely affected by the presence of a degenerate layer at GaN-Sapphire interface and dislocations lines pierce the Schottky junction to facilitate the tunnelling of carriers.

  2. Monolithic millimeter-wave diode grid frequency multiplier arrays

    NASA Technical Reports Server (NTRS)

    Liu, Hong-Xia L.; Qin, X.-H.; Sjogren, L. B.; Wu, W.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.

    1992-01-01

    Monolithic diode frequency multiplier arrays, including barrier-N-N(+) (BNN) doubler, multi-quantum-barrier-varactor (MQBV) tripler, Schottky-quantum-barrier-varactor (SQBV) tripler, and resonant-tunneling-diode (RTD) tripler arrays, have been successfully fabricated with yields between 85 and 99 percent. Frequency doubling and/or tripling have been observed for all the arrays. Output powers of 2.4-2.6 W (eta = 10-18 percent) at 66 GHz with the BNN doubler and 3.8-10 W (eta = 1.7-4 percent) at 99 GHz with the SQBV tripler have been achieved.

  3. Temperature-dependent current-voltage characteristics in thermally annealed ferromagnetic Co/n-GaN Schottky contacts

    NASA Astrophysics Data System (ADS)

    Ejderha, Kadir; Yıldırm, N.; Turut, A.

    2014-11-01

    Co/n-GaN SDs has been prepared by magnetron DC sputtering technique. The Co/n-GaN SDs have annealed at 600 °C after a post-deposition. The diode parameters such as the ideality factor, barrier height and Richardson constant have been determined by thermionic emission (TE) equation within the measurement temperature range 60-320 K by the steps of 20 K in the dark. It has been seen that the parameters depend on the measurement temperature indicating the presence of a lateral inhomogeneity in the Schottky barrier. Therefore, it has been modified the experimental data by the thermionic emission (TE) mechanism with Gaussian distribution of the barrier heights by using Tung's theoretical approach that the Schottky barrier consists of laterally inhomogeneous patches of different barrier heights. Thus, the modified Richardson plot according to Tung's barrier inhomogeneity model [8] has given a Richardson constant of 27.66 A/(cm2 K2).

  4. Plastic Schottky-barrier solar cells

    DOEpatents

    Waldrop, J.R.; Cohen, M.J.

    1981-12-30

    A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.

  5. Liquid junction schottky barrier solar cell

    DOEpatents

    Williams, Richard

    1980-01-01

    A mixture of ceric ions (Ce.sup.+4) and cerous ions (Ce.sup.+3) in an aqueous electrolyte solution forms a Schottky barrier at the interface between an active region of silicon and the electrolyte solution. The barrier height obtained for hydrogenated amorphous silicon using the Ce.sup.+4 /Ce.sup.+3 redox couple is about 1.7 eV.

  6. Schottky Barriers in Bilayer Phosphorene Transistors.

    PubMed

    Pan, Yuanyuan; Dan, Yang; Wang, Yangyang; Ye, Meng; Zhang, Han; Quhe, Ruge; Zhang, Xiuying; Li, Jingzhen; Guo, Wanlin; Yang, Li; Lu, Jing

    2017-04-12

    It is unreliable to evaluate the Schottky barrier height (SBH) in monolayer (ML) 2D material field effect transistors (FETs) with strongly interacted electrode from the work function approximation (WFA) because of existence of the Fermi-level pinning. Here, we report the first systematical study of bilayer (BL) phosphorene FETs in contact with a series of metals with a wide work function range (Al, Ag, Cu, Au, Cr, Ti, Ni, and Pd) by using both ab initio electronic band calculations and quantum transport simulation (QTS). Different from only one type of Schottky barrier (SB) identified in the ML phosphorene FETs, two types of SBs are identified in BL phosphorene FETs: the vertical SB between the metallized and the intact phosphorene layer, whose height is determined from the energy band analysis (EBA); the lateral SB between the metallized and the channel BL phosphorene, whose height is determined from the QTS. The vertical SBHs show a better consistency with the lateral SBHs of the ML phosphorene FETs from the QTS compared than that of the popular WFA. Therefore, we develop a better and more general method than the WFA to estimate the lateral SBHs of ML semiconductor transistors with strongly interacted electrodes based on the EBA for its BL counterpart. In terms of the QTS, n-type lateral Schottky contacts are formed between BL phosphorene and Cr, Al, and Cu electrodes with electron SBH of 0.27, 0.31, and 0.32 eV, respectively, while p-type lateral Schottky contacts are formed between BL phosphorene and Pd, Ti, Ni, Ag, and Au electrodes with hole SBH of 0.11, 0.18, 0.19, 0.20, and 0.21 eV, respectively. The theoretical polarity and SBHs are in good agreement with available experiments. Our study provides an insight into the BL phosphorene-metal interfaces that are crucial for designing the BL phosphorene device.

  7. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  8. Characterization technique for inhomogeneous 4H-SiC Schottky contacts: A practical model for high temperature behavior

    NASA Astrophysics Data System (ADS)

    Brezeanu, G.; Pristavu, G.; Draghici, F.; Badila, M.; Pascu, R.

    2017-08-01

    In this paper, a characterization technique for 4H-SiC Schottky diodes with varying levels of metal-semiconductor contact inhomogeneity is proposed. A macro-model, suitable for high-temperature evaluation of SiC Schottky contacts, with discrete barrier height non-uniformity, is introduced in order to determine the temperature interval and bias domain where electrical behavior of the devices can be described by the thermionic emission theory (has a quasi-ideal performance). A minimal set of parameters, the effective barrier height and peff, the non-uniformity factor, is associated. Model-extracted parameters are discussed in comparison with literature-reported results based on existing inhomogeneity approaches, in terms of complexity and physical relevance. Special consideration was given to models based on a Gaussian distribution of barrier heights on the contact surface. The proposed methodology is validated by electrical characterization of nickel silicide Schottky contacts on silicon carbide (4H-SiC), where a discrete barrier distribution can be considered. The same method is applied to inhomogeneous Pt/4H-SiC contacts. The forward characteristics measured at different temperatures are accurately reproduced using this inhomogeneous barrier model. A quasi-ideal behavior is identified for intervals spanning 200 °C for all measured Schottky samples, with Ni and Pt contact metals. A predictable exponential current-voltage variation over at least 2 orders of magnitude is also proven, with a stable barrier height and effective area for temperatures up to 400 °C. This application-oriented characterization technique is confirmed by using model parameters to fit a SiC-Schottky high temperature sensor's response.

  9. Multiple silicon nanowires-embedded Schottky solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Joondong; Yun, Ju-Hyung; Han, Chang-Soo; Cho, Yong Jae; Park, Jeunghee; Park, Yun Chang

    2009-10-01

    Large area applicable silicon nanowire (SiNW)-embedded Schottky solar cell (SC) is fabricated. Multiple semiconducting SiNWs were positioned on two different metals. SiNW forms a Schottky or an Ohmic contact to each metal according to the Fermi level lineup. Electrons or holes have a barrier to transport resulting in a rectifying flow. Under 1 sun illumination, the SiNW Schottky SC provided 0.167 V of photovoltage and 91.91 nA of photocurrent with an ideality factor of 1.2. It discusses the fabrication scheme and mechanism of multiple SiNWs-embedded Schottky SC.

  10. Deforming super Riemann surfaces with gravitinos and super Schottky groups

    NASA Astrophysics Data System (ADS)

    Playle, Sam

    2016-12-01

    The (super) Schottky uniformization of compact (super) Riemann surfaces is briefly reviewed. Deformations of super Riemann surface by gravitinos and Beltrami parameters are recast in terms of super Schottky group cohomology. It is checked that the super Schottky group formula for the period matrix of a non-split surface matches its expression in terms of a gravitino and Beltrami parameter on a split surface. The relationship between (super) Schottky groups and the construction of surfaces by gluing pairs of punctures is discussed in an appendix.

  11. Data Diode

    SciTech Connect

    2014-11-07

    The Data Diode is a data security technology that can be deployed within an organization's defense-in-depth computer network strategy for information assurance. For internal security, the software creates an environment within the network where an organization's approved users can work freely inside an enclave of protected data, but file transfers out of the enclave is restricted. For external security, once a network intruder has penetrated the network, the intruder is able to "see" the protected data, but is unable to download the actual data. During the time it takes for the intruder to search for a way around the obstacle created by the Data Diode, the network's intrusion detection technologies can locate and thwart the malicious intent of the intruder. Development of the Data Diode technology was made possible by funding from the Intelligence Advanced Research Projects Activity (IARPA).

  12. Development of design criteria and qualification tests for bypass diodes in photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Otth, D. H.; Sugimura, R. S.; Ross, R. G., Jr.

    1985-01-01

    Design criteria have been developed for bypass diodes in p-n and Schottky barrier in photovoltaic applications. A test method for assessing conformity to the design criteria is described. Junction temperatures are defined in terms of expected worst-case field conditions, including ambient temperature and solar irradiance on the photovoltaic module. The rating criteria address the maximum allowable current and heat-sink characteristics of diodes mounted inside or outside the photovoltaic module. The method establishes worst-case module-to-diode thermal interfaces and may be adapted for laboratory or field-site experiments. A list of the design criteria is given.

  13. Development of design criteria and qualification tests for bypass diodes in photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Otth, D. H.; Sugimura, R. S.; Ross, R. G., Jr.

    1985-01-01

    Design criteria have been developed for bypass diodes in p-n and Schottky barrier in photovoltaic applications. A test method for assessing conformity to the design criteria is described. Junction temperatures are defined in terms of expected worst-case field conditions, including ambient temperature and solar irradiance on the photovoltaic module. The rating criteria address the maximum allowable current and heat-sink characteristics of diodes mounted inside or outside the photovoltaic module. The method establishes worst-case module-to-diode thermal interfaces and may be adapted for laboratory or field-site experiments. A list of the design criteria is given.

  14. AlGaN/GaN Based Diodes for Liquid Sensing

    NASA Astrophysics Data System (ADS)

    Luo, Wei-Jun; Chen, Xiao-Juan; Yuan, Ting-Ting; Pang, Lei; Liu, Xin-Yu

    2013-03-01

    The characteristics of AlGaN/GaN Schottky diodes as polar liquid sensors are reported. Circular structures, with a gate metal diameter of 200 μm, are designed and fabricated by using a optical lithography process. Ni/Au and Ti/Al/Ni/Au metals are used as the Schottky contact and the ohmic contact, respectively. The Schottky diodes exhibit large changes in reverse leakage current at a bias of -20 V in response to the surface exposed to various polar liquids, such as acetone and ethanol. The effective Schottky barrier height of the diodes is also changed with the polar liquids. The polar nature of the liquids leads to a change of surface charges, producing a change in surface potential at the semiconductor/liquid interface. The effect of the SiNx passivation layer thickness on the liquid sensing is also discussed. The results demonstrate that the AlGaN/GaN heterostructures are promising for polar liquids, combustion gas, biological, and strain sensing applications.

  15. Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes

    PubMed Central

    Lee, Young Keun; Choi, Hongkyw; Lee, Hyunsoo; Lee, Changhwan; Choi, Jin Sik; Choi, Choon-Gi; Hwang, Euyheon; Park, Jeong Young

    2016-01-01

    Carrier multiplication (i.e. generation of multiple electron–hole pairs from a single high-energy electron, CM) in graphene has been extensively studied both theoretically and experimentally, but direct application of hot carrier multiplication in graphene has not been reported. Here, taking advantage of efficient CM in graphene, we fabricated graphene/TiO2 Schottky nanodiodes and found CM-driven enhancement of quantum efficiency. The unusual photocurrent behavior was observed and directly compared with Fowler’s law for photoemission on metals. The Fowler’s law exponent for the graphene-based nanodiode is almost twice that of a thin gold film based diode; the graphene-based nanodiode also has a weak dependence on light intensity—both are significant evidence for CM in graphene. Furthermore, doping in graphene significantly modifies the quantum efficiency by changing the Schottky barrier. The CM phenomenon observed on the graphene/TiO2 nanodiodes can lead to intriguing applications of viable graphene-based light harvesting. PMID:27271245

  16. Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes

    NASA Astrophysics Data System (ADS)

    Lee, Young Keun; Choi, Hongkyw; Lee, Hyunsoo; Lee, Changhwan; Choi, Jin Sik; Choi, Choon-Gi; Hwang, Euyheon; Park, Jeong Young

    2016-06-01

    Carrier multiplication (i.e. generation of multiple electron–hole pairs from a single high-energy electron, CM) in graphene has been extensively studied both theoretically and experimentally, but direct application of hot carrier multiplication in graphene has not been reported. Here, taking advantage of efficient CM in graphene, we fabricated graphene/TiO2 Schottky nanodiodes and found CM-driven enhancement of quantum efficiency. The unusual photocurrent behavior was observed and directly compared with Fowler’s law for photoemission on metals. The Fowler’s law exponent for the graphene-based nanodiode is almost twice that of a thin gold film based diode; the graphene-based nanodiode also has a weak dependence on light intensity—both are significant evidence for CM in graphene. Furthermore, doping in graphene significantly modifies the quantum efficiency by changing the Schottky barrier. The CM phenomenon observed on the graphene/TiO2 nanodiodes can lead to intriguing applications of viable graphene-based light harvesting.

  17. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    NASA Astrophysics Data System (ADS)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S.; Shanholtz, E. R.

    2016-07-01

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  18. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    SciTech Connect

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S.; Shanholtz, E. R.

    2016-07-14

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  19. Active charge state control of single NV centres in diamond by in-plane Al-Schottky junctions

    NASA Astrophysics Data System (ADS)

    Schreyvogel, C.; Polyakov, V.; Wunderlich, R.; Meijer, J.; Nebel, C. E.

    2015-07-01

    In this paper, we demonstrate an active control of the charge state of a single nitrogen-vacancy (NV) centre by using in-plane Schottky-diode geometries with aluminium on hydrogen-terminated diamond surface. A switching between NV+, NV0 and NV- can be performed with the Al-gates which apply electric fields in the hole depletion region of the Schottky junction that induces a band bending modulation, thereby shifting the Fermi-level over NV charge transition levels. We simulated the in-plane band structure of the Schottky junction with the Software ATLAS by solving the drift-diffusion model and the Poisson-equation self-consistently. We simulated the IV-characteristics, calculated the width of the hole depletion region, the position of the Fermi-level intersection with the NV charge transition levels for different reverse bias voltages applied on the Al-gate. We can show that the field-induced band bending modulation in the depletion region causes a shifting of the Fermi-level over NV charge transition levels in such a way that the charge state of a single NV centre and thus its electrical and optical properties is tuned. In addition, the NV centre should be approx. 1-2 μm away from the Al-edge in order to be switched with moderate bias voltages.

  20. Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors.

    PubMed

    Nie, Biao; Hu, Ji-Gang; Luo, Lin-Bao; Xie, Chao; Zeng, Long-Hui; Lv, Peng; Li, Fang-Ze; Jie, Jian-Sheng; Feng, Mei; Wu, Chun-Yan; Yu, Yong-Qiang; Yu, Shu-Hong

    2013-09-09

    A new Schottky junction ultraviolet photodetector (UVPD) is fabricated by coating a free-standing ZnO nanorod (ZnONR) array with a layer of transparent monolayer graphene (MLG) film. The single-crystalline [0001]-oriented ZnONR array has a length of about 8-11 μm, and a diameter of 100∼600 nm. Finite element method (FEM) simulation results show that this novel nanostructure array/MLG heterojunction can trap UV photons effectively within the ZnONRs. By studying the I-V characteristics in the temperature range of 80-300 K, the barrier heights of the MLG film/ZnONR array Schottky barrier are estimated at different temperatures. Interestingly, the heterojunction diode with typical rectifying characteristics exhibits a high sensitivity to UV light illumination and a quick response of millisecond rise time/fall times with excellent reproducibility, whereas it is weakly sensitive to visible light irradiation. It is also observed that this UV photodetector (PD) is capable of monitoring a fast switching light with a frequency as high as 2250 Hz. The generality of the above results suggest that this MLG film/ZnONR array Schottky junction UVPD will have potential application in future optoelectronic devices.

  1. Au nanoparticles embedded at the interface of Al/4H-SiC Schottky contacts for current density enhancement

    NASA Astrophysics Data System (ADS)

    Gorji, Mohammad Saleh; Cheong, Kuan Yew

    2015-01-01

    Nanostructured contacts, comprised of nanoparticles (NPs) embedded at the interface of contact/semiconductor, offer a viable solution in modification of Schottky barrier height (SBH) in Schottky contacts. The successful performance of devices with such nanostructured contacts requires a feasible selection of NPs/contact material based on theoretical calculations and a cost effective and reproducible route for NPs deposition. Acidification of commercially available colloidal Au NPs solution by HF has been selected here as a simple bench-top technique for deposition of Au NPs on n- and p-type 4H-SiC substrates. Theoretical calculations based on the model of inhomogeneity in SBH (ISBH) were used to make a more appropriate selection of NPs type (Au) and size (5 and 10 nm, diameter) with respect to contact metal (Al). Al/Au NPs/SiC Schottky barrier diodes were then fabricated, and their electrical characteristics exhibited current density enhancement due to the SBH lowering. The source of SBH lowering was determined to be the local electric field enhancement due to NPs effect, which was further investigated using the models of ISBH and tunneling enhancement at triple interface.

  2. Graphene barristor, a triode device with a gate-controlled Schottky barrier.

    PubMed

    Yang, Heejun; Heo, Jinseong; Park, Seongjun; Song, Hyun Jae; Seo, David H; Byun, Kyung-Eun; Kim, Philip; Yoo, InKyeong; Chung, Hyun-Jong; Kim, Kinam

    2012-06-01

    Despite several years of research into graphene electronics, sufficient on/off current ratio I(on)/I(off) in graphene transistors with conventional device structures has been impossible to obtain. We report on a three-terminal active device, a graphene variable-barrier "barristor" (GB), in which the key is an atomically sharp interface between graphene and hydrogenated silicon. Large modulation on the device current (on/off ratio of 10(5)) is achieved by adjusting the gate voltage to control the graphene-silicon Schottky barrier. The absence of Fermi-level pinning at the interface allows the barrier's height to be tuned to 0.2 electron volt by adjusting graphene's work function, which results in large shifts of diode threshold voltages. Fabricating GBs on respective 150-mm wafers and combining complementary p- and n-type GBs, we demonstrate inverter and half-adder logic circuits.

  3. Electrical and ultraviolet characterization of 4H-SiC Schottky photodiodes.

    PubMed

    Lioliou, G; Mazzillo, M C; Sciuto, A; Barnett, A M

    2015-08-24

    Fabrication and electrical and optical characterization of 4H-SiC Schottky UV photodetectors with nickel silicide interdigitated contacts is reported. Dark capacitance and current measurements as a function of applied voltage over the temperature range 20 °C - 120 °C are presented. The results show consistent performance among devices. Their leakage current density, at the highest investigated temperature (120 °C), is in the range of nA/cm(2) at high internal electric field. Properties such as barrier height and ideality factor are also computed as a function of temperature. The responsivities of the diodes as functions of applied voltage were measured using a UV spectrophotometer in the wavelength range 200 nm - 380 nm and compared with theoretically calculated values. The devices had a mean peak responsivity of 0.093 A/W at 270 nm and -15 V reverse bias.

  4. Fabrication and characterization of Au/p-ZnO Schottky contacts

    NASA Astrophysics Data System (ADS)

    Singh, Brijesh Kumar; Tripathi, Shweta

    2015-09-01

    This paper reports the electrical characteristics of gold contacts on p-type ZnO thin films synthesized by spin coating the sol containing zinc acetate and bismuth nitrate as main precursors. The structural, morphological and optical properties of the deposited thin film have been investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and Ellipsometry, respectively. Further, hot probe measurement has been used to ascertain the type of deposited film and it was observed that films doped with the concentration of 10 mol% Bi shows p-type nature that was found to be stable over the period of five months. Moreover, reflectance of the Bi doped ZnO with varying Bi concentrations, have also been calculated over the wavelength range of 300-800 nm. The optical band gap of Bi doped ZnO films have also been determined for different concentrations of Bi using the data taken by ellipsometer. The gold (Au) contacts have been deposited on the p-ZnO thin films using low cost thermal evaporation method. Electrical parameters such as the reverse saturation current, barrier height and ideality factor have also been determined for Au/p-ZnO thin film based Schottky contact using conventional thermionic emission model and Cheung's method. The conventional thermionic emission model yields barrier height ∼0.681 eV and ideality factor ∼2.3 however Cheung method gives barrier height ∼0.556 eV, ideality factor ∼2.186 and series resistance ∼923 Ω. The present study establishes the fact that Cheung's method can be the best and most realistic method for approximating the diode parameters including the effect of series resistance of the Au/p-ZnO Schottky diode under consideration.

  5. Graphene-based vertical-junction diodes and applications

    NASA Astrophysics Data System (ADS)

    Choi, Suk-Ho

    2017-09-01

    In the last decade, graphene has received extreme attention as an intriguing building block for electronic and photonic device applications. This paper provides an overview of recent progress in the study of vertical-junction diodes based on graphene and its hybrid systems by combination of graphene and other materials. The review is especially focused on tunnelling and Schottky diodes produced by chemical doping of graphene or combination of graphene with various semiconducting/ insulating materials such as hexagonal boron nitrides, Si-quantum-dots-embedded SiO2 multilayers, Si wafers, compound semiconductors, Si nanowires, and porous Si. The uniqueness of graphene enables the application of these convergence structures in high-efficient devices including photodetectors, solar cells, resonant tunnelling diodes, and molecular/DNA sensors.

  6. Fundamental studies of graphene/graphite and graphene-based Schottky photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Miao, Xiaochang

    In the carbon allotropes family, graphene is one of the most versatile members and has been extensively studied since 2004. The goal of this dissertation is not only to investigate the novel fundamental science of graphene and its three-dimensional sibling, graphite, but also to explore graphene's promising potential in modern electronic and optoelectronic devices. The first two chapters provide a concise introduction to the fundamental solid state physics of graphene (as well as graphite) and the physics at the metal/semiconductor interfaces. In the third chapter, we demonstrate the formation of Schottky junctions at the interfaces of graphene (semimetal) and various inorganic semiconductors that play dominating roles in today's semiconductor technology, such as Si, SiC, GaAs and GaN. As shown from their current-voltage (I -V) and capacitance-voltage (C-V) characteristics, the interface physics can be well described within the framework of the Schottky-Mott model. The results are also well consist with that from our previous studies on graphite based Schottky diodes. In the fourth chapter, as an extension of graphene based Schottky work, we investigate the photovoltaic (PV) effect of graphene/Si junctions after chemically doped with an organic polymer (TFSA). The power conversion efficiency of the solar cell improves from 1.9% to 8.6% after TFSA doping, which is the record in all graphene based PVs. The I -V, C-V and external quantum efficiency measurements suggest 12 that such a significant enhancement in the device performance can be attributed to a doping-induced decrease in the series resistance and a simultaneous increase in the built-in potential. In the fifth chapter, we investigate for the first time the effect of uniaxial strains on magneto-transport properties of graphene. We find that low-temperature weak localization effect in monolayer graphene is gradually suppressed under increasing strains, which is due to a strain-induced decreased intervalley

  7. Solution-Processed Germanium Nanowire-Positioned Schottky Solar Cells

    DTIC Science & Technology

    2011-04-01

    available soon. Solution-processed germanium nanowire-positioned Schottky solar cells Nanoscale Research Letters 2011, 6:287 doi:10.1186/1556-276X-6-287 Ju...DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Solution-processed germanium nanowire-positioned Schottky solar cells 5a. CONTRACT...nanowire (GeNW)-positioned Schottky solar cell was fabricated by a solution process. A GeNW-containing solution was spread out onto asymmetric metal

  8. Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy

    SciTech Connect

    Balsano, Robert; Matsubayashi, Akitomo; LaBella, Vincent P.

    2013-11-15

    The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to be below the region of best fit for the power law form of the BK model, demonstrating its region of validity.

  9. Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions

    PubMed Central

    Polyakov, Vladimir; Burk, Sina; Fedder, Helmut; Denisenko, Andrej; Fávaro de Oliveira, Felipe; Wunderlich, Ralf; Meijer, Jan; Zuerbig, Verena; Wrachtrup, Jörg; Nebel, Christoph E

    2016-01-01

    In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres) in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e., by using aluminium as Schottky contact on a hydrogen terminated diamond surface. By changing the applied potential on the Schottky contact, we are able to actively switch single NV centres between all three charge states NV+, NV0 and NV− on a timescale of 10 to 100 ns, corresponding to a switching frequency of 10–100 MHz. This switching frequency is much higher than the hyperfine interaction frequency between an electron spin (of NV−) and a nuclear spin (of 15N or 13C for example) of 2.66 kHz. This high-frequency charge state switching with a planar diode structure would open the door for many quantum optical applications such as a quantum computer with single NVs for quantum information processing as well as single 13C atoms for long-lifetime storage of quantum information. Furthermore, a control of spectral emission properties of single NVs as a single photon emitters – embedded in photonic structures for example – can be realized which would be vital for quantum communication and cryptography. PMID:28144522

  10. Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Kou, Pengfei; Shen, Jianqi; Lee, El Hang; He, Sailing

    2015-12-01

    We propose a broadband, polarization-insensitive and high-efficiency plasmonic Schottky diode for detection of sub-bandgap photons in the optical communication wavelength range through internal photoemission (IPE). The distinctive features of this design are that it has a gold film covering both the top and the sidewalls of a dielectric silicon ridge waveguide with the Schottky contact formed at the gold-silicon interface and the sidewall coverage of gold can be easily tuned by an insulating layer. An extensive physical model on IPE of hot carriers is presented in detail and is applied to calculate and examine the performance of this detector. In comparison with a diode having only the top gold contact, the polarization sensitivity of the responsivity is greatly minimized in our photodetector with gold film covering both the top and the sidewall. Much higher responsivities for both polarizations are also achieved over a broad wavelength range of 1.2-1.6 μm. Moreover, the Schottky contact is only 4 μm long, leading to a very small dark current. Our design is very promising for practical applications in high-density silicon photonic integration.

  11. Photonic crystal cavities with metallic Schottky contacts

    SciTech Connect

    Quiring, W.; Al-Hmoud, M.; Reuter, D.; Zrenner, A.; Rai, A.; Wieck, A. D.

    2015-07-27

    We report about the fabrication and analysis of high Q photonic crystal cavities with metallic Schottky-contacts. The structures are based on GaAs n-i membranes with an InGaAs quantum well in the i-region and nanostructured low ohmic metal top-gates. They are designed for photocurrent readout within the cavity and fast electric manipulations. The cavity structures are characterized by photoluminescence and photocurrent spectroscopy under resonant excitation. We find strong cavity resonances in the photocurrent spectra and surprisingly high Q-factors up to 6500. Temperature dependent photocurrent measurements in the region between 4.5 K and 310 K show an exponential enhancement of the photocurrent signal and an external quantum efficiency up to 0.26.

  12. Analysis of Carbon Nanotube Metal-Semiconductor Diode Device

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We study recently reported drain current I(sub d)-drain voltage V(sub d) characteristics of a carbon nanotube metal-semiconductor diode device with the gate voltage V(sub g) applied to modulate the carrier density in the nanotube. The diode was kink-shaped at the metal-semiconductor interface. It was shown that (1) larger negative V(sub g) blocked I(sub d) more effectively in the negative V(sub d) region, resulting in the rectifying I(sub d)-V(sub d) characteristics, and that (2) positive V(sub g) allowed I(sub d) in the both V(sub d) polarities, resulting in the non-rectifying characteristics. The negative V(sub d) was the Schottky reverse direction, judging from the negligible I(sub d) behavior for a wide region of -4 V (is less than) V(sub d) (is less than) 0 V, with V(sub g) = -4 V. Such negative V(sub g) would attract positive charges from the metallic electrodes (charge reservoir) to the nanotube and lower the nanotube Fermi energy (E(sub F)). With larger negative V(sub g), the experiment showed that the Schottky forward direction (V(sub d) (is greater than) 0) had a smaller turn-on voltage and the Schottky reverse direction (V(sub d) (is less than) 0) was more resistant to the tunneling breakdown. Therefore, the majority carriers in the transport would be electrons since they can see a lower tunneling barrier (shallower built-in potential) in the forward direction when E(sub F) is lowered, and a thicker tunneling barrier (Schottky barrier) in the reverse direction due to the reduction in the electron density when E(sub F) is lowered.

  13. Low Schottky barriers on n-type silicon (001)

    NASA Astrophysics Data System (ADS)

    Tao, Meng; Agarwal, Shruddha; Udeshi, Darshak; Basit, Nasir; Maldonado, Eduardo; Kirk, Wiley P.

    2003-09-01

    It has been reported that no metal shows a Schottky barrier of less than 0.4 eV on n-type silicon (001). This is attributed to interface states between metal and silicon (001), which pin the interface Fermi level and make the Schottky barrier more or less independent of the metal work function. We demonstrate that, by terminating dangling bonds and relaxing strained bonds on the silicon (001) surface with a monolayer of selenium, low Schottky barriers can be obtained on n-type silicon (001). Aluminum and chromium show barrier heights of 0.08 and 0.26 eV on n-type silicon (001), respectively. These results agree well with the ideal Schottky barrier heights for aluminum and chromium on n-type silicon (001), but are significantly different from the experimental barrier heights known for four decades for these metals on n-type silicon (001).

  14. Silicon Carbide Diodes Performance Characterization at High Temperatures

    NASA Technical Reports Server (NTRS)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry

    2004-01-01

    NASA Glenn Research center's Electrical Systems Development branch is working to demonstrate and test the advantages of Silicon Carbide (SiC) devices in actual power electronics applications. The first step in this pursuit is to obtain commercially available SiC Schottky diodes and to individually test them under both static and dynamic conditions, and then compare them with current state of the art silicon Schottky and ultra fast p-n diodes of similar voltage and current ratings. This presentation covers the results of electrical tests performed at NASA Glenn. Steady state forward and reverse current-volt (I-V) curves were generated for each device to compare performance and to measure their forward voltage drop at rated current, as well as the reverse leakage current at rated voltage. In addition, the devices were individually connected as freewheeling diodes in a Buck (step down) DC to DC converter to test their reverse recovery characteristics and compare their transient performance in a typical converter application. Both static and transient characterization tests were performed at temperatures ranging from 25 C to 300 C, in order to test and demonstrate the advantages of SiC over Silicon at high temperatures.

  15. Silicon Carbide Diodes Performance Characterization at High Temperatures

    NASA Technical Reports Server (NTRS)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry

    2004-01-01

    NASA Glenn Research center's Electrical Systems Development branch is working to demonstrate and test the advantages of Silicon Carbide (SiC) devices in actual power electronics applications. The first step in this pursuit is to obtain commercially available SiC Schottky diodes and to individually test them under both static and dynamic conditions, and then compare them with current state of the art silicon Schottky and ultra fast p-n diodes of similar voltage and current ratings. This presentation covers the results of electrical tests performed at NASA Glenn. Steady state forward and reverse current-volt (I-V) curves were generated for each device to compare performance and to measure their forward voltage drop at rated current, as well as the reverse leakage current at rated voltage. In addition, the devices were individually connected as freewheeling diodes in a Buck (step down) DC to DC converter to test their reverse recovery characteristics and compare their transient performance in a typical converter application. Both static and transient characterization tests were performed at temperatures ranging from 25 C to 300 C, in order to test and demonstrate the advantages of SiC over Silicon at high temperatures.

  16. Probing the nanoscale Schottky barrier of metal/semiconductor interfaces of Pt/CdSe/Pt nanodumbbells by conductive-probe atomic force microscopy.

    PubMed

    Kwon, Sangku; Lee, Seon Joo; Kim, Sun Mi; Lee, Youngkeun; Song, Hyunjoon; Park, Jeong Young

    2015-08-07

    The electrical nature of the nanoscale contact between metal nanodots and semiconductor rods has drawn significant interest because of potential applications for metal-semiconductor hybrid nanostructures in energy conversion or heterogeneous catalysis. Here, we studied the nanoscale electrical character of the Pt/CdSe junction in Pt/CdSe/Pt nanodumbbells on connected Au islands by conductive-probe atomic force microscopy under ultra-high vacuum. Current-voltage plots measured in contact mode revealed Schottky barrier heights of individual nanojunctions of 0.41 ± 0.02 eV. The measured value of the Schottky barrier is significantly lower than that of planar thin-film diodes because of a reduction in the barrier width and enhanced tunneling probability at the interface.

  17. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    NASA Astrophysics Data System (ADS)

    Gui-fang, Li; Jing, Hu; Hui, Lv; Zhijun, Cui; Xiaowei, Hou; Shibin, Liu; Yongqian, Du

    2016-02-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co2MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance-area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co2MnSi and Ge. The electron SBH is modulated in the 0.34 eV-0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. Project supported by the National Natural Science Foundation of China (Grant No. 61504107) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014JCQ01059 and 3102015ZY043).

  18. Interface Induced Gap State Models and ZnO Schottky Contacts

    NASA Astrophysics Data System (ADS)

    Durbin, Steven; Allen, Martin

    2010-03-01

    Practical aspects of fabricating Schottky contacts, such as lateral inhomogeneity, contaminants, and defects, can complicate the comparison of experimentally obtained barrier heights to theoretical predictions. The diode ideality factor η (which should approach unity for laterally homogeneous interfaces, after accounting for image force effects) is also strongly affected by the same issues, and correlations can be observed between barrier height and η when measuring large numbers of devices. ZnO could prove to be an interesting test case for evaluating various theoretical models, as it is significantly more ionic than most semiconductors, resulting in weaker Fermi pinning due to interface states. ZnO also does not require the removal of a native oxide layer for device processing, thereby avoiding often aggressive cleaning procedures. We have fabricated arrays of rectifying metal-ZnO contacts using bulk wafers and a wide variety of metals, using a technique which results in large barrier heights (typically > 0.8 eV) and low η (approaching the image force limit). Using the electrical characteristics of these diodes, we evaluate both Tung's chemical bonding and M"onch's metal induced gap states + electronegativity models. The lack of agreement with either of these popular models raises several questions, including whether predictions for the branch point energy in ZnO --- a parameter relevant to discussions of heterointerfaces as well as doping ability --- are accurate.

  19. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    PubMed

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. An 86-106 GHz quasi-integrated low noise Schottky receiver

    NASA Astrophysics Data System (ADS)

    Ali-Ahmad, Walid Y.; Bishop, William L.; Crowe, Thomas W.; Rebeiz, Gabriel M.

    1993-04-01

    An integrated planar receiver was developed and tested over the 82-112 GHz bandwidth. The quasi-integrated antenna used in the receiver has a high gain, a high Gaussian coupling efficiency, and a wide bandwidth. The novel mixer design consists of a planar GaAs Schottky diode placed at the feed of a dipole-probe suspended inside an integrated horn antenna. The diode uses an etched surface channel and a planar air bridge for reduced parasitic capacitance. At 92 GHz, the room-temperature antenna-mixer exhibits a double sideband conversion loss and noise temperature of 5.5 +/- 0.5 dB and 770 K +/- 50 K, respectively. The measured DSB conversion loss and noise temperature over a 20 GHz bandwidth (86 GHz-106 GHz) remain less than 6.2 dB +/- 0.5 dB and 1000 K +/- 50 K, respectively. The low cost of fabrication and simplicity of the design makes it ideal for millimeter- and submillimeter-wave receivers.

  1. Tuned NV emission by in-plane Al-Schottky junctions on hydrogen terminated diamond

    NASA Astrophysics Data System (ADS)

    Schreyvogel, Christoph; Wolfer, Marco; Kato, Hiromitsu; Schreck, Matthias; Nebel, Christoph E.

    2014-01-01

    The negatively charged nitrogen-vacancy (NV) centre exhibits outstanding optical and spin properties and thus is very attractive for applications in quantum optics. Up to now an active control of the charge state of near-surface NV centres is difficult and the centres switch in an uncontrolled way between different charge states. In this work, we demonstrate an active control of the charge state of NV centres (implanted 7 nm below the surface) by using an in-plane Schottky diode geometry from aluminium on hydrogen terminated diamond in combination with confocal micro-photoluminescence measurements. The partial quenching of NV-photoluminescence caused by the hole accumulation layer of the hydrogen terminated surface can be recovered by applying reverse bias potentials on this diode, i.e. the NV0 charge state is depleted while the NV- charge state is populated. This charge state conversion is caused by the bias voltage affected modulation of the band bending in the depletion region which shifts the Fermi level across the NV charge transition levels.

  2. On the Relationship Between Schottky Barrier Capacitance and Mixer Performance at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1996-01-01

    The flat-band voltage is the Schottky junction voltage required to shrink the depletion width to zero. At cryogenic temperatures, mixer diodes are generally biased and/or pumped beyond the flat-band condition to minimize conversion loss and noise figure. This occurs despite the presumed sharp increase in junction capacitance near flat-band, which should instead limit mixer performance. Past moderate forward bias, the diode C-V relationship is difficult to measure. A simple analytic expression for C(V) is usually used to model and predict mixer performance. This letter provides experimental data on C(V) at 77 K based on a microwave measurement and modeling technique. Data is also provided on the conversion loss of a singly balanced mixer optimized for 77 K operation. The connection between junction capacitance, flat-band potential, and conversion loss is examined. It is shown that the analytic expression greatly overestimates the junction capacitance that occurs as flat-band is approached.

  3. a 530-590 GHZ Schottky Heterodyne Receiver for High-Resolution Molecular Spectroscopy with Lille's Fast-Scan Fully Solid-State DDS Spectrometer

    NASA Astrophysics Data System (ADS)

    Pienkina, A.; Margulès, L.; Motiyenko, R. A.; Wiedner, Martina C.; Maestrini, Alain; Defrance, Fabien

    2017-06-01

    Laboratory spectroscopy, especially at THz and mm-wave ranges require the advances in instrumentation techniques to provide high resolution of the recorded spectra with precise frequency measurement that facilitates the mathematical treatment. We report the first implementation of a Schottky heterodyne receiver, operating at room temperature and covering the range between 530 and 590 GHz, for molecular laboratory spectroscopy. A 530-590 GHz non-cryogenic Schottky solid-state receiver was designed at LERMA, Observatoire de Paris and fabricated in partnership with LPN- CNRS (Laboratoire de Photonique et de Nanostructures), and was initially developed for ESA Jupiter Icy Moons Explorer (JUICE), intended to observe Jupiter and its icy moon atmospheres. It is based on a sub-harmonic Schottky diode mixer, designed and fabricated at LERMA-LPN, pumped by a Local Oscillator (LO), consisting of a frequency Amplifier/Multiplier chains (AMCs) from RPG (Radiometer Physics GmBh). The performance of the receiver was demonstrated by absorption spectroscopy of CH_3CH_2CN with Lille's fast-scan DDS spectrometer. A series of test measurements showed the receiver's good sensitivity, stability and frequency accuracy comparable to those of 4K QMC bolometers, thus making room-temperature Schottky receiver a competitive alternative to 4K QMC bolometers to laboratory spectroscopy applications. We will present the first results with such a combination of a compact room temperature Schottky heterodyne receiver and a fast-scan DDS spectrometer. J. Treuttel, L. Gatilova, A. Maestrini et al., 2016, IEEE Trans. Terahertz Science and Tech., 6, 148-155. This work was funded by the French ANR under the Contract No. ANR-13-BS05-0008-02 IMOLABS.

  4. Contact Whiskers for Millimeter Wave Diodes

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.; Grange, J. A.; Lichtenberger, J. A.

    1978-01-01

    Several techniques are investigated for making short conical tips on wires (whiskers) used for contacting millimeter-wave Schottky diodes. One procedure, using a phosphoric and chromic acid etching solution (PCE), is found to give good results on 12 microns phosphor-bronze wires. Full cone angles of 60 degrees-80 degrees are consistently obtained, compared with the 15 degrees-20 degrees angles obtained with the widely used sodium hydroxide etch. Methods are also described for cleaning, increasing the tip diameter (i.e. blunting), gold plating, and testing the contact resistance of the whiskers. The effects of the whisker tip shape on the electrical resistance, inductance, and capacitance of the whiskers are studied, and examples given for typical sets of parameters.

  5. Theoretical efficiency for triplers using nonideal varistor diodes at submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Benson, K.; Frerking, M. A.

    1985-01-01

    The theoretical efficiency for frequency triplers mutliplying from 300 to 900 GHz has been calculated for nonideal GaAs Schottky diodes operating in the varistor mode. The maximum efficiency is determined to be about 7 percent, only slightly smaller than that for ideal varistors. Guidelines for optimum bias conditions and embedding network impedances have been determined using the large-signal analysis computer program of Siegel and Kerr (1980).

  6. Surface morphological, electrical and transport properties of rapidly annealed double layers Ru/Cr Schottky structure on n-type InP

    NASA Astrophysics Data System (ADS)

    Shanthi Latha, K.; Rajagopal Reddy, V.

    2017-02-01

    The electrical and transport properties of a fabricated bilayer Ru/Cr/n-InP Schottky diode (SD) have been investigated at different annealing temperatures. Atomic force microscopy results have showed that the overall surface morphology of the Ru/Cr/n-InP SD is fairly smooth at elevated temperatures. High barrier height is achieved for the diode annealed at 300 °C compared to the as-deposited, annealed at 200 and 400 °C diodes. The series resistance and shunt resistance of the Ru/Cr/n-InP SD are estimated by current-voltage method at different annealing temperatures. The barrier heights and series resistance are also determined by Cheung's and modified Norde functions. The interface state density of the Ru/Cr/n-InP SD is found to be decreased after annealing at 300 °C and then slightly increased upon annealing at 400 °C. The difference between barrier heights obtained from current-voltage and capacitance-voltage is also discussed. Experimental results have showed that the Poole-Frenkel emission is found to be dominant in the lower bias region whereas Schottky emission is dominant in the higher bias region for the Ru/Cr/n-InP SDs irrespective of annealing temperatures.

  7. Surface morphological, electrical and transport properties of rapidly annealed double layers Ru/Cr Schottky structure on n-type InP

    NASA Astrophysics Data System (ADS)

    Shanthi Latha, K.; Rajagopal Reddy, V.

    2017-07-01

    The electrical and transport properties of a fabricated bilayer Ru/Cr/ n-InP Schottky diode (SD) have been investigated at different annealing temperatures. Atomic force microscopy results have showed that the overall surface morphology of the Ru/Cr/ n-InP SD is fairly smooth at elevated temperatures. High barrier height is achieved for the diode annealed at 300 °C compared to the as-deposited, annealed at 200 and 400 °C diodes. The series resistance and shunt resistance of the Ru/Cr/ n-InP SD are estimated by current-voltage method at different annealing temperatures. The barrier heights and series resistance are also determined by Cheung's and modified Norde functions. The interface state density of the Ru/Cr/ n-InP SD is found to be decreased after annealing at 300 °C and then slightly increased upon annealing at 400 °C. The difference between barrier heights obtained from current-voltage and capacitance-voltage is also discussed. Experimental results have showed that the Poole-Frenkel emission is found to be dominant in the lower bias region whereas Schottky emission is dominant in the higher bias region for the Ru/Cr/ n-InP SDs irrespective of annealing temperatures.

  8. Schottky Heterodyne Receivers With Full Waveguide Bandwidth

    NASA Technical Reports Server (NTRS)

    Hesler, Jeffrey; Crowe, Thomas

    2011-01-01

    Compact THz receivers with broad bandwidth and low noise have been developed for the frequency range from 100 GHz to 1 THz. These receivers meet the requirements for high-resolution spectroscopic studies of planetary atmospheres (including the Earth s) from spacecraft, as well as airborne and balloon platforms. The ongoing research is significant not only for the development of Schottky mixers, but also for the creation of a receiver system, including the LO chain. The new receivers meet the goals of high sensitivity, compact size, low total power requirement, and operation across complete waveguide bands. The exceptional performance makes these receivers ideal for the broader range of scientific and commercial applications. These include the extension of sophisticated test and measurement equipment to 1 THz and the development of low-cost imaging systems for security applications and industrial process monitoring. As a particular example, a WR-1.9SHM (400-600 GHz) has been developed (see Figure 1), with state-of-the-art noise temperature ranging from 1,000-1,800 K (DSB) over the full waveguide band. Also, a Vector Network Analyzer extender has been developed (see Figure 2) for the WR1.5 waveguide band (500 750 GHz) with 100-dB dynamic range.

  9. Dye-sensitized Schottky barrier solar cells

    DOEpatents

    Skotheim, Terje A.

    1978-01-01

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  10. Wireless Power Transmission to Organic Light Emitting Diode Lighting Panel with Magnetically Coupled Resonator

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hae; Han, Jun-Han; Kang, Seung-Youl; Cheon, Sanghoon; Lee, Myung-Lae; Ahn, Seong-Deok; Zyung, Taehyoung; Lee, Jeong-Ik; Moon, Jaehyun; Chu, Hye Yong

    2012-09-01

    We are successful to lit the organic light emitting diode (OLED) lighting panel through the magnetically coupled wireless power transmission technology. For the wireless power transmission, we used the operation frequency 932 kHz, specially designed double spiral type transmitter, small and thin receiver on the four layered printed circuit board, and schottky diodes for the full bridge rectifier. Our white OLED is a hybrid type, in which phosphorescent and fluorescent organics are used together to generate stable white color. The total efficiency of power transmission is around 72%.

  11. Analysis of Hyperabrupt and Uniform Junctions in GaAs for the Application of Varactor Diode.

    PubMed

    Heo, Jun-Woo; Hong, Sejun; Choi, Seok-Gyu; Kim, Hyun-Seok

    2015-10-01

    In this study, we present a GaAs varactor diode with a hyperabrupt junction for the enhancement of breakdown voltage and capacitance variation in a reverse bias state. The hyperabrupt doping profile in the n-type active layer is prepared in a controlled nonlinear manner, with the density of the dopants increasing towards the Schottky junction. The hyperabrupt GaAs varactor diode is fabricated and characterized for breakdown voltage and capacitance over the electric field, induced by an applied reverse bias voltage. A reduced value of the electric field is observed owing to the nonlinear behavior of the electric field at the hyperabrupt junction, although the device has a larger doping density at the Schottky junction. Furthermore, the capacitance ratio of the hyperabrupt junction diode is also improved. Variation in the device capacitance is affected by variation in the depletion region across the junction. Technology CAD is used to understand the experimental phenomena by considering the magnitude of charge density as a function of the doping profile. A higher breakdown voltage and greater capacitance modulation are shown in the hyperabrupt junction diode compared to the uniform junction diode.

  12. A new fabrication technique for back-to-back varactor diodes

    NASA Technical Reports Server (NTRS)

    Smith, R. Peter; Choudhury, Debabani; Martin, Suzanne; Frerking, Margaret A.; Liu, John K.; Grunthaner, Frank A.

    1992-01-01

    A new varactor diode process has been developed in which much of the processing is done from the back of an extremely thin semiconductor wafer laminated to a low-dielectric substrate. Back-to-back BNN diodes were fabricated with this technique; excellent DC and low-frequency capacitance measurements were obtained. Advantages of the new technique relative to other techniques include greatly reduced frontside wafer damage from exposure to process chemicals, improved capability to integrate devices (e.g. for antenna patterns, transmission lines, or wafer-scale grids), and higher line yield. BNN diodes fabricated with this technique exhibit approximately the expected capacitance-voltage characteristics while showing leakage currents under 10 mA at voltages three times that needed to deplete the varactor. This leakage is many orders of magnitude better than comparable Schottky diodes.

  13. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    PubMed

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.

  14. Current transport mechanism of p-GaN Schottky contacts

    NASA Astrophysics Data System (ADS)

    Shiojima, Kenji; Sugahara, Tomoya; Sakai, Shiro

    2000-12-01

    Transient measurements of I-V and depletion layer capacitance were conducted to clarify the leaky current flow mechanism in Ni Schottky contacts formed on Mg-doped p-GaN. We found that carrier capture and emission from acceptor-like deep level defects cause depletion layer width (Wdep) to vary significantly. Upon ionization of the defects by white light, which results in small Wdep, current can go through the Schottky barrier and a leaky I-V curve is observed. Upon filling by current injection, Wdep becomes larger and the large original Schottky barrier height is seen. The time constant of carrier emission is as long as 8.3×103 min.

  15. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    NASA Astrophysics Data System (ADS)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  16. TCAD analysis of graphene silicon Schottky junction solar cell

    NASA Astrophysics Data System (ADS)

    Kuang, Yawei; Liu, Yushen; Ma, Yulong; Xu, Jing; Yang, Xifeng; Feng, Jinfu

    2015-08-01

    The performance of graphene based Schottky junction solar cell on silicon substrate is studied theoretically by TCAD Silvaco tools. We calculate the current-voltage curves and internal quantum efficiency of this device at different conditions using tow dimensional model. The results show that the power conversion efficiency of Schottky solar cell dependents on the work function of graphene and the physical properties of silicon such as thickness and doping concentration. At higher concentration of 1e17cm-3 for n-type silicon, the dark current got a sharp rise compared with lower doping concentration which implies a convert of electron emission mechanism. The biggest fill factor got at higher phos doping predicts a new direction for higher performance graphene Schottky solar cell design.

  17. Soft X-ray detection and photon counting spectroscopy with commercial 4H-SiC Schottky photodiodes

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Gohil, T.; Lioliou, G.; Barnett, A. M.

    2016-09-01

    The results of electrical characterisation and X-ray detection measurements of two different active area (0.06 mm2 and 0.5 mm2) commercial 4H-SiC Schottky photodiodes at room temperature are reported. The devices exhibited low dark currents (less than 10 pA) even at a high electric field strengths (403 kV/cm for 0.06 mm2 diodes; 227 kV/cm for 0.5 mm2 diodes). The results of the X-ray measurements indicate that the diodes can be used as photon counting spectroscopic X-ray detectors with modest energy resolutions: FWHM at 5.9 keV of 1.8 keV and 3.3 keV, for the 0.06 mm2 and 0.5 mm2 devices, respectively. Noise analysis of the photodiodes coupled to a custom low noise charge sensitive preamplifier is also presented.

  18. Electromechanical resistive switching via back-to-back Schottky junctions

    SciTech Connect

    Li, Lijie

    2015-09-15

    The physics of the electromechanical resistive switching is uncovered using the theory of back-to-back Schottky junctions combined with the quantum domain space charge transport. A theoretical model of the basic element of resistive switching devices realized by the metal-ZnO nanowires-metal structure has been created and analyzed. Simulation results show that the reverse biased Schottky junction and the air gap impedance dominate the current-voltage relation at higher external voltages; thereby electromechanically varying the air gap thickness causes the device exhibit resistive tuning characteristics. As the device dimension is in nanometre scale, investigation of the model based on quantum mechanics has also been conducted.

  19. Simulation and measurement of the resonant Schottky pickup

    NASA Astrophysics Data System (ADS)

    Zang, Yong-Dong; Wu, Jun-Xia; Zhao, Tie-Cheng; Zhang, Sheng-Hu; Mao, Rui-Shi; Xu, Hu-Shan; Sun, Zhi-Yu; Ma, Xin-Wen; Tu, Xiao-Lin; Xiao, Guo-Qing; Nolden, F.; Hülsmann, P.; Yu., A. Litvinov; Peschke, C.; Petri, P.; S. Sanjari, M.; Steck, M.

    2011-12-01

    A resonant Schottky pickup with high sensitivity, built by GSI, will be used for nuclear mass and lifetime measurement at CSRe. The basic concepts of Schottky noise signals, a brief introduction of the geometry of the detector, the transient response of the detector, and MAFIA simulated and perturbation measured results of characteristics are presented in this paper. The resonant frequency of the pickup is about 243 MHz and can be slightly changed at a range of 3 MHz. The unloaded quality factor is about 1072 and the shunt impedance is 76 kΩ. The measured results of the characteristics are in agreement with the MAFIA simulations.

  20. High voltage, high current Schottky barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J. (Inventor)

    1977-01-01

    A Schottky barrier solar cell was described, which consists of a layer of wide band gap semiconductor material on which a very thin film of semitransparent metal was deposited to form a Schottky barrier. The layer of the wide band gap semiconductor material is on top of a layer of narrower band gap semiconductor material, to which one of the cell's contacts may be attached directly or through a substrate. The cell's other contact is a grid structure which is deposited on the thin metal film.